
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A285 185
I 1 ! !li /iii! 1111 1111! 111'lll li/ii' • •

J&2sI0 ADA

THESIS

DEVELOPING AN OBJECT-ORIENTED
CURRICULUM

by

Curtis Howard Loehr

September, 1994

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

94-31369



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Pubfic reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing
nstruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
Information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project
0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Sep 1994 Master's Thesis

*. TITLE AND SUBTITLE Developing an Object-Oriented Curriculum 5. FUNDING NUMBERS

6. AUTHOR(S) Curtis H. Loehr

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABII1TY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE
Iistribution unlimited A

13. ABSTRACT (maximum 200 words)

Traditional introductory computer science curricula do not address the emerging paradigm of object-oriented programming. The
purpose of this research is to determine when object-orientation should be introduced into the computer science curriculum and what is
the proper instructional approach to present this material.

This thesis looks at the concepts incorporated by the object-oriented paradigm, explores the developmental psychology applicable

to understanding new environments and proposes an introductory object-oriented curriculum that incorporates the fundamentals of
learning, computer science and object-oriented programming.

The object-oriented curriculum proposed provides a top-down approach to the conceptual foundations of computer science with a
bottom-up approach to object-oriented programming. The combination of approaches provides the necessary breadth of coverage
in algorithms, data structures, programming analysis and object-oriented modeling with an initial in-depth look at the mechanics of
programming.

14. SUBJECT TERMS object-oriented programming instruction, computer science curriculum, 15. NUMBER OF PAGES

hing introductory computer science 86

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT UL

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i



Approved for public release; distribution is unlimited.

Developing an Object-Oriented Curriculum

by

Curtis H. Loehr
Lieutenant, United States Navy

B.S., Michigan State University, 1986

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Author: _-'_ _'__ _"_ _ _

Curtis H. Loehr

Approved by:
C. ThomvWu, Thesis Advisor

Lt Col David A. Gaitros, USAF, Second Reader

Ted G. Lewis, Chairman
Department of Computer Science

ii



ABSTRACT

Traditional introductory computer science curricula do not address the

emerging paradigm of object-oriented programming. The purpose of this research is to

determine when object-orientation should be introduced into the computer science

curriculum and what is the proper instructional approach to present this material.

This thesis looks at the concepts incoi -- A by the object-oriented paradigm,

explores the developmental psychology applicable - understanding new environments and

proposes an introductory object-oriented curriculum that incorporates the fundamentals of

learning, computer science and object-oriented programming.

The object-oriented curriculum proposed provides a top-down approach to the

conceptual foundations of computer science with a bottom-up approach, to

object-oriented programming. This combination of approaches provides the necessary

breadth of coverage in algorithms, data structures, programming analysis and

object-oriented modeling with an initial in-depth look at the mechanics of programming.

Accesion For

NTiS CRA&I
DTIC TAB

JBL;-L- ,t0-n .-...........---------------------

B y ... . ..................... .................. .

Di:ýt ib,;tr::/,

A,w.,likbity Coxes

Avail ::.ci or

Dist dpila

Iiio~



TABLE OF CONTENTS

I. INTRO DUCTIO N ........................................................... 1

A. PROBLEMS WITH STRUCTURED PROGRAMMING ........................ 2

B. COMPLEXITY MANAGEMENT ............................................. 3
1. A bstraction ............................................................... 4

2. Encapsulation ............................................................ 4
3. R eusability ............................................................... 5
4. Extendibility .............................................................. 6
5. M aintainability ........................................................... 6

C. THESIS MOTIVATION ...................................................... 7
D. THESIS ORGANIZATION ................................................... 8

II. OBJECT-ORIENTED CONCEPTS ............................... 9
A. O BJECTS .................................................................. 9

1. Object Definition ....................................................... 10

2. Identity ................................................................. 12

3. Persistence .......................................................... 12

4. Distinct Concepts ....................................................... 13
a. Objects and Programs ............................................... 13

b. Objects and Data ................................................... 13

B. C LASSES .................................................................. 13
1. C lass Definition ........................................................ 14

2. Classes as ADTs ........................................................ 16

3. Classes, Encapsulation and Abstraction ................................. 17

C. INHERITANCE ............................................................ 18
1. Inheritance Definition .................................................... 18

2. Specialization ........................................................... 19
3. Multiple Inheritance .................................................... 20

D. AGGREGATION .......................................................... 21

E. POLYMORPHISM ......................................................... 22
1. Abstract Aspects ........................................................ 22

2. N am es .................................................................. 23
3. Additional ............................................................... 23

iv



F. CO NCLUSIO NS ................................................... ........ 23

III.SURVEY OF OBJECT-ORIENTED LANGUAGES ................ 25
A. SM A LLTALK ............................................................... 25
B . C ++ ........................................................................ 28
C . A DA 9X ................................................................... 30
D. LANGUAGE CONCLUSIONS .............................................. 33

IV. PIAGET'S DEVELOPMENTAL PSYCHOLOGY ................. 35
A. SENSORIMOTOR INTELLIGENCE ......................................... 35
B. REPRESENTATIVE INTELLIGENCE AND CONCRETE OPERATIONS ..... 36

1. Pre-operational Phase ................................................. 36
2. Concrete Operations .................................................... 37

C. FORMAL OPERATIONS ................................................... 38
D. MAPPING PIAGET'S DEVELOPMENTAL PSYCHOLOGY TO

TEACHING OOP .......................................................... 39
1. M apping ................................................................ 41

V.APPROACHES TO TEACHING OOP ............................ 45
A. PRINCIPLES OF INSTRUCTIONAL DESIGN ............................... 45

1. Aid the Individual ....................................................... 46
2. Short and Long Term Outlook ........................................... 46
3. Systematic Instruction ................................................... 46
4. Systems Approach ...................................................... 47
5. Developrmental Psychology ............................................. 47

B. INSTRUCTIONAL SYSTEM DEVELOPMENT ............................... 47
1. System Level ........................................................... 48
2. Course Level ............................................................ 48
3. Lesson Level ............................................................ 49

C. EVOLUTION OF COMPUTER SCIENCE CURRICULUM ................... 50
1. Curriculum 68 ........................................................... 50
2. Curriculum 78 ........................................................... 50
3. The Liberal Arts Model Curriculum ...................................... 51
4. Denning Report ....................................................... 52
5. Curriculum 91 .......................................................... 53

D. APPROACHES TO CURRICULUM DEVELOPMENT ....................... 53
E. APPROACHES TO TEACHING OOP ....................................... 55

V



1. Top-down/Bottom-up .................................................... 56

2. Pure/Hybrid Languages .................................................. 57

F. DESIGN CONCLUSIONS .................................................. 57

VI. PROPOSED CURRICULUM ................................... 59
A. INTRO DUCTIO N .......................................................... 59

B. SYSTEM LEVEL REFORM ................................................. 60

1. Standard Curricula Model .............................................. 60

2. Computer Science Curricula ............................................. 61

C. COURSE LEVEL REFORM ................................................ 62

D. INTEGRATING APPROACHES ........................................... 63

1. Bottom-up and Top-down ................................................ 63

2. Inclusion of CS and Non CS Students in CS1 .......................... 64

E. PROPOSED CURRICULUM ................................................ 64

1. A M odel For CS1 ........................................................ 65

a. Introduction To Computing .......................................... 66

b. Introduction To Programming ........................................ 66

1) Stage 1. Non-OO P ............................................ 67

2) Stage 2. Semi-OOP ......................................... 67

3) Stage 3. Full OOP ........................................... 68

c. Intermediate Courses ................................................ 68

F. CONCLUSIONS ............................................................ 69

VII. CONCLUSIONS ............................................. 71
A. 00 CONCEPTS AND LANGUAGES ........................................ 71

B. THE PSYCHOLOGY OF LEARNING ....................................... 72

C. 00 INTEGRATION INTO THE CS1 CURRICULUM ........................ 73

LIST OF REFERENCES ......................................... 75

INITIAL DISTRIBUTION LIST .................................... 79

vi



I. INTRODUCTION

Object-oriented (00) concepts and methodologies are now in the mainstream of

software development. These concepts represent a complete approach for planning,

designing and implementing solutions for the expanding range of complex problems.

Structured languages, while still maintaining a vital role in software systems, are moving

toward 00 concepts to remain competitive. Although science and industry are eagerly

accepting the 00 paradigm, universities and graduate schools have not formed a

comprehensive curriculum that fundamentally teaches object-oriented programming

(OOP).

This thesis will look at why the 00 paradigm is the programming methodology of

the future, discuss and contrast some principle 00 languages, and develop the logical

basis for concept instruction. The main focus of this thesis is to propose an 00

curriculum that incorporates these principles.

The problems concerning structured programming and why OOP is the method of

the future are briefly reviewed in this chapter. Some of the beneficial properties of the 00

approach to software development are not unique to the 00 philosophy or to all

object-oriented programming languages (OOPL). Looking at the problems encountered in

structured programming and the concepts and facilities the 00 philosophy brings to the

software lifecycle provides a appropriate background for the importance of developing an

00 syllabus.



A PROBLEMS WITH STRUCTURED PROGRAMMING

In conventional structured programming, data structures and behavior are only

loosely connected. In typical structural methodologies the main emphasis is placed on

specifying and decomposing system functionality. This system is more direct and leads to

goal implementation, unfortunately if the system changes, modifications are not easily

made. The software lifecycle stages are normally requirements, design, implementation,

testing, and maintenance. Most of the cost of software is spent on maintenance, between

50% and 75% (Lehman, 1980).

Maintenance can be divided into three sub-activities:

"* Corrective Maintenance - performed in response to the assessment of failures;
"* Adaptive Maintenance - performed in anticipation of change within the data or

processing environment;

* Perfective Maintenance - performed to eliminate inefficiencies and enhance
performance or improve maintainability. (Lientz, Swanson, Tompkins, 1978)

Software enhancement is the largest portion of system maintenance. Sixty percent of all

maintenance money is spent on perfective maintenance (Fairley, 1985). That is the

maintenance required to improve functioning software after it has been delivered. If you

can improve the maintenance phase of the software lifecycle, especially the ability to

enhance software, the overall cost of software will be greatly reduced. This is obviously

of great interest to business, government and academia.

Object-oriented technology specifies what an object is, instead of just how it is

used. The way an object is used depends on the details of the application. These details

frequently change during and after development. As requirements evolve, the features

2



supplied by an object are much more stable than the ways it is used, hence software

systems built on object structure are more stable in the long run (Booch, 1986).

Object-oriented development places a greater emphasis on data structure and a lesser

emphasis on procedure structure than traditional functional methodologies. The

object-oriented methodology focuses on identifying objects from the application domain,

then fitting procedures around them. Although this is more indirect, object-oriented

software holds up better as requirements evolve because it is based on the underlying

framework of the application domain itself rather than the ad-hoc functional requirements

of a single problem.

B. COMPLEXITY MANAGEMENT

Software development increasingly occurs in an industrial setting typified by

product complexity, system longevity, and incessant product evolution (Jacobson, 1991).

00 techniques have been employed for developing complex software products such as

compilers, databases, computer aided design (CAD) systems, simulations, meta models,

operating systems, spreadsheets, signal processors, and control systems (Rumbaugh,

1991). Development of such complex systems requires architectures, methods, and

processes that divide system development into smaller parts and that can handle change

efficiently (Jacobson, 1991). In the next subsections I will explain some of the desirable

features the 00 methodology contributes to complexity management.

3



1. Abstraction

Abstraction is used to simplify the design of a complex system by reducing the

number of details that must be considered at the same time (Berzins, 1991). Abstraction

allows us the ability to simplify complex objects. By simplifying the object, knowledge is

expressed as generalized essential information which can then be better understood.

The level of detail necessary to formulate an abstraction varies with the

requirements for the problem (Booch, 1987). 00 analysis, design, and programming use

abstraction to focus attention on the behaviors and attributes of objects rather than on the

implementation details. Using this method of thinking, problem entities can be pursued

with successive levels of refinement. Each refinement is an abstraction of a particular level

of detail. This allows designs to be conceived as multilevel structures of abstractions.

2. Encapsulation

Information hiding emphasizes the need to separate function from implementation.

Apart from continuity, it is also related to the requirements of de-composability,

composability and understandability: to separately develop the modules of a system, to

combine various existing modules, it is indispensable to know what each of them may and

may not expect from the others. (Meyer, 1988)

Encapsulation is a technique for minimizing interdependencies among separately

written modules (Snyder, 1986). A external interface is used to allow interaction between

data structures and function implementation. In this way the knowledge about data

structures is kept private. In the context of software development, encapsulation

promotes the independent construction of cooperating modules and isolates the effects of

4



implementation modifications to the affected areas only. Implementation details can be

modified without impinging on the users of the interface, so long as external interfaces

are stable. This feature allows software maintenance to become localized and avoids the

perilous search for links between interrelated program modules. The implementation of

this feature contributes to savings of time, money, and human resources. As such,

encapsulation is a critical measure c'r any OOPL.

3. Reusability

Reuse may be defined as the effective ability to incorporate objects created for one

software system into a different software system. The essence of reuse is the ability to take

all or part of a product and completely and correctly embed it within a new product that

may be constituted and structured quite differently. (Wasserman, 1991)

Reusability is a language property that allows previously developed software to be

incorporated into new software. The benefits of reuse are mainly: (1) development effort

is reduced; (2) reused code has already been tested and verified. The principal 00

mechanisms for achieving reuse are inheritance, polymorphism, and dynamic binding.

Much of the value of programming in the 00 environment arises from the capability to

use previously developed code stored in software libraries. Developers may also be

familiar with a problems requirements and important abstractions; consequently,

opportunities for reusing not only software, but entire designs anmi requirements also exist.

(Booch, 1991)

5



4. Extendibility

Extendibility is the ease with which software products may be adapted to changes in

requirements (Meyer, 1988) Extendibility is a concept allied to reusability. It

encompasses those properties which enable new code to be developed as extensions to

previously written code. Extendibility assumes greater importance as problem

understanding improves. This results in possible new requirements. As program scale

grows, extendibility is best achieved through design simplicity and modular

decentralization (Meyer, 1988). In the W0 environment, extendibility is realized through

the application of inheritance techniques to class definitions in class hierarchies.

5. Maintainability

A designer endeavors to organize a design so that it is resilient to change; a

packaging that will remain stable over time is sought. The answer is to separate those

parts of the system that are intrinsically volatile from those parts that are likely to be

stable. (Coad and Yourdon, 1991)

Maintainability refers to the efficiency which modification can be intrcduced over

the software iffecycle. It is an economic issue which concerns the degree to which linkages

in program elements magnify the effects of modifications. Economically, maintainability

reflects the cost required to correct, modify or extend code. Software that exhibits strong

abstraction, encapsulation, reusability and extendibility generally has favorable

maintainability qualities.

6



C. THESIS MOTIVATION

00 technology as been accepted in the mainstream professional community. As

industry continues to lead the way in 00 use and development, academia presents

students with out dated programming environments. For several years, calls have been

made to incorporate this methodology into the undergraduate curriculum (Temte, 1991).

The claim has been made that 00 technology will become the dominant software

development methododology, replacing the traditional decomposition model (Lutz, 1990).

Undergraduate CS programs are contemplating introducing or extending the 00 paradigm

into the traditional CS curriculum. There has yet to be a widespread concerted effort in

the educational community to amend curricula in order to accommodate

object-orientedness (Temte, 1990). Academic environments given limited time and

resources are questioning instructional policy that provide 00 concepts only as advanced

courses to the primary structured curriculum. A CS curriculum is required that will

integrate the 00 paradigm at the initial stages of instruction.

The purpose of this thesis is to review the concepts of OOP and explain the benefits

of this methodology, to compare these concepts and how they are implemented in three

popular 00 languages, to look at the developmental stages of learning to better

understand the proper presentation of concepts and finally to propose a curriculm that will

introduce the 00 paradigm in the initial stages of CS education.

7



D. THESIS ORGANIZATION

Chapter II reviews the 00 literature to highlight definitions of the fundamental

concepts. These definitions are also the critical items initially to be covered in any

substantive 00 curriculum. Chapter III draws upon the 00 literature to contrast three

00 languages and how they incorporate the essential definitions. Chapter IV looks at the

Developmental Psychology work authored by Jean Piaget. His work outlines the logical

progression of learning which leads to insights when preparing an 00 teaching syllabus.

Chapter V examines the basic principles of instruction, various approaches to teaching

programming, the evolutions of the computer science curriculum and some alternatives

approaches within the 00 methodology. Chapter VI proposes the curriculum and

introduces the teaching syllabus. Finally, Chapter VII offers conclusions and suggestions

for implementation and further research.

8



II. OBJECT-ORIENTED CONCEPTS

The object-oriented concept represents a complete philosophy for planning,

designing and implementing solutions to complex problems. Development of such

complex systems requires architecture's, methods, and processes that divide system

development into smaller parts and that can handle change efficiently. (Jacobson, 1991)

The following concepts are the desirable features that 00 methodologies attempt to bring

to software development for the managing of complex systems. Although there currently

are no 00 standards, there is consensus as to the primary concepts which formulate the

00 paradigm. This chapter will review some of the benefits of the 00 methodology,

define some of the fundamental concepts and review the beneficial properties of the 00

approach to software development.

A. OBJECTS

Objects have a unusual dual status within the 00 system. In one instance they are

introduced as physical entities in the problem domain. Alternatively, they are presented as

the primary programming constructs which closely parallel the constructs in the problem

domain. In terms of practical consequences the difference between the two is minimal, yet

the distinction should be noted as the latter emphasizes that objects are constrained not

only by possibilities from the real-world but also by the capabilities of the programming

language.

9



1. Object Definition

An object has state, behavior, and identity; the structure and behavior of similar

objects are defined by their common characteristics; the terms instance and object are

interchangeable (Booch, 1991). Objects are entities that combine the properties of

procedures and data since they perform computations and save local state (Stifik and

Bobrow, 1986).

Objects have a structure which preserves the state of an object. An object may

change states over the course of its existence, so, objects can have a history. Objects also

exhibit a observable behavior. Objects communicate with each other by passing messages

to request desired behavior. Objects have an identity that distinguishes each object from all

others. (Loomis, 1991)

In order to define an object you must first find sets or classes of objects with a

common structure and behavior. They are the objects or concepts from the real world

enterprise which is being modeled. This is a form of data abstraction where something is

represented if it contains a set of similar objects or concepts with meaningful properties

and operations that are required to be maintained by the system. Therefore a class is the

abstraction of shared characteristics. This is similar to the approach used in the entity

relationship modeling concept except in object oriented modeling the design is not

constrained by implementation or normalization considerations nor does it strictly pertain

to database relationships. The attributes of object classes need not be non-decomposable

10



or single valued. Objects relevant to the organization being modeled are organized into

different categories. (Bertion, 1991)

Families of objects have common traits: Inheritance is used to model objects in

order to reduce the need to duplicate shared properties and operations. The existence of a

inheritance hierarchy is indicated by the presence of properties or operations which only

apply to certain instances of an object class.

Part/whole relationships: Objects that have an "is-part-of" relationship with another

object. This is a complex object, an object which has a complex structure consisting of

other sub-objects. For example the object Engine is part of the complex object Vehicle.

Groups or Clusters of closely inter-related classes that together describe a part of

the system. Clustering is an aid to both conceptual modeling of large systems and also to

physical implementation. Objects that tend to be accessed together are placed near each

other in physical storage.

General purpose classes that are used by many applications that are called base

classes. Base classes may be available from class libraries which provide ready to use

abstractions for commonly used data structures. (Bertion, 1991)

The behavior of an object is the set of actions an object can undertake. During a

program an object sends a message to another object requesting a service offered by the

receiving object. The receiving object determines how best to comply with the request,

selecting among a set of methods which satisfy the request. Much of the versatility and

11



confusion in OOP comes from the mechanisms that determine which object receives a

request and which method is selected.

2. Identity

Objects as programming constructs achieve a high level of abstraction and closely

parallel their real-world counterparts. A requirement for the computer environment is to

have "...the ability to distinguish objects from one another regardless of their content,

location or addressability, and to be able to share objects (Khoshafian and Copeland,

1986). Object identity enables us to realize this goal. An argument can be may that an

00 language must maintain identity despite changes in an object's state, address, or

user-defined name, and throughout it's lifetime (Khoshafian and Copeland, 1986). This is

accomplished in an 00 language by maintaining an identifier built into the object that will

not change. The failure to recognize the difference between the name of an object and

the object itself is the source of many kinds of errors in object-oriented programming

(Booch, 1991). These errors include assignment operations which orphan objects, using

aliases through assignment (structural sharing), and inappropriate semantics for equality

operators (Booch, 1991).

3. Persistence

An object's existence does not necessarily depend on the program from which it

was created. The fact that objects have an identity and can have a history implies that it

can exist beyond the lifetime of the program(s) in which the object may have been created

or used. This quality is termed persistence. (Loomis, 1991)

12



4. Distinct Concepts

a. Objects and Programs

Construction of a program using the 00 paradigm produces a different

perspective than structural methods. This traditional approach to programming consists of

procedural modules which act on data. Programming from this perspective leads to a

top-down, functional decomposition of programs. The 00 methodology consists of

objects acting in cooperation , but independently. This approach can achieve various levels

of integration, producing system behavior at high levels. This approach allows complex

systems to be modeled as interacting objects.

b. Objects and Data

Objects are not just data structures. Objects are entities which have both

structure and behavior. The implementation of an object's structure should be

encapsulated, although this is not always possible in 00 languages, nor is it available in

data driven programs in which data structures are globally accessed and modified.

B. CLASSES

The evolution of software engineering has brought the modularization of software

components. Berzins and Luqi define a module as a "..conceptual unit in a software

system that corresponds to a clearly identifiable region of the program text." (Berzins and

Luqi, 1991)

From this view, modularization is a part of software construction which produces

"...software systems made of autonomous elements connected by a coherent, simple

structure." (Meyer, 1988) Modularization promotes conceptual localization of code.

13



This allows the realization of desirable properties including data abstraction,

encapsulation, reusability, extendibility, reliability, and maintainability. Although objects

are declared as instance of classes, it is classes that are recognized as the k-y modules in

most 00 languages. Classes are the key design modules and objects, as instance of

classes, are the key program modules.

1. Class Definition

A class is a template from which objects may be created by 'create ' or 'new'

operations. Objects of the same class have common operations and therefore uniform

behavior. (Wegner, 1987) Whereas an object is a concrete entity that exists in time and

space, a class represents only an abstraction, the 'essence' of an object, as it were (Booch,

1991).

Object oriented systems use two different but related mechanisms for representing

objects and sharing behavior, based upon either classes or prototype. There are two

categories of objects, classes and instances. A class acts as a template for a set of

instances, describing their structure and behavior. Classes can contain values, methods,

and programs. Instances do not have to have values for all the properties described by

their class, but they cannot have any properties which are not declared in their class.

Additionally a characteristic of a class is that all the instances of the class are stored with

the class descriptor. This means that it is straightforward to iterate over all instances of a

class as they are at least conceptually stored together. A class can be seen as an object

factory, which indicates how an object is made, plus an object warehouse where the

14



objects are stored (Bancilhon, 1988). An Gbject is an instance of a class and therefore a

basic run time entity. The instances of a class share attribute definitions, not the values.

An alternative to the class based object oriented system is to use prototypes in

which there is only one category of object. The distinction between class and object is

gone. Prototypes involve generating a new object starting from another existing object by

modifying its attributes and/or its behavior. A prototype is an individual object containing

its own description. A prototype can also be used as a model for creating other objects.

This can be useful when objects evolve quickly and have more differences than similarities.

Prototyping is also useful when their a few instances for each class. The proliferation of

many classes each with a few instances is avoided.

A class construct supports encapsulation through the separation of the class

interface and class implementation. Such separation permits the class interface to be

mapped into several different implementations and at the same time makes sure that the

operators in the external interface represent the possible behaviors of that object. One of

the responsibilities of such operators is to provide for controlled access to the attributes of

the object which would be hidden from the users of the class. (Chorafas and Steinmann,

1993)

An interface to a class consists of those variables and methods which are visible to

other objects and to subclasses. The interface available to other objects is called the

external view and the interface available to subclasses is called the internal view (Micallef,

1988).

15



The ability to limit the various interface visibility's is not present in every OOPL.

Languages like C++ provide a mechanism for enforcing private and public distinctions.

This private area represents knowledge that is not available to other objects. It is not pan

of the external or the internal interface. Public areas (variables and methods) are integrated

into the external and internal interfaces. To enforce encapsulation variables are kept

private, accessible only through public methods. Internal interfaces can apply an

additional level of control by declaring variables and method protected. This makes them

invisible to other objects, but not to their subclasses.

2. Classes as ADTs

Data abstraction is defined as "...the principle of defining a data type in terms of the

operations that apply to objects of the type, with the constraint that the values of such

objects can be modified and observed only by the use of the operations." (Coad and

Yourdon, 1991) When describing data structures it is desirable to have complete, precise,

unambiguous descriptions that are not based on the physical representation of the

underlying structure (Meyer, 1988).

In 00 languages like C++ and Eiffel, classes are equivalent to ADTs. Classes,

which are the modular units of interaction, take a specific purpose: the description of data

types. The interaction between modules (classes) are managed through the type

interfaces. Nevertheless, it is important to understand that the principle function of classes

is to serve as templates for object instantiation and not as predicate descriptors. (Wegner,

1988)

16



3. Classes, Encapsulation and Abstraction

Abstraction and encapsulation are complementary concepts. Abstraction looks at

the outside view of an object. An abstraction denotes the essential characteristics of an

object that distinguish it from other kinds of objects and thus provides crisply defined

conceptual boundaries, relative to the perspective of the viewer. (Booch, 1991)

The abstraction of an object should precede the decisions about its implementation.

Once the implementation is selected, it should be treated as a secret of the abstraction and

hidden from most clients. No section of a large complex system should depend on the

internal details of any other section. Abstraction is used to simplify the design of a

complex system by reducing the number of details that must be considered at the same

time. (Berzins, 1991)

As modular software components, classes implement details of structure and

behavior. Modularization permits the design of interfaces which encapsulate these

implementation details. This achieves the many benefits attributed to encapsulation.

Encapsulation represents a property, not a responsibility of classes. It is the programmers

responsibility to specifically design interfaces which segregate implementation from

specification. The philosophy of 00 languages must support encapsulation by restricting

access/manipulation of data structures of the designed interface. Not every language that

supports classes enforces encapsulation. Instance variables in Simula are directly

accessible (Micallef, 1988). This increase the linkages among program modules, reduces

reliability of code, and increases the difficulty of maintenance.

17



C. INHERITANCE

Inheritance uniquely distinguishes 00 languages from other programming

languages. In the family of 00 languages the inh'eritance mechanisms vary widely.

Inheritance is a large concept which serves multiple ends and should be looked at from

different perspectives to fully understand its concepts.

1. Inheritance Definition

Inheritance enables the easy creation of objects that are almost like other objects

with a few incremental changes. Inheritance reduces the need to specify redundant

information and simplifies updating and modification, since information can be entered and

changed in one place. (Stefik and Bobrow, 1986)

We adopt the view of Cook who defines inheritance as a composition mechanism

that internalizes inherited attributes by late (execution time) binding of self-reference to

the inheriting object (Wegner and Zdonik, 1988).

Inheritance is primarily a resource sharing mechanism, greatly extending reusability.

Defined objects are organized in a hierarchy, allowing operations implemented by a parent

type to be inherited and reused by a child type. This promotes uniformity among types and

affords the advantage of being able to represent knowledge at the highest level of

abstraction. It also helps to maintain consistency of the knowledge base when adding new

objects or concepts.

Groups of classes can manifest commonalties which result in hierarchical

relationships among class definitions. The concept of inheritance is the second reusability

mechanism. Inheritance lets a class be defined starting from the definition of another class,

18



called the superclass. A subclass inherits the superclass attributes, methods, and messages.

A subclass can have specific attributes, methods and messages that are not inherited. A

subclass can override the definition of the superclass attributes and methods. The

inheritance mechanism lets a class specialize another class by additions and substitutions.

Inheritance represents an important form of abstraction since the differences of many class

descriptions are abstracted away and the similarities factored out as a more general

superclass.

00 languages can implement single inhetitance in which a subclass is only allowed

to inherit from a single superclass or multiple inheritance in which a subclass inherits from

one or more superclasses. Multiple inheritance greatly increase the opportunities for code

reuse, but it also introduces several complications. Solutions for these complication vary

from language to language.

2. Specialization

There are different strategies used to design class hierarchies. The possibilities

include, specialization, type and like hierarchies. Classes may show no abstract

commonalties other than code sharing or interface sharing.

Specialization is described as the primary principle for hierarchy design although a

consistent formula for building such hierarchy has not been generally accepted.

Specialization hierarchies are also called 'is-a' hierarchies. The 'is-a' hierarchies consist of

"...superclasses representing generalized abstractions, and subclasses representing

19



specializations in which fields and method from the superclass are added, modified, or

even hidden." (Booch, 1991)

Exactly what qualifies as specialized behavior? What are the mechanisms which

implement inheritance and the abstractions which relate classes in a specialization

hierarchy? A standardized notion of specialization, based upon some philosophical

foundation is required to introduce continuity to hierarchy construction and to facilitate

the construction of compatible hierarchies. This is central to forming 00 libraries and

code reuse.

3. Multiple Inheritance

Multiple inheritance allows a class to have more than one superclass and to inherit

features from all parents. A subclass may inherit from several superclasses. The 'is-a'

relationship should guide the construction of multiple inheritance hierarchies (directed

acyclic lattices), noting, however, that the resulting subclass should be viewed as a

specialized "...combination or collection of several different components." (Budd, 1991)

Multiple inheritance introduces new problems. Name conflicts and inheritance from

common ancestors are the most prominent. Name conflict resolution strategies have been

proposed which provide a useful framework for analyzing such conflicts. Knudsen

distinguishes horizontal from vertical name collision. Conflicts can be characterized in

three ways: (1) the same phenomena are defined; (2) casually related phenomena are

defined; and, (3) unique phenomena are defined in which no collisions are permissible

(Knudsen, 1988). The first method is handled by polymorphic techniques, the second by

20



resolution operators and the third will give compile-time errors. Inheritance from a

common ancestor involves inheritance of attributes from superclasses whose inheritance

paths converge at a common ancestor.

D. AGGREGATION

Aggregation is the "a-part-of" relationship in which objects representing the

components of something are associated with an object representing the entire assembly

(Rumbaugh, et al, 1991). An aggregation relationship relates an assembly class to one

component class. Complex objects can be conceived as consisting of aggregates of other

objects. The object is 'part-of another object. Composite objects are a group of

interconnected objects that ate instantiated together, a recursive extension of the notion

of object (Stefik and Bobrow, 1986). This presents several ideas from the concept of

composite objects.

First, composition is another mechanism for reusability. Redefinition is not

necessary if the class template for a group of objects is included from a previously defined

template. These composition relationships can be implemented through two mechanisms:

(1) declaration of class instance variables as user defined types; and (2) declaration of

formal parameters for class methods as user defined types (as a parameter to the class

interface). (Booch, 1991)

Second, composition should not be confused with single or multiple inheritance.

The subclass inherits from a superclass only once while aggregation allows more than one

instance of particular object type." (Halbert and O'Brien, 1987)

21



Third, the notion of composition as a recursive definition highlights the fact that

members of a composite object may themselves additionally be composite objects. Any

level of complexity is possible.

E. POLYMORPHISM

Polymorphism is a concept from which it is difficult to obtain a clear understanding.

To achieve reusability inheritance, specialization, message passing and polymorphism all

interact. This tends to complicate the isolation of the content and effects of polymorphism.

The definitions of polymorphism often overlap other concepts such as overloading.

1. Abstract Aspects

In programming languages, "a polymorphic object is an entity, such as a variable or

function argument, that is permitted to hold values of differing types during the course of

execution." (Budd, 1991) Most 00 programming languages provide an efficient message

passing construct that enables receivers of messages to change (Ingalls, 1986). In a

strongly typed environment such as C++, the changing among types or message receivers

is constrained by inheritance (Meyer, 1988).

Polymorphism is a group of mechanisms that permit programming constructs

(method names, method arguments, and objects) to shift definitions in the course of

program execution. This mechanism is different for each programming language. Some

languages distinguish the static, declared class of an object from the dynamic class of its

value (Meyer, 1988). Polymorphism can be managed by manipulation of references and

pointers or by binding values to objects at run-time.

22



2. Names

Polymorphic names occur when the same message is sent to different objects. This

is referred to as overloading of function names. Several classes may have a method with

the same name. Additionally, methods with the same names can have different argument

cardinality or different argument types. The methods are all grouped within a single class.

An example is the constructor function in C++ classes.

3. Additional

These polymorphic forms are the basic cases found in most 00 languages.

Additionally polymorphic forms include overriding, virtual, deferred, and parametric

techniques.

F. CONCLUSIONS

The 00 paradigm has changed since the introduction of the first 00 language

CEMBALO in 1968 (Meyer, 1988). Inheritance uniquely distinguishes 00 languages

from other programming languages. Languages which include objects and classes, but not

inheritance are called object-based languages (Ada 83). Conceptual standardization is

what currently restricts the 00 paradigm from becoming the methodology of choice.

23



24



III. SURVEY OF OBJECT-ORIENTED LANGUAGES

The introduction of object-oriented languages and variants has continued to grow

into the 1990's. The once limiting obstacle of memory and MIPS intensive OOPL's has

been removed by the growth in capability of computer hardware. The growth of OOPL

rose in three separate, yet interconnected strains. Those were LISP-based,

Smalltalk-based and C-based. (Saunders, 1989)

This chapter iooks at three object-oriented programming languages. Smalltalk is a

widely used "pure" OOPL, C++ is the commercially successful 00 addition to the family

of C languages, and ADA-9x is the military supported entrant into the 00 community.

All these languages possess the following built in characteristics:

1. Object creation facility
2. Message passing capability
3. Class capability
4. Inheritance feature (Saunders, 1989)

A. SMALLTALK

Smalltalk features pure OOP which provides a interesting dimension in which to

organize the elements of a software systems This allows the programmer to create highly

reusable software, generic code and the opportunity to use a prototyping style of software

development.

There are some specific features that make Smalltalk a popular OOPL. Smalltalk

has a seamless programming environment. It encourages programming by modification

though code re-use. Using Smalltalk, it is possible to introduce the notions of

25



encapsulation and procedural abstraction early in an introductory course. Students

develop code using interactive browsers and a source code debugger. An extensive class

library is available for access to source code and to classic approaches with common

syntax.

In the context of an introductory computer science course, a solid foundation is

necessary in the fundamentals of using constructs such as variables, data types, iteration

and conditional statements. The skills of documenting, debugging and testing are also

required in an initial programmi .g course. Smalltalk provides the ability to introduce

these concepts in conjunction with the notions of encapsulation and procedural

abstraction. The methodology for using Smalltalk consists of:

1. Identifying the objects appearing in the problem and its solution.
2. Classifying the objects according to their similarities and differences.
3. Designing messages which make up the language of interaction among the

objects.
4. Implementing the methods (algorithms) that carryout the interaction among

objects (Digitalk, 1991).

Smalltalk is relatively basic in its simple syntax and semantics. The concepts of

objects, class, message and method form the basis of Smalltalk programming. All

Smalltalk objects are abstract data types. Every object is an instance of a class. The class

defines the structure and behavior of all its instances. The class of an object is determined

by sending it the message class. Classes describe the data structure (objects), algorithms

(methods) and interfaces (messages). Every object is an instance of some class. Objects

that are instances of a certain class are similar, have the same instance variables, and

respond to the same messages. The classes in Smalltalk form a hierarchy beginning with

26



the root class object. A class object provides common behavior for all objects. Each

subclass builds on its superclass by adding its own methods and instance variables.

All Smailtalk variables are containers for objects. They contain a single object

pointer. Messages in Smalltalk are equivalent to function calls. Objects and messages are

safe. Objects have a state while messages are used to change that state. Methods are the

algorithms that determine an objecfs behavior and performance. They are like function

definitions. When a message is sent to an object, a method is evaluated and the result

returned is an object Class methods implement messages sent to the class. They respond

to messages sent to class objects. The receiver of a class message is always sent to

instances of the class. The receiver of an instance method is always an object that is an

instance of the class. A message is sent to a class object to allocate a new object. It

creates a new instance of a class.

Inheritance is provided by supplying the name of the supertype to an object. All

attributes of a superclass are available to all descendants. Only those features that are

unique to the subclass are specified. Smalltalk does not support multiple inheritance.

All Smalltalk objects are dynamic and allocated from a heap. Deallocation is

performed by a built in garbage collector. Tools are available in Smalltalk for browsing,

editing, compilation, debugging, system integration and testing. The browser also allows

exploration of source code. Messages in Smalltalk are bound at run-time. In Smalltalk all

operations are public, which is not condusive for large multi-person projects.

27



B. C++

C++ is the C language extended to support OOP. It's 00 features have been well

integrated into the base language and very little in the way of new syntax was added to

provide the necessary support. The features that modem software engineering considers

indispensable are present in C++.

C was chosen as the base language for C++ because it is versatile, relatively

low-level and was running on most machines around the world. The decision to maintain

compatibility with the C language was done to support the millions of lines of C code that

may benefit from improvements in C++. There is an extensive set of library functions and

utility software code written in C that is useful to C++. (Stroustrup, 1993)

There are many small changes in C++ from the ANSI version of C. The only major

change is the addition of classes. In C++, classes are the storage regions in memory that

allow the building of objects. The most significant changes noticeable in C++

programming as contrasted with C are:

1. A notion of distributed rather than centralized control
2. A more readily reasoned decomposition of a problem into modules.
3. The common use of dynamically instantiated objects.
4. The hiding of almost all global variables. (Reid, 1991)

The more flexible structure in the design of C++ supports the increase in the scale

of programs written since C was first introduced. Good style and structure can be avoided

in a small program and still produce sufficient code. Failure to maintain proper structure

as the size of a program grows will guarantee a continuing progression of errors. The

base language of C is designed so there is a very close correspondence between its types,

28



operators, and statements and the objects computers deal with directly, numbers,

characters, and addresses (Stroustrup, 1993). The difference between C and C++ is

primarily in the degree of emphasis on types and structure. C++ is much more expressive

than C.

There are three features in C++ that are critical to providing 00 design. The three

features of C++ are constructors, which allow you to control how objects are created;

templates, which let you create classes that have the same code but for different types; and

friends, which relax the C++ access rules. These three topics are important C++

capabilities that have a major impact on all C++ 00 software design.

C++ uses a special member function called a constructor to initialize data members.

The constructor ensures that necessary initialization is performed when an object is

created. Constructors can have arguments so objects can be constructed with a specified

initial value. The point of construction is to ensure the necessary initialization chores are

performed when an object is created.

A template allows the specification of classes or functions without filling in all the

type information. At a later time the specific type of class or function can be created.

Templates give you the ability to create generic solutions but with the advantage of having

strongly typed interfaces.

The C++ public, protected and private access restrictions prevent unwanted access.

This allows a class to enforce its own restrictions and rely on its own conventions.

Classes can provide access to non-public members by using public access functions. This

29



gives a class control over how its non-public members are used. The C++ designers

believed there are situations in which there is a legitimate need to access another class's

non-public members. The C++ concept of friendship bypasses the access system

providing direct access to the specified friends.

C. ADA 9X

Ada 9x , like C++ , is a modern general purpose language. It has roughly similar

power aimed broadly at the area of systems programming. Ada 9x is also intended for

embedded and real time systems, and has many features to support concurrent and

distributed programming. Ada 9x has kept the best features of its predecessor Ada 83.

Ada 9x and C++ have features that modern software engineering practice considers

indispensable; modularity, information hiding, structuring tools for large programs,

inheritance and support of 00 design methods.

Both Ada 9x and C++ are superior to their competitors (C, Modula-2, Pascal,

Eiffel) in terms of expressive power, maturity, and software base. Ada is also superior in

terms of safety and reliability. Ada 9x has additional advantages over C++ in terms of

software costs when these costs are examined over the lifetime of the software system.

(Schonberg, 1992)

The comparison of programming languages is a subjective affair. Judgments are

influenced by personal stylistic choices, by familiarity and by the first language effect.

When comparing language issues, the arguments need to be pragmatic. Issues of

30



reliability, ease of use, modifiability of resulting code, the training of programmers, and the

availability of tools should dominate the discussion.

OOP simplifies the design and construction of software systems thiough the reuse

abilities of inheritance, specialization by extensions and dynamic dispatching (Anderson,

1992). The gain is in the amount of code that does not have to be rewritten. Ada 9x

implements OOP by an extension of the notion of derived type. Objects are the same as in

Ada 83, they are entities that can have values of a certain type. Ada 9x supports multiple

inheritance via multiple "with/use" clauses, multiple inheritance of implementation via

private extensions and record composition, multiple inheritance mix-ins via the "use"

generics, formal packages and access discriminants (Anderson, 1992). The mechanisms in

Ada 9x are designed to eliminate distributed over head, so that there is no added expense

for the general user because of the presence of the mechanisms supporting multiple

inheritance (Anderson, 1992).

The concept of OOP brings with it the insight that types should be enriched by

extending what they inherit, rather than being simply copies of their ancestors. Ada 9x

implements OOP by a straightforward extension of the notion of derived type (AMSR,

92).

Objects are the same as in Ada 83, they can have values of a certain type. The

conventional concept of class in Ada 9x is the type extension. The derived type inherits

the primitive operations of its parent type. There is no special syntax to designate

31



objects. Ada 9x makes some basic distinctions between types that can be extended and

those that cannot.

The function of friend classes is one of the more controversial aspects of C++

(Schonberg, 1992). The built in privacy of class members that are not explicitly declared

public means that it is impossible to write efficient code that makes use of distinct classes

without the friend concept.

In Ada, the need for such a mechanism is lessened by the possibility of defining

related types in the same package. Those types can be private and still have functions

defined in the package that make use in their bodies of the private representation of these

types. This style respects the interface between interface and implementation, but requires

more design discipline. (Schonberg, 1992)

To maximize software reuse, it is important to be able to parametrize software

components. The generic facility of Ada has type parameters with specified operations,

both private and limited generic types. It is also possible to specify type parameters that

belong to a given class of types as well as value parameters and object parameters. In Ada

9x it is possible to specify generic derived types (where the actual is any member of the

class of the generic type) and generic formal packages (where the actual is any

instantiation of the generic formal package) (Schonberg, 1992). This form of

parametrization is more powerful than what is available in C++.

32



D. LANGUAGE CONCLUSIONS

To compare Smalltalk, C++ and Ada 9x is not easy. Smalltalk is a pure OOPL with

simple syntax and semantics. It is best suited for the presentation of 00 concepts and

techniques, but does not contain the constructs for multitasking, large modular projects or

real time programming. C++ has a large professional community which produces some

exceptional code. U',fortunately C++ is also a language for which there is no stable

definition, no apploved standard reference and no translator validation suite (Schonberg,

1992). Ada code has strong standardization, and the resulting portability helps reduce

software costs that have disproportionally grown as programs have increased in size. The

"best" single language to incorporate into a 00 curriculum will need to have

characteristics of all the discussed languages. Smalltalk's clear 00 concepts and simple

semantics make it the perfect language for beginning students. C++ with its large backing

and support structure require serious programmers to be competent in the family of C

languages. Ada 9x brings to this group of languages the OOP capability with type

extensions and real-time programming on top of its proven type safety and modularity.

Smalltalk and Ada 9x have the qualities necessary for an 00 curriculum, while the realities

of the programming world demana the inclusion of C++.

33



34



IV. PIAGET'S DEVELOPMENTAL PSYCHOLOGY

One of the dominant figures in contemporary development psychology is Jean

Piaget. This work provides a larger context in which to view the acquisition of knowledge.

Piaget's ideas are concerned with the inter-play between logic and psychology as problems

get solved. Piaget states that there are three main periods of psychological development in

a child. Reviewing tnese developmental periods outlines the fundamental ability of a child

to learn. I will review these periods and make analogies to them as they relate to the

structuring of computer science curriculums.

A. SENSORIMOTOR INTELLIGENCE

Piaget states that knowledge begins at a base level from which all understanding

must start. The example described is that of a new born child and its immediate "sucking

reflex". This is the baby's base level of knowledge from which all learning will begin. The

continual exposure to a situation allows acquisition of new knowledge. This "learning by

doing" is fundamental in Piaget's form of development. Piaget describes how a child

moves from blind repetition to repetition to make something last. Understanding requires

access to the phenomena. Continual exposure to the new environment allows for

familiarity and understanding. It also leads to active experimentation and inventiveness.

The comprehension of new ideas all start from some individual basic level of knowledge.

The child progresses from the "sucking reflex" to higher levels of understanding. The

reflex is replaced by cries for food, then specific requests for an item and finally the ability

35



to actively determine "what's for dinner". Whether it be learning to walk or nuclear

physics, understanding the environment is mandatory before compete comprehension can

be obtained. Analogies can be made to the basic understanding of software systems and

how through hands on experience, some basic system functions can be understood. This

knowled-ge then leads to further discoveries.

B. REPRESENTATIVE INTELLIGENCE AND CONCRETE
OPERATIONS

1. Pre-operational Phase

The description of the pre-operational phase begins with the ability to imitate in the

form of images. One child initially is unable to see that the square peg will not fit into the

round hole. Once images can be manipulated, symbolic thought is possible. The child

sees the round whole and can imagine what the peg must look like in order to fit the hole.

Image references with functional applications allow abstraction of thoughts and ideas.

One main idea from this period is the concept of conservation. When a child

understands conservation he/she has the ability to understand that an object divided into

parts is constant in its derived attributes. An example of this concept is the ability to

understand that a pie cut in half contains the same combined weight and volume. Weight

and volume are the derived attributes. This ability to divide general classes into logical

sub-classes and maintain the derived attributes or there functional equivalent is the first

step to understanding the concept of object oriented design.

36



2. Concrete Operations

The achievement of the early stage of conservation is the definition of what Piaget

characterizes as concrete operations. A logical path has been followed by the child

working his way through the logic of groups and the achievement of grouping structures.

These grouping structures are the abstactions behind the child's concrete operational

thought. The connection with computer science here is direct. The logical grouping of

classes is integral to object oriented design. Understanding the causes and effects of

actions is the basis of concrete operations. During the phase of concrete operations Piaget

distinguishes the tendencies to senate, to classify and to establish correspondence.

To seriate is to arrange objects in some sort of order. There is a developmental

sequence in handling this task. For example, when arranging objects from smallest to

largest size you obviously understand each object in the sequence is larger than the

previous. Instinctively understanding the previous object is smaller than the current is also

present. When successful the child or the student has mastered the logic of not only the

direct relationship, but also its inverse.

To classify is to sort according to some quantity. Inclusive classes increase the

difficulty of this process. In the previous example the objects can be sorted by color as

well as length, increasing the situations complexity. This inclusive expression

(A+A')+B=A+(A'+B) = C shows that more than one kind of inclusive grouping can be

made. The total remains the same regardless of the grouping. Additional difficulty arises

37



when requirements of similarity are included in the sort criteria. At the stage of concrete

operations, to group in alternative ways is a higher order achievement.

Piaget describes another level that a child achieves in the grouping operation as

corre, dence. The simplest form of correspondence is the one-to-one correspondence

in w•,•ch each element of one set is placed into correspondence with an element of a

second set. Piaget continues this discussion to describe the fit between a mathematical

model and an empirical situation as a correspondence. To achieve correspondence in this

situation it is sometimes necessary to bring into association more than one attribute. If

objects are classified by color and shape, the relationship can be represented by multiplying

the color classification (Al) by the shape classification (B1) producing the double

classification (AlB1). There are many degrees of complexity with such matrices. These

relationships can be extended many levels. The understanding of correspondence is the

basis for understanding the concept of inheritance in OOP. The ability to understand this

concept completes the second phase of concrete operations.

C. FORMAL OPERATIONS

The final period of development is that of formal operations. The thought process

of the child moves from concrete operations to formal, propositional thinking. These

operations are characterized as the scientific method, such as, consider all possibilities,

make if-then hypotheses, organize the principle elements into some structure and come to

a conclusion. Reasoning by hypothesis and a need for demonstration have replaced the

simple stating of relations. Two important changes from the concrete operational

38



structures of seriation, classes and correspondences have taken place when the stage of

formal operations has been reached. Instead of dealing with the concretely presented

groupings, several of the grouping operations are combined, so a more generalized

classification scheme is reached. In the formal operation stage, thought proceeds from a

combination of possibilities, hypothesis and deductive reasoning, instead of being limited

to deductions from the immediate situation. Additionally a new structure emerges that

Piaget calls a four-group, representing identity, negation, reciprocal, and correlative

transformations. The main characteristic of a system having a four-group structure is that

it must contain two distinct and equivalent operations which have exactly equivalent

outcomes. The ability to have numerous operations defined by there structure under the

same name is a fundamental concept to be understood. Having reached the stage of formal

operations, the development process has been completed.

The three distinct stages of development outlined in the section are applicable to

learning any new paradigm. Developing a computer science curriculum around the

natural phases of knowledge acquisition can ease the transition for structured

programmers and provide a logical foundation for beginning computer science students.

D. MAPPING PIAGET'S DEVELOPMENTAL PSYCHOLOGY

TO TEACHING OOP

In order to map an object oriented language with developmental psychology, I

will clarify the different roles a modeling process plays in the programming process. The

programming process can be described as a modeling process in which several

39



sub-processes take place. Figure 1 illustrates the programming process as a modeling

process between a real world system and a model system. For this discussion a

phenomenon is something that has definite existence. The real world system is part of

the world that is being focused on in the programming process. The model system is a

program modeling part of the real world system on a computer. The real world system

modelin

Problem Raie

Specific ConceptsedConcepts Chaces

Abstr orin Abs o

Phenomena Entities

Real World System Model System

Figure 1. Modeling Process

consists of phenomena from the physical world and concepts used to capture the complex

world. Both phenomena and concepts are important in the real world system. As an

example, Smalltalk objects are usually models of physical phenomena in the real world

system. Concepts are modeled by abstractions such as classes and methods. The

program text can be thought of as a description of the real world system. Again referring

to Figure 1, during the programming process there are three sub-processes: abstraction in

40



the real world system, abstraction in the modeling system and modeling. In this case,

abstraction in the real world system is the process of perceiving and structuring

knowledge about phenomena. This process creates concepts that are problem specific.

Abstraction in the model system is the process to build support structures that are

intended to be created on a computer. Realized concepts are created in the model system.

The modeling process is the connection of problem specific concepts to realized

concepts. (Knudsen and Madsen, 1988) This connection is the critical skill required to

progress from Piaget's concrete stage to the area of formal operations.

1. Mapping

In this section an outline of a mapping from Piaget's three developmental stages to

the corresponding 00 concept and then to a recommended programming example is

made. By following this outline the connection from problem specific concept to

realized concept can be produced. Piaget's first development stage is sensorimotor

intelligence. Row #1 in Figure 2 can be defined as the level of empirical concreteness.

Students do not realize similarities between different phenomena, nor do they obtain any

systematic understanding of the individual phenomena. Students notice what happens,

but do not understand why it happens or the different relations affected. In the

programming process this corresponds to a level where the students are trying to

understand the single objects that constitute the system. There is little understanding

between the relations of the objects or how to group them into classes. I correlate this

stage to the basic understanding of the operating environment. Further exploration

cannot begin until an understanding of the surroundings has been completed.

41



OBJECT-ORIENTED PROGRAMMING
CONCEPT EXAMPLES

Row#1 Basic System Programming
SENSORIMOTOR For/While Loop Environment
INTELLIGENCE

Row #2 Programming

REPRESNTATIYE Object->Message Language Issues
INTELLIGENCE AND Classes

Inheritance
CONCRETE OPERATIONS Poymrpism

Polymnorphism

Row #3 Abstraction Problem Solving
ClulifwatimAgpefica Program Design

FORMAL OPERATIONS Scientific Method
Pwcond"
Postmdirim
Loop Invatmt

Figure 2. Mapping Piaget to 00 Concepts

Fundamental programming techniques are also required before advanced concepts can be

attempted by the beginning student Basic problem solving algorithms should be

presented in this stage to develop a confidence in the initial techniques. A sample

program should be developed to demonstrate the environment and some initial

programming constructs.

Piaget's second development stage is representative intelligence and concrete

operations. Row #2 is defined as the level of abstraction. To understand the

complications of the real world system the phenomena must be analyzed and concepts

developed for grasping the actual properties. This corresponds to designing the classes

42



level of abstraction a simple and systematic understanding of the phenomena in the real

world system is obtained. This section of the curriculum involves the introduction of the

fundamental components of object-oriented design. Classes, messages, methods,

inheritance and polymorphism are presented as examples with clear purpose and

applicability. The sample program developed in stage one can be extended as a problem

statement to include components of object-oriented design. The 00 methodology is

demonstrated as a problem solving technique as the necessary structures are built.

Piaget's third developmental stage is formal operations. Row #3 is defined as the

level of thought-concreteness. The understanding corresponding to the abstract level is

further developed to obtain an understanding of the total real world system. By

organizing the phenomena of the real world system by the concepts established, the

ability to understand the relations between the phenomena becomes available which was

not at the level of representative intelligence. In this stage the conceptual theories are

presented on the foundations of the concrete operations. Formal operations are mapped

to 00 concepts in two sub-groups. The ability to perform abstractions through

classification, aggregations or generalizations are developed as the theories are presented

to the students. Understanding of the scientific method completes the third phase as the

ability to examine abstract possibilities, create hypothesis and reason problems

deductively are continually demonstrated and refined. The ability to explain why things

happen and predict what will happen is present.

43



The process of creating new concepts is not entirely comprised of abstraction and

it's sub-processes; classification, aggregation, and generalization. Generally the concept

definitions evolve through many changes. The understanding gained during development

will influence further steps. Being aware that the concept of abstraction is composed of

sub-processes is useful to the same extent as understanding whether a problem is

approached top-down or bottom-up. The difficulty of this section is in understanding

that the concept itself is an abstraction. Given a number of concepts it is possible to

describe their structure in terms of classificatioi, aggregation and generalization. It is

important for students to be aware of this distinction. The ideas, examples and

descriptions in this chapter are attributed to the writings of Jean Piaget. (Hilgard and

Bower, 1975)

44



V. APPROACHES TO TEACHING OOP

The OOP technique helps programmers master the problems of complexity and is

particularly powerful when the programs are large. The OOP paradigm is increasingly

included in the undergraduate curriculum, but in most cases it is presented as just another

language. This greatly limits the 00 methodology and does not allow demonstration of

its main strengths of code reuse, data abstraction and encapsulation. This chapter will

discuss some of the basic principles of instruction and how they pertain to the computer

science curriculum. The principles presented in Jean Piaget's Developmental Psychology

discussed the developmental periods that outline a child's ability to learn. These

principles are seen throughout this chapter and provide clarifying explanations for the

proposed instructional method.

A. PRINCIPLES OF INSTRUCTIONAL DESIGN

Instruction is a human process whose purpose is to help people learn. In this

section reviews what characteristics instruction must have in order to be successful and

outline an instructional design approach that is both feasible and worthwhile. "Our

research suggests that the knowledge of novices is organized around the literal objects

explicitly given in a problem statement. Experts' knowledge, on the other hand, is

organized around principles and abstractions that subsume these objects." (Glaser, 1984)

There are alternative ways in which to design the instruction of individuals and

individual subjects. This section describes one way that is both feasible and worthwhile.

45



It is a general approach not limited to the computer science field. There are five assumed

characteristics that need to be mentioned.

1. Aid the Individual

Instructional Design must be directed at the learning of the individual. The

concern is not with the mass changes in opinions or abilities, but with that of the

individual student. Even among an assembled group the learning must occur within each

individual. This does not mean customized instruction. Rather it is an attempt to ensure

all students are meeting standards required for further development

2. Short and Long Term Outlook
Both immediate and long-range phases are part of instructional design. The

immediate phase is in the form of daily objectives and the individual concepts that are

required to be completed. The long-range phase will consist of a set of lessons organized

into topics; a set of topics consisting in a course; and a sequence of courses that

encompass the entire instructional system. The immediate phase design responsibilities

are typically controlled by the class instructors while long-range designs are undertaken

by groups of scholars representing academic disciplines.

3. Systematic Instruction
Instruction designed systematically will have a positive affect on individual

development. Unplanned or undirected learning leads to diffused understanding of basic

concepts. This leads to uncertain expectations as careers progress and higher level

classes attempt to build on previous knowledge.

46



4. Systems Approach

Instruction design should be conducted by means of a systems approach. The

systems approach to instructional design involves the completion of steps beginning with

an analysis of the needs and goals and ending with an evaluated system of instruction

which succeeds in meeting the accepted goals. Decisions in each step are based on

empirical evidence. The process is based on human reasoning with each step becoming

an input to the next step.

5. Developmental Psychology

Designed instruction must be based on knowledge of how human beings learn.

When attempting to develop an individual's ability it is not enough to state what those

abilities should be. The question should be asked, how are these abilities acquired?

Instructional design must take into account the learning conditions that must be

established in order for the desired effects to occur. (Gagne and Briggs, 1979)

B. INSTRUCTIONAL SYSTEM DEVELOPMENT

The process of developing an instructional system is accomplished as a series of

stages. Each stage is continually modified as insights are gained from new discoveries.

The design effort is divided into three sections; System Level, Course Level and Lesson

Level (Gagne and Briggs, 1979). The design makes use of all theory and research

evidence available while being supplemented by the iterative self correcting process of

empirical tryout and revision.

47



1. System Level

The system level will determine in a general sense the distance a instructional

system needs to travel in order to produce the desired abilities in the students. An

analysis of the abilities of incoming students, a list of objectives attainable by outgoing

students and an order of importance is associated with each area of concern. Time

available with the students and the resources allocated constrain the scope of training and

limit the realistic goals. It is not enough to define the goals that are to be attained. The

correct path to accomplish these goals is also required. What is the best way to learn this

subject? From whom or what approach is the most efficient method of delivery?

2. Course Level

The system level has defined the major skills to be learned during the course of the

curriculum. In order to accomplish these broad skills target objectives need to be

defined. This step considers the sequencing of major clusters of course objectives for

each year in the curriculum. These clusters are defined as "units of instruction" (Gagne

and Briggs, 1983). Having grouped the course target objectives in some fashion, a loose

structure is formed. Completion of these units of instruction satisfy the target objectives.

Working from the general needs and goals stated in the systems level, to the more

specific course objectives, often produces improved ways to organize the instruction.

This iterative cycle to the process of instructional design is continued as specific content

is added to the system.

48



There is profit in undertaking three kinds of analysis of objectives at this point:

(a) information processing analysis, to reveal the sequence of mental operations in

performance of the objective, (b) task classification, to categorize type of learning

outcomes in order to identify the conditions of learning, and (c) learning task analysis, to

reveal the enabling objectives for which teaching sequence decisions need to be made

(Gagne, 1977).

3. Lesson Level

Systematic development and review has been given to the needs and goals first

specified in each course in the curriculum scope and sequence statement. Formulation of

the results of the various analysis into curriculum purpose, course objectives, unit

objectives, target objectives and finally enabling objectives provide a clear picture of the

path necessary to reach the stated goals.

The instructional system has been defined with the overall design process as a set

of stages for analysis and development. The systems level focused on the determination

of needs and goals sought as outcomes from the curriculum. The goals are broadly stated

and arranged as desired outcomes. The next stage determines the major units of

instruction and a listing of the objectives to be achieved. This area is described as course

level analysis. The lesson level incorporates the definition of detailed performance

objectives, lesson plans, selecting course materials and preparing measures for assessing

student performance.

49



C. EVOLUTION OF COMPUTER SCIENCE CURRICULUM

Computer science has evolved through distinct curricular approaches since the

1960's. Before proposing an alternate approach, this section will review the historical

evolution of introductory computer science curricula, including Curriculum 69 and 78,

the Liberal Arts Model Curriculum of 1986, the Denning committee's comprehensive

approach in 1989, and the ACM/IEEE report, Computing Curricula 91.

1. Curriculum 68

In the 1960's, computer science emerged as a distinct discipline. In order to define

the scope of this new discipline Curriculum 68 was proposed by the ACM Curriculum

Committee on Computer Science (Communications of ACM, 1968). Curriculum 68

organized computer science into three sub-fields: information structures and processes,

information processing systems, and methodologies. Curriculum 68 proposed a core

curriculum of four basic courses (algorithms and programming, computer and system

structure, discrete structures and numerical calculus). This is followed by four

intermediate courses (data structures, programming languages, computer organization

and system programming. Curriculum 68 emphasizes numerical analysis and hardware

more than the current core curriculum but omits software engineering (Communications

of ACM, 1968).

2. Curriculum 78

Curriculum 78 refines the previous work to suggest that the emphasis should be

placed in algorithms, programming, data structures, and hardware. It also includes a list

of topics and fundamental knowledge that every computer science major should know,

50



and suggests that every major should obtain the following six skills: the ability to write

programs, measure the efficiency of programs, understand the problems that are

applicable to computer solutions, understand problem solving and be prepared to pursue

graduate study in computer science. (Communications of ACM, 1979)

Introductory courses CSI and CS2 of Curriculum 78 were revised in 1984. (CS1

and CS2 are terms used to represent first and second year CS courses respectively) The

objectives for CS I became: to introduce a disciplined approach to problem solving, to

introduce procedural and data abstraction, to teach good programming style, to teach a

block structured language, and to provide familiarity with evolution of computer

hardware and software. CS2 had the following objectives: to continue developing a

disciplined approach to programming, to teach data abstraction and data structures, to

introduce different implementation strategies for data structures and to introduce

searching and sorting algorithms and their analysis. (Tucker and Wegner, 1994)

3. The Liberal Arts Model Curriculum

This alternative approach presented in 1986 emphasizes that computer science has

a coherent body of scientific principles. It defines computer science as the systematic

study of formal properties, implementation, and application of algorithms and data

structures. The Liberal Arts Model for the CSI courses follows Curriculum 78. The

second year places greater emphasis on conceptual and formal tools. Its goals include: to

consolidate the knowledge of algorithm design and programming emphasizing the design

and implementation of large programs, to begin a detailed study of data structures and

51



data abstraction as exemplified by packages or modules, to introduce mathematical tools

such as complexity and program verification and to provide an overview of the rest of

computer science including computability and architecture. (Gibbs and Tucker, 1986)

The Liberal Arts Model proposed CS 1 follow the curriculum outlined in Curriculum 78,

while its proposal for CS2 places greater emphasis on conceptual and formal tools

(Tucker and Wegner, 1994).

4. Denning Report

The 1989 report of the Core Curriculum Task Force of the ACM reexamined the

scope of computer science, proposed a new teaching paradigm, and presented an example

of an introductory course sequence. It defines the discipline of computing as "the

systematic study of algorithmic processes that describe and transform information: their

theory, analysis, design, efficiency, implementation and application." (Denning, 1989) It

divides the discipline into nine sub-areas: 1) algorithms and data structures, 2)

programming languages, 3) architecture, 4) numerical and symbolic computation, 5)

operating systems, 6) software methodology and engineering, 7) database and

information retrieval, 8) artificial intelligence and robotics, 9) human-computer

communication (Denning, 1989). This report proposes a three semester introductory

sequence to cover all these areas. This sequence is less oriented to programming than

earlier approaches. It has a broader overview of the discipline and is geared toward the

CS major.

52



5. Curriculum 91

The ACM/IEEE report Computing Curricula 1991 defines the definition of the

computing discipline for undergraduate curriculum. It is a design document for

curriculum rather than a pre-designed cu- alum. Curriculum 91 intentionally

encourages curriculum innovation at the introductory level. Curriculum 91 makes the

statement that programming is pervasive and that students should receive training in

problem solving and programming early and often in their undergraduate course work.

The report does not answer questions like, "What languages?" "What programming

paradigms?" and "What kind of programming?" This report intentionally leaves open the

possibility of an 00 approach. Curriculum 91 makes statements about each of the design

issues; the need for breadth of discipline coverage, the role of programming; the nature

and role of labs; interaction among the processes of theory, abstraction, and design; and

the need to address social and professional issues. The breadth of the discipline coverage

is ensured in the reports recommendations in the form of "knowledge units" Tucker and

Wegner, 1994) lhese topics cover the nine major areas of the discipline as defined in the

Denning Report.

D. APPROACHES TO CURRICULUM DEVELOPMENT

A curriculum can be designed with different areas of emphasis. These areas are

shown in Figure 3 (Tucker and Wegner, 1994) as three dimensions. The three

dimensions are the "Level of Abstraction", "Subject Coverage" and "Learning Style".

53



The Level of Abstraction is the dimension between theory and practice. Theory in a

course includes reasoning, formal methods, attention to concepts and algorithms.

Practice would include activities like modeling, informal methods, relevant examples and

the demonstration of user interfaces. The mixing of theory and practice is contained in

many courses, although the amount of each can vary greatly. A CS I course may consist

of only programming instruction or a more abstract concept like problem solving.

A second dimension in curriculum design is that of Subject Coverage. This is the

option to cover a single topic in a course or choose two or more major topics. The

choice is between the depth or breadth of topic coverage. A programming course in CS I

could include 00 design principles and user interfaces as additional topics.

SUBJECT COVERAGE

Depth

Breadth Practice T-'heory LEVEL OF

Active ABSTRACTION

I/Passive

LEARNING STYLE

Figure 3. Dimensions in Curriculum Design

Learning Style is the third dimension in curriculum design and can range from

completely active to completely passive. Active learning would include the actual

54



programming assignment, analyzing the program or presenting computation findings.

Passive learning involves lectures and assigned readings.

E. APPROACHES TO TEACHING OOP

This thesis advocates teaching OOP in CS 1. While the 00 technique is not a

recent invention, it has only recently reached a point where the need for a replacement to

the structured paradigm has been recognized. Advantages of OOP are that the modem

languages more fully support abstraction, making it easier to write reusable code. They

also support top-down programming and closely resemble the way in which humans solve

problems.

Within the 00 community, two schonls of thought are apparent. The first believes

that OOP should be taught after an introduction using a more traditional approach. The

belief is that jumping into objects at first is too much for novices since new objects must

be created before anything else can take place. Starting off with memory management

issues is too difficult. (Wu, 1993)

The second view is that moving from a procedural paradigm to an object-oriented

paradigm in one semester is too much for introductory students. This approach

introduces students to the pure 00 approach from the beginning. Students have a clear

understanding of the paradigm before transferring their skills to other languages.

Both schools agree that the environments used to teach OOP should include tools

that support OOP. It is important to provide students a complete understanding of the

00 paradigm before exposing them to the detail of hybrid procedural/OO languages such

55



as C++. At the Educator's Symposium at OOPSLA 1993, there was a consensus that

even if a course uses the hybrid C++, a more "pure" 00 language such as Smalltalk

should be used first, to give a clean introduction to OOP.

There are numerous approaches available once the 00 paradigm has been selected

as the proper curriculum. This section will highlight the advantages and disadvantages

associated with each approach.

1. Top-down/Bottom-up

The top-down approach presents the conceptual aspects of the 00 languages first.

The main concepts of objects, classes, abstraction, inheritance, and encapsulation are

explored. This is followed by the specific implementation concepts of the chosen

language. The top-down approach is beneficial to students that already have an

understanding of basic programming. For the beginning student the top-down approach

may be to abstract (Wu, 1993).

The bottom-up approach begins with the details of a language and how to solve

minor problems. Step by step capabilities are added and problems are expanded. In this

way the concepts of the 00 paradigm are presented with examples and applications.

This approach is more suitable to the beginning student (Wu, 1993). Executable

programs are created by the students from the beginning providing a understanding of

not only the language, but also the operating system and the language concepts. The

limitations of the bottom-up approach include the initial learning period required for

56



beginning students to understand the language. Also the equating of OOP with the

language on which the concepts are learned may limit future exploration.

2. Pure/Hybrid Languages

OOPL's may be pure 00, or they may be one of the hybrid languages. A pure

OOPL (Smalltalk) treats everything in a program as an object. The creation or use of

existing objects places additional requirements on the beginning programmer. The syntax

and semantics of the language must be understood in addition to the concepts of OOP

(Wu, 1993). The incremental learning process that makes the bottom-up approach

desirable is hard to implement with a pure OOP. There are many concepts and skills

required to be able to write even a simple program with a pure OOPL. A hybrid OOPL

(C++) eliminates the object overhead required with a pure OOPL. However, the concept

of an object is not a requirement a hybrid language and can therefore be avoided or used

improperly. The writing of code in C++ does not mean the code is object-oriented. This

is confusing to some programmers.

F. DESIGN CONCLUSIONS

In this chapter the discussion has covered the principles of instructional design in

which basic teaching assumptions and system development are explored. The main

points from this chapter when developing an 00 instructional system are:

1. Curriculum 91 from the ACM/IEEE report defines the computer science

undergraduate curriculum without specifying a programming paradigm. An 00

curriculum may be based on this report and satisfy the guidelines of the ACM/IEEE.

57



2. Design the instruction to aid the student with incremental progressions in

understanding. Piaget's three stages of learning are applicable to teaching programming.

3. System goals, course structure and lesson objectives require understanding of

both long and short term requirements. The short term requirements of the system must

quickly get the student involved with and understand the potential benefits of the new

approach. The long term must include a language that is powerful enough to be applied

to real applications.

58



VI. PROPOSED CURRICULUM

For several years calls have been made to incorporate the 00 methodology into the

CS curriculum. (Temte, 1991) The claim has been made that object-oriented technology

will become the dominant software development methodology, replacing the traditional

functional decomposition model. (Lutz, 1990) This chapter will propose a CSI

curriculum to incorporate this methodology while addressing the issues raised in Chapter

IV and V concerning the way people learn. The proposed curriculum will encompass the

first year only. The curriculum will look at System and Course level topics. Redefining

specific areas of study is not the purpose of this thesis. The preparation for advance CS

topics or the various disciplines utilizing computers is the concern. The proper curriculum

structure supported by the advantages of object-orientation will provide students with a

strong foundation regardless of the advanced path chosen.

A. INTRODUCTION

The first year Computer Science curriculum (CS 1) is increasingly being challenged

to lay the foundation that will produce graduates to satisfy the needs of business, industry

and graduate programs. The demands placed on CS 1 to educate CS majors are often in

conflict with the increasing number of programs requiring computing education. These

challenges have not gone unnoticed (Denning Report, Curriculum 91). This thesis has

looked at aspects of learning as described by developmental psychologist and instructional

designers. The persons quoted differ in background and training, so it is not surprising

59



that their approaches differ. Piaget's developmental psychology is a botton-up approach

beginning at some base level and moving to concrete operations and formal propositional

thinking. The instructional design process for system development is a top-down

approach. Each approach has its advantages and can be used together to produce a

curriculum that meets the needs of all students of computing. This chapter will look at the

need for computer science curricula reform, the foundations of computing, the integration

of these two different approaches to learning and finally the proposed curriculum.

B. SYSTEM LEVEL REFORM

The revision of a CS curriculum on the single basis of switching to O0 principles

would be short sighted and fail to address all that needs to change. Simply changing

programming paradigms will not fix the problem. A complete look at all aspects of CS

education is required.

1. Standard Curricula Model
The standard model for baccalaureate study is based on two parts that specifies a

lower division and upper division with each having a distinct and identifiable mission.

(Shaw, 1984) The lower division's mission is to establish a foundation in the subject

matter that is broadly applicable to computer science. The upper division should focus on

particular areas that take advantage of the students broad foundations and enhance these

abilities to apply concepts, techniques and problem solving approaches. Both the Denning

Report and Curriculum 91 confirm the generic model of the baccalaureate curricula.

60



There is interest in broadening the role of the lower division courses to include

interdisciplinary integration of concepts and skills.

2. Computer Science Curricula

The traditional computer science curriculums do not conform to this model. The

lower division focuses on skills training and leaves the conceptual material to be

introduced in the upper division or largely ignored.

Traditional CS curricula reflect an implicit dichotomy quite different from that of

the rest of academia: lower division programs in what might be described as "Basics of

Programming Skills" and upper division programs in what might be called "Foundations of

Computer Science". (Shackelford and Leblanc, 1994)

The main curricular problem is the foundation of computing as a discipline is

withheld from CS majors until their habits and biases are already established. And if only

a few CS courses are taken (non CS majors) then the foundations of computing are

completely missed. The first few courses in the CS curriculum functions in a botton-up

approach which works well as a training tool but fails in the long term goal of education.

Computing has matured to the point where its baccalaureate model requires fundamental

revision and the required revision must include a focus on the intr'. .- 'al foundations of

computing in the early courses.

61



C. COURSE LEVEL REFORM

When proposing a CS curriculum it is not appropriate to look at only the language

methodology. A complete perspective is required beginning at the lowest level and

working up through the various issues. Computing is at the center of virtually every

advance in human knowledge. At the center of computing is the algorithm. Algorithms

are no longer strictly in the domain of computer scientists. They now belong as the

foundation for computing professionals from virtually every field. The algorithm is at the

center of this computer revolution and so it must be at the center of the CS curriculum.

The curriculum recommendations made in Curriculum 91 and Denning recognize the

algorithm as a key factor and favor the integration of theory, abstraction, design and

experimentation.

This integration should be a central feature of the beginning algorithms and

programming courses since they must provide undergraduates with:

"* the first exposure to the fundamental ideas of algorithms.
"* the first disciplined introduction to abstraction and design.
"• exposure to technologies and practices of design and implementation.
"* early exposure to systematic experimentation.
"* an early exposure to algorithmic problem solving. (NSF, 1989)

Algorithms and programming courses are becoming foundational for a growing number of

computing specialists from many other disciplines. (Foley and Standish, 1989) The

enrollment of non-CS majors in the algorithms and programming courses is large , is

rapidly growing and has been identified as an accelerating trend. (Shaw, 1984) For

computer science departments this means their curricula must feature lower level

62



algorithm and programming courses that serve both CS students and students from other

curriculum. The teaching of traditional programming (algorithms, syntax and semantics)

in still required regardless of the final methodology.

D. INTEGRATING APPROACHES

1. Bottom-up and Top-down
Typical CSl curricula feature programming instruction in a bottom-up approach.

Upper level courses are the domain of big picture subjects and use a top-down approach

to teaching. This "Programming Skills First", "CS Principles Last" concept results in the

weakness seen in the CS curriculum.

Prior to implementing the new curriculum, our conclusion of software engineering

principles in traditional introductory programming courses indicated that students were

capable of learning the skills but did not incorporate them into their habits. In retrospect,

this is not surprising: we were insisting that students follow practices that had no positive

value to them. ( Shackelford and LeBlanc, 1994)

The traditional curriculum divides CS education into the treatment of programming

skills and conceptual foundations. By leaving out these foundations the student perceives

programming skills as arbitrary instructions with little or no meaning. To understand the

importance of complexity management both programming skills and the conceptual

knowledge must be presented together. Instructions for the simple reason of "because I

said so" work no better now then when we heard them as children. For students to

63



combined the areas of theory, abstraction, design and experimentation the CS 1 curriculum

must integrate the presentation of programming skills and conceptual foundations.

2. Inclusion of CS and Non CS Students in CS1

CS in increasingly important to all education fields. CS1 must provide the tools

necessary for all students to explore a wide range of --nT,1fex phenomena. Any discipline

that utilizes computers will' eventually encounter the need for algorithmic models. A set

of introductory courses that provides strictly programming instruction is not sufficient for

today's non CS students.

E. PROPOSED CURRICULUM

Any curriculum for today's variety of CS students should provide some hands on

experience that demonstrates the benefits of appropriate programming practices and the

negative results that occur when these practices are neglected. Additionally, the

conceptual knowledge these practices are designed to manage should be presented

concurrently to provide realistic meaning to the programming instruction. The top-down

approach will provide coverage of the conceptual foundations of computing, which

includes the structural properties of algorithms. The bottom-up approach will provide the

demonstration of applications, programming and beginning problem solving.

64



1. A Model For CSI

The model for the CS 1 curriculum features a set of courses composed of two levels

and five courses total. Level 1 features two first quarter courses, "Introduction to

Computing" and "Introduction to Programming" which should be taken close together

[Intro to Cojmputers [ Intro to Prog

OOP Software Engineerin Graphics
Smalltalk Ada 9x C++

SE Database AI Robotics Graphics Networks

Figure 4. Curriculum Model

and are designed for both CS and non CS majors. Level 2 is a set of three 2nd quarter

courses, each covering foundational CS material.

Figure 4 displays the proposed model which begins with two introductory courses.

The introductory courses are both required but the sequence is irrelevant. For every

argument proclaiming which course should be first an equaling compelling argument can

be presented for the opposite sequence. What is important is that the material is

presented as close together as possible, preferably concurrent. The level 2 courses are

intermediate courses that begin the specialization process. For CS students, parallel

65



studies that combine the benefits of each intermediate area are recommended if not

mandatory. Level 2 courses can be tailored by the upper level curriculum requirements.

What is important is Lhat the foundations are in place from which students can build.

a. Introduction To Computing

The intended purpose for the Introduction to Computing course is to:

"* Present the algorithmic model in the context of technology in modem life.
Examples and applications of the impact of computing on the areas of natural
science, engineering and business will provide an understanding of where
computing has been and some of its accomplishments.

"* Provide an introduction to the concept of computing.
"* Demonstrate to students, from communication packages to design toolkits, the

range of applications available today to assist in controlling technology.
"* Experience the design and implementation of pseudo-code algorithms and data

structures and initiate the integration of analysis, abstracdion design and 00
modeling.

This course is designed to remove the programming implementation details which usually

cause students to become immersed in debugging and execution of the code, instead of

understanding the analysis and design of the problem. Students are allowed to focus on

the conceptual issues that are of real importance and not fight with the unfathomable

complexities of the compiler. The Introduction to Computing will provide concepts and

applications of computers which can be made as challenging as necessary to interest

students with novice to advanced skills.

b. Introduction To Programming

The assumption made in the design of this course is that students have little or

no computer experience. Beginning at the "beginning" ensures everyone develops as the

curriculum design intends. The approach for this course is based on the series of articles

by (Wu, 1993). This course is divided into three major stages.

66



1) Stage 1. Non-OOP

In this initial stage the mechanics of the language (For NPS, I recommend

Ada) are explained and illustrated. The concepts of object-orientation are not yet

discussed. A sample program (Sample Program 1) is begun which will be used

throughout the course to bring continuity and demonstrate the advantages of

incorporating 00 concepts. This approach will provide students with an appreciation of

how and why the 00 method helps produce better programs. The objectives of the first

stage are to:

• Make students become proficient enough in the chosen language to be able to
write a simple program and teach them how to use the environment.

* Wean intermediate students from the old way of thinking.
* Inform students that traditional programming is difficult and not

appropriate for developing large programs.
* Introduce students to a sample program that will be expanded

into a more complete and robust program in the following two
stages. (Wu, 1993)

2) Stage 2. Semi-QOP

The concepts of abstraction, encapsulation and polymorphism are

introduced in this stage as Sample Program I is extended. Wu recommends the treatment

of objects as black boxes whose functions are explained in the next stage. Emphasis is

placed on utilizing the behavior of the classcs and demonstrating the advantages of code

reuse. Object creation is introduced in the next stage. The objectives for the second stage

are to:

"* Introduce the benefits of code reuse.
"* Describe the notion of abstraction and encapsulation.
"* Discuss the shortcomings of client programming. (Wu, 1993)

67



3) Stage 3. Full OOP

The full concepts of OOP are introduced in this stage. The emphasis is

placed on how to create programmer defined objects. Class and inheritance are explained

and illustrated. Sample Program 2 is used as a reference to show its weakness and

limitations. The Sample Program 2 is improved by creating programmer defined objects.

The 00 design guidelines in which objects are classified into four categories is introduced

in this stage. The four categories: Interface, Control/Computation, Data Management,

and Application are intended for be an informal guide for beginners to utilize in designing

programs. The objectives of the third stage are to:

• Introduce server programming.
• Introduce the concept of inheritance and polymorphism.
* Reemphasize the importance of abstraction and encapsulation.
* Introduce an 00 design methodology.
* Lay the foundation for advanced study. (Wu, 1993)

For additional details refer to (Wu, 1993)

c. Intermediate Courses

Level 2 courses are intermediate courses that combine conceptual study and

applied applications in the foundations of computer science with a concentration in a

particular programming paradigm. Each independent course will reinforce the

fundamental material presented in Level 1, introduce new programming paradigms,

languages and problems, and provide additional foundations for applications to be

presented in upper level computing topics. The Level 2 courses combine applied work

and study in data structures, algorithm analysis, software design and software engineering

principles with a particular programming paradigm. The example in Figure 4 illustrates a

68



curriculum which has three Level 2 courses: OOP with Smalltalk, Software Engineering

with Ada 9x, and Graphics with C++. Each course is able to introduce students to a

particular application domain while providing coverage of foundational computer science

material. Level 2 courses serve three primary missions: introduce different programming

paradigms, teach fundamental CS subjects and lay foundations for advanced study.

The main question regarding intermediate courses is, how well will relatively

inexperienced students respond to a variety of paradigms and programming environments?

Younger students adapt more quickly than do upper classmen and graduate

students. It appears that the relative lack of programming experience proved to be an

advantage in adapting to new paradigms. (Shackelford and LeBlanc, 1994)

F. CONCLUSIONS

This curriculum will introduce the foundational concepts and techniques beginning

at the introductory level. This is a correction of the "Depth Last" model most common in

CS curriculums. Instead of solely providing training in programming skills at the

introductory level, this curriculum presents education in conceptual foundations. There is

integration of theory, abstraction, design and implementation. Material presented in this

fashion will clarify proper computing techniques.

In the continually transforming field of CS, students must be prepared to adapt to

new environments. In the past, students trained on a single platform with a single

language. Students experienced with a single programming language are less open to

69



change and are less adaptable then students exposed to various platforms and languages.

Upper division courses can focus on their proper direction with a clearer

picture of the foundations attained by the students. By introducing the fundamental

material early in the curriculum advanced courses can devote more effort within their

respective fields.

This curriculum incorporates students from all disciplines and provides the same

curricular structure. The CS 1 curriculum combines the applicable skills and techniques

with the conceptual understanding necessary for students to be proficient in using

computers. Non CS students have the abilities needed for fur-ther course work. CS

students are fundamentally sound and ready for additional study.

This model for CSI addresses the various Curriculum challenges that effect both

CS and non CS majors. Through the integration of the top-down and bottom-up

approaches, it provides flexibility for all students, covers foundational issues early and

provides continuity from which advanced courses can build.

70



VII. CONCLUSIONS

The 00 paradigm is a powerful tool for modeling real world applications. It is the

coming together of many different concepts all applied to the task of programming. OOP

is the natural step in the evolution of higher order programming languages. This thesis

looked at the main principles involved in OOP and reviewed three main languages. The

fundamentals of learning theory were developed as a basis for the proposed CS 1

curriculum.

A. 00 CONCEPTS AND LANGUAGES

While many CS professionals acknowledge the potential value of the 00 paradigm,

many still regard it as an advanced topic suitable only for upper level students. This thesis

looked at the fundamentals of OOP and found a well constructed set of concepts. As

business and industry have recognized, the advantages of modular program construction

are vital to the production of large scale systems. The software concepts that are stressed

in structured programming become tangible and meaningful when presented in context

with OOP. Structured programming is approximately twenty years old. Industry has

seen the advantages of the 00 paradigm. It is essential for academia to begin introducing

these ideas at the earliest levels.

71



B. THE PSYCHOLOGY OF LEARNING

Humans learn in a manner comprised of basic understanding, concept manipulation

and propositional thinking. Instructional systems that are developed in this manner

provide a natural mechanism for comprehension. Understanding the basics of computer

systems, algorithms and problem solving are fundamental. They can be presented without

the confusion of language semantics or operating systems.

Humans naturally think in terms of objects. These concepts, presented initially in

the CS1 curriculum, give meaning to the principles of proper software engineering. The

unlearning of structured programming is not necessary when the 00 concepts are

presented from the onset. The paradigm shift is difficult only in one direction, from

procedural to OOP. Using OOP as a means for developing procedural programming skills

is much easier because it reflects how the paradigms are meant to fit together. Classes can

provide a context for functions.

With a solid understanding of the basics and concepts of the paradigm the "leap" to

abstract thought proceeds naturally. Generalization and abstraction are consistent with the

way humans manipulate system understanding. The foundations previously presented flow

into the abstract methods involved with problem solving.

72



C. 00 INTEGRATION INTO THE CS1 CURRICULUM

The proposed curriculum demonstrates there is a feasible method for restructuring

CS1. A refresher quarter provides the time necessary to prepare students with the

courses, Intro to Computers and Intro to Programming. Intermediate courses provide

individual areas of study and develop skills necessary to advanced subjects. All areas of

study will benefit from a consistent presentation of the proper methods to utilize

computers. This thesis has demonstrated the feasibility of 00 integration into the CS I

curriculum.

73



74



LIST OF REFERLNCES

ACM Curriculum Committee on Computer Science, "Curriculum 68-Recommendations
for the Undergraduate Program in Computer Science", Communications of the ACM 11,
3 (March 1968), 151-197.

ACM Curriculum Committee on Computer Science, "Curriculum 78-Recommendations
for the Undergraduate Program in Computer Science", Communications of the ACM 22,
3 (March 1979), 147-166.

ACM/IEEE-CS Joint Curriculum Task Force, "Computing Curricula 1991 ", ACM Press
and IEEE-CS Press, New York, 1991.

AMSR, Intermetrics, "Ada 9x Mapping Specification and Rationale", version 4.1,
Boston, Intermetrics, March 1992.

Anderson, C. "Ada 9x Project Report to the Public", CrossTalk, October 1992.

Bertino, E. Martino, L. Management Systems Concepts and Issues. Prentice Hall
International Ltd. 1991.

Berzins, V and Luqi, Software Engineering with Abstractions, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1991.

Booch, G. Object-Oriented Development IEEE, New York, 1986.

Booch, G., Software Enineering with AA The Benjamin/Cummings Publishing
Company Inc., Menlo Park, California, 1987.

Booch, G., Obiect-Oriented Design with Applications, The Benjamnin/Cumn.",gs
Publishing Company Inc., Menlo Park, California, 1991.
Budd, T., An Introduction to Object-o, Addison-Wesley Publishing

Company, Reading, Massachusetts, 1991.

Chorafas, D. Steinmann, H. Object-Oriented Databases. Prentice Hall, New Jersey, 1993.

Coad, P. and Yourdon, E., Object-Oriented Design, Yourdan Press, Englewood Cliffs,
New Jersey, 1991.

75



Denning, P., D. Comer, D. Gries, M. Mulder, A. Tucker, A. Turner, and P. Young,
"Report of the ACM Task Force on the Core of Computer Science", ACM Press, New
York (1988).

Denning, P.;et. al., "Computing as a Discipline. (Final Report of the ACM Task Force on
the Core of Computer Science)", Communications of the ACM, v32 p9(15) Jan 1989

Digitalk, Smalltalk/VWindows Object-Oriented Programming System, Digitalk, Inc, Los
Angeles, California, 1991.

Fairley, R. Software Engineering Concepts, McGraw-Hill, New York, 1985.

Foley, J. and Standish, T. "Report of the Computer Science Workshop", Undergraduate
Computer Science Educati.:ýn, Section 5. Instructional Delivery, pp 40-44, Division of
Undergraduate Science, Engineering, and Mathematics Education, Directorate for
Science and Engineering Education, National Science Foundation, April 1989.

Gibbs, N. and A. Tucker, "A Model Curriculum for a Liberal Arts Degree in Computer
Science", Communications of the ACM 29, 3 (1986), 202-210.

Gagne, R. and Briggs, L. Principles of Instructional Design, Holt, Rinehart and Winston,
New York NY, 1979.

Halbert, D. and O'Brien, P., "Using Types and Inheritance in Object-Oriented
Programming", IEEE Software, September 1987, pp. 71-79.

Jacobson, I., "Industrial Development of Software with an Object-Oriented Technique",
Journal of Object-Oriented Programming, v. 4, No. 1, pp. 30-40, March/April 1991.

Khoshafian, S. and Copeland, G., "Object Identity", OOPSLA Conference Proceedings,
New Orleans, Louisiana, October 1-6, 1986, pp. 406-415.

Knudsen, J., "Name Collision in Multiple Classification Hierarchies", ECOOP "88,
European Conference on Object-Oriented Programming Proceedings, Oslo Norway,
August 1988, pp. 93-109.

Lehman, M. Programs, "Life Cycles and Laws of Software Evolution", Proceedings of
the IEEE No. 68, v(9), 1980.

Lientz, Swanson, and Tompkins, "Characteristics of Application Software Maintenence",
Communication of the ACM, No. 21, v (6), 1978.

76



Loomis, M., "Integrating Objects with Relational Technology", Object Magazine, v. 1,
No. 2, July/August 1991, pp 46-60.

Lutz, M. "Experiences With an Undergraduate Seminar on Object-Oriented Concepts",
Proc SOOPPA 1990, pp 92-100, 1990.

Meyer, B., Object-Oriented Software Construction, Prentice Hall International, New
York, NY, 1988.

Micallef, J., "Encapsulation, Reusability and Extendibility in Object-Oriented
Programming Languages", Journal of Object-Oriented Programming; v. 1, No. 1,
April/May 1988, pp. 12-35.

National Science Foundation, Executive Summary, "Courses and Curriculum", p. 5
Division of Undergraduate Science, Engineering, and Mathematics Education,
Directorate for Science and Engineering Education, National Science Foundation, April
1989.

Reid, R. "Object-Oriented Programming in C++", SIGCSE Bulletin, Vol. 23, No. 2 June
1991.

Roberts, Eric, "Using C in CS 1: Evaluating the Stanford Experience", Proceeding of the
Twenty-Fourth SIGCSE Technical Symposium on Computer Science Education, March
1993.

Rumbaugh, J.; et. al., Obiect-Orented Modeling and Design, Prentice Hall, Englewood
Cliffs, New Jersey, 1991.

Saunders, John, "A Survey of Object-Oriented Programming Languages", Journal of
Object-Oriented Programming, March/April, 1989.

Schonberg, E., "Contrasts: Ada 9x and C++", CrossTalk, September 1992.

Shackelford, R. and LeBlanc, R. "Integrating 'Depth First' and 'Breadth First' Models of
Computing Curricula", SIGCSE Bulletin, Vol 26, No. 1, March 1994.

Shaw, M. "The Carnegie Mellon Curriculum for Undergraduate Computer Science",
Springer Verlag New York, 1984.

Snyder, A., "Encapsulation and Inheritance in Object-Oriented Programming
Languages", OOPSLA Conference Proceedings, Portland, Oregon, September 29 -
October 2, 1986.

77



Stifik, M. and Bobrow, D., "Object-Oriented Programming: Themes and Variations",
The A] Magazine, Winter 1986, v. 6, No. 4, pp. 40-62.

Stroustrup, B, The C++ Programming Language, AT&T Bell Laboratories,
Addison-Wesley Publishing Company, Murray Hill, New Jersey, 1991.

Temte, M. "Let's Begin Introducing the Object-Oriented Paradigm", SIGCSE, Vol. 23,
No. ", pp 73-78, 1991.

Tucker, A. Wegner, P. "New Directions in the Introductory Computer Science
Curriculum", SIGCSE Bulletin, Vol 26, No. 1. March, 1994.

Wasserman, A., "Object-Oriented Software Development: Issues in Reuse", Journal of
Object-Oriented Programming, v. 4, No. 2, May 1991, pp. 55-57.

Wegner, P. and Zdonik, S., "Inheritance as an Incremental Modification or What like is
and Isn't Like", ECOOP "88, European Conference on Object-Oriented Programming
Proceeding, Oslo, Norway, August 1988, pp 55-77.

Wu, C. Thomas, "Teaching OOP to Beginners", Journal of Object-Oriented Programming,
v6 p47(4) March-April 1993.

78



INITIAL DISTRIBUTION LIST

Number of Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Computer Technology, Code 32
Naval Postgraduate School
Monterey, California 93943-5002

4. C. Thomas Wu, Code 32
Department of Computer Sciences
Naval Postgraduate School
Monterey, California 93943-5002

5. Lt. Curtis H. Loehr
742 Shady Oaks Dr.
Coldwater Michigan, 49036

79


