
AD-A285 168

TASK: UUI03
CDRL: 05156

19 February 1993

Reuse Library Framework
Versipn. 4.1
Administrator Manual

Informal Technical Data

STARS-UC-05156/017/00
19 February 1993

S9 04-30822

24 9 2 005 iIiIiIIIIiIII/IIl/~l~

". TASK: t'1'03
CDRL: 05156

February 19, 1993

RLF Administrator's Manual

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Reuse Library Framework
Version 4.1

SunOS Implementation

Accesion For

STARS-UC-05156/017/00 NTIS CRA&I
February 19, 1993 DTI C 'A3

U: •:;;rc:w:ccd L

Data Type: A005, Informal Technical Data

CONT ACT NO.F19 28-8-D 0By __............CONTRACT NO. Flg628-88-.D-0031 DiByi•to.

Delivery Order 0000
Availability Codes

Prepared for: iAvwii a,,d/or
Dist Special

Electronic Systems Center I
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Paramax Systems Corporation
Electronic Systems-Valley Forge Engineering Center

70 E. Swedesford Rd.
Paoli, PA 19301

under contract to
Pa:amax Systems Corporation

12010 Sunrise Valley Drive
Reston, VA 22091

DTIC 'jUAL7I - .-Z i'LD 5

"TASK: 1UU03
('DRL: 05156

February 19. 1993

Data ID: STARS-UC-05156/017/00

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1992, Paramax Systems Corporatin, Reston, Virginia
and Paramax Systems Corporation

Electronic Systems-Valley Forge Engineering Center
70 E. Swedesford Rd.

Paoli, PA 19301
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with the

DFAR Special Works Clause.

Developed by: Paramax Systems Corporation
Electronic Systems-Valley Forge Engineering Center

70 E. Swedesford Rd.
Paoli, PA 19301 under contract to

Paramax Systems Corporation

This software, developed under the Software Technology for Adaptable, Reliable Systems (STARS)
program, is approved for release under Distribution "A" of the Scientific and Technical Information
Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated. Sponsored by
the U.S. Defense Advanced Research Projects Agency (DARPA) under contract F19628-88-D-0031,
the STARS program is supported by the military services, SEI, and MITRE, with the U.S. Air
Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this software and its documentation for purposes
stated under Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This software retains Contractor indemnification to The Government
regarding copyrights pursuant to the above referenced STARS contract. The Government disclaims
all responsibility against liability, including costs and expenses for violation of proprietary rights,
or copyrights arising out of the creation or use of this software.

In addition, the Government, Paramax, and its subcontractors disclaim all warranties with regard
to this software, including all implied warranties of merchantability and fitness, and in no event shall
the Government, Paramax, or its subcontractor(s) be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from the loss of use, data, or profits, whether in action
of contract, negligence or other tortious action, arising in connection with the use or performance
of this software.

TASK: UU03
('DRL: 05156

February 19. 1993

RLF Administrator's Manual
Reuse Library Frame"ý
Version 4.1
SunOS Implementatio

Principal Author(s):

Timothy M. Schreyer Date

Approvals:

Task Manager Richard E. Creps Date

(Signatures on File)

TASK: UU03
CDRL: 05156

February 19. 1993

RLF Administrator's Manual
Reuse Library Framework
Version 4.1
SunOS Implementation

Change Record:

Data ID Description of Change Date Approval
STARS-UC-05156/004/00 Original Issue November 1992 on file
STARS-UC-05156/017/00 Updates for version 4.1 February 1993 on file

REPORT DOCUMENTATION PAGE I Orm 4o0roveO

pwolc z~o urden .0 c'c,-Won ýf "Icrvn~atCr -$ tiia~o jO'aq* "0 .r cose mncwirg "e time tot rev.e-.ng m saVtc ~ @aU1OirC
3at fer $o lw etn•t.ng the CaUt Ai eae. anc CoMn 0etnc inc ' .,,C -!-e c.ieCtion Ct i'n'm1ation -$nc comments rrc raainc tP.-% o.-,ar eit-at?. :-)than) In" m"0 tofh,
ceoettien I:t nfl~raien,C ncw~aing sugirtiet cn?*r rea~..ng tmis ou.rcen-: AASt' ton -. aaoar.eim serrces. Directorat c ''"Or ,C '0i?' m6 tiic d .0 40mt 12is A~tC?10"
SS4 , .te 12C4 , ton. A 1222 ,-J2 j" to on.O ,-e. o* Manaaement i'a Beuc;e. Pimerworn Reuction P,-: eT07C4-03S8) 04snn , 'zt: DC :'C3

1. AGENCY USE ONLY (Leave oWank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Informal Technical Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

RLF Administrator's Manual F19628-88-D-0031

i 6. AUTHOR(S)

Paramax Corporation

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Paramax Corporation
1210 Sunrise Valley Drive
Reston, VA 22090

STARS-UC-05156/017/00

9. SPONSOIINGiMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING. MONITORING
AGENCY REPORT NUMBER

Department of the Air Force 05156
Headquarter, Electronic Systems
Hanscom AFB, MA 01731-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Distribution "A"

13. ABSTRACT (Maximum 200 words)

This manual is intended for the administrator of a reuse library hosted on the Reuse Library
Framework (RLF). Some information on installing RLF and its example libraries may be of interest
to the reuse library modeler or user. Specific information on installation can be found in either the
RLF Source Code Release Installation Guide or the RLF Binary Release Installation
Guide.

14. SUBJECT TERMS 15. NUMBER OF PAGES

41
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unlcassified Unclassified Unclassified SAR

NISN 7540-0"-280-5500 C-.,. :--. 298 •ev 2-891

February 19, 1993 STARS-1'('-05156/017/O0

Contents

1 Introduction 1

1.1 Scope 1

1.2 Identification 1

1.3 Overview 1

1.4 Notation Used in This Manual 2

2 Configuring RLF 2

2.1 Installing RLF 2

2.2 Testing the Installation 2

2.3 Establishing an Execution Environment 3

2.4 Restricting Access 4

2.4.1 Restricting Access to Applications 4

2.4.2 Restricting Access to Actions 5

2.4.3 Restricting Access to Assets 5

3 RLF Fundamentals 6

3.1 Domain Model Approach 6

3.2 RLF Concepts 6

3.2.1 Categories ... 7

3.2.2 Objects 7

3.2.3 Relationships 7

3.2.4 Attributes 8

3.2.5 Actions 10

3.3 Library Advice 11

Page ii

F'ebruary 19, 1993 STARS-I'(-05156/017/00

4 Library Maintenance 13

4.1 Build New Libraries ... 13

4.2 Remove Libraries 13

4.3 Modify Existing Libraries 1.1

4.3.1 Assets 14

4.3.2 Actions 17

4.3.3 Advice 23

5 Manage Library Use 26

5.1 Managing Assets 26

5.2 Collecting Metrics 26

5.3 Coordinating User Feedback .. 27

5.4 Optimizing Performance 27

6 Software Maintenance 28

6.1 Getting Software 28

6.2 Doing Software Updates 29

6.3 Reporting Errors 29

6.4 Getting Help 29

A Summary of the Library-Manager Application 30

A.1 Overview 30

A.2 Layout 30

A.3 Functionality 30

A.3.1 "Library" pulldown menu 30

A.3.2 "Browse" pulldown menu 31

A.3.3 "Edit" pulldown menu 33

A.3.4 "Asset Management" pulldown menu 33

A.3.5 "Quit" button 33

Page iii

February 19, 1993 STARS-1"('-O5•76/017/OO0

B .rlfrc Start-Up File Syntax Summary 34

B.1 Notation 11

B.2 .rlfrc File Syntax 34

B.3 Example .rlfrc File 37

C PCTE and RLF 39

C.1 File Naming Restrictions ... 39

C.2 Action Modeling with PCTE 19

Page iv

February 19, 1993 STARS-l'('-05156/017/00

List of Figures

1 Example start-up script for the Graphical_-Browser 4

2 Some Examples of Categories '

3 Some Examples of Objects ... 8

4 Some Examples of Relationships 9

5 Some Examples of Attributes 10

6 Some Examples of Actions 11

7 Example Action Category Definitions 12

8 An Example of Connecting Library Advice to the Library Model 13

List of Tables

1 RLF Environment Variables 4

Page v

February 19, 1993 STARS-U1('-O}5156/017/00

1 Introduction

1.1 Scope

This manual is intended for the administrator of a reuse library hosted on the Reuse Library
Framework (RLF). Some information on installing RLF and its example libraries miay be of interest
to the reuse library modeler or user. Specific information on installation can be found in either the
RLF Source Code Release Installation Guide or the RLF Binary Release Installation
Guide.

The reuse library administrator is the person responsible for setting up the reuse library enviln-
ment so others can use the library to find reusable software assets. This role includes obtaining
and installing RLF, testing and configuring the library environment, and possibly handling library
user feedback and updating the installation. Updating the installation can include installing new
software distributions, adding new assets to existing libraries, changing a library so it is more useful.
or setting up a whole new library.

This manual assumes the administrator has a basic understanding of the UNIX operating system
and the X Window System. If the administrator plans to install RLF by compiling the actual
source of the system, this manual assumes a good understanding of the SunAda or Verdix Ada
compilation system. This versioni of RLF can support c, ecution using Emeraude PCTE v12.3 as
an underlying object management system. If RLF is run with PCTE, it is assumed that the user
understands PCTE and the Emeraude product, including the ability to construct esh scripts.

1.2 Identification

This RLF Administrator's Manual provides the information necessary for an RLF reuse library
administrator to install, modify, and maintain a reuse library hosted on RLF. More detailed infor-
mation on the creation and modification of a reuse library's underlying library data model can be
found in the separate RLF Modeler's Manual. If RLF has been constructed to run with PCTE,
then certain guidelines must be followed when modeling for PCTE. PCTE-specific information has
been gathered in appendix C.

1.3 Overview

The Reuse Library Framework (RLF) is a knowledge-based system for reuse library construction and
operation. By structuring a set of reusable software assets in a knowledge network and representing
their descriptions and interrelationships in the network, the RLF increases the library user's chances
of finding and extracting the reusable asset that is desired. The knowledge-based representation
also helps enhance the user's understanding of the system from which the reusable assets are taken,
and allows an "intelligent" help mechanism to aid the user with retrieval of assets.

The remainder of this document is organized as follows. Section 2 explains how to install RLF
and test the installation. It also gives some guidelines for setting up the environment in which
reuse library users will operate. Section 3 provides some material on the fundamental concepts
of RLF including the rationale for the RLF approach to constructing reuse libraries and the con-
cepts involved in a representation of an RLF reuse library. Section 4 discusses library maintenance

Page 1

February 19, 1993 STARS-U('-0-,156/017/O0

issues like creating and removing hbraries and modifying a librar 's representation to add or re-
move new reusable assets or change library operations. Section 5 addresses library administrator
issues concerning making the library easier to use and managing the day-to-day operations of the
library. Section 6 explains how to get and install new or updated versions of the RLF and how to
report errors and get help. This document has three appendices which present an overview of the
Library-Manager RLF application, the syntax of thi .rlfrc start-up file and an example. and a
discussion of PCTE issues when using RLF and P('TE.

1.4 Notation Used in This Manual

Several different typefaces are used in this manual to notate objects of different kinds. The names of
manuals are printed in a bold typeface. The names of UNIX tools or utilities are priated in italics.

The names of directories and files, the text of UNIX shell scripts, environment variable names, and
the names of RLF applications are printed in typewriter typeface. Examples of Library Model

Description Languares (LMDL) and library model categories or objects also appear in typewriter
typeface.

2 Configuring RLF

2.1 Installing RLF

Included with RLF 4.0 is the RLF Source Code Release Installation Guide or the RLF
Binary Release Installation Guide. It provides all the information necessary to install the

RLF. The installation of RLF has been automated through the use of UNIX csh scripts. The
Installation Guide directs the use of these scripts to set up the RLF.

A successful installation of RLF should provide four applications and a directory containing the

representation of the RLF's example libraries. The applications are the Graphical-Browser with
which the user views reuse libraries and extracts reusable assets, the Library-Manager which is

used by the library administrator to manipulate libraries, and the LMJ'L and RBDL transla-
tors, Lmdl and Rbdl, which are used by the library modelers and administrator to create and
modify a reuse library's knowledge-based representation. Another tool, Sndl-to.Lmdl is delivered
with RLF. It translates library model specifications written in Semantic Network Definition Lan-

guage (SNDL) (the library model domain encoding language for RLF prior to version 4.0) into

LMDL. The Graphical -Browser application is covered in detail in the RLF User's Manual, and
the Library-Manager, Lmdl, Rbdl, and Sndl-to.oLmdl are described in this manual and the RLF

Modeler's Manual.

2.2 Testing the Installation

If the installation dezcribed in either RLF Installation Guide is followed and completes without
errors, then the LMDL and RBDL translator applications of RLF have already been tested. To test

the Library-Manager and GraphicalBrowser applications, they should be executed arnd each of
the example libraries selected. Exercise the menu hierarchies of each tool and see if the menu actions
perform as described in the RLF manuals. There is a sample execution of the Graphical-Browser

Page 2

February 19, 1993 STARS- UC-05156/017/00

in the RLF User's Manual. Check especially that the Graphical-Browser can invoke actions
and use the advice facility of RLF.

If your installation appears to be incorrect or incomplete, refer to sections 6.3 and 6.4 of) reporting
trouble and getting help.

2.3 Establishing an Execution Environment

Execution of the RLF applications can be simplified by setting up the environment in which the
applications run. One way to set up the environment is to set UNIX environment variables us-
ing the UNIX setenv command. There are five UNIX environment variables of interesc to RLF:
RLFZLIBRARIES, RLFWORKING..DIR, RLF.EDITOR, RLFYPAGER, and XAPPLRESDIR.

RLF.LIBRARIES can contain the pathname of the directory containing the representation of the RLF
libraries. It can be overridden with a command line option. The default place to look for the RLF
libraries is in a local directory named Instances/.

RLF-WORKING.DIR can contain the pathname of the directory where RLF should conduct file copies
and other operating system functions. It is used primarily as the directory to copy assets in the
reuse library to when they are extracted from the RLF reuse library. The default directory for this
variable is the directory where the RLF tool is invoked.

The RLFEDITOR and RLFYPAGER environment variables are the pathnames of the executables the
user wishes to use when viewing or editing text files from RLF applications. This allows the use of
the editor or pager/viewer with which the user is most familiar. The editor and pager will default
to vi and less, respectively.

XAPPLRESDIR can contain the pathname of the directory containing the file Browser, which spec-
ifies the X Window System resources for the Graphical-Browser. This directory should also
contain the directory bitmaps/, which holds all the X Window System bitmaps used by the
Graphical-Browser. By default, the file Browser and the directory bitnaps/ can be found in
the bin/ directory of the RLF installation. So, if the installation is used as built, the full pathname
of the bin/ directory is a good value for the XAPPLRESDIR environment variable and can be set
with the UNIX command:

setenv XAPPLRESDIR RLF.installation-pathname/bin

Table 1 lists the UNIX environment variables of interest to RLF and the applications they affect.

It may be useful for the library administrator to write a script which encapsulates setting some
of these variables with execution of the RLF applications. For example, the csh script in fig-
ure I could be used to cnsure that library users access the correct reuse libraries and that the
GraphicaL-Browser always appears the same on the screen. The script assumes that RLF has

been installed in directory /libraries/rlf/ and that the reuse library has been constructed in
/libraries/instances/.

Another way to configure the execution environment for RLF is through the use of an RLF start-up
file. Whenever an RLF application begins execution it will attempt to read a file named . rlfrc

Page 3

February 19, 1993 STARS-(UC-05156/017/00

Environment Variable Affected Applications

RLFLIBRARIES Library-Manager, Graphical-Browser, Lmdl, Rbdl
RLFWORKINGDIR Library-Manager. GraphicalBrowser
RLF-PAGER LibraryManager, Graphical-Browser
RLFEDITOR Library-Manager, Graphical-Browser
XAPPLRESDIR GraphicalBrowser

Table 1: RLF Environment Variables

#V /bin/csh -f

setenv RLFLIBRARIES /libraries/instances
setenv XAPPLRESDIR /libraries/rlf/bin
seteiv RLFWORKINGDIR /home/johndoe
Graphical-Browser

Figure 1: Example start-up script for the Graphical-Browser

and set global variables based on the contents of the file. RLF looks in the local directory first,
and then in the directory referenced by the environment variable HOME. If RLF does not find a file
named .rlfrc in either of these places, it skips reading the file.

By providing RLF reuse library users with pre-set . rlfrc files configured by the library administra-
tor and only writable by an administrator, the applications can be set to run in a particular fashion
for each user. For a summary of .rlfrc file syntax and an example .rlirc file, see appendix B.

2.4 Restricting Access

Establishing any resource which will be used and possibly updated by multiple individuals always
raises issues of access rights. The RLF's reuse libraries and applications are no exception. When an
RLF installation is configured, it should be decided who will be able to run each of the applications
and to what extent any library user will be able to retrieve or act on the assets in the reusability
libraries. This section addresses some of these concerns for RLF.

2.4.1 Restricting Access to Applications

Access to RLF applications is managed through the operating system where RLF has been installed.
Access is granted or removed by the placement of the applications' executable files on the file
system and the permissions set on the executable files. For example, the Graphical-Browser is
the application used by the library users to browse the reuse libraries and extract desired reusable
assets. It therefore should be placed on the file system somewhere that it can be accessed by all
the expected library users and should be executable by these users. The Library-Manager and
the LMDL and RBDL translators, on the other hand, since they have the capability to modify the

Page 4

February 19, 1993 STARS- UC-05156/017/00

reuse libraries, should not be visible or executable by the average user of the library. Their access
should be restricted to the library administrator and any library modelers who will be developing
new libraries or modifying existing ones. Although all the RLF applications begin in the same
directory after installation, it may be desirable to move them to special areas designed to support
only library users or library administrators.

2.4.2 Restricting Access to Actions

The Graphical-Browser allows reuse library users to perform actions from menus. These actions
typically allow the user to do such things as view the source code of a reusable asset, extract an
asset from the library, or preview a design document. These actions are also available to the library
administrator from the Library-Manager. In addition, other actions, called "privileged" actions,
can be executed by the administrator from the LibraryNanager. These actions might include the
ability to edit a design document or source code file, or instruct the library to collect statistical
information.

Actions are available in RLF applications because they have been "modeled" as part of the reuse
library structure. (More information on modeling actions can be found in section 4.3.2 and the RLF
Modeler's Manual.) If the specification of an action in LMDL includes the keyword "privileged"
then this action will be available only from the Library-Manager and not the Graphical.Browser.
In this way, access to actions which are designed for the library administrator or which may alter
the reuse library can be made available to the library administrator or modeler but prohibited from
the average reuse library user.

Also, since actions are sometimes invoked by having the operating system execute a command
string, specifying a tool in the command string which is not available to the user or which is not
executable by the user would also restrict that action from the user. This method of restricting
actions to the user is not suggested, however, since from the user's standpoint it will appear that
the Graphical-Browser is not operating correctly when a message box appears reporting that the
action was not invoked successfully.

2.4.3 Restricting Access to Assets

The library administrator may find it necessary to restrict access to some or all of the assets in
a reuse library. Although one of the primary purposes of the reuse library is to allow users to
extract reusable assets for reuse, there may be assets in the library which the administrator does
not want the user to extract, or assets that only some users should be able to extract. Also, there
may be some sort of formal check-out procedure for configuration management or reuse library
management which must be conducted before a library user can obtain an asset. Another issue is
viewing and extraction of assets wh;ch may be classified or company proprietary.

Much of this restriction can be done by tailoring the default extract action modeled in the RLF
example networks. (More information on modeling actions can be found in section 4.3.2 and the
RLF Modeler's Manual.) The default extract action does a simple UNIX copy using cp from the
reuse library to the user's working directory. This action could be modified to call a script which,
for example, could do a configuration management check for existing locks, a "check-out" for the
user if a lock doesn't exist, and then a copy to the user's directory. This script would prevent

Page 5

February 19, 1993 STARS- UC-05156/O17iO0

the extraction of a component if someone else had already extracted it and a lock was remaining.
In another example, the extract action could be modified to send a mail message to the library
administrator containing the name of the desired asset, and then the administrator could mail a
copy of the asset back to the user if the user was allowed to extract that asset. The ability of
the action invocation mechanism to execute any script leaves the possibilities for complex extract

actions very open.

Similarly, restricting the ability to view an asset can be implemented by modifying or replacing the
default view action delivered with the RLF example libraries.

The permissions of the file system and the location of assets may also affect the access to library
assets, either by design or by accident. If the view or extract action of the library requires a tool
which the user cannot invoke or tries to read an asset for which the user does not have permissions,
the action will fail presenting the user with a message box reporting the failure. It is important
to make sure files referenced by actions in the library are available to the user for viewing and
extraction where desired. Likewise, making files available on the file system to only certain users
can be used as a kind of access control.

3 RLF Fundamentals

3.1 Domain Model Approach

RLF's approach to managing a reuse library is based on the principle that a highly-structured reuse
library will be easier to browse and understand. The structure of an RLF library is provided by
a knowledge network which not only classifies the assets in the library in a hierarchy from general
to most specific, but also describes the relationships between assets and the part they may play in
the composition of a larger system.

When an RLF library model which describes this knowledge network is constructed, the first step is
to identify the area common to all the assets to be available in the reuse library. This area is called
a "domain." The process of defining the domain is called "domain analysis," and the process of
encoding that domain into some sort of structure is called "domain modeling." These activities in
general can become very complex and it is beyond the scope of this manual to fully describe them
here. Information on modeling a reuse library for RLF is given in the RLF Modeler's Manual.

The "domain model" is the final product of domain modeling. By capturing the domain model
of the reusable assets in the library as an RLF knowledge network, the level of understanding of
the assets in the library increases significantly. This in turn improves the chances that an asset
extracted from the RLF library will be immediately useful to the library user. The key to effective
reuse is to minimize the time taken to find and retrieve the asset to be reused, and to increase
the chances that the asset can be reused without much alteration. The domain model approach
ensures that there is enough information in the library structure to meet these goals.

3.2 RLF Concepts

The following five subsections describe the entities that compose an RLF library model. These
descriptions are provided so that the library administrator will understand enough of the library

Page 6

"February 19, 1993 STARS-U('-05156/O17/O0

root category Thing is
end root category;

category Algorithms (Thing) is
end category;

category "Search Algorithms" (Algorithms) is
end category;

Figure 2: Some Examples of Categories

model's composition in order to be able to interpret and modify it. Complete semantic do Ions
of the fundamental RLF entities can be found in the RLF Modeler's Manual. Example of
entities are given in fragments of the Library Model Definition Language (LMDL). A complete
description of LMDL syntax and semantics can also be found in the RLF Modeler's Manual.

3.2.1 Categories

Categories are general descriptions of a kind of thing. They can be thought of as a classification of
what a thing is. Examples of categories might be algorithm, tfile, or table search. Categories
can be very general or very specific. In a library model, categories are arranged in a hierarchy
with the most general category at the highest level and more specific categories below it, with the
most specific categories at the lowest level. This hierarchy is arranged so that every category which
appears below a given category in the hierarchy is a more specific description of that category.
For example, search algorithm would appear below algorithm but above table search. The
most general category in the library model is called the "root category." Examples of the LMDL
definitions of some categories in the domain of search and sort algorithms appear in figure 2.

3.2.2 Objects

RLF objects represent actual things instead of classifications of things which categories represent.
Examples of objects might be a particular quick sort or binary search algorithm which is an
asset in the reuse library. Objects are always associated with the most specific category which
describes them and can be thought of as appearing below these categories in the hierarchy described
in section 3.2.1. Objects' attributes are the goal of reuse library users looking for reusable assets.
The whole library is established to aid the user in the location of objects so that the object's valuable
attributes can be extracted from thz. library and reused. Attributes are described in section 3.2.4.
Example LMDL definitions of some objects in the sort and search domain are given in figure 3.

3.2.3 Relationships

RLF relationship entities are used to describe categories and objects and express the associations
between different categories or objects. Relationships are defined at the category they describe and

Page 7

F
February 19, 1993 STARS-('C-05156/017/00

object Ada ("Source Language") is
end object;

object "Example Quicksort" (Quicksort) is
end object;

object "Example Binary Search" ("Binary Search") is
end object;

Figure 3: Some Examples of Objects

are also valid for all categories or objects below that category in the hierarchy. Relationships express
the idea that categories have other categories which describe them. For example, an algorithm
category might have relationships which describe what language the algorithm is written in, what
type of data structures it operates on, or what the worst case performance of the algorithm is.
Relationships can also express that a category or object is composed of other categories or objects.
For example, a book category might have a relationship which shows that a book is composed of
chapters, with the chapter category defined elsewhere in the library model.

Relationships have a name which helps describe the relationship, an "owner" which is where the
relationship is defined, a "type" which is the category describing the owner, and a range of values
called the "cardinality" of the relationship. For example, in a relationship which shows that a
book is composed of one to any number of chapters, the name might be has-chapters, the owner
book, the type chapter, and the cardinality one to infinity. When a relationship exists between
two objects, it is said to be "filled," and the object that is the type of the relationship is said to
"satisfy" the relationship.

Relationships can be narrowed or "restricted" at subcategories or objects of the owner category.
The type category can be made more specific or the cardinality made smaller. Relationships, like
categories, can become more specific lower in the hierarchy, but never more general. When a
relationship has been restricted, its new type and cardinality are the ones valid for all categories or
objects in the hierarchy below the one where the relationship is restricted. Restriction and more
complex operations on relationships are discussed in the RLF Modeler's Manual.

LMDL examples of some relationships and restricted relationships in the sort and search algorithms
domain are given in figure 4.

3.2.4 Attributes

RLF attributes tie an abstract library model to the actual data and reusable assets in the library.
Attributes can be integers, strings of characters, or files. They are associated with categories or
objects in the library model. The attributes are given names so they can be referenced by RLF
actions (described in section 3.2.5) and be viewed, extracted, or otherwise manipulated. Attributes
are only valid at the category or object where they are defined and are not available from subcat-
egories or objects like relationships. Some examples of attributes defined in LMDL from the sort

Page 8

* February 19, 199:) STARS-U('-05156/017/00

category Algorithms (Thing) is
relationships

isvritten_in (0 .. infinity) of "Source Language";
works-on (0 .. infinity) of "Data Structure";
has-best-case-of (0 .. 1) of Performance;
has3avg.case.of (0 .. 1) of Performance;
hasvworst-case-of (0 .. 1) of Performance;
hassizeof (0 1) of "Lines of Code";

end relationships;
end category;

category "quick sort" (exchange-sorts) is
restricted relationships

has-best-case-of (I .. 1) of Logarithmic;
has-avg.case-of (1 .. 1) of Logarithmic;
has-worst-case-of (I .. 1) of Quadratic;

end restricted;
end category;

object example-quicksort ("quick sort") is
restricted relationships

is.written-in (1 .. 1) of "Source Language";
works-on (1 .. 1) of "Data Structure";
has-worst-case-of (1 .. 1) of Quadratic;
has-size-of (0 .. 1) of Number;

end restricted;
fillers

Ada satisfies is-written-in;
Array satisfies works-on;
"N-2" satisfies has-worst-case-of;
"Twenty-Four" satisfies hassize.of;

end fillers;
end object;

Figure 4: Some Examples of Relationships

Page 9

February 19, 1993 STARS- UC-05156/017/00

category Extract (Action) is

attributes
string is "Extract Asset";

end attributes;
end category;

category Quicksort ("Exchange Sorts") is
attributes

file desc-source is "sort.and.search/exchange.sort-desc";
end attributes;

end category;

object "Example Quicksort" (Quicksort) is

attributes
file desc-source is "sort-and-search/exchange.sort.desc";
file source is "sort-and-search/quick.sort_.a";
string siza-of is "24";

end attributes;
end object;

Figure 5: Some Examples of Attributes

and search algorithms domain appear in figure 5.

3.2.5 Actions

RLF actions let the library user manipulate attributes or do other things like mail messages to the
library administrator, collect library information, or get LMDL representations of part of the library
model. Actions are the chief way that users will obtain copies of the reusable assets in the library.
Actions must be specified by the library modeler or administrator in the LMDL specification of
the library model in order for the user to be able to invoke them. A set of common, useful actions
is already modeled into each of the example library models and can be reused in any new reuse
library LMDL specifications.

Actions are associated with categories or objects in the library model. These are available to
subcategories and objects below the category or object where they are defined like relationships
are. An action has a name, an "action category" which is a category elsewhere in the library model
which describes the action, a list cf "action targets" which are the names of attributes at that

category or object upon which the action will act, and a list of "action agents" which are the names
of attributes at that category or object which will modify the action when it is invoked. Actions can
also be privileged. Privileged actions can only be invoked from the Library-Manager application
and not the Graphical-Browser. They are intended as actions which a library administrator would
like to invoke that shouldn't necessarily be available to the average user.

Actions can be narrowed at subcategories or objects below the category or object where they are

Page 10

February 19, 1993 STARS-U('-05156/01 7/00

category "Insertion Sorts" ("Internal Sorts") is
attributes

file desc-source is "sort-and-search/insertion-sort-desc";
end attributes;
actions

"Read Description" is "Display Description" on desc-source;
end actions;

end category;

object "Example Quicksort" (Quicksort) is
attributes

file desc-source is "sort-and-search/exchange-sort .desc";
file source is "sort-and-search/quick.sort_.a";
string size-of is "24";

end attributes;
actions

"View Code Size" is "Display Integer" on size-of;
"View Source" is View on source;
"Extract Source" is Extract;

end actions;
end object;

Figure 6: Some Examples of Actions

defined, in a manner similar to relationships. A non-privileged action can be made privileged or
an action category more specific. Once an action has been made privileged, it cannot be made
non-privileged lower in the hierarchy.

Action categories are defined in the library model just like any other category. Action categories
appear in the hierarchy below a reserved category named Action. A string attribute at an action
category is used to invoke the action. RLF currently supports two types of actions, "System
String" and "Ada Procedure". A "System String" type action uses the action category's string
attribute as a string to be executed in the operating system shell. An "Ada Procedure" type
action uses the action category's string attribute to match a built-in Ada procedure to call when
the action is invoked. A more detailed description of action category definitions can be found in
section 4.3.2. More information on action semantics and action invocation can be found in the
RLF Modeler's Manual.

Some example actions from the sort and search algorithms library model are shown in LMDL form
in figure 6. Some action category definitions are shown in figure 7.

3.3 Library Advice

RLF has a knowledge-based component intended to aid the user in selecting reusable assets if the
user is not an expert in the domain of the library or is having trouble choosing between assets.

Page 11

February 19, 1993 STARS-U('-05156/O17/O0

category "Action Definition" (Thing) is
end category;

category Action ("Action Definition") is

relationships
has.action.type (1 .. 1) of "Action Type";

end relationships;
end category;

category View (Action) is
restricted relationships

has-action.type of "System String";
end restricted;
attributes

string is "xterm -e $RLFPAGER ## &';

end attributes;
end category;

Figure 7: Example Action Category Definitions

This aid is called library advice. Advice can be available from any category or object in the model.
Advice is modeled in the Rule-Base Definition Language (RBDL) and each advice module, called
an "inferencer," is then attached to a category or object in the LMDL specification of the library

model. If the library administrator or modeler does not model and attach the advice modules to

the library, there will not be any advice available to the library user.

Advice typically will ask the user questions about the asset desired, and then will make deductions

about which areas of the library model are most appropriate to search and optionally relocate the

user there automatically. When advice is selected from a menu in an RLF application, a window
will pop up. The question and answer session of the advice module is conducted in this window,

adjusting the current node in the main application as it executes.

Modeling and providing good advice for a library will greatly enhance its usefulness. It can make

a complex library model understandable to a novice in the domain of the library who might not

be able to use the library at all without advice. Modeling good advice can be difficult, however,

and more information on this is presented in the RLF Modeler's Manual. Example RBDL is

given there. Figure 8 in this manual shows how an inferencer is attached to the library model in

the library model LMDL specification.

Page 12

February 19, 1993 SI]'ARS-U('-05156/O17/O0

category Quicksort ("Exchange Sorts") is
restricted relationships

has-best-case-of (1 .. 1) of Logarithmic;
has.avg.case.of (1 .. 1) of Logarithmic;
has-worst.case-of (I .. 1) of Quadratic;

end restricted;

attributes
file desc-source is "sort-and-search/exchange.sort-desc";

end attributes;
end category;

attach inferencer quicksort to Quicksort;

Figure 8: An Example of Connecting Library Advice to the Library Model

4 Library Maintenance

This section outlines for the library administrator the steps to follow to make changes to the
library model that structures the reuse library. The outlines make reference to running the LMDL
translator and the examples appear in LMDL. This section does not attempt to describe LMDL
in full or cover all the functionality of the LMDL translator. These areas are described in the
RLF Modeler's Manual. Examples in this section assume that the RLF, LIBRARIES environment
variable (further described in section 2.3) has been set to the directory containing the reuse library
being modified and that the LMDL translator, Lmdl, appears in the library administrator's path.

4.1 Build New Libraries

New libraries are constructed by running the LMDL translator on the LMDL specification of the
library model. Assuming that spec. lmdl is the LMDL specification of the library model, the
command

Lmdl spec.lmdl

issued at the UNIX shell prompt will construct the new library in the directory to which the
environment variable RLF.LIBRARIES is set. If a library with that name already exists, it will be
overwritten.

4.2 Remove Libraries

Libraries are removed using the Library-Manager application. See appendix A.

Page 13

February 19, 1993 STARS-U('-05156/I017 /00

4.3 Modify Existing Libraries

This subsection describes the various library modifications which a library administrator is likely
to make. Most modifications require the editing of the library's LMDL library model specification.
After this editing has occurred the specification must be retranslated with the LMDL translator,
Lmdl. Assuming that the library's LMDL library model specification is in a file named spec. lmdl,
and that the RLFLIBRARIES environment variable specifies the directory where the library has been
built, then running the LMDL translator is accomplished by issuing the following command at the
UNIX shell prompt:

Lmdl spec.lmdl

When this command completes successfully, the library model specification has been -retranslated"
and any changes made while editing the specification will now be realized when the library is viewed
with an RLF application.

Note: If the only changes made to the library's library model specification were changes to the
integer, character string, or file attributes of categories or objects, the LMDL translator should be
invoked with the -state command line option when retranslating. This significantly reduces the
amount of time required to retranslate the library model specification.

4.3.1 Assets

Assets are represented in the library model by integer, character string, and file attributes of
categories and objects. In most cases, assets will be file attributes of objects. This subsection
describes operations on the library model affecting assets. When using the PCTE version of RLF
there are certain restrictions to the name and location of file attributes in the library model. See
appendix C for specific information on these restrictions.

Add New Assets

A new asset is added by defining an attribute at the object which best represents the asset. Some-
times an object must be created to represent the asset if one does not currently exist. After these
changes, the LMDL specification of the library model must be retranslated for the new attributes
and objects to become part of the library.

Suppose there is a reusable quick sort implementation which is to be added to the sort and search
algorithms library. By browsing the library with the Graphical-Browser or the library model
specification with an editor, the quick sort algorithm category is located and determined to be the
most representative of the new asset. The quick sort category appears as such:

category Quicksort ("Exchange Sorts") is
restricted relationships

has-bestcase.of (I .. 1) of Logarithmic;
has.avg.case-of (1 .. 1) of Logarithmic;
has_.orst-case-of (I .. 1) of Quadratic;

end restricted;

Page 14

February 19, 1993 STARS-C('-05156/01 7/00

attributes
file desc-source is "sort-and.search/exchange-sort.desc";

end attributes;
end category;

First an object is created by editing the specification to include the following:

object "Example Quicksort" (Quicksort) is
end object;

Next the actual asset is attached to the object by defining a file attribute of the object. The
file containing the asset is given a pathnaiue relative to the directory Text, which is a first-level
subdirectory below the directory where the library representations exist. The object definition now
looks like this:

object "Example Quicksort" (Quicksort) is
attributes

file source is "sort-and.search/quicksort_.a";
end attributes;

end object;

This is the minimal definition which will attach the asset to the library. The asset's file must
be copied into the appropriate directory in the library directory structure. For our example, the
asset would be copied to SRLF-LIBRARIES/Text/sort..and-search/quick.sort-. a. Then when the
LMDL specification had been retranslated, the asset would be visible from the reuse library.

When adding an asset, however, the library modeler and administrator should also describe the
object representing the asset as fully as possible. This includes restricting and filling any relation-
ships that may have been defined anywhere in the hierarchy directly above the object on a direct
path to the root category. Also, any actions valid at the object or desired just at the object need
to be defined, and any additional attributes which the objects has must also be defined. The final
definition of the new asset's object might look like this:

object "Example Quicksort" (Quicksort) is
restricted relationships

is-written-in (1 .. 1) of "Source Language";

works-on (1 .. 1) of "Data Structure";
has-worst-case-of (1 .. 1) of Quadratic;
has-size-of (0 .. 1) of Number;

end restricted;
fillers

Ada satisfies is-written-in;
Array satisfies works-on;
"N-2" satisfies has-worst.case.of;
"Twenty-Four" satisfies has.size-of;

end fillers;

Page 15

February 19, 1993 STAI{S-'('-05156/017!00

attributes
file desc-source is "sort-and-search/exchange-sort-desc";
file source is "sort.and-search/quick-scrt_.a";
string size-of is "24";

end attributes;
actions

"View Code Size" is "Display Integer" on size-of;
"View Source" is View on source;
"Extract Source" is Extract;

end actions;
end object;

Remove Assets

Assets can be partially or completely removed from the library by editing the library model spec-
ification and rPtranslating it. To partially remove an asset, simply remo-e the file attribute at
the object which represents it. After retranslation, the object describing the asset can still bc
examined, but the actual asset cannot be extracted since it is no longer an attribute of the object.
To completely remove an asset from a library, remove the entire object definition representing the
asset from the library model specification and then retranslate. After this there will be no reference
to the asset in the library.

Assets can also be removed by deleting the attributes associated with them from within the
LibraryManager application. See appeiidix A.

Swap in New Versions of Assets

New versions of assets can be made available to the library without having to having to go through
the add asset procedure in section 4.3.1. This should only be done if the old version of the asset
should no longer be available in the reuse library. For more information on version control see
section 5.1.

The simplest way to swap in a new version of an asset is to write its file over the one already defined
for the asset. This is usually a file attribute of the object representing the asset. For example, if it
is desired to swap in a new version of a quick sort asset defined by

object "Example Quicksort" (Quicksort) is
attributes

file source is "sort.and-search/quick-sort..a";
end attributes;

end object;

the new file could be copied on top ol iick.sort.a in the library and be immediately available
to the reuse library user.

A different way to do this would be to change the filename specified in the attribute of the object
and copy the asset to that file. For instance, the object d 2nition above could be changed to

Page 16

February 19, 1993 STARS- ('-05156/017/00

object "Example Quicksort" (Quicksort) is
attributes

file source is "sort-and-search/new-quick.sort_.a";

end attributes;
end object;

and then the asset's file copied to new-quick-sort_.a. It is important to rcineniber that the
pathnames of file attributes are relative to the directory Text/ which is a first-level subdirectory
below the one specified in the RLF-LIBRARIES environment variable. This approach to swapping
in a new version of an asset requires that the library model specification be retranslated with the
LMDL translato., Lmdl, before the new version of the asset will be available to the library user.

Restrict Access to Assets

Information on restricting access to assets can be found in section 2.4.3.

4.3.2 Actions

The RLF action mechanism, in company with library model attributes, bridges the gap between
the library MODEL of the library and the actuals ASSETS that are in the library. Various actions
in the library model allow the user to view assets in different ways and then extract them. This
sections describes how library model actions are modified by the library administrator and modeler
in order to change the behavior of an RLF resue library. When using the PCTE version of RLF,
other modeling restrictions and conventions come into play. See appendix C for details on RLF
and PCTE.

Add New Actions

New actions are added by modifying the library model in two areas. One section of each RLF library
model contains a sub-model rooted at the reserved category "Action Definition". "Action
Definition" has two subcategories named Action and "Action Type". The sub-model rooted at
Action contains descriptions of all the actions that can be available at other categories and objects
in the library. The actions described in this sub-model are called "action categories." Although an
action category can have other relationships and attributes which describe it, the most important
parts of the action category are its has-action.type relationship which it inherits from Action
and restricts locally and a string attribute which is used to invoke the action.

Below the "Action Type" category are sub-categories which describe the different types of actions
available within the RLF reuse library. There are currently two types of actions supported, "System
String" and "Ada Procedure". A "System String" type action uses the action category's string
attribute as a string to be executed in the operating system shell. An "Ada Procedure" type action
uses the action category's string attribute to match a built-in Ada procedure to call when the
action is invoked. It is expected that additional types of RLF actions will be added in the future by
adding additional subcategories to "Action Type". Possibilities include a message passing action
and actions tailored to the environment in which the reuse library operates. New action types will
interpret the action category's string attribute in the appropriate way for that type of action.

Page 17

February 19, 1993 STARS-UC(-O156/O17/O0

The category Action defines a relationship named has-action.type with a type of "Action Type".
At each action category below Action this relationship is inherited and should be restricted
to a more specific "Action Type". The following excerpt from the sort and search algorithms
library LMDL specification shows a part of the "Action Definition" sub-model including Action,
"Action Type", and some of their subcategories.

category "Action Definition" (Thing) is
end category;

category "Action Type" ("Action Definition") is
end category;

category "System String" ("Action Type") is
end category;

category "Ada Procedure" ("Action Type") is
end category;

category Action ("Action Definition") is

relationships
has-action.type (1 .. 1) of "Action Type";

end relationships;
end category;

category View (Action) is
restricted relationships

has-action.type of "System String";
end restricted;
attributes

string is "Ixterm -e $RLF~PAGER 88 8";
end attributes;

end category;

This example also shows the definition of a View action for the library. View is a "System String"
type action which will have the string attribute "xterm -e $RLFPAGER ## &" executed in an
operating system shell when it is invoked. The restriction of has-action-type's type to "System
String" is required so that RLF will know how to invoke the action correctly.

This example action definition also introduces substitution markers. When an action is of type
"System String", the string attribute at the action category can contain special series of symbols
which can be used to parameterize the action when it is invoked. A special marker, "##", in an
action category's string attribute holds the place in the string where an argument to the action,
called the "action target," will be substituted. The action target is supplied at the category where
the action is available to be invoked. An action category's string attribute can also contain markers
for "action agents" which are also supplied at the category or object where the action is available.

Action agent substitution markers have the form "%%n", where n is a numeral from 1 to 9. For
-e information on action targets and agents, and how system string actions are invoked, consult

the RLF Modeler's Manual.

Page 18

February 19, 1993 STARS-U('-05156/017/00

RLF supports four built-in Ada procedure actions, Import, Export. Extract, and ''Display
Attributes' '. These actions are modeled by action categories in the action sub-model which have
restricted the has-action-type relationship to type "Ada Procedure". These action categories
can be referenced from action definitions in the main part of the reuse library domain model. Any
new actions of the "Ada Procedure" type which are Import or Export actions should probably be
defined as privileged actions, since these operations are primarily library administrator operations
and Import types actions may modify the reuse library model.

The first step to adding a new action to an RLF reuse library is either to locate the desired action in
the action sub-model section of the library's LMDL specification or to create the appropriate action
category in the action sub-model. The same care should be taken in modeling action categories
that is taken modeling parts of the main library model. Action categories which are subcategories
of other action categories should be more specific forms of those categories. If the action being
added is not related to any of the pre-existing example actions modeled with action categories,
then a new action category describing the action should be defined as a direct subcategory of the
category Action.

The new action category definition should restrict the has-action-type relationship inherited
from Action to have type "System String" or "Ada Procedure". If the action type is "System
String", then a string attribute should be defined at the action category which is the string to be
executed in an operating system shell when the action is invoked. Substitution markers should be
used in the string where action targets or agents will appear when the action is invoked. Action
target, agents, and invocation is discussed in detail in the RLF Modeler's Manual. If the action
type is "Ada Procedure", then the string attribute at the new action category should be one of
"Import Asset", "Export Asset", or "Extract Asset", which are the built-in Ada procedure
actions available.

An example of a new action category which will print a file associated with a category or object in
the library model follows:

category Print (Action) is
-- this action category describes a general print action

restricted relationships
has-action.type (1 .. 1) of "System String";

end restricted;
attributes

-- ## marks the file to be printed
-- ,,i marks the UNIX print command to use
-- %,%2 marks any options to the print command
-- also run the action in the UNIX background
-- so the RLF application continues

string print-command is "11%1 %%,2 ** V;
end attributes;

end category;

This LMDL fragment defines an action category named Print which describes a "System String"
type action which prints its action target file using two action agents for the print command and
any print command options. When an action which has Print as its action category is invoked, it

Page 19

February 19, 1993 STARS-U('-05156/017/00

will gather the required action target and agents from the category or object where it is invoked,
process the action category's string attribute replacing the substitution markers with their actual
values, and then executing the final string in an operating system shell.

The other area of the library model which is modified to add new actions is the category definitions
in the main library model. Actions are defined within a category very much like relationships, and

are similarly available at subcategories and objects of the category or object where they are first
defined. Once the action category is located or created in the action category sub-model, it can
then be referenced at the categories where it will be available. Suppose the library administrator
wants the library user to be able to print the source code of a quick sort implementation which is a
reusable asset in the library. The print action could be defined at the object representing the quick
sort implementation like this:

object "Example Quicksort" (Quicksort) is
actions

"Print Source" is Print on source with print-command, print-options;
end actions;

end object;

This defines an action named "Print Source" at the object and tells RLF that the action is
described by the action category named Print and will operate on the local file attribute named
source. source is the action target. The action will also use the action agents print-command and
print-options to modify the action invocation. If these attributes are defined like this:

object "Example Quicksort" (Quicksort) is

attributes
file source is "sort.and.search/quick.sort..a";
string print-command is "Ipr";
string print-options is "-Pprinterl";

end attributes;
actions

"Print Source" is Print on source with print-command, print-options;
end actions;

end object;

then, assuming the definition of the Print action category given above, when the action is invoked
at the "Example Quicksort" object in the library, the file sort-and-search/quick-sort_. a will
be printed using the Ipr command on the printer specified in the option "-Pprinterl". (Note:
The file name is relative to the Text/ subdirectory, which is a first-level subdirectory below the
directory specified in the RLFLIBRA.IES environment variable.)

When defining new actions at categories in the main library model, it is useful to remember that
actions can process a list of targets. For instance, suppose the library administrator wished to pro-
vide an action which would print the abstract, performance study, and source code for a particular
quick sort implementation in the sort and search algorithms library. It would be best to use a list
of targets so one action invocation by the user would print all the associated files. One solution in
LMDL could look like this:

Page 20

February 19, 1993 STARS-(UC-05156/017/00

object "Example Quicksort" (Quicksort) is
attributes

file abstract is "sort-andxsearch/quick.sort.abstract";
file performance-study is "sort-and-search/quick-sort.perf";

file source is "sort-and.search/quick.sort_..a";
string print-command is "lpr";
string print-options is "-Pprinterl";

end attributes;
actions

"Print All Data" is Print on abstract, performance-study, source
with printcommand, print-options;

"Print Source" is Print on source with print-command, print-options;

end actions;
end object;

This would provide a "Print Source" action to just print the implementation's source and a
"Print All Data" action which would print the implementation's abstract, performance study,
and source. When the "Print All Data" action is invoked, it will iterate over the list of targets
performing the action described by action category Print for each file in the list. Again, more
details on action invocation semantics and modeling appears in the RLF Modeler's Manual.

When new action categories have been added and new actions defined in the main library model
which reference them, the library model definition must be retranslated by the library administrator
using the LMDL translator, Lmdl, in order for the actions to be available from the RLF applications.

Modify Actions

RLF "System String" type actions are modified by altering the action command string which is
defined in the library model at the action's action category. The action category is a category in
the action sub-model which is rooted at the reserved category Action. It describes the action and
provides the action command string which is executed when the action is invoked. More information
on the action sub-model, action categories, and action types can be found in the previous section

on adding new actions.

The View action for the sort and search algorithms library is described at its action category as
follows:

category View (Action) is
restricted relationships

has-action-type of "System String";
end restricted;

attributes
string is "xterm -e $RLFPAGER *# &";

end attributes;
end category;

Page 21

February 19, 1993 STARS- U('-05156/017/00

If the library administrator wanted to modify the view action so that it no longer ran in the U.NIX
background and halted the RLF application instead, then the library model definition could be
modified like so:

category View (Action) is
restricted relationships

has.action.type of "System String";
end restricted;
attributes

string is "xterm -e $RLFPAGER #8";
end attributes;

end category;

Then when thc library model had been retranslated using the LMDL translator, Lmdl, the view
action, when invoked, would execute its new behavior and halt the RLF application until the view
was complete

Similarly, if the library administrator wished to change the View action so that it used a specific
editor instead of using the RLF.PAGER environment variable to view the asset, then the view action
category could be changed to this:

category View (Action) is
restricted relationships

has-action.type of "System String";
end restricted;
attributes

string is "xterm -e /usr/ucb/view ##";
end attributes;

end category;

Then when the library model had been retranslated using the LMDL translator, Lmdl, the view
action, when invoked, would execute its new behavior and the asset would be viewed with view
instead of the pager found in RLF.PAGER.

If the library administrator wished to do more complex operations when viewing an asset such as
collecting metrics or doing configuration management, then the view action's operations could be
put into a UNIX shell script, and the library model of the view action category modified as follows:

category View (Action) is
restricted relationships

has-action.type of "System String";
end restricted;
attributes

string is "asset-view.csh #8 &";

end attributes;

end category;

Page 22

February 19, 1993 STARS-UC-O5156/017/00

Then when the library model had been retranslated using the LMDL translator, Lmdl, the view
action, when invoked, would execute the csh shell script named asset-view. csh passing the name
of the file to the script as a parameter. This script would also execute in the UNIX background
allowing the RLF application to continue.

Note: To save time when modifying a library model's action categories, if the only changes made
were changes to the string attributes at action categories, the LMDL translator should be invoked
with the -state command line option when retranslating.

Restrict Access to Actions

Information on restricting access to actions can be found in section 2.4.2.

Remove Actions

Actions can be removed from the library model and thus the library in two ways. To make an action
unavailable from certain categories or objects, but still present to others, the action definitions at
the categories or objects can be removed. Since the action category for the action still exists in
the action sub-model, it will still be available to categories and objects where the action has been
kept. To remove the action from the library entirely, the action category description of the action
should be removed from the action sub-model in the library model, and then all action definitions
which reference that action's action category should be deleted. Both these methods for removing
actions will only be evident after the library model specification had been retranslated by the
LMDL translator, Lmdl.

4.3.3 Advice

RLF library advice is provided through the RLF's inferencing subsystem AdaTAU. Library advice
is modeled in the Rule Base Definition Language (RBDL). Complete information on modeling
library advice for RLF reuse libraries is provided in the RLF Modeler's Manual. This section
addresses how the library administrator can manipulate advice attached to an RLF library.

Add New Advice

Once new advice has been modeled and built as described in the RLF Modeler's Manual, it can
be attached to an RLF reuse library by editing the library's LMDL library model specification and
then retranslating it. When making changes to the library model specification to change library
advice, the LMDL translator, Lmdl, should be invoked with the -state command line option. This
significantly reduces the amount of time that it takes to retranslate the library model.

Suppose the library modeler has produced a new advice module, or "inferencer," for a category or
object in the library model and the lbrary administrator wishes to make the inferencer available to
the RLF applications. If the library administrator wishes to add the inferencer to the Quicksort
category of the sort and search algorithms library, the following line would be added to the LMDL
library model specification:

attach inferencer quicksort to Quicksort;

Page 23

February 19, 1993 STARS-UC-05156/0O7/O0

Now, if the inferencer has been named "quicksort" in its RBDL specification and has been built
using the RBDL translator, Rbdl, then once the modified library model specification has been
retranslated the library advice contained in the quicksort inferencer will be available at the category

Quicksort from the RLF applications.

Modify Advice

Modifications to the actual library advice at a category or object is in the role of the library modeler
and is described in the RLF Modeler's Manual. Library advice can be modified transparently by
retranslating the RBDL specification that defines the inferencer containing the advice. No changes
are necessary to the library's library model specification unless the name of the inferencer has
changed. If the name has changed, the library model specification should be edited to reflect the
name change and then retranslated to have the change installed. Running the LMDL translator,
Lmdl, with the -state command line option is sufficient in this case.

Remove Advice

Library advice can be removed by removing the inferencer attachment in the library's library model
specification and then retranslating the specification with the LMDL translator, Lmdl. For example,
if library advice has been attached to the Quicksort category of the sort and search algorithms
library with the following LMDL:

category Quicksort ("Exchange Sorts") is
restricted relationships

has.best-case-of (I .. 1) of Logarithmic;
hasavgcaseof (C .. 1) of Logarithmic;

has_.orst-case-of (I .. 1) of Quadratic;
end restricted;
attributes

file desc-source is "sort-and-search/exchangesortdesc";
end attributes;

end category;

attach inferencer quicksort to Quicksort;

then removing the attachment of the inferencer and leaving the Quicksort category definition like
this:

category Quicksort ("Exchange Sorts") is
restricted relationships

has.best-case-of (I .. 1) of Logarithmic;
has-avgEcase-of (C .. 1) of Logarithmic;
has-.orst-case-of (1 .. 1) of Quadratic;

end restricted;
attributes

file desc-source is "sort.and-search/exchange-sort.desc";
end attributes;

end category;

Page 24

February 19, 1993 STARS-UC-05156/017/00

will remove the ability to access advice at this category once the library model specification has
been retranslated. Also, since only a portion of the model defining library advice has been removed,
it will be sufficient and quicker to retranslate the specification using the LMN1DL translator's -state
command line option.

Page 25

February 19, 1993 STARS-['('-05156/017/00

5 Manage Library Use

The library administrator is responsible for maintaining the performance and day-to-day operations
of an RLF reuse library. The administrator is also responsible for improvements to the library
whether they come from user feedback or the library modeler or other sources. This section describes
some issues of concern to the administrator of a reuse library and suggests ways to address them
with RLF. Most RLF suggestions will have to do with enhancing the default actions of the library
model.

5.1 Managing Assets

Many of the assets in a library will not be final products and may even be under modification
by library users. This means that some assets will have to be replaced with more up-to-date or
efficient versions of the asset periodically. Others may have to have their extraction controlled so
only one person can have a copy at a time. Under many circumstances, issues of asset management
will need to be considered.

Updating versions of assets can be simple or complex. The easiest way to do updates is to copy the
new version over the old one, and the library will reference it just like the old version. Or alternately,
the file attribute of the object representing the asset could be changed to reference the new version.
This would require the library model to be retranslated to make the update. Translation of the
specification with the -attrs command line argument would be sufficient and quickest. Version
updates can be complex if it is desired that old versions of assets remain in the library. New
objects would have to be created in the library model specification and any relationships referring
to version numbering would have to be filled. Then the specification would have to be retranslated
in its entirety.

The library administrator should maintain some sort of configuration management on the library's
assets so that old versions can be recovered, and differences between old and new versions can be
revealed. The extent of this activity and its visibility to the user and the reuse library is up to the
library administrator and may be affected by the nature of the assets in the library. More on asset
management can be found in section 2.4.3.

5.2 Collecting Metrics

It is important to know how the reuse library is being used in order to determine how to improve
it. This might require information about which assets are extracted most often, how often users are
browsing a library and for how long, or which categories are visited most frequently. Many issues
on collecting metrics for reuse libraries are open topics, but RLF can be adapted to collect metrics
on many kinds of library use. Following are some ideas on how to collect metrics with RLF.

One way is to modify RLF actions to record entries in a log whenever they are invoked. Since RLF
actions can invoke full UNIX shell scripts, there are many ways this can be done. Modifying the
default extract action to write a log entry before copying the asset to the user could provide metrics
on which assets are most popular by processing the log. Similarly, a modified view action could
be used to see what assets users are interested in enough to look at. This log could be compared
with the extraction log to gather even more information on what assets people looked at but didn't

Page 26

February 19, 1993 STARS-U('-05156!017/O0

bother to extract for some reason.

Another way to record metrics on RLF library use would be to establish and maintain an information-
gathering start-up script (for more on this see section 2.3). This start-up script could collect user,
time-of-day, session length, and other information and write it into a log file or mail it to the library
administrator. By careful setting of file system permissions, the user may never need to know that
session information is being taken, or that the Graphical-Browser is running from a script and
not directly.

5.3 Coordinating User Feedback

To best serve the needs of the reuse library user, the library administrator should provide some
opportunity for user feedback. Knowing what problems users have and what they like and dislike
about the reuse library can lead to improvements which can lead to greater library use and use-
fulness. Collecting user input can be handled by having users fill out comment forms or trouble
reports, but user feedback is much more likely if it is automated and quick.

RLF can automate user feedback through its action mechanism. The library modeler or administra-
tor could include an action which would appear at every category or object which would mail the li-
brary administrator a message which the user could enter while still running the Graphical-Browser
and the question, problem, or suggestion is still fresh. Help actions could also be modeled this way.
The action could mail the administrator the file created as the result of spawning a text editor from
the Graphical-Browser.

5.4 Optimizing Performance

A reuse library will not be useful unless it changes to meet the requirements of the users. A library
that is too hard to use or too complex will not be used. That is why it is necessary for the library
administrator to worry about library performance. Many issues of performance can be addressed
in the library model and the installation, outside of any RLF application performance issues.

The design of the library model structuring the reuse library can affect performance. An overly
large or overly complex library model may dissuade users from using the library. Although it may
seem better to have more information at hand for the user, it is possible to have the library model
too detailed. Trimming the library model specification and retranslating may build a library that
is easier to use and understand.

Similarly, the look and feel of the Graphical-Browser may dissuade people from using the library.
The browser is highly configurable through the X Window System resource file named Browser
and the bitmaps/ directory, both of which appear in the bin/ directory when RLF is installed.
Tailoring the size and feel of the browser may make it more attractive to users at particular sites.
Also, establishing a start-up script as in section 2.3 can allow library administrator control over the
look of the application. Smaller models also run more quickly in the GraphicalBrowser and that
may encourage users where a slow browser running a very large detailed model would discourage
them.

The best ideas for optimizing the performance of the reuse library comes from monitoring and

Page 27

February 19, 1993 STARS- ('(-0515i6/017 1/00

responding to library use metrics and user feedback. Knowing how the hibrary is being used, or
failing to be used, is the most important information about how to optimize it.

6 Software Maintenance

This section describes how your RLF installation is supported and explains how you can get new
releases of RLF and install them. The installation of RLF includes three forms:

" A registration form (in file RegistrationForm) that should be filled out and returned so that
the RLF user base can be notified of product upgrades and other important product news.

" A Program Problem Report (in file ProblemReport) that is used to identify any specific
problems encountered in installing and using the software.

" A New Feature Request (in file Feature-Request) that is used to describe specific enhancements
that should be incorporated into the product.

There are three mailing lists established to handle RLF discussion, requests, or problems:

"* rlftstars.rosslyn.paramax.com
This list provides a public forum for discussing RLF issues. Members of this list receive all
messages sent to the list and may respond accordingly.

"* rlf-request(Ostars.rosslyn.paramax.com
Completed registration forms are sent to this address, as well as requests to be added to or
deleted from the rlf list (NOTE: do NOT send add or delete requests to the rlf list itself).

"* rlf-bugs~stars.rosslyn.paramax.com

Completed Program Problem Reports and New Feature Requests are sent to this address.

6.1 Getting Software

The RLF is available by anonymous FTP to stars. rosslyn. paramax. com in directory pub/RLF/.
If AFS access is available, RLF can be found in directory /afs/stars .reston .unisys .com/see/rlf/4.0/

on cell stars .reston.unisys. com. (Note: In the future, this AFS address may change due to Para-
max Internet reorganization.) It is delivered in binary and source form, so it is not necessary for
the RLF source in the code/ directory to be retrieved. If FTP or AFS are not available, send-
ing electronic mail to the rlf-requestOstars.rosslyn.paramax.com mailing list will handle your
request. If electronic mail is not an alternative, then requests for RLF software should be made to:

RLF
Paramax STARS Center
12010 Sunrise Valley Drive
Reston, VA 22091

New releases of RLF can also be obtained in this way. Joining the rfi)stars.rosslyn.paramax.com
mailing list will keep you apprised of new releases or bug fixes.

Page 28

February 19, 1993 S'IARS- V"('-0515fj/017/00

6.2 Doing Software Updates

Each full release or bug fix release of RLF is accompanied by a Version Description 1)ocument
(VDD) and one of either the RLF Source Code Release Installation Guide or the RLF
Binary Release Installation Guide. The VDD identifies the software release and also notes
any changes which have occurred since the last release. It will also make suggestions about how
much of RLF needs to be re-installed to meet the release. The Installation Guide gives ,pecifics oil
how to install RLF by building all the source code or by just installing new application executables.

6.3 Reporting Errors

If errors in RLF applications or documentation are encountered, then a Program Problem Report
should be filled out and sent by electronic mail to rlf-bugs0stars.rosslyn.paramax.com. If
electronic mail is not available, the completed problem report should be mailed by standard post
to:

RLF
Paramax STARS Center

12010 Sunrise Valley Drive
Reston, VA 22091

When the completed Program Problem Report is received, it will be acknowledged and the problem
will be handled.

Perceived deficiencies in RLF may not necessarily be errors and warrant a Program Problem Report.
If the RLF is performing as documented but is still thought to be deficient, then a New Feature
Request form should be completed and submitted in the same way in place of a problem report.

6.4 Getting Help

Requests for assistance with RLF are best handled through a Program Problem Report submitted
to rlf-bugs~stars.rosslyn.paramax.com if RLF is having errors, or by electronic mail to the
RLF mailing list, rlflstars.rosslyn.paramax.com, if there is a lack of understanding or some
questions. If electronic mail is unavailable, writing to the standard mail address in section 6.3 will
provide assistance.

Page 29

Febr' -Y 19, 1993 STA RS-V('-0715i, 017/100

A Summary of the Library-anager Application

A.1 Overview

The Library-Manager tool performs tasks associated with library administration. These include
manipulating entire RLI' reuse libraries built from LMDL fibrary model si)ecifications, browsing
and examining the contents of reuse ibiaries, and performing a small numnber of manipulation
on the parts of libraries. The Library -Manager only supports limited library model editing in-
cluding the deletion of attributes and inferencers from a model. Any editirg of this sort done
with the Library-Manager should be also be done in the LMDL bpecificaticii of the library model
in order to maintain integrity between the specification and the model, although the using the
Library-Manager allows the changes to be made withnut rebuilding the entire model at that time.

The LibraryMar ager currently operates on one directory of library model instances at a time.
Selections to load or delete libraries are made from this directory, which can be set in the RLF
start-up file rlfrc, with the RLFLIBRARIES environment variable, or on the commapd line with
the -I option. Within any loaded library, the Library-Manager maintlins the idea of a -current
category" which provides the context for all operations. An object can be navigated to through
the library model hierarchy and can serve as the current "category."

A.2 Layout

The Library-Manager is a window application which contains a menu bar, title bar, and text
window. The menu bar contains four buttons which have pulldown submenus and one quit button.
Initially only the "Library" and "Quit" buttons will be sensitized for user selection. The "Browse",
"Edit", and "Asset Management" menu buttons will be sensitized after a library is loaded. The
title bar contains the current directory and library information. The directory information will be
displayed upon start-up but the library information will not be displayed until a library is loaded
by the user. The text window is scrollable and is used to display information about the current
category, including lists of its relationships, actions, or attributes.

A.3 Functionality

This section discusses the functionality of the Library-Manager application on a menu by menu,
button by button basis. Each subsection discusses each of the entries on the Library-Manager
main menu bar.

A.3.1 "Library" pulldown menu

The "Library" pulldown menu contains five buttons which operate on an entire library. These are
"Load", "Delete", "Close", and "Save". Initially only "Load", and "Delete" are sensitized for user
selection. "Delete" will only ever be sensitized when there is no library open. "Load" continues to
be available since it acts as a re-load, saving and closing the currently opened library, if selected
when a library is already open.

Page 30

February 19, 1993 STA RS- ('C-05156/017/00

Load Selecting this button causes a scrolled fist of library names to pop up. ('hoos-
ing a library name loads that library and makes its root category tile current
category. The library name is displayed in the title bar of the window. In-
formation regarding the current category is displayed in the text window.
An informative warning dialog box is popped-up if there are problems in
opening a library. A "Cancel" button under the scrolled list can dismiss it.

Delete Selecting this button, available only when no library is currently open, also
pops up a scrolled list of library names to select. Choosing one deletes a
library from the current directory. A confirmation dialog box is popped-up.
A "Cancel" button under the scrolled list can dismiss it.

Close This button is only sensitized when there is a library open. Its function is

to close a library. Changes are not saved.

Save This button is sensitized when there is a library open. It writes the library
to disk but does not close it.

A.3.2 "Browse" pulldown menu

The "Browse" pulldown menu on the menu bar becomes sensitive for selection when a library is
loaded. There are two entries in it's submenu, "Navigate Hierarchy" and "Examine Hierarchy".
Both of these buttons have a pulldown menu associated with them. "Navigate Hierarchy" should
be used to go from one place to another in a model. "Examine Hierarchy" displays information
pertaining to the category the user is positioned at.

Navigate Hierarchy This submenu contains buttons for choosing different ways to
move through the library model category hierarchy. These are:
"User Entered Name", "Go to Parent", "Go to Child", "Follow
Relationship", "Backtrack Relationship", and "Go to Action Cat-
egory". The goal of any of these is to change the current category
or object.

User Entered Name This button pops up a dialog box so the user can

enter a destination name directly, without pro-
ceeding through all the intervening categorys, us-
ing the other navigation buttons.

Go to Parent This button produces a submenu of all the current
category's parent category(s). Choosing one will
make it the current category.

Go to Child This button produces a submenu of all the current
category's child categories or objects. Choosing
one will make it the current category.

Page 31

February 19, 1993 STARS-U(C-05156/0I7/00

Follow Relationship This button produces a submenu of all the current
category's relationships. Choosing one will make
the relationship's filler type category the current
category.

Backtrack Relationship This button produces a submenu of all the rela-
tionships which have the current category as a filler
type. The owner of each relationship is also shown.
Choosing one will make the relationship's owner
category the current category.

Go to Action Category This button produces a submenu of all the action
categories associated with the actions at the cur-

rent category. Choosing one will make it the cur-
rent category.

Examine Hierarchy This submenu contains buttons for displaying the following in-
formation: "Display Relationships", "Display Actions", "Display

Attributes", and "Display Inferencer". When any of these are se-
lected the appropriate information will be displayed in the text
window.

Display Relationships This button causes all of the relationships associ-

ated with the current category to be displayed in
the text window.

Display Actions This button will not be sensitized unless there are

action(s) associated with the current category. Se-
lection of this button causes a description of each

action to be displayed in the text window.

Display Attributes This button will not be sensitized unless there are

attribute(s) associated with the current category.
Selection of this button causes the list of text and

integer attributes to be displayed in the text win-
dow.

Display Inferencer This button will not be sensitized unless there are

inferencer(s) associated with the current category.
Selection of this button causes the name of the
associated inferencer to be displayed in the text
window.

Page 32

February 19, 1993 STARS- UC-05156/017/00

A.3.3 "Edit" pulldown menu

The "Edit" pulldown menu contains buttons for "Delete Attribute" and "Delete Inferencer".

Delete Attribute This button causes all of the attributes associated with the current
category to be displayed in a submenu. Selection of one of these
attributes will cause the attribute to be deleted. Upon reentering
the submenu it will not be apparent that the deletion has taken
place but the change will be reflected if the library is reloaded.

Delete Inferencer This button causes all of the inferencers associated with the cur-
rent category to be displayed in a submenu. Selection of one of
these inferencers will cause the inferencer to be deleted. Upon
reentering the submenu it will not be apparent that the deletion
has taken place but the change will be reflected if the library is
reloaded.

A.3.4 "Asset Management" pulldown menu

The "Asset Management" pulldown menu contains buttons for "Extract Asset", "Export Asset",
and "Import Asset".

Extract Asset This button will invoke the built-in Extract procedure action
which will copy all the file attributes at the current category to
the location as given by the RLFWORKING-DIR environment vari-
able. If this variable is not set, this action will use the current
working directory. The ability to copy the associated files depends
on the file permissions set in the operating system.

Export Asset This button writes information about the asset at the current
category into a file in the working directory so the asset can be
imported into another reuse library. This function is not fully
implemented.

Import Asset This button reads information about an asset in a file in the work-
ing directory, constructs an appropriate category for it in the li-
brary, and enters the asset in the reuse library. This function is
not fully implemented.

A.3.5 "Quit" button

There is a button labeled "Quit" of the Library-Manager's main menu bar which exits the appli-
cation. Quitting with a library loaded will first save and close the library. Closing the library, or
saving then closing the library, will greatly reduce the amount of time it takes the application to
quit. When the "Quit" button is selected, A confirmation dialog box will appear to make sure the
user wishes to quit.

Page 33

February 19, 1993 STARS-U'C-05156/017/00

B .rlfrc Start-Up File Syntax Summary

B.1 Notation

The syntax of the language is described using an extended BNF. The notation used is the same as
the notation used throughout the Ada LRM. A brief description is given below. For a complete
description see section 1.5 of the LRM.

lower-case-word

nonterminal (e.g. library-model-spec).

italicized-partiower-case-word
refers to same nonterminal as the lower case word without
italicized part. The italicized part is used to convey
some semantic information (e.g. category-name).

bold-face-word

language token (e.g. category).

{item}
braces enclose item which may be repeated zero or more times.

[item]
brackets enclose optional item.

iteml I item2
alternation; either item l or item2

B.2 .rlfrc File Syntax

startup-ffle ::=
{setting}

Page 34

February 19, 1993 STARS-UC-05156/017/O0

setting
default directory I
default-fibTary I
start-category I
view-type I
view-depth I
topologyflag I
cardinalitylflag I
layout-offset I
bitmap I
tau-setting I
debug-flag I
working-directory I
history-list-length I
default-editor I
default-pager I
translator-setting

default-directory ::=
library directory pathname

default-library ::=
library : name

start-category ::=
initial category : name

view-type ::=
view type : agg-or-spec

agg.or-spec ::=
relationship I specialization

view-depth ::=
view depth : [agg.or-spec :] depth-setting

depth-setting ::=
all I integer

topology-flag ::=
topology : flag-setting

flag.setting ::=
yes I no I true I false I on I off

cardinality-flag ::=
cardinality : flag-setting

Page 35

February 19, 1993 STARS-UC-05156/017/O0

layout-offset
layout offset : [x-or-y :] integer

x.or.y
xly

bitmap ::=
node bitmap : category-or-object
[: has-attribute {has-attribute}] : pathname

category.or.object ::=
category I object

has-attribute ::=
inferencer I actions I attributes

tau-setting ::=
advice : tau-setting-type

tau-setting.type ::=
explanations : explanation-type I
automatic move : flag-setting

explanation-type ::=
none I all I explanationkind {explanation_kind}

explanation_kind ::=
reasoning I questions I moving

debug-flag::=
debug : flag-setting

working-directory ::=
working directory : pathname

historylistiength ::=
history length : integer

default-editor ::=
editor : string

default-pager ::=
pager : string

translator-setting ::=
translator : translator-type

Page 36

February 19, 1993 STARS-UC-05156/017/00

translator-type =

lmdl : lmdlsetting I
rbdl rbdl-setting

lmdl-setting ::=
quiet-translation I translate-only I default input spec

rbdl-setting ::=
quiet-translation I default-inpu tspec

quiet-translation ::=
quiet : flag-setting

translate-only ::=
only : model-or-state

model-or-state ::=
model I state

default-input-spec ::=

default specification : pathnarne

integer ::= digit {digit}

name ::= identifier I " character {character} e

identifier ::= letter {[underline] letter-or.digit}

letter-or-digit ::= letter I digit

letter ::= upper-case-letter I lower-case-letter

pathname ::= printable-non.whitespace {printable.non-whitespace}

B.3 Example .rlfrc File

---I

--I Sample startup file for the Reuse Library Framework version 4.0
--- I

-- I Library directory or name specifications
--- I

-- library directory : /path/Libraries
-- library : "Sort and Search Algorithms"

Page 37

"February 19, 1993 STARS- UC-05156/O17/O0

--I Parameters for the RLF Graphical Browser

-- I

topology ; off
cardinality : off
layout offset x 20
layout offset : y :
history length 60
view type specialization
view depth : relationship : 2

-- I

-- I AdaTau inferencing settings

advice explanations : all
advice automatic move : false

--I
--I Bitmaps for nodes

-- node bitmap : category /path/boxjm.xbm
-- node bitmap : category inferencer : /path/boxI-m.xbm
-- node bitmap category : actions : /path/boxA-m.xbm
-- node bitmap : category inferencer actions : /path/boxAI-m.xbm
-- node bitmap object /path/cube-m.xbm
-- node bitmap object inferencer : /path/cubeI-m.xbm
-- node bitmap : object : actions : /path/cubeA-m.xbm
-- node bitmap object : inferencer actions : /path/cubeAIm.xbm

--I
--I Specification translator settings

---- q
translator: Lmdl: quiet: no
translator: Rbdl: quiet: no

Page 38

SFebruary 19, 1993 STARS-('(-05156/O17/O0

C PCTE and RLF

In most respects, the PCTE version of this delivery of RLF will operate in the same manner as
the UNIX version. This appendix, however, will present the differences in the PCTE and UNIX
versions of RLF and present some conventions which can be used to produce library models which
will be portable between versions. It will also list some requirements of the PCTE version which
are not UNIX requirements. This appendix assumes knowledge of PCTE, the Eineraude PCTE
product, and the esh shell.

C.1 File Naming Restrictions

The Emeraude implementation of PCTE places restrictions on the length of object names and
makes assumptions about the use of '.' in object names. The names of files containing assets
which are available in an RLF reuse library are restricted to 32 characters in length when using
PCTE. These are the files that reside beneath the Text/ subdirectory of any directory where RLF
libraries have been constructed. Additionally, the names of files containing reusable assets in the
library should not contain the '.' character, since this indicates a special meaning to the Emeraude
implementation of PCTE. The convention established by this version of RLF for PCTE is to replace
any '.' characters in file names with the underscore character, '-'. An exception to this convention is
the .rlfrc start-up file, which the PCTE version of RLF will look for as an entity named rlfrc. e.

To increase the similarity in the way libraries are represented in the UNIX and PCTE versions,
and to ease transition between versions, the preferred link type of every object in or beneath the
directory object where the library was built must be set to ".e". This includes files representing a
library's assets and any action scripts which might appear below the Text/ directory. The preferred
link type of the directory object indicated by the environment variable, RLFLIBRARIES, also needs
to be ".e" so that its subdirectories can be traversed easily.

Library representations built with the PCTE version of RLF also require a directory object named
rlf-tools to be a first-level subdirectory of the directory object where the library is built. This
directory object must also contain two tools named ascii-file. tool and displ-attr.tool. These
tools are required for RLF's default actions to operate correctly.

For excellent examples of library model construction for the PCTE version of RLF, examine the
a esh versions of the build scripts for the example libraries delivered with RLF. These scripts are

found in each subdirectory of the models/ directory of an RLF installation. These scripts can be
modified and reused to help automate the procedures required to build an RLF reuse library with
the PCTE version.

C.2 Action Modeling with PCTE

The modeling of "System String" type actions in PCTE has stricter requirements than for UNIX.
(See section 4.3.2 for details on UNIX action modeling.) In the UNIX version, commands may
be placed directly in the string attribute of the action category, and then this command will be
executed in its own UNIX shell when an action which references it is invoked. PCTE, however, must
invoke an esh process to perform actions. Because of this, all "System String" type actions in the
PCTE version of RLF must be in an esh script which can be executed in a PCTE process. This

Page 39

February 19, 1993 STARS-U('-05156/017/00

is very similar to encapsulating an action in a csh script which is executed by UNIX. Additional
parameters may be supplied just like for any other fsh script, but no pipes, output redirection,
backgrounding of the task, or multiple commands (colon separated list of commands) are allowed
in the string attribute which represents the action at the action category. If any of these capabilities
are needed for the action to meet its goals, then these things should be done within the esh script
which performs the action. Also, within the script which performs the action, if it is necessary to
execute UNIX-only, non-encapsulated programs (e.g. xloadimage), then the script will have to use
the esh command epath to convert a PCTE pathname to a UNIX file name.

The PCTE version of RLF assumes these esh action scripts can be found in the Text/ subdirectory
of the directory object where the libraries were constructed. (This is the directory usually specified
using the RLFLIBRARIES environment variable.) The modeler must specify any additional paths
in the LMDL specification. Typically, the scripts are deposited in a model-specific directory object
in the Text/ directory object. For example, if a library describing animals has an action which
invoked an xterm and ran less in it to view an asset, the final location of the esh action script might
be

$RLFLIBRARIES/Text/animals/xterm-less. tool

Scripts must be of type sctx and should use the link extension tool in the PCTE object base. The
script writer and installer should verify that the execute permissions are set for any action scripts.
The command "obj.set.mode a+x <pathname>" executed in esh would do this for the script in-

dicated by <pathname>. If the script is created as a UNIX file and has the correct permissions in
UNIX, the PCTE copy will have the correct permissions.

For a larger example, suppose an RLF library model is being developed which will be a repository
of bitmaps. A necessary action for this library is one which allows the user to view a bitmap which
is a candidate for reuse. A "View Bitmap" action category which might appear like this in the
action sub-model in the UNIX version:

category "View Bitmap" (Action) is

restricted relationships
has-action.type of "System String";

end restricted;
attributes

string is "xloadimage ## &";
end attributes;

end category;

In the PCTE version, this action shuld be modeled like this:

category "View Bitmap" (Action) is
restricted relationships

has.action.type of "System String";
end restricted;
attributes

Page 40

February 19, 1993 STARS-U('-05156/017/O0

string is "bitmaps/xloadimage.tool ##";
end attributes;

end category;

In this example, xloadimage.tool is an esh script which PCTE will invoke in a separate process.
The contents of xloadimage.tool might look like this:

xloadimage "'epath $1" &

This example illustrates a few of the differences between the UNIX and PCTE versions of RLF. It
shows the necessary encapsulation of an action in an esh script for PCTE which appears as the action
category's string attribute with no pipes, file re-direction, multiple commands, or backgrounding.
It also shows that once inside the script, these things can be done as usual, and that UNIX-only
tools need to use epath to resolve the actual UNIX pathname of a PCTE object with contents.
Using the action script location convention, this script would be located in

$RLFLIBRARIES/Text/bitmaps/xloadimage. tool

where RLF-LIBRARIL3 indicates the directory object where the library was constructed and bitmaps/
is a model-specific subdirectory of Text/ where files related to the bitmaps library will reside.

This example also shows how UNIX/Pf -- portable library models can be developed if useful. The
PCTE version of the "View Bitmap" action above would work equally well for UNIX if a csh script
named xloadimage.tool was written w'th the following contents:

8! /bin/csh -f
xloadimage $* &

If appropriate versions of xloadimage .tool were installed in the library directories according to
which version of RLF was being used, and file names for assets and related files were carefully chosen
(according to the guidelines above) for the UNIX version, then the production of UNIX/PCTE
portable library model specifications is not difficult.

Page 41

