w«

AD-A285 167
LT

TASK: UU03
CDRL: 05156
March 1993

Reuse Library Framework

Version 4.1
User Manual

Informal Technical Data N DT E C 2

‘-rg,—'q—

% SLPO )1994 q 7
<X B -
W 8

STARS-UC-05156/013/00
March 1993

m&\-,‘w PR
. S
e

S9a-30888

04 v 24 Q e SR




est -
Available
Copy




-'

TASK: U03
CDRL: 05136
March 1993

INFORMAL TECHNICAL REPORT
For

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

RLF User’s Manual, Version 4.1

Accesion For

STARS-UC-05156/013/00
March 1993 D Shas

Unannounced 0
Justification

Data Type: A005, Informal Technical Data jo = -~

CONTRACT NO. F19628-88-D-0031 Distoibn
; istribution |
Delivery Order 0011
Availability Codes
Prepared for: Dist AV%L:&SI’F&

Electronic Systems Center
Air Force Systems Command, USAF ﬂ- (

Hanscom AFB, MA 01731-5000

Prepared by:

Paramax Systems Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

DTIC QUALITY INSPECTED 3

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.




TASK: U03
CDRL: 05156
March 1993

Data ID: STARS-UC-05156/013/00

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.

Copyright 1992, Paramax Systems Corporation, Reston, Virginia
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

Developed by: Paramax Systems Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution “A” of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA)
under contract F19628-88-D-0031, the STARS program is supported by the military services,
SEI, and MITRE, with the U.S. Air Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution “A” and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

In addition, the Government, Paramax, and its subcontractors disclaim all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and
in no event shall the Government, Paramax, or its subcontractor(s) be liable for any special,
indirect or consequential damages or any damages whatsoever resulting from the loss of use,
data, or profits, whether in action of contract, negligence or other tortious action, arising in
connection with the use or performance of this document.




TASK: U03

- CDRL: 05156
March 1993

INFORMAL TEC ‘AL REPORT
RLF User’s Manu.. . version 4.1

Principal Author(s):

Del Gordon Date
Kevin Russell - Date
Approvals:

Task Manager Richard E. Creps Date

(Signatures on File)




|

INFORMAL TECHNICAL REPORT
RLF User’s Manual, Version 4.1

TASK: U03
CDRL: 05156
March 1993




s«

Change Record:

Deta ID Description of Change Date Approval

STARS-UC-05156/013/00 | RLF v.4.1 enhancements: March 1993 on file
PCTE integration enhance-
ments; man pages.

STARS-UC-05156/006/00 | RLF v.4.0 enhancements: | November 1992 on file
Ported to SA-Motif; cascad-
ing menus; additional node
types for greater bitmap
specification flex-
ibility; command-line op-
tions; .rlfrc initialization
file; SNDL becomes LMDL,
simpler modeling language;
enhanced actions capability;
RLF GB User’s Manual be-
comes RLF User’s Manual,
updated Usage Scenario sec-

tions; updated figures to
Motif GUI

STARS-UC-04046/005/00 | RLF GB 3.1 enhancements: July 1992 on file
Relationship View; Node
History; N-Level Views, ter-
minology updates; RLF GB
User’s Manual restructur-
ing; new Usage Scenario
sections

STARS-TC-04046/004/00 | RLF 3.0 enhancements: ac- { 31 January 1992 on file
tions, multiple file state;
RLF GB enhancements to
utilize RLF 3.0 features,
menu perestroika, multiple
inheritance features; object-
oriented terminology

STARS-SC-03065/004/01 | RLF GB enhancements; eas- | 04 October 1991 on file
ier installation and startup
procedures; customization
section in appendix; discus-
sion of multiple inheritance

STARS-SC-03065/004/00 | Re-issued: Describes soft- | 06 September 1991 | on file
ware upgrade to version 2.2

STARS-SS-004001/001/00 | Original Issue March 1991 on file




fForm Approved

REPORT DOCUMENTATION PAGE . OMB No 0704-0188

Pytii¢ reporuing durgen +OF this CONECUICT O ATCIMBTICS 1y SSTIMATEA 1D Av@raQe * "Cyf DEr “AiZ " 1@ FACUGING T™E LIMS 107 1ev+ew NG (NSIILCUICHY. SEAMCNING eR11iNQ GALI OUrces
ATRENP3 ANO MAINTAINING the QAT MNCE0. NG COMDISTING ST FEVIEW D TRE LZHECHION OF 112 % 310N SENng COMMENTS 1E131QING This DUIOEN SLLMALE CF 8Ny JTINEr A50ECT O Thiy
CONECUION 1 INIDEMBUCH, INCIUAING SUGFEITIONS 10T FRAUCING tNIs DUGEN 12 WEShiNGION ~eaqauarters Services. Directorate for 'nrormanon Ooerations ano ieoo:u 1219 Jetenson
Dasn righaay. Suite 1264 artington. 72 22202-1302. and 10 the Otize 5* Mansgement and 8u32e” Paperweors Reguction Prejec (0704-3°88) wasnngior. 5C 205C3

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
- Informal Technical Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
RLF User’s Manual F19628-88-D-0031

6. AUTHOR(S)

Paramax Corporation

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Paramax Corporation STARS-UC-05156/013/00

1210 Sunrise Valley Drive
Reston, VA 22090

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING . MONITORING
AGENCY REPORT NUMBER
Department of the Air Force
Headquarter, Electronic Systems 05156
Hanscom AFB, MA 01731-5000
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution "A"

13. ABSTRACT (Maximurmn 200 words)

This manual describes the use and basic customization of the Software Technology for Adapt-
able and Reliable Systems (STARS) Reuse Library Framework (RLF) and its primary user
interface—the RLF Graphical Browser (GB); hereafter referred to as the RLF GB. The
reader is not expected to be a programmer, but familiarity with the UNIX C shell, UNIX files
and directories, and basic X Window System (X) interaction with some window manager is
assumed. This manual assumes that X has been properly installed and that the user is able
to start an X server.

14. SUﬂECT TERMS 15. Numg_gn OF PAGES
. 16. PRICE CODE
17, SECURITY CLASSIFICATION ]18. SECURITY CLASSIFICATION |[19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
- OF REPORT OF THIS PAGE OFf ABSTRACT
Unlcassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Sea~zacc Srem 298 Roy 2.8

e ————




.

March 1993 STARS-UC-05156/013/00
Contents

1 Introduction 1

1.1 Scope . . . . . . . e 1

1.2 Identification . . . .. .. . .. .. ... 1

1.3 Product Overview and Rationale . . . ... ... ... ... ......... 2

1.4 RLF Fundamentals . . . . .. .. ... ... ... ... ... ... ..... 3

1.5 Notation Used in this Manual . . ... ... ... ... ... ... ... 8

2 Getting Started 9

21 Assumptions. . . . . . ... e e 9

2.2 Initial Setup Procedures . . . . . . .. .. .. ... ... ... ... 9

2.3 Environment Variables . . . . . .. ... .. ... o oL 10

2.3.1 The DISPLAY Environment Variable . . . . .. .. ... ... .... 10

2.3.2 The RLF_LIBRARIES Environment Variable . .. .. .. ... ... 11

24 Invokingthe RLFGB .. ... .. ... ... . . .. ... ... .. .... 12

2.5 Usage Scenarios . . . . . . . . . i i i e e e e 12

2.6 Summary of RLF GB Startup Procedures . . ... .............. 14

3 Modes of Operation 15

3.1 The Main Menu—Selecting RLF Libraries . ... ... ............ 15

3.2 The Graph Display Window . . . . .. ... ... .. ..... .. ...... 18

321 TheCommandBar ... ........... ... .......... 18

3.2.2 Graph Scrollbars . .. ... .. e e e e e e e e e e e e 18

33 The Graph Display . . . . .. .. ... ... . ... e 20

34 TheFilterViewCommand . . . . . .. ... ... ... ... .. ...... 21

3.5 The Navigate View Command . . . . . . ... ... ... ... ... .... 24

3.5.1 The Node History Command . .. .. ................. 24

3.5.2 The Go Toa Node Command . . ... ................. 25

3.5.3 The Go To Root Node Command . . . ... .............. 26

3.6 The Search Command .. ... .. ... ...... ... ... ........ 26

3.7 The Topology Command . . . . .. .. ..............v.v.... 28

38 The Quit Command . .. ... ... ... ... ... .. ... ii.e.n.. 29

4 Context-Sensitive Node Menus 31

4.1 Context-Sensitive Node Menus—Specialization View . . . .. .. ... ... 31

4.2 Context-Sensitive Node Menus—Relationship View . . . .. ... ... ... 34

4.3 Canceling Pull-Down Menus . . . .. ... ... ................ 35

44 Navigation . . . . . . . . . . L. e e 35

4.4.1 Specialization View and Relationship View Navigation . ... .. .. 35

442 GoingtoaChildofaNode .. ........... ... . ...... 35

443 GoingtoaParentofaNode .. .. .. .. ... ... ... .... 36

444 GoingtoaRelatedNode . . . . .. .. ... ... ... ... .. ... 37

4.5 The Relationship View . . . . . . . . ... .. ... ... ... ........ 39

4.5.1 Going to a Related Node in the Relationship View . . .. ... . .. 39

Page iii




March 1993 STARS-UC-05156/013/00
4.5.2 Going to a Referencing Node . . . . ... ... ... .. .. ... ... 41

4.5.3 Going to a Referencing Category . . .. .. .. .. ... .. ..... 41

4.54 Going to a Referencing Object . . . . . .. . ... ... .. ...... 42

4.6 Going to Another Occurrence—Multiple Inheritance . . . . . . .. ... .. 45
47 CenteringaNode . . . .. ... ... ... ..o 46
4.8 Performing Actions . . . . . .. ... L 48
4.9 Inferencing—Getting AdviceataNode . . . . .. . ... ... ... ... .. 49
4.10 Asset Extract and Export Functions . . . . . ... ... ... ........ 51
4.11 Node Suppression . . . . . . .. .. ... e 51
4.11.1 Suppressing Categories or Objects with No Descendants . . . . . . . 51

4.11.2 Unsuppressing Nodes . . . . . . .. ... ... .. ... ....... 52

5 Arcs 53
5.1 Displaying the Attributesof an Arc . . . . . . ... ... L. 53
5.2 Suppressing Arcsfrom View . . . . .. .. L L Lo Lo L. 54

A Appendix: Customization 55
Al XResources . . . . .. .. ... . e 55
A2 Bitmaps . . . . .. e 57
A.2.1 Bitmap File Naming Convention. . . . ... ... ... ........ 58

A3 Fonts . . . . . . e 60
A.4 Invoking the Browser from a Shell Script . . . . . . ... ... ... ..... 60
A.5 Conmand Line Arguments for Setting X Resources . . . ... .. ... ... 60

B Appendix: Environment Variables 62
C Appendix: Command Line Options 63
D Appendix: The RLF Initialization File 65
D.0.1 Library Instances . . . . .. .. .. ... ... ... .. .. ... ... 66

D.0.2 Default Library . . . .. ... ... ... ... ... . ... .. 66

D.03 Initial Category . . . .. .. .. ... .. .. ... ... .. 66

D.0.4 View Setting . . ... ... ... .. ... ... 66

D.0.5 Bitmaps . . . . . . ... e 67

D.0.6 Library Advice Settings . . ... ... ... .. ............ 67

D.0.7 Specification Translator Settings . . . . ... ... ... ........ 68

D.0.8 The RLF Initialization File BNF . . . ... ... ... ........ 68

E Appendix: Error Messages 72
E.1 X Window System Errors . . . . ... .. ... .. ... ... .. ... .. 72
E.2 OpenWindows Resources . . . . . ... ... . ... .. .. .......... 73
E3 RLF Errors . . . . . . . . . e 75
E.4 File Processing Errors . . . . . ... ... ... .. L . 17

F Appendix: Detailed Usage Scenarios 79
F.1 Scenario 1: The Candidate Component is Known-Browsing . . . . . .. . .. 79

Page iv




March 1993 STARS-U(C-05156/013/00

F.2 Scenario 2: The Candidate Component is Unknown-Guided Search . . . . .
F.3 Scenario 3: Textial Query Mode-Querying Search Mechanisms . . . . . . ..

G Appendix: PCTE
G.1 Ipstalling the PCTE Versionof RLF . . . . . ... ... ... ... ...
G.1.1 Starting the PCTE Server . . . . . . . ... .. ... ... ......
G.1.2 LoggingintoPCTE . . . . . .. ... ... ... . ... ... ... .
G.1.3 Creating RLF Libraries in the PCTE Object Base . . . . . . .. . ..
G.1.4 Invoking the PCTE RLF Graphical Browser . . . . . . .. . ... ..
G.2 File Naming Restrictions . . . . . . .. .. .. ... ... ... ......

H Appendix: Reporting Problems

I Appendix: References

Page v




March 1993

List of Figures

Specialization and Individuation . . . . . . . .. .. ..o
TheMainMenu . . . . ... .. .. .. ... ... ...
The Select a Library Menu . . . . . .. .. .. ... ... ... ... .....
The User Interface Components of a View . . . . . .. ... ... ... ...
The Elementsof a Scrollbar . . . . .. .. .. ... ... ... ......
Category and Object Nodes . . . . . . .. .. ... ... ... . ......
Category and Object Nodes with Actions or Inferencers Attached . . . . . .
An Example of a Menu with Arrowhead Indicators for Submeuus . . . . . .
The Filter View Pull-Down Menu . . . . . .. ... ... ... ...

A Second-Level View Selected from the Filter View Pull-Down Menu .
The Navigate View Pull-Down Menu . . . . . ... .. .. ... ... .. ..
The Node History Menu . . . . . . ... ... ... ... ... ......
The [Go To] Dialog Box . . . . .. .. .. ... ... ... .. ........
The [Go To] Alert Box . . .. ... ... ... ... ... .. .........
The [Search] Control Panel Menu . . . ... ... .. .. ... .......
The Topology Display . . . .. ... . ... .. ... .. ... .. ...
The Quit Menu . . . . . . . . . .. .. . e
The Exit Alert Box . . . . ... ... .. .. ... .
Menu Option Sensitivity vs. Insensitivity . . . . .. . . ... ... ......
A Context-Sensitive Category Menu . . . . . . ... ... ... .. ......
Another Context-Sensitive Category Menu . . . . ... ... ... ... ...
The [Go To a Child] CascadingMenu. . . . . ... ... ... .......
The [Go To a Parent] Cascading Menu . . . . .. ... ... ... ....
The [Go To a Related Category] Cascading Menu . . . . . .. ... ...
A Relationship View for the Example Binary Search Object .. ... ...
Related Categories/Objects Menu in a Relationship View for the Example
Binary Search Object . . . . . .. .. .. ... ... .. .. ..
The [Go To a Referencing Category] Cascading Menu . . .. ... ...
A Relationship View for a Category . . . . .. ... ... ... ........
A Referencing Category Menu . . . . . .. .. ... ... ... ........
The [Search] Cascading Menu Showing Multiple Inheritance . . . . . . . ..
A Navigate Menu Containing the [Go To Other Occurrence] Option . . .
The [Perform Action...] Cascading Menu . . ... ... ..........
Performingan Action . . . . . . .. .. ... .. ... L o .
A Category Node with the [Advice] Menu Option . . . ... .. ......
The Components of an Advice DialogBox . . . ... ... ..........
The Alert Box from the [Advice] Menu Option . . . . .. ... ... . ...
The ArcMenu. . . .. .. ... . . . e
An Arc Attributes Display Window . . . . . . . .. ... .. ... .. ...
TheMainMenu . . . . ... ... ... ... .. .. ..
ALbraryMenu. . . . .. ... ... . .. e
A Graph Display View . . . . . .. .. .. ... ... . . oo
A Category Node Menu . .. ... .... ... ... . ... ... ...,
Walking the Specialization Hierarchy . . . .. .. ... .. .. ... ... ..

Page vi

STARS-UC-05156/013/00




March 1993 STARS-U(C-05156/013/00
44 An Object Node Menu . . . . . . ... .. ... ... Lo oL 82
45 Reusable Component Source Displayed in a Text Pager . . . . . . . ... .. 33
46 Selecting the [Extract source] Option from a Perform Action Menu . . . . 34
47 The “Algorithms” Menu—Getting Advice . . . . . .. .. ... ... . ... 85
48  An Example Initial Advice Dialog Box . . . . ... ... ... ... ..., 85
49 A Second Example Advice Dialog Box . . . . ... ... ... ... ... 86
50 A Third Example Advice Dialog Box . . . . . . .. .. ... ... .. ... 86
51 A Fourth Example Advice Dialog Box . . .. .. ... ... ... ....... 87
52 An Example Final Advice Dialog Box . . . . . .. ... .. ... .. .. ... 87
53  An Alert Box Displayed After an Inferencing Session . . . .. .. ... ... 87
54 A Search String Dialog Box . . . ... .. .. ....... . ... ... d8
55 A Search List Selections Menu . . . . . ... . ... ... ... ........ 89

Page vii




March 1993 STARS-UC-05156/013/00

1 Introduction
1.1 Scope

This manual describes the use and basic customization of the Software Technology for Adapt-
able and Reliable Systems (STARS) Reuse Library Framework (RLF) and its primary user
interface—the RLF Graphical Browser (GB); hereafter referred to as the RLF GB. The
reader is not expected to be a programmer, but familiarity with the UNIX C shell, UNIX files
and directories, and basic X Window System (X) interaction with some window manager is
assumed. This manual assumes that X has been properly installed and that the user is able

A to start an X server. This version of RLF can support execution using Portable Common
Tools Environment (PCTE) as an underlying object management system. If you run the
PCTE version, then certain guidclines must be followed when installing and running the
software. PCTE-specific information has been gathered in Appendix G.

Some explanation of general RLF concepts is provided at the introductory level. This level
of explanation should be adequate for the RLF end-user. Other RLF documents exist that
contain more detailed information about the RLF. For information on constructing RLF li-
braries, consult the RLF Modeler’s Manual. For detailed information on RLF administration
issues, see the RLF Administrator’s Manual. For help with installation of the RLF software,
see the RLF Installation Guide. Since this version of RLF can support execution using
Emeraude’s implementation of PCTE as an underlying object management system, if the
RLF is run with PCTE, it is assumed that the user understands PCTE and the Emeraude
product, including the ability to construct esh scripts.

1.2 Identification

A This manual is for the RLF Version 4.1 release, March, 1993. This release runs on SunOS,
version 4.1.1 or later. This manual assumes a UNIX C shell interpreter is accessible to the
user.

A When building the RLF GB application from source code, the following software dependen-
cies exist:
e STARS RLF, Version 4.1
e STARS Reusable Graphical Browser (RGB), Version 1.0
e SERC SA-Motif, Version 1.0 (commercial Ada bindings to X)
e OSF/Motif 1.1
e the X Window System, Release 4

A and the following compiler dependency exists:

Page 1




[ —

March 1993 STARS-UC-05156/013/00

e Sun Ada Compiler, Copyright 1984, 1992 Sun-4 SunOS Release 4.0 and 4.1, Version
1.1(f)

If you do not already have the STARS products, you may obtain them by following the
instructions in the RLF Version Description Document listed in Appendix 1, “References.”

At run-time, the only software dependency that exists is the following:

e the X Window System, Release 4

i.3 Product Overview and Rationale

Within a particular problem domain, applications tend to have similar characteristics. To
facilitate reuse within a domain, it is useful to analyze the domain to identify the similarities
and differences among applications, and to record the results of this analysis in the form of
a domain model and generic domain architecture. A crucial requirement for domain-specific
reuse libraries of the future is that they provide a means for storing and accessing this domain
knowledge to readily support reuse-based application development.

The RLF was designed specifically to meet this need. The RLF supports the development and
evolution of comprehensive domain models consisting of taxonomic information to describe
domain structure and rule bases to capture heuristic domain knowledge. Such a domain
model is capable of supporting many tools that impact all phases of the software lifecycle
and support reuse of a broad spectrum of life cycle products beyond just source code.

The search and retrieval mechanisms of the RLF provide both novice and experienced users
effective reuse library access. The RLF provides several modes of user interaction to sup-
port different search strategies. The fundamental mode of operation relies on a browsing
paradigm, wherein users are presented with a graphical representation of the library domain
model and move through the library under their own control, deciding which kinds of assets
to investigate. The RLF also provides an advisor mode, which gives users rule-based ad-
vice about which assets to investigate next, and a query mode which allows users to submit
database-style queries about library assets.

The main purpose of the RLF GB is to provide a graphical user interface te the RLF. This
graphical interface is the primary user interface when the RLF is used as a domain-specific
software reuse library tool. Another purpose of the RLF GB is to demonstrate large-scale
Ada software reuse. The RLF GB itself reuses the RLF and RGB software subsystem
components.

The RLF GB provides to the user a graphical, point-and-click interface to the RLF and its
structured domain knowledge. The graphical interface to the RLF has completely replaced
the textual interface of older versions of the RLF. The Library Editor application also
has a graphical interface; the textual interface is no longer supported.

Page 2




March 1993 STARS-UC-05156/013/00

The RLF GB relies on the X Window System (X) to provide some of its capabilities, such as
windowing, pull-down menus, graphics display, and mouse control. With these capabilities
the RLF GB can graphically depict an RLF library, and the user can view and interact with
the library using simple mouse actions. The library structure is also referred to as a domain
model.

The functionality of this version of the RLF GB provides read-only access to the do-
main model. It does not provide any network creation or modification capabilities. The
Library Editor application provides some library modification capabilities, but is not dis-
cussed further in this manual. For a detailed discussion of the Library Editor , see the
RLF Administrator’s Manual.

1.4 RLF Fundamentals

It is necessary to explain some RLF fundamentals to get the most benefit out of using the
RLF GB. However, the scope of this manual places constraints on the depth of explanation;
it must therefore remain an overview. See the RLF documents listed in Appendix I for more
detailed information on the RLF.

The RLF consists of two primary subsystems, AdaKNET and AdaTAU. AdaKNET, which
stands for “Ada Knowledge Network,” is a knowledge representation system derived from
the well-known artificial intelligence system KL-ONE. It enables the creation of knowledge
structures known as “structured inheritance networks,” which are also referred to as “se-
mantic networks.” Such networks can be used to model the characteristics of widely diverse
domains, and are well suited to the construction of domain models supporting the develop-
ment of software component libraries addressing specific application domains.

AdaTAU stands for “Ada Think, Act, and Update,” which describes the basic functions of
the AdaTAU rule-based inferencing subsystem. The AdaKNET and AdaTAU subsystems
are unified in RLF through a software layer that enables AdaTAU inferencers to be associated
with specific concepts in an AdaKNET network.

There are two central elements of an AdaKNET network: category and object. A category
is a class of domain entities, such as “Reusable Software Component,” and an object is an
instance of a category, such as an actual file containing reusable source code—a particular
sorting algorithm, for example, named “Quicksort.” AdaKNET categories are organized
hierarchically into what is called a specialization hierarchy. In this hierarchy, one category
“specializes” another if the set of objects it represents is a subset of the set of objects
represented by the other category; the specializing category is known as a subcategory, and
it can specialize one or more categories. Objects are said to “individuate” categories, and
each object individuates one or more category. The individuation relationship is similar in
principle to the relationship between an Ada generic package and an instantiation of that
package, or the relationship between a class of items such as “documents,” and a particular

item that belongs in that class or is a specific example of an item in that class, such as “the
RLF User’s Manual.”

Page 3

—“l—~




March 1993 STARS-U(C-05156/013/00

A category may have associated with it a set of relationships to other categories. These
relationships, different from the specialization relationship described above, can be viewed
as defining a set of arbitrary “relational attributes” between two categories. Subcategories
are said to inherit all such attributes from their parent categories. That is, all the relational
attributes defined for a category are also defined for its subcategories; the subcategories may
have additional relational attributes of their own. The objects that individuate a particu-
lar category provide fillers, or values, (in the form of related objects) for those relational
attributes, thus enabling relationships between objects to be represented. This relational
attribute structure among categories and objects is said to form the aggregation hierarchy
of the network. Relational attributes are typically used to indicate object interdependen-
cies, “part-of” relationships (e.g., an object is a sub-component or part of another object),
or derivation or history relationships (e.g., a code component is derived from a particular
design component).

In addition, a category or object may have associated with it a set of text strings, data
files, or integers. Each such item can be considered to be a value attribute of its associated
category or object. This mechanism is used to associate actual component data, such as Ada
source code files, with AdaKNET objects, and it is also used to record textual or integer
information about categories or objects that is not readily representable solely within the
AdaKNET specialization and aggregation formalisms. For example, a value attribute can be
used to record the name and address of a person, an abstract for a document, or information
instructing a user how to reuse a software component. Value attributes are attached to
individual categories and objects and are not subject to the inheritance mechanism that is
employed for relational attributes.

It is important at this point to clarify some terminology that is used throughout the RLF
GB and throughout the remainder of this document. Relational attributes are generally
referred to as “relationships,” with a “related category” or “related object” as their target,
whereas the value attributes are generally referred to simply as “attributes.” Also, the term
“concept” has been used historically within the RLF community to refer to either a category
or an object, and that usage is continued herein. An “RLF network” (or “semantic network”,
or just “network”) consists of a set of concepts and all the specialization and aggregation
relationships between them. An “RLF library” consists of a network, the value attributes
in the network, and any AdaTAU inferencers that may be associated with concepts in the
network.

The RLF GB allows the user to traverse an RLF library via both the specialization and
aggregation hierarchies (where the specialization hierarchy is assumed here to include ob-
jects for convenience) and also allows the user to access the value attributes and AdaTAU
inferencers. Graphical views of the specialization hierarchies and the aggregation hierarchies
are obtainable. The RLF GB draws a graph on the screen consisting of all the categories
and objects in a network, depicted as the “nodes” of the graph, and connects the nodes with
arcs representing the specialization and individuation relationships. An arc can be from a
category node to another category node, representing the specialization relationship, or from
a category node to an object node, representing the individuation relationship. These arcs

Page 4




March 1993 STARS-U(C-05156/013/00

2
k
8

: ‘T 43 N
RS o—Bn T
mammal KRR
dog I Rin_Tin_Tin |
T
Yo
- el
yak
Concepts Relationships
[ Sule )
'\T - Category O specialization
o'
a Object @ individuation

Figure 1: Specialization and Individuation

are directed arcs, so only one end of the arc has an arrowhead attached. The direction of
the arcs displayed by the RLF GB flow from left to right. A node on the right specializes
(or individuates) a node on its left when there is an arc between them. Figure 1 contains a
partial graph that illustrates how the RLF GB depicts nodes and arcs. Within this graphical
context, the aggregation hierarchy is traversed from a particular node by invoking functions
from menus available at each node. These node menus contain the names of nodes related to
that node, or options that produce a graphical representation of the aggregation hierarchy.
Value attributes are accessed similarly, through the assistance of the RLF “action” mecha-
nism described later in this manual, and AdaTAU inferencers are also accessed through a
similar mechanism.

In the graph shown in Figure 1, the root of the graph is the category “mammal.” The
categories “dog” and “cat” specialize “mammal.” If “mammal” has any relational attributes
associated with it, then its specializations inherit those relationships. For example, if concept
“mammal” possesses the relationship “is_.owned_by,” then both “dog” and “cat” also have the
“is_owned_by” relationship. The object “Snoopy” individuates the category “dog”, indicating
there exists a concrete example in the world—a certain dog named “Snoopy”-of the abstract
concept called “dog” in this domain of mammals. The filler for the “is_.owned_by” relationship
of “Snoopy” might be another object in the model called “Charlie Brown” (not shown in
the figure).

Page 5

e




March 1993 STARS-UC-05156/013/00

As indicated earlier, concepts may have actions associated with them. Actions have a name
and a target. The action defines an executable program, script, or procedure that can be
invoked from the RLF GB. The target is a value attribute of the concept for which the action
is defined. Most often, actions are defined for attributes whose values are stored in a disk
file. An action could be defined, for example, that would run an Ada compiler and linker on
a target source code file, and another action could be defined that would run the resulting
executable file. Actions are inherited down the specialization hierarchy, via a mechanism
similar to the inheritance mechanism previously described for relational attributes.

In an RLF model, since categories may specialize more than one category, multiple inheri-
tance is possible. Multiple inheritance is a powerful inferential mechanism whereby a category
may inherit relational attributes from more than one parent category. This allows a single
category to embody the combined relationships of many parent categories. That category
may then further refine those relationships by restricting the related category or reducing the
number of fillers that is allowea. Through this mechanism, the commonalities among vari-
ous categories are easily modeled, and a new category has to define only its unique features.
This notion is also extended analogously to objects that individuate multiple categories; they
possess (and can have fillers for) all the relationships that are defined within all their parent
categories.

The method that the RLF GB currently uses to display an RLF specialization hierarchy,
which can be represented visually by a construct known as a directed acyclic graph (DAG),
is to unfold the graph into a simple tree structure (references to a “graph” elsewhere in
this document refer to this tree representation of the graph). This allows the RLF GB to
create aesthetically pleasing layouts, but causes a side effect that can sometimes be a source
of confusion to the unwary user. As stated above, RLF provides a multiple inheritance
mechanism, which allows concepts in a network to have more than one parent category. If
the RLF GB were to display a DAG, rather than a tree, each concept in the network would
be represented by a single node; if the concept had multiple parents, its corresponding node
in the graph would have multiple arcs fanning in to meet it. However, in a network displayed
as a tree, a concept is represented by multiple nodes if it has multiple parents, since a node
in a tree can only have a single parent. Therefore, concepts with multiple parents appear
as multiple nodes, each having only one arc leading to it. Each such arc emanates from a
different parent, so that each instance of the concept within the tree provides an alternative
context for understanding the concept. To minimize user confusion due to this approach, the
RLF GB assigns a unique numeric suffix to the name of each node representing a multiply
inherited concept. This gives every node in the graph a unique name, while also clearly
identifying which nodes represent multiply inherited concepts. Note that concepts whose
parents are categories with multiple parents will also appear multiple times in the tree, even
if they have only one parent themselves.

Another note on terminology is appropriate at this point. An RLF GB graph consists
of nodes, while an RLF specialization hierarchy (including objects) consists of concepts.
Due to the fact that multiple nodes may represent a single concept, “node” and “concept”
are not truly interchangeable terms. However, they are very nearly so, and they are used

Page 6




March 1993 STARS-UC-05156/013/00

interchangeably within this document to a significant degree, when there is no danger of
ambiguity.

Operational details of the RLF GB are supplied in the following sections. First the Main
Menu options are discussed, then the functions available in the command bar of every RLF
GB graph display window are explained. Following that are the sections that describe the
operation of the context-sensitive node menus. Usage scenarios can be found in the appendix.

Page 7




March 1993 STARS-UC-05156/013/00

1.5 Notation Used in this Manual

This manual describes procedures to interact with the UNIX operating system through a
C shell interpreter, and procedures to interact with a graphical user interface. Therefore,
examples are given that sometimes use a special notation. In presenting the examples, the
following notation is used:

e typewriter font
This font represents information displayed by the computer. It is also used in code
examples and textual passages to indicate use of the C shell command language or
names of UNIX programs.

e italic font

This font is used in textual passages and code examples to indicate user-specified
parameters (information you supply) for program names or command line options; it
is also used to indicate special terms or phrases used in textual descriptions, and is
also used in the conventional manner to place emphasis on words.

+ [E=m

Typewriter font enclosed in a box denotes a key on the keyboard.
o

The percent sign is used to represent the C shell prompt.
¢ [Quit]

This bold font, enclosed in square brackets, represents a graphical command button,
or menu option that is available from a graphical pull-down menu or cascading menu.

In the following example you would type the text “source ~/.cshrc” but you would not
type the percent sign (“%”), which is the C shell prompt; also note that your C shell prompt
may appear differently:

% source ~/.cshrc

In the next example you would insert the name of a text editor of your choice, such as vi or
emacs, but you would type the filename “.cshrc” as shown:

% editor .cshrc

The following example shows the use of the square brackets to indicate a graphical command
button. These buttons are displayed by X and must be clicked on with a mouse to be
activated:

Click the [Quit] button to exit the RLF GB.

Page 8




March 1993 STARS-UC-05156/013/00

2 Getting Started

This section contains information needed to set up and invoke the RLF Graphical Browser.
It should be of particular interest to first-time RLF users.

2.1 Assumptions

This manual assumes that the RLF GB application has been previously built and installed.
The detailed instructions for the building and installation of the RLF GB can be found in
the RLF Installation Guide document listed in Appendix I, “References.”.

Since the installation is assumed to have been previously performed, the RLF GB resource
specification file (named “RLF_Browser”) should reside at the following location:

/usr/1ib/X11/app-defaults/RLF Browser

If the above file does not exist, then consult your system administrator. If it is not feasible or
desirable to to install the “RLF_Browser” file at the above location at your site, then consult
Appendix A, “Customization,” of this document for alternative approaches.

This manual also assumes that you know how to start up the X Window System on your
workstation. For more detailed information on starting and customizing X, see the X docu-
ment listed in Appendix I, “References.”.

2.2 Initial Setup Procedures

If the RLF GB has already been built, then there will be an executable file named
“Graphical Browser” and a C shell script named “RLF_GB” available for execution. Place
the pathname where the “Graphical Browser” and “RLF.GB” files reside into your command
search path. This is accomplished by modifying the value of the C shell path variable, either
temporarily or permanently.

You can temporarily place the pathname of the “Graphical Browser” executable into your
command search path by modifying the C shell path variable. This can be done by issuing
the following command at your C shell prompt:

% set path = ( RLF_GB_pathname $path )

This will add RLF.GB.pathname to your current command search path, where
RLF_GB_pathname is a pathname you supply. However, when your current shell is exited,
this modification will be lost.

Page 9




March 1993 STARS-UC-05156/013/00

You can permanently place the pathname of the “Graphical Browser” executable into your
command search path by editing the C shell initialization file (named “.cshrc”™) in your
home directory, and inserting the following line:

set path = ( RLF_GB_pathname $path )

where $path is the shell variable that contains your current command search path,
and RLF.GB.pathname is a pathname you provide to the directory that contains the
“Graphical Browser” executable. Alternatively, you can add RLF.GB_pathname to any
set path statement that may already exist in your .cshrc file. Since the C shell reads the
.cshrc file every time it is started, these variable settings are effectively permaneut until
you edit the .cshrc again.

2.3 Environment Variables

There are two environment variables that must be set before the RLF GB can be run
successfully. They are as follows:

e DISPLAY
o RLF_LIBRARIES

You can edit the .cshrc file so that these variables are automatically set every time you
invoke a new C shell.

(Actually, the above environment variables can be overridden or superseded with command-
line options, which are discussed in the appendix. Thus, setting these environment variables
is just one method among several for configuring the RLF GB.)

2.3.1 The DISPLAY Environment Variable

The DISPLAY environment variable is used by X to determine the host where your X server
is running, as well as the number of the display to be used on that host. To have this
environment variable set automatically each time you log in, insert the following line into
your .cshrc file:

% setenv DISPLAY hostname:0

where the hostname is the name of your computer system as it is known to your network, and
“:0” refers to the first display screen of your system (most conventional computer systems

Page 10




March 1993 STARS-UC-05156/013/00

are of the one-display type, but X allows applications to run on multi-display systems). You
can obtain your host name, if you do not already know it, by issuing the UNIX command
“hostname”.

For example, if you issued the hostname command, as follows:

% hostname

and you received the following output:

sparcl0

then you would set your DISPLAY environment variable as follows:

% setenv DISPLAY sparci0:0

2.3.2 The RLF_LIBRARIES Environment Variable

The RLF_LIBRARIES environment variable is used by the RLF to determine the location
of the RLF libraries to be read. An RLF library must be created before the RLF GB can be
used to browse that library. The procedures to create RLF libraries are explained in detail in
the RLF documents listed in Appendix I, “References.” To have this environment variable
set automatically each time you log in, insert the following line into your .cshre file:

setenv RLF.LIBRARIES riflibrary_pathname

where rif_library_pathname is the pathname to a directory that contains at least one previ-
ously created RLF library.

The source command is a valuable tool for working in your current shell environment. When
you execute the source command, your C shell reads and executes the commands in the
specified file. Since no new subshell is created, you can use source to modify your current
environment. Therefore, after editing your .cshrec file, you can then “source” it so that the
new environment variables will be read by your current shell. This has an effect similar to
exiting your current C shell and starting a new C shell. To “source” your .cshrec file, type
the following command:

% source ~/.cshrc

Page 11




March 1993 STARS-UC-05156/013/00

where the tilde ( ~ ) is expanded by the C shell to be the path to your home directory.

If you need more information about setting up your X environment, consult the X documen-
tation listed in Section 1. Experienced users may wish to refer to Appendix A, “Customiza-
tion.”

2.4 Invoking the RLF GB

After the setup procedures have been completed, the RLF GB can then be started. A C
shell script is provided for this purpose. The C shell is provided to check the values of
the environment variables and the status of files that the RLF GB reads during execution.
The RLF GB can be invoked without the use of this startup script; it is entirely optional.
The RLF GB startup script is provided as a convenience to inexperienced RLF users in an
attempt to automate some of the status checking that would be performed in a trouble-
shooting session.

The startup script is named “RLF_GB”. To invoke the RLF GB, execute the “RLF_GB” script
by typing its name at the C shell prompt and pressing the key:

% RLF.GB

After invoking the RLF GB you should see the Main Menu appear in a new window. Oper-
ating procedures for the RLF GB are explained in further detail in the following sections.

To invoke the RLF GB directly, without using the RLF GB startup script, type the name
of the program on the command line:

% Graphical Browser

As with the startup script, after invoking the RLF GB you should see the Main Menu appear
in a new window. Operating procedures for the RLF GB are explained in further detail in
the following sections.

2.5 Usage Scenarios

This section contains high-level descriptions of usage scenarios for the RLF. Since the pro-
gram operations have not yet been discussed in detail, the low-level, detailed usage scenarios
are deferred until the Appendix. See Appendix E, “Detailed Usage Scenarios,” for the more
detailed usage scenarios.

The RLF GB presents users with graphical views of an RLF library model and provides a
variety of commands, both global and context-sensitive, that enable the user to navigate the

Page 12




March 1993 STARS-UC-05156/013/00

model and search for assets and to perform library-specific operations defined with the RLF
action mechanism.

There are three basic search modes provided by the RLF GB to support different search
strategies:

e The fundamental mode of operation relies on a browsing paradigm, wherein users
navigate within the graphical views under their own control, deciding which kinds of
assets to investigate.

e In addition, there is an advisor mode, which gives users rule-based advice about which
assets to investigate next, based on information elicited from users concerning their
needs.

e Also, a simple textual query mode is provided that allows users to submit queries
about the names of library entities. (More sophisticated query capabilities are planned
as future enhancements.)

Once interesting assets have been found, the RLF can be very useful for understanding and
evaluating assets to determine if they are appropriate for the target system. The library
model itself can greatly promote asset understanding through the wealth of descriptive and
relational information that can be embodied directly in RLF models. In addition, the RLF
action mechanism further promotes the asset understanding and evaluation process by en-
abling invocation of external tools that provide access to additional tool-specific asset in-
formation or that allow live, on-line testing of assets. Note that RLF libraries typically
contain more than just code assets, and asset utilization can thus involve the reuse of other
forms of assets, including various kinds of documents, test and evaluation materials, and so
on. As mentioned previously, see Appendix C, “Detailed Usage Scenarios,” for detailed,
step-by-step usage scenarios.

Page 13




150

March 1993 STARS-UC-05156/013/00

2.6 Summary of RLF GB Startup Procedures

A synopsis of .he RLF GB’s startup procedures is given in the follo ving list:

1. Start the X Window System.

2. Edit your .cshrec file to define the path shell variable, and the environment variables
DISPLAY and RLF_LIBRARIES:

% editor ~/.cshrc

% source “/.cshrc
3. Invoke the “RLF_GB” script which runs the RLF GB executable:
% RLF_GB
or else invoke the RLF GB directly:

% Graphical Browser

Note: The editing step need only be performed once initially; thereafter that step may be
omitted.

Page 14




March 1993 STARS-UC-05156/013/00

RLF Graphical Browser v.4.1
Main Menu

Select a Library

Figure 2: The Main Menu

3 Modes of Operation
3.1 The Main Menu—Selecting RLF Libraries

The RLF GB displays its menus and windows graphically using X. The initial dimensions
of the menus and windows can be specified in several different ways. In this release the
dimensions are specified in the “RLF_Browser” resource specification file. These dimensions
can be modified to suit individual needs. See Appendix A, “Customization,” for further
details on customizing the RLF GB.

When the RLF GB is invoked, the Main Menu is displayed (see Figure 2). The Main Menu
provides options that allow you to either select an RLF library for viewing, or to exit the
RLF GB application.

The Main Menu contains only two options: [Select a Library], and [Quit]. These options
are displayed horizontally as buttons that you can “click” on (depress and release the mouse
button). The horizontal area where the command buttnns are displayed is referred to as
the “command bar.” You move the mouse pointer (sometimes referred to as the “cursor”)
over any command button using your mouse; the movement of the mouse is reflected by the
movement of the pointer.

If you click on the [Select a Library] option, a menu is created that lists the available RLF
libraries that have been stored in the directory identified by the RLF_LIBRARIES environment
variable. Consult the RLF documents listed in Appendix I, “References,” for guidance in
creating RLF libraries. The Select a Library menu appears as a pull-down graphical menu,
similar to the menu shown in Figure 3.

A pull-down menu, such as the Select a Library menu, will stay posted on the screen after it
is invoked with a mouse click. You can then select one of the options available in the menu
by moving the pointer over the desired option and clicking the mouse on that button. This
is called selecting the option. You can dismiss the menu by clicking the mouse elsewhere
on the screen, such as the menu’s titlebar, where the text “Main Menu” is displayed, or by

pressing the key on your keyboard.

For example, to select the “Ada Benchmarks” library, you place the pointer inside the box
labeled “Ada Benchmarks.” Clicking the mouse button will cause the “Ada Benchmarks”
library to be displayed.

Page 15




March 1993 STARS-UC-05156/013/00

Main Menu

Select a Library | Quit |
{Ada Benchmarks

Anti-Sub Warfare
ASSET
Astronomy

r!

Satellite Software
Software Components

Sort and Search

Figure 3: The Select a Library Menu

After you select a particular library, the RLF GB displays some informational statements
regarding its processing status in the original window from which the application was invoked.
These statements reflect the progress of the RLF GB’s internal processing and can be safely
ignored. They are displayed because large RLF libraries that contain hundreds of concepts
can take several minutes to process; therefore, they indicate that the program is working
properly. If the RLF GB does encounter a problem with its input or output processing, an
exception will be raised and an error message will be displayed. A list of error messages and
a description of their possible causes is given in Appendix D.

The status information appears similar to the following:

Welcome to the RLF Graphical Browser.
Version 4.1

Copyright 1992, 1993, Paramax Systems Corp.
Main browser loop...

Getting the root node of the RLF network.
Loading the current state of the RLF network.
Creating the graphical browser’s graph structures.

Page 16




March 1993 STARS-UC-05156/013/00

This graph contains 79 nodes.

Creating a full view.
Laying out static views.

After an RLF library is selected, the RLF GB creates a graphical depiction of the library
in a new window, called a “view,” or “graph display window.” Multiple RLF libraries and
views may be displayed simultaneously. After displaying the view of one RLF library, you
can display the view of another RLF library by clicking on the [Select a Library) option
from the graph display window’s command bar. This will invoke the Select a Library menu
again and you can choose another library at this point. Note that by displaying the first
RLF library, the Main Menu window is expanded. Therefore, there is still only one RLF
GB window being displayed at this point. Consult the X user guide listed in Appendix I,
“References,” for additional guidance in manipulating windows on your screen. The RLF
GB graph display window and its operations are explained in more detail in the following
sections.

Page 17




March 1993 STARS-UC-05156/013/00

titlebar view type library name level of view topoiogy display
RLF Library: Specialization View of Sort and Search Algorithms (Lavel =S of 5 ) L
command bar Salect a Library Fliter View Navigate View Search Topology Quit
1)
vertical scrolibar - Morga v
=D
Dist. of init. Runs
concept node e 3
concept name Algoritms Muiy-way Merging A
) -
arc ) ™ Exterast M-"’?‘;T”——“. |
Merging
thumb \._ﬁj/_,.—---orfj
Polyphass Serts
" '_’_,__,4.4‘:
root node g Swraighs Marging
Thing D
arc connector e -
Sort Algerithms P
Exchange Sorts—~+— 7!
graph display B
window Hh
NN ull .
(@) Insertion Sevts
ey 2
horizontal N\
scrolibar _— T ——

Figure 4: The User Interface Components of a View

3.2 The Graph Display Window

The user interface components of the graph display window are shown in Figure 4. The
graph display window is also referred to as a “view.” The example view in Figure 4 has the
name of the corresponding RLF library displayed in its titlebar: “Sort and Search”, along
with other information that is described in the following sections.

3.2.1 The Command Bar

Directly beneath the view’s titlebar is a row of command buttons called the “command bar.”
Each command button is explained in detail in the following sections. Beneath the command
bar is the graph display window, with a vertical scrollbar on the left side and a horizontal
scrollbar at the bottom. The graph display window is where the graphical depiction of the
RLF library appears.

3.2.2 Graph Scrollbars

Graph display windows will have scrollbars when the graph is too large to fit into the available
window display area in its entirety. Scrollbars can be either vertical or horizontal, and are
used to control movement of the graph display in those directions. There is a sliding bar
within a scrollbar, called the “thumb” (sometimes called “slider”), that moves within the

Page 18

_




March 1993 STARS-UC-05156/013/00

directional scrolling highlighted

;\u thumb (or slider) reg;’ border

Horizontal Scrolibear in Selected State

Horlzontal Scrolibar in Unselected State

Figure 5: The Elements of a Scrollbar

scrolling region (see Figure 5). The thumb displays the position and the amount of the graph
currently showing in the graph display window relative to the total size of the graph. If the
whole graph fits within the given window, then no scrollbars are displayed.

When the pointer is positioned in the scrollbar and the mouse is clicked, the scrollbar becomes
the focus of input. This state is indicated by a highlighted border (see Figure 5). Clicking
the first (usually the left) or second (the middle) mouse button in the scrolling region causes
the graph display window to scroll towards that side of the display. You can also drag the
thumb in either direction by clicking and holding the first or second mouse button down
while you move the mouse in either direction—left or right for horizontal scrolbars, or up or
down for vertical scrolbars.

You can also use the directional arrows (see Figure 5) to move the scrollbar thumb in an
incremental manner. By clicking on one of the directional arrows (sometimes called “incre-
mental arrows”), you can cause the thumb and the graph display to move in that direction
in small increments.

In addition to mouse control of scrollbars, you are also able to use the arrow keys on the
numeric keypad of your keyboard to control the selected scrollbar. For example, if the vertical
scrollbar is currently selected, then you can use the Up or Down keys (usually demarcated
with arrows) to move the thumb iz an incremental manner.

Page 19




March 1993 STARS-UC-05156/013/00

1
[ Suiiuintutd Y
N i,
] A k] N\
] N ) N
] ‘. ------- h'
: } t
oo |
k\ ! '
AN i
N '
Nec e
Category Node Object Node
(empty box) (solid cube)

Figure 6: Category and Object Nodes

3.3 The Graph Display

In most ¢raphs depicting an RLF semantic network, the graph will contain a root node, arcs,
and two different types of nodes: category nodes and object nodes. Some networks may not
contain any object nodes.

Category nodes are represented in the RLF GB by a bitmap that looks like a dotted, empty
box. Object nodes are represented by a bitmap that looks like a solid cube with shading.
See Figure 7 for an illustration of these bitmaps. These bitmaps can be customized to suit
individual needs. The pathname to the bitmaps directory and individual bitmap filenames
are specified in the RLF_Browser file. Alternative bitmaps can be specified by either modify-
ing the pathnames to indicate different bitmap filenames, or by editing the existing bitmap
files with the bitmap editor that accompanies X. See the X documentation for instructions
on how to use the bitmap editor (the program name is bitmap). Also, see Appendix A,
“Customization,” for further details on customizing the RLF GB to satisfy individual needs.

There is also a finer granularity of detail available for specifying bitmap types. In addition to
indicating whether a node is a category or an object, the bitmaps can represent what kinds
of information may be avilable at that node. For example, a node may have a procedure
attached to it (called an “action”), or an inferencer (these capabilities are explained in detail
in the following sections), and it is possible to assign different bitmaps to nodes that contain
differing sets of capabilities. Figure 6 shows the default set of bitmaps used to represent the
informational content of the graph nodes.

Each node and each arc connector in the graph display is like a command button. When
you place the pointer in the area over one of their bitmaps, they become highlighted. The
highlighted state is indicated in one of two ways: either the bitmap is set to reverse video
(white pixels become black, and vice versa), or a highlighting border is drawn around the
bitmap. The highlighted state indicates that if you now click and hold the first (usually left)
mouse button, you will invoke the menu for that particular node. Note that you must click
and hold down (i.e., drag) the mouse to the right to invoke the Motif-style cascading menus.
Cascading menus are also known as “pull-right” menus; they are called cascading menus
because submenus are displayed to the right side of and slightly lower than the parent menu.
Submenus are indicated with an arrowhead that appears in the menu entry (see Figure 8).

Page 20

——




-

[

March 1993 STARS-UC-05156/013/00

® | Catogory Node with an Action
® ? Category Node with an Inlerencer

® 1?  Category Node with an
Action and an inferencer

i i Object Nods with an Action

a 2  Object Node with an inferencer
Nods with an

- T

Figure 7: Category and Object Nodes with Actions or Inferencers Attached

You must drag the pointer to the right to invoke the cascading menus. Each node menu and
its commands is explained in detail in the following sections.

There are two other notions associated with nodes in the graph display that are useful to
library browsers: visiting and focusing. The “current focus” is defined as one particular node
in a view. The currently focused node is the one that the RLF GB attempts to center in the
view. Sometimes it is impossible to place the node of current focus exactly in the center of
the view, since the node may be on one of the extreme edges of the view. In these cases, the
RLF GB centers the node as near as possible with respect to one of the vertical or horizontal
edges. The notion of “visiting” a node is necessary because a list is kept of the user’s course
of navigation through the library. This list is available to the user as a command option.
Therefore, some definition of what constitutes a visit is necessary. Those nodes that have
been visited are added to the node history list. In the RLF GB, a visit to a node is defined as
clicking on a node and invoking the node menu, even if the menu is subsequently canceled.
Node history lists and node menus are described in detail in the following sections.

3.4 The Filter View Command

The [Filter View] commands allow you to display various subsets of the current graph.
When you click on the [Filter View] button, a pull-down menu will be displayed. See
Figure 9 for an illustration of the Filter View pull-down menu.

Various levels of graphs may be displayed. Clicking on the [Top-Level View] command
creates a new view that contains only the top two levels—level 0 and level 1, where level
0 corresponds to the level of the root node—of the graph. Clicking on the [Second-Level
View] command creates a new view that contains levels 0, 1, and 2. Additionally, you
may specify an arbitrary level of graph to display, up to the maximum level of the graph.

Page 21

“_




March 1993

STARS-UC-05156/013/00

An arrowhead pointing to the right
indicates a submenu.

Navigate

Category: Quicksort

L--‘D

Perform Action

b

Advice

Suppress

g

Display Relationships Graphically

Display Relatlonships Textually

Figure 8: An Example of a Menu with Arrowhead Indicators for Submenus

Selact a Library

RLF Library: Speclalization View of Sort and :

V.

Top—-Level View

Filter View Navigate View

Second-Level View

‘

e

N-Level View

Atgortine

Suppress Objects

n—O@Z

Unsuppress Objacts

External So

Unsuppraess All

\

/

N

Figure 9: The Filter View Pull-Down Menu

Page 22




March 1993 STARS-UC-05156/013/00

NI v 45 Snsival Sewent

RLF Ubrary: Speciaiization View of qnd Search Algorithms (Lavel =2 of S)
| Select & Uibrary | Filter View | Navigate View | Search

Figure 10: A Second-Level View Selected from the Filter View Pull-Down Menu

When you select the [N-Level View] command, a popup dialog bor appears and you are
prompted for the number of levels you wish to be displayed. See Figure 10 for an illustration
of a Second-Level view.

A dialog box is used when the RLF GB needs to obtain some information from you, such as
a number or some text, and usually contains a prompt, an input area, and command buttons

that allow you to confirm or cancel the dialog input (see Figure 13 for a depiction of a dialog
box).

Another way to filter the view is to limit the types of nodes that are displayed. If you
want to see only categories, then click on the [Suppress Objects] subcommand button.
The {Suppress Objects] command hides all the object nodes currently being displayed.
The internal data structures that represent the graph are unaltered, thus the topology of
the graph is not affected. This release of the RLF GB does not have the capability to
dynamically re-layout the graph, however, so if you are trying to reduce the overall size of
the graph, this command will not help. A dynamic re-layout capability may be provided in
a future version of the RLF GB.

If, after suppressing objects, you want to see them again, then click the [Unsuppress Ob-
jects] subcommand button. This command causes all the object nodes that are currently
hidden to become visible again, but only if their parent category is not hidden. The [Un-
suppress All] command is available for the case where there might be more than just one
type of node (or arc) suppressed, and it is a convenient way to restore the display of the
graph back to its original state. Since nodes and arcs can be suppressed individually, the
[Unsuppress All] command can be used to easily make them all visible once again.

Page 23




March 1993 STARS-UC-05156/013/00
Il
v.AD
secialization View of Sort and Search Algorith
Filter View | Navigate View Search
Node History 0_’[;2,
Go To a Node E’,,,
Go To Root Node i
ms Mult)
b 4 Ny
/  Externai s::m”“"r‘?{:

Figure 11: The Navigate View Pull-Down Menu

3.5 The Navigate View Command

The [Navigate View] command is used to pull down the Navigate View menu. This menu
is shown in Figure 11. The [Navigate View] commands are used to traverse the graph
when a specific destination is previously known. For example, if you want to go to the root
node of the graph, or if you know the name of a specific node that you want to go to, then
these commands can be used to move to that position of the graph. These commands are
explained in further detail in the following sections.

3.5.1 The Node History Command

Clicking on the [Node History] command button causes the Previously Visited Nodes menu
to be displayed. A node history list of previously visited nodes is maintained by the RLF GB
as you browse through the library. A “visit” is defined as clicking on a node and invoking
its menu. The Previously Visited Nodes menu consists of concept name entries followed by
a demarcation string to denote which type of view the node was visited in: a Specialization
View, or a Relationship View; indicated by the strings “(S)” and “(R)” respectively. (These
different types of views are explained in detail in the following sections.)

If you select one of the entries in the Node History menu, the graph display is focused
upon that node. Focus is placed on the node in its corresponding window; i.e., if you select
[ Ada (R) ], then the current focus goes to the “Ada” node in the Relationship View; if
you select [ Internal Sorts (S) ], then the current focus goes to the “Internal Sorts” node
in the Specialization View. Note that if one of these views happens to be occluded at the
time you select the option, then the focusing and centering events may go unnoticed.

Nodes that have been most-recently visited are placed at the top of the menu; those nodes
that have been in the list the longest are pushed towards the bottom of the list. See Figure 12
for an example of a Previously Visited Nodes menu.

Page 24




March 1993 STARS-UC-05156/013/00

RLF Library: Specialization View of Sort and Search (level=5Sof 5)

menu provides a
list of nodes that
you can select

Ada (R)

nA2 (R)
example_quicksort (R)
axample_quicksort (S)
Exchange Sorts (S)
internal Sorts (S)
Sort Algorithms  (S)

Algorithms (S) ] :
Thing (S)
Hta"

/lllﬂryhm

Figure 12: The Node History Menu

3.5.2 The Go To a Node Command

The [Go To a Node] command button allows you to specify a particular node name, then
searches the graph for that node, and centers the view on that node. If you know the exact
name of a certain node, this is a quick way to move to that node.

When you click on the [Go To a Node] command button, a dialog box is displayed (see
Figure 13). The dialog box allows you to type the name of some node. Note that you must
place the screen pointer inside the text entry area and click the mouse before tezt can be
entered. The text entry point is indicated by a cursor that looks similar to a tall, skinny,
uppercase ‘I’ (called an “I-beam” cursor) to show where new text will be inserted (you can
think of ‘I’ as standing for “Insert”). When you are finished typing, you must click on the
[OK] confirmation button or press the key for the RLF GB to accept your input
and use it to search the graph. When the specified node is found, it is centered in the view.

If the text you type is erroneous, for example, the requested node name is nonexistent, then
an alert bor will be displayed (see Figure 14). The alert box is a notification that some
error has occurred during processing, or that you have requested a function that cannot be
performed at the time. The Go To alert box notification will include the node name that
you typed so you can check it and make corrections.

Figure 14 shows the alert box that would be displayed if you requested the [Go To a Node]
command to search for a node called “foobar” when a node of that name did not exist in the

Page 25

— e




Tw

March 1993 STARS-UC-05156/013/00

® Node foobar invalid. Piease try again.

Figure 14: The [Go To] Alert Box

current library. This alert box informs you that the text you typed, “foobar”, was invalid,
and that you should try typing some different text. You must click on the [OK] confirmation
button to acknowledge the alert box and continue.

3.5.3 The Go To Root Node Command

Clicking on the [Go To Root Node] command button causes the display of the graph to
be centered (with respect to the top and bottom of the graph display window) on the root
node. All graphs must have a single root node by definition. It is often desirable, after
some initial browsing, to return to the root node of a graph when navigating through an
unfamiliar library. The view is centered on the root node when it is initially opened, so this
command is useful when it is desired to quickly return to the root node.

3.6 The Search Command

The [Search] command button allows you to enter a text pattern of at least three characters.
The RLF GB then searches the cusrent view for all concepts whose names contain that text,
and displays a control panel with a list of the possible selections. The view is centered on
the selected node. If you know the name of a certain concept, or a partial name, this is a
convenient means of navigating through the library.

When you click on the [Search] command button a dialog box will be displayed with a
prompt, “Enter Search String:”. The dialog box allows you to specify the text of the search.

Page 26




March 1993 STARS-UC-05156/013/00

Search List Selections:

Binary Search

Example Binary Search
Search Algorithms
Table Search

APPLY l IRESET

Figure 15: The [Search] Control Panel Menu

Note that you must click the pointer inside the text entry box before text can be entered.
When you are finished typing, you must click on the [OK] confirmation button or press the
key for the RLF GB to accept your input and use the text to search through the
library for matches.

When the search is complete, a control panel menu will be displayed. You may then click
on one of the menu options and the view will be centered over that node. See Figure 15 for
an example of a Search List Selections control panel menu that was obtained by specifying
“sea” as the search string.

Figure 15 shows a particular node name, “Binary Search,” after it has been selected (clicked
on with the mouse). Selecting a node name entry causes it to become highlighted. To traverse
the graph to the selected node, click the [APPLY] button. To erase the current selection,
click the [RESET) button. To cancel the entire Search operation, click the [CANCEL]}
button.

If you specify a search string that produces no matches, then an alert box is displayed with
a message similar to the following:

No nodes contain the string foobar.
If you specify a search string that has less than three characters, then an alert box is displayed

with this message:

I’m sorry, but you must enter at least three characters.

Page 27




“larch 1993 STARS-UC-05156/013/00

ALK v-40 Gragiicel Sreweed]
RLF Library: Spacialization View of Sort and Search Algorithms (level =S5 of § )

I Select a Library l Filter View | Navigste View Search Topology Quit

a waight Mergin:

K Selecting Topology chsore
Sovt Algorithms produces a condensed
D view of the model in
Exchange 3201 the topology display [FISIR
window. )

Rinary Insert

PN ) 1Y

P ~Tr The itighlighted area
-
Irtarnai Sovts ' is the navigation

Selection Sorts
D
Straigin Selaction
—8
/-—ta
Fites
. =
e — I B —

Figure 16: The Topology Display

3.7 The Topology Command

To obtain a topology display, or compressed view, of the currently displayed graph, the
[Topology] command button can be clicked on. This command button provides a toggle
switch for the topology display; that is, clicking on the command button repeatedly turns
the display on and off. The topology display appears either on the right side or the bottom
of the view, depending on the dimensions of the window. See Figure 16 for a depiction of a
topology display.

The topology display contains a rectangular, highlighted region that acts similar to a scrollbar
thumb (explained in Section 3.2.2). The highlighted region, called the “navigation window,”
indicates what portion of the graph is currently being displayed in the main graph display
window. From this display you can get an idea of your current position relative to the
remainder of the graph.

You can move the navigation window by clicking any mouse button anywhere within the
topology display. The navigation window will move its center to the location where you click
the pointer. Moving the navigation window causes the corresponding view to move, also.
The new view closely corresponds to the navigation window’s position within the topology

Page 28

e




March 1993 STARS-UC-05156/013/00

rch (Levei=5o0f5)
Topology

Delete Current View

Quit Browser Session

Figure 17: The Quit Menu

® Are you sure you wish to exit
the RLF Graphical Browser?

YES NO

Figure 18: The Exit Alert Box

display.

If a graph is too large for even the topology display to fit all of it inside its display area,
then the topology display itself will have scrollbars. By manipulating the display’s scrollbar
thumbs, you can view different areas of the topology display. The behavior of these scrollbars
is analogous to the graph display window’s scrollbars, explained in Section 3.2.2.

3.8 The Quit Command

Selecting the [Quit] command button causes the Quit menu to be displayed. The Quit menu
is shown in Figure 17.

Selecting [Delete Current View] causes oniy the current view to be erased and exited. If
it is the only view open, then the RLF GB will attempt to terminate completely. You will
be prompted with an alert box, as shown in Figure 18, to confirm your intent to end the
current session.

Page 29




March 1993 STARS-UC-05156/013/00

If there are other open views remaining after exiting the current view, then the RLF GB
session remains open. From the command bar you can again select any command from
its command bar, such as selecting another library to view, or you can exit the RLF GB
completely by selecting the [Quit Browser Session] option from the Quit menu.

Selecting [Quit Browser Session] and acknowledging the exit alert box (clicking on the
OK button) terminates the RLF GB session. When the RLF GB is terminated, all open
views are closed and deleted, and you are returned to your original C shell.

Page 30




—

March 1993 STARS-UC-05156/013/00

((sensitive menu options ) (insensitive menu options )

Categor‘y: Thing

Navigate >

Perform Action .

Acdivice —
*Suppress >

Display Relationships Graphically «

Dispiay Relationships Textually -«

Figure 19: Menu Option Sensitivity vs. Insensitivity

4 Context-Sensitive Node Menus
4.1 Context-Sensitive Node Menus—Specialization View

When you click on the bitmap of a category or object node in a view, a context-sensitive
menu is displayed near the screen location of the pointer. (The node bitmap behaves like
a command button.) A context-sensitive menu may contain different options for different
nodes depending upon what information has been associated with that particular node. An
option of a node menu that is not available is made insensitive to mouse clicks. This means
that the option will not respond to selection requests. The state of insensitivity is indicated
by graying-out the text of the option. See Figure 19 for an example of a node menu that
contains sensitive and insensitive options.

The possible menu options are given in the following lists. Some submenus that are displayed
as a result of selecting a context-sensitive menu may not themselves be context-sensitive.
Each menu option listed below is explained in detail in the following sections.

The right arrowhead symbol (“1>”) indicates that more functions are available for that
particular option through cascading submenus. If you select an option with an arrowhead
(click and hold down the mouse button, and then drag right), then a cascading submenu
will be displayed that contains mcre options. To select an option from a submenu, you must
drag the pointer into the submenu, position the pointer over the desired option, and then
release the mouse button.

Every category or object node will contain the following options, though some subset of the
options may be insensitive:

Page 31




(s

March 1993 STARS-UC-05156/013/00

Navigate b

Perform Action b

e Advice

Suppress b (if the node has any descendants)

Suppress (if the node has no descendants)

Display Relationships Textually

Display Relationships Graphically
However, the following subset of options will always be available (sensitive):

e Navigate b
e Suppress b (if the node has any descendants)

e Suppress (if the node has no descendants)

The Navigate menu may contain any subset of the following options:

¢ Go To a Child

e Go To a Parent

e Go To a Related Category (if the node is a category)

o Go To a Related Category/Object (if the node is an object)
e Go To a Referencing Category (if the node is a category)

e Go To a Referencing Object (if the node is an object)

Go To Other Occurrence (if the node has multiple parents)
and will contain one of the following options:

e Center This Category (if the node is a category)
e Center This Object (if the node is an object)

depending on whether the given function is valid in that context.

The Suppress menu will always contain the following options:

Page 32




March 1993

e Suppress

STARS-UC-05156/013/00

Category: Quadratic

Navigate (>4
Perform Action

Advice

Suppress >

Display Relationships Graphically

Display Relationships Textually

Figure 20: A Context-Sensitive Category Menu

Category: Quicksort

Navigate g
Perform Action >4
Adyvice

Suppress >

Display Relationships Graphically

Display Relatlonships Textually

e Unsuppress Children

e Unsuppress Descendants

Figure 21: Another Context-Sensitive Category Menu

An example of two different category merus is shown in Figure 20 and Figure 21. Note that
for the two different category nodes, two different sets of available options (not grayed-out)
are displayed, i.e., the set of available options differs for each menu.

Page 33




March 1993 STARS-UC-05156/013/00

4.2 Context-Sensitive Node Menus—Relationship View

In Relationship Views, the context-sensitive node menus have slight variations from the
menus in Specialization Views. In particular, the Navigation menu uses different terminol-
ogy. This is necessary because the semantics of the navigational terms are different in a
Relationship View. In a Specialization View, there are “parent-child” relationships, while in
a Relationship View, there are “entity-relation” relationships, i.e., a relationship is defined
as two entities that have a correspondence—a source node corresponds to its target node
in some arbitrary manner defined by the library modeler. Therefore, in Relationship Views
terms such as “related-referenced” and “source-target” are used in the Navigation menus to
describe a structure that locks the same physically as the “parent-child” structure of the
Specialization Views, but has a different meaning semantically.

In Relationship Views, the Navigate menu may contain any subset of the following options:

¢ Go To a Referencing Category b (if the node is a category)

o Go To a Referencing Object b> (if the node is an object)

¢ Go To a Referencing Node b (if the node is a category/object)

¢ Go To a Related Category (if the node is a category)

¢ Go To a Related Object (if the node is an object)

¢ Go To a Related Node (if the node is a category/object)

e Go To Target b (if the node is a relation)

¢ Go To Source P (if the node is a relation)

e Go To Other Occurrence b (if the node has multiple occurrences)
e Center This Relation (if the node is a relation)

e Center This Category (if the node is a category)

e Center This Object (if the node is an object)

e Center This Category in Specialization View b (if the node is a category)

e Center This Object in Specialization View b (if the node is an object)

Page 34




1

[ e

March 1993 STARS-UC-05156/013/00

4.3 Canceling Pull-Down Menus

If you want to immediately cancel any pull-down menu, then you can do one of three things:

e click on the titlebar of the menu

e click on some other insensitive area

e press the key on your keyboard

In the case of Figure 20, one way to dismiss the menu is to click inside the rectangular area
that contains the text “Category: quadratic”. This action will immediately cancel the menu
without the RLF GB performing any further operations. The cancellation operation is useful
when you just want to obtain information about nodes in the graph, but want to remain at
your current location. The graph display contains a large quantity of information, but the
menus are an important means of obtaining additional information about the contents of
categories and objects in an RLF library.

4.4 Navigation

There are many different ways to navigate through an RLF library, and there are various
navigation functions available through the context-sensitive, cascading node menus. Certain
navigation methods are more appropriate than others, depending on the particular needs of
the library browser at any given time. Once you become familiar with the different navigation
methods that are available in the RLF GB, you should be able to choose the navigation
function that is best suited to your situation. The navigation functions are explained in
detail in the following sections.

4.4.1 Specialization View and Relationship View Navigation

There are two different fundamental types of views—the Specialization View and the Re-
lationship View—though the browsing methods for both views are very similar. The dif-
ferences occur mainly in the semantics of the different terminology used for each respective
view. The terminology and the various browsing functions are described in detail in the
following sections.

4.4.2 Going to a Child of a Node

One way to locate desired information in an RLF library is to walk the category hierarchy in
a Specialization View. This means moving from parent to child categories in the hierarchy,
going from more general concepts to more specific concepts in the domain, or vice versa. It
also includes moving to or from objects of categories where objects exist. This navigational

Page 35




March 1993 STARS-UC-05156/013/00

Category: External Sorts !
Navigate Navigate |
Perform Action Go To a Chlid 2 Children
Aclvice Go To a Parent Dlaalanced Merge
Suppress Pl Go To a Related Category Dist. of Init. Runs
Display Relationships Graphically | Go To a Referencing Category [Muiti-way Merging
Display Relationships Textuaily Go To Other Occurrence Natural M.rgln-g_‘

Center This Category Polyphase Sorts
Straight Merging

Figure 22: The [Go To a Child} Cascading Menu

method is useful when you have some idea of the component you're searching for and the cat-
egory hierarchy is structured in a way that tends to direct you towards desired components.
For example, in a software components reuse library, if you were looking for an implemen-
tation of a binary search algorithm, you would know you were following an appropriate
search path if you started walking the category hierarchy and found the following categories:
Algorithms — Sort Algorithms — Internal Sorts — Exchange Sorts — Quicksort.
At this point you would expect to find Quicksort examples nearby, such as the object
example_quicksort, as individuations of the Quicksort concept. To traverse the graph in
this manner, choose the [Go To a Child] menu option.

When you choose the [Go To a Child] menu option by clicking on it, a cascading menu
is displayed with a list of all the currently visible children of the selected category. If you
select one of the menu options, the view will then be centered upon the chosen node. See
Figure 22 for an illustration of the [Go To a Child] cascading menu. Note that an object
node will never have this option, since an object node cannot have any children.

If the selected category does not have any children, then the [Go To a Child] menu option
is not displayed.

4.4.3 Going to a Parent of a Node

By going to a node’s parent, you are walking the category hierarchy in the reverse direction—
going from the more specific node to the more general node. By combining the navigation
functions [Go To a Child] and [Go To a Parent] you can browse a library over a path
based upon the nodes relevant to your current needs.

When you choose the [Go To a Parent] menu option by clicking on it, a cascading menu
is displayed with a list of all the parent categories of the selected category or object. If you
select one of the menu options, the view will then be centered upon the chosen category.
See Figure 23 for an example of a Parents cascading menu. In this example, you are at
the category node named External Sorts and that node only has one parent—the node
named Sort Algorithms. By selecting the [Sort Algorithms] option, you are travers-
ing the graph from a more specific category, External Sorts, to a more general category,

Page 36




XSV

March 1993 STARS-UC-05156/013/00

Category: Extarnal Sorts

Navigate Navigate

Perform Action Go To a Child b

Actvice Go To a Parent = Parents
Suppress > Go To a Related Category PiSort Algorithms

Display Reiationships Graphically | Go To a Referencing Category
Display Relationships Textually GO To Other Occurrence
Center This Category

Figure 23: The [Go To a Parent] Cascading Menu

Sort Algorithms.

If the selected category or object does not have any parents, then the [Go To a Parent]
menu option is insensitive.

4.4.4 Going to a Related Node

Another useful way to browse an RLF library is to walk the relationship structure. This
means moving between categories or objects via the relationships (see Section 1.4) that
connect them. These relationships are orthogonal to the specialization and individuation
relationships that are depicted graphically within a Specialization View and can be discovered
by invoking the menus that allow these relationships to be traversed, or by producing a
Relationship View, which is a graphical depiction of the relationship structure. A node
related to the current node in this manner may be located anywhere in the graph, enabling
easy, rapid traversal to other points of interest in the graph. Therefore, this navigational
method provides a powerful mechanism to locate objects in the library that are related in
ways that the user might not have originally known or considered.

One way to browse an RLF library through its relationship links is to choose the [Go To a
Related Category)] menu option from the Navigate node submenu. When you select this
menu option a cascading menu is displayed with a list of all the related categories, if any, of
the current category. If you select one of the menu options, the view will then be centered
upon the category indicated by that selection. See Figure 24 for an illustration of the [Go
To a Related Category] cascading menu.

For example, if the option [has_avg.case_of of Performance] is selected, then the display
will be centered on the concept Performance. In general, relationship clauses are displayed
in the following format:

relationship_name of category_name

If the selected category does not have any relational attributes, then the [Go To a Related
Category] option is not displayed in the menu.

Page 37




March 1993 STARS-UC-05156/013/00
Catagory: Sort Algorithms
Nav| P Navigate
Parform Action Go To a Child >
Advice Go To a Parant >
Suppress ] Go To a Related Category # Raslated Categories
Disptlay Relationships Graphically Go To a Referencing Categol has_avg_cass_of of Performance
Display Relationships Textually Go To Other Occurrence has_bast_casae_of of Performance
Canter This Category has_size_of of Lines of Code

has_worst_case_of of Performance
Is_written_in of Source Language
works_on of Data Structure

Figure 24: The [Go To a Related Category] Cascading Menu

There is a similar command available at object nodes—it is the [Go To a Related Cate-
gory/Object] command. The only difference between the [Go To a Related Category]
and the [Go To a Related Category/Object] command is that the latter provides a menu
of destination nodes where some of the nodes are possibly objects instead of categories. The
[Go To a Related Category/Object] command is only available from object nodes, while
the [Go To a Related Category] command is only available from category nodes.

Page 38




March 1993 STARS-UC-05156/013/00

RLF Library: Relationship View of Sort and Search Algorithms ( Level =2 )
Select a Library | Navigate View Search Topolagy Quit

-8
has_avg_case_of (0..1) m

i -8
has_bast_case_of (0..1)

—-—
has_size_of (1..1)

-8
has_worst_case_of (0..1) ]

e -8
is_written_in (1..1)

..a___—-———“—"
works_on (1..1)

Figure 25: A Relationship View for the Example Binary Search Object

4.5 The Relationship View

Another way to browse an RLF library through the relationship hierarchy is to choose the
[Display Relationships Gr-: "ically] menu option from the node menu. (If the node
does not have any relational attributes, then this option will not be available.) When you
select this option, a Relatiorsivo View is constructed and displayed in a new window. An
example of a Relationship Viev. is shown in Figure 25.

A Relationship View is similar to a Specialization View in that it has mostly the same user
interface elements such as command bar, scrollbars, title bar, and node menus. The main
difference is in the terminology used to describe navigation operations. Since the Relation-
ship View depicts a different kind of hierarchy, the “parent-child” structural metaphor of
the Specialization View does not apply. The Relationship View shows the aggregation hi-
erarchy (see Section 1.4), or how concepts are related to one another. Therefore, and as
mentioned previously, to describe navigation operations in this kind of a hierarchy, terms
such as “related-referenced,” and “source-target,” are used. Navigation in a Relationship
View is described in the following sections.

4.5.1 Going to a Related Node in the Relationship View

One Navigation option that is unique to Relationship Views is the ability to go to a connect-
ing node, or, more precisely, to place the current focus upon a connecting node. In a Rela-
tionship View, the connecting nodes represent the names of the relationships that have been
defined for that concept. For example, in Figure 25, the object Example Binary Search
has the following relationships defined:

Page 39




=

March 1993 STARS-U(C-05156/013/00
Object; Exampie Binary Search
[ Navigate

Parform Action D1 Go Yo a Child

Advice GO Yo a Parent &

Suppress Go To a Catagory / c-&mm
Go Yo a Referencing Cbject [ nas_awg_case_of of Logarithmic
Go To Other Occurrence 2% (N}
Canter This Object has_best_case_of of Logarithmic

o Ny
has_sizs_of of Number

Fiftaan

has_worst_case_of of Linaar
N

Is_written_in of Source Language
Ada

works_an of Data Structure
Arvay

Figure 26: Related Categories/Objects Menu in a Relationship View for the Example Binary
Search Object

has_avg._case_of (0..1)
has best_caseof (0..1)
has_size of (1..1)

has worst_case of (0..1)
is_written.in (1..1)
works on (1..1)

These relationships have been defined by the library modeler. The numbers in parentheses
represent the relationship’s “cardinality.” The cardinality indicates how many values the
relationship can have. For example, the relationship is_written_in (1..1) indicates that
the source node Example Binary Search can have only one language value as the target
of the relationship—in this case, the target node is Ada. The relationship has_avg case_of
(0..1) indicates that the source node may or may not have an average case performance
defined (zero or one). If a relationship does have a specific value defined, it is displayed in
the Relationship View as a an object node such as Ada or 1g (N) in the example cited above.

The Navigate menu of the object Example Binary Search in Figure 25 contains the [Go To
a Related Node] option. If you select this option, a list of “relations” will be displayed in
a cascading menu. See Figure 26 for the Related Categories/Objects menu that is displayed
for the object Example Binary Search.

Selecting one of the relations displayed in the Related Categories/Objects menu causes the
current focus to be placed upon the connecting node that represents that relation, and the
view is centered upon the current focus.

Once you have traversed the Relationship View to a “relation” node, you may then invoke
the Navigation menu there. The Navigate menus at “relation” nodes will offer one or both
of the following options:

¢ Go To Target

Page 40




March 1993 STARS-UC-05156/013/00

¢ Go To Source

depending on whether or not it has both a “target” and a “source” node. In Figure 25, the
relation node is_written_in (1..1) has both a “target” and a “source” node. lts target
node is Ada and its source node is Example Binary Search. Selccting one of the [Go To
Target] or [Go To Source] options causes the current focus to be placed on the appropriate
node, and the view is centered upon the current focus.

4.5.2 Going to a Referencing Node

The [Go To a Referencing Node] option is the inverse of the [Go To a Related Node]
option described in the previous section. This option allows you to walk “up” the tree to a
relation that references the node of current focus.

For example, in Figure 25, if you selected the [Go To a Referencing Node] option from the
Navigation menu of node Ada, then the Referencing Categories/Objects menu is displayed
that offers the option: [ is_written_in (1..1) ]. If you select this option, the focus will be
placed upon that relation.

4.5.3 Going to a Referencing Category

The [Go To a Referencing Category] option is the inverse operation of the [Go To a
Related Category] option. For example, if you chose to go to the category Quadratic
from the category Quicksort by traversing the relationship hierarchy with the [Go To a
Related Category] option of the Navigation menu, then the category Quadratic will have
the category Quicksort stored as a referencing category. This option is useful to return
to the original category if you traverse the graph and then determine that the destination
node was not what you were looking for, or to discover what other concepts in the network
reference the current category with some relationship. To traverse the graph in this manner,
choose the [Go To a Referencing Category] menu option. Remember that you can
always cancel a menu by clicking its titlebar or pressing the key. Therefore, you
can use the menus to obtain information only, and remain at your present location.

When you choose the [Go To a Referencing Category] menu option by clicking on it,
a czscading menu is displayed with a list of all the categories which reference the selected
category. The menu options also include the name of the relationship through which the
selected category was referenced. If you select one of the menu options, the view will then
be centered upon the referencing category. See Figure 27 for an illustration of a Referencing
Categories cascading menu.

For example, if the option [has_worst_case_of : Quicksort] is selected, then the display
will be centered on the concept Quicksort. Since this menu was invoked from the Quadratic
category, the example option can be interpreted as saying, “The Quicksori algorithm has a

Page 41




March 1993 STARS-UC-05156/013/00
Category: Quadratic
Navigate 5 Navigate
PcErm Action Go To a Child -3
Adtvice Go To a Parent "4
Suppress &1 Ga To a Related Category
Oispiay Relationships Graphically | Go To a Referencing Category P Referencing Categories
Display Reiationships Textually Go To Other Occurrence has_worst_case_of : Shakersort
Cantar This Category has_avg_case_of : Shakersort
has_worst_case_of : Quicksort

Figure 27: The [Go To a Referencing Category| ('ascading Menu

worst-case Performance that is Quadratic.” In general, referencing relationship clanses are
displayed in the following format:

relationship_name : referencing_category_name

If the selected category is not referenced by any other categories, then the [Go To a Ref-
erencing Category] option is insensitive.

In a Relationship View, selecting the [Go To a Referencing Category] option has the
same effect—the graph is traversed from the current node to the node that references the
current node as an attribute. The main difference in the Relationship View from the Spe-
cialization View is that this relationship link is visible in the graphical display because
they are displayed as arcs. In Figure 28, a Relationship Display is shown for the category
Binary Search. If you click on node Performance [2] and select [Go To a Referencing
Category] from the Navigate menu, the Referencing Category menu appears, as shown in
Figure 29. In this case, selecting the option [Binary Search via has_avg_case_of (1..1)]
will cause the current focus to be placed upon the Binary Search node. This is similar to
traversing the “child-parent” links in the Specialization View, except instead of following
specialization links there, you are following relationship links here in a Relationship View.

4.5.4 Going to a Referencing Object

The [Go To a Referencing Object] option is the inverse operation of the [Go To a
Related Category/Object] cption and is analogous to the {Go To a Referencing Cat-
egory] command described in the previous section; the only difference is that this command
is available for object nodes instead of category nodes. This command is useful to return
to the original object if you traverse the graph and then determine that the destination
node was not what you were looking for, or to discover what other concepts in the network
reference the current object via relationships. For example, this command could be used
to determine which software components are written in Ada if there were a is_written_in
relationship defined. To traverse the graph in this manner, choose the [Go To a Referenc-
ing Object] menu option. Remember that you can always cancel a menu, therefore, you
can use the menus to obtain information only, and remain at your present location.

Page 42




March 1993

RLF Library: Relationship View of SOr and Search Aigorithms ({ Level = 2 )

Select a Library | Navigale View Search

“

STARS-UC-05156/013/00

" -2

has_avg_case_of (0..1)

0

#hu_bnt_uu_of (0..1)
—D

h #hls_ﬂu_of {0..1)
o D

"thas_worst_case_of (0..1)
\ ) o)

15 _written_in (O..infinity)
-0

;‘Wkl_m (0..Infinlty)

;m-ﬂ 12;
Performencs (3]
Linas of Cods
Parformance (1]
‘s:-u Languags

Dwts Structare

Figure 28: A Relationship View for a Category

Category: Performance (2]
P———

val!lh [ Navigate

Parform Action Go To a Related C&ttu;-rT

Acivice Go To a Related Node

Suppress Go To a Referencing Category Referencing Category
Go To a Referencing Node BSinary Search via has_avg_tase_of (0..1)
Go To Other Occurrenos >
Center This Category

Center This Category In Spacialization View b

Figure 29: A Referencing Category Menu

Page 43




|

March 1993 STARS-UC-05156/013/00

When you select the [Go To a Referencing Object] menu option, a cascading menu is
displayed with a list of all the objects and/or categories which reference the current object.
The menu options also include the name of the relationship through which the current object
was referenced. If you select one of the menu options, the view will then be centered upon
the referencing object.

For example, if the option [is_written_in : example_quicksort} is selected, then the dis-
play will be centered on the object example_quicksort. In general, referencing relationship
clauses are displayed in the following format:

relationship_name : referencing_node_name

If the selected object is not referenced by any other objects, then the [Go To a Referencing
Object] option is insensitive.

In a Relationship View, the [Go To a Referencing Object] option functions the same as
the [Go To a Referencing Category] option described in the previous section. The only
difference is that the related nodes are objects instead of categories.

Page 44




March 1993 STARS-UC-05156/013/00

nd000_piwg_performance_benchmark_p000007 (3]
acec_performance_benchmark {1]
acec_performance_benchmark (2)
plwg_performance_banchmark [1]

H Ipiwg_performanoce_benchmark {2}

Figure 30: The [Search] Cascading Menu Showing Multiple Inheritance

4.6 Going to Another Occurrence—Multiple Inheritance

If a category or object has more than one parent in the RLF semantic network, then it will
appear as multiple nodes in the graph. The [Go To Other Occurrence] option enables
you to quickly and easily move within the graph to a node representing one of the other
occurrences of a category or object. This allows you to view a category or object in an
alternative context and therefore may provide an enhanced understanding of that category
or object.

As was previously explained in Section 1.4, due to the mechanism of multiple inheritance any
given category or object in an RLF semantic network may have more than one parent, and
thus may appear as multiple nodes in the graph that is displayed to the user. Therefore, such
nodes have a number appended to their names to uniquely identify them. The numbers start
with 1 and are assigned in the order in which the nodes are created during graph creation.
The number is enclosed in square brackets and appended to the category or object name.
For example, if the category piwg_performance benchmark had more than one occurrence,
than the first occurrence would be labeled piwg _performance benchmark [1], the second
occurrence would be labeled pivg performance benchmark [2], and so on. All such nodes
will have a [Go To Other Occurrence] option displayed in their menus.

An example of a menu displayed as a result of running the [Search] command with the string
benchmark when multiple inheritance exists is shown in Figure 30. This menu shows that
when a category or object has more than one parent it will have more than one occurrence
in the view.

For example, in Figure 30, there are names of categories and objects that occur more than
once, such as acec_performance benchmark and piwg performance benchmark. Each of
these two categories appears twice, but each occurrence is given a unique number to differ-
entiate them. Selecting different occurrences of the same category name in the menu causes
the view to be centered on the respective occurrences of that category in the view.

Page 45




March 1993 STARS-UC-05156/013/00

]

Category: piwg_performance_banchmark [1] 1

Navigate > Navigate |

Perform Action Go To a Child >

Arvice GO To a Parent >3

Suppress | Go To a Related Category &

Dispiay Reiatlonships Graphically Go To a Referencing Category

Display Relationships Textually GO To Other Ocourren # Othar Occurrences

Canter This Category | piwg_performance_benchmark [2}

Figure 31: A Navigate Menu Containing the [Go To Other Occurrence] Option

Figure 30 shows a different type of user interface component—a contro) panel-—as opposed to
a pull-down or cascading menu. To select an option from a control panel, you must choose an
item from the list by clicking on it and then click on the APPLY] button. This is the same
type of interface as the Search List Selections control panel previously shown in Figure 15
and discussed in Section 3.6.

If you select the option [piwg_performance _benchmark [1] ] from the control panel in Fig-

ure 30, and go to that node and invoke the Navigate menu, then the [Go To Other Oczur-

rence] option will be available from the Navigate menu, and the option [piwg_performance_benchms
[2] ] will be available from the Other Occurrences submenu. An example of such a r:ascading

menu containing the [Go To Other Occurrence] option is shown in Figure 31.

4.7 Centering a Node

Another method of browsing involves traversing the graph in a topographical manner, t.e.,
looking at the visible nodes in the view and moving the view itself over the graph by various
means. One method of accomplishing this type of browsing is to center a particular node
in the view that was previously off to one side of the view. This operation then causes
other previously hidden nodes to become visible. This process can be repeated until the
desired node has been found. This method of navigation supports a more casual style of
browsing than other methods described above. The [Center this Object] or [Center this
Category] option is always available from the Navigation menu in Specialization Views, or
the [Center this Relation] option in Relationship Views, for this purpose. This style of
browsing is similar in principle to using the view’s scrollbars to move the graph display.

You can center a node in a view by selecting the [Center this Category], [Center this
Object], or [Center this Relation] option in the menu (the appropriate option is available
depending on whether the node is a category or an object). This will reposition the graph
inside the graph display window so that it is centered, as close as possible, on the selected
node.

In the Relationship View there is a unique option available called [Center this Object in
Specialization View]. When this option is invoked from the Navigate menu of a node in a
Relationship View, the graph display of the Specialization View is centered upon the selected

Page 46




March 1993 STARS-UC-05156/013/00

node. The current focus is placed upon the node in the Specialization Node; however, in this
version of the RLF GB the new focus may not be readily apparent because the Specialization
View may be occluded by the Relationship View. You may have to use your window manager
to raise or lower the appropriate windows to see the effects of this command. Consult the

documentation for your window manager for the operational details of raising and lowering
windows.

Page 47




ﬁ

March 1993 STARS-UC-05156/013/00

Object: example_quicksort
A ——

| Navigate >
Parform Action > Perform Action
Advice Read Description desc_source
Suppress Extract source

Display Relationships Graphically |view Source source
Display Relationships Textually

Figure 32: The [Perform Action...] Cascading Menu

4.8 Performing Actions

The categories and objects in an RLF library may contain more than just static information.
Any executable program, script, or procedure, called an “action,” may be associated with
any category or object by the creator of the library. It is then possible to invoke any of the
available actions by selecting the appropriate menu option. This mechanism is typically used
to view textual attribute information associated with nodes, but has general applicability to
a wide variety of needs.

Actions may be performed by selecting the [Perform Action] option, if it is available. An
example of a Perform Action menu is given in Figure 32.

In general, action clauses are displayed in menus with the following format:

action_name target_name

An action may be invoked on the files associated with the target names “desc_source” and
“source.” In the example menu shown in Figure 32, the description file “desc_source” may
be read, and the source code file “source” may be viewed. If the [View Source source]
option is selected, then the RLF GB creates a new window and invokes a text pager, in
this case the view program (vi in read-only mode), on the “source” file. The results of the
invoked program are displayed in the new window. See Figure 33.

The type of text pager invoked can be set through the environment variable RLF_PAGER. See
the appendix for detailed information on setting RLF environment variables.

Page 48




e

March 1993 STARS-UC-05156/013/00

)
procedurs SERT (R ; in eut RO

with TEXT IN3
precedure SORY (A : in et RON) is
procedure @SORT (L, R : IMDEX) is
1, 4 3 DED)
X :Itew
procedure DXCHANGE (A, 8 : in out ITEN) is
TP : ITEM;
TEWP t» A3

L RS )
B := TEWPs
EXCHRNEGE 3

Figure 33: Performing an Action

Category: Sort Algorithms
Navigate >4
Perform Action
Advice
Suppress b
Display Relationships Graphically
Display Relationships Textually

Figure 34: A Category Node with the [Advice] Menu Option

4.9 Inferencing—Getting Advice at a Node

In addition to actions, there may be an inferencer attached to the node. The inferencing
capability allows you to interact with a rule-driven knowledge base that may be stored in an
RLF library. The interaction takes the form of a series of questions that you are asked, and
your answers cause the addition or deletion of facts to and from the knowledge base. These
facts then allow the inferencer to make intelligent decisions to guide you to an appropriate
node in the network. If an inferencer exists at a particular node, then the [Advice] menu
option is displayed.

-When you select the [Advice] option from the menu, the RLF inferencer is invoked and the
dialog appears in a pop-up Advice Dialog Box window. An example of a menu at a node with
an attached inferencer is given in Figure 34. See the RLF Modeler’s Manual for additional
information on RLF inferencing capabilities. An example of a pop-up Advice Dialog Box
window is given in Figure 35. This figure indicates the components of an Advice Dialog Box:
the text entry box, the dialog window, and the comand buttons.

To complete the dialog with the inferencer, place the pointer inside the text entry box
(located beneath the dialog window; the “caret” cursor becomes an “I-beam” cursor) and
type the appropriate option number and then either press the key or click on the

Page 49




March 1993 STARS-UC-05156/013/00

— taxt entry box dialog window

| starting inferencing at: algorithms

Select whether advice Is desired on algorithens to do sorting or
searching or select don't know for more information.

1. "sorting”
2. "searching”
3. "don't know"

Enter number of desired command <CR>:

You have moved in the library from category Algorithms
to category Quicksort.

Figure 36: The Alert Box from the [Advice] Menu Option

[OK] command button. After the inferencer finds a node that you are interested in going to
for {urther investigation, and you select the appropriate option, the graph is then traversed
to ihat location and that node is centered in the view. An alert box is then displayed that
informs you of the completion of the traversal operation and the node name where you are
currently located. An example of this alert box is given in Figure 36.

If the selected category or object does not have an inferencing capability, then the [Advice]
menu option will not be available in the menu. If the category or object does have an
inferencing capability and you complete a dialog but no suitable node is found, then an alert
box is displayed informing you that no more guidance is available for this particular concept.
The text of this alert box is as follows:

End of available guidance for this node.

Page 50




March 1993 STARS-UC-05156/013/00

You may also end the inferencing session a. any time by clicking on the [Quit] command
button.

See Appendix D for inferencing session customization options. For example, you may specify
the explanation level, or whether moves through the library initiated by the inferencer are
automatic or not. If the moves are not automatic, then you are prompted for confirmation.

4.10 Asset Extract and Export Functions

Underlying all the nodes and network connections, most RLF libraries contain data files that
are the reason for having the library and browser in the first place. The library and browser
are just applications that make storage and retrieval of the data files into an ordered and
convenient process. In previous versions of the RLF GB, two options were available under an
Extract menu: [Extract Files] and [Export Asset]. These functions have been subsumed
by the “action” capability in the current version of the browser. It is now the responsibility
of the modeler to provide asset extraction and export functions through RLF actions. The
action capability was described in a previous section. For a more detailed description of the
RLF action capability, see the RLF Modeler’s Manual.

4.11 Node Suppression

There may be situations where you would like to reduce, or filter, the amount of information
being displayed in the graph display window for any given library. Sometimes large libraries
can become unwieldy or difficult to read. Or sometimes for aesthetic reasons you may want
to temporarily hide a particular node or subtree for viewing or printing purposes. To deal
with these situations, a set of node suppression functions is provided. Each node menu will
have either a [Suppress] option (if the node has no descendants) or a [Suppress b] option
(if the node has any descendants). The following sections describe the operational details of
the suppression functions.

4.11.1 Suppressing Categories or Objects with No Descendants

If a category or object node has no descendants, then the [Suppress] option will be available.
When you choose the [Suppress] option from the menu, the selected category or object and
its arc are hidden from view. Once the [Suppress] option is selected, the suppression occurs.
Suppressed nodes can always be unsuppressed, so don’t worry about making a mistake
with the suppression commands. In addition to the node-level unsuppress commands, there
are view-level unsuppress commands available in the Filter View pull-down menu in the
command bar, which were explained in Section 3.4.

Page 51




_

March 1993 STARS-UC-05156/013/00

4.11.2 Unsuppressing Nodes

By definition, only categories may have descendant nodes. Therefore, only category nodes
will have the cascading version ([Suppress b]) of the Suppress command, indicating a
submenu of options is available. Selecting the [Suppress b)] option will cause a cascading
menu to be displayed with the following options:

e [Suppress]

¢ [Unsuppress Children]

¢ [Unsuppress Descendants}

This [Suppress] command works exactly as described in the previous section. The un-
suppress commands are what are different about this menu; they provide node-level unsup-
pression functions. To unsuppress a category or object at the node level, click on a parent
or ancestor category of the suppressed category and select either [Unsuppress Children]
or [Unsuppress Descendants] from the menu options. The [Unsuppress Children]
command will only unsuppress child nodes of the current node, and the [Unsuppress De-
scendants] command will unsuppress all currently suppressed descendants of that node.

There is a subtle but important difference between the definition of a child node and a
descendant node. Both children and descendants must fulfill the specialization or individu-
ation relationship; however, a child resides at the nezxt lower level of the hierarchy, while a
descendant may reside at any lower level of the hierarchy.

Page 52




March 1993 STARS-UC-05156/013/00

| Arc Menu I

Display Attributes
Suppress This Arc

Figure 37: The Arc Menu

Figure 38: An Arc Attributes Display Window

5 Arcs

All arcs are represented with lines and connectors. The connectors are bitmaps, and, like
concepts, can be modified to adapt to individual requirements. See Section 3.2, “The Graph
Display,” and Appendix A, “Customization,” for an explanation of how to modify bitmaps.
An arc and its connector is one of the view components pointed out in Figure 4.

5.1 Displaying the Attributes of an Arc

All arcs contain attributes that can be displayed. To display the attributes of an arc, click on
the arc connector. The procedure is the same as for nodes: when you place the pointer over
an arc connector, it becomes highlighted; clicking and holding down the mouse button with
the pointer on a highlighted connector causes the Arc Menu to be displayed (see Figure 37);
and selecting the [Display Attributes] menu option causes the selected arc’s attributes
to be displayed in a newly created window. An example of an attributes display window is
shown in Figure 38.

The arc attributes indicate the source and destination nodes for that arc. For exam-
ple, the arc attributes shown in Figure 38 indicate that, for that arc, the source node is
Sort Algorithms and the destination of that particular arc is Internal Sorts. This op-
tion can be useful in situations where there is a long distance between a source node and

Page 53

|




March 1993 STARS-UC-05156/013/00

its destination, or in cases where only an arc connector is visible. This situation may arise
when very large graphs are displayed. You can find out an arc’s destination by using the Arc
Menu’s [Display Attributes] option, then you could go to the source or destination node,
if desired, by using the Main Menu’s [Go To] command button to specify the desired node.

5.2 Suppressing Arcs from View

When you choose the [Suppress Arc] menu option by cli~king on it, the selected arc, the
node it points to and all of that node’s descendants are hidden from view. To unsuppress
the arc, click the [Filter View] command bar button to pull down its menu, and select the
menu option [Unsuppress All]; alternatively, click on the source node of the suppressed
arc, and select either [Unsuppress Children] or [Unsuppress Descendants] from the
menu options.

Page 54




ﬁ

March 1993 STARS-UC-05156/013/00

A Appendix: Customization

Since the RLF GB is an X application, the user is able to customize the “look and feel,” or
appearance and behavior, of the application to a significant degree. The range of customniza-
tion possible is large, therefore, only the subset of bitmap and font customization options will
be discussed in this appendix. For a detailed description of all the possible X customization
procedures, see the X references listed in Appendix I, “References.”

A.1 X Resources

All X applications have resources. These resources consist of items such as bitmaps, fonts,
colors, cursors, and windows. All these resources have unique identifiers associated with
them for naming purposes; thus, the user or application programmer can set the values of
these resources to customize the look and feel of applications.

There is a set of precedence rules that all X applications follow to determine what resources
will be applied to a given invocation of the application. Resources that are loaded first will
be overridden by those loaded later.

The following list states the rules for setting X application resources in reverse order of
priority. For example, item 1 will be overridden by item 4, and item 4 will be overridden by
item 5.

1. /usr/lib/X11/app-defaults/ Application_Class_Name

e the application resource specification file on the host running the client X appli-
cation

e this corresponds to the /usr/1ib/X11/app~defaults/RLF Browser file for the
RLF GB application

2. XAPPLRESDIR environment variable

o the value of the XAPPLRESDIR environment variable is a pathname; it can
be set to point to a file named Application._Class_Name, e.g., RLF_Browser, that
resides somewhere other than /usr/1ib/X11/app-defaults

3. Resources loaded into the RESOURCE_MANAGER property of the root window

e typically, the user arranges to have xrdb run from the X initialization file
.xinitrc

o if the RESOURCE_MANAGER property is not set, the resource manager looks
for a .Xdefaults file in the user’s home directory

4. XENVIRONMENT environment variable

Page 55




March 1993 STARS-UC-05156/013/00

e a complete pathname including the filename (different from the XAPPLRES-
DIR environment variable, which is only the pathname, but does not include the
filename)

e if this variable is not defined, then the resource manager looks for a file in the
user’s home directory named .Xdefaults-hostname

5. Command Line Values

e specified with the -xrm option on the command line

e values are loaded for that instance of the program only

6. If the application has defined any command line options by passing an options table
to the programmatic X call XtInitialize, values from the command line will override
those specified by any other resource settings.

A default application resource specification file called RLF.Browser should exist in
/usr/1ib/X11/app-defaults. If not, contact your site’s system administrator. If noth-
ing else is done, the RLF GB will use the resource values in that file.

The most convenient means of customizing the RLF GB is to make your own copy of the
RLF Browser file and set the environment variable XAPPLRESDIR to point to its directory
location. Then you can edit the RLF_Browser file and change any resources specified in that
file, such as bitmaps, fonts, window sizes and window placement to suit individual needs.

Page 56




March 1993 STARS-UC-05156/013/00

A.2 Bitmaps

The RLF GB, Version 4.0, uses the Motif widget set, therefore. Motif configuration standards
and conventions must be used. This has a significant impact on how resources are set,
particularly in relation to earlier versions of the RLF GB. The result is that most of the
methods for setting resources are different from pre-4.0 versions.

The pathname to the bitmaps directory is no longer specified in the Browser file. In Motif
applications, the bitmaps directory must be a subdirectory in the resource file’s pathname.
For example if you set the XAPPLRESDIR environment variable to /usr/1ib/X11/rlfgb,
then the RLF GB looks for the bitmaps directory to be at /usr/1ib/X11/rlfgb/bitmaps.
This directory must contain the bitmaps used by the RLF GB.

You can change XAPPLRESDIR to point to a different directory, and therefore a different
bitmaps directory, to use bitmap files that you have created or customized. If the pathname
is not specified correctly, the RLF GB will not be able to find its bitmaps, and blank space will
be displayed instead. It is important that the resource file’s directory pathname be specified
correctly and for the bitmaps directory to be located in that directory as a subdirectory or
else the RLF GB graphic display will be aesthetically less pleasing. The bitmaps directory
included in the RLF release may be used directly unless use of alternative bitmaps is desired,
in which case you may create a bitmaps directory in the location of your choice, containing
the desired bitmaps.

The specific bitmaps used by the RLF GB to represent displayed objects can be specified
in the RLF_Browser file. The different types of nodes in an RLF GB graph view each have
a bitmap defined for it. For example, all category nodes that do not have any actions or

inferencers attached use the bitmap file specified by the following line in the RLF_Browser
file:

vshell*scr window*node CATEGORY KIND.labelPixmap: box.m.xbm

while all object nodes that do not have any actions or inferencers attached use the bitmap
file specified by the following line in the RLF_Browser file:

vshell*scr_ window*node OBJECT KIND.labelPixmap: cubem.xbm

All rategory nodes could be changed to display a different bitmap by editing the above line
in the RLF Browser file and specifying a different value for the bitmap file. For example, to
change the category nodes to a bitmap you created and placed in a file called my_bitmap.xbm,
you would set the value in the RLF_Browser resource file to the following:

vshell*scr window*node CATEGORY KIND.labelPixmap: my_bitmap.xbm

Page 57




Vs

March 1993 STARS-UC-05156/013/00

A.2.1 Bitmap File Naming Convention

This version of the RLF GB allows a finer granularity of bitmap file specification for different
node types, as previously described in Section 3.3. This increase in control over the look of
the graph display has a disadvantage—the number of bitmap files that must be managed
has also increased.

A bitmap file naming convention has been established in an attempt to make the management
of a multitude of bitmap files easier. As shown in Figures 7 and 6, there are now eight base
types of bitmap files:

Category

Category with Action

Category with Inferencer

Category with Action and Inferencer
Object

Object with Action

Object with Inferencer

Object with Action and Inferencer

This fact by itself is not too much of a problem. However, to the above set we must also
add a “reverse label pixmap” for each item in the set. The reverse label pixmap is used for
highlighting. This brings the total to sixteen basic types. Even sixteen isn’t too bad, but
there’s yet another multiplier to deal with—size. Different sizes of bitmaps are necessary
because the needs of the user are always changing. Sometimes you may need to give a
demonstration, requiring extra large bitmaps, and sometimes you may need to display an
extremely large graph, requiring extra small bitmaps so that the application does not exceed
the maximum drawable area that the X Window System is able to handle. Therefore a set
of the sixteen basic bitmap types is needed for each required size. If we assert that we would
like to have five sizes available: extra small (XS), small (S), medium (M), large (L), and
extra large (XL), then we have a total of 90 bitmap files needed just to accomodate the node
bitmaps.

The bitmap file naming convention has the following structure:
{box | cube}[-{A | I}}[rev].{xs | s | m | ]| xI}.xbm

For example, the following table lists the node type and the corresponding bitmap files for
the set of medium-sized bitmaps:

Page 58




March 1993

Node Type
Category
Category with Action
Category with Inferencer
Category with Action anc .~er
Object
Object with Action
Object with Inferencer

Object with Action and Inferencer

STARS-UC-05156/013/00

Bitmap File

box_m.xbm
box_rev_m.xbm
box_A_m.xbm
box_A_rev_m.xbm
box_I_m.xbm
box_I_rev_m.xbm
box_AI_m.xbm
box_Al_rev_m.xbm
cube_m.xbm
cube_rev_m.xbm
cube_A_m.xbm
cube_A_rev_m.xbm
cube_I_m.xbm
cube_I_rev_m.xbm
cube_AI_m.xbm
cube_Al_rev_m.xbm

If you wanted to change all the bitmaps from size “medium” to size “extra small,” you could
perform a global search and replace in the RLF_Browser file with your favorite text editor,
changing the string “.m.xbm” to “_xs.xbm”. This would cause all bitmap file specifications
to use the extra small bitmaps.

Page 59




March 1993 STARS-UC-05156/013/00

A.3 Fonts

Fonts used by the RLF GB application can be changed in the same manner as bitmaps.
There are lines in the RLF_Browser file that specify what fonts to use for particular textual
objects in the RLF GB display. For example, the font used for Category concept names in
the graph display is specified in the following line in the RLF _Browser file:

vshell*scr_windowsnode_label CATEGORY_KINDsfontList: -bfh-lucida-bold-i-¢~e-17-#=s=#~s=s-s-#

and similarly, this font name could be modified to suit varying needs. For instance, the
display of very large graphs sometimes necessitates the use of a smaller font (and/or smaller
bitmaps) so that the graph display will not exceed the capacity of X to display it. Or
sometimes very large fonts and bitmaps are desired for demonstration purposes. These
types of customizations and many others are most easily accomplished by modifying the
RLF Browser file and setting the XAPPLRESDIR environment variable appropriately.

A.4 Invoking the Browser from a Shell Script

The C shell script RLF_GB checks the appropriate environment variables to determine as best
it can whether they are valid, and then invokes the RLF Graphical Browser. This method of
invocation is recommended for novice and beginning RLF users. The RLF_GB script is found
in the bin directory of this software release, along with the Graphical Browser executable.

A.5 Command Line Arguments for Setting X Resources

Another way of customizing the look of the RLF GB is to set X resources via the command
line. Various X resources can be specified by invoking the X application with the appropriate
command line arguments. As can be seen in the list of precedence rules, this method will
override any other previous settings.

An example of invoking the RLF GB with command line arguments is as follows:

For an extra-large library, use a small font and small bitmaps:

Graphical Browser \

-xrm "vshellsscr_vindowsnode_label CATFRORY_KINDsfontList: ~bRh-#~s-r=t-3-10-s=s=t-2-g=-s-s" \

-xrm "vshellsscr_wvindowsnode_label CATEGORY_W_ACTIOE*fontList: -~bRh~%—%-r-2-8-10~-s=t—t-t=p-%" \

-xrm "vshellescr_windowsnode_label CATEGORY_MW_ADVICEsfontList: ~bRh-s-s-r-s-#~10-t~s-s-t=p-t-s" \

~xrm "vshellsscr_windowsnode_label CATEGORY_W_ADVICE_ABD_ACTIONsfontList: -bRh-¢-t-r-2-2-10-s-t-s-g-g=-2-s" \
-xrm “vshellsscr_vindowsnode_label OBJECT_KINDe#fontList: -bRh~$=#=r-s-s-10-8=%~s—t-g—g=2" \

-xrm "vshellsscr_windowesnode_label OBJECT.M_ACTION#fontList: ~bRh-#~#-r-s—4—10-t-#~s-s-t-s-s" \

-xrm "vshell#scr_vindowsnode_label _OBJECT_W_ADVICEs¢fontList: -bRh=#-#-r-s-$-10-s-s=s-s-s-s-2" \

-xrm "vshellsscr_windowenode_label _OBJECT_W_ADVICE_AND_ACTION#*fontList: ~bRh-s~¢-r~s-8=10--t-p~g-s=p-s" \
-xrm "vshelle*scr_windowsnode CATEGORY_KIND.labelPixmap: box_xs.xbm" \

-xrm “vshellescr_windowsnode CATEGORY_KIND.reverseLabelPixmap: box_rev_xs.xbm" \

-xrm “vshellsscr_vindowsnode CATEGORY_U_ACTION.labelPixmap: box_A_xs.xbm" \

Page 60




March 1993 STARS-UC-05156/013/00

“vshellescr_windowenode CATEGORY_W_ACTIOE.reverselLabelPixmap: box_A_rev_xs.xbm" \
“vshellsscr_windowsnode_CATEGORY_W_ADVICE.labelPixmap: box_I_xs.xbm" \
“vshell®scr_windowsnode_CATEGORY W_ADVICE.reverseLabelPixmap: box_I_rev_xs.xbm" \
“vshellescr_vindowsnode_CATEGORY_W_ADVICE_AED_ACTION.labelPixmap: box_AI_xs.xbm" \
“vshellescr_vindous*node CATEGORY_W_ADVICE_AND_ACTION.reverseLabelPixmap: box_AI_rev_xs.xbm" \
“vshell*scr_windowsnode_OBJECT_KIND.labelPixmap: cube_xs.xbm" \
“vshellescr_vindowsnode OBJECT _KIND.reverselabelPixmap: cube_rev_xs.xbm" \
“vshellsscr_windowenode_ OBJECT_N_ACTION.labelPixmap: cube_A_xs.xbm" \
“vshell*scr_vindowenode_ OBJECT_W_ACTION.reverselLabelPixmap: cube_A_rev_xs.xbm" \
“vshellsscr_vindowsnode OBJECT_W_ADVICE.labelPixmap: cube_I_xs.xbm” \
“vshellescr_windowsnode OBJECT_VW_ADVICE.reverseLabelPixmap: cube_I_rev_xs.xbm" \
“vshelle¢scr_window*node_ OBJECT_W_ADVICE _AND_ACTION.labelPixmap: cube_AI_xs.xbm" \
“vshellescr_windowenode_ OBJECT_W_ADVICE_AND_ACTION.reverselabelPixmap: cube_Al_rev_xs.xbm"

For a demonstration, you might want to use a large font and large bitmaps:

Graphical_Browser \

“vshellsscr windossnode_label CATEGORY_KINDsfontList: —bRh-#=s-r-s-8~20-s-s-s-s=s-2-3" \
“vshell*scr_window*node_label CATEGORY _W_ACTIONsfontList: ~bRh-#-8-r-s-$-20-8=-8—s~g=s-s-%" \
"vshellsscr_window#node_label_ CATEGORY_W_ADVICE¢fontList: ~bRh-$~8~r-s-3~20-#-R—t=2-%~8=-%" \
“vshell*scr_vindousnode_label CATEGORY_W_ADVICE_AND_ACTION*fontList: —~bRh-%~#-r-s-2-20-2-%-s-t=~g-s~2" \
“vshellsscr_windowsnode _label OBJECT_KIND*fontList: -bRh-#—e~r=2-8=20-8~t—t-g-t-g—2" \
“vshellsscr_window*node_label OBJECT _W_ACTION*fontList: ~bRh-#-s-r-s-#-20-t~s—t=g=s-s=a" \
"“vshellesscr_windowsnode_label OBJECT_W_ADVICEsfontList: —-bRh-#~#=-r=e=4~20-t-t~s=t-8=g-s" \
"vshellsscr_windowsnode_label OBJECT_W_ADVICE_AND_ACTION*fontList: -bRh-$~8-r~s-s-20-s-s=s~s~s~s-8" \

“vshellescr_windowsnode CATEGORY_KIND.labelPixmap: box_m.xbm" \
“vshellescr_vindowsnode_CATEGORY_XIND.reverseLabelPixmap: box_rev.m.xbm" \
“vshellsscr_windowenode_CATEGORY_VW_ACTION.labelPixmap: box_A_m.xbm" \
“vshellsscr_windowsnode CATEGORY_W_ACTION.reverselabelPixmap: box_A_rev_m.xbm" \
“vshellsscr_windowsnode CATEGORY_W_ADVICE.labelPixmap: box_I_m.xbm" \
“vshell®scr_windowsnode CATEGORY_VW_ADVICE.reverseLabelPixmap: box_I_rev_m.xbm" \
“vshellescr_windowsnode CATEGORY_W_ADVICE_AND_ACTION.labelPixmap: box_AI_m.xbm" \
“vshellsscr_windovenode CATEGORY_W_ADVICE_AED_ACTION.reverseLabelPixmap: box_Al_rev_m.xbm" \
“vshellsscr_vindowsnode_OBJECT_KIND.labelPixmap: cube_m.xbm" \
“vshellsscr_vindowsnode_OBJECT_KIND.reverseLabelPixmap: cube_rev_m.xbm" \
“vshellsscr_vindow*node OBJECT_W_ACTION.labelPixmap: cube_A_m.xbm" \
‘vshell*scr_windowsnode OBJECT_W_ACTION.reverseLabelPizmap: cube_A_rev_m.xbm" \
“vshellsscr_vindowsnode OBJECT_W_ADVICE.labelPixmap: cube_I_m.xdm” \
“vshellescr_windowenode_OBJECT_W_ADVICE.reverseLabelPixmap: cube_I_rev._m.xbm" \
“vshellsscr_windowsnode OBJECT_W_ADVICE_AND_ACTION.labelPixmap: cube_Al_m.xbam" \
“vshellsscr_windowsnode OBJECT_W_ADVICE_AND_ACTION.reverseLabelPixmap: cube_AI_rev_m.xbm"

The above command-line invocations of the RLF GB with command line arguments specify
the font and bitmaps of the graph view window that is displayed. These command line
arguments override any other resource settings that may been specified previously. Editing
startup scripts like these, or typing new command line arguments manually, are more exam-
ples of the many options available for customizing X applications such as the RLF GB. Other
X resource customizations, such as window size and placement, can also be accomplished
using the command line argument method.

For further possibilities of customizing X resources, consult the X Window System reference
given in Appendix I, References.

Page 61




March 1993 STARS-UC-05156/013/00

B Appendix: Environment Variables

With the UNIX operating system, there is some special information that is a part of your user
environment. A set of special variables, called environment variables, maintains this data.
UNIX can pass the values of these variables to programs executed from the shell. Unlike
C shell variables that are accessible only from within the shell, environment variables are
available to both your current shell and subsequent programs.

When you execute a program such as the Graphical Browser, UNIX gives it the values of
all the environment variables. You can define environment variables (or change their values)
from a shell like the C shell. The notation is as follows:

setenv VARNAME string

The above command would define VARNAME to be an environment variable and initialize
its value to string. By convention, the variable name is in uppercase.

The RLF GB checks to see whether certain environment variables are set or not. If any of
the predefined environment variables are set, then the RLF GB will use their values. If no
environment variables are set, then it will use its own predefined default values.

The environment variables that the RLF GB looks for, and their default values, are as
follows:

e RLF_PAGER less
e RLF_EDITOR v:

The RLF_PAGER environment variable defines what program is used for text paging actions
when they are invoked from ike RLF GB. The less program is a public domain program
that is similar to the UNIX more program, but which allows backward movement in the file
as well as forward movement. Also, less does not have to read the entire input file before
starting, so with large input files it starts up faster than text editors like vi.

The RLF_EDITOR environment variable defines what program is used for text editing actions
when they are invoked from the RLF GB. The vi program is the standard UNIX text editor.

To change an environment variable, use the setenv, as in the following example:
% setenv RLF.EDITOR emacs

The above exainple would cause the RLF GB to invo:.. .he public-domain text editor program
emacs instead of vi whenever a text-editing action was called for from the RLF GB.

Page 62

—_




March 1993 STARS-UC-05156/013/00

C Appendix: Command Line Options

Command line options allow yet another way to tailor the behavior of the RLF GB. Setting
command line options allows you to change the behavior of each invocation of the RLF GB,
whereas environment variables are generally used on a per-login or site-specific basis.

Command line options are issued from the shell when the RLF GB is invoked. In general,
command line options have the following format:

% Graphical Browser -option! valuel -option2 value?2 ...
You may get a list of all the available command line options by typing the following:

% Graphical Browser -help

The above command will produce the following output:

Welcome to the RLF Graphical Browser.
Version 4.0

Copyright 1992, Paramax Systems Corp.

Available command liue arguments:

-help prints available command line arguments

-1 <pname> wuses RLF libraries found in the directory
specified by pathname <pname>

-1 <name> specifies name of the library to browse

-e <fname> specifies filename of editor to use to edit
text associated to a network

-p <fname> specifies filename of pager used to view
text associated to a network

-d enables debug messages from the RLF tools

Each one of the options in the above list is explained in the following paragraphs.

The -I option changes the pathname where RLF libraries are searched for. This option can
be used to override any existing RLF_LIBRARIES environment variable.

Page 63




|7 —

March 1993 STARS-UC-05156/013/00

The -1 option can be used to specify the name of a particular library to be browsed when
the RLF GB is invoked. If the library name contains spaces, then the name must be enclosed
in quotes, as in the following example:

% Graphical Browser -1 "Sort and Search"

The -e option can be used to specify which text editor is used for text editing actions when
they are invoked from the RLF GB. This option can be used to override the RLF_EDITOR
environment variable described in the previous section.

The -p option can be used to specify which text pager is used for text paging actions when
they are invoked from the RLF GB. This option can be used to override the RLF_PAGER
environment variable described in the previous section.

The -d option can be used to produce large quantities of diagnostic output from the RLF
and the RLF GB. You may or may not find this option useful. This option is mostly intended
to be used by developers and support personnel if the need to locate the source of a software
defect occurs.

Page 64




“

March 1993 STARS-UC-05156/013/00

D Appendix: The RLF Initialization File

The RLF checks for an initialization file upon startup. The initialization file is looked for in
your home directory. The name of the initialization file is:

.rlfrc

All the command-line options described in Appendix C can alternatively be set through the
initialization file mechanism.

The format of the .r1frc file in BNF format is as follows is given in a following section.

A sample .rlfrc file is given below. This example is similar to the .rlfrc file that is
included with the RLF release. The data types are described following the example.

-~ Where to find the library instances
library directory: /libraries/instances

-~ Default library

library: "Sort and Search"

-~ Start at the root category
initial category: Thing

-- View settings
topology: on

cardinality: on

layout offset: x: §
layout offset: y: 7

view depth: 3

view type: specialization

-- Bitmaps

node bitmap: category: actions: /bitmaps/cat_actions.xbm
node bitmap: category: inferencer: /bitmaps/cat_inf.xbm
node bitmap: category: attributes: /bitmaps/cat_attrs.xbm
node bitmap: object: /bitmaps/object.xbm

-- Library advice settings
advice: explanations: reasoning moving

advice: automatic move: false

-- Specification translator settings
translator: Lmdl: quiet: yes

Page 65




|1V

March 1993 STARS-UC-05156/013/00

translator: Lmdl: only: model
translator: Rbdl: quiet: no

D.0.1 Library Instances

You can specify a default pathname for the location of the RLF libraries. This pathname
must be an absolute pathname. When the RLF is invoked, it will use this pathname as the
location of the RLF libraries to be used as input.

-~ Where to find the library instances
library directory: absolute_pathname

D.0.2 Default Library

A default RLF library may be specified. The specified library will be displayed by the RLF
GB automatically upon invocation; the Main Menu will not be displayed. If the specified
library contains spaces, then the name should be enclosed in double-quotes, as in the above
example.

-- Default library
library: RLF_Library_Name

D.0.3 Initial Category

You can also specify a concept that will become the node of current focus. The default is to
have the root node become the node of current focus; this specification changes that default.

-- Start at the root category
initial category: concepi_name

D.0.4 View Setting

There are various view settings that can also be tailored through the .rlfrc file to suit your
needs. Most of these settings are self-explanatory from their names. The topology setting
allows you to specify whether the Topology Display will be displayed or not upon startup.
The cardinality setting affects the display of the number restrictions of relationships in
Relationship Views (e.g., (0..infinity) or (1..1)). You may or may not find the cardinal-
ity information useful. If you do not find it useful, you can prevent it from being displayed

Page 66




March 1993 STARS-UC-05156/013/00

by specifying this setting as off. The x and y coordinate offsets (how many pixels in the
horizontal and vertical dimensions, respectively) can be set through the layout offset set-
ting. This setting is typically used to compress the white space out of a graph display. The
view depth setting affects how many levels of the graph are initially displayed. The default
is to display all levels; this setting changes that default. Finally, the initial view type may
be specified. The default is to display the Specialization View, but you may change this to
be the Relationship View.

-- View settings
topology: on oroff
cardinality: on or off

layout offset: x:  positive.integer
layout offset: y:  positive_integer
view depth:  positive_integer

view type: specialization orrelationship

D.0.5 Bitmaps

You can also change bitmap settings through the .rlfrc file. A pathname to the location
of a different set of bitmap files may be specified.

Note that the most general form sets the bitmap for all variations. For example, “node
bitmap : category : box.xbm” will set the bitmap for all kinds of categories, and would
override “node bitmap : category : actions : box.A.xbm”. This is implemented
this way so that if you want to set just the bitmap for categories or objects, you do not
need to iterate over all variations. Also, if you forget a variation, the default covers the
omission.

-- Bitmaps

node bitmap: category or object: actions: pathname
node bitmap: category or object: inferencer: pathname
node bitmap: category or object: attributes: pathname

D.0.6 Library Advice Settings

Library advice settings affect the behavior of the AdaTAU inferencer. The explanation level
may be set here; if it is not set here, then you are prompted for an explanation level when
an inferencing session is started. You may also specify whether moves through the library
initiated by the inferencer are automatic or not. If the moves are not automatic, then you
are prompted for confirmation.

Page 67




“

March 1993 STARS-U(C-05156/013/00

-- Library advice settings
advice: explanations: reasoning ormoving or questions
advice: automatic move: true or false

D.0.7 Specification Translator Settings

This category of rlfrc settings does not affect the RLF GB; they affect the language trans-
lators. See the RLF Modeler’s Manual for further details.

-~ Specification translator settings
translator: Lmdl: quiet: yes orno
translator: Lmdl: only: model or state
translator: Rbdl: quiet: yes orno

D.0.8 The RLF Initialization File BNF

The complete BNF for the RLF initialization file, .rlfrc, is provided here as a reference.

startup_file =
{setting}

setting =
default_directory |
default_library |
start_category |
view_type |
view_depth |
topology_flag |
cardinality_flag i
layout_offset |
bitmap |
tau_setting |
debug_flag |
vorking_directory |
history_list_length |
default_editor |
default_pager |
translator_setting |
comment

default_directory =
’library’ ’directory’ ’:’ pathname

Page 68

_




March 1993 STARS-UC-05156/013/00

default_library =
'library’ ’:’ name

start_category =
’initial’ ’category’ ’:’ name

view_type =
'view’ ’type’ ’':’ agg_or_spec

agg_or_spec =
‘relationship’ | ’specialization’

view_depth =
'view’ ’'depth’ ’:’ [agg_or_spec ’:’] depth_setting

depth_setting =
’all’ | integer

topology_flag =
'topology’ ’:’ flag_setting

flag_setting =
’yes’ | ’no’ | ’true’ | ’false’ | ’on’ | ’off’

cardinality_flag =
’cardinality’ ’:’ flag_setting

layout_offset =
’layout’ ’offset’ ’:’ [x_or_y ’:’] integer

x_or.y =
’x? | Jy)
bitmap =
‘node’ ’bitmap’ ’:’ category_or_object

[>:’ has_attribute {has_attribute}] ’:’ pathname

category_or_object =
’category’ | ’object’

has_attribute =
’inferencer’ | ’actions’ | ’attributes’

tau_setting =

Page 69




March 1993 STARS-UC-05156/013/00

'advice’ ’:’ tau_setting_type

tau_setting_type =
’explanations’ ’':’ explanation_type |
‘automatic’ ’‘move’ ’:’ flag_setting

explanation_type =
‘none’ | ’all’ | explanation_kind {explanation_kind}

explanation_kind =
’reasoning’ | ’questions’ | ’moving’

debug_flag =
‘debug’ ’:’ flag_setting

working _directory =
‘working’ ’directory’ ’:’ pathname

history_list_length =
'history’ ’length’ ’:’ integer

default_editor =
’editor’ ’:’ pathname

default_pager =
’pager’ ’:’ pathname

translator_setting =
‘translator’ ’':’ translator_type

translator_t rpe =
’Imdl’ ’:° 1lmdl_setting |
’rbdl’ ’:’ rbdl_setting

Ilmdl_setting =
quiet_translation | translate_only | default_input_spec

rbdl_setting =
quiet_translation | default_input_spec

quiet_translation =
‘quiet’ ’:’ flag_setting

translate_only =
’only’ ’:’ model_or_state

Page 70

. “




(

March 1993 STARS-UC-05156/013/00

model_or_state =
'model’ | ’state’

default_input_spec =
‘default’ ’specification’ ’:’ pathname

comment = {whitespace} ’'--’ {character}

integer = digit {digit}

L

name = identifier | string

identifier = letter {[underline] letter_or_digit}
letter_or_digit = letter | digit

letter = upper_case_letter | lower_case_letter
pathname =

not_colon_double_quote_whitespace
{not_colon_double_quote_whitespace}

Page 71




—l

March 1993 STARS-UC-05156/013/00

E Appendix: Error Messages

The informational type of error messages you may encounter while using the RLF GB have
already been described in the preceding sections of this manual. This section describes other
error messages that may be encountered when running the RLF GB. These messages are
usually of a more serious nature and indicate a serious obstacle has been encountered that
inhibits further processing.

E.1 X Window System Errors

Since the RLF GB is an X application, it relies on X to manage its windowing, graphics
display, and event handling capabilities. Many different kinds of problems can arise due to
this fact, and their severity ranges from insignificant to fatal. Most of these problems are
outside the scope of this manual, but some may be due to trivial causes.

Error Message:

** MAIN PROGRAM ABANDONED -- EXCEPTION "constraint_error" RAISED

Explanation: This error message usually indicates some type of problem with the X Win-
dow System. This error message appears immediately when the DISPLAY environment
variable is not set or is set incorrectly. There are two basic forms of the DISPLAY environ-
ment variable:

hostname:0.0
or

Internet_address: 0.0

For example, either of the following ways would be correct for setting the DISPLAY envi-
ronment variable:

setenv DISPLAY owl:0.0
or
setenv DISPLAY 128.127.161.18:0.0

where “owl” is a host name, and “128.127.161.18” is an Internet address. The DISPLAY
environment variable tells X applications which X server to connect to, unless it is overridden
by the “-display” command line option. The “:0.0” refers to the server and screen number,
and only the “:0” is required in most cases.

Page 72




March 1993 STARS-UC-05156/013/00

The DISPLAY variable should be set to the Internet address when you are running across
a Sun-3 to Sun-4 link, e.g., you're actually running the RLF GB on a Sun-4 host but are
viewing the results in a window on a Sun-3 host, or vice versa. The above error may occur in
this situation if the DISPLAY environment variable is not set to the Internet address form.

The above error message may also occur when the RLF GB is invoked with inappropriate
resource specifications. Particularly, if you invoke the RLF GB, receive the initial textual
status statements, and then receive the above error message, then the following actions are
recommended.

Ensure that the XAPPLRESDIR environment variable is set properly—it must point to a
directory that contains a readable RLF_Browser file. Additionally, if you increase font sizes,
the RLF GB may have to be invoked with command line options to ensure that the correct
window geometries are specified for the windows, or the appropriate geometry specifications
updated in the RLF Browser file.

Error Message:

Unexpected exit from browser. Unhandled event: <event_type>

Explanation: This message may appear occasionally and can usually be ignored. It usually
means that somehow the communication between the X server and the X application was
momentarily disrupted. If it occurs frequently or constantly, then its an indication of a
more serious problem, such as incompatible versions of the X server and X application, or
improper X installation at your site.

Error Message:

X error: failed request ...
Bad value: integer value out of range ...

Explanation: X error messages of this type, or similar X error messages, indicate an
incompatibility between the X application (the RLF GB) and your window system. It is
recommended that you use the unmodified X Window System, Release 4 or 5, from the X
Consortium (also known as “MIT X”).

E.2 OpenWindows Resources

If you use OpenLook from Sun and the OpenLook Window Manager (olwm), you may
experience some incompatibilities. To minimize incompatibilities with OpenLook, place the
following resource specifications in your .Xdefaults file in your home directory:

Page 73




March 1993

OpenWindows.SetInput: followmouse
OpenWindows.FocusLenience: true
*input: true

and re-initialize the X server resource data base.

Page 74

STARS-UC-05156/013/00




March 1993 STARS-UC-05156/013/00

E.3 RLF Errors

Obviously, the RLF GB relies on the RLF for its knowledge base operations. Since RLF is
also a large and complex system, many problems may be encountered that are due to usage
of the RLF. Most of the RLF type of errors should have been eliminated by the time the
RLF GB is used for browsing any particular RLF library. For example, most errors will
probably occur during the library construction phase and RLF will have detected them and
reported on them prior to your being able to browse that library. However, it is still not
impossible for some RLF processing anomalies to occur.

Error Message:

** MAIN PROGRAM ABANDONED -- EXCEPTION "FILE_NAME_ERROR" RAISED
or

** MAIN PROGRAM ABANDONED -- EXCEPTION "NAME_ERROR" RAISED
or

*x MAIN PROGRAM ABANDONED -- EXCEPTION "END_ERROR" RAISED

Explanation: Your UNIX environment variable SRLF_LIBRARIES has either not been set,
or has been set incorrectly. To determine the current value of the variable, type:

% echo $RLF_LIBRARIES
If the variable is not defined, you will receive an error message similar to:

RLF_LIBRARIES: Undefined variable.

If the SRLF_LIBRARIES environment variable has been defined, you should receive a path-
name for a directory. To determine if this is a valid RLF library directory, type:

% 1s $RLF_LIBRARIES

If this is a valid RLF library, the results of the .ls command should look similar to the
following excerpt:

Page 75




{155

. March 1993 STARS-UC-05156/013/00
ALL NETAAACABROLE NETCAACABGC
AdaNET _States NETAAACABSATIS_TBL NETCAACABGEN_OWN_TBL
CBABAB.HYB NETAAACABSPEC_TBL NETCAACABINDIV
KNETDAABABSUBROLE NETBAACABIND_OWN_TBL NETDAACABSUBROLE_TBL
NETAAACABGC NETBAACABRNG_RESTR_TBL NETDAACABVAL_RESTR_TBL
NETAAACABGEN_OWN_TBL NETBAACABROLE STATE
NETAAACABINDIV NETBAACABSATIS_TBL Taustuff/
NETAAACABINDIV_TBL NETBAACABSPEC_TBL Text/

NETAAACABIND _OWN_TBL NETBAACABSUBROLE _TBL UID_FILE
NETAAACABRNG_RESTR_TBL NETBAACABVAL_RESTR_TBL

Error Message:

*x MAIN PROGRAM ABANDONED ~-- EXCEPTION "UNINITIALIZED_UID" RAISED

Explanation: This message indicates that the RLF library may have been left in a “locked”
state. Check if any files exist in the RLF_LIBRARIES directory with a file extension of
“.LOK”. If any $RLF_LIBRARIES/*.LOK files do exist, then the “lock” files must be deleted
before the library can be browsed again. This may happen if the RLF GB, or some other RLF
application, such as the SNDL translator, are terminated abruptly and the RLF libraries
therefore not gracefully closed.

Error Message:

** MAIN PROGRAM ABANDONED -- EXCEPTION “UNINITIALIZED_OBJECT" RAISED

Explanation: This message indicates that the RLF library may have become corrupted
due to a system crash or some other type of system failure. Usually the only solution to this
problem is to re-translate the offending RLF library.

Error Message:

RLF error in displaying concept attributes.

Explanation: This message indicates that an internal RLF error has occurred while at-
tempting to obtain the attributes of a concept. The knowledge base will have to be ex-
amined. The first method of examination could be to use one of the textual browsers to

Page 76

_




March 1993 STARS-UC-05156/013/00

examine that particular concept. Beyond that, the only recourse is to examine the network
specifications for that particular RLF library.

Error Message:

Unknown error detected in RLF GB. Continuing...

Explanation: This error message is received when an error occurs for which no error
handling has been established. If you receive this error message, it is likely that the only
way to determine the cause of the error will be to put the RLF GB into a debugger and
attempt to repeat the sequence of operations that caused the error.

E.4 File Processing Errors

These error messages pertain to file processing. The only file processing done by the RLF
GB is when it attempts to read its knowledge base through calls to the core RLF routines.
The persistent form of the knowledge base is stored as files. Errors in file processing of this
type will be manifested as RLF error messages. These error messages were described in the
previous section, “RLF Errors.”

In this version of the RLF GB, all external file processing is accomplished through the use
of the RLF “actions” mechanism. This means that if any external files are to be viewed or
manipulated in any way, then the method to perform that task will have been prescribed
by the library modeler. For example, the modeler may have specified any of several possible
procedures to view the contents of a file: vi in read-only mode, the more command (the UNIX
text pager program), the less command (a public-domain text pager program), or others.
If the argument to these commands is erroneous, then file processing errors will result. For
example, if the argument specifies a file that is nonexistent or inaccessible to the user due
to incorrect permission settings, then the command will probably fail and produce some
error message. If any of these types of error messages are received, it is usually beyond
the capacity of the RLF GB to fix the problem by itself. Usually the problem is due to
external file system factors and will need to be fixed by you, another user, or the system
administrator.

Files stored in an RLF library are found in the directory:

e $RLF_LIRRARIES/Text

or

o $RLF_LIBRARIES/Text/modelname

Page 77




March 1993 STARS-UC-05156/013/00

where model_name is the name of an RLF library. (It is recommended that you
use the convention of using the RLF library’s name as the subdirectory name in the
$RLF_LIBRARIES/Text directory. Following a convention of this sort will help you to keep
the files you are storing more maintainable.) If there are file processing errors encountered
while using the RLF GB, then the above directories are the first place to look when checking
the status of the affected files.

Page 78




March 1993 STARS-UC-05156/013/00

Main Menu

Select a Library

Figure 39: The Main Menu

F Appendix: Detailed Usage Scenarios

This appendix provides a detailed usage scenario. The intent of this section is to show an
example of how the RLF GB might typically be used, although, in the interest of brevity,
less functions are shown in this example than may be used by a typical browser in a typical
browsing session. A truly typical usage scenario would probably consist of some superset of
these operations.

F.1 Scenario 1: The Candidate Component is Known—Browsing

In this scenario, the user needs a particular reusable component—in this case a sorting
routine. In this scenario, the user knows what kind of sorting routine is the most suitable
for the application—a Quicksort routine.

STEP 1.

Invoke the RLF Graphical Browser from the command line:
% Graphical Browser
The Main Menu appears, as shown in Figure 39. Display the menu of libraries by clicking

the [Select a Library] button.

STEP 2.

Select the desired library. In this case, select the “Sort and Search” library, as shown in
Figure 40.

STEP 3.

The graph display view of the “Sort and Search” appears, as shown in Figure 41. The user
clicks on the root node to invoke its node menu. (The action of clicking on the node is
represented by the arrow-pointer with a dashed line leading to the node.)

STEP 4.

Page 79




.

March 1993

m

vAD
Main Menu

Selact a Library Quit

a Banchmarks

Ada/Xt

Anti-Sub Warfare

ASSET

Astronomy

C31

CARDS

Mammals

Satellite Software

Software Components

Sort and Search »

Figure 40: A Library Menu

L v.45 Graphucel rowser]
RLFmery Sp‘cwmmvmammmrm (Leval =50of §)

STARS-UC-05156/013/00

Figure 41: A Graph Display View

Page 80




March 1993 STARS-UC-05156/013/00

RLF Library: Specialization View of Sort and Search (lewsl =5Sof 5)
Flter Viow [ Navigste View | search | Topology |

Dragging the
pointer invokes
cascading menus

Perform Action
Acvice " Go To a Parent [Aigorithms #
Suppress D Go To a Related Category ‘Attribute Val
Display Relationships Graphically ' Go To a Referencing Category
Dispiay Reiatlonships Textually " Go To Other Occurrence

@_Z " Canter This Category
Data Swacture— 8

Tape

— 8

Figure 42: A Category Node Menu

The category node menu appears, as shown in Figure 42. The user clicks on the [Navigate
b] option to invoke the Navigate menu.

STEP 5.

The Navigate menu is displayed, as shown in Figure 42. The user clicks on the [Go To a
Child] option to obtain a list of the root node concept’s specializations, or child nodes.

STEP 6.

The list of child nodes is displayed in the Children menu, as shown in Figure 42. The user
knows that a type of algorithm is needed, so the option “Algorithms” is clicked on.

STEP 7.

This process of walking down the specialization hierarchy is repeated by clicking on the
nodes “Sort Algorithms,” “Internal Sorts,” “Exchange Sorts,” “Quicksort,” and invoking
their Go To Child menus, as shown by the arrow pointers in Figure 43. Finally the object
node “example_quicksort” is reached.

STEP 8.

After reaching the “example_quicksort” node, the user wants to look at the source code file
associated with that node. The user clicks on the “example_quicksort” object node and
invokes its object node menu, and then clicks on the {[Perform Action b]option, as shown
in Figure 46.

Page 81




March 1993 STARS-UC-05156/013/00

RLF Library: Specialization View of Sort and Ssarch (level =S of 5)

Select & Library | Futer View | Navigate View | search | Topology | aqum i

En&--"'ﬁ\-o@"/ﬁ FEETRT——

Figure 43: Walking the Specialization Hierarchy

—0
Aerge Sort
-—o[hv./"ﬂ Objact: example_quicksort
Quicisort
| Navigate >
By "3 Parform Action o Perform Action
Shaker Sort Acvice Read Description desc_source
Suppress Extract source
Display Relationships Graphically [View Source source 4

Display Relationships Textually

Figure 44: An Object Node Menu

Page 82




T R E—

March 1993 STARS-UC-05156/013/00

!n*o’l(ﬂ:lnul.-ﬂ)

uith VEXT_ID3
procedure SERT (R : in at ROW) is
procedrs QSORT (L. R : INDEX) is
1, J : DOEXs
X : ITey
procedure EXCHANGE (R, B : in ocut ITEM) ia2
TEWP : YTEM3
bagin
JENr 3= P3
A=y
8 :» TEWPs
EXCHANGE 3
beein
I3

Figure 45: Reusable Component Source Displayed in a Text Pager

STEP 9.

The actions provided for the “example_quicksort” node are displayed in a menu, and the
user decides to view the source code by clicking on the [View Source source] option, as
shown in Figure 44.

STEP 10.

A text pager is invoked that ailows the user to peruse the source code, as shown in Figure 45.
The user pages through the text using the commands of the text pager. When finished with
viewing the text, the user issues the appropriate exit command. (In the case of the view
program, exit by typing either “2Z” or “:q".

STEP 11.

The user decides that this is the component that is needed, so the Perform Action menu
is again invoked from the object node menu. This time, the user clicks on the “Extract
source” option of the Perform Actior menu, as shown in Figure 46, and the source code is
copied into the user’s current working directory.




March 1993 STARS-U(C-05156/013/00

-0

Mearge Sort

. |
I (o L P % ObJect: example_quicksort :

Quicksort ‘
| Navigate > |
Rl _ =3 Parform Action D> Perform Action
Shakar Sort Actvice Read Description desc_source
Suppress Extract source »
| Display Relationships Graphically |View Source source

Display Relationships Textually

Figure 46: Selecting the [Extract source] Option from a Perform Action Menu

F.2 Scenario 2: The Candidate Component is Unknown—Guided Search

{n this scenario, the user needs a particular reusable component—a sorting routine—but in
this scenario, the user does not know what kind of sorting routine is the most suitable for
the application. The only knowledge the user has to conduct the component search with is
that the candidate component is some kind of sorting algorithm.

STEP 1.

STEP 6.
Repeat Steps 1 through 6 as in the previous section.
STEP 7.

In this scenario, the user focuses upon the “Algorithms” concept and invokes the node menu,
but instead of selecting a [Navigate] function, the user elects to invoke the [Advice] option,
as shown in Figure 47 since the exact kind of algorithm needed is unclear.

STEP 8.

Selecting the [Advice] option causes a dialog session to be initiated with the user. Questions
are asked of the user to help determine the user’s needs. The answers that the user provides
help the RLF GB make inferences as to what area of the library may be of the most benefit
to the user. The RLF GB then guides the user to that area of the library.

The dialog session occurs in a pop-up Advice Dialog Box window. See Figure 48 for an
example of an initial Advice Dialog Box.

Figures 49 through 52 show examples of a dialog session that might occur; the numbers that
appear before the “caret” prompts are what the user types in—they indicate what menu
option will be selected from the given menu. The user presses the key or clicks on

Page 84




March 1993 STARS-UC-05156/013/00

i
=N
o—p L}
/ Dist.
- iR -0}
Al Category: Algorithms / Muflti
Navigate o
Perform Action pts o -
Advice # Natu
Suppress > =
o—piii—
Display Relationships Graphlcally E Poly,
Display Relationships Textually ‘

Figure 47: The “Algorithms” Menu—Getting Advice

Starting inferencing at: algorithms

To determine what classification of algorithms more informationls
needed on.

Select whether advice Is desired on algorithms to do sorting or
searching or select don’t know for more information.

1. "sorting”
2. "searching”
3. "don’t know"

Enter number of desired command <CR>:

Figure 48: An Example Initial Advice Dialog Box

Page 85




March 1993 STARS-UC-05156/013/00

%eter;ndin whether or not internal or external sorting algorithms ar
esired.

| Select type of sort algorithm, internal for sorting an array for
i example, external for data on tape.

1. "internal”
2. "external”
3. "don't know”

i Enier number of desired command <CR>:

To determine whether the user wants a particular type of sort.

Internal sorts are divided into three categories, Insertion,
Selection, and Exchange. A description of these is avallable
through the Graphical Browser on each of these nodes. Which of
these categories are you interested in?

1. "insertion”
2. "selection”
3. "exchange”
4. "don't know”

i Enter number of desired command <CR>:

Figure 50: A Third Example Advice Dialog Box

the [OK] command button to enter the selection.

STEP 9.

The RLF GB has ended its inferencing session dialog and the user is now focused upon the
“Quicksort” category. An alert box is displayed that informs the user of the current location
in the library, as shown in Figure 53. The current focus is placed upon the “Quicksort”
category node.

At this point, as in the previous scenario, the user would proceed to examine and possibly
extract the contents of the “example_quicksort” component.

Page 86




March 1993 STARS-UC-05156/013/00

To determine the quantity of data to be sorted.

§ Two exchange sorts are avallable. Select one to examine it through
the graphical browser.

1. "quicksort”

2. "shakersort”™
3. "don’t know"

Enter number of desired command <CR>:

Figure 51: A Fourth Example Advice Dialog Box

; ~ Pdvice Disteg Beud .
Two exchange sorts are available. Select one to examine |t through
i the graphical browser.

1. "quicksort”
2. "shakersort”
3. "don’t know"
Enter number of desired command <CR>:

The user has selected quicksort and we will move there in the
graphical browser,

| ending Inferencing at: quicksort

You have moved In the library from category Algorithms

to category Quicksort.

Figure 53: An Alert Box Displayed After an Inferencing Session

Page 87

]




.

March 1993 STARS-U'C-05156/013/00

Search String:

Figure 54: A Search String Dialog Box

F.3 Scenario 3: Textual Query Mode—Querying Search Mechanisms

In this scenario, the user knows a particular reusable component— a quicksort routine—is
needed. Instead of navigating through ** .+rary hierarchy, however, the user issues a simple
textual query.

STEP 1.

Invoke the RLF Graphical Browser from the comraand line:
% Graphical Browser
The Main Menu appears, as shown in Figure 39. Display the menu of libraries by clicking

the [Select a Library] button.

STEP 2.

Select the desired library. In this case, select the “Sort and Search” library, as shown in
Figure 40.

STEP 3.

Select the [Search] command from the command bar. The Search String dialog box is
displayed, and the user enters a string, as shown in Figure 54.

STEP 4.

The results of the textual query are displayed in a control panel. The user selects one of the
concepts from the panel, as shown in Figure 55.

STEP 5.

The view is centered upon the “example_quicksort” concept. At this point, the user may
then examine and extract the contents of the node, if desired, as in the previous scenarios.

Page 88




March 1993 STARS-UC-05156/013/00

example_binary_search
Tabla Ssarch

Figure 55: A Search List Selections Menu
G Appendix: PCTE

In most respects, the PCTE version of this delivery of RLF operates in the same manner as
the UNIX version. However, there are differences, and this appendix presents the differences
in the PCTE and UNIX versions of RLF and some conventions which can be used to increase
portability between versions. This appendix assumes knowledge of PCTE, the Emeraude
PCTE product, and the esh encapsulated shell. A major assumption for this release of the
PCTE RLF is that you install the software into UNIX, then run esh scripts in PCTE to
install RLF libraries into the PCTE object base, then run the RLF GB from UNIX (since
it’s not encapsulated — you just use the absolute pathname), and the PCTE version of the
RLF GB then accesses the objects in the PCTE object base. For a more detailed discussion
of library modeling issues with the PCTE version of the RLF, see the RLF Modeler’s Manual.

G.1 Installing the PCTE Version of RLF

This manual assumes the PCTE version of the RLF has been installed and verified, including
the tailoring and proper installation of intialization files such as .profile. See the RLF
Source Code Release Installation Guide, Version {.1 or RLF Binary Release Installation
Guide, Version 4.1 for detailed instructions on installing the PCTE version of the RLF.

As a user, you may want to tailor the .profile file, the initialization file for the esh shell
of the PCTE environment. The .profile file in the current release looks similar to the
following:

XAPPLRESDIR=$RLFHOME/pcte/bin; export XAPPLRESDIR
PATH="/r1f .tools:$PATH; expor: PATH
RLF_LIBRARIES="/Instances4.e; export RLF_LIBRARIES
RLF_PAGER=/usr/local/bin/less; export RLF_PAGER

If any of the above pathnames are not appropriate for you, then change them to reflect more
suitable values. There are two environment variables that must be set before the RLF GB
can be run successfully. They are as follows:

Page 89

_




March 1993 STARS-UC-05156/013/00

e DISPLAY
¢ RLF_LIBRARIES

You can edit the .profile file so that these variables are automatically set every time you
invoke a new esh shell. The DISPLAY variable is not set in the above sample .profile file,
but it could be set there if desired. Note that environment variables are inherited by the esh
from its parent process.

The XAPPLRESDIR environment variable contains the location of the RLF _Browser X re-
source file. The bitmaps directory should exist as a subdirectory of this location.

The RLF_PAGER environment variable must be set to the pathname of a text pager. This
is the text pager that the RLF GB will invoke inside an zterm window to display text.

The RLF_LIBRARIES environment variable is used by the RLF to determine the location
of the RLF libraries to be read. An RLF library must be created before the RLF GB can
be used to browse that library.

G.1.1 Starting the PCTE Server

Consult the Emeraude V12 System Administration Guide for information on how to start
the PCTE server.

G.1.2 Logging into PCTE

The “standard” method for logging into PCTE is sufficient for using the RLF GB. Consult
the Emeraude V12 System Administration guide for details.

Before logging in to PCTE, set the RLFHOME environment variable, if it hasn’t already
been set. The value of the RLFHOME environment variable should be a pathname to the
top of the RLF installation directory hierarchy. If you are unsure what pathname to use
for the RLFHOME variable, consult your system administrator or the installer of the RLF
system. The pathname is probably the same as the location where the release was extracted
from the transfer media.

The RLFHOME environment variable is used for convenience; you could type the entire
absolute pathname instead, but that can become cumbersome.

% | setenv RLFHOME pathname

Assuming your command search path is set properly to find the Emeraude PCTE commands,
and assuming you have been set up as valid PCTE user, you should be able to issue the log
command as follows:

Page 90

4—




March 1993 STARS-UC-05156/013/00

1 [

This should invoke an esh shell with a prompt similar to the following:

esh$

G.1.3 Creating RLF Libraries in the PCTE Object Base

If RLF libraries have already been installed into your PCTE object base, you may skip this
section.

After the .profile file has been tailored to your satisfaction it must be installed in the
PCTE object base before it can have any efffect. The UNIX file is copied into the object base
with the PCTE object_copy command as in the following example:

esh$ Lobj —copy -c¢ $RLFHOME/pcte/bin/pcte.profile $PCTE_HOME/ .profile}

Before the RLF GB can be successfully invoked in the PCTE environment, an RLF library
must be installed into a PCTE object base. To accomplish this, the following procedures
may be used.

Any of the esh scripts in the models subdirectory of the RLF release may be used to create
the associated RLF library in the PCTE object base. The following examples show the
creation of the “Animals” RLF library.

Invoke the esh script using the full UNIX pathname to the script, with an argument of the
pathname to the RLFHOME location:

esh$ |$RLFHOME/models/animals/Build Animals Lib.esh $RLFHOME|

The script Build Animals Lib.esh copies the necessary files from UNIX into the PCTE
object base and executes the Lmdl translator on the LMDL script.

G.1.4 Invoking the PCTE RLF Graphical Browser

After an RLF library has been installed in the PCTE object base, the RLF Graphical Browser
may be invoked. To invoke the RLF GB from within the PCTE environment, use the full
UNIX pathname as in the following example:

esh$ |$RLFHOME/pcte/bin/Graphical Browser

Page 91




e

March 1993 STARS-UC-05156/013/00

G.2 File Naming Restrictions

The Emeraude implementation of PCTE places restrictions on the length of object names and
makes assumptions about the use of ‘.” in object names. The names of files containing assets
which are available in an RLF reuse library are restricted to 32 characters in length when
using PCTE. These are the files that reside beneath the Text subdirectory of any directory
where RLF libraries have been constructed. Additionally, the names of files containing
reusable assets in the library should not contain the ‘. character, since this indicates a
special meaning to the Emeraude implementation of PCTE. The convention established by
this version of RLF for PCTE is to replace any ‘.’ characters in file names with the underscore
character, ‘.. An exception to this convention is the .rlfrc start-up file, which the PCTE

version of RLF will look for as an entity named rlfrc.e.

To increase the similarity in the way libraries are represented in the UNIX and PCTE versions,
and to ease transition between versions, the preferred link type of every object in or beneath
the directory object where the library was built must be set to “.e”. This includes files
representing a library’s assets and any action scripts which might appear below the Text
directory. The preferred link type of the directory object indicated by the environment
variable, RLF_LIBRARIES, also needs to be “.e” so that its subdirectories can be traversed
easily.

Library representations built with the PCTE version of RLF also require a directory object
named rlf_tools to be a first-level subdirectory of the directory object where the library
is built. This directory object must also contain two tools named ascii file.tool and
displ_attr.tool. These tools are required frr RLF’s default actions to operate correctly.

For examples of library model construction for the PCTE version of RLF, examine the
“.esh” versions of the build scripts for the example libraries delivered with the RLF. These
scripts are found in each subdirectory of the models subdirectory of an RLF installation.
These scripts can be modified and reused to help automate the procedures required to build
an RLF reuse library with the PCTE version.

Page 92




March 1993 STARS-UC-05156/013/00

H Appendix: Reporting Problems

'.ike most software, especially that of a prototypical nature, the RLF GB may contain un-
known bugs (along with some known bugs). If you encounter any problems with this software,
or have any suggestions for enhancements, you are encouraged to report them to STARS
personnel. The Version Description Document included with this release provides instruc-
tions for doing this, including information on available Internet electronic mail addresses.
Also included in the distribution is a problem report form for formally submitting problem
reports.

Page 93




March 1993 STARS-UC-05156/013/00

I Appendix: References

This section lists a number of resources that are available for further information. The
topics are relevant to the use of the RLF GB and include the RLF, the RGB. the X Window
System, Ada, and PCTE references.

For more detailed information on the RLF, see the following documents:

For more detailed information on the RLF, see the following documents:

o RLF Binary Release Installation Guide, Version 4.1, STARS-UC-03156,012/00;
March, 1993.

e RLF Source Code Installation Guide, Version 4.1, STARS-UC-05156/014/00; March,
1993.

e RLF Modeler’s Manual, Version 4.1, STARS-UC-05156/011/00; March, 1993.
e RLF Administrator’s Manual, Version 4.1, STARS-UC-05156/017/00; March, 1993.

e RLF Binary Release Version Description Document, Version 4.1, STARS-UC-
05156/016/00; March, 1993.

e RLF User Tutorial, Version 4.1, STARS-UC-05156/018/00; March, 1993.
o RLF Administrator Tutorial, Version 4.1, STARS-UC-05156/019/00; March, 1993.
o RLF Modeler Tutorial, Version 4.1, STARS-UC-05156/020/00; March, 1993.

e R. J. Brachman and J. Schmolze, “An Overview of the KL-ONE Knowledge Repre-
sentation System,” Cognitive Science, 9(2) (Spring 1985), pp. 171-216.

e Gordon, D.M, “A Graphical User Interface in Ada for Domain-Specific Reuse Li-
braries,” TRI-Ada ’92 Proceedings, Orlando, FL; November, 1992.

e K. Wallnau, J. Solderitsch, M. Simos, R. McDowell, K. Cassell, and D. Campbell,
“Construction of Knowledge-Based Components and Applications in Ada,” Proceed-
ings of AIDA-88, George Mason University, Fourth Annual Conference on Artificial
Intelligence and Ada, November 1988, pp. 3-1 through 3-21.

For more detailed information on the RGB, see the following documents:

e RGB 1.0 Version Description Document (VDD), STARS-US-020401/001/00
e RGB 1.0 User’s Manual, STARS-US-020401/002/00

Page 94




L —

March 1993 STARS-UC-05156/013/00

For more detailed information on using X and the twm window manager. see the following

book:

o X Window Sys* in User’s Guide for X11 R3 and R§, Third Edition; Quercia. Valerie.
and O'Reilly, Tim; O’Reilly & Associates, Inc.; Sebastapol, C'A; 95472; May 1990.

For :nore detailed information on Ada/Motif see the following documents:

o Ada/Motif Release 1.1, The Complete Ada Binding for X11R4 and OSF/Motif 1.1.
Users Manual, Systems Engineering Research Corporation (SERC), Mountain View,
CA; Sept. 28, 1992.

For additional information on the Asset Library Open Architecture Framework (ALOAF)
and the Common Data Model, see the following document:

® Asset Library Open Architecture Framework, Version 1.0; STARS-TC-04041/001/01;
28 February 1992.

For more detailed information on Sun Ada see the following documents:

e Sun Ada User’s Guide, March, 1992
e SPARCworks/Ada User’s Guide, March, 1992

For more detailed information on Emeraude PCTE see the following documents:

¢ The Emeraude Environment, GIE Emeraude, 1992; PC6A1, 68, route de Versailles,
788430 Louveciennnes, FRANCE.

Page 95




