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Abstract

The results presented in this thesis contribute to two areas of computer science:
machine learning and on-line algorithms. One limitation of current theoretical ap-
proaches to learning is that most of them involve function approximation, i.e., the
learner improves the accuracy of its approximation to an unknown function as it
sees more samples of the function. This thesis presents algorithms for improving
performance at other tasks, such as navigation and and paging. Specifically, these
algorithms are online algorithms whose competitiveness improves when repeatedly
applied to the same problem. The design of such algorithms is a new challenge in
the area of online algorithms: the algorithms must not only be competitive on each

application, but must also ac- ... useful information to improve their future compet-
itiveness. We present a gen: .. r “.ework based on task systems for studying such
algorithms.

One result in the thesis is an online navigation algorithm for a robot traveling back and
forth between two points s and t (distance » 2part) in a scene filled with unknown axis-
parallel rectangular obstacles. For each ¢ < n, the ith trip of the robot is guaranteed
to be within a O(\/r—z/—z) factor of the shortest s-t path lengtu I, and we show that up
to constant factors this is the best a deterministic algorithm can do. This algorithm
is based on a smooth search-quality tradeoff: we design an al-orithm that given any
k < n, searches a distance O(L\/r—z_/I) and finds an s-t path of length O(LM). A
key insight is that this tradeoff can be achieved by optimally traversing a certain tree
structure based on the obstacles.

For a version of the paging problem where the pager is aware only of page faults,
we give an algorithm whose average competitiveness improves when the same page
request sequence is repeated several times.

The thesis also applies competitive analysis to design an online algorithm for a natural
extension of the standard function prediction problem, where the function labeling
the examples switches unpredictably between two unknown functions.
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Chapter 1

Introduction

The results in this thesis contribute to two areas of computer science: machine learn-
ing and online algorithms. The thesis shows how algorithms for certain learning
problerus can be designed using the framework and techniques of online algorithms.

Performance-Improvement Algorithms

One goal of machine learning research is to develop programs that improve their
performance at some task as they gain more experience with the task. For instance
one might want to develop a speech recognition system that improves its recognition
accuracy as it interacts with speakers. Another example is a weather forecasting
system that makes better predictions as it gains experience. Similarl: one might
want a robot to be able to improve its performance in path planning when walking
back and forth between two places in an unknown environment such as mars.

There has been much empirical research on designing programs that improve their
performance at various tasks. Examples include the work on speech recognition [56],
character recognition [55), gesture recognition [28], autonomous vehicles [71], robotic
manipulation [26], robot navigation [24], and adaptive user interfaces [66]. Alongside
with this empirical work, there have been attempts at capturing mathematically
what it means to “learn”, and developing algorithms which can be shown to learn in
an appropriate rigorous sense. The hope is that by abstracting away the details of
individual tasks, general learning strategies can be developed and applied to particular
problems. In addition one hopes to gain a better understanding of what kinds of
learning tasks are inherently difficult. The mathematical models introduced in the
pioneering work of Angluin {4, 5, 7], Gold [33, 34, 35] and later Valiant [81] have lead
to the development of a field that has come to be known as computational learning
theory.




These formalisms generally only model the task of furction-approzimation, (or function-
prediction) where the goal is to develop algorithms that improve their quality of ap-
proximation of an unknown function (or automaton) as they see more samples of
its input-output behavior. While it is true that a variety of tasks can be viewed as
function-approximation tasks, such a view may not always be the most natural one.
Thus one would like to develop models and algorithms for performance-improvement
at tasks (such as the ones mentioned above) other than just function approximation.

This thesis takes an initial step in this direction. In the function approximation task,
the learner uses partial information about the target function, namely its value at
some points, in order to predict the value of the function at other points. As it acquires
more information, it improves its prediction accuracy. To extend learning models
beyond function-prediction tasks, we consider online optimization problems, where
an algorithm can improve the quality of its solution by acquiring more information
about the problem input. Before moving on, we review the basic vocabulary of online
algorithms.

Online Algorithms and Competitiveness

An optimization problem requires an online solution when the input is revealed a
piece at a time, and the algorithm must make a decision as it sees each piece, before
the remaining pieces are revealed. Naturally, the quality of the solution obtained
by an online algorithm could be significantly worse than that of the optimal offline
solution for the problem (i.e., the optimal solution that would be computed by an
algorithm that knows the entire input).

Many real-world cptimization problems are online in nature. For instance, paging
is an online problem where one would like to incur as few page faults as possible.
When faced with a page fault, the pager (i.e., the paging algorithm) must decide
which page to evict from fast memory before future page requests are known. Since
the pager does not know the future, on a given sequence of page requests the pager
might suffer many more page faults than a (hypothetical ) optimal pager that knows
the entire sequence of requests. Another online optimization problem arises when a
robot is trying to go as quickly as possible from point s to point ¢ in a scene filled with
unknown obstacles. The problem is online since the robot must decide which way to
move when it encounters an obstacle without (full) knowledge of what obstacles may
lie ahead. Again, the length of the robot’s path from s to ¢t could be much longer
than the optimal s-t path that could be computed given a map of the entire scene.

It is customary to call an online algorithm c-competitive (c is called the competitive
ratio) if on any sufficiently long input sequence, its cost (e.g., number of page faults)
is bounded by a factor ¢ times the cost of the optimal offline solution to the problem.
(The interpretation of the “length” of the input sequence depends on the particular
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online problem at hand.)

Improving Competitiveness using Partial Information

For many non-trivial online problems, even the best possible online algorithm has a
large competitive ratio. However if the algorithm obtains some partial information
about the input (e.g., future page requests, or obstacles that lie ahead in the scene), it
may be able to improve its competitiveness. For instance such partial information may
be available when the algorithm is repeatedly applied to the same problem instance,
and on each application it can only see a portion of the input. This gives rise to the
possibility that on each application, the algorithm can accumulate information, and
use it to improve its competitiveness on future applications. This thesis considers the
design of online algorithms whose performance provably converges quickly to that
of the optimal offline algorithm upon repeated application to a problem. (This will
become clearer in the particular problems we consider.) In particular we develop
such algorithms for some natural problems in robot navigation and paging (described
below).

The study of how partial information can be exploited to improve competitiveness in
online algorithms is relatively new. Some researchers [3, 40] have analyzed the benefits
of lookahead (e.g., having access to the next few page requests) on competitiveness.
Others have considered paging problems where the request sequence is not completely
arbitrary but must satisfy some constraints [21].

Of course partial information does not always help improve competitiveness. Thus
a new challenge in the problems we consider is to design an algorithm that on each
application not only is competitive, but also acquires useful information that helps
improve future competitiveness. The design and analysis of such algorithms can be
seen as a contribution to the area of online algorithms.

In Chapter 2 we present a general model for studying online algorithms whose perfor-
mance improves with repetition. This model is based on the task system model intro-
duced by Borodin, Linial and Saks [23]. Chapters 3 and 4 present two performance-
improvement algorithms, and we briefly introduce these in the next two subsections.

Problem 1: Improving Performance in Robot Navigation

Chapter 3 describes a performance-improvement algorithm for the tfollowing robot
navigation scenario: There is a two-dimensional scene containing non-overlapping
(and non-touching) axis-parallel rectangular obstacles of unknown sizes and positions.
A point robot is required to travel back and forth (avoiding obstacles) quickly between
two points s and ¢ in the scene. The robot initially does not know the sizes and




positions of the obstacles; it only has tactile sensing, i.e., it discovers obstacles when
it touches them. The robot’s strategy must therefcre be online: the robot must
decide which way to move when it hits an obstacle, without (full) knowledge of what
obstacles may lie ahead.

A natural question is whether there is a strategy for the robot to walk from s to
t in such a way that the ratio (the “competitive ratio”) of its trip length to the
shortest obstacle-free s-t path length is not too large. Papadimitriou and Yannakakis
{70] showed that in any scene where the Euclidean s-t distance is n units (where the
width of the thinnest obstacle is taken as 1 unit), no deterministic algorithm can
achieve a ratio better than O(y/n). Subsequently, Blum, Raghavan and Schieber [19]
showed an algorithm for which the ratio matches this lower bound.

Thus, given no information about the scene, a deterministic algorithm cannot achieve
a ratio better than O(,/n). However, after making one trip that achieves this ratio the
robot has some partial information about the scene. Can it exploit this information to
improve its ratio on the second trip? Can it gain more information on the second trip
and do even better on the third trip, and so on? It is important to note that partial
information may not help improve competitiveness, if it is somehow not sufficiently
relevant. In particular, merely using the one-trip procedure of Blum, Raghavan and
Schieber on any trip may not necessarily reveal information that would help improve
competitiveness on future trips. Thus the challenge is to stay optimally (up to con-
stant factors) competitive on each trip given the information gained so far, and at
the same time acquire information that will be useful in improving competitiveness
on later trips. In other words, we would like each trip to be as short as possible
given what the robot has found so far, and yet improve with the number of trips. (In
particular we would not want a solution where the robot makes an artificially very
long first trip and then subsequently “improves” on future trips.) This makes the
multi-trip problem significantly harder than the single trip problem.

Results. We describe a deterministic strategy so that in any scene the length of the
ith trip of the robot is guaranteed to be within an O(\/;/—i) factor of L, the length
of the shortest s-t path. We also show that up to constant factors this 1s the best a
deterministic strategy can do. These results appear in [17]. We have implemented
X-Windows based code that simulates this and other navigation algorithms. A copy
of the code may be requested by email from chal@cs.cmu.edu.

Our algorithm is based on a smooth search-quality tradeoff: we design an algorithm
that given any k < n, searches a distance O(Lv/nk) and finds an s-t path of length
at most O(L+/n/k). An insight in this work is that a tree structure can be defined in
the scene, where the nodes are portions of certain obstacles and the edges are “short”
paths from a node to its children. The core of our algorithms is an on-line strategy
for traversing this tree optimally.
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Problem 2: Improving Performance in Paging

Chapter 4 presents a performance-improvement algorithm for the following paging
scenario. Suppose a program repeatedly generates the same sequence of page requests.
This might happen for instance when the program is inside a loop. A natural question
to ask is, can one design a paging algorithm whose performance improves as the
request sequence is repeated more times? This is non-trivial in many real computer
systems, where the pager is sleepy, i.e. it only “wakes up” when there is a page fault,
then decides which page to evict from fast memory, then goes back to sleep. Thus
on each iteration the pager only knows the requests that resulted in page faults, so
(much as in the navigation problem) it only has partial information about the request
sequence. There is thus the possibility that the pager can accumulate information
about the request sequence and improve its performance as the request sequence is
repeated more times. The design of paging algorithms that improve their performance
has been considered by others but in different contexts. [22, 41, 82, 64, 51].

Results. For the special case of this problem where k pages are in fast memory
(or cache) and there are only k + 1 pages total, we design an algorithm for a sleepy
pager which has the following behavior when the same page request sequence o is
repeated. (We assume that on each iteration the pager knows the time relative to the
start of the request sequence.) Let OPT(o) be the optimal (offline) number of page
faults on . Then for each ¢ < k, the average (i.e., amortized) number of page faults
per iteration of the pager at the end of ¢ iterations is within an O(%logt) factor of
OPT(o), and for t > k, this average is within an O(log k) factor of OPT (o). Thus
the average performance of the pager improves with the number of iterations ¢ as long
ast < k.

Problem 3: Online Learning of Switching Concepts

The thesis also considers in Chapter 5 a generalization of the traditional function-
prediction problem from the on-line algorithms viewpoint. Most computational mod-
els of learning are suited to function-prediction tasks where the learner, after seeing
samples of the input-output behavior of an unknown function (the “concept”), at-
tempts to predict the value of the function at a new point.

In particular, Littlestone [58] introduced an online learning model, which can be
viewed as the following game played between the learner and an adversary. The
game is defined with respect to a concept class C defined on a domain X. Let us
assume that C is a subclass of the class of 0-1-valued functions, such as DNF, or
“monotone disjunctions”. At the start of the game, the adversary picks a concept ¢
from C and does not reveal ¢ to the learner. In each round of the game, the learner
chooses either to make a prediction or a query. In the former case, the adversary




gives the learner an example z € X and then the learner predicts 0 or 1, after which
the adversary reveals the value of the label ¢(z). In the latter case, the learner gives
the adversary an example z, and the adversary responds with ¢(z). One wants to
design learning algorithms for which the total number of mistakes plus queries in
any game (however long) is small. Such algorithms have been designed for various
concept classes C.

Suppose however that the labeling function is not fixed, but switches unpredictably
between some small number k of unknown functions. In particular this switching
may be history-dependent, in the sense that the function may stay ' -ame for a
while and then at some unpredictable time switch to another, and so ¢ “instance
learner may be trying to predict the behavior of some system that ca: in one of
a small number of different states, and has a different behavior in each state. Or
one can imagine trying to predict someone’s movie preferences, where that person’s
preferences change depending on mood. We use the term switching concepts to refer
to this kind of scenario. Ar, Lipton, Rubinfeld and Sudan [10] have considered a
similar problem of learning from mixed data.

To study the online learning of switching concepts, we extend the above mistake
bound with membership-queries (MBQ) model as follows. Initially, the adversary
picks some set S = {¢),¢2,...,ck} of k concepts from C, and keeps them secret from
the learner. Each round of the game is the same as before, except that before the
start of each round, the adversary picks some ¢ = ¢; from S, and labels the example
z with ¢(z). We say the adversary has made a switch if the current ¢; is different
from the one used in the previous round.

It can be shown that even an algorithm that knows the k functions must make pre-
diction mistakes proportional to the number of times the labeling function switches.
Thus, just as in traditional online algorithms, a natural way to evaluate the quality
of a prediction algorithm is to compare its cost with that of an algorithm that knows
all k functions.

Results. For any two switching concepts ¢; and c; where ¢; # c; it is not hard
to show that for any randomized algorithm (even one that knows both concepts). on
any sequence of examples where the labeling concept switches s times, the ezpected
number of mistakes is at least s. Our main result is the following. For the case
that the two switching concepts are n-variable monotone disjunctions, we design an
algorithm A such that for any 0 < § < 1, the cost of A (i.e., total number of queries
plus mistakes) is with probability at least (1 — §) bounded by p(n, In(1/6)) + s, where
p is a polynomial and s is the number of switches so far. We can thus say that
the algorithm A is “1-competitive”. The polynomial p(n,In(1/8)) is only an additive
term, independent of s. This and other results appear in [16}.
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Summary

Learning is the improvement of performance at some task with experience. Most
existing computational models of learning are only suited to tasks that can be nat-
urally viewed as function approximation. This thesis extends the scope of learning
theory; it introduces the design and analysis of algorithms for improving performance
at other tasks, namely navigation and paging. Specifically, these algorithms are on-
line algorithms which improve their competitiveness when repeatedly applied to the
same problem. These algorithms must on each application not only be competitive,
but also acquire useful information about the problem to improve their future com-
petitiveness. This requirement leads to the design of novel kinds of online algorithms.

The thesis also applies competitive analysis to design an online algorithm for a natural
extension of the standard function prediction problem, where the function labeling
the examples switchez unpredictably between two unknown functions.







Chapter 2

Performance-Improvement
Algorithms

The next two chapters of this thesis are concerned with online algorithms whose
performance (i.e., competitiveness) improves with repeated application to the same
problem. In this chapter we present an abstract framework for studying such al-
gorithms. We call our model a hidden task system since it is a variant of the task
system model introduced by Borodin, Linial and Saks [23]. Our hope is that this gen-
eral framework will provide insights as to how performance-improvement algorithms
can be designed for other tasks besides those described in the next two chapters. We
first briefly review the task system model of Borodin, Linial and Saks.

Task Systems

A task system consists of a pair (S,d) where S = {1,2,...} is a (possibly infinite)
set of states, and d is a state transition cost matrix. The matrix entry d(z, ) is the
(non-negative) cost of changing from state i to state j, when 7 # j. The task system
(S,d) is called metrical if d is a metric (i.e., d is symmetric, satisfies the triangle
inequality and d(¢,z) = 0). For any task T, the cost of processing the task is a
function of the state of the system; T'(j) denotes the cost of processing task T in
state 7. It is assumed that the system starts in a specified start state so. A schedule
for processing a sequence of m tasks is a function o where (i) is the state in which
the ith task is processed (and o(0) = sp). The cost of schedule ¢ on a task sequence
T=T'T?...T™ is the sum of all state transition costs and the task processing costs:

(T;0) = id(a(z’ -1),0(2)) + iT‘(a(i)).

=1

An online scheduling algorithm A for (5, d) receives a sequence of tasks T = T'T?...T™

9
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to be processed one at a time and the algorithm must output the state o(z) upon re-
ceiving T* (that is, o(2) is a function only of the first i tasks in the sequence T). The
resulting schedule is denoted by A(T). It is assumed that the online algorithm knows
the state transition cost matrix d and that when the algorithm receives T", it knows
the cost of processing T* in each state of S. The cost of algorithm A on sequence T.
denoted c4(T) is defined to be ¢(T; A(T)). For a given task sequence T, it is easy
to compute (using dynamic programming) the cost ¢g(T) of an optimal schedule. An
on-line algorithm A is said to be w-competitive [45] if there is a constant a such that

ca(T) L weo(T) + @

for any finite task sequence T.

In their paper, Borodin, Linial and Saks show a lower bound of 25 —1 on the compet-
itive ratio of any deterministic online algorithm for an s-state metrical task system.
They also show an algorithm that matches this bound. An important point to note
is that the lower bound applies when arbitrary tasks are allowed, that is, for each
task T the task processing costs T(j) can be any non-negative number. Thus, al-
though many particular online problems can be modeled as task systems. the above
lower bound does not necessarily apply to those cases since the possible tasks are
very special. One example is the paging problem with n pages and a k-page cache.
The problem can be modeled as a task system where the states represent each of the
(:) cache configurations (i.e. the set of pages in the cache), and each task is a page
request. The cost of “processing” page request ¢ in a state is 0 if ¢ is in the cache-set
represented by the state, and it is co otherwise. It is well known that a competitive
ratio of k can be achieved for this problem, and this is much better than the lower
bound of Q( (2)) when arbitrary tasks are allowed.

Hidden Task Systems

A hidden task system (S,d) is defined in exactly the same way as a metrical task
system, except for the following new feature:

The task processing cost functions T'() are only revealed in the states that
the algorithm visits. In particular, when the algorithm receives task T to
be processed, in order to find out the cost T(j) of processing T in state
J, the algorithm must move to state j. (Note that as in an ordinary task
system the algorithm knows the state transition cost metric d.)

We show in Chapter 3 that a special case of the robot navigation problem can be
viewed as a hidden task system. It will turn out that in this case the (integer) -
coordinates correspond to tasks and the (integer) y-coordinates correspond to states.
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Since the robot is tactile, when it is at a point (z,y) it will not know whether or not
there is an obstacle at a point with the same z-coordinate but a different y-coordinate
y' unless it moves to the y coordinate y’. This makes the navigation model a hidden
task system.

In Chapter 4 we study a paging model (which we call the sleepy model) where the
pager is only aware of page faults. This is a hidden task system since unless the
paging algorithm suffers a page fault, it does not know in which states (i.e. cache-
configurations) the current task (i.e. page request) has cost co.

In our multi-trip robot navigation algorithms, it turns out that during an s — ¢
trip the robot may often move “backward” toward s. In order to encompass such
algorithms we must introduce the notion of a reversible task system: tasks can be
“processed” both forward and backward, i.e., at any time the algorithm may choose
to “undo” the last task it processed, in the following sense. If we define time : as
the stage when the next task to be processed is task T*, then when the algorithm
at time ¢ undoes the previous task T°~!, it moves back to time i — 1 (and so the
“next task” at this stage would be 7%~!). Thus we require that all tasks that are
undone must be “redone”. The cost of undoing a task T in state j is T(j), which is
the same as the “forward” processing cost. (One could in general allow the forward
and backward costs to be different, but we will not need to do this for our present
purposes.) Thus at any time in a reversible task system the online algorithm may
take one of three actions: (a) make a state transition, (b) process the next task.
or (c) undo the previous task. In particular the algorithm may make several state
transitions before processing or undoing a task.

A reversible task system is hidden if the online algorithm can find out the cost 7"(j)
of processing task T" (the ith task in the sequence T'T?...) only when it is in state
7 and the next task is either 7" or T**! (in the latter case we imagine the algorithm
finds T%(j) when attempting to undo T*).

We note in passing that one can also view the navigation model in terms of the
layered graph traversal models studied by Papadimitriou and Yaunakakis {70] and
by Fiat et. al. [31]. A layered graph is an edge-weighted graph where there is a
designated start vertex s and the other vertices are partitioned into sets (*“layers™)
Ly,L,, Ls,... and all edges run between adjacent layers in this sequence. An online
layered graph traversal algorithm starts at s and moves along the edges of the graph.
Its goal is to reach a vertex ¢ in the last layer. In these layered graph models {70, 31],
when the algorithm reaches a layer L;, all edges to the next layer L;,, are revealed.
In the navigation problems, the layers correspond to integer z-coordinates, and the
vertices within a layer correspond to integer y-coordinates. It is not hard to see that
the navigation problems correspond to a variant of the layered graph model where
(a) edges are allowed between vertices of the same layer (to allow motion along an
z-coordinate) and (b) only the edges incident to the current vertex are revealed to
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the algorithm (since the robot is tactile).

In a (possibly reversible) hidden task system (S,d), the cost c4(T) of an online
scheduling algorithm A on a task sequence T is defined to be the sum of all the task
processing/undoing costs and the state transition costs incurred by A in processing
T. As before, an online algorithm A is said to be w-competitive if there is a constant
a such that

ca(T) S weo(T) + a

for any finite task sequence T, where co(T) is the cost of processing T with an
optimal offline scheduling algorithm that knows the task sequence T and the costs of
processing each task in T in every state.

Note that when the online algorithm receives a task T it can visit each state j in S
and find out T'(j). The algorithm would then have all the information available to
an online algorithm in a standard task system, and it could output exactly the same
schedule as such an algorithm. However, since there is a cost to moving between
states, this may not in general be the most efficient way to process a given sequence
of tasks. Thus in general the best competitive ratio achievable by an online algorithm
for a hidden task system could be much worse than the corresponding quantity for a
standard task system.

Improving with Repetition

After processing a given task sequence To = T'T?...T™ once, the online algorithm
may know only some of the T%(j) values. Suppose that the same sequence T of tasks
must be processed repeatedly. Since the scheduling algorithm A does not initially
know any of the task processing costs, its competitive ratio m.ght be quite large the
first time. However, after processing the task sequence once, the algorithm has some
partial information about the task processing costs. A natural question to ask is, can
it exploit this partial information to improve its competitive ratio the second time?
Can it gain even more information the second time, and do even better the third time,
and so on? Is there a strategy so that the performance of the scheduler is (nearly) as
good as possible given the partial information gained so far, and yet improves with
the number of repetitions?

Let us make this more precise. For a fixed hidden task system (S.d), consider an
online scheduling algorithm A that repeatedly processes the same sequence T of tasks
some (unknown) number of times. Let cf:)(T) denote the total cost incurred by A
after processing t repetitions of T, and let co(T) denote (as before) the optimal offline
cost of processing T once. Let s = |S| and let |T| denote the number of tasks in T.
Then the average (i.e., amortized) competitive ratio of A at the end of t repetitions
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is defined as ©
cy (T)
A,m,s,t) = su AL/
A )= R ()

co(T)#0

One way to formally phrase the questions in the previous paragraph is to ask whether
there is an algorithm A such that for every t the ratio p(A,m,s,t) is as small as
possible. Can a general lower bound on p(A,m,s,t) be shown? Note that merely
requiring the average competitive ratio to be small might allow the algorithm to
process some repetitions unusually expensively while compensating for this cost on
other repetitions. A somewhat more stringent requirement is to insist that for each
i, the competitive ratio on the ith repetition be small. If we let c4(i, T) denote the
cost of algorithm A on the ¢th repetition, we can define the competitive ratio on the
tth repetition as
CA(i,T)

Tem  Co(T)
co(T)#0

We can then ask whether there is a strategy A such that for each i the ratio p;( A.m.s)
is small.

pi(A,m,s) =

It would be interesting to answer some of the above questions for general hidden task
systems. As a first step, in this thesis we answer these questions for two particular
hidden task systems. As we mentioned before, the navigation and paging problems
correspond to hidden task systems with a special state transition metric d and a
special set of possible tasks (i.e. task processing costs). We will show lower bounds
on the ratio p(A,m,s,t) for these hidden task systems. It turns out that these lower
bounds decrease with increasing t. We develop algorithms A for which o(A,m,s,t)
for each t is close to this lower bound. Our algorithms also have the property that
their average competitive ratio p(A,m,s,t) decreases with increasing ¢. In the case
of the navigation problem we also show an algorithm A for which p;(A4,m,s) is an
optimally (up to constant factors) decreasing function of 7.

In each of the next two chapters we first describe a particular performance-improvement
algorithm, and then restate our result in the language of hidden task systems.
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Chapter 3

Improving Performance in
Navigation

3.1 Introduction

Imagine you have just moved to a new city; you are at your home and you want to go
to your office, but you do not have a map. Let’s assume you know your coordinates
and those of your office. Since you do not have a map, your first trip to the office
could turn out to be much longer than the shortest path to get there. However on
your way to the office you saw part of the city, so perhaps you can use this information
to do better *vhen you head back home. You would like to perform as well as possible
on each trip and yet improve your performance with experience. You do not want to
spend 100 much time expioring the city on any one trip. In other words, you want
a strategy so that on each trip, (a) your path is (nearly) the shortest path you can
find based on the information you have so far, and (b) you gain useful information
for improving later trips.

Such a problem can arise naturally in robotics: A robot exploring Mars might re-
peatedly transport samples from one point to another on the planet, and it must
circumvent unknown obstacles when making these trips. One would like the robot
to make each trip as quickly as possible, and also improve its vath as it makes more
trips.

In this chapter we consider a scenario (examined in [19, 46, 70]) where the start point
3 and target t are in a 2-dimensional plane filled with non-overlapping axis-parallel
rectangular cbstacles. A tactile, point robot begins at s, and knows its current
position and that »f the target, but it does not know the positions and extents of
the obstacles; it on'y finds out of their existence wher. it touches them. In the
problem considered i previous papers, the robot must make a single trip from s to

15
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t circumventing the obstacles. We call this the one-trip problem. In this chapter
we consider a robot that may be asked to make multiple trips, going back and forth
between s and ¢.

It is intuitive that in the multiple trips problem, information from previous trips must
be used if one hopes to improve the path later on. In particular, on later trips some
but not all of the obstacles in the scene are known. We therefore have a type of on-
line problem that is different from the standard scenario, in that partial information
about the future (e.g., about obstacles that lie ahead) must be exploited to achieve
good performance.

A particular arrangement of s, t, and the obstacles is called the scene. Let n denote
the Euclidean distance between s and ¢ in the scene, where the obstacles have width
and height at least 1. Papadimitriou and Yannakakis [70] show for the one-trip
problem a lower bound of 2(y/n) on the ratio of the distance traveled by the robot
to the actual shortest path (the competitive ratio) for any deterministic algorithm.
Blum, Raghavan, and Schieber {19] describe an algorithm whose performance matches
this bound. Whether randomization can help improve upon this bound is an open
question, although a lower bound was obtained by [46].

For the multiple trips problem, there are several ways one might formalize the intuitive
goal described in the first paragraph. One natural way is to consider the total distance
traveled in the k trips between s and ¢t and examine the ratio of this to &k times the
shortest path. Thus, for k¥ = 1, the previous results give a ratio of ©(\/n). For k = n
it is not hard to see that one can achieve a ratin of O(1) by simply performing a search
(of cost proportional to n times the shortest path length) to find the shortest path
on the first trip. Our main result is to show an optimal smooth transition. For k < n

we present a deterministic algorithm whose competitive ratio is O(y/n/k) and give

—_—
an (y/n/k) lower bound for deterministic algorithms. A key idea of the algorithm
is to optimally traverse a certain tree structure based on the obstacles in the scene.

Notice that the “cumulative” formulation allows one to search “hard” on the first trip
to find a short path, and then use this short path on the remaining & — 1 trips, which
is what we do. This result can be thought of as one that shows how to optimally
trade off exploration effort with the goodness of the path found. We in addition show
how to modify the algorithm so that on the :th trip, its ratio for that trip is O(\/—n—/_i- )-
So, this algorithm is optimal for each prefix cumulative cost and in addition does not
spend too much effort on any one trip. Thus, the algorithm can be viewed as one
that optimally improves its performance with each trip, achieving the intuitive goal
described at the start of this chapter.

Since there is a large body of research related to the work described here, we postpone
its discussion to Section 3.11 for the sake of continuity.
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3.2 The model, and some preliminaries

We consider two dimensional scenes containing non-overlapping rectangular obstacles
such that two given sides of any two rectangles are either parallel or perpendicular
to each other. A tactile, point robot is required to travel between two points s and ¢
in the scene. In such a scene we define an z-y rectangular coordinate system where s
is the origin (0,0) and the z-axis is parallel to the side of some rectangle. (Thus the
rectangular obstacles are “axis-parallel”). Let S(n) denote the class of scenes with
axis-parallel rectangular obstacles where the Euclidean distance between s and ¢ is
n. As mentioned above, we assume that the width and height of the obstacles are at
least 1 (this in essence defines the units of n) and for simplicity that the z-coordinates
of the corners of obstacles are integral. Thus no more than n obstacles can be placed
side by side between s and the z-coordinate of t. We assume that when obstacles
touch, the point robot can “squeeze” between them.

To simplify the exposition, we take t to be the infinite vertical line (a “wall”} z = n
and require the robot only to get to any point on this line; this is the Wall Problem of
[19]. Our algorithms can be easily extended to the case where ¢ is a point, using the
“Room Problem” algorithms of [19] or [13]. This modification is described in Section
3.8.

As mentioned above, we assume that the only sensing available to the robot is tactile:
that is, it discovers an obstacle only when it “bumps” into it. It will be convenient to
assume that when the robot hits a rectangle, it is told which corner of the rectangle
is nearest to it, and how far that corner is from its current position. As in [19], our
algorithms can be modified to work without this assumption with only a constant
factor increase in cost (i.e., distance traveled). In particular, the results in [12] imply
that if the nearest corner is distance d away then the robot can determine this by
walking a distance at most 2 + 9d.

Consider a robot strategy R for making & trips between s and t. Let R;(S) be the
distance traveled by the robot in the ith trip, in scene S. Let L(S) be the length of
the shortest obstacle-free path in scene S between s and t. We define the cumulative
k-trip competitive ratio as

R¥(8)

p(R,n,k)= sup S o
seSwmy KL(S)

where R¥)(S) = £F_ | R.(S) is the total distance traveled by the robot in k trips.
That is. p(R,n, k) is the ratio between the robot’s total distance traveled in k trips.
and the best k-trip distance. We define the per-trip competitive ratio for the ith trip

as
Ri(S)
{(R,n) = —_—
P s::l?}:n) L($)
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Our main results are the following. First, we show for any k, n, and deterministic al-
gorithm R, that p(R,n, k) = Q(y/n/k). Second, we describe a deterministic algorithm

that given k < n achieves p(R,n,k) = O(y/n/k). Finally, we show an improvement
to that algorithm that in any scene achieves p;(R,n) = O(y/n/1) for all t < n.

The remainder of the chapter is organized as follows. The next section presents the
lower bound. Sections 3.4, 3.5 and 3.6 describe the algorithm and its modifications.
Section 3.10 discusses open problems, and we conclude with related work in Section
3.11.

3.3 A Lower Bound for k£ Trips

In this section we show that for any deterministic robot strategy R for making k
trips between a point s and a line ¢ (distance n from s), a scene can be constructed
using axis-parallel rectangular obstacles such that for some constant c, its average
trip length is at least cL\/n/k, where L is the length of the shortest s-t path. In
particular, this lower bound applies regardless of how the robot moves on each trip
(For instance the robot may move “backward” towards s on an s — ¢ trip).

Theorem 1 (k-trip Cumulative Lower Bound) For k < n, the ratio p(R,n, k)
is at least Q(y/n/k), for any deterministic algorithm R.

Proof:  Since R is deterministic, an adversary can simulate it and place obstacles
in S as follows. Recall that s is the point (0, 0).

Consider a set of obstacles of fixed height ~ > /n and width 1, in a full “brick
pattern” on the entire plane, as shown in Fig. 3.1, with s at the center of the left-side
of an obstacle. (Recall that the point robot can “squeeze” between bricks). The
adversary simulates R on this scene, notes which obstacles it has touched at the end
of k trips, then removes all other obstacles from the scene. This is the scene that the
adversary creates for the algorithm, and say it contains M obstacles. Since the robot
does not know about obstacles that it did not hit, it will walk exactly the same way on
this M-obstacle scene as it would on the full brick pattern. The brick pattern ensures
that R must have hit at least one brick at every integer z-coordirate, so M > n.
Further, this arrangement forces the robot to hit a brick (and pay vertically h/2) at
every integer z-coordinate on every trip. Therefore its total k-trip distance R®) is
at least nkh/2.

We first argue that R(*) is at least linear in M. Imagine the full brick pattern to
be built out of four kinds of bricks (red, blue, yellow and green, say) arranged in a
periodic pattern as shown in the figure. This arrangement has the following property:

R —
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Figure 3.1: A full brick pattern with bricks of 4 colors.

for each color, to go from a point on one obstacle of that color to a point on any other
of the same color the robot must move a distance at least /2. Out of the M obstacles
hit by the robot, at least M/4 must have the same color, say blue. So regardless of
how the robot moved, since it has visited M/4 blue obstacles, we have R¥) > Mh/8,
which implies M < 8R® /h.

Using an argument similar to that used in the one-trip lower bound proof of {70}, we
now show that there is a path from s to the wall whose length is at most proportional
to the square-root of M. We claim there is a non-negative integer j < VM such
that at most v/M obstacles have centers at the y-coordinate jh. This is because a
given obstacle intersects at most one y-coordinate of the form jh, and there are M
obstacles. Thus, there is a path to ¢ that goes vertically to the y-coordinate jh, then
horizontally along this y-coordinate, going around at most M obstacles. The total
length of this path is at most hvM + hy/M +n, which is at most 3hv/M since n <M
and \/n < h. Since M < 8R™/h, this path is in fact of length at most 3V8hR).
Thus the k-trip ratio is at least R(*)/(3kv8hR*)). Recalling that R*) > nkh/2, this

is at least -\/n/k = Q(/n/k). ]

This lower bound implies that no deterministic algorithm R can guarantee that the
per-trip competitive ratio p;(R,n) is o(,/n/1) for every i. Indeed, if such an algorithm
existed then its cumulative competitive ratio at the end of & trips would be

i=k
ESo/AT0) = olVE) = o7
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which violates the above lower bound. In this sense a per-trip ratio of O(y/n/t) is
the best a deterministic algorithm can achieve.

It is not hard to see that this lower bound also holds for the case where ¢ is a point
rather than a wall.

3.4 The Optimal k-trip Cumulative Algorithm

Let us assume for simplicity that the algorithm knows the length L of the shortest
obstacle-free path from s to ¢t. In Subsection 3.5.3 we show how this assumption can
be removed by using a standard “guessing and doubling” trick. Note that the shortest
obstacle-free s-t path must lie entirely within a window of height 2L centered at s,
since any s-t path that leaves the window must be longer than L. In the remainder of
this chapter, let us also assume that we are designing a left-to-right (i.e. s to t) trip
of the robot; we can just assume that upon reaching ¢ the robot retraces the path it
just followed in getting to t from s.

This last observation immediately leads to an easy algorithm to achieve a cumulative
k-trip ratio of O(1) for k = n:

First trip: Using say a depth-first-search, explore the entire rectangular win-
dow of height 2L and width n (centered at s) between s and ¢. This can be
done by walking a total distance of O(Ln). Compute the shortest obstacle-free
s-t path (of length L).

Remaining n — 1 trips: Use the shortest path.

Clearly the average trip length is O(L), so that the cumulative n-trip ratio is O(1).

Thus the cases £ = 1 (the Blum-Raghavan-Schieber, or BRS algorithm) and & = n
are easy. The main difficulty is in dealing with intermediate values of k. Actually, our
high-level optimal cumulative strategy for & trips is similar to the n-trip algorithm
just described:

First trip: Perform an “exploratory” walk of length O(Lv/'nk), in such a way
that an s~t path P of length O(L\/n/k) can be composed out of portions of
the walk;

Remaining k£ — 1 trips: Use the path P.

Clearly the average trip length is O(;(Lvnk + (k —1)Ly/n/k)) = O(Ly/n/k), so the
cumulative k-trip ratio is O(y/n/k). In other words, in the first trip, the robot travels
a distance of O(vk) times the L\/n bound for the one-trip problem, and finds an s-t
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path that is guaranteed to be Q(v/k) times shorter than L\/n. The main challenge is
to design the “search” algorithm for this trip; this algorithm must smoothly tradeoff
search effort for the quality of the path found.

In order to make clear the main ideas, in the next section we describe this algorithm for
a class of scenes we call simple scenes. We first describe the one-trip BRS algorithm,
discuss why a naive extension of their algorithm does not work for k trips, and finally
present the search algorithm. In Section 3.6 we show how to extend this algorithm
to handle scenes with arbitrary axis-parallel rectangular obstacles. In Section 3.7 we
describe how to modify this algorithm to a more incremental algorithm whose :th
trip is guaranteed to be within a O(m) factor of the optimal path, for each : < n.
Section 3.8 describes the modification of our algorithm for point-to-point navigation.

In the remainder of this chapter we will use the words up, down, left, and right to
mean the directions +y,—y, —z,+z respectively. When we say point A is above,
below, behind, or ahead of a point B we will mean that A is in the +y, -y, —z,+z
direction respectively from B. Finally, vertical (horizontal) motion is parallel to the
y (respectively, z) axis. At any stage, the current coordinates of the robot (which are
known to the robot) are denoted by (z,y).

3.5 The Algorithm for Simple Scenes

It turns out that certain scenes that we call simple scenes capture most of the dif-
ficulties in designing online navigation algorithms (for both the one-trip and k-trip
problems). A scene is called simple if (a) all obstacles have the same height 2h and
width 1, and (b) the lower left hand corners of all obstacles are at coordinates of
the form (i, jh) for integer i and j. Thus in a simple scene the bottom sides of any
two obstacles are either at the same y-coordinate, or at y-coordinates that differ by
k. For instance, the obstacles in Fig. 3.2 form a simple scene. Observe that in a
simple scene is that one can move vertically along any integer z-coordinate without
encountering any obstacles.

Very roughly speaking, scenes where obstacle heights and positions are arbitrary can
be treated as simple scenes where the obstacles are fixed-height portions of the actual
obstacles. As we point out later, dealing with arbitrary obstacle widths causes some
messiness in our algorithm.
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3.5.1 Fences and the One-trip BRS Algorithm

For both the one-trip BRS algorithm and the &-trip algorithms, the notion of a fence!
is important. An up fence is a sequence of obstacles extending across a window of
height 2L that is centered vertically at s, where each obstacle in the sequence is
exactly h higher and to the right of the preceding obstacle in the sequence. (see Fig.?
3.2). By “extending across” the window we mean that the lowest obstacle in the fence
is centered at or below the bottom of the window, and highest obstacle is at or above
the top of the window. Henceforth, whenever we say “the window” we will mean the
window of height 2L centered vertically at s. > Between the top half of the left side
of an obstacle and the bottom half of the left side of the next obstacle in the fence,
there is a rectangular region of height h, which we call a band. A fence can thus be
viewed as a contiguous sequence of bands extending across the window. (See Fig.
3.2).

A point P is said to be left of a fence F' if an imaginary horizontal line from P to the
right intersects the top half of some obstacle of F. On the other hand, P is said to
be right of F if this horizontal line does not intersect any obstacle of F. A path is
said to cross the fence if it connects some point left of the fence to some point that is
right of the fence, and stays inside the window. (The definitions for a down-fence are
analogous). For instance the path from A to B in Fig. 3.2 crosses the fence shown.
Any path that crosses a fence therefore pays vertically at least A to cross a fence. If
there is a fence in the scene whose leftmost obstacle is to the right of s, then clearly
any s-t path that stays inside the window must cross this fence, and pay vertically 4
to do so (see Fig. 3.2).

It is easy to find a fence with vertical cost at most 2L. For instance, starting from
the bottom of the window, an up fence can be found as follows:

Repeat until at top of the window (i.e. ¥ = +L): walk to the right till an
obstacle is hit, then move up to the top of the obstacle.

The one-trip BRS algorithm restricted to simple scenes is then essentially this:
Initially, walk from s down to the bottom of the window. Until the wall is

reached, walk to the right, alternately building up and down fences across a
window of height 2L centered at s.

'What we call a fence here is similar to a sweep in [19]

2Since L > n, the window in this figure should really be taller than its width. However for the
sake of clarity, in this and all figures in this chapter the vertical dimension has been compressed
considerably.

3We later find it convenient to allow fences to extend significantly beyond the window boundaries;
the only requirement is that the fence extend at least across the window.
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]
]

Figure 3.2: A fence in a simple scene. The obstacles (1,2,3,4,5) with thick boundaries
form a fence. The dashed line connecting points A and B crosses the fence. The shaded
regions are the bands of the fence.

The robot never walks backward, so its total horizontal cost is n, and since L > n,
this cost is only a small order term. Note that every obstacle hit by the robot is part
of some fence. Thus every time the robot spends 2L (vertically) to build a fence, it
is also forcing the optimal offline path to spend at least h to cross the fence. So if
h > L/\/n clearly the competitive ratio is O(y/n). The case h < L/\/n is even easier
to handle: the robot hits at most n obstacles (since they have width 1 and the robot
never walks backwards), so its total vertical cost is at most nk < L\/n.

3.5.2 A Naive k-trip Approach

For the k-trip problem an intuitively reasonable approach is to extend the BRS idea
as follows:

On each trip, make new fences that are disjoint from previous fences.

We say that two fences are disjoint if the bands of one fence do not intersect the bands
of the other; therefore if the obstacles of the fences are at z-coordinates between those
of s and ¢, any s-t path that stays inside the window must pay (vertically) at least
h to cross each fence. The reason for considering only disjoint fences is that if the
bands overlap, then a path can cross both fences with a vertical cost of only & by
crossing the region common to the bands. Clearly two disjoint fences cannot share
obstacles. Here is a simple way to test whether two up-fences F and F’ are disjoint,
where the first (lowest) obstacle of F’ is to the right of the first obstacle of F. Imagine
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that the obstacles of F' and F' are the only obstacles in the scene. Then F and F’
are disjoint if and only if each obstacle of F' can be translated to the right without
hitting * an obstacle of F. Thus in Fig. 3.3, F; = (1,2,3,4,5), F; = (6,7,8,9,10),
and F3 = (6,7, P',9,10), are all legal fences, but Fy, F; are disjoint, while Fy, F3 are
not (obstacle P’ hits 4 when it is translated to the right, and the band of F3 between
P’ and 9 overlaps the band of F; between 3 and 4). Indeed, since F), F3 are not
disjoint it is possible to “sneak” past both fences through the gap between obstacles
P' and 4, paying only h.

Suppose that one could find new disjoint fences “cheaply” (roughly 2L cost), and one
could cross old fences cheaply (roughly A cost). Then the average online cost per trip
to get past a fence is O(L/k) (O(L) to build it once, and h to cross it up to k — 1
times), whereas the offline optimal path pays at least A to cross it. Let 7 = L/V/nk.

If A > 7 we would achieve a cumulative ratio of O(f%) = O(y/n/k). As before the

h < T case is easy: the total vertical cost on each trip is at most nh < Ly/n/k. In fact
if h < 7 it is easy to see that the simple strategy that just walks to the right along
some y-coordinate, (going around any obstacles on the way) achieves an O(\/r—z_/—k: )
ratio on each trip.

However, on the second and later trips, if the robot attempts to find fences in the
straightforward manner described above, it could cost a lot more than O(L) to keep
the fences disjoint from previously discovered fences. Consider the scene in Fig. 3.3.
Suppose that the top fence (1,2, 3,4,5) was created on the first trip, and the robot is
trying to create a new fence on the second trip, starting at obstacle 6, using the simple
procedure described before. It is clear that this will result in the fence (6,7, P',4,5)
which “collides” and merges with the first fence. Note that P’ is the first “invalid™
obstacle encountered when building the second fence: when translated to the right,
it hits obstacle 4 of the first fence. To ensure disjointness, the third obstacle of the
second fence must be to the right of the obstacle 4 in the first fence.

The robot could recover from the collision by trying to find an obstacle P| to the
right of obstacle 4 that can be used in place of P’. One way to do this is to go up
to obstacle 4 (perhaps by joining the path previously used to get to obstacle 4), then
down along 4, then to the right (see Fig. 3.4). The next obstacle encountered can
then be included in the second fence.

However in general such recovery strategies could be expensive. Consider the scene
shown in Fig. 3.5. After the fence (1,2,3,4) is built on the first trip, in the next
trip the robot starts building a new fence ® at obstacle 5, and encounters an invalid
obstacle 6. To find the replacement (7) the robot must move vertically along two
obstacles: 6 and 2. Similarly on the third trip, the invalid obstacle 13 is replaced by

*The top of an obstacle “grazing” the bottom of another obstacle is not considered a “hit”
5For convenience, we show each fence starting h lower than the preceding fence.
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Figure 3.3: The robot encounters an invalid obstacle P’ when finding the second fence: no
continuation of the partial fence (6,7, P') can be disjoint from the first fence (1.2,3,4,5).
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Figure 3.4: A possible way to recover from the collision of the previous figure: find an

obstacle Pj (obstacle 8) to use in place of the invalid obstacle P/, and continue building the
second fence.
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Figure 3.5: A scene where the naive repair strategy is too expensive. Five fences are created
in succession. Obstacles are numbered in the order in which they are visited. Similarly-
shaded obstacles constitute a fence. Unshaded obstacles are not part of any fence.

14, after moving along four obstacles 13,6,2,7. (There could be other obstacles — not
shown in the picture - in the space between 13 and 14, so that all paths from 13 to
14 involve moving along 4 obstacles.) Thus on the ¢th trip a single repair involves
vertical motion along 2(: — 1) obstacles. It is not hard to see then that building u
fences this way will cost Q(u2L) and not O(ulL).

It is possible that other more sophisticated ways of recovering from the fence collision
problem are not this expensive, but we do not know of any.

3.5.3 Groups of Disjoint Fences

Our approach is to give up entirely on trying to create disjoint new fences on each
trip. Specifically, instead of trying to build single fences on each trip, we do the
following. Suppose that h = aL/ Vnk for some a > 1 (recall that 2k is the obstacle
height, and a < 1 is an easy casc to handle). Then our strategy is:
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Figure 3.6: The same scene as in the previous Figure. Five fences are created in tandem.
Obstacles are numbered in the order in which they are visited. Note the considerably smaller
vertical distance walked.

First trip: Build groups of G = I'f] disjoint fences (alternately upward
and downward) across a window of height 2L centered at s, until the
wall is reached. Ensure that

(a) the cost of building each group is O(kL),
(b) an O(L) length path crossing each group (i.e. going from the
z-coordinate of the leftmost obstacle of the leftmost fence to the

z-coordinate of the rightmost obstacle of the rightmost fence) is
found, and

(c) the right end of each group-crossing path is the left end of the
next group-crossing path.

Remaining k — 1 trips: Follow the group-crossing paths to the wall.

The first trip is shown schematically in Fig. 3.7. To see why the above strategy
achieves a O( \/r_z/_l;) ratio, assuming we can somehow satisfy (a), (b) and (c), notice
that the average online cost per trip to get past each fence group is O(L) (average of
O(kL) building cost on the first trip, and O(L) crossing cost on the remaining trips).

Crossing each group costs the optimal offline path at least (k/a)h = L/\/n/k, so the
average online trip length is within a O(y/n/k) factor of optimal.

A Search-Quality Tradeoff. It is easy to see that the first trip achieves the search-
quality tradeoff mentioned earlier. Since each fence group costs the offline optimum
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A O(L)path

k /a fences: O(kL) work

Figure 3.7: High-level view of the optimal k-trip strategy. First trip: create groups of
fences with short group-crossing paths. Remaining trips: follow these short paths.

path at least L/ /n/k to cross, the robot cannot find more than /n/k groups before
reaching the wall. Thus the total length of its first trip is O(kL\/n/k) = O(Lv/nk),
and the total length of the group-crossing paths is O(Ly/n/k).

The Doubling Strategy when L is unknown. Note that if L is not known. we
can just guess a value, and if the above steps repeat more than \/n_/k_ times we can
double our guess and repeat the entire procedure. Thus there is only a constant factor
penalty for not knowing L.

The advantage of building the fences in a group is that it is not necessary to build a
complete fence before finding another one (and we just saw that this could be very
expensive). Rather, the robot can judiciously skip from working on a partial fence
to work on another partial fence, thus extending the frontiers of the fences roughly
concurrently. For instance, the 5 fences in Fig. 3.5 can be constructed as a group in
the manner shown in Fig. 3.6. The robot first finds the lowest obstacle of each fence.
then the the second obstacle of each fence, and so on. (Because of the regularity of
the scene, it is efficient to build the fences exactly at the same rate; in general our
algorithm may add several obstacles to a fence before skipping to another fence) It
is worth observing here that although the ith obstacle of a fence may not be “easily”
reachable from the (i — 1)st obstacle of the same fence (which is why it is expensive to
build the complete fences in succession), it is easily reachable from the ith obstacle
of the fence above (by a simple path that goes down h and then to the right). We
will show later that we can define fences so that we can always guarantee that the
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ith obstacle of a fence is easily reachable either from the preceding obstacle on the
same fence or the corresponding obstacle of the fence above.

Examples of Search Trips

The search algorithm will be described later but to give a feel for it we show examples
of search trips for n = 70 and k¥ = 1,2,3 and 6 in Figures 3.8, 3.9, 3.10, 3.11. These
are screen dumps of an X-windows based program for simulating various navigation
algorithms on simple scenes. © In the simulation, the user can generate a simple
scene using mouse clicks, and select one of four algorithms: (a) RAND: a randomized
strategy; whenever the robot hits an obstacle, it goes up with probability 0.5 and
down with probability 0.5, (b) BRUT: this is the brute force strategy; whenever the
robot hits an obstacle, it goes around the obstacle and then ‘o the other side to the
same y-coordinate as the start point, (c) BRS: the Blum-Raghavan-Schieber single-
tri, algorithm, and (d) TREE: the search trip for a & value that can be chosen by
the user. (The search algorithm is called TREE for reasons that will become clear
later) The four figures show only the TREE algorithm. The point s is at the left
center of the scene, and t is the right side of the scene. The obstacles touched by
the robot are highlighted. In each group of fences, even and odd-numbered fences
are shaded differently so the fences are easier to distinguish. The “Work” window
shows the total distance walked (the thin line) in the form az + 3y where a is the
horizontal distance in units of obstacle-widths and § is the vertical distance in units
of half-obstacle heights (i.e. h). The “Path” window shows the length of the s-t path
found (the thick line) in the same format. As before, in these examples the vertical
dimension has been compressed for clarity; each obstacle must be really thought of
as being (say) 10 times taller than its width.

In the figures as & ranges through 1,2,3,6, the robot works “harder” and finds paths
whose vertical lengths are 38, 29, 23, 24 respectively. Thus in a particular scene, the
length of the path found need not always improve as k increases. The only guarantee
is that the worst case path length decreases with increasing k, i.e., for some constant
¢, on any scene where the s-t distance is n, the length of the path found will not

exceed cL\/n/k (and the total work will not exceed cLvnk).
3.5.4 Fence-trees
We would like to build a collection of G = [%] up-fences (say) across a window of

height 2L, with a cost of O(kL) and find an O(L) length path crossing the collection.
Our key idea is to define a tree structure whose nodes are certain obstacles in the scene,

6A copy of the code for this demo can be obtained by sending email to chal®@cs. cmu. edu
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Figure 3.8: Initial search trip, & = 1. This and the next three figures show the initial
search trip of the robot, for £ = 1,2,3 and 6 respectively. The thin line shows the path
of the robot, the thick line shows the s-t path found (s is at center left, ¢ is at the right).
In each figure, groups of k fences (alternately up and down) are found with &k,2k.3k....
obstacles each.
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Figure 3.10: Initial search trip, k = 3.
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Figure 3.12: A scene showing a 3 x 4 fence-tree, where the root Fj(1) is obstacle 1. The
shaded obstacles are the nodes of the tree, and the dark lines are the edges. Note that the
tree defines 3 fences with 4 obstacles each. Differently-shaded obstacles constitute different
fences. Other obstacles are not part of any fence.

and whose edges are “short” paths between the nodes. These nodes will constitute the
desired collection of fences, and the path from the root node to th= rightmost node is
the desired O(L) length path that crosses the collection. Furthermore, traversing all
edges of this tree with a cost of O(kL) is equivalent to building the desired collection
of fences.

The nodes of this tree will be denoted by Fi(m), for : = 1,2,...,G and m =
1,2,...,M (for some M to be determined later). The reason for this notation is
that Fi(m) will turn out to be the mth obstacle of fence F;. In a given scene, once
we fix an obstacle Fi(1), a unique G x M fence-tree can be defined as follows. The
root of this tree is Fy(1). (For illustration we refer the reader to Fig. 3.12 where
we show a 3 x 4 fence-tree.) For brevity we will just say “obstacle P” to mean the
center of the left side of obstacle P. The coordinates of obstacle F;(m) are denoted
by (Xi(m),Y;(m)). We say an obstacle @ is down-right (up-right) from an obstacle
P if Q is the first obstacle hit when moving to the right from the bottom (top) of P.
The following rules then define the G x M fence-tree with root F;(1) (examples of
the rules are pointed out in Fig. 3.12).
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Fence-Tree Rules.
1. Fori=2,3,...,G, Fi(1) is down-right from F;_;(1).
This defines nodes 5,9 in Fig. 3.12.
2. Form=2,3,...,M, Fy(m) is up-right from Fy(m - 1).
This defines nodes 2,3.
3. Fori=23,...,Gand m=23,.... M,
If Fi(m - 1) is to the right of F;_,(m), i.e., X;(m - 1) > X;_1(m),
then F;(m) is up-right from F;(m - 1)
else F;(m) is down-right from F;_{(m).
Node 7 is up-right from node 6, and node 8 is down-right from node 4.

Thus each node F;(m) (except the root node F3(1)) is defined to be either up-right
from F;(m — 1) or down-right from F;_;(m). We can think of the “defining obstacle”
of Fi(m) as its (unique) parent, and we can think of the “short” (vertical cost h)
up-right or down-right path from the parent to F(m) as an edge. In particular for
i > 1,m > 1, Fi(m) can only be defined after both its potential parents F;_;(m) and
F;(m ~ 1) have been found, 7 and by Rule 3 its parent is Fi(m — 1) if X;(m —1) >
Xi-1(m) and F;_;(m) otherwise.

This defines a natural binary rooted tree structure. The tree structure is visually
apparent in Fig. 3.12. The G x M fence-tree in fact defines exactly the group of
fences that we wanted to build:

Theorem 2 (Fence-Tree) In a given simple scene, for a fized obstacle P. for a
given G and M, the 3 rules above define a unique G x M fence tree with root P.
Moreover, the obstacles in this tree form G disjoint up-fences with M obstacles each,
with the first obstacle of the leftmost fence at P. If M = [2L] + [£] then each of
these fences extends across (and possibly beyond) a window of height 2L writh the root
P at the bottom of the window.

Proof: The uniqueness of the tree follows from the fact that the root Fi(1) is fixed
and the three rules define each node F;(m) uniquely. It is easy to see that the obstacles
F;(m) defined by Rule 2 constitute a fence F;. Rule 1 defines the initial obstacles
of each remaining fence F; to be down-right from the initial obstacle of the fence
F;_; above it. It is clear that for each ¢ > 1, the obstacles Fi(m), m = 1.2,... .M

"This is not strictly true; it is conceivable for instance that after defining F;(m ~ 1), one can infer
from the positions of the other nodes that X;_1(m) < X;(m — 1) without actually finding F;_(m).
Then F;(m) can safely be defined to be up-right from F;(m — 1). However we know of no efficient
algorithm that takes exploits such a possibility. Our algorithms always find both potential parents
of F;(m) before finding F;(m).
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constitute a fence. We claim that these fences are disjoint. Since the initial obstacle
of each fence is down-right from the initial obstacle of the fence F,_; above it, the
fences will be disjoint if and only if for each m = 2,3,..., M, Fi(m) is to the right of
Fi_1(m), and this is guaranteed by Rule 3. For instance, since F;(4) (obstacle 4) is
to the right of F(3) (obstacle 7), Rule 3 defines F3(4) to be down-right from Fi(4).
If instead F3(4) were defined to be up-right from F2(3), then F,(4) would be obstacle
B, which is left of F}(4), and fences 1 and 2 would no longer be disjoint.

It is easy to verify that the value M = [%] + [£] is just sufficient to ensure that
even the fence Fg that starts Gh = h[%] below the bottom of the window extends at
least 2L above the obstacle P (which is Fi(1)). 8 =

Recall that we wanted to define the fence group so that there is a cheap (O(L) length)
path that crosses the group. In fact, the unique path in the tree from the root Fi(1)
to each node has length at most O(L), as we show below.

Lemma 3 In a G x M fence-tree in a simple scene, where G = [%] and M =
HEAb!

(a) the unique path in the tree from the root to each node has length O(L), and

(b) the total length of all edges is O(kL).

Proof: Recall first that £ < n and L > n. Since the unique tree path from
the root to any given node always goes to the right, the total horizontal cost of this
path is at most n. On this path, each down-edge leads to a lower fence (and there
are only G = [£] fences), and each up-edge leads to an obstacle on the same fence
(and there are only M = [£] + [Z] obstacles per fence), the total vertical cost
of this path is at most h(G + M). Thus the total length of this path is at most
n+h(G + M) =n + h(2[%] + [%£]), which is O(L) since h = aL/vnk < aL/k.

To bound the total length of all edges, note that each edge can be associated with a
unique node, namely the one on its right. For a given node, the horizontal portion of
the edge whose right end is at that node has length at most the horizontal distance
between the node and its predecessor on the same fence. Since the obstacles of a
given fence are at distinct z-coordinates, the total horizontal portions of the edges
associated with a given fence add up to at most n < L. The total length of the
vertical portions of these M edges is clearly AM = O(L). The desired bound then
follows by summing over all G < k fences. [ ]

Thus if the robot traverses all edges of this tree it will have found not only a group
of disjoint fences but also a cheap path that crosses all of them.

8The fences don’t necessarily have to start exactly at the bottom of the window; the important
thing is that they extend at least across the window
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Note incidentally that there are GM obstacles in the fence-tree, and GMh < kMh =
O(kL). Thus we would like the robot to traverse the fence-tree with a cost propor-
tional to & times the number of obstacles in the fences, or a cost proportional to the
total length of the tree edges. We remark here that the fence-tree must be traversed
online; a simple approach based on depth-first-traversal may not be efficient in general
since the algorithm does not know where exactly the nodes are: the robot can locate
F;(m) only after it has located both its potential parents F;_;(m) and Fi(m — 1) or
at least after it has determined whether or not X;(m — 1) > X;_;(m) (for :,m > 1).

3.5.5 Traversing the Fence-tree
Conservative Strategies and Jumps

Our algorithm will be a conservative tree-traversal strategy in the following sense.
It adds a new edge to the current partial tree only when such an edge is certain to
be part of the final tree being built. In addition, the algorithm visits a node F;(m),
t > 1,m > 1, only after both its possible parents F;_;(m) and F;(m — 1) have been
visited.

At any given time during a (conservative) tree traversal, the robot either adds a new
edge from the current node, or jumps from the current node to a different (already-
discovered) node in the partial tree. Recall that an efficient strategy is one where the
total cost is at most a constant times either (a) the total length of the tree edges, or
(b) total heights of all the obstacles in the tree (i.e. h times the number of obstacles).
So to show that a given conservative strategy is efficient it suffices to argue that the
total jump cost is bounded by one of these two quantities. We do not know of any
efficient strategy that jumps by walking only along tree edges. Thus our algorithm
occasionally moves outside the tree when performing a jump.

A Good Traversal Order is Crucial

We must point out here that even when the restriction to move along tree edges is
removed, it is still not the case that just any node-visiting order will be efficient. In
particular suppose we try to build the fence-tree of Fig. 3.6 by visiting the nodes in
fence-order, i.e., we first visit all nodes on the top fence, then visit all nodes of the
second fence, and so on. With this node-visiting order, there is a jump from every
node of the second and lower fences; every time an obstacle on one of these fences is
discovered by adding a new down-right edge, the algorithm jumps to the fence above
in order to find the next obstacle on the fence. Examples of jumps are 2 to 6, 7 to
11, 12 to 16, 3 to 7, 8 to 12, etc. By adding enough additional obstacles in the scene,
one can ensure that the shortest path in the scene for each jump is almost as long as
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the path in the tree that connects the nodes. Thus we can imagine “charging” each
jump to the edges in the corresponding tree path. The problem now is that the tree
edges get charged more than a constant number of times. For instance, the 3-to-7
jump is charged to the edges ending at obstacles 2,3,6,7; the 4-tc-8 jump is charged
to the edges ending at 2,3,4,6,7,8. Thus each jump from the initial obstacle P of a
fence charges the series of down-right edges in the tree from obstacle 1 down to P.
This is clearly too expensive. ‘

We saw before that the cheapest way to traverse a fence-tree of the form shown in
Fig. 3.6 is to build the fences “concurrently” rather than “sequentially”, i.e. first
visit the initial obstacles of each fence (by down-right edges), then visit the second
obstacle of each fence, and so on. Although this strategy is efficient for the particular
kind of fence tree shown in the figure, it may not be efficient in general: A scene
can be constructed along the lines of the scene of Fig. 3.5 that forces a “concurrent”
algorithm to travel a large distance when building the fence-tree. Thus in general
neither a purely sequential nor a purely concurrent node-visiting order is efficient. It
turns out that a combination of these extremes produces an efficient traversal order.

The key problems in designing a traversal strategy therefore are (a) deciding the order
in which the nodes will be discovered, and (b) designing the jump procedures. To aid
in the analysis, our jump procedures are designed in such a way that portions of the
walk can be charged to either the heights of some obstacles (either already discovered.
or to be discovered) in the tree, or to the tree edges. Our node visiting order ensures
that different jumps are charged to different parts of the tree, so that each edge and
obstacle in the tree is charged at most a constant number of times.

Designing the Traversal Algorithm

Let us first note that during any conservative tree traversal, the partial tree contains
some initial prefix (i.e. the leftmost ¢ obstacles, for some ¢) of each fence. In addition,
the following property always holds:

Progress-Ordering Invariant: No fence has more obstacles than a fence above it
(since Fi(m), i > 1, can be visited only after visiting F;_,(m)).

We will now describe the traversal algorithm for a fence-tree corresponding to a
group of G up-fences with M obstacles each. Rather than present all the details of
the algorithm right away, we will motivate intuitively the design of the algorithm.

A key invariant maintained by our algorithm is the following:

Last-Node Invariant: At any time, a new edge is only added from the last
(highest) node of a partial fence.
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Notice that this invariant is not satisfied by a strategy that builds the fences one
by one sequentially (as described previously). This invariant implies that the jumps
made by our strategy are always from the last node of one fence to the last node of
another. In fact in our algorithm the jumps are always either to the fence below or
the fence above the current fence. Moreover, when the algorithm jumps to the fence
above, it simply retraces the path that was last used to jump down to the current
fence from the fence above. Thus we need only design the procedure for downward
jumps. Intuitively, the fact that jumps are always between the last nodes of the fences
ensures that only “recent” portions of the tree are charged for a jump, thus avoiding
over-charging any one portion of the tree.

In the remainder of this chapter, we will often identify a fence with its last obstacle:
thus when we say “fence F; is left of obstacle P” we mean that the last obstacle of F;
is left of P. We use (X;,Y;) to denote the coordinates of (the center of the left side
of) the last obstacle of F;, and M; will denote the number of obstacles currently in
F;. We will find it convenient to associate an edge of a fence-tree with the obstacle
at its right end, and we define the coordinates of an edge to be the coordinates of its
associated obstacle.

At any stage the algorithm either (a) makes progress on the current fence, i.e., adds
a new up-right edge from the current node, (b) goes down to the next lower fence,
either by means of a down-right edge, or by jumping to the next lower fence, or (c)
returns to the fence above the current fence. To describe the algorithm we need to
specify when each of these actions must be taken.

Firstly, note that in order to maintain the Last-Node invariant, the algorithm must
not add an obstacle to the current fence (by an up-right edge) if there is a possibility
of a new down-right edge from the current node. Such a possibility exists if and only
if the current node, say Fi(m), is to the right of the last obstacle, say Fi;,(p), of the
fence below, i.e., X;(m) > Xi;1(p). To see why, note that if F;(m) is to the right of
Fi11(p), then p < m. Thus there is a possibility that when F,;;(m — 1) is eventually
found (if it hasn’t yet been found), it might be to the left of F;(m), so there would be
a down-right edge from F;(m). On the other hand, if X;(m) < Xi;,(p), then there
cannot be any new down-right edge from F;(m).

Therefore let us insist that the robot always goes down from the current node Fi(m)
to the next lower fence F;,; whenever F;(m) is to the right of F;;;. There are two
ways the robot could move to Fiy,. If F;,, has m — 1 obstacles, this means there
is a down-right edge from F;(m), and the algorithm adds this edge. Otherwise, the
algorithm jumps down to the last obstacle of F;;; (in a manner to be specified later).
Thus a first cut at the fence-tree traversal algorithm might look like this (we assume
the algorithm starts at a given obstacle Fi(1), and an empty fence is considered to
have its “last” obstacle at z-coordinate —oo):
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Repeat until all G x M nodes on the tree have been found:
(Let Fi(m) be the current node).

1. If the current node F;(m) is to the right of the last obstacle of the fence
Fi41 below, then go down to Fjy,, either by adding a down-right edge
(if Fi4; has m — 1 obstacles), or by jumping to F;;; using procedure
JumpDownleft.

2. Else if it is legal (i.e. either i = 1 and F;_j(m + 1) has been found and
Xi—1(m + 1) £ X;(m)), add an up-right edge.

3. Else jump to the fence F;_, above the current fence.

Observe incidentally that since the robot always moves down to the fence F},, below
when the current fence F; is ahead of Fi,,, the following invariants must hold at all
times:

Ordering Invariant: All fences below the current fence F; are z-ordered, i.e., for
a.ll] >4, Xj < Xj-H'

Almost-Ordering Invariant: No fence has more than one obstacle to the right of
a lower fence.

In order to fully specify the above algorithm, we need to describe the procedure
JumpDownleft, whi~ we do below. As we will soon see, this algorithm does not
quite satisfy our desired bounds. However, we will be able to repair it by the addition
of one more proce ':re.

Procedure JumpDownleft: to jump from F,(m) to F,41(p). (see Fig. 3.13).
Necessary conditions for a call to this procedure: X,(m) > X,41(p) and p <
m— 1.
A. Starting at F,(m), move left along the tree edges until exactly above
the last obstacle P of F,4;, i.e. the z-coordinate equals X 41. (A to
B)

B. Move vertically down to P. (B to C)

Let us consider how we might charge the cost of this jump (See Fig. 3.13). From
the Almost-Ordering Invariant it follows that the set E,, of tree edges retraced (even
partially) in phase A consists of zero or more down-right edges, followed by at most
one up-right edge. Therefore the edges in E,, have their right ends on obstacles
F,(m), Fu_1(m), ...; let S, be the set of these obstacles. Let T, denote the set of
new obstacles that will be added to F,,, after this jump, up to F,;(m —1). From
the figure it is easy to see that the cost of phase A equals the length of the edges E.,,
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Figure 3.13: Showing a use of procedure JumpDownleft to jump from F,(m) to (the
last obstacle of ) F,4;. Solid-boundary rectangles are obstacles found so far in the tree.
Rectangles with dotted boundaries are nodes that will be eventually found in the tree.
Thick solid lines are tree edges. The thin solid line is the path followed when executing the
procedure. The procedure starts from A (obstacle F,(m)), retraces tree edges to the left to
point B, then goes vertically down to C, at the top of the final obstacle of F,4;. The set
E is the set of edges retraced in AB. The length of BC exactly equals the total height of
the shaded halves of the obstacles in S, U Ty4.
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Figure 3.14: How with the simple algorithm, two different uses of JumpDownleft (from
F;(m) to F,41, and from F;{;(m) to F;;2) can charge the same edges of the fence tree.
Obstacles are numbered in the order in which they are discovered. Dark lines are tree
edges; arrow-lines show the two jump paths.

and the cost of phase B equals h|S,, UT,4|- We therefore charge the cost of this use
of JumpDownleft to the edges E,, and the obstacles Sp, U Ty41.

Unfortunately, with the above simple algorithm, some of the edges E,, charged in
this jump may be charged again by another use of JumpDownLeft. (See Fig. 3.14)
Indeed, suppose the robot jumps from F;(m) down to F;;; and eventually arrives
at Fip(m —1). Suppose Xipi(m —1) < X1z < Xi(m), and My, < m — 1 (this
means there will be an up-right edge from F;;;). At this point the robot will return
to F;(m) and then add a down-right edge to Fi;;(m). Now step 1 applies again, and
since M;y3 < m — 1 the robot executes JumpDownLeft to go down to Fj;,. Siuce
Xi+2 < Xi(m), some of the edges retraced in phase A of this procedure will overlap
with those in the set E,, that was charged by the F;(m)-to-Fi;; jump. It is not
hard to see that this is the only sort of situation when two different invocations of
JumpDownLeft can charge the same portion of the tree; to be precise, no overlap of
charging can occur between two calls to JumpDownLeft from F;(m) and Fj(m’) when
m#m'

Fortunately it turns out we could have foreseen this re-charging situation, and taken
steps to avoid it. In the above example, when the robot is at Fi(m — 1), it is clear
that the nezt obstacle Fi;1(m) of Fi;; must be to the right of F;(m) (and therefore
to the right of Fi3), and therefore there will be a jump from Fi;i(m) to Fi4;. This
second jump could have been avoided if the robot jumped down from Fi ((m — 1) to
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Figure 3.15: Showing a use of procedure JumpDownRight to jump from F,(m) to F,41(p).
Solid-boundary rectangles are obstacles found so far in the tree. Rectangles with dotted
bouncaries are nodes that will be eventually found in the tree. Thick solid lines are tree
edges. The thin solid line shows the path followed when executing the procedure. The
procedure starts from A (obstacle F,(m)), goes vertically down to a tree edge (point B),
then follows the edges to the right to the final obstacle of Fy, i (point C). The set E,; is
the set of edges followed in BC. The length of AB exactly equals the total height of the
shaded halves of the obstacles in Syq1 U Tyyi.

Fy2 instead of returning to F;.

We can generalize from this example and insist that the robot must jump down from
Fi(m) to F;,; whenever it becomes clear that (a) the nezt obstacle Fi(m + 1) of the
current fence F; will be to the right of F;,;, and (b) there will be an up-right edge
from Fi,;. Condition (a) is equivalent to saying that for some fence F,; above F;,
F,(m + 1) is to the right of Fiy,, and condition (b) is just M;,; < m. The procedure
(call it JumpDownRight) to jump down (to the right) from F;(m) to Fi4, is simple
(see Fig. 3.15):

Procedure JumpDownRight: to jump from F,(m) to F,41(p).
Necessary condition for a call to this procedure: X,(m) < X,4+1(p) and p < m.

A. Move vertically down until on a tree edge. (A to B in Fig 3.15)
B. Follow tree edges to the right up to the last obstacle of Fi4; (B to C).
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It should be clear that the set £y, of tree edges followed (even partially) in phase
B consists of at most one down-right edge followed by zero or more up-right edges.
Moreover all these edges have their right ends on obstacles of F;;;. Let S;,; be the set
of these obstacles. Let T}, be the set of new obstacles that will be found on Fi,,, up
to Fiy1(m). Clearly the length of phase A equals k|S;4y U T;41], and length of phase
B is at most the length of the edges E;y;. We thus charge the cost of JumpDownRight
to the edges F;,, and the obstacles S;y, U Tiy;.

Another situation (which we overlooked in the above simple version) where the robot
must jump down to the next lower fence is if the current fence is complete (i.e. the
robot is at Fy(m) and m = M).

Our final algorithm is then:

Algorithm FindFenceTree:
Repeat until all G x M nodes on the tree have been found: (If at any stage
the wall z = n is reached, then HALT).

Let F;(m) be the current obstacle.

1. If X;(m) > X4, then:
if M;y; = m — 1 then add a down-right edge to F;+ (m),
otherwise JumpDownleft to F ;.

2. Else if M;;; < m, and either m = M, or for some fence F,; above Fj,
Xq¢(m+1) > X;41 then JumpDownRight to Fii;.

3. Else if it is legal (i.e. either ¢ = 1 or F;_;(m + 1) has been found and
Xi—i(m + 1) € Xi(m)) then add an up-right edge.

4. Else jump to the fence F;_; above the current fence.

Note that since we have only increased the set of possible situations when the robot
must jump to the next lower fence, all three invariants (Last-Node, Ordering, Aimost-
Ordering) continue to hold. In addition, the following property of the algorithm is
easily seen to hold:

Jump-Up Invariant: Whenever the algorithm jumps from a fence F; to the
fence F;_; above, either F; has the same number of obstacles as F;_,, or it has
exactly one less obstacle and its last obstacle is left of the last obstacle of F;_;,
ie. X; < X;_1.

Of course, we now have two different jump procedures and we must make sure that
for each procedure, different invocations charge different portions of the tree. We
prove this below.

In the analysis, we will find it convenient to associate an edge in the tree with the
obstacie at its right end. and we define the coordinates of an edge to be the coordi-
nates of its associated obstacle. We say an edge is “on a fence F;" if its associated
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obstacle belongs to ;. When we say an object A (edge, obstacle, etc) is left (right) of
another object B we will mean that the z-coordinate of A is strictly smaller (greater
respectively) than that of B.

Lemma 4 The total cost of all invocations of procedure JumpDownleft is O(kL).

Proof: Consider a particular call to JumpDownleft to jump from F,(m) to F.41(p)
(see Fig. 3.13).

Clearly the sets E,, and S,, associated with this call will overlap with the correspond-
ing sets of a future call to JumpDownlLeft from F;(m') only if m’ = m. Also, as we
shall see below, the set T4 will not overlap with the corresponding set in any future
call to JumpDownleft from F,(m’). Thus it suffices to show that the charged sets
E,., S, Tu41 associated with this call do not overlap with the corresponding sets of
any future call to JumpDownLeft from some obstacle F;(m). Firstly note that this
procedure cannot be called later from F;(m) for any fence F; above F,, since Fj4, has
at least m obstacles (by the Progress-Ordering invariant) and therefore is to the right
of Fj(m), which means the necessary conditions for using this procedure would not

be satisfied.

We claim that when the robot eventually jumps back from F,.; to F,(m) after the
current jump, Fy41 and every fence below and left of F, will have at least m — 1
obstacles. The necessary condition p < m — 1 for this procedure’s invocation then
implies that no fence below and left of F,(m) can be the destination of a future call
to JumpDownlLeft from the mth obstacle of any fence. It then follows that none of
the elements of E,, and S, will be charged again (since none of the elements of E,,
and S, are right of F,(m) and none of the elements of the E-set and S-set in any
call to JumpDownLeft are left of the destination of the call). Another implication of
this claim is that the charged set T, of undiscovered obstacles of F,;; will have
been discovered before the next call to JumpDownlLeft from F;(m') for either j = u
or m' = m and so will not be charged again.

We now argue the above claim. That F,,; will have at least m — 1 obstacles follows
from the Jump-Up invariant. To prove the rest of the claim, suppose that F, is the
highest fence below F,4; that is left of F, and has fewer than m — 1 obstacles. By
the Ordering Invariant this means that each of the fences between (and including)
F,4+1 and F,_; each have exactly m — 1 obstacles and are left of F, (and therefore left
of F,). However when F,_,(m — 1) was discovered, step 2 would have applied and
the robot would have used JumpDownRight to jump to F,, and it would only return
to F,-; when F, has at least m — 1 obstacles (by the Jump-Up invariant). This is a
contradiction, and the claim follows. ]

Lemma 5 The total cost of all invocations of procedure JumpDownRight is O(kL).
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Proof: Consider a particular call of JumpDownRight to jump from F,(m) to F,;1(p)
(see Fig. 3.15), and let the associated charged sets be E,.y, Sus1, Tusr-

It suffices to show that for any future call to this procedure from F,(m') on the
same fence F,, the charge sets do not overlap with the current charge sets. The
Jump-Up invariant implies that when the robot jumps back to F,, F,4, must have
at least m obstacles (which implies that JumpDownRight cannot be called again from
F.(m), since the necessary condition p < m for using this procedure will not be
satisfied). This means that the charged set T4, of undiscovered obstacles will have
been discovered before any future call from F,, and so will not overlap with a future
T-set. Furthermore, from the previous discussion of this procedure we know that
the next obstacle F,(m + 1) of F, is to the right of F,,;. Since any future call to
JumpDownRight from F, can only occur from F,(m + 1) or an obstacle to its right,
the sets E,4, and S,41 in the current call will not overlap with the corresponding
sets in any future call from F, (since none of the elements of E,,,; and S,.; are to
the right of F,(m + 1), and none of the elements of the E-set and S-set in any use of
JumpDownRight are left of the start point of the jump). This completes the proof.

] .

The above two lemmas imply our main theorem:

Theorem 6 For G = [£] and M = [£] + [2L], the above algorithm for finding a
G x M fence-tree in a simple scene has total cost O(kL).

3.6 Extension to Arbitrary Axis-Parallel Rectan-
gular Obstacles

We now show how to extend the search algorithm to scenes with arbitrary axis-parallel
rectangular obstacles (for brevity we call such scenes general scenes). That is, we will

show how to explore a distance of O(Lv/nk) and find a path of length O(L\/n—/;).
Fortunately it turns out that algorithm FindFenceTree, interpreted appropriately, can
be used unchanged for these scenes. However, the procedures JumpDownRight and
JumpDownleft must be modified since for general scenes vertical motion is no longer
unobstructed. In fact if all obstacles have width 1 (but arbitrary heights and posi-
tions) then even these procedures remain unchanged.

Without loss of generality we will assume throughout that all obstacles have their left
sides at integer z-coordinates.
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3.6.1 rt-Posts

Throughout this section we will denote the value L/vnk by 7. Recall that in a
simple scene if the obstacles have height less than 27 = 2L/ vnk then they can be
considered “small” - in the sense that the simple strategy of just moving horizontally
forward (walking around any obstacles on the way by the shortest route) achieves the
optimal ratio of O(\/n—/;) on each trip. Similarly in a general scene if when moving
horizontally along some line y = yo, the robot encounters an obstacle (at point P,
say) whose top or bottom extends less than r above or below P, the obstacle can be
considered small; the robot can get around the obstacle and return to y = yo paying
a cost of less than 27 + 1. If however both the top and bottom of the obstacle are at
least T away from the point of encounter P, then the obstacle is “big”. We then say
that there is a 7-post at point P, where we define a 7-post as a height-27 portion of
the left side of an obstacle. When we say a 7-post is at point P, we mean its center
is at P.

3.6.2 rt-Fences

In a manner analogous to simple scenes, we define an up 7-fence F as a sequence of
T-posts at points (X(1),Y (1)), (X(2),Y{2)),...,(X(M),Y(M)) such that for m =
,2,....M-1:

X(m) < X(m+1) (3.1)
Y(m+1) = Y(m)+7r(=Y(1)+(m—-1)7) (3.2)

A down r-fence is defined similarly. Note that consecutive T-posts of a fence may lie
on the same obstacle, since the inequality 3.1 is not strict. As before we will only
be interested in T-fences that extend at least across a window of height 2L centered
vertically at s, i.e., Y (1) < —L and Y(M) > +L. Also, the mth post (counting from
the left) of fence F; is denoted by Fi(m) and its coordinates are (X;(m),Yi(m)). In
Fig. 3.16, the sequence of T-posts (P}, P?, P3, P{) form a 7-fence F}.

Between the top half of one 7-post and the bottom half of the next r-post in a r-fence,
there is an axis-parallel rectangular region of height 7, which we call a band. A fence
is thus a contiguous sequence of bands extending across the window. Note that the
band between two consecutive posts that are on the same obstacle is empty. Two
fences are said to be disjoint if their non-empty bands do not overlap. Thus the three
fences in Fig. 3.16 are disjoint.

For future reference we define a (right) 7-path as the path of the robot when it moves
to the right along some line y = yo as follows: If it hits an obstacle whose nearest
corner is less than 7 away, it goes around that corner to the point on the opposite
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Figure 3.16: A collection of 3 disjoint fences with 4 posts each. The solid rectangles are
the obstacles. The bands of different fences are shaded differently. For convenience, post
F;(m) is denoted P™.

side with y-coordinate yo and continues to the right- if it hits either a 7-post or the
wall, it stops. For instance in Fig. 3.17, the path from A to r-post F;(2) is a 7-path.
Observe that a 7-path has vertical motion at most 27 at every (integer) z-coordinate
on the path, so:

Fact 1 A 7-path between two points (z,y) and (z + éz,y) has length at most éx +
2r éz.

The definition of a point being left or right of a fence, and of a path crossing a fence
remain the same as before, except that we use r-post wherever the word “obstacle”
was used previously. Thus a 7-fence costs at least 7 to cross, and a collection of &
disjoint 7-fences costs at least kT to cross.

3.6.3 The Initial Search Trip

Roughly speaking, a general scene is treated as if it is a simple scene with obstacles
of height 2h = 27 = 2L/+/nk. Recall that for simple scenes, the initial trip consists
of building groups of G fences of M obstacles each (where G = [£L] and M =
[EC] + [2£7), where each group must be built “cheaply” (i.e. with cost O(kL)) and
must have a known “short” (cost O(L)) path crossing it. Analogously for general
scenes we have k = 7 and we would like to build groups k 7-fences with M = k+ [%£]
T-posts each. We will now pay more attention to our progress in the z direction
and will build each group with cost at most O(kL + k7 Az), and give each group a
group-crossing path of length O(L + 7 Az). Here Az is the z-distance between the
leftmost 7-post Fj(1) and right-most 7-post Fi(M) in the group.
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1
A

Figure 3.17: A 3 x 4 r-fence-tree. The shaded rectangles are the obstacles, and solid
lines are tree edges. The fences corresponding to this tree are shown in Fig. 3.16. For
convenience, post F;(m) is denoted P™.

These bounds are sufficient for our purposes for the following reason. A fence costs
7 = L/V/nk to cross, there can be at most Vnk disjoint r-fences in the window

between s and ¢, so the algorithm will find at most \/n/k groups of k fences each.
Since the z-motions do not overlap between the groups of fences, the Az terms add

to at most n, so the total distance traveled is O(kL\/n/k + nkt) = O(Lvnk). In
addition, the concatenation of the group-crossing paths has total cost O(Ly/n/k +

nt) = O(L\/n/k).

3.6.4 Extending FindFenceTree to General Scenes

Once we fix the 7-post Fi(1) in a scene, the three fence-tree definition rules given for
simple scenes can be used in a general scene to define a group of G = k 7-fences with
M 7-posts each, with the following interpretation. Firstly, “r-post” replaces the word
“obstacle” everywhere. Secondly, an up-right edge from a r-post F;(m) is simply a
path that goes up to the top of the 7-post, then right along a r-path until a 7-post is
reached; this 7-post is Fi(m + 1). Similarly, a down-right edge from a 7-post Fj(m) is
simply a path that goes down to the bottom of the 7-post, then right along a 7-path
until a 7-post is reached; this 7-post is Fi4,(m).

Given this interpretation, the extension of Algorithm FindFenceTree to arbitrary axis-
parallel rectangular obstacles is very simple: wherever the algorithm calls for adding
an up-right (down-right) edge from the current 7-post the robot must move up (down)
a distance 7, then move horizontally to the right along a 7-path until it hits a 7-post.
Of course, as we indicated earlier, the jump procedures must be changed to handle




50 3.6. GENERAL SCENES

arbitrary obstacle widths. The main difficulty here is that it is no longer possible
to cheaply move down vertically (in Phase A of JumpDownRight, and Phase B of
JumpDownleft) since there may be many “fat” obstacles on the way.

It is easy to verify that the four invariants Last-Node, Ordering, Almost-Ordering and
Jump-Up still hold, so the algorithm does find a k x M r-fence-tree if it exists with
the given post F1(1) as root. We must show that this algorithm is still “cheap” in
a general scene. Note that if the robot does not encounter any “small” obstacles
when adding the various edges, then (assuming the jump procedures are cheap) our
previous arguments suffice. We begin with the fairly straightforward argument that
the in general the cost of going around “small” obstacles is not too large. To do this,
we show the analogue of Lemma 3, namely, that the total cost of the tree edges and
the cost of the path from the root to the rightmost node are both within our required
bounds. :

Lemma 7 Suppose there is a k x M 1-fence-tree consisting of fences Fy, Fs, ..., Fy,
with M =k + [-21—5‘-], where 7 = L/Vnk, k <n and L > n. Then:

(a) The unique path in the tree from Fi(1) to Fi.(M) has length at most 4L + 3rAx;
(b) The total length of all the edges in the fence-tree is at most k(3L + 3t Az)

Proof: Since L > n, we have 1 = L/vnk > 1. From k£ < n it follows that
kr = kL/+v/nk < L. This implies M7 = 2L + kr < 3L.

Part (a). There are exactly (M + k —2) edges in the tree path from Fi(1) to Fi(M).
Since the vertical portion of each edge has length 7, and the r-path portions of the
edges do not overlap in the z-direction, the total length of these edges is at most
(M +k-2)7+2r Az + Az, which is at most (4L + 37Az) from the inequalities above.

Part (b). Note that we can associate each edge with a unique post, namely the
one at the right-end of the edge. For any given post F;(m) other than Fi(1), the -
distance to its parent is at most the z-distance 6z to its predecessor F;(m — 1) on the
same fence. So the edge associated with this post has length at most (7 + 27z + éz).
The sum of the §z terms over all posts of the fence F; is the z-distance between
the first and last posts of F;, which is at most Az. So the total length of the edges
associated with the M posts of a fence is at most (M7 + 2rAz + Acz), which sums
to k(M1 + 2rAz + Az) for k fences. This last expression is at most k(3L + 37Ax)
from the previous inequalities. .

Thus, just as in simple scenes, we only need to argue that the total cost of each jump
procedure is at most a constant times the total length of the tree edges. In the next
two subsections we show how these procedures must be modified to handle arbitrary
obstacle widths, and argue that they are not too expensive. As before, our approach
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will be to charge various phases of the jump to 7-posts (the total length of these is
at most the total length of the edges in the tree) or edges in the tree, and argue
that for each jump procedure, no portion of the tree is charged too often for different
executions of that procedure.

3.6.5 Modifying JumpDownRight

To describe the modifications, it will be useful to introduce the notion of a greedy
down-left path: it is a path that repeatedly goes “down till it hits an obstacle, then to
the left corner of the obstacle”. Other greedy paths are defined similarly. As in the
case of simple scenes, we will find it convenient to associate an edge in the fence-tree
with the post at its right end.

For simple scenes, phase A of the JumpDownRight procedure consists of moving ver-
tically downward until a tree path is hit. This may not be possible in a general scene
since the robot may encounter several wide obstacles. Our modified procedure is then
the following, and the worst case path of each phase is shown in Fig. 3.18. (Recall
that (z,y) denotes the current coordinates at any stage).

Procedure JumpDownRight : to jump from F,(m) to F,4,(p).
Necessary conditions for a call to this procedure: X,(m) < Xy41(p), and p < m.
If called outside JumpDownleft, p < m must hold.

Al. Move greedy down-left until y < Y,+;(p)+ 7. (A to B in Fig. 3.18)
A2. Move greedy right-down until a tree path is hit. (B to C)
B. Follow tree edges to the right until at F,;(p). (C to D)

Note that the path in phase Al is bounded on the left by the r-posts of F,. Also,
it suffices to continue phase Al until y < Y,.1(p) + 7 = Yu(p + 1) — 7 since this is
the y-coordinate of the top of the r-post to which th- robot is jumping; even if the
greedy right-down path of phase A2 goes only to the right, it will hit this 7-post. In
the worst case, phase Al follows the right sides of the 7-posts of F, np to F,(p+ 1),
and phase A2 just goes vertically down.

Lemma 8 The total cost of all calls to JumpDownRight (ezcluding calls to this pro-
cedure by JumpDownLeft) is at most a constant times the total length of all edges in
the fence-tree

Proof: In the following, let us confine ourselves to calls to JumpDownRight that are
made outside procedure JumpDownLeft. Consider a particular call to JumpDownRight
to jump from F,(m) to F,4(p) (see Fig. 3.18). Let E,4; be the set of edges of F,,,
whose z-coordinates are in the interval [X,(p + 1), Xu41(p)], and let S,41 be the set
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f; (m+1)

F (m)

F“(p+l)

Figure 3.18: A use of the generalized procedure JumpDownRight to jump from F,(m) to
Fu41(p), for clarity shown in a scene where the fence posts correspond exactly to obstacles
of height 27. Shaded rectangles with no boundaries are obstacles that are not part of
any fence. Solid-boundary rectangles are nodes found so far in the tree. Dotted-boundary
rectangles are nodes that will be eventually found in the tree. Thick solid lines are tree
edges. The thin arrow line shows the path followed when executing the procedure.




CHAPTER 3. NAVIGATION 53

of T-posts associated with these edges. Also, let T4, be the set of new T-posts that
will be added to F,4,, up to Fy41(m). Note that

. Fact 1: none of the elements of Fy41,Su+1 and Ty, are to the left of
Fup+1),

and from the previous discussion of the procedure JumpDownRight we know that

Fact 2: the next post F,(m + 1) of F, will be to the right of Fy;,(p), so
none of the elements of E,4, and S, are right of F,,(m + 1).

It is easy to see that the total vertical motion during phases Al and A2 is at most
7|Sus1 U Tus1|. The cost of the horizontal motion in phases Al and A2 plus the cost
of phase B is at most fwice the length of the edges in E,41. Thus, we charge the total
cost of this procedure to the edges F,.; and the 7-posts Sy41 U Ty1.

As before it suffices to show that for any future use of this procedure (outside proce-
dure JumpDownleft) to jump from F,(m’') to F,41(p’), the charged sets do not overlap
with the corresponding sets in the present call. First, note that by the Jump-Up in-
variant, when the robot jumps back to F,, F,41 must have at least m posts (which
implies that JumpDownRight cannot be called again outside procedure JumpDownleft
from F,(m), since this would violate the necessary condition p’ < m' for using this
procedure outside JumpDownleft). This means that the charged set 7,4, of undis-
covered posts will have been discovered before any future call from F,, and so will
not overlap with a future T-set. This also implies that the destination F,,;(p') of <.y
future JumpDownRight from F, cannot be left of F,+;(m). From Fact 1 above it then
follows that none of the elements of the E-set and S-set of this future jump will be
to the left of F,(m + 1). Therefore the sets E,4; and S,41 (none of whose elements
are right of F,(m + 1), by Fact 2 above) in the current call will not overlap with the
corresponding sets in any future call from F,, which completes the proof. =

3.6.6 Modifying JumpDownlLeft

For simple scenes, phase B of the JumpDownleft procedure consists of moving down
vertically till at the top of the destination 7-post. This may not be possible in a
general scene since the robot may encounter several wide obstacles. Qur modified
procedure is then the following, and is illustrated in Fig. 3.19:

. Procedure JumpDownlLeft : to jump from Fy(m) to Fu41(p).
Necessary conditions for a call to this procedure: X,(m) > X,41(p) and p <
m- 1.
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A. Retrace edges to the left until z = Xy41(p). (A to B in Fig. 3.19)

B1l. Move greedy down-left until for some j, the robot is left of and below
Fj(m - 1), or it is below Fy,(m ~ 1).
In the former case (B to C), repeatedly JumpDownRight to the (m —1)st
post on the next lower fence until at Fi,(m — 1). (C to D)

B2. JumpDownRight to Fy4i(p) (D to E).

Some explanation is in order here. Suppose F; is the highest fence reached in phase A,
i.e. the last edge retraced is on fence F,. By the Almost-Ordering invariant, no fence
can have more than one post to the right of a lower one, so all but the last edge retraced
in phase A must be down-right edges ending on posts F,;i(m), Fryi(m), ..., Fu(m).
The same invariant implies that the z-coordinate of the robot at the end of phase
A (i.e. Xy41(p)) lies in the interval [X;(m — 1), X;(m)], for each j =r,r +1,...,u.
This means that in phase Bl when the robot goes greedy down-left it must arrive
below and left of some Fj(m — 1) (for some r < j < u) or below Fy,(m ~1). In the
former case, procedure JumpDownRight (modified trivially since the robot may not
start exactly at a T-post) can be used to jump down to the post m ~ 1 on the next
lower fence; and doing this repeatedly will lead to F,(m — 1). Now JumpDownRight
(again slightly modified since the start point may not exactly be the post Fy(m — 1)
in case the greedy down-left path in phase Bl leads directly to a point below this
post) can be used to jump down to Fu,1(p).

Lemma 9 The total cost of all calls to JumpDownLeft (including the cost of calls to
JumpDownRight) is at most a constant times the total length of all the tree edges.

Proof: For a particular call to JumpDownLeft let E,,, S, T,+1 be defined as before
for simple scenes. The length of phase A is clearly still at most the total length of
edges in E,,. Let F, be as above the highest fence reached in phase A.

Let us consider the cost of phase B1. There are two possibilities: while going greedy
down-left the robot may reach a point below F,(m — 1), or it may reach a point left
of and below F;(m — 1) for some F; above F,. In the former case, the length 6f this
phase is at most 7|Sn|. In the latter case, the robot repeatedly uses JumpDownRight
to jump to the (m — 1)st post on the next lower fence until it reaches F,(m —1).
Each use of JumpDownRight here is to jump from F;(m — 1) to F;31(m —~ 1), for j =
r,r+1,...,u~1. From the analysis of that procedure it is clear that the cost of these
invocations of JumpDownRight is at most a constant times the lengths of the edges
in the E-sets associated with these calls. These are precisely the edges of Fj.; whose
z-coordinates are in the interval [X;(m — 1), Xjpu(m = 1), for j =r,r +1,...,u— L
Let us call these edges type-a edges. Thus the total cost of this phase is at most the
sum of 7|S,,| and a constant times the lengths of the type-a edges.
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Phase B2 is an execution of procedure JumpDownRight, and from the analysis of that
procedure it follows that the cost of this phase is at most the sum of 7|T,4,| and a
constant times the lengths of edges of F,;; whose z-coordinates are in the interval

. [Xu(m = 1), Xus1(p)]- Let us call these edges type-b edges.
We therefore charge the cost of this jump to S, T.4+1 and the type-a and type-b
. edges. The important point to note here is that all of the type-a and type-b edges
are on the fences F,,i, Fry2, ..., Fy, Fus, i.e., the highest fence that can possibly

contain any type-a or type-b edges is the one below the highest fence to which the
robot backs up in phase A (i.e. fence F}).

As in the case of simple scenes, it suffices to show that none of these charged portions
(posts or edges) are charged again in a futu-e call to JumpDownleft from F;(m) for
any ¢ > u. That T4, will not be charged again can be shown by the same argument
as before. By exactly the same argument as before, the destination of any future call
to JumpDownleft from F;(m) cannot be to the left of F,(m), which implies that the
robot will backup to no higher than F,;;(m) in phase A. Thus the S-set and E-set
of this future call will not overlap with S, and E,, respectively. This also implies
that the highest fence containing any type-a/type-b edges in this future call is F,42,
which is below the lowest fence (namely F,4,) containing type-a/type-b edges in the
present call. Thus none of the charged elements in the present call will be charged
again by a future call to JumpDownLeft. N

3.7 An incremental algorithm

We describe here an improvement of our cumulative algorithm, so that the per-trip
ratio on the #’th trip, for all ¢ < n, is O(y/n/7). Let us for simplicity say that we know
L. From the earlier results in this paper, we know that by searching a distance at

most cLvnk we can find an s-t path of length at most ¢/Ly/n/k, for some constants
¢, and any k < n.

Let us suppose that at the end of ¢ trips we know an s-t-path = of length at most
dLy/n/i. What we now want to do is to search with cost at most ¢Lv/n2: and find

a path of length at most ¢Ly/n/2:i. Let us denote by II the path we would Lave
traveled if we did this entire search in one trip. In order to maintain a per-trip ratio
. of 0(\/11—/: ), we spread the work of II over the next ¢ trips as follows. Each trip consists
of two phases: The first is a search phase, where we walk an additional portion of Il
of length -:.-cL\/n—2z' = cLy/2n/i, starting from where we left off on the previous trip.
We can always do this because the fences are in a tree structure, so that the last
point in II during the previous search can always be reached from the start point by
a known short path whose length adds only a small constant factor to the total trip

.
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Figure 3.19: A use of procedure JumpDownleft to jump from F,(m) to F,1(p), for clarity
shown in a scene where the fence posts correspond exactly to obstacles of height 2r. Shaded
rectangles with no boundaries are obstacles that are not part of any fence. Solid-boundary
rectangles are nodes found so far in the tree. Dotted-boundary rectangles are nodes that
will be eventually found in the tree. Thick solid lines are tree edges. The thin arrow line is
the path followed when executing the procedure. Each curved arrow line shows an execution
of procedure JumpDownRight.
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length. Once the search phase is completed, we “give up” and enter the follow phase,
where we complete the trip by joining (by a greedy path) the known path = of length

c'Ly/n/i, and following it to ¢t. Thus our trip length is still O(L/n/7). Since in each

such search-follow trip we traverse a portion of II of length ¢Ly/2n/z, and the length
of I1 is at most ¢L+/2ni, after i trips we will have completely walked the path II. So
after the first 2: trips we have a path of length at most ¢'L/n/2:. This reestablishes

our invariant. Since initially we can find a path of length ¢'L\/n (to start off the
induction), we have the following theorem:

Theorem 10 There is a deterministic algorithm R that for every : < n achieves a
per-trip ratio on the i’th trip, p;(R,n), of O(\/n/1).

3.8 Modification for Point-to-Point Navigation

Our algorithms can be extended to the case where ¢ is a point rather than a wall,
with the same bounds, up to constant factors, as follows. Let us assume for simplicity
that the shortest path length L is known. As before, if we do not know L, we can
use the standard “guessing and doubling” approach and suffer only a constant factor
penalty in performance. On the first trip, the robot can get to ¢ using the optimal
point-to-point algorithms of [19] or [13], with a single-trip ratio of O(\/n). Once at ¢.
the robot creates a greedy up-left path and a greedy down-left path from ¢, within a
window of height 4L centered at t. Note that the highest post in a & x M t-fence-tree
is Mt < 3L above the root {which is always distance L below t) and the lowest post
is k7 < L below the root. So the robot is guaranteed to stay within a window of
height 4L centered at t. Thus after the first trip, these greedy paths play the role of
a wall; once the robot hits one of these paths, it can reach ¢t with an additional cost
that is only a low-order term in the total cost.

3.9 The Navigation Problem Viewed as a Hidden
Task System

In this section we describe how a version - € the robot navigation model of this chapter
can be viewed as a hidden reversible tasx - tem (as defined in the previous chapter).

Specifically we consider the “wall problem”, i.e., the robot is required to make several
trips between the point s = 0 and the line ¢ defined by £ = n (n is an integer).
For simplicity we assume that on each ¢ — s trip the robnt simply retraces its last
s — t path. We also assume that all the (non-overlapping axis-parallel rectangular)
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obstacles have width (i.e., the z-dimension) 1, and have corners at integer (z,y)-
coordinates. Thus the robot can always move unhindered by obstacles vertically
along any integer z-coordinate. Also, every point with integer (z, y)-coordinates can
be reached by the robot.

This navigation model can be viewed as a reversible hidden task system (.S, d}). When
the robot is at a point (i,j) we think of the online algorithm as being in state j
after processing tasks Ty, T\,...,T;_1, and task T; is the next task to be processed.
Thus the task T, corresponds to the integer z-coordinate ¢, for ¢ = 0.1,2,...,n.
and state j corresponds to integer y-coordinate j (and there are infinitery many of
these). Changing the st t« -om u to v corresponds to the robot moving vertically
(i.e., without changing .he z-« >ordinate) from y = u to y = v. The state transition
cost d{u,v) is therefore denned in the natural manner as ju — v]. Processing task T;
in state j corresponds to moving from point (Z,7) to (z + 1, ) without changing the
y-coordinate. This motion is impossible if there is an obstacle whose left side passes
through (¢,) (and extends above and below (i, 7)). If this is the case we define the
cost of processing T; in state j to be 0o, and otherwise we define this cost to be 1. In
a similar manner, “undoing” task T;_; in state j corresponds te moving from point
(i.j) to (¢ — 1, ) without changing the y-coordinate. If there is an obstacle whose
right side passes through (7, ;) we define the cost of undoing T;_, in state j to be oco.
and 1 otherwise.

With these definitions it is clear that since the robot is tactile, T;(j) becomes known
only when the algorithm is in state j and the next task is either T; or T;4; (in the
latter case the robot finds out 7;(j) by attempting to move backward toward s). Also
it is easy to verify that the cost of processing task T; in state j is the same as the cost
of undoing task T; in state j. The above navigation model is therefore a reversible
hidden task system: each s — t trip of the robot can be viewed as processing the
sequence of tasks Ty, Ty,..., .

For the k-trip problem, the performance metric p(A,m,s,t) defined in Chapter 2
corresponds to the ratio p(R,n, k) {s does not appear here since there are infinitely
many states in S). Also in this case the ratio p;( A, m,s) corresponds to p;( R, n).

Thus in the language of task systems, we have shown the following results:

Theorem 11 For a reversible hidden task system (S, d) where the state space consists
of equally-spaced points on an infinite line (note that s = |S| = oo in this case) and
the task processing costs are all either 1 or oo, the following results hold:

1. For any deterministic online algorithm A that processes a seq;zence of m tasks
t times, p(A,m,s,t) = Q(\/;zﬁ)

2. There is a deterministic algorithm A for repeatedly processing a sequence of m
tasks with the guarantee that for each t < m, p(A,m,s,t) = O(\/m—/t).
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3. There is a deterministic algorithm A which for each i < m achieves p;(A,m,s) =

O(y/m/i).

3.10 Conclusion and Open Problems

The core result of this chapter is an algorithm that performs a smooth tradeoff be-
tween search effort and the goodness of the path found. This algorithm may be of
interest independently of the performance-improvement problem. For instance when
a robot has more time or fuel available, one would like it to spend more effort and find
a better path. The fence-tree structure is central to this search algorithm. Intuitively,
one can think of the fence-tree as representing the collection of those obstacles in the
scene which are responsible for making the scene difficult to cross from s to t. Thus
the fence-tree in a sense captures the “essence” of a scene, as far as the difficulty
(i.e., cost) of crossing the scene is concerned. It would be nice to explore whether
an analogous structure can be defined in more general scenes. This might lead tc a
generalization of our results to such scenes.

At a higher level, our approach in designing a “learning” navigation algorithm was to
start with an algorithm that achieves the above-mentioned cost/performance tradeoff,
and convert that to a more incremental algorithm by spreading the work over several
trips. This high-level idea may well be useful in designing performance-improvement
algorithms for other tasks. :

There are several other interesting research directions that can be explored. One
question is whether the relatively complicated fence-tree-traversal strategy (especially
for general axis-parallel rectangular obstacles) can be considerably simplified. What
about extending our multi-trip results to more general scenes? Very recently, Berman
and Karpinski [14] have designed a randomized O(n®4)-competitive single-trip algo-
rithm for 2-dimensional scenes containing arbitrary convex obstacles within which a
unit circle can be inscribed. Achieving an O(/n) ratio for such scenes seems con-
siderably harder. A good first step might be to consider scenes with rectangular
obstacles in arbitrary orientations (i.e. not necessarily axis-parallel). It would also
be interesting to extend Theorem 11 to more general task systems.

It is au open question "vhether a robot strategy that is allowed randomization can im-
prove upon the O(y/n) ratio for one trip. The best lower bound known is Q(log log n)

* and was obtained by Karloff, Rabani and Ravid [47]. Independently of this question,
it is conceivable that randomization could simplify our k-trip algorithm.

- One can consider variations of the k-trip problem. One could examine how the robot
can efficiently visit several destinations in a scene, improving performance wherever
possible. Another possibility is to study how the robot can navigate (back and forth
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between two points or ¢*1erwise) effectively in a scene that is changing slowly.

3.11 Related Work

Online Approaches to Complete Exploration

Our multi-trip algorithiu unproves its performance by gradually acquiring more in-
formation about the scene as it makes more trips. However, learning about the
environment is only incidental to the performance-improvement objective. In fact
our algorithm may not ever completely explore the scene. There has been consider-
able algorithmic work devoted to the problem of completely exploring, or learning, an
unknown environment. We discuss below the work on learning geometric or graph en-
vironments. The next subsection focusses on learning environments that are naturally
viewed as finite-state automata.

One approach researchers have taken to the problem of learning an unknown geometric
environment or graph is to formulate it as an online problem: For a given class of
environments, we must devise an algorithm that starts from a given point s and visits
(or “sees”) every point in the environment. The goal is to minimize the (worst-case)
ratio of the length of this path to the optimal path length needed to verify a map of
the environment if it were known. This is the familiar competitive ratio metric.

For instance Deng and Papadimitriou [30]consider the problem of exploring all edges
of an unknown strongly-connected digraph. In their model the learner only knows
how many unexplored edges emanate from the current node but does not know where
they lead until it traverses them. There is a cost of 1 to traverse an edge. They show
a lower bound and upper bound (i.e. an algorithm) of 2 on the performance ratio for
Eulerian graphs. Their main result is an algorithm that achieves a ratio exponential
in d (more precisely, 3(d +1)?4*!) where d is the number of edges that must be added
to make the graph Eulerian.

In [29], Deng, Kameda and Papadimitriou examine the problem of designing a good
strategy to walk in an unknown polygonal room with unknown opaque polygonal
obstacles, such that every visible point in the room can be seen from some point on
the walk. A peculiarity of this problem is that the offline problem in general is NP-
hard. (Somewhat surprisingly, if the start and end points of the walk are the same.
the problem, called the watchman’s route problem, is polynomially solvable). They
show a 2v/2-competitive (in the L, metric) algorithm for exploring the interior of a
simple (not necessarily convex) rectilinear polygonal room that does not contain any
obstacles. They show the same competitive ratio can be achieved for exploring the
exterior of a rectilinear simple-polygonal room. They use these results to conclude
that there is an O(k)-competitive algorithm for exploring the interior of a rectilinear
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polygonal room containing at most k rectilinear polygonal obstacles. They are able
to generalize this result to general polygons containing k general polygonal obstacles,
with a very large constant factor (in the thousands) suppressed in the O(k).

For the same problem, Kalyanasundaram and Pruhs [42] show a lower bound of
Q(y/n) on the competitive ratio, for the case of a scene containing n rectangular
obstacles with a bounded aspect ratio. For these scenes they also show an algorithm
that matches this lower bound.

Piecemeal Learning. Betke, Rivest and Singh [15] also focus on the goal of com-
pletely exploring an environment, but with a new restriction on the learner: The
learning must be done piecemeal - that is, a bound B is given, and the learner is
constrained to explore the environment in phases; each phase must start and end
at the start point s, and have length at most B. This might model for instance a
planetary exploration robot that must return to base every so often for refueling or
to perform other tasks. The goal is to fully explore the environment while (nearly)
minimizing the total distance walked. For the case of grid graphs with rectangular
obstacles (equivalent to a rectangular room containing axis-parallel rectangular ob-
stacles) they show an algorithm that piecemeal-learns the entire graph by walking a
distance linear in the total length of the edges (i.e. the total obstacle-free area in the
room). They assume that the bound B is at least 4 times the radius of the graph.
They are able to generalize their results to arbitrary graphs [11].

Other approaches. Other authors have considered the map-learning problem ([68],
(72]) but not from an on-line perspective. For instance in [68] the authors present
an algorithm that incrementally builds a “visibility graph” of the environment as
it is given pairs of points to travel between. Efficient exploration is not their main
concern, however; they only show that their algorithm eventually converges to the
correct visibility graph.

Inferring Automata

If it is known that an environment has a certain structure, this information could
be exploited in order to learn it efficiently; it may be possible to infer the structure
of unseen portions of the environment by experimenting with a portion of it. For
instance, the unknown environment may have the behavior of a finite automaton.
where the actions of the learner can change the state of the automaton. When viewed
as state-transition diagrams, such environments can be seen to be a generalization
of the graph environments described above. The goal of the learner would be to
(efficiently) learn the structure of the automaton. Rivest and Schapire [74. 75] show
an efficient algorithm for such a learner to infer the structure of any deterministic
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finite-state automaton environment. The problem of inferring a finite automaton from
its input-output behavior is a well-studied problem in learning theory [4, 35, 49, 50,
6, 8]. The work of Rivest and Schapire [74, 75] improves upon Angluin’s [8] inference
algorithm, which assumes that the learner has the ability to “reset” the automaton
to some start state; the Rivest-Schapire algorithms do not require this assumption.

The problem of learning in an unknown environment has also been approached from
a probabilistic viewpoint (see the survey [67]). The learner is modeled as a stochastic
automaton operating in an unknown random environment, and the learning task is
one of updating the action probabilities in accordance with inputs received from the
environment.

Machine learning approaches to improving performance

The problem of improving performance with experience has received much attention
in the machine learning community. One issue that researchers have focused on is the
ezploration-ezploitation tradeoff: On the one hand the robot must explore unknown regions
in order to find a better path, and on the other hand, it must exploit what it has learned so
far in order to minimize its cost of learning. For instance P. C. Chen [24] considers how
the computation time for path-planning in a known scene can be improved by making
use of (portions of ) solutions to previous path planning problems in the same scene.
The author presents a learning algorithm and analyzes it in the PAC learning frame-
work popular in computational learning theory. Problems similar to the multi-trip
problem have been addressed in the framework of reinforcement learning. For exam-
ple S. Thrun [80] presents heuristics for a robot to improve its path as it repeatedly
travels between two points in a scene containing (possibly concave) obstacles. Only
empirical results are provided, however. S. Koenig and R. Simmons (53] consider a
similar problem on graphs, also in the reinforcement learning framework.

There has been work in robotics on heuristics for improving performance with expe-
rience. To mention only one such example, Christiansen {26] addressed the problem
of how a robot can learn to predict the effects of its actions so that it can generate
better plans for manipulation tasks.

Path-Planning amidst Unknown Obstacles

The work of Lumelsky and Stepanov [61, 60, 62] is very close in spirit to the navigation
problems we consider. They consider the problem of navigating from a start point s
to a point ¢ in a scene filled with unknown arbitrary obstacles (possibly non-convex,
non-polygonal). Because of the generality of the obstacles, however, only rather weak
resuits can be shown in this case. They show that if the s-¢ distance is D. for any
path-planning algorithm, and for any § > 0 (however small), there is a scene that can
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force the algorithm to generate an s-t path of length at least D+ Y, p; — 8, where the
sum is over the perimeters of all obstacles that intersect a disc of radius D centered at
t. They also show an algorithm (which they call “Bugl”) that finds a path bounded
by D +1.5%; pi;. The authors do not consider the problem of improving performance
by making multiple trips.

Arbitrary obstacles can form mazes. For examples of research on mazes, see Blum
and Kozen [20] and Abelson and diSessa [1].

The Localization Problem

One aspect of the navigation problem we consider is that the robot always knows
its current absolute coordinates, but does not have a (complete) map of the scene.
Guibas, Motwani and Raghavan [36], and Kleinberg [52] and Akella (2] consider a
variation that also lends itself naturally to an online formulation: Suppose that the
robot does have a complete map of the scene, but does not know where it is in
this scene, i.e. it does not know its coordinates relative to the scene. The robot is
assumed to have vision. However, its snapshot of the world from a given position
may be exactly the same if it were at any of a number of possible locations within the
scene. To disambiguate its position, it must walk around and take snapshots until
there is only one initial position consistent with these snapshots.

Guibas, Motwani and Raghavan [36] consider the problem of identifying all possible
locations in a given scene that are consistent with a given snapshot. Kleinberg [52]
considers the problem of devising good st -ategies to determine which of these possible
locations is the true location — a task that he calls “localization”. A good strategy
is one which produces localizing paths whose ratio to the optimum localization path
length is small. Kleinberg shows a lower bound of Q(/n) on the performance ratio of
any algorithm (even randomized) for scenes containing n non-overlapping axis-parallel
rectangular obstacles. For these scenes he also shows an algorithm that achieves a
ratio of O(n?3). Computing a localizing strategy is similar to computing an adaptive
distinguishing or homing sequence for a finite state machine [54].

Path-Planning with Complete Information

For completeness we include here a sampling of the previous research on robot path
planning with complete information, also known as the piano movers problem. This
problem is formulated as follows: Given a solid object in two or three dimensional
space, of known size and shape, its initial and target position and orientation. and a
set of obstacles of known shapes, positions and orientations in space, find a continuous
obstacle-avoiding path for the object from the initial position to the final position (and
orientation). Unlike the corresponding problem with unknown obstacles, the main
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difficulty here is not in showing that a good path can be found, but in ¢fficiently
computing a feasible path. Reif [73] first showed that this problem is PSPACE-
hard in general. Schwartz and Sharir [77] showed a polynomial-time algorithm that
finds a path (or decides that a path does not exist) for the 2D case with convex
polygonal obstacles. For other algorithmic research in this area see [59], [78],[39] and
the references therein.

Deferred Data Structuring

Recall that our incremental multi-trip algorithm spreads the building of the fence-tree
over several trips in order to achieve for each trip the optimal (up to constant factors)
competitive ratio for that trip. This high-level idea resembles the approach used in
certain query-processing algorithms. For instance Karp, Motwani and Raghavan [48]
consider certain geometric search problems where a set of data items is given and a
series of queries about the data set must be answered online (i.e., each query must
be answered before the next query arrives). The usual approach to such search prob-
lems consists of preprocessing the data set to build a search structure that enables
queries to be answered efficiently. However this approach is only economical if there
is a sufficiently large number of queries. The authors present algorithms for gradu-
ally building the search structure “on-the-fly” as queries are answered, so that the
performance is at least as good as the preprocessing approach, and is in fact better
when the number of queries is small. They refer to this approach as deferred data
structuring.




Chapter 4

Improving Performance in Paging

4.1 Introduction

Consider a two-level memory system consisting of a fast memory (the cache) of &
pages and a slow memory of n — k pages. Suppose there is a fixed set of n pages, each
of which is either in the slow memory or the fast memory, and a program makes a
sequence of requests for these pages. The requested page must be in the fast memory
in order to be accessed. If the requested page is not in fast memory, there is a page
fault, and the pager (typically in the kernel of the operating system) intercepts this
request and brings in the requested page from slow memory to fast memory. If the
cache is full, it must evict a page from fast memory in order to make room for the
requested page.

In the standard online paging problem [32] the pager knows all the previous page
requests (including those that do not result in page faults) in the sequence, and must
decide which page to evict from fast memory, without any knowledge about future
requests.

For a given paging strategy, its competitive ratio is defined as the worst case over all
request sequences, of the ratio of the number of page faults suffered by the strategy
to the number of page faults incurred by an optimum sequence of evictions on that
request sequence. Sleator and Tarjan [79] have shown that two strategies for paging
- evicting the least recently used page, or LRU, and first-in-first-out, or FIFO - have
a competitive ratio of k, and that no deterministic online algorithm could achieve
a factor less than k. Karlin, Manasse, Rudolph and Sleator [44] studied a different
paging algorithm and also introduced the term “competitive”.

Since the paging policy of an operating system cannot be equally good for all ap-
plications, some researchers [65, 25) have considered extending the operating system
to allow the user to specfiy the page replacement policy. One issue in the design of

65
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such systems is deciding whether or not to allow the user-level pager to monitor every
single page request made by the program. For efficiency reasons and due to hardware
limitations, it is common to only invoke the pager when there is a page fault {65].
Let us call such a restricted pager a sleepy pager; this is the model we are concerned
with in this chapter. Figuratively speaking, the pager is “woken up” only when a
page fault occurs, and after deciding which page to evict, it goes back to sleep and is
thus unaware of what (or how many) requests are made before it is woken up again.

Let us note some aspects of the sleepy model. Needless to say, a sleepy pager is also
lazy in the sense that it only throws out a page from the cache when there is a page
fault. Since a sleepy pager is only aware of page faults, the FIFO strategy can be
implemented on a sleepy pager, but the LRU strategy cannot. Another interesting
fact about the sleepy model is the following. In the standard model, there is a
randomized algorithm (the marking algorithm of [32]) that achieves a competitive
ratio of O(log k), that is, the expected number of page faults on any request sequence
is within an O(log k) factor of the optimum. However in the sleepy model even a
randomized algorithm cannot achieve a ratio better than k/2. To see this, consider
a paging scenario where n = k£ + 1, i.e., there is always exactly one page missing
from the cache. Consider a request sequence consisting of phases, where each phase
is generated as follows: pick a random i uniformly from § = {2,....k + 1}, and
generate a sequence of k subphases of requests where each subphase is the request
sequence (1,2,...,k + 1) modified by replacing request ¢ by : — 1 (thus ¢ — 1 occurs
twice in a row). Clearly for any deterministic sleepy paging algorithm (even one that
knows the number of page requests so far) in any given phase, the expected number of
page faults is at least k£/2, whereas the optimum nur=ber of page faults is just 1. Thus
no deterministic algorithm can achieve a ratio better than k/2 on this randomized
request sequence, and by the Min-Max principle [83] k/2 is a lower bound on the
competitive ratio of any randomized algorithm.

We consider the following problem for a sleepy pager. Suppose that the program
repeatedly generates the same sequence ¢ of page requests - this could easily happen
for instance inside a loop of a program. On the first “iteration”, since the pager does
not know any of the page requests, the competitive ratio can be no better than (k).
However after the first iteration the pager has partial information about the request
sequence, namely the sequence of page faults on the first iteration. The question is.
can it exploit this information to improve its competitive ratio? Can it continue to
improve, by acquiring more information with each iteration?

More formally, let us consider a sleepy pager that when woken up by a page fault,
knows the “time” relative to the start of the request sequence, so that it knows where
the page fault “fits in” relative to page faults it has seen previously. If the same
finite request sequence o is repeated several times, for a given sleepy pager strategy
P, let P(c) denote the total number of page faults incurred by P during the first ¢
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repetitions of o, and let OPT(o) be the number of page faults incurred by an optimal
offline strategy. The average competitive ratio of P at the end of t iterations is then
defined as

p(t)(a)
Pn,k,t) = su —_—
p(Pym, k1) on(g);éo t-OPT(o)

In other words p(P,n,k,t) is the worst case over all (finite) o (for which OPT (o)
is not zero) of the ratio of the average page faults of P per iteration at the end of
t iterations, to the optimal number of page faults in an iteration. Note that this
definition is analogous to the one we made for the navigation problem.

In general one would like to design an online algorithm P for which p(P,n, k. t)
decreases rapidly with increasing ¢t. As a first step toward this goal, in this chapter
we consider the special case of the above problem where the total number of pages
n is exactly k£ + 1, that is, exactly one of the k£ + 1 pages is always missing from the
k-page cache. This is a well-studied special case [63]. For this case we simply write
p(P, k,t) for p(P,n,k,t). This is essentially the case of k servers on k + 1 points
in a uniform space. For this case we design an algorithm P that has the following
behavior: If the same finite request sequence is repeated some number of times, ifs
average t-iteration competitive ratio p(P, k,t) equals k for t = 1, O(% logt) for each
t < k, and O(log k) for t > k. Clearly from the previous remarks no algorithm (even
a randomized one) can achieve an average competitive ratio better than Q(k/t), so
our results are within an O(logt) factor of the optimum.

The n = k + 1 case of the paging problem corresponds to the k-server problem [63]
on k + 1 points, and can be viewed as the following game between the algorithm and
an adversary, played on a uniform space of k£ 4+ 1 points (i.e. the distance between
any two points is the same, say 1). We think of the algorithm as occupying the point
corresponding to the page missing from the cache, and we think of the adversary as
probing points of this space. We can think of the location of the algorithm as the
“hole” since it is the one point not occupied by a server. When the adversary probes
the point on which the algorithm stands, the algorithm must move to a different
point, paying a cost of 1. We can think In the case of a sleepy pager, the algorithm is
not aware of which point is probed by the adversary if it is different from the current
location of the algorithm. This game is called the pursuit-evasion game, and the
adversary is called the pursuer and the algorithm is called the evader. These terms
were introduced by Blum, Karloff, Rabani and Saks in [18]. Figure 4.1 shows an
example of a sleepy pager that moves the hole in a fixed cyclical order (equivalent to
FIFO order) among all the pages.

For the sake of continuity we postpone the discussion of related work to Section 4.7.




68 4.3. THE ALGORITHM

a
-]

I---r.: o

Figure 4.1: A sleepy pager that moves the hole in the cyclical order (1,2,3,4,5). Each
dotted horizontal line represents a page. The dark solid line represents the path of the hole
(missing page). Each square is a page request; the darkened squares are requests that hit
the hole (page faults), and are therefore the only ones the pager is aware of.

~ 0w oG
a
a
a
o
[ T

4.2 Preliminaries

At a given stage during any iteration of the (initially unknown) request sequence, some
of the requests in the sequence will be known to the pager. In what follows, whenever
we speak of requests we will mean the known requests. We will in fact abuse notation
and use ¢ = 0(1),0(2),... to stand for the current sequence of known requests at
any time. Henceforth when we say “time” we will mean the time relative to the start
of the actual request sequence that is being repeated. At any given stage, for : < j
we define a cell [i,j) as the time period that starts just before request (i) and ends
just before request (7). In particular the requests o(z),0(i +1),...,0(; — 1) belong
to the cell [z, 7). If at a later stage a request is seen within this time period then that
request is considered to belong to this cell. For convenience we write [0,1) to denote
a cell that starts at the beginning of the underlying actual request sequence and
write [¢,00) to denote a cell that ends at the end of the underlying request sequence.
Requests o(i) and o(j) are called the boundaries of the cell [¢,j). Note that a cell
includes the left boundary but not the right boundary. Thus when two cells [z, j) and
[7,h) are adjacent, the boundary request o(;) belongs to the right cell, and not to
the left cell.

A phase is defined as a cell that contains k + 1 distinct requests, i.e., all pages are
requested at least once. Clearly an optimal offline pager must pay at least 1 (i.e.
incur 1 page fault) in processing a phase of requests.

4.3 The Algorithm

At all times the algorithm uses a variable ¢ to denote the number of iterations so far
(including the current iteration). If t > k, our algorithm simply moves the hole in
exactly the same way as it did in the best iteration (i.e. the one where the fewest
faults were incurred) so far. Thus its competitive ratio on each iteration after k
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iterations is no worse than the average competitive ratio p(P, k, k) at the end of &
iterations. We thus only need to describe our algorithm for t < k.

On the first iteration, the algorithm repeatedly moves the hole in a fixed cyclical
order among the k + 1 pages. Clearly then the page fault sequence at the end of this
iteration can be partitioned into a sequence of phases (i.e. cells where every page is
requested at least once).

On the second and later iterations, the algorithm uses the page fault sequence of the
first iteration as a reference, in the following sense. The span of any cell is the number
of first-iteration page-faults (i.e. requests that were discovered in the first iteration)
that belong to that cell. For instance in the lower part of Fig. 4.2 the span of the cell
whose boundaries are A and B is 2 (recall that the right boundary does not belong
to the cell). A cell (or phase) is said to be small if it has span s < k/t, and it is said
to be big otherwise.

At any stage, the request sequence consists of a sequence of cells, where the cells evolve
in the following way. The algorithm responds to page faults differently depending on
whether it is in a small cell or a big cell. In a small cell the algorithm merely moves
the hole to wherever the hole was at this time during the first iteration. If the cell is
big and is not a phase, the algorithm moves the hole to a page that is not known to
be requested in this cell. As more requests (page faults) are discovered in a big cell,
the cell may become a phase, i.e. every page is requested at least once. When a big
cell becomes a phase [, ) the algorithm immediately splits it into two cells {z,u) and
[u,7) such that the span of [¢,u) is [s/2]| (and therefore the span of [u,j) is [s/2]).
If a cell is small, as the number of iterations ¢ increases, eventually its span may
exceed k/t, in which case it is no longer small. Thus over a sequence of iterations the
“evolution” of a cell may either look like:

small cell — big cell — big phase — split into 2 cells,

or like

big cell — big phase — split into 2 cells.

Therefore at any stage the sequence of known requests consists of a sequence of (small
or big) cells.

We are now ready to describe our algorithm. The first three iterations of this algo-
rithm are illustrated in Fig. 4.2.
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Algorithm SleepyPager:

At any stage: Let t < k denote the number of iterations so far, including
the current one. Whenever a big cell (i.e. of span > k/t) becomes a phase
(i.e. every page is requested at least once in the cell), divide it into two
roughly equal-span cells as above. Thus at any time the (known) request
sequence consists of a sequence of (small or big) cells.

First Iteration: Fix an order on the pages, and move the hole
cyclically in this order. Divide the request sequence o into cells
[0,21),[a1,a2),[az,83),...,[@am,o0) so that the span of each cell is k + I,
except possibly for the last cell.

Each remaining iteration: When the hole is hit by a request,

(a) Ifitisin a big cell then move the hole to a page not known to be
requested in this cell;

(b) Ifitisin a small cell then move the hole to wherever the hole was
at this time during the first iteration (if it is not already there).

4.4 Analysis

For any t < k, let us consider the behavior of the algorithm during the first ¢ iterations
of the request sequence. The algorithm induces a natural rooted forest structure on
the cells formed at various stages. The root of each tree (which we call a cell tree) in
the forest represents a phase at the end of the first iteration, and when a cell splits
into two cells, the corresponding node has two children representing those cells. Thus
a cell tree is a full binary tree, i.e., a node either has no children or two children.
Clearly the leaves of the forest stand for the cells (big or small) at the end of the t'th
iteration. An example of a cell tree is shown in Fig. 4.3.

A cell-tree has the property that cells corresponding to two nodes overlap exactly
when one is an ancestor of the other. The internal nodes correspond to the cells
that became phases at some point during the algorithm. We would like to bound
the number of nodes in a cell tree in terms of the number of disjoint phases. To this
end, let us define a petal in a cell tree as a node that has two children, both of which
are leaves (See Fig. 4.3). Since none of the petals are ancestors of each other, the
number of petals is a lower bound on OPT, the cost of an optimal offline pager on
the underlying request sequence. Also note that since a petal cell eventually turns
into a big phase and splits into two cells, its span must be greater than &/t.

Lemma 12 Assume t < k. If p is the number of petals in a cell tree at the end of t
iterations. Then there are at most (4p + 2p[lgt] + 1) nodes in the tree.
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Figure 4.2: The first three iterations of algorithm SleepyPager, with 9 pages (i.e. k = 8).
Only the requests (i.e. page faults) seen by the pager are shown. The top figure shows the
hole-paths of the first two iterations. After the first iteration, there is just one phase, and
this phase is divided into two cells (of spans 4 and 5) with common boundary A. After
the second iteration, neither of the cells becomes a phase. On the third iteration (bottom
figurej, when the hole is hit by request B, cell 2 becomes a phase, and is immediately split
into two cells (now called cells 2 and 3) at request C.
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Figure 4.3: A cell tree. Square nodes are petals.

Proof: Since the number of leaves in a cell tree equals 1 plus the number of internal
nodes, it suffices to bound the number of internal nodes. Each interr.al node is either
a petal or an ancestor of a petal. We claim that for any petal, the number of nodes
on the path from the root to the petal (including both) is at most 2 + [lg#]. This is
because the root node has span at most k + 1, a petal has span greater than k/¢ and
each splitting of a cell of span s produces cells of span at most [s/2]. This implies
there are at most p(2+ [lgt]) internal nodes in a cell tree. The total number or nodes.
including the leaves, is therefore at most 2p(2 + [lgt]) + 1, which implies the lemma.

|

We are now ready to show

Theorem 13 Algorithm SleepyPager has the following behavior: For every t. the
average t-iteration competitive ratio p(P, k,t) is at most 42% [lgt] when t < k. and
at most 42[lg k| when t > k.

Proof: Let t < k. As in the above lemma let p be the number of petals in the
cell-forest associated with this algorithm. Then by that lemma there are at most
4p + 2p[igt] +1 < Tp[lgt] nodes in the cell-forest (assuming k,t > 2).

Suppose o is the request sequence that is being repeated ¢ times. Clearly OPT{c) > p.
We wish to bound the total number P()(g) of all requests that hit the hole path
during the first ¢ iterations. At any time the hole may be hit either by a previously-

seen request {call this an old-hit) or by a new request (call this a new-hit). Moreover
these hits can oc-nr in either a big cell or a small cell. Note that when the hole first
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enters a cell, it may be hit by a request, either old or new. Let us call such a hit
an initial-hit. Even if there is an initial-hit in every cell on all ¢ iterations, the total
number of these is at most 7pt[lg¢].

After the initial hit, (a) if the hole is in a big cell, it moves to a page not requested
in the current cell, and (b) if the hole is in a small cell, it moves to the first-iteration
hole path and follows it. There can be at most k + 1 non-initial new-hits in a big cell
before it turns into a big phase and splits, so the total non-initial new-hits in all cells
over all ¢ iterations is at most (k + i) times the number of nodes in the ceil forest,
which is at most (k+1)-7p[lgt]. The old-hit cost of following the first-iteration path
in a small cell is just the span of the critical phase. Notice that a small cell of span
k/z cannot stay small for more than [z] iterations, so the total of this cost in a given
small cell, over all iterations, is at most (k/z)(z + 1) < 2k, independent of z. This
adds up to at most 2k - Tp[lgt] over all small cells.

Therefore the total cost P{*)(g) is at most
(t+k+1+2k).7p(lgt] <21(k/t + 1)[igt] - OPT,
which implies p(P, k,t) < 21(k/t + 1)[lgt] < 42%(lgt].

On each iteration after the first k iterations, the competitive ratio of the algorithm is
at most the average competitive ratio at the end of k iterations, so clearly for t > &
the algorithm achieves p( P, k,t) < 42[lgk}. ]

4.5 The Paging Problem Viewed as a Hidden Task
System

We already pointed out in Chapter 4 how the standard paging problem (with n =
k+1) can be viewed as a task system (S, d) with a uniform state space S. Recall that
page request i corresponds to a “task” ¢, and state j represents the cache configuration
where page j is the (only) page missing from the cache. Thus the cost of “processing”
task 7 in state j is 0 if 7 # j and it is oo otherwise. Such tasks where the processing
cost is oo in one state and 0 in all others are called occ-elementary, a term that was
introduced by Borodin, Linial and Saks [23].

The sleepy pager model (with n = k + 1) can be viewed as a hidden task system
on a uniform state space. Indeed, if at any stage the next “task™ is j. unless the
sleepy pager is in the state j it does not know in which state this task costs oo to
vrocess. (Of course, if it is in state j it knows that the next task costs 0 to process
in every other state). Note that unlike in a general reversible hidden task system
a sleepy pager does not even have the option of probing several states to find the
oo-cost state.
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The performance metric p(A,m,s,t) for a hidden task system thus corresponds to
the ratio p(P, k,t) for a sleepy pager. In other words we have shown the following
result:

Theorem 14 For a hidden task system (S,d) with s = |S| where the state space is
uniform and the possible tasks are co-elementary, there is an online algorithm A for
repeatedly processing a sequence of m tasks, with the guarantee that p(A,m,s,t) =
O(%logt) as long as the number of repetitions t is no more than s and p(A,m,s,t) =
O(log s) for t > s. (Our performance guarantees turn out to be independent of m.)

4.6 Conclusion and Open Problems

An obvious open problem is whether a performance-improvement algorithm can be
designed for the general paging problem where n could be (much) bigger than &k + 1.
Even for the special case n = k + 1, there is a gap between the upper and lower
bounds on p(P, k,t), and it would be interesting to improve either. Note that we only
know of the trivial lower bound Q(k/t).

We have designed our algorithm for situations where the same request sequence is
repeated. An intriguing question is whether one can design algorithms that improve
their competitiveness even when the request sequence is almost the same.

In the framework of task systems, one can consider generalizations of the sleepy
pager problem. For instance we can extend Theorem 14 to the case of arbitrary task
processing costs (but the state space is still uniform). Whether a similar result can
be shown for non-uniform state spaces is an open question.

4.7 Related Work

Our sleepy paging algorithm uses partial information from prior executions to improve
its (average) competitiveness. Other researchers have studied how an ouiine algorithm
can exploit information about its future input, although their work differs from ours
in both the type of information and the manner in which it is acquired.

The Influence of Lookahead

One type of partial information researchers have analyzed is lookahead information.
In the context of paging, Albers [3] and Young {34} consider how the competitive ratio
can be improved when the online algorithm sees not only the current page request but
also some future requests. Such information may be available in many real computer
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systems, for various reasons [3): the page requests may arrive in blocks; or if several
processes are running, some of them may accumulate several page faults and wait for
service; or a memory system with prefetching might demand not only the currently
accessed page but other possibly related pages to be in fast memory.

Specifically, Albers makes a distinction between weak lookahead and strong lookahead.
An algorithm is said to have weak lookahead of size [ > 1 if it sees the present
request and the next [ requests. It is well known that this type of lookahead cannot
help improve competitiveness since an adversary can render lookahead useless by
replicating each request [ times. An algorithm has strong lookahead of size [ if it sees
the next s requests, where s is the smallest number such that the cardinality of the
set of the next s requests is [ + 1. Under this model, Albers [3] presents a variant of
LRU that, given a strong lookahead of size {, where ! < k — 2, achieves a competitive
ratio of (k — ). She also shows that no deterministic algorithm can do better. Albers
presents a randomized algorithm (a modification of the Marking algorithm of [32])
which when given strong lookahead with [ < k — 2, is 2H(k — I)-competitive, where
H(k) = £%_, 1/i denotes the kth harmonic number. Further, she shows that H(k—1)
is a lower bound on the competitive ratio of such a paging algorithm.

Young [84] studies online paging algorithms that have resource-bounded lookahead
of size . Here the pager sees the present request and the maximal sequence of
future requests for which it will incur / faults. He presents deterministic and random-
ized algorithms with this type of lookahead which are max{2k/I,2}-competitive and
2(In(k/1) + 1)-competitive respectively.

Researchers have also studied the influence of lookahead in online algorithms for
certain dynamic location and online graph problems [40, 27, 43, 37].

Exploiting Information about Request Patterns

Recently some authors have addressed the question of whether a paging algorithm
can improve its competitiveness by exploiting knowledge about a program’s memory
access patterns. For instance programs are known to exhibit locality of reference. and
analyzing paging algorithms without taking this account might result in predictions
which do not match with practice. The LRU paging algorithm is a case in point: it
has been observed in practice to perform much better than one would expect from
the theoretical lower bound of & on its competitive ratio (k is the number of cache
pages).

The work of Borodin, Irani, Raghavan and Schieber [21]) and Irani, Karlin and Phillips
[41] is an attempt to address this mismatch between theory and practice. They
model the program'’s locality of reference by an access graph G that is known to the
algorithm. The nodes of G (which may be either directed or undirected) represent
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pages that a program can reference. The edges of G constrain the possible request
sequences that can be generated by the program, in the sense that a request to page
v can follow a request to page u only if either u = v or (u,v) is an edge of G. The
definition of competitiveness remains the same, except that only request sequences
consistent with G are considered. They show several results, including tight bounds
on the performance of LRU on any access graph G, and that LRU is optimal among
online algorithms for the important special case when G is a tree. They also show
that for small k, LRU is close to optimal on any G.

Adaptive Prefetching

In applications such as databases and hypertext systems, there is sufficient time
between page requests to prefetch pages into the cache even before they are requested.
Since prefetching can be done “for free” (i.e. with no visible delay to the user), the
only cost of a prefetching algorithm is the number of page faults. A good prefetching
algorithm must thus be able to accurately predict the next few page requests. A
prefetching algorithm cannot be expected to be competitive in the usual sense since
an offline algorithm would always prefetch the next page in the request sequence. and
would never suffer page faults. In [82], Vitter and Krishnan introduce a model where
the page requests are generated by a Markov source, and a prefetching algorithm is
evaluated relative to the best online algorithm that has complete knowledge of the
underlying Markov source. They are able to design prefetching algorithms whose
expected fault rate converges to the minimum expected fault rate as the request
sequence length approaches infinity. Their algorithms are based on an innovative use
of the classical Ziv-Lempel [85] data compression technique, the intuition being that
good data compression requires good prediction.

Others have taken an empirical approach to prefetching. For instance, Palmer and
Zdonik [69] use a neural network approach to prediction, and Salem [76] uses predic-
tion based on various first-order statistics.

Other Work on Improving Paging Performance

McFarling [64] has considered the possibility that the instruction-cache hit rate may
be improved by deciding smartly whether or not to bring in an executed instruction
into a full cache. He studied some ways of making this decision using a small finite
state machine to recognize the common instruction reference patterns.

Kilburn, Edwards, Lanigan and Sumner [51] empirically studied some heuristics to
improve paging performance in the Atlas computer. Their scheme, which they refer
to as a “learning” program, decides which page to evict from the cache based on
the reference frequencies of the cache pages. They speculate on the possibility that a
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paging program could attempt to predict which pages might be required by the appli-
cation program in the near future, and improve its prediction accuracy by recording
its successful and unsuccessful predictions.
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Chapter 5

Online Learning of Switching
Concepts

5.1 Introduction

Consider the following scenario. Alice and Bob like seeing movies. Alice, being the
thoughtful type, one day decides to come up with a simple rule that predicts whether
or not Bob will like a particular movie. An example of such a rule might be: “IF the
movie is black-and-white, OR Clint Eastwood stars in it, THEN Bob likes it”. Alice
knows that if there is a relatively simple rule that models Bob’s tastes at all times.
she can use standard algorithms to infer (a good approximation to) that rule. To her
dismay however, Alice finds that no single, simple rule seems to consistently explain
Bob’s movie tastes at all times.

It occurs to Alice that perhaps Bob’s movie tastes change depending on his mood.
Let us suppose in fact that there are two simple rules that predict Bob’s reaction to a
movie: One applies when he is in a good mood, the other when he is in a bad mood,
2nd his mood changes every now and then. However, Bob likes to be mysterious so
he never reveals his mood to Alice. So Alice is confronted with the following problem:
based on observations about Bob’s movie preferences, she must infer the two simple
rules that explain Bob'’s tastes.

The standard problem considered in machine learning theory is that of learning a
fixed concept from some class C. The problem confronting Alice is a generalization of
this standard problem, where the concept may switch between a small number (two,
in this case) of different concepts during the course of learning. We introduce our
switching concepts model in the next section. In order be able to get to this right
away, we postpone the discussion of related work to the last section of this chapter.

79
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5.2 Notation and Model

Let V be a set of n variables {z,,...,2,}. An example z is an assignment of 0 or
1 to each z; € V, and let X be the set of all examples. We will often just write
z; = 1 or z; = 0 to mean z(z;) = 1 or z(z;) = 0 when the example is clear from
context. A labeled example is a pair (z,!) where z € X and ! € {0,1}. A concept is
a boolean function over examples and a concept class is a collection of concepts. For
a disjunction ¢, define R(c) to be the set of all variables disjoined in ¢. So, R(c) is
the set of relevant variables.

In our model of switching concepts, for a given concept class C (such as monotone
disjunctions) we consider the following game played by Alice (the learner) and Bob
(the adversary). At the start of the game, Bob selects two secret concepts c;, ¢; from
C. (In our example above, X is the class of movies, ¢, and ¢; are the two rules that
model Bob’s movie preferences depending on his mood). In each round of the game,
first Bob picks ¢ = ¢; or ¢ = ¢; as his current “active” concept, and he does not
reveal to Alice which concept he picks (i.e., Bob picks his mood).

Then Alice either:

1. (Query). Chooses an z € X and asks Bob for the value of ¢(z) (which Bob
answers correctly), or

2. (Prediction). Asks Bob to choose an £ € X and then guesses the value of
c(z).

Each query (in step 1) or prediction mistake (in step 2) costs Alice 1 unit. Alice’s goal
is to minimize her cost. Note that in this model, the adversary may decide to switch
based on the interaction so far, but cannot switch, for instance, between receiving a
membership query aund responding to it.

Informally, Alice makes the queries in order to glean information about Bob’s secret
concepts ¢; and c;, so that eventually she can make more correct predictions.

If ¢; = c; then this game reduces to the standard “mistake bound with membership
queries” or “(extended) equivalence and membership queries” models: for various
concept classes C, there are algorithms that Alice can use whose cost in any game is
bounded by a polynomial (in n).

However for ¢; # ¢, it is not hard to see that for any deterministic strategy that
Alice uses, Bob can force Alice to make a mistake in every prediction round: Bob
picks an example z such that ¢,(z) # cy(z). and in each prediction round, if Alice’s
prediction would agree with the current concept ¢, then Bob switches to the other
concept. In fact we show below that there is not even a randomized strategy whose
expected cost stays within a factor strictly less than | of the number of switches so
far (even up to an additive term)
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Lemma 15 Suppose Alice knows ¢, and ¢3, and ¢, # c;. Then for any given ran-
domized strategy of Alice, there is a strategy of Bob such that for any constants (i.e.
independent of the length of the game) 0 < § < 1 and a, after sufficiently many rounds
of the game, the expected number of mistakes plus queries of Alice exceeds a+(1—6)s,
where s is the number of switches Bob has made so far.

Proof: We can assume that Bob knows Alice’s randomized strategy. Since ¢, # c3,
there is a y such that ¢,(y) # c2(y). In a prediction round, Bob always gives the
example y to Alice. In the ith round of the game, let the current concept (¢; or ¢;)
be denoted by ¢, and let p; be the probability that Alice makes a prediction and it
equals c(y), and ¢; be the probability that Alice makes a query (So the probability
that Alice makes a prediction and it does not equal ¢(y) is 1 — p; — ¢;). Bob knows p;
and ¢;. Thus the probability that Alice makes a mistake in round ¢ is p; if Bob makes
a switch at the start of that round, and it is 1 — p; — ¢; otherwise. In other words
the expected cost (mistake plus query) ¢; of Alice in round ¢ is p; + ¢; if Bob makes
a switch, and 1 — p; otherwise.

For any ; let ®; denote 2{=1 #;, and let s; denote the number of switches Bob has
made in the first j rounds. Note that ®; is the expected cost of Alice after j rounds
of the game.

In each round Bob must decide whether to switch or not. The goal of Boh’s strategy
is to always maintain the invariant that ®; > s,. Just before the ith roiind starts,
Bob knows ®;_; and s;_;. If Bob switches, then ¢; = p;+¢;, and so ®; = &, _, +p; +¢;
and s; = s;_1 + 1. Bob’s strategy is to switch if and only if

Qi +pi+q 281+ 1,

and this clearly maintains the invariant.

We claim that when the game is played with the above strategy of Bob, after some
finite number of rounds u, the number of switches s, exceeds a/é. At this point
clearly s, > a + (1 — §)s,, and by the above invariant ¢, > a + (1 — §)s,, which is
what we wanted to show.

To show that s; exceeds a/é for some finite ¢ it suffices to show that there can never
be more than a finite sequence of rounds where Bob does not switch. Consider some
round, say round ¢, where Bob does not switch. This must mean that ®;_; + p; +¢; <
8i—1 + 1, which implies 1 — p; — ¢; > ®;_, — s;—1. The expected cost of Alice in round
1isl—-pi,s0o®, =&, +1~p; > P, + D,_; —s;_;. Since s; = s;_y, it follows
that ®; — s; > 2(®i—1 — si—1). Thus if there is no switch in round ¢, the difference
®; — s; is strictly greater than twice the corresponding difference before this round.
Thus after a finite number of rounds without switches, ®; — s; must be at least 1. and
Bob’s strategy would dictate that he must switch. The claim then follows. ]
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Thus there is no strategy for Alice with a bounded expected cost. What then should
be a criterion for a good strategy? We adopt the popular competitiveness style of
analysis from online algorithms. That is, we compare the performance of Alice's
strategy with that of an “optimal” algorithm that knows both ¢; and ¢;. Indeed, if
Alice knows both ¢; and c;, then she can use the following simple strategy to pay
at most 1 whenever Bob switches his active concept: predict according to ¢; until
a mistake, then switch to ¢;, and so on. We call this the “standard steady-state
algorithm”. From the previous remarks, such a strategy is optimal. Thus we say that
Alice’s strategy is t-competitive if for any given 0 < é§ < 1, in any game where Bob
makes s switches, with probability at least (1 — §) the cost of the strategy is bounded
by p(n,1/6) + ts where p is a polynomial. One would like to design t-competitive
algorithms for small constant ¢t. This model can be easily generalized to switching
among k different concepts from the class C.

In the next section we present a 1-competitive randomized algorithm for learning a
pair of monotone disjunctions in this model. Specifically, given é > 0, with probability
at least 1 —§ the number of mistakes plus queries of the algorithm is O(n?log(n/é))+s.
The algorithm’s running time per round is polynomial in n and log(1/6).

5.3 The Algorithm and Analysis

We begin with a high-level description of the algorithm. In its first stage, the al-
gorithm makes a large number of queries, selected randomly according to a specific
distribution. With high probability it learns one concept exactly and learns the other
exactly as well if it has been used for classification a fair fraction of the time. Of
course, it is possible that one concept has been used only very infrequently for clas-
sification, so one cannot hope to always learn both.

In the second stage, the algorithm predicts according to the first concept ¢; learned.
and whenever its prediction is wrong, makes a query, hoping to gain information about
the second concept c;. We show that with high probability, after making sufficiently
(polynomially) many queries to c;, the algorithm will both recognize this fact—so
it can stop making the queries—and exactly learn c;. We also show that except for
mistakes and queries associated with the queries to ¢;, the algorithm makes at most
one mistake and one query for every two switches of the adversary, which makes it
1-competitive.

In the analysis of our algorithm we use the following Chernoff-type bounds from [9)].
When there are m independent trials of a Bernoulli random variable with probability
of success p, then for any 0 < 3 < 1,

-B*mp/2

Pr{there are fewer than (1 — 8)mp successes] < e ,and
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Pr{there are more than (1 + §)mp successes] < e~ Pme/3,

For convenience, let (z;) denote the example that sets only z, to 1, and similarly define
(zi,z;) as the example that sets only z; and z; to 1. For a monotone disjunction ¢,
we write R(c;) to denote the set of variables relevant to ¢;, i.e., the set of variables
such that ¢;(z) is 0 if and only if all the variables in R(c;) are set to 0 in z. The first
stage of the algorithm is as follows.

Algorithm Query-Learn, Stage One:
Given: é > 0.

1. Make m = kn?log(n/§) (for k = 5400) queries each selected independently
according to the following distribution:

Each example (z;) is selected with probability 5‘; Each example (z;,z;) (¢ # j)

is selected with probability ;(-ani-i

2. For each i calculate f*(z;) = (number of queries (z;) that were classified as
positive )/(3=).

3. If no index ¢ has f*(z:) € [3,3], then let h be the disjunction of all z; such that
ft(z;) > 1/2. Output h.

4. Otherwise, pick i such that f*(z;) € [3,3].
Let h be the disjunction of all x; such that query (z;,r;) was never classified
as negative.

Let h' be the disjunction of all z; such that either all queries (x;) were classified
as positive, or else f*(z;) > 0 and z; & R(h).

Output both h and h'.

Lemma 16 For any adversary strategy, for any § > 0, if the two target concepts are
monotone disjunctions then with probability 1 — § Algorithm Query-Learn, Stage One
will output either one or both of the target concepts

Proof: Algorithm Query-Learn, Stage One makes m queries. Since each query is
selected independently from a fixed distribution, and the algorithm ignores the order
of the examples, the only relevant choice of the adversary is the number m; of queries
for which c¢; is used for classification. This can be seen by thinking of the algorithm
as having two random tapes, one used when the target is ¢, and the other when
the target is c;. Let us first suppose that the adversary chooses m; in advance, and
without loss of generality let us say m,/m > 1/2.
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For each z; € R(c;), the expected value of f*(z,) is at least m;/m > 1/2. (The
expected value is 1 if z; € R(c,) as well.) Similarly, for each z; € R(c,), the expected
value of f*(z;) is at most 1 — my/m < 1/2. Chernoff bounds imply that with
probability 1 — ne=#(™/"*) > 1 — §/5, no f¥(z;) for z; € R(c1) will be less than 1/4,
and no f*(z;) for z; € R(c1) will be greater than 3/4. Thus, with high probability,
if the algorithm exits in Step 3 then A = ¢,. Notice also that if m; > 7m/8, then
with high probability (another 1 — §/5) each z; € R(c;) has f*(z;) > 3/4, and all
others have f*(z;) < 1/4, so the algorithm will exit in Step 3. Thus, we only need
to analyze Step 4 for m; < Tm/8.

If the algorithm continues to Step 4, then with probability at least (1 — 6/5) the
variable z; chosen such that f*(z,) € [1/4,3/4] is relevant to exactly one of the two
concepts (if it was relevant to both, then with high probability f*(z;) is very near
1); let us denote this concept by c'and the other concept by ¢’. Notice that at least
m/8 queries are classified by ¢/. In that case, for each z; € R(c'), the query {z,,z;)
will never be answered negative. So, hypothesis A will contain all variables in R(c').
In addition, if z; € R(c’), then the query (z;,z;) will be answered negative if it is
asked when classification is according to ¢’. Since at Jeast m/8 queries are classified
according to ¢/, this occurs with probability at least 1 — [1 — n(nl_”]"‘/s which is at
least 1 — é/5n for our choice of the constant k. So, with high probability A = ¢
Given that this occurs, with high probability (at least 1 — §/5) &’ = c.

So far we have been assuming that m; was chosen in advance, but in fact for our
choice of the constant k£ = 5400, each of the above failure rates is sufficiently small
(less than §/5m) that for all values of m; < m simultaneously, the chance of failure
is at most 8. That is, if we think of the algorithm as having two random tapes as
described above, then even if the adversary determines m, after seeing the entire
contents of the tapes, it still can only foil the procedure with probability 6. ]

The second stage of the algorithm is as follows.

Algorithm Query-Learn, Stage Two:

Given: concept ¢1,6 > 0. (If we are given both concepts, we just run the standard
steady-state algorithm).

1. 5«0
2. Repeat until § = nlog(2n/é):

(a) Predict according to ¢, until a mistake is made.
(b) Make a query (z;), with z; chosen uniformly at random from {xr,, z2,...x,}.

(c) If the answer to the query is not the same as ¢,({z;)), then S «— S + 1.




CHAPTER 5. LEARNING SWITCHING CONCEPTS 85

3. Let hy be the disjunction of the following variables:

e Variables z; ¢ R(c,) such that query (z;) was classified as positive at least
once, and

o Variables z; € R(c,) such that query (z;) was always classified as positive.

4. Run the standard steady-state algorithm on ¢; and h,.

Lemma 17 For any adversary strategy and pair (c1,cz2) of monotone disjunctions
such that c; is given to the learner, with probability 1 — § Algorithm Query-Learn,
Stage Two will make at most 8n? log(2n/8)) + s mistakes plus queries where s is the
number of switches of the adversary.

Proof: If ¢; = c;, the algorithm stays in step 2(a) and the claim trivially holds.
So, assume ¢, # ¢, so that there is at least one variable in the symmetric difference
R(c1)AR(c;). For ¢ = 1,2, we say that a query is a c;-query when the adversary
uses concept ¢; to classify it. Also, a c;-query z is “informative” when the answer
is different from c;(z). The counter S in step 2 counts precisely the number of
informative c;-queries made. Since |R(c;)AR(cz)| 2 1, if a ¢;-query is made in step
2(b), there is at least a 1/n chance that it is informative. So, if we consider a sequence
of 8n?log(2n/6) c;-queries selected according to the distribution of step 2(b), with
probability at least (1 — 8) both (A) at least nlog(2n/é) are informative, and (B)
within the first nlog(2n/é) cy-queries, informative queries (r;) have been made at
least once for each x; € R(c;)AR(cz). This implies that with probability at least
(1 — é) either the algorithm proceeds to step 3 and by (B) the hypothesis h; created
in step 3 exactly equals ¢, or else the adversary does not allow the algorithm to go
to step 3 by not letting it make 8n?log(2n/6) c,-queries.’

Thus, it remains only to show that the number of mistakes plus queries made in step 2
is bounded by the number of adversary switches plus a constant times the number of
c;-queries. To see this, consider a sequence (m,, ¢, m2, q2, ...) of mistakes and queries.
Each mistake m; is made while the classification is according to ¢;. So, if ¢; is a ¢;-
query then the adversary must have switched to ¢; for ¢; and then back to ¢, before
m;41, and we can charge both ¢; and m,4; to the switches. If ¢; is a c;-query, then we
charge ¢; and m;4; to the query. Also, we perhaps need to pay for mistake m;. So.

IThe reason for the care here is a subtlety, which can be illustrated by the following game: imagine
performing a random walk on a line, but where an adversary can stop you at any time t < i00. One
might like 10 say: “if the adversary allows you to make 100 steps, then with high probability you
will have made about 50 steps to the right.” However, this is false because the adversary s strategy
might be to stop the game after your first step to the left (so if you do make 100 steps, at least 99
were to the right). What is true, which can be seen by considering the more powerful adversary that
can see your entire sequence of 100 coin tosses in advance, is that with high probability either the
adversary stops you before t = 100 or by t = 100 you will have made about 50 steps to the right.
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the number not “paid for” by adversary switches is at most 1 plus twice the number
of c2-queries. Since with high probability we make only 8n? log(2n/8) c;-queries, this
achieves the bounds claimed. [

The above two lemmas prove the following theorem.

Theorem 18 Algorithm Query-Learn, Stage One, followed by Query-Learn, Stage Two
is 1-competitive for learning a pair of adversarially-switched monotone disjunctions.

5.4 Open Problems

An obvious open problem is to design “competitive” learning algorithms for £ > 2
switching concepts.

5.5 Related Work

Our switching concepts model is similar to a model considered by Helmbold and Long
[38] in which a concept may drift over time, but there are several important differences
between our focus and theirs. We restrict the “active concept” to switch between only
a small number of concepts instead of drifting through the entire class, but we allow
the switches to occur more rapidly and drastically. In particular, just looking at data
more recent than some cutoff point need not produce a large set consistent with any
individual target.

Experimental work on learning interleaved functions has been done by E. Levin [57].
Ar et al. [10] have examined a similar problem of identifying a set of polynomials over
a finite field where each point is assigned a value by one of the polynomials.




Bibliography

[1} H. Abelson and A. diSessa. Turtle Geometry. MIT Press, Cambridge, MA, 1980.

[2] S. Akella. Using deterministic acticns and incomplete sensors for robot tasks.
Thesis proposal, Carnegie Mellon University, July 1994.

[3] S. Albers. The influence of lookahead in competitive paging algorithms. In First
Annual European Symposium on Algorithms (ESA), pages 1-12. Springer-Verlag,
1993.

[4] D. Angluin. On the complexity of minimum inference of regular sets. Information
and Control, 39:337-350, 1978.

{5] D. Angluin. Inductive inference of formal languages from positive data. Infor-
mation and Control, 45(2):117-135, May 1980.

[6) D. Angluin. A note on the number of queries needed to identify regular languages.
Information and Control, 51:76-87, 1981.

(7] D. Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741-
765, July 1982.

(8] D. Angluin. Learning regular sets from queries and counter-examples. Tech-
nical Report YALEU/DCS/TR-464, Yale University Department of Computer
Science, Mar. 1986.

[9] D. Angluin and L. Valiant. Fast probabilistic algorithms for hamiltonian circuits
and matchings. J. Comput. Syst. Sci., 18:155-193, 1979.

[10] S. Ar, R. J. Lipton, R. Rubinfeld, and M. Sudan. Reconstructing algebraic
functions from mixed data. In Proc. of the 33rd Symposium on the Foundations
of Comp. Sci., pages 503-512. IEEE Computer Society Press, Los Alamitos, CA,
1992.

(11] B. Awerbuch, M. Betke, R. L. Rivest, and M. Singh. BFS without teleportation.
Unpublished Manuscript, 1994.

87




88 BIBLIOGRAPHY

[12] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Informa-
tion and Computation, 106(2):234-252, 1993.

(13] E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. On-line navigation in a room. In
Proc. 3rd ACM-SIAM SODA, 1992.

(14] P. Berman and M. Karpinski. Wall problem with convex obstacles. Unpublished
Manuscript, July 1994,

[15] M. Betke, R. Rivest, and M. Singh. Piecemeal learning of an unknown envi-
ronment. In Proc. 6th ACM Conf. on Computational Learning Theory, pages
277-286, 1993.

(16] A. Blum and P. Chalasani. Learning switching concepts. In Proc. 5th Annual
Workshop on Computational Learning Theory, 1992.

(17] A. Blum and P. Chalasani. An online algorithm for improving performance in
navigation. In Proceedings of the 34th Annual Symposium on Foundations of
Computer Science, pages 2-11, 1993.

(18] A. Blum, H. Karloff, Y. Rabani, and M. Saks. A decomposition theory and
bounds for randomized server problems. In Proceedings of the 33rd Annual Sym-
posium on Foundations of Computer Science, pages 197-207, 1992.

(19] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric
terrain. In Proc. 23rd ACM STOC, 1991.

[20] M. Blum and D. Kozen. On the power of a compass (or, why mazes are easier
to search than graphs). In Proc. 19th Symp. Foundations of Comp. Sc. (FOCS),
1978.

[21] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with
locality of reference. In Proc. 23rd Symp. on Theory of Computing (STOC).
pages 249-259, 1991.

[22] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with
locality of reference. In Proceedings of the 28rd Annual ACM Symposium on
Theory of Computing, pages 249-259, May 1991. Submitted for publication to
Algorithmica's special issue on on-line algorithms.

(23] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical
task systems. In ACM STOC, 1987.

[24] P. Chen. Improving path planning with learning. In Prof. 9th Int'l Workshop
on Machine Learning, 1992,




BIBLIOGRAPHY 89

[25] D. Cheriton and K. Harty. Application-controlled physical memory using exter-
nal page-cache management. Technical report, Department of Computer Science,
Stanford Universit- 1991. Technical Report draft.

[26] A. D. Christianse itomatic Acquisition of Task Theories for Robotic Manup-
ulation. PhD thesis, Carnegie Mellon University, 1992.

[27] F. K. Chung, R. Graham, and M. Saks. A dynamic location problem for graphs.
Combinatorica, 9(2):111-131, 1989.

(28] T. Darrell and A. Pentland. Classifying hand gestures with a view-based dis-
tributed representation. In Proc. 6th Neural Inf. Proc. Systems, 1994.

[29] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environ-
ment. In Proc. 32nd IEEE FOCS, pages 298-303, 1991.

[30) X. Deng and C. Papadimitriou. E> .. 5 an unknown graph. In Proc. 3Ist
IEEFE FOCS, pages 355-361, 1990.

[31] A. Fiat, D. Foster, H. Karloff, Y. Rabani, Y. Ravid, and S. Vishwanathan.
Competitive algorithms for layered graph traversal. In Proceedings of the 32nd
Annual Symposium on Foundations of Computer Scierce, pages 228-297, 1991.

[32] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. & Young.
Competitive paging algorithms. Technical Report CMU-CS-88-196, School of
Computer Science, Carnegie Mellon University, 1988. New version appeared in
Journal of Algorithms.

[33] E. M. Gold. Language identification in the limit. Information and Control.
10:447-474, 1967.

[34] E. M. Gold. System identification via state characterization. Automatica, 8:621-
636, 1972.

[35] E. M. Gold. Complexity of automaton identification from given data. Informa-
tion and Control, 37:302-320, 1978.

[36] L. Guibas, R. Motwani, and P. Raghavan. The robot localization problem in
two dimensions. In Proceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 259-268, 1992.

[37] M. Halldérsson and M. Szegedy. Lower bounds for on-line graph coloring. In
Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pages 211-216,
1992.




90 BIBLIOGRAPHY

(38] D. Helmbold and P. Long. Tracking drifting concepts using random examples. In
Proceedings of the 4th Annual Conference on Computational Learning Theory,
pages 267-280, 1991.

(39] J. Hopcroft, D. Joseph, and S. Whitesides. On the movement of robot arms in
2-dimensional bounded regions. In Proc. 23rd Symp. Foundations of Comp. Sc.

(FOCS), 1982.

(40] S. Irani. Coloring inductive graphs online. In Proc. 31st Annual IEEE Symp. on
Foundations of Comp. Sc. (FOCS), pages 470-479, 1990.

(41] S. Irani, A. R. Karlin, and S. Phillips. Strongly competitive algorithms for
paging with locality of reference. In Proceedings of the 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 228 - 236, Jan. 1992.

(42] B. Kalyanasundaram and K. Pruhs. Visual searching and mapping. Technical
report, University of Pittsburgh, 1991.

[43] M.-Y. Kao and S. Tate. Online matching with blocked input. Inf. Proc. Letters,
38(1):113-116, 1991.

(44] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching.
Technical report, Carnegie Mellong University, 1986.

[45] A.R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy
caching. Algorithmica, 3(1):79-119, 1988.

(46] H. Karloff, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-server and
motion-planning algorithms. In Proc. 23rd ACM STOC, pages 278-288, 1991.

[47] H. Karloff, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-server and
motion-planning algorithms. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, pages 278-288, May 1991.

(48] R. Karp, R. Motwani, and P. Raghavan. Deferred data structuring. SIAM J. of
Computing, 17(5):883~902, 1988.

(49] M. Kearns and L. G. Valiant. Learning boolean formulae or finite automata
is as hard as factoring. Technical Report TR 14-88, Harvard University Aiken
Computation Laboratory, 1988.

[50] M. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. In Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pages 433-444, Seattle, Washington, May
1989.




BIBLIOGRAPHY 91

[51] T. Kilburn, D. Edwards, M. Lanigan, and F. Sumner. One-level storage system.
IRE Trans. Elect. Computers, 37:223-235, 1962.

[52] J. Kleinberg. On the localization problem for mobile robots. In Proceedings of the
35th Annual Symposium on Foundations of Computer Science, 1994. To appear.

[53] S. Koenig and R.G.Simmons. Complexity analysis of real-time reinforcement
learning. In Proc. AAAI pages 99-105, 1993.

[54] Z. Kohavi. Switching and Finite Automata Theory. McGraw Hill, 1978.

[55] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel. Back-propagation applied to handwritten zip code recognition. Neural
Computation, 1(4), 1989.

[56] K.-F. Lee. Large-Vocabulary Speaker-independent Continuous Speech Recogni-
tion: the Sphinz system. PhD thesis, Carnegie Mellon University, 1988.

[57] E. Levin. Modeling time variant systems using hidden control neural architecture.
In Proc. Neural Inf. and Proc. Systems 3 (NIPS), 1991.

[58] N. Littlestone. Learning when irrelevant attributes abound. In Proceedings of the

Twenty-Eighth Annual Symposium on Foundations of Computer Science, pages
68-77, Oct. 1987.

[59] T. Lozano-Perez and M. Wesley. An algorithm for planning collision-free paths
among polygonal obstacles. Comm. ACM, 22:560-570, 1979.

[60] V. Lumelsky. Algorithmic and complexity issues of robot motion in an uncertain
environment. Journal of Complezity, 3:146-182, 1987.

[61] V. Lumelsky. Algorithmic issues of sensor-based robot motion planning. In 26th
IEEFE Conference on Decision, pages 17961801, 1987.

[62] V. Lumelsky and A. Stepanov. Dynamic path planning for a mobile automa-
ton with limited information on the environment. IEFE Trans. on Automatic
Control, 31:1058-1063, 1986.

[63] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11:208-230, 1990. Covers server results

from paper in Proceedings of 20th Annual Symposium on Theory of Computing
322-333.

[64] S. McFarling. Cache replacement with dynamic exclusion. In Proc. 19th Intl.
Symp. on Comp. Arch., pages 191-200, 1992.




92 BIBLIOGRAPHY

[65] D. McNamee and K. Armstrong. Extending the mach external pager interface
to accomodate user-level page replacement policies. Technical Report 90-09-05,
University of Washington Dept. of Comp. Sc. and Engg., 1990.

[66] T.Mitchell, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski. Experience
with a learning personal assistant. Communications of the ACM, July 1994.

(67] K. S. Narendra and M. A. L. Thathachar. Learning automata ~ a survey. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-4(4):323-334, 1974.

(68] B. Oomen, S. Iyengar, N. Rao, and R. Kashyap. Robot navigation in unknown
terrains using learned visibility graphs. IEEE Journal of Robotics and Automa-
tion., 1987.

(69] M. Palmer and S. Zdonik. Fido: A cache that learns to fetch. In Proc. 1991 Int’l
Conf. on Very Large Databases, 1991.

[70] C. Papadimitriou and M. Yannakakis. Shortest paths without a map. In Proc.
16th ICALP, 1989.

(71] D. A. Pomerleau. Neural Network Perception for Mobile Robot Guidance. PhD
thesis, Carnegie Mellon University, 1992.

[72] N. Rao, S. Iyengar, and G. deSaussure. The visit problem: visibility graph based
solution. In IEEFE Int’l. conf. Rob. and Automation, 1988.

[73] J. Reif. Complexity of the mover’s problem and generalizations. In Proc. 20th
Symp. Foundations of Comp. Sc. (FOCS), 1979.

(74] R. L. Rivest and R. E. Schapire. Diversity-based inference of finite automata.
In Proceeding of the Twenty-Eighth Annual Symposium on Foundations of Com-
puter Science, pages 78-87, Los Angeles, California, Oct. 1987.

[75] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-
quences. In Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, pages 411-420, Seattle, Washington, May 1989.

[76] K. Salem. Adaptive prefetching for disk buffers. Technical Report TR-91-64.
Goddard Space Flight Center, 1991.

(77] J. Schwartz and M. Sharir. On the piano movers problem: I. the case of a two-
dimensional rigid polygonal body moving amidst polygonal barriers. Comm.
Pure Appl. Math., 33:345-398, 1983.




BIBLIOGRAPHY 93

[78] J. T. Schwartz and M. Sharir. On the piano movers problem: li. general tech-
niques for computing tological properties of real algebraic manifolds. Adv. in
Appl. Math., 4:298-351, 1983.

[79] D. D. Sleator and R. T. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202-208, Feb. 1985.

[80] S. Thrun. Efficient exploration in reinforcement learning. Technical Report
CMU-CS-92-102, Carnegie Mellon University, 1992.

[81] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, Nov. 1984.

[82] J.S. Vitter and P. Krishnan. Optimal prefetching via data compression. In Proc.
32nd Symp. on Foundations of Comp. Sc. (FOCS), pages 121-130, 1991.

[83] A.-C. Yao. Probabilistic computations: Toward a unified measure of complex-
ity. In Proceedings of the 18th Annual Symposium on Foundations of Computer
Science, pages 222-227, 1977.

[84] N. Young. Competitive Paging and Dual-Guided On-Line Weighted Caching
and Matching Algorithms. PhD thesis, Princeton University, 1991. Available as
Computer Science Dept. Tech. Report CS-TR-348-91.

[85] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Trans. Inf. Theory, 24:530-533, 1978.




94

BIBLIOGRAPHY




Index

JumpDownleft, 40
general, 53
JumpDownRight, 43
general, 51
r-fence, 47
T-post, 47

access graph, 75
automata
inferring, 61

band, 22
BRS algorithm, 22

cell, 68

-tree, 70

big, 69

small, 69

span of, 69
competitive ratio, 2
competitiveness, 2

deferred data structuring, 64

demos, 29-33

doubling strategy, 28

drifting concepts, 86

exploration, 60

-exploitation tradeoff, 62

piecemeal, 61

fence, 22
-tree, 29
-rules, 35
traversal, 37
crossing, 22

95

function-approximation, 1
homing sequences, 63

invariant
Almost-Ordering, 40
Jump-Up, 44
Last-Node, 38
Ordering, 40
Progress-Ordering, 38

locality of reference, 75
localization, 63
lookahead, 3, 74
lower bound
for k-trip navigation, 18
for sleepy pager, 66
for switching concepts, 80

membership queries, 5
mistake bound, 5

online algorithms, 2
online learning, 5
of switching concepts, 80

partial information, 3, 16
path-planning
with arbitrary obstacles, 62
with complete information, 63
performance-improvement, 3, 9
in navigation, 15
in paging, 65
phase, 68
piano movers problem, 63
prefetching, 76
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pursuit-evasion game, 67
reinforcement learning, 62

scene, 16

simple, 21
search-quality tradeoff, 27
sleepy pager, 66
sweep, 22

task system, 9
hidden, 10
navigation as, 57
paging as, 73
reversible, 11

watchman’s route, 60
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Glossary

For quick reference we summarize below some notation and terms used in the thesis.

Hidden Task Systems

Ti

CA(T)

co(T)

p(A,m,s,t)

Pi(A9 m, 3)

Set of states in a task system.
Equals |S], the number of states in S.

State transition cost matrix: d(z,j) = cost of moving from state : to
state j. )

Sequence of tasks to be processed (perhaps repeatedly).
The tth task in the sequence T.
The online scheduling algorithm.

The cost (sum of state transition costs and task processing costs) of
processing T with algorithm A.

The optimal offline cost of processing T, with complete knowledge
of processing costs of all tasks of T in every state of S.

The number of repetitions of a task sequence.

The average competitive ratio of algorithm A after processing a se-
quence of m tasks ¢ times, in a hidden task system with s states.

The “instantaneous” competitive ratio of algorithm A on the ith
repetition of a sequence of m tasks, in a hidden task system with s
states.
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GLOSSARY

Robot Navigation

Ri(S)

R®)(S)
p(R.n, k)

pi(Rv n)
h

Fi(m)

(Xi(m),Yi(m))

ES

Start point, can be assumed to be (0, 0).

Target. Usually the line x = n.

Current robot coordinates at any time.

Length of shortest s-t path that avoids obstacles.
Euclidean s-t distance.

Number of trips.

Distance traveled by robot using strategy R on the ith s-t trip in
scene S.

Total distance traveled oy R in scene S during the first & trips.

Average competiiive ratio of algorithm R at the at the end of k trips,
in a scene where the Euclidean s-t distance is n.

“Instantaneous” competi.tive ratio on the th trip.
Half the obstacle-height in a simple scene.

Equals L/Vnk.

In a simple scene, equals /7.

Number of fences per group, equals [£] in a simple scene and equals
k in a general scene.

Number of obstacles per fence in the group, equals [f] + [Z—H in a
scene, and k + [2£] in a general scene.

The ith (up) fence in a group, where the highest/leftmost fence is
F.

The mth obstacle/7-post in F;, where the leftmost obstacle/post of
F; is Fi(1).

(z,y)-coordinates of the mth obstacle/7-post in the :th fence.
The number of obstacles/posts in fence F; so far.

The z-coordinate of the rightmost obstacle/post of fence F;.
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Simple Scene A scene where all obstacles have height 2h and width 1, and the
lower left hand corners of the obstacles are at coordinates of the form
(2,7h) for integer ¢ and j.

Search Trip A trip that walks a distance O(Lv/nk) and finds a path of length

O(Ly/n/k).

Window Rectangular region of height 2L between s and ¢, centered vertically
at s.
Up Fence In a simple scene, a sequence of obstacles extending across the win-

dow, where each obstacle is exactly h higher than and some positive
amount to the right of the preceding obstacle in the sequence. In a
general scene, replace “obstacle” by “r-post”, and T by h.

r-post A portion of the left side of an obstacle, of height 2r.

Progress-Ordering Invariant. At any time during the construction of the fence-tree
by our algorithm, no fence has more obstacles/posts than a fence
above it.

Last-Node Invariant. At any time, a new edge is only added from the last (highest)
node of a partial fence.

Ordering Invariant. All fences below the current fence F; are z-ordered, i.e., for all
j > 1, X] < Xj+1'

Almost-Ordering Invariant. No fence has more than one obstacle/post to the right
of a lower fence, i.e., for i < j, Xi(M; — 1) < X.

Jump-Up Invariant. Whenever the algorithm jumps from a fence F; to the fence
F;_, above, either F; has the same number of obstacles as F;_,, or
it has exactly one less obstacle and its last obstacle is left of the last
obstacle of F_;, i.e. X; < Xi_;. For general scenes, read “post”
wherever “obstacle” appears.

Paging

n Total number of pages addressed.
k Cache size.

t Number of repetitions of a fixed page request sequence.




100

Sleepy Pager

p(P,n, k,t)

p(P,k,1)

g
P®(0)

o(t)
Cell [4,5)

Span

Big Cell
Small Cell
Phase

GLOSSARY
A pager that is only woken up when there is a page fault, and is
unaware of page requests that occur before it is next woken up.

Average competitive ratio of paging algorithm P after t repetitions
of a fixed page request sequence, in an n-page, cache-size k paging
system.

Same as p(P,n,k,t), but for n = k + 1.

Either the actual request sequence being repeated, or the sequence
of known requests so far.

Total number of page faults of algorithm P during the first ¢ itera-
tions of o.

ith (known) request.

The time period starting just before request o(i) and ending just
before request o(7).

For a cell, the number of first-iteration page faults in the cell.
A cell whose span is greater than £/.
A cell that is not big.

A cell where every page is known to be requested at least once.

Switching Concepts

€1, C2

c

The two switching concepts.

Current concept, either ¢, or c;.

Number of variables (in a monotone disjunction).
Number of switches so far.

The set of relevant variables of ¢;.




