AD-A2)N PAGE		Form Approved CyAE No. 0704-0188
		Hector to nother		wing this Burden estimateror any other supert of this
	_	ement and Budget, 7	REPORT TYPE ANI	et (0704-0188), Weshington, OC 20503.
	8/9/94		Final Report	11/1/90-4/30/94
TELE AND SUBTILE Spectroscopy of th Transfer Reactions		ate Region i	n Hydrogen	5. FUNDING NUMBERS
uthon(s) Daniel M. Neumark				
ERFORMING ORGANIZATION University of Cali Sponsered Projects 336 Sproul Hall	fornia Office	SEP.2.3, 199	40	8. PERFORMING ORGANIZATION REPORT NUMBER
Berkeley, CA 94720				MENSR.TR. 94 0553
PONSORING/MONITORING A Air Force Office o Chemistry and Mate	f Scientific Res	search INL		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Bolling Air Force				AFOSR-9 4 -0084
Dr. German. SUPPLEMENTARY NOTES		ribution is t	unlimited	125. DISTRIBUTION CODE
Dr. German. Supplementary notes		cibution is a	unlimited	12b. DISTRIBUTION CODE
ABSTRACT (Maximum 200 w The research support and dynamics of a techniques: photoe spectroscopy. Most state spectroscopy We have also measur characterized sever	c release; Distr rted by this gravariety of trans lectron spectros t of the researce of reactions in red electron aff ral of the excit egun studying we	ant is center sient species scopy and zer th effort was nvolving H at finities of s ted electron eakly bound of	red on probi s using two ro electron s devoted to tom abstract several radi ic states of	ng the spectroscopy anion photodetachment kinetic energy the transition ion by fluorine atoms.
ABSTRACT (Maximum 200 w The research support and dynamics of a techniques: photoe spectroscopy. Mos state spectroscopy We have also measu characterized seve Finally, we have be	c release; Distr rted by this gravariety of trans lectron spectros t of the researce of reactions in red electron aff ral of the excit egun studying we n number of CO ₂	ant is center sient species scopy and zer th effort was nvolving H at finities of ted electron eakly bound of molecules	red on probi s using two ro electron s devoted to tom abstract several radi ic states of clusters in	ng the spectroscopy anion photodetachment kinetic energy the transition ion by fluorine atoms. cals, and have O ₃ for the first time. which a halide ion is 15. NUMBER OF PAGES 6 16. PRICE CODE

Final Technical Report

The research supported by this grant is centered on probing the spectroscopy and dynamics of a variety of transient species using two anion photodetachment techniques: photoelectron spectroscopy and zero electron kinetic energy spectroscopy. Most of the research effort was devoted to the transition state spectroscopy of reactions involving H atom abstraction by fluorine atoms. We have also measured electron affinities of several radicals, and have characterized several of the excited electronic states of O_3 for the first time. Finally, we have begun studying weakly bound clusters in which a halide ion is solvated by a known number of CO_2 molecules.

A) Experimental Techniques

Two instruments are used in these studies. In both, a beam of cold negative ions is produced by crossing a pulsed molecular beam of the appropriate precursors with the beam from an electron gun. The ions are mass-selected and then photodetached with a pulsed laser. In the photoelectron spectrometer, a fixed-frequency laser is used for photodetachment, and the kinetic energy of the ejected photoelectrons is measured via time-of-flight. The resulting spectrum maps out the electronic and vibrational structure of the neutral species, and the intensity distribution is sensitive to geometry changes between the anion and neutral. The energy resolution of this instrument is 8-10 meV, which is sufficient to resolve at least some vibrational structure in most of the systems we study. In the zero electron kinetic energy (ZEKE) spectrometer, the anions are photodetached with a tunable laser, and only those photoelectrons produced with nearly zero kinetic energy are detected. By plotting this electron signal vs. the laser frequency, we obtain, in principle, the same information as the photoelectron spectrum (PES), but the resolution of the ZEKE spectrometer is much higher, about 0.3-0.4 meV.

Since the photoelectron spectrometer is considerably easier to use, our typical plan of action is to obtain the PES for a many anions of interest, and to look at a subset of these at higher resolution with the ZEKE spectrometer. This combination of techniques is unique to our laboratory and gives us unprecedented flexibility in studying anion photodetachment.

B) Transition State Spectroscopy

In these experiments, the transition state region for the reaction $A + BC \rightarrow AB + C$ is accessed by photodetachment of the stable negative ion ABC-. Provided that the anion geometry is close to that of the neutral transition state, the anion photoelectron spectrum probes the vibrational spectroscopy and dissociation dynamics of the unstable ABC complex. This provides an invaluable probe of the transition state region for the reaction, arguably the most important part of a reactive potential energy surface.

Our research in this area over the last three years has focused on hydrogen transfer reactions of F atoms. Three of these were "heavy + light-heavy" reactions, in which an H atom is transferred between two much heavier species:

DTTU GOALTIN INJPECT ND 3

1

 $F + OH \rightarrow HF + O$ $F + CH_3OH \rightarrow HF + CH_3O$ $F + C_2H_5OH \rightarrow HF + C_2H_5O$

The transition states for these reactions are probed by photoelectron spectroscopy of OHF⁻, CH₃OHF⁻, and C₂H₅OHF⁻, respectively. Each photoelectron spectrum shows resolved vibrational structure assigned to the "asymmetric stretch", that is, the vibrational mode of the transition state in which the H atom is vibrating between the F and O atoms. There are no high quality potential energy surfaces for these reactions to which we can compare our results, but simulations of the OHF⁻ photoelectron spectrum on model potential energy surfaces indicated how these surfaces should be modified to better match the experiments.

The other reaction we have studied is the very fundamental reaction:

$$F + H_2 \rightarrow HF + H$$

This reaction has been the subject of innumerable experimental and theoretical investigations since the dawn of reaction dynamics. Nonetheless, there has been considerable uncertainty regarding some very basic features of its potential energy surface, namely the barrier height and the nature of the FHH bend potential. Our photoelectron spectrum of FH_2 reveals a progression in the FHH bending mode, and since the ion is linear, this means the transition state is bent. While our experimental work was being carried out, a new *ab initio* potential energy surface was calculated for this reaction, and exact quantum mechanical simulations on this new surface show excellent agreement with our spectrum. Hence it appears that this long-standing problem in chemical dynamics has been solved.

C) Studies of Radicals by Anion Photoelectron Spectroscopy

We have also performed several "conventional" photoelectron spectroscopy experiments in which anion photodetachment produces a stable neutral species, typically a free radical. The maximum energy of our photodetachment laser is 5.822 eV, considerably higher than that available from the cw lasers more commonly used in photoelectron spectrometers, so we can study species with high electron affinities as well as excited states of radicals with lower electron affinities. We have obtained the first accurate electron affinities for the CN, NCO, and NCS radicals. Moreover, our photoelectron spectrum of O_3 - yielded the energies of several low-lying states of O_3 that had not been identified previously. This work showed that O_3 has no excited states below the $O_2 + O$ dissociation limit; such states had been postulated in the past to explain some of the atmospheric chemistry of O_3 .

D) Solvation of Halide Ions in Size-selected Clusters

Since anions are easily mass-selected, photodetachment of anion clusters offers a powerful means of studying the stepwise solvation of a negative ion. The evolution of the photodetachment spectrum with cluster size enables one, in principle, to track the spectroscopy of an anion from the isolated molecule to condensed phase limits. To this

2

đ

. Cades

Averi abd/or Special end, we have measured the photoelectron spectrum of the clusters $I(CO_2)_{n=1-13}$ and the ZEKE spectrum of $I(CO_2)$. The "stepwise solvation energies" obtained from the photoelectron spectrum indicate that the first solvation shell occurs for nine CO_2 mole surrounding the I anion. The vibrational structure in these spectra shows that the idea is the anion between the anion and CO_2 is sufficient to distort the CO_2 by several degrees from linearity. The higher resolution ZEKE spectrum reveals the splitting of the I $^{2}P_{3/2}$ electronic state in the neutral $I(CO_2 \text{ complex}, \text{ and it also yields vibrational frequencies for the low frequency C-I stretching modes in the anion and neutral. These studies are continuing with other anion chromophores and solvating species.$

COMPLETED PROJECT SUMMARY

TITLE: Spectroscopy of the Transition State Region in Hydrogen Transfer Reactions

PRINCIPAL INVESTIGATOR: Daniel M. Neumark

DATES: November 1, 1990 - April 30, 1994

CONTRACT/GRANT NO: AFOSR-91-0084

SENIOR RESEARCH PERSONNEL: none, other than P.I.

JUNIOR RESEARCH PERSONNEL: D. W. Arnold, C. C. Arnold, S. E. Bradforth, E. H. Kim, R. B. Metz, G. Reiser, I. Yourshaw, A. Weaver, C. Xu, Y. Zhao

PUBLICATIONS ACKNOWLEDGING THIS GRANT: See attached

ABSTRACT OF OBJECTIVES AND ACCOMPLISHMENTS:

The objective of this research program is to use negative ion photodetachment as a means of investigating a variety of transient species which are of fundamental chemical interest and which cannot be studied by other means. The major component of this research is the study of transition states in chemical reactions. Here the transition state for a neutral reaction is accessed by photodetachment of a stable negative ion similar in structure to the neutral transition state. The resulting photoelectron spectrum probes the geometry and dissociation dynamics of the transition state. Our work during the last three years has focused on reactions of the type $F + HB \rightarrow HF + B$ (B=H, OH, CH₃O, C₂H₅O). While all of these studies yielded resolved vibrational structure associated with the neutral transition state, the most successful work was performed on the $F + H_2$ reaction, which was studies by photoelectron spectroscopy of FH₂⁻. The spectrum established that the neutral transition state is bent, and a detailed comparison with theory indicates that an accurate potential energy surface for this reaction has finally been developed.

Another component of this research program is to investigate radicals and clusters via the same techniques used to study transition states. To this end, we have measured the electron affinities of CN, NCO, and NCS, and have used photoelectron spectroscopy of O_3^- to make the first experimental identification of several low-lying electronic states of O_3^- . Finally, we have measured photoelectron spectra and higher resolution zero electron kinetic energy (ZEKE) spectra of I-solvated by known numbers of CO2 molecules in order to examine how stepwise solvation affects the I⁻ and I chromophores.

LIST OF PUBLICATIONS AFOSR-91-0084

- 1. S. E. Bradforth, D. W. Arnold, R. B. Metz, A. Weaver, and D. M. Neumark, "Spectroscopy of the Transition State: Hydrogen Abstraction Reactions of Fluorine," J. Phys. Chem. <u>95</u>, 8066 (1991).
- 2. J. Z. H. Zhang, W. H. Miller, A. Weaver, and D. Neumark, "Quantum Reactive Scattering Calculations of Franck-Condon Factors for the Photodetachment of H_2F^- and D_2F^- and Comparisons with Experiment," Chem. Phys. Lett. <u>182</u>, 283 (1991).
- 3. D. M. Neumark, "Negative Ion Photodetachment as a Probe of the Transition State Region: The I + HI Reaction," in <u>Advances in Molecular Vibrations and Collision</u> <u>Dynamics</u>, Vol. IA, ed. J. M. Bowman, (JAI Press, Greenwich, 1991) pp. 165-185.
- 4. A. Weaver and D. M. Neumark, "Negative Ion Photodetachment as a Probe of Bimolecular Transition States: The F + H₂ Reaction," Faraday Discuss. Chem. Soc. <u>91</u>, 5 (1991).
- 5. R. B. Metz, S. E. Bradforth, and D. M. Neumark, "Transition State Spectroscopy of Bimolecular Reactions Using Negative Ion Photodetachment," Adv. Chem. Phy. <u>81</u>, 1 (1992).
- 6. R. B. Metz and D. M. Neumark, "Adiabatic Three-Dimensional Simulations of the IHI⁻, BrHI⁻ and BrHBr⁻ Photoelectron Spectra," J. Chem. Phys. <u>97</u>, 962 (1992).
- 7. D. M. Neumark, "Transition State Spectroscopy of Bimolecular Chemical Reactions," Ann. Rev. Phys. Chem. <u>43</u>, 153 (1992).
- 8. D. W. Arnold, S. E. Bradforth, E. H. Kim, and D. M. Neumark, "Anion Photoelectron Spectroscopy of Iodine-Carbon Dioxide Clusters," J. Chem. Phys. <u>97</u>, 9468 (1992).
- 9. D. M. Neumark, "Transition State Spectroscopy via Negative Ion Photodetachment," Accts. Chem. Res. <u>26</u>, 33 (1993).
- 10. S. E. Bradforth, E. H. Kim, D. W. Arnold, and D. M. Neumark, "Photoelectron Spectroscopy of CN⁻, NCO⁻, and NCS⁻," J. Chem. Phys. <u>98</u>, 800 (1993).
- 11. Y. Zhao, C. C. Arnold, and D. M. Neumark, "Study of the I•CO₂ van der Waals Complex by Threshold Photodetachment Spectroscopy of I⁻CO₂," J. Chem. Soc. Far. Trans. <u>89</u>, 1449 (1993).
- 12. S.E. Bradforth, D.W. Arnold, D.M. Neumark, and D.E. Manolopoulos, "Experimental and Theoretical Studies of the F+H₂ Transition State Region via Photoelectron Spectroscopy of FH₂⁻," J. Chem. Phys. <u>99</u>, 6345 (1993).
- 13. D. E. Manolopoulos, K. Stark, H.-J. Werner, D. W. Arnold, S. E. Bradforth, and D. M. Neumark, "The Transition State of the F+H₂ Reaction," Science <u>262</u>, 1852 (1993).
- D. W. Arnold, C. Xu, E. H. Kim, and D. M. Neumark, "Study of Low-Lying Electronic States of Ozone by Anion Photoelectron Spectroscopy of O₃," J. Chem. Phys. <u>101</u>, 912 (1994).