
REPORT DOCUMENTATIOI AD-A285 149
Public reporting burden for this ctoctlon of Information Is estimated to average 1 hour per r fl)III~II I ulli xsting data

sucsgathering end maintaining tedata needed, an reviewing the collection of inforrr IiI i III'II1111111ladquarers
Service, Directorate for Iformaitionl operations and Reports, 1215 Jefferson Davis Highway *~~' £1~irniation and
Reguistory Affairs, office of Management and INdget, Washington, DC 20503.

1. AGENCY USE (Leave 12. REPORT 3. REPORT TYPE AND DATES

4. TITLE AND:Compiler: VADS AT&T 3B32/600GR UNIX System V Release 4, 5. FUNDING
Product #2100-01449, Version 6.2
Host/Target: 3B2/GOOGR (under System V, Release 4.0) Kr

6. AUTHORS: '44 1994K

Wright-Patterson AFB, Dayton, OH

7 PERFORMING ORGANIZATION NAME (S) AND 8. PERFORMING
Ada Validating Facility, Language Control Facility ASB/SCEL, Building 676, Rm. ORGANIZATION
135
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING
Ada Joint Program Office, Defense Information System Agency AGENCY
Code TXEA, 701 S. Courthouse Rd., Arlington, VA
22204-2199

11. SUPPLEMENTARY

1 2a. DISTRIBUTION/AVAILABILITY: Approved for public release; distribution 1 2b. DRISTRIBUTION
unlimited

13. (Maximum 200

Rational Software Corporation, 940630 Wi.1 1373

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary 15. NUMBER OF
Report, Ada Compiler Val. Capability Val. Testing, Ada Val. Office, Ada Val. Facility
ANSI/MiI-STD-1 81 5A 16. PRICE

17 SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN -

4

AVF Control Number: AVF-VSR-601.0694
Date VSR Completed: July 21, 1994

94-05-12-RAT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940630W1.11373
Rational Software Corporation

VADS AT&T 3B2/600GR UNIX System V Release 4.0,
Product Number: 2100-01449, Version 6.2

AT&T 3B2/600GR under UNIX System V, Release 4.0

(Final)

Prepared By:
Ada Validation Facility

645 CCSG/SCSL
Wright-Patterson APB OH 45433-5707

£.L~ ~ Z SE %0A~Ji£3~TED 5

94-30980 9

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 30 June 1994.

Compiler Name and Version: VADS AT&T 3B2/600GR UNIX System V Release 4.0,

Product Number: 2100-01449, Version 6.2

Host Computer System: AT&T 3B2/600GR under UNIX System V, Release 4.0

Target Computer System: Same as host

Customer Agreement Number: 94-05-12-RAT

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940630W1.11373
is awarded to Rational Software Corporation. This certificate expires two
years after MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validati Fa
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

Direc r, r and Software Engineering Division
Insti te for Defense Analyses
Alexandria VA 22311

Jointptqfa* 0GOFFAacesilon 7irDi rector O
Ic,.:': (

Defense Information Systems Agency, DTTC (II
Center for Information Management Unt.: ncd

D1y

~d~i 4

D AION OF CONFOR

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Customer: Rational Software Corporation

Ada Validation Facility: 645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: VADS AT&T 3B2/600GR UNIX System V,
Release 4.0 2100-01449,
Version 6.2

1:ost Computer System: AT&T 3B2/600GR (UNIX System V, Release 4.0)

Target Computer System: same as host

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A,
ISO 8652-1987, FIPS 119 as tested in this validation and documented
in the Validation Sunmmary Report.

Date:croCrTqlo

Directo7 of Core Techn logy

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMETATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

-- __Hi ~~I tII ,

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Sunmmary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Progranming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking m.nner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the -Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected Some of the class B tests tontain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AvF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The Tart of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTZGM

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro)21.

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C357028 C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54BO2A C55BO6A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BD1BO6A
AD1BO8A BD2AO2A CD2A2lE CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD700SE AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A" CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMUPMLNTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LCOG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..-FAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is lesi than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFLOWS is TRUl.

B86001Y uses the name of a predefined fixed-point type other than type
DURATICN; for this implementation, there is no such type.

C96005B uses values of type DURATICN's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

2-2

IMPLDDTATION DEPENDENCIES

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEOUENTIALIO
CE2102E CREATE Off FILE SEQUENTIALI0
CE2102F CREATE INCUT FILE DIRECT 10
CE21021 CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEUENTIALI 0
CE21020 RESET IN-FILE SEJTIALIO
CE2102P OPEN OUT FILE SEEUENTIALI O
CE2102Q RESET CT-FILE SEQMNTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUfTFILE DIRECTI0
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECTI0
CE2102V OPEN OUT FILE DIRECTIO
CE2102W RESET lUT FILE DIRECT I
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TET-IO
CE3102G DELETE TEXT IO
CE3102I CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE T1T-I0
CE3102K OPEN OUT FILE TET0-IO.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the c-pacity of an
external direct file is exceeded; this-implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inapproprTate value for the external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST; for this- implementation, the value of
COUNT'LAST is greater than 150C00, making the checking of this objective
impractical.

2-3

IMPLETATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 23 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC3005B BD2BO3A BD2D03A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST as
the range constraint of a floating-point type declaration because the bounds
lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

CDI009A, CD1009I, CDIC03A, CD2A22J, CD2A24A, 'md CD2A31A..C were graded
passed by Evaluation Modification as directed by the AVO. These tests use
instantiations of the support procedure LENGTE CHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590. The
AVO ruled that this interpretation is not binding under ACVC 1.11; the tests
are ruled to be passed if they produce Failed messages only from the
instances of LENGTH CHECK-i.e, the allowed Report.Failed messages have the
general form:

"1 * CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

AD9001B was graded passed by Test Modification as directed by the AVO. This
test checks that no bodies are required for interfaced subprograms; among the
procedures that it uses is one with a parameter of mode OUT (line 36). This
implemenation does not support pragma INTERFACE for procedures with
parameters of mode OUT. The test was modified by commenting out line 36 and
40; the modified test was passed.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Sam Quiring
Rational Software Corporation
1600 NW Compton Dr., Suite 357
Aloha, OR 97006-1992
(503) 690-1116

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system - if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3799
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 66
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 267 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun SPARCcenter 2000 and then copied to the
host computer system.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked and executed on the host computer system.
The results were captured on the host computer system.

Testing was performed using comand scripts provided by the customer and
reviewed by the validation team. See Apper,,Ax B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

-w Suppress warning diagnostics.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89J. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

SMAXINLEN 499 - Value of V

$BIG IDI (i..V- -> 'A', V -> '1')

$BIG ID2 (I..V-1 -> 'A', V -> '2')

$BIGID3 (l..V/2-> 'A') & '3' &
(l..V-l-V/2 W> 'A')

$BIG ID4 (l..V/2 -> 'A') & '4' &
(l..V-1-V/2-> 'A')

$BIGINTLIT (l..V-3 -> '0') & "298"

SBIG REAL LIT (l..V-5 -> '0') & "690.0"I

$BIG STRING1 '"' & (l..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (l..V-l-V/2 -> 'A') & 'I' & '"'

SBLANKS (1..V-20 -> '

$MAXLEN_INTBASED_LITERAL
"2:" & (l..V-5-> '0') & "11:"

SMAXLEN REALBASEDLITERAL
"16:" & (l..V-7-> '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAX STRING-LITERAL '"' & (1..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAULT MEM SIZE 16777216

$DEFAULT STOR UNIT 8

$DEFAULT SYS-NAME ATT MIPS-SELF

SDELTA DOC 0. 0000000004566612873077392578125

SENTRYADDRESS SYSTEM."+"(16#40#)

$ENTRY ADDRESS1 SYSTEM."+"(16#80#)

SENTRYADDRESS2 SYSTEM."+"(16#100#)

$FIELDLAST 2147483647

$FILETERMINATOR f'

$FIXEDNAME NOSUCHTYPE

$ FLOATNAME NOSUCHTYPE

$ FORMSTRING ""

$FORMSTRING2 "CANNOT RESTRICT_FILECAPACITY"

$GREATER THAN DURATION
100000.0

$GREATER THANDURATION BASE LAST
-T000000.0

$GREATERTHAN FLOAT BASE LAST
l.-- E+308

$GRFATER THAN FLOAT SAFE LARGE
5.'UE307

A-2

MACRO PARAMETERS

SGREATER THAN SHORT FLOAT SAFE LARGE
9.0E37

SHIGHPRIORITY 99

SILLEGALETERNALFILE NAME1
7illegal/filename/2{ 1$%FILE1.DAT

$ILLEGALEXTE-NALFILE NAME2
7illegal/file name/2{]$%FILE2.DAT

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATE PAGE LENGTH

-1

$INCLUDEPRAGMAl PRAGMA INCLUDE ("A28006D1 .TST")

$INCLUDEPR PRAGMA INCLUDE ("B28006D.TST")

$INTEGER FIRST -2147483648

$ INTEGER_LAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$INTERFACE LANGUAGE C

SLESSTHANDURATION -100000.0

SLESSTHAN DURATION BASE FIRST
--16000000.0

SLINETERMINATOR ASCII.LF

SLOWPRIORITY 0

SMACHINECODESTATEMENT
CODE 0'(OP -> NP);

$MACHINECODETYPE CODE_0

SNANTISSADOC 31

SMAXDIGITS 15

$MAXINT 2147483647

$MAX INTPLUS_1 2147483648

$MIN INT -2147483648

SNAME TINY INTEGER

A-3

MACRO PARAMETERS

SNAMELIST ATTMIPS-SELF

$NANESPECIFICATION1 /usr/test- suites/acvc . 11/c/e/X2120A

$NAMESPECIFICATICt42 /usr/test-suites/acvcl . 1/c/e/X2120B

$NAMESPECIFICATICN3 /usr/test-suites/acvcl 11/c/eAC3119A

$NEGBASEDINT 16#FOOOOOOE*

$NEWJMEM SIZE 16777216

$NEWSTORUNIT 8

$NEWSYSNAME ATTMIPS-SELF

$PAGETERMINATOR, ASCI . LF & ASCI I.F

$RECORDDEFINITICN RECORD SUBP: OPERAND; END RECORD;

$RECORDNAME CODE_0

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLEADDRESS VAR_1 'ADDRESS

$VARIABLEADDEESSi VAR_2 'ADDRESS

$VARIABLEADDRESS2 VAR_3 'ADDRESS

$YOUR PRAGMA PRAGMA PASSIVE

A-4

APPENDIX B

C=PILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-I

C0MPILATICN SYSTEM OPTIONS

ada Command Reference ada

ada - invoke the Ada compiler

Syntax

ada (options) (sourcefile)... (object file.o]...

Arguments

object file.o non-Ada object file names. These files will be passed
on to the linker and will be linked with the specified
Ada object files.

options options to the compiler. These are:

-A (disassemble) Disassemble the units in the source file after
compiling them. -A can be followed by arguments that further
define the disassembly display (e.g., -Aa, -Ab, -Ad, -Af,
-Al, -As).

a Add hexadecimal display of instruction bytes to
disassembly listing.

b Disassemble the unit body [default].
d Print the data section (if present) as well.
f Use the alternative format for output.
1 Put the disassembly output in file "file name.das"
s Disassemble the unit spec.

-a file name
(archive) Treat file name as an object archive file created
by ar. Since some archive files end with .a, -a is used to
distinguish archive files from Ada source files.

-Bstatic/dynamic (SPARCompiler Ada only)
(static) If static is indicated, the Ada program is tompiled
and linked statically. The default is dynamic.

-c suppress the control messages generated when pragma PAGE
and/or pragma LIST are encountered.

-D identifier type value
(define) Define an identifier of a specified type and value.

-DA1.0
-DAI.1
-DA2.0

(architecture) Specify the architecture version the compiler
should generate code for. These options override the ARCHITECT7RE
INFO directive [Default: -DA1.l] (HP PA-RISC only)

-d (dependencies) Analyze for dependencies only. Do not do

8-2

COMPILATICtN SYSTEI OPTICNS

semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. The -d option is
used by a.make to establish dependencies among new files.
This option will attempt to do imports for any units
referenced from outer libraries. This should reduce
relocation and reduce user disk space usage.

-E
-E directory

(error output) Without a directory argument, ada processes
error messages using a.error and directs a brief message to
standard output; the raw error messages are left in
source file.err. If a directory name is given, the raw error
output-is placed in directory/source file.err. The file of
raw error messages can be used as iniut to a.error. Only
one -e or -E option should be used.

-e (error) Process compilation error messages using a.error and
send it to standard output. Only the source lines containing
errors are listed. Only one -e or -E option should be used.

-Eferror file source file
(error) Process iource file and place any error messages
in the file indicated 5y error file. Note that there is
no space between the -Ef and e7ror file.

-El
-El directory

(error listing) Same as the -E option, except that a source
listing with errors is produced. Note that the source listing is
directed to standard out while the raw errors are placed in
source file.err.

-el (error listing) Intersperse error messages among source
lines and direct to standard output.

-Elferror file source file
(erro? listing) Sime as the -Ef option, except that A source
listing with errors is produced and directed to standard output.
The raw errors are written to error file.

-ev (error vi(1)) Process syntax error messages usir4g a.error,
embed them in the source file and call the environment editor
ERROR EDITOR. If ERROR EDITOR is defined, the environment
variaBle ERROR PATTERN-should also be defined. ERROR PATTERN
is an editor siarch comand that locates the first occurrence
of '###' in the error file. If no editor is specified, vi(l)
is invoked.

The value of the environment variable ERROR TABS, if set,
is used instead of the default tab settings-(8).

-F (full DIANA) Do not trim the DIANA tree before output to
net files. To save disk space, the DIANA tree will be

B-3

COMPILATION SYSTEM OPTIONS

trimmed so that all pointers to nodes that did not involve
a subtree that define a symbol table will be nulled
(unless those nodes are part of the body of an inline or
generic or certain other values needing to be retained for
the debugging or compilation information). The trimming
generally removes initial values of variables and all
statements.

-G (GVAS) Display suggested values for the MIN GVAS_ADR
and MAX GVAS ADDR INFO directives.

-K (keep) Keep the intermediate language (IL) file produced
by the compiler front end. The IL file will be placed in
the .objects directory with the file name Ada-source.

-L library name
(library) Operate in VADS library library name.
[Default: current working directory]

-1file abbreviation (VADSself only)
(library search) This is an option passed to the ld(l)
linker, telling it to search the specified library file.
(No space between the -1 and the file abbreviation.)

-M unit name
(main) Produce an executable program by linking the named
unit as the main program. unit name nmust already be
compiled. It must be either a 5arameterless procedure or
a parameterless function returning an integer. The
executable program will be named a.out (VADSself) or a.vox
(VADScross) unless overridden with the -o option.

-M source file
(mainT Produce an executable program by compiling and
linking source file. The main unit of the program is
assumed to be The root name of the file (for foo.a the
unit is foo). Only one file may be preceded by -M. The
executable program will be named a.out (VADSself) or'a.vox
(VADScross) unless overridden with the -o option.

-N (no code sharing) Compile all generic instantiations
without sharing code for their bodies. This option
overrides the SHARE BODY INFO directive and the SHARECODE
or SHAREBODY pragmas.

-NX (NX) Link with NX startup code and with the NX archive libraries.
This option is valid only if the -M option has also been invoked.

(Sun SPARC -> Paragon only)

-010-91
(optimize) Invoke the code optimizer. An optional digit
(there is no space before the digit) provides the level of
optimization. The default is -04.

B-4

COKPILATICN SYSTEM OPTIONS

-0 full optimization
-00 no optimization
-01 copy propagation, constant folding, removing

dead variables, subsuming moves between scalar
variables

-02 add common subexpression elimination within
basic blocks

-03 add global con subexpression elimination
-04 add hoisting invariants from loops and address

optimizations
-05 add range optimizations, instruction scheduling

and one pass of reducing induction expressions
-06 no change
-07 add one more pass of induction expression reduction
-08 add one more pass of induction expression reduction
-09 add one more pass of induction expression

reduction and add hoisting expressions common to
the then and the else parts of if statements

Hoisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

Note that using the -00 option can alleviate some problems when
debugging. For example, using a higher level of optimization,
you may receive a message that a variable is no longer active or
is not yet active. If you experience these problems, set the
optimization level to 0 using the -00 option.

-o executable file
(output) This option is to be used in conjunction with
the -M option. executable file is the name of the executable
rather than the default, a.out (self) or a.vox (cross).

-P Invoke the Ada Preprocessor.

-R VADS library
(recompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of any that are out
of date. VADS library is the library in which the
recompilation is to occur. If it is not specified, the
recompilation occurs in the current working directory.

-r (recreate) Recreate the library's GVAS TABLE file. This option
reinitializes the file and exits. Thii allows recovery from
"GVAS exhausted" without recompiling all the files in the library.

-S (suppress) Apply pragma SUPPRESS to the entire compilation
for all suppressible checks.

-sh (show) Display the name of the tool executable but do not
execute it.

-T (timing) Print timing information for the compilation.

B-5

COMPILATICN SYSTIE OPTICNS

-trb
(trace block) Generate code to trace entry into basic blocks and
calls and returns (for use with a.trace only)

-v (verbose) Print compiler version number, date and time of
compilation, name of file compiled, command input line,
total compilation time and error summary line. Storage usage
information about the object file is provided.

-w (warnings) Suppress warning diagnostics.

source-file name of the source file to be compiled.

Description

The ada command executes the Ada compiler and compiles the named Ada
source file. The file must reside in a VADS library directory. The
ada.lib file in this directory is modified after each Ada unit is
compiled.

By default, ada produces only object and net files. If the -Mi option
is used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the main program.

For cross systems, the compiler generates object files compatible with
the host linker in V C format. The VOX format is discussed in
Appendix A of the Programmer's Guide.

Non-Ada object files (.o files produced by a compiler for another
language) may be given as arguments to ada. These files will be passed
on to the linker and will be linked with the specified Ada object files.

Command line options may be specified in any order but the order of
compilation and the order of the files to be passed to the linker can
be significant.

Several VADS compilers may be simultaneously available on a single
system. Because the ada command in any VADS location/bin oft a system
will execute the correct compiler componenti based upon visible
library directives, the option -sh is provided to print the name of
the components actually executed. 4

Program listings with a disassembly of machine code instructions
are generated by a.db or a.das.

NOTE: If two files of the same name from different directories are
compiled in the same ada library using the -L option (even if the
contents and unit names are different), the second compilation will
overwrite the first. For example, the compilation of
/usr/directory2/foo.a -L /usr/vads/test will overwrite the
compilation of /usr/directoryl/foo.a -L /usr/vads/test in the
VADS library /usr/vads/test.

B-6

COMPILATION SYSTEM OPTIONS

NDTE: It is possible to specify the directory for temporary files by
setting the environment variable TMPDIR to the desired path. If TEKPDIR
is not set, /trap is used. If the path specified by THMPDIR does not exist
or is not writeable, the program exits with an error message to that effect.

Diagnostics

The iagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the RM. Each RM reference includes a
section number and optionally, a paragraph number enclosed in
parentheses.

See Also

a.app, a.das, a.db, a.error, a.info, a.ld, a.make, a.mklib, appendixf

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the custcmer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

B-7

. = u mu unauua uan n t i a]

COMPILATIO SYSTEM OPTINS

a.ld Command Reference a.ld

a.ld - build an executable program from previously compiled units

Syntax

a.ld [options) unitname [linker-options)

Arguments

linker options
All arguments after unit name are passed to the linker.
library abbreviations or-object files.

options options to the a.ld command. These are:

-DA1.0
-DA .1
-DA2.0

(architecture) Specify the architecture version the compiler
should generate code for. These options override the ARCHITECTURE
INFO directive [Default: -DAl.lj (HP PA-RISC only)

-DO (objects) Use partially linked objects instead of archives
as an intermediate file if the entire list of objects cannot
be passed to the linker in one invocation. This option is
useful because of limitations -.n the archiver on some hosts
(including ULTRIX, HP-UX and System V). (VADSself only)

-DT (time) Displays how long each phase of the prelinking process
takes.

-Du unit list
(units) Traces the addition of indirect dependencies to the named
units.

-Dx (dependencies) Displays the elaboration dependencies'used each
time a unit is arbitrarily chosen for elaboration.

-DX (debug) Debug memory overflow (use in cases wheze linking
a large number of units causes the error message "local
symbol overflow" to occur).

-E unit name
(eliborate) Elaborate unit-name as early in the elaboration
order as possible.

-F (files) Print a list of dependent files in order and suppress
linking.

-K (keep) Do not delete the termorary file containing the list of

object files to link. This file is only present when many object

B-8

COMPILATICN SYSTEM OPTICNS

files are being linked.

-L library name
(libray) Collect information for linking in library name instead
of the current directory. However, place the executible in the
current directory.

-NX (NX) Link with NX startup copde and with the NX archive libraries.
(Sun SPARC -> Paragon only)

-o executable file
(output) Use the specified fielname as the name of the output
rather than the default a.out (self) or a.vox (cross).

-sh (show) Display the name of the tool executable but do not
execute it.

-T (table) List the symbols in the elaboration table to standard
output.

-U (units) Print a list of dependent units in order and

suppress linking.

-v (verbose) Print the linker coumand before executing it.

-v (verify) Print the linker conmand but suppress execution.

-w (warnings) Suppress warning messages.

unit name
name of an Ada unit. It must name a non-generic subprogram.
If unit name is a function, it must return a value of the
type STANDARD.INTEGER. This integer result will be passed back
to the shell as the status code of the execution.

Description

a.ld collects the object files needed to make unit name a main
program and calls the ld(l) linker to link togetheT all Ada and
other language objects required to produce an executable image in
a.out (self) or a.vox (cross). The utility uses the net files produced
by the Ada compiler to check dependency information. a, ld produces
an exception mapping table and a unit elaboration table and passes
this information to the linker. The elaboration list generated by
a.ld will not include library level packages that do not need
elaboration. Similarly, packages that contain no code that can raise
an exception will no longer have exception tables.

a.ld reads instructions for generating executables from the ada.lib
file in the VADS libraries on the search list. Besides information
generated by the compiler, these directives also include WITn,
directives that allow the automatic linking of object modules
compiled from other languages or Ada object modules not named
in context clauses in the Ada source. Any number of WITHn

B-9

COMPILATION SYSTEM OPTIONS

directives may be placed into a library but they must be
numbered contiguously beginning at WITH1. The directives are
recorded in the library's ada.lib file and have the following form.

WITHl:LINK:object file:
WITH2:LINK:archive file:

WITHn directives may be placed in the local Ada libraries or in
any VADS library on the search list.

A WITHn directive in a local VADS library or earlier on the
library search list will hide the same numbered WITHn directive
in a library later in the library search list.

Use the tool a.info to change or report library directives in
the current library.

For VADSself on Silicon Graphics Computer Systems, the
USE LAST LINK INFO directive speeds relinking by retaining a list
of Unitsi their types, seals and dependencies.

VADS location/bin/a.ld is a wrapper program that executes the
correct executable based upon directives visible in the ada.lib
file. This permits multiple VADS compilers to exist on the same
host. The -sh option prints the name of the actual executable file.

NOTE: It is possible to specify the directory for temporary files by
setting the environment variable TMPDIR to the desired path. If TMPDIR
is not set, /tmp is used. If the path specified by TMPDIR does not exist
or is not writeable, the program exits with an error message to that effect.

Files

a.out (self), a.vox (cross) default output file
.nets Ada DIANA net files directory
.objects/* Ada object files
VADSlocation/standard/* startup and standard library routines

Diagnostics

Self-explanatory diagnostics are produced for missing files,
etc. Additional messages are produced by the ld linker.

B-10

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type TINY INTEGER is range -128 .. 127;
type SHORTINTEGER is range -32768 .. 32767;

type FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type SHORT FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG FLOAT is digits 15

range -T.79769313486231E+308 .. 1.79769313486231E+308;
type DURATION is delta 0.0001 range -214748.3648 .. 214748.3647;

end STANDARD;

c-1

APPENDIX F OF THE Ada STANDARD

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INITIALIZE Pragma

Takes one of the identifiers STATIC or DYNAMIC as the single
argument. This pragma is only allowed within a library-
level package spec or body. It specifies that all objects
in the package be initialized as requested by the pragma
(i.e. statically or dynamically). Only library-level
objects are subject to static initialization; all objects
within procedures are always (by definition) dynamic. If
pragma INITIALIZE(STATIC) is used, and an object cannot be
initialized statically, code will be generated to initialize
the object and a warning message will be generated.

1.2. INLINEONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erroneously makes an INLINE ONLY subpro-
gram recursive a warning message will be imitted and an
PROGRAM ERROR will be raised at run time.

1.3. BUILT_IN Pragma

The BUILT IN pragma is used in the implementation of some
predefine Ada packages, but provides no user access. It is'
used only to implement code bodies for which no actual Ada'
body can be provided, for example the MACHINECODE package.

1.4. SHARE CODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit the pragma applies
to all instantiations of that generic. When the first argu-

C-2

APPEDIX F OF THE Ad& STANDARD

ment is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic.
When the second argument is FALSE each instantiation will
get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has The same effect as SHARE CODE. It is
included for compatability with earlier versions of VADS.

1.5. NOIMAGE Pragma

The pragma suppresses the generation of the image array used
for. the IMAGE attribute of enumeration types. This elim-
inates the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAMERROR raised at run time.

1.6. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable deTined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.7. INTERFACE NAME Pragma

The INTERFACE NAME pragma takes the name of a a variable or
subprogram difined in another language and allows it to be
referenced directly in Ada. The pragma will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram
declared earlier in the same package specification. The
object must be declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

C-3

APPEDIX F OF THE Ada STANDARD

1.8. IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.
The default is ON.

1.9. OPTIMIZE_CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies whether the code should be optim-
ized by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the
Ada Rm.

2.3. INLINE

This pragma is implemented as described in Appendix B of the
Ada Rm.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTD.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the
Ada Rm.

2.6. MDORY SIZE

This pragma is recognized by the implementation. The imple-

C-4

APPENDIX F OF THE Ada STANDARD

mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.7. NONREETRANT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-
ately within a library package spec or body. It indicates
to the compiler that the subprogram will not be called
recursively allowing the compiler to perform specific optim-
izations. The pragma can be applied to a subprogram or a
set of overloaded subprograsm within a package spec or pack-
age body.

2.8. NMT ELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration pack-
age or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no
effect.

2.10. PACK

This pragma will cause the compiler to choose a non-aligned
representation for composite types. It will not causes
objects to be packed at the bit level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the.
Ada Rm.

2.12. PASSIVE

The pragma has three forms :

PRA(MA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
body. The pragma directs the compiler to optimize certain
tasking operations. It is possible that the statements in a

C-5

APPENDIX F OF THE Ada STANDARD

task body will prevent the intended optimization, in these
cases a warning will be generated at compile time and will
raise TASKING ERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the
Ada Rm.

2.14. SHARED

This pragma is recognized by the implementation but has no
effect.

2.15. STORAGEUNIT

This pragma is recognized by the implementat'4 n. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that
DIVISION CHECK and in some cases OVERFLOW CHECK cannot be
supresse3.

2.17. SYSTEM NAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage units allocated to P. For a subprogram, pack-
age, task unit, or label, it refers to the address of 4the
machine code associated with the corresponding body or
statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this
attribute.

(For a package, task unit, or entry, the 'REF attribute is

C-6

APPE DIX F OF THE Ada STANDARD

not supported.)

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique
task id associated with a task. The value of this attribute
is of the type ADDRESS in the package SYSTEM.

4. Specification Of Package SYSTEM

with UNSIGNED TYPES;
package SYSTC is

pragma suppress(ALL CHECKS);
pragma suppress (EXCtPTICNTABLES);
pragma not-elaborated;

type NAME is (att mipsself);

SYSTEMNAME : constant NAME :- att mipsself;

STORAGE UNIT : constant :- 8;
MDORY SIZE : constant :-16_777_216;

- System-Dependent Named Numbers

MIN INT : constant :- -2 147 483 648;
MAX--INT : constant :- 2 147 1483 _47;
MAX -DIGITS : constant :-i'; - -
MAX MANTISSA : constant :- 31;
FINE DELTA : constant :-2.0*(-31);
TICK : constant :-0.01;

- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXREC SIZE : integer :- 1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNED TYPES.UNSIGNED INTEGER) return ADDRESS;

C-7

APPENDIX F OF THE Ada STANDARD

function MIORY ADDRESS
(I: UNSIGNED TYPES.UNSIGNED INTEGER) return ADDRESS renames "+";

NO ADDR : constant ADDRESS;

type TASK iD is private;
NOTASK_ID : constant TASKID;

type PASSIVE TASK ID is private;
NOPASSIVE TASK_ID : constant PASSIVETASKID;

subtype SIG STATUS T is INTEGER;
SIG STATUS _SIZE: constant :- 4;

type PROGRAM ID is private;
NOPROGRAM_ID : constant PROGRAM ID;

type BYTE ORDER T is (
LITTLE ENDIAN,
BIG ENDIAN

BYTE ORDER: constant BYTEORDERT :- BIG ENDIAN;

type LONGADDRESS is private;

NO LCNG_ADDR : constant LONG ADDRESS;

function "+" (A: LONG ADDRESS; I: INTEGER) return LCN ADDRESS;
function "-" (A: LONGADDRESS; I: INTEGER) return LONGADDRESS;

function MAKELONG ADDRESS (A: ADDRESS) return LONG ADDRESS;

function LOCALIZE(A: LONG ADDRESS ; BYTE SIZE : INTEGER) return ADDRESS;

function STATION OF(A: LONG ADDRESS) return INTEGER;

- Internal RTS representation for day. If the calendar package is used,
- then, this is the julian day.
subtype DAY_T is INTEGER;

- Constants describing the configuration of the CIFO add-on product.
SUPPORTSINVOCKATION BY ADDRESS : constant BOOLEAN, :- TRUE;
SUPPORTS PREELABORATICN : constant BOOLEAN :- TRUE;
MAKE ACCESS SUPPORTED : constant BOOLEAN : TRUE;

- Arguments to the CIFO pragma INTERRUPT TASK.
type INTERRUPTTASKKIND is (SIMPLE, SIdbLLING);

function RETURN ADDRESS return ADDRESS;

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNEDINTEGER;

C-8

APPENDIX F OF THE Ada STANDARD

NO ADDR : constant ADDRESS : 0;

pragma BUILT IN(">");
pragma BUILTIN('<") ;
pragma BUILT-IN(">-");
pragma BUILT_IN("<-");
pragma BUILTIN("-");
pragma BUILT_IN("+")#;

type TASK ID is new UISIGNED TYPES.UNSIGNEDINTEGER;
NO TASKI : constant TASKI5 :- 0;

type PASSIVE TASK ID is new UNSIGNED TYPES.UNSIGNm) INTEGER;
NO PASSIVE _TSKID : constant PASSIVE TASK ID :- 0;-

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO PROGRAM ID : constant PROGRAM ID :- 0;

type LONG ADDRESS is
RECORD

station : UNSIGNED TYPES.UNSIGNEDINTEGER;
addr : ADDRESS;

E RECORD;

NO LONG ADMR : constant LONG ADDRESS :- (0, 0);

pragma BUILT IN(MAKE LONG ADDRESS);
pragma BUILT-IN(LOCALIZE);
pragma BUILT-IN(STATICN_OF);

pragma BUILT IN(RETURNADDRESS);

end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are padded
so as to provide for efficient access by the tatget
hardware, pragma PACK applied to a record eliminate the pad-
ding where possible. Pragna PACK has no other effect on the
storage allocated for record components a record representa-
tion is required.

5.2. Size Clauses

For scalar types a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation

C-9

APPENDIX F OF THE Ada STANDARD

clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the component type is a
discrete type. An error will be issued if there is insuffi-
cient space allocated. The SIZE attribute is not supported
for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since
default initialization of a variable requires evaluation of
the variable address elaboration ordering requirements
prohibit inititalization of a variables which have address
clauses. The specified address indicates the physical
address associated with the variable.

5.4. Interrupts

Interrupt entries are supported with the following interpre-
tation and restrictions:

An interrupt entry may not have any parameters.

A passive task that contains one or more interrupt entries
must always be trying to accept each interrupt entry, unless
it is handling the interrupt. The task must be executing
either an accept for the entry (if there is only one) or a
select statement where the interrupt entry accept alterna-
tive is open as defined by Ada RM 9.7.1(4). This is not a
restriction on normal tasks (i.e., signal ISRs).

An interrupt acts as a conditional entry call in that inter-
rupts are not queued (see the last sentence of Ada RM
13.5.1(2) and 13.5.1(6)).

No additional requirements are imposed for a select state-
ment containing both a terminate alternative and an accept'
alternative for an interrupt entry (see Ada RM 13.5.1(3)).

Direct calls to an interrupt entry from another task are

allowed and are treated as a normal task rendezvous.

Interrupts are not queued.

The address clause for an interrupt entry does not specify
the priority of the interrupt. It simply specifies the
interrupt vector number. For passive ISRs, the nnn of the
passive(interruptnnn) pragma specifies the interrupt prior-
ity of the task.

5.5. Representation Attributes

C-10

APPENDIX F OF THE Ada STANDARD

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides
an assembly language interface for the target machine. It
provides the necessary record type(s) needed in the code
statement, an enumeration type of all the opcode nmeumonics,
a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as fol-

lows:

CODEn'(opcode, operand f, operand});

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands.
The operands are listed within a subaggregate. The format
is as follows:

CODE N'(opcode, (operand {, operand)));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODE 0'(op -> opcode);

The opcode must be an enumeration literal (i.e. it cannot be
an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE_CODk or
the 'RE- attribute.

The arguments to any of the functions defined in
MACHINE CODE must be static expressions, string literals, or
the functions defined in MACHINE CODE. The 'REF attribute
may not be used as an argument iii any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

C-11

A

APPENDIX F OF THE Ada STANDARD

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as
physical addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/ Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) when-the size
of ELEMENT TYPE exceeds that value. For--example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is
very large, MAX EC SIZE is used instead. MAX RECORD SIZE
is defined in SYSTEM and can be changed by a program bifore
instantiating DIRECT 10 to provide an upper limit on the
record size. In any-case the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USE ERROR
if MAX REC SIZE ixceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE
as the record size (expressed in STORAGE UNITS) when the
size of ELEKWT TYPE exceeds that value. For example for
unconstrained irrays such as string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used - instead.
MAX RECORD SIZE is defined in -SYSTEM and can be changed by a
program be-fore instantiating INTEGER 10 to provide an upper
limit on the record size. SEQUENTIA 10 imposes no limit on
MAX RECSIZE.

11. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to impl, that resources up tb or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
32,000,000 x STORAGE UNITS. The maximum size of a statically

C-12

APPENDIX F OF THE Ada STANDARD

sized record type is 32,000,000 x STORAGE UNITS. A record
type or array type declaration that exceeds these limits
will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE _SIZE length specifica-
tion every task except the main program is allocated a fixed
size stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGESIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGESIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If
this value is exceeded the compiler will terminate the com-
pilation of the unit with a FATAL error message.

C-13

