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ABSTRACT

There are two goals for autonomous vehicle navigation planning: shortest

path and safe path. These goals are often in conflict; path safety is more

important. Safety of autonomous vehicle navigation is determined by the

clearance between the vehicle and obstacles. Because a Voronoi boundary is the

set of points locally maximizing the clearance from obstacles., safety is maximized

on it. Therefore, Voronoi Diagrams are suitable for motion planning of

autonomous vehicles.

We use the derivative of curvature K of the vehicle motion (dirlds) as the

only control variable for the vehicle, where s is the length along the vehicle

trajectory. Previous motion planning of the autonomous mobile robot Yamabico-

11 at the Naval Postgraduate School used a path tracking method. Before the

mission began the vehicle'was given a track to follow; motion planning consisted

of calculating the point on the track closest to the vehicle and calculating dlc/ds

then steering the vehicle to get onto the track.

We propose a method of planning safe motions of the vehicle to calculate

optimal dK/ds at each point directly from the information of the world without

calculating the track to follow. This safe navigation algorithm is fundamentally

different from path trackin3 using a path specification. Additionally, motion

planning is simpler and faster than the path tracking method.

The effectiveness of this steering function for vehicle motion control is

demonstrated by algorithmic simulation and by use on the autonomous mobile

robot Yamabico 1 I at the Naval Postgraduate School.
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THESIS DISCLAIMER

The reader is cautioned ti " omputer programs developed in this research

may not have been exercised for all cases of interest. While every effort has been

made, within the time available, to ensure that the programs are free of

computational and logic errors, they cannot be considered validated. Any

application of these programs without additional verification is at the risk of the

user.
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EXECUTIVE SUMMARY

There are two goals for autonomous vehicle navigation planning: shortest

path and safe path. These goals are often in conflict; path safety is more

important. Safety of autonomous vehicle navigation is determined by the

clearances between the vehicle and obstacles. Because a Voronoi boundary is the

set of points locally maximizing the clearance from obstacles, safety is maximized

on it. Therefore, Voronoi Diagrams are suitable for motion planning of

autonomous vehicles.

We use the derivative of curvature K of the vehicle motion (dic/ds) as the

only control variable for the vehicle, where s is the length along the vehicle

trajectory. Previous motion planning of the autonomous mobile robot Yamabico-

11 at the Naval Postgraduate School used a path tracking method. Before the

mission began the vehicle was given a track to follow; motion planning consisted

of calculating the point on the track closest to the vehicle and calculating dK/ds

then steering the vehicle to get onto the. track. The safest path through the world

navigated by the vehicle is the set of points locally maximizing the clearance from

obstacles. This path is represented by the Voronoi diagram. To achieve the path

tracking mehod it is necessary to calculate the Voronoi boundary which consists

of line segments and parabolic arcs. If the world is large, it is complicated and

inefficient to calculate every Voronoi boundary of this world. It is better to

calculate optimal dicIds at each point directly from the information of the world

without calculating the track to follow.

When the objects are two points, two lines, or one point and one line, we can

safely navigate the vehicle to achieve equal clearances from these objects. The

xv



motion of the vehicle is optimized at each point directly from the information of

the obstacles near the vehicle. After calculating dr/ds, the vehicle follows the

Voronoi boundaries defined by the environment.

Unlike the path tracking method, this method can be applied to avoid moving

objects since we calculate the optimal motion of the vehicle at each point directly

from the information of the world. Additionally, motion control is simpler and

faster than in the path tracking method.

The effectiveness of this steering function for vehicle motion control is

demonstrated by algorithmic simulation and by use on the autonomous mobile

robot Yamabico 11 at the Naval Postgraduate School. It has precise knowledge of

its location in a given environment using its sonar system. The robot is

programmed by the high level mobile robot language called MML (Modlel-based

Mobile robot Language) written in the C language.
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I. INTRODUCTION

A. BACKGROUND

There are two goals for planning autonomous vehicle navigazon planning:

shortest path and safe path. These goals are often in conflict; path safety is more

important. Safety of autonomous vehicle navigation is determined by the

clearance between the vehicle and obstacles. Because a Voronoi boundary is the

set of points locally maximizing the clearance from obstacles, safety is maximized

on it. Therefore, Voronoi Diagrams are suitable for motion planning of

autonomous vehicles.

B. OVERVIEW

We use the derivative of curvature K of the vehicle motion (di/ds) as the

only control variable for the vehicle, where s is the length along the vehicle

trajectory. Previous motion platning of the autonomous mobile robot Yamabico-

11 at the Naval Postgradute School used a path tracking method [Ref. 2]. Before

the mission began the vehicle was given a track to follow; motion planning

consisted of calculating the point on the track closest to the vehicle and

calculating drl/d then steering the vehicle to get onto the track. The safest path

through the world navigated by the vehicle is the set of points locally maximizing

the clearance from obstacles. This path is represented by die Voronoi diagram. To

achieve the path tracking method it is necessary to calculate the Voronoi

boundary which consists of line segments and parabolic arcs. If the world is large,

it is complicated and inefficient to calculate every Vo'onoi boundary of this



world. It is better to calculate optimal dK/ds at each point directly from the

information of the world without calculating the track to follow.

This safe navigation algorithm is fundamentally different from path tracking

using a path specification. Additionally, motion planning is simpler and faster than

in the path tracking method.

The effectiveness of this steering function for vehicle motion control is

demonstrated by algorithmic simulation and by use on the autonomous mobile

robot Yamabico 11 dt the Naval Postgraduate School. It has precise knowledge of

its location in a given environment using its sonar system. The robot is

programmed by the high level mobile robot language called MML (Model-based

Mobile robot Language) written in the C language [Ref. 31.
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IH. PROBLEM STATEMENT

The problems addressed are as follows:

1. How to navigate the robot safely to a&hieve the same clearance from two

points.

2. How to navigate the robot safely to achieve the same clearance from two

lines.

3. How to navigate the robot safely to achieve the same clearance from one

point and one line.

4. How to execute the safest path by a real robot.

Safety is one of the important attributes for autonomous vehicle navigation

planning. Safety is determined by the clearance between the vehicle and objects.

Assume the vehicle is a point object and W(p) is the clearance of the point p. The

clearance of a path represents its safety. If the clearance is small, the path is

dangerous because it is close to the object and if it is larger, the path is safer. The

clearance of a path 11 is defined as:
W(I') = MinW(P) (2.1)

IP40

Where nl is the path of the vehicle from start S to goal G.

We want to find the path Hl0 such that W(U1o) is the maximum among all

possible paths (Figure 2.1). To maximize the clearance W(H), we will take the

Voronoi boundary as the path of the vehicle.

3



Figure 2.1 :Safety Path
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III. VORONOI DIAGRAM

A. DEFINTHONS

Assume that there is an object o in a plane. It might be a point, a line, a line

segment, a polygon, or other closed sets of points. If a world W has more than one

object a Voronoi region of an object o, in the world is defined as

V(o,) = [PlVj'Ji * j -+ {dist(p,o,) < dist(p,o,))}] (3.1)

Where p is a point which is not inside o, and dist(p,o,) is the minimum

distance between p and o,.

The set of all the. Voronoi regions is called the Voronoi diagram of a world.

The boundaries of Voronoi regions are Voronoi boundaries. The Voronoi

diagram of a geometric world typically consists of lines, rays, line segments, and

parabolc arcs.

B. VORONCI DIAGRAM OF TWO POINTS

In the case that a world consists of two distinct points, p, and p,, its Voronoi

boundary is the bisector of those two points which generate two Voronoi regions

V(p1) and V(p2) (Figure 3.1).

Pi = (xi, y)
Voronoi boundary

V(p1 )

V(P2)

P2 = (x2,Y2)

Figure 3.1 : Voronoi Diagram of Two Points
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C. VORONOI DIAGRAM OF TWO LINES

In the case that a world consistL of two lines I, and 4 which are not parallel

!o each other, their Voronoi boundaries consist of ihe bisectors of two lines which

generate eight Voronoi regions V(L. 1), V(L. 2), V(L43), V(1,), V(l41), V(lU2 ),

V(L.) and V(L4,) (Figure 3.2).

Voronoi bouaidafies

Figure 3.2 : Voronoi Diagram of Two Lines (Not Parallel)

D. VORONOI DIAGRAM OF TWO PARALLEL LINES

In the case that a world consists of two parallel lines L1 and L4, tleir Voronoi

boundary is one line which is parallel to/4 and/-,z which generates four Voronei
regions V(/ 1 ), V(40), V(0) and V(Lm), (Figure 3.3).

6



-~V(4, 1)

Voronoi boundary V(4 2)

V(L, 1)

V(It 2)

Figure 3.3 : Voronoi Diagram of Two Parallel Lines

E. VORONOI DIAGRAM OF A LINE SEGMENT

In the case that a world consists of one closed line segment pIp 2, we treat it

as a union of three objects : two end points p,, p2 and an open line segment

e = p~p2. A closed line segment hicludes both endpoints, but an open line segment

does not. Therefore, its Voronoi boundaifies consists of iwo lines which generate

four Voronoi regions V(p,), V(p 2 ), V(e.,) and V(;). (Figure 3.4)

V (e,)

V(p1 ) p, p A V(p 2 )=- p'• P2 P

V(e 2)

Voronoi boundaries

Figure 3.4 Voronoi Diagram of A Line Segment
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F. VORONOI DIAGRAM OF A POINT AND A LINE

In the case that a world consists of a point pf and a line q0, its Voronoi

boundary is a parabola which generates three Voronoi regions V(pf), V(e1 ), and

V(e9). The point p1 is the focus and the line q0 is the directrix of the parabola

(Figure 3.5).

V(pf)

S~~tp/.... --.&~

Voronoi boundary (4) 4
i e,

"V(e2)

Figure 3.5 : Voronoi Diagraia of A Point and A Line

G. VORONOI DIAGRAM OF A POINT AND TWO LINES

In the case that a world consists of a point p that is between two parallel

lines 4 and -2, their Voronoi boundaries are two paiabolas (focus p, directrix L,

and focus p, directrix 4) and the bisector of the line 4 and L. which generate

five Voronoi regions V(p), V(e 1), V(e 2), V(e 3) and V(e,) (Figures 3.6 and 3.7).

8



V(e,)
e4
e3 V(e 3)

,,,•,a- parabola

bisector of V (p) bietoro••i bisector of

Li and L12 L i and 1.2
e V(e 2) parabola

e, V(e,)

Fig 3.6 : Voronoi Diagram of A Center Point and Two Lines

V(e 4)
e4

e, V(e 3)

parabola

bisector of bisector ofL1 and L2 XV P Li and L2

e2 parabola V(e2)
el V(e1)

Figure 3.7 : Voronoi Diagram of A Point and Two Lines

H. VORONOI DIAGRAM OF LUNE AND A RAY

Assume a ray is a kind of line which has only one end point p. In the case

that a world consists of a line 4 and a ray L2, which is orthogonal to the line L,

9



their Voronoi boundaries are a line s-gment pp-2 , and two bisec.tors of the line Ln

and the ray L4, and a parabola (focus p and directrix L), which generates five

Voronoi regions V(p), V(e1), V(e 2), V(e3) and V(e,) (Figure 3.8).

e4

V(e3) e3 e4  V(e 4 )

bisector of bisector of
Li and L2 Li and L2

V(e 2) P)
Se2 "' parabola

e,
Une Segment V(e1)

Figure 3.8 : Voronoi Diagram of Line and Ray

I VORONOI DIAGRAM OF TWO LINES AND A LINE SEGMENT

In the case that a world consists of two parallel lines L, 4 ind a closed line

segment PIP 2 , which is parallel to lines L4 and 4, their Voronoi boundaries are

bisectors of the line 4 and 4, the bisector of the line I. and the line segment

pIP 2 , the bisector of the line 4 and the line segment pp,, two closed line

segment P3P4 and FP-P and parabolas (Figures 3.9 and 3.10).

10
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bisector of L2 and
e4V(e,) 

Z' ptp--•

parabolap 4 prbl
e6ai V(e.)

bisector of V(e5 )
Li and L p3 rabol Li adL

4 e2  parabola V(e 2) paraOoa and L2
SV(e,) bisector of Li and

PIPI

Figure 3.9: Voronoi Diagram of Two Lines and A Center Line Segment

bisector of L2 and

V(e4) PIP2

e3 parabola V(e3) / parabola

_( I) e V (e 6)V( 2

.P2 bisector of

e2 parabola P3  V(e 2) p5 parabola Li and L2
e, V(et) \bisector of Li and

PiP2

Figure 3.10 : Voronoi Diagram of Two Lines and A Line Segment

11



J. VORONOI DIAGRAM OF A NORMAL POLYGON

In the case that a world has only one normal polygon, we treat it as a union

of vertices (points) p, and open edges ej. There are Voronoi boundaries to the

polygon shown in (Figure 3.11).

V(p,) V!3 [ vpO>

P4 e1 3 PA

V(eV) e, e2 V(e 2 )

pý el P2.

V(pI) V(e,) V(P2)

Figure 3.11: Voronoi Diagram of A Normal Polygon

K. VORONOI DIAGRAM OF AN INVERTED POLYGON

In the case that a world has only one inverted polygon, we also treat it as a

union of vertices (points) p, and open edges e,. There are Voronoi boundaries in

its interior (Figure 3.12).

12



,, clirectrix of Parabola 1K-

//

S0 Paaoa1 el --d

/ /

Firgctrie of VD of An ed Py
1Parabola2 Parabola

S V(p) V(e,) 0 -
e. p e. 0

" V(e,) V(e,) locus of Parabola1.l
e, ed Parabola 2

0 V1e, 0
C 3 0

Figure 3.12 : Voronoi Diagram of An Inverted Polygon
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IV. CURVE GENERATION

A. CONFIGURATION

To navigate a rigid body robot vehicle, the vehicle's state can be described by

its current configuration,

q = (p, G) (4.1)

where p is the vehicle's current coordinate position (x,y), and 0 is the vehicle's

tangent orientation at that point.

Let K be the derivative of tangent orientation with respect to the length

along the trajectory s which is called cut ,ature.

K(s) = dO(s) (4.2)ds

In this case, K is not included in the configuration. However, r can be included

in the configuration if K is required for the calculation.

B. NEXT FUNCTION

In order to compute the sequence of configurations, it is suffice to compute

the next configuration at each step As. Given As and (dK we can estimate the

vehicle's next configuration at s+ As as follows.

1. Short Circular Segment

The short path segment between s and s + As is approximated by a circular

curve segment (Figure 4.1).

15



y

(O,r)

rcos(AO) r = '

rsin(AO)

(0,r-rcos(AO)) r, q, =((xl, y,), 01)

= ((x, yo), ) = ((=,0),0) = (rsin(AO), r(1 - cos(AO),AO)

Figure 4.1 : Short Circular Segment

Assume configurations of both end points are q. and ql.

qO = ((xo, Yo), 0o) = ((0,0),0) (4.3)

q1 = ((x1 ,yl), 61) (4.4)

Let us assume AO # 0. The radius of the short circular segment is

Asr= As (4.5)AO

Where

AO= 01- 00 (4.6)

16



The configuration of the end point q, is

q, (x, rsin(AG) )] r(sin(AO)/AO)As (iAO0 (47
q1 = = [r(l- cAo(AO))] = L((I-cos(AO))/A9)AsI (if A0 0) (4.7)01A AR .1

q, = l =()] (if AO = 0) (4.8)

Using the Taylor expansion forms for the sin and cos functions

sin(A0) A0- (AO) 3/3!+ (AO) 5/5!+ 1 (AG) 2 ,(A) 4  (49)
A8 AO 3! 5!

1 - cos(AO) 1 - (1- (AG)2/2!+ (AO) 4/4!- (AO) 6/6!. -)
A6 AO

=(_1 _ (A0)2 + (A0) (.10

(2! 4! 6! ..) (4.10)

Therefore, the configuration of the point q, is

(r' y'~ ( (1 - (AG) 2/3! + (AG)4/5! *A
q, = [ --Ij (1/2! (AO)2/4!+(AO)4/6! ... )AO (4.11)

01 AO

L. general,

AO o 1 (4.12)

Therefore equation (4.11) can be approximated as

I (') ( (1-_ (,AG) 2/3!)As

q I = IY(V1/- (AG)2/4!)AGAs (4.13)
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2. Global Position Calculation

By using the composition function o [Ref. 1] which is a two dimensional

coordinate transformation from the local coordinate system (xl,y 1) to the global

coordinate system (x0,yo), we can calculate the global position of the vehicle at

s+As as follows.

(x + x, cos 0 -y, sin 0o'
q(s+As)=qo q=- yo+xsin0o+Yicos oJ (4.14)

Where q, and q, are given Equation (4.3) and Equation (4.13).
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V. SAFE NAVIGATION USING A STEERING FUNCTION

We use t'_.e derivative of curvature as the only control variable for the

vehicle.

d = f~p, 0, K) 51

Therefore the vehicle's motion is controlled only through changing its curvature.

Ar= 1-'s)AS(5.2)

We propose the steering function in the following form

dic = -(aA+ bAO + cAd) (5.3)
ds

or
dK + aAc + bAO + cad = 0 (5.4)
ds

where a, b, c are positive constants and AKc, A0, Ad are variables. Each

evaluation of Aic, AO, Ad differs in the situation of the obstacles (in the case that

the obstacles are one point and one line, the obstacles are two lines, and the

obstacles are two points).

A. LINE TRACKING

Consider a special case of the line tracking (Figure 5.1). Assume we want to

track the X-axis of the global coordinate system, then we can define three

positive constants a, b, c.
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Y
q= ((x, y), , Ic)

Ad=y

n(,-. o=. o) x

Figure 5.1 : Line Tracking

On the X-axis,

. 0. = e =0 (5.5)

Therefore

AK jc- i,. =ic (5.6)

AO=e -0. 0= (5.7)

Ad=y (5.8)

Let us now consider a short path segment (Figure 5.2).

y

AX S

x

Figure 5.2: Short Path Segment
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The vehicie's vangent orientation 0 is specified by

tan0=Ay (5.9)
Ax

Then

0 =tan-' Ay = tan_• y, (as Ax -O)
AX(y,)3 (y,)5

= l (y' )y + . .... (5.10)3 5

As is defined as

AS = ýC(AF+ (Ay) 2  (5.11)

Therefore

A= ( 1+ =4 + (y') (as Ax o) (5.12)A- AX A=

From the definition
d d ,

dx 1+(y,)2 1+(y)2 (5.13)

From Equation (5.12) and Equation (5.13)

d __

dO d (a-' (tan- y) + (ye)2 (5.14)ds - - d --- tnsaY) ds =/ ()" y 2=3( .4

""" (1+(y') 2)2

Therefore

y,

dicI (1+- a(Y:) ,,, +(y )2)-23y(y')2(1+(y) 2y)- (5.15)

dx
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Assume
y, • 1 (5.16)

y (y,,)2 << y,,, (5.17N

Then from Equation (5.10)

AG = y (5.18)

From Equation (5.14)'

Aic=y" (5.19)

From Equation (5.15)
S= y"' (5.20) --

ds

Equation (5.4) becomes an ordinary differential equation:

y'" +ay" +by +cy = 0 (5.21)

(D34- aD2 +bD4+c)y=0 (5.22)

Since this is a third order linear homogeneous ordinary differential equation with

constant coefficients, it must have at least one real root. If it has a non-negative

root, it does not have a converging solution. If it has a complex conjugate root,

the solution oscillates even if it decays. Since we want non-oscillatory decaying

solutions, Equation (5.22) must have three negative roots of D. Also if we want a

critical damping solution then Equation (5.22) must be specified to have a triple

root, -k (where k > 0).

D3 +aD2 +bD+cs(D+k)3 =D 3+3kD2 +3k2D+k3  (5.23)

Therefore if we choose

a = 3k (5.24)

b = 3k2  (5.25)

c = 3 (5.26)

Equation (5.22) becomes
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(D + k)3 y= 0 (5.27)

Thus, under this condition, there ii only one degree of freedom in choosing the

parameter k instead of three parameters a, b and c. We deIfine

I
so =- (5.28)k

This size constant so controls the distance for which the vehicle runs before it

gets on track. A smaller size constant makes the transition distance smaller. Thus

so controls the sharpness of the trajectory. From Equations (5.3), (5.24), (5.25),

(5.26) and (5.28), the revis,'d steering function becomes

-. = _(3( I)C+3 ( A9 + 3(j (5.29)

Aic, A6, Ad are evaluated depending upon the environment. Let consider

three situations for vehicle navigation; the objects are two points, the objects are

two lines, the objects are one point and one line.

B. TWO POINTS

When we navigate the vehicle safely to make the same clearance from two

points, its trajectory becomes a line which is a bisector of the two points. It is a

Voronoi boundary of the two points. Let consider the case of the world consists

of two points p, and p2 (Figure 5.3).
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pA =(x1 ,y1 )

P2 =(x 2,y2 )

Figure 5.3: Safe Navigation of Two Points

L Evaluation of Ax

When the vehicle's configuration is q = (p, 0, K),

APC = K (5.30)

Since final value of K on the Voronoi boundary is zero.

2. Evaluation of AO

Let T(p,p,) denote the orientation from p to p, and '(PpP 2) denote

the orientation from p to p2. Let a be the difference between the orientation

'(p,p 1 ) and the vehicle's orientation 0; P is the difference between the vehicle's

orientation 0 and T'(p,p2) (Figure 5.4)..

(p , W= (xpy1 )

Figure 5.4 - Evaluation of AO
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a=T~pp,)-6(5.31)

P O-Tl(mPP2) (5.32)

When vehicle is on the Voronoi boundary,

(Xf3 (5.33)

Let the desired orientation be 64. At the start point

94 =n~ormalizel( 'I(PIPJ)) + '(PO42)_ - l(p, p0 ) + "(PPO) (5.34)

Where normalize 1 is a function which normalizes its argument into a range of

-- 1by addition of ±nlr if necessary and p& is the middle point between p,

and p,. At the other point,

0d= nor.-naliz e{;(P )+ FP P2)- 9y) + pr," (5.35)

Where 6,,,,, is the vehicle's previous desired orientation 0, at the point. Then the

variable AO is evaluated as

4e=0 -0 (5.36)
3. Evaluation of Ad

Let d, be the distance between p and p1,and d2 be the distance from, p

to P2 .

d, 4(x-x1)i(y-Yx) (5.37)

d,= ý(X- X2 )2 +(Y - y2) (5.38)
The signed variable Ad is evaluated as follows (Figures 5.5 and 5.6). Note that

Ad can be signed positive or negative, or equal zero.
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PA = (xI, YI)

'i(p,p1 )

q=(p,6O,i) d2
T(p, p2) ",

P2 = (X2,Y2 )

Figure 5.5 : Case I'(p, pP)-W (PP2 ) > 0

p2 =(x 2,y 2)

T(PIPp2)

q=(p,O,i) d,
W (p,p ,) 

._
p1 = (x, yd)

Figure 5.6: Case T'(p, pl)-' t(p,p2) <0

Ad=d 2-4 (if'•(p,p1)-'l(p,p2)>O) (5.39)

Ad = d -d 2 (if 'F(p,p 1)- 1 (p, p2)<O) (5.40)

4. Simulation Results

The use of this steering function for vehicle motion control is

demonstrated by algorithmic simulation and by use on the existing robot

Yamabico 11. The result is shown in Figures 5.7 and 5.8. Figure 5.7 shows the

case p1 = (0,100), p2 = (0,-100), the initial configuration of the vehicle is

q = ((-300,50),0,0), where there are eight cases of the initial 0 : P 45, 90, 135,
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180, 225, 270, 315 degrees. Figure 5.8 shows the case where the initial

configuration of the vehicle is q = ((-300,-50), 0,0).

200 , ,
"p1" o
"p2" +

"150 "Voronobt-oundary . ...."10"1-0" --- "-

"1-45" -"1-g0" ----
"1.135".

100 1-180 . .....
"t 225 . .....
1.270-

N

-50

.100

-150

-200 .
-300 ,200 -100 0 100 200

Figure 5.7: Simulation Result of Two Points, q = ((-300,50),0,0)
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200 1 -
"*p1" 0
"p2"

"Voronoi boundary"
1 5 0 .. -

"t-90"
"1-135"

100 "t-180" -- ---
"Nt2= . ....2.2
"t-270"
"t=315"

50

0 -

-50

-100

-150

-200
-300 -200 -100 0 100 200

Figure 5.8: Simulation Result of Two Points, q = ((-300, -50),0,0)

C. TWO LINES

When we navigate the vehicle safely to make the same clearance from two

lines, its trajectory becomes a line which is a bisector of two directed lines. So it is

a Voronoi boundary of two lines. Assume a world consists of two directed lines q,

and q2, there are two cases: they are parallel or not parallel (Figures 5.9 and 5.10).

Interestingly, calculations for Aic, AO and Ad are identical in each case.
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4d q =((x,y),0, rc) qI

1 2-2

1q2

Figure 5.9 : Parallel Directed Lines

q,
04

S d, "
q -((x, y), 0, jr)

Figure 5.10 : Not Parallel Directed Lines"-

1. Evaluation of AK

When the vehicle's configuration is q = (p, 0, rc),

AiK= Kc (5.41)

Since final value of r on Voronoi boundary is zero.

2. Evaluation of AO

When the vehicle is on the Voronoi boundary its orientation is the

average of 06 and 62. Let this desired orientation be 08,
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Od=norIalizel 2 L -. 1ý )+ 01 (5.42)

Where normalizel is a function which normalizes its argument into a range of

-r, 7by addition of ±n~r if necessary. Then the variable AO is evaluated as

AO = 0-04 (5.43)

3. Evaluation of Ad

Let d4 be the signed distance from p to q1, and d, be the signed

distance from p to q2.

d4 = -(x -x,) sin 01-+ (y - y,)cos 0l (5.44)

d2 = -(x -x 2)sin62 + (y - Y2)cos 02  (5.45)

The signed variable Ad is evaluated as

Ad = di +d.2.(5.46)

2

The signed distance from p to q, is the distance between p and qj. If p

is on the left of q1, then d, > 0 and if p is on the right of q1, then d4 < 0 (Figure

5.11). A similar argument holds for d2.

p

d, >0t

d,<0 Iq

p

Figure 5.11 : Signed Distance from p to q,
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4. Simulation Result

The result of algorithmic simulation can be found in Figures 5.12, 5.13,

5.14, and 5. 15.

Figures 5.12 and 5.13 show the case where the lines are parallel. Figure

5.12 shows the case q, =((0,100),0,O), q2 =((0,-100),O,0) and the initial

configuration of the vehicle is q = ((0,50), 0,0), where there are eight cases of the

initial 0 : 0, 45, 90, 135, 180, 225, 270, 315 degrees. Figure 5.13 shows the case

where the initial configuration of the vehicle is q = ((0,-50), 0,0).

Figures 5.14 and 5.15 show the case where the lines are not parallel.

Figure 5.14 shows the case q, = ((O,0),90,O), q2 = ((0,0),0,0) and the initial

configuration of the vehicle is q = ((50,150),0,0). Figure 5.15 shows the case

where the initial configuration of the vehicle is q = ((150,50), 0,0).

200 ,

"q2"
"VomnoLboundary" --...

150 "t-0" -...
"t-45" - -...

"t-135.
100 4" 69."

"t=225" - .....
"1-270"
1-315-

-50 " ".. '

50 .. %

-0 ------ ----- ---- ------ --------. . .: .--- .--~ ----- ---------- ----------- ---------
-50

-150 I

-200 •00 2 3 0-100 0 1 00 200 300 40 500

Figure 5.12 : Simulation Result of Parallel lines, q = ((0,50),6,0)
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200
"q1" --

"q2"
"Voronoi boundary"150 1-0"=0. ..

"t-45" -..
"t-90"- --.--

"t-135" ..
100 Be"-

"t-225"
"1270"
""-315

50

-50

-10 0 --------------------------------------------------------------------------------------------------------

-150

-200 . I , I
-100 0 100 200 300 400 500

Figure 5.13 : Simulation Result of Parallel Lines, q = ((0,-50),0,0)

400 -

"-ql""qi1" - ..
q2-

350 -Vornoi-boundary.

St-~190" -...

300 - 't-135".
'1-180" . ... ...
t-225".

"6-270"
250 1-31 -"

200
ISO-

100

50

0 --- --------- _ _

-50 - i I

0 100 200 300 400 500 600

Figure 5.14 Simulation Result of Not Parallel Lines, q = ((50, 150), 0, 0)
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400 ,
"-ql"
"q2" ----

350 "Vornoiboundary" -....
"1,.0" --"1-45" ------

"t-90"-
300 "1135

"1-180 . .....
"1-225 . .....
"1.270"250 "1,-315" -..

200 .

./ ,

100/ '

50

0 .-. .- " . ..--

-50 -' / ,-
0 100 200 300 400 500 500

Figure 5.15 : Simulation Result of Not Parallel Lines, q = ((150, 50), 0, 0)

D. ONE POINT AND ONE LINE

When we navigate the vehicle safely to make the same clearance frum one

point and one line, its trajectory becomes a parabola. So it is a Voronoi boundary

of a point and a line.

1. Definition of Parabola

When a world consists of a point p, and a directed line q., its Voronoi

boundary becomes a parabola. A parabola is defined as the focus p1 and the

directrix q,:

p1 =(xf,y1 ) (5.47)

q0 = (xo,yo,o 0) (5.48)

The directrix q0 has a direction, and hence, parabola has a direction. Let

1 be the signed distance from p. to q0.
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1 = -(x1 -xo) shi6 0 + (Y" - Yo) cos 00 (5.49)

The signed distance from p1 to q. is the distance between p1 and qo. If p1 is on

the left of qo, then 1> 0 and if pf is on the right of qO, then 1< 0 (Figure 5.16).

Pf

1< 0

Pf

Figure 5.16: Signed Distance from P, to q.

a. Case 1> 0

Let O, denote the orientation of the normal ray from p, to qo. We

define a polar coordinate system whose pole is pf and whose initial ray is 0,

(Figure 5.17).

p 1 = (xoy r/

a

1> 0

Figure 5.17 : Parabola (1 > 0)
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01 =00- 7r /2 (5.50)

In this system, p is represented by (r, 0), where r is the distance between p1 and p

and 0 is the orientation from p1 to p taken from the initial ray. In this case, we

take 0 (- Yr < 0 < xr) counterclockwise from the initial ray. The coordinate of p in

the global Cartesian system is

(x,y) = (xf + rcos(O6 + 0),yj + rsin(O6 + 0))

Ssin(Oo + 1cos(Oo 0 )) (5.51)
1+cos - 1+cosO )

Let 'P(p,,p) denote the orientation from p1 to p. By definition, the angle a

between T'(pf,p) and the orientation T' of the tangent atp is defined as

a=E- 0 -- (5.52)
2 2

The orientation TP of the tangent at p in the polar coordinate system is

•"a + 1-i=1+± (5.53)v=¢+a= 2 . 2-. 2 2

The orientation 0 of this tangent at p in the global coordinate system is

o=01o+ = (o- x + + 0=± o (5.54)

Let s denote the arc length. Then the curvature K atp is
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dO 1
_ dO_
dds - r 2 1 1
=- - = - l(-)tr 24" + •3

"o d" (l+cos•)2  (l+cos•) 4

(1 + cos 0) 2  (1+ cos 0)2

2 -ý - 0 (+Cos0) 2

21q(1+cosO)'+sin . = 2142+2coso 2-•(i)

= ~{Cos' (1)) 2 = COS3(.j) (5.55)

b. Case 1.<0

In this case (Figure 5.18), the orientation 0, of the initial ray in the

global coordinate system is

01 = (00 + Yr / 2 (5.56)

O 01=0o+x€/2

1<0 I(PPp)

pf =(xf,yf) r

Figure 5.18 : Parabola (1< 0)

We take • (- Yr < 0 < Yr) clockwise from the initial ray.

0 = -0' (5.57)

Then the coordinate of p in the global Cartesian system is defined by Equation
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(5.51), the orientation 0 of the tangent at p in the global coordinate system is

defined by Equation (5.55) and the curvature Kc at p is defined by Equation

(5.56).

2. Evaluation of Aic

When the vehicle's configuration is q = (p, 0, Kc), assume the intersection

of the orientation '(p,p;) and the parabola is q, = (p•,, Op,,.,K.,) as shown in

Figure 5.19. The variable Aic is evaluated as

AKc= K- K,. (5.58)

Note that Ax converges to zero as q approaches to q,.

q•, = (pp.., Op.., KC,,.)

Pf

q=(p, 0, K) ,1>0 q0

, =0- 7r /2

Figure 5.19: Evaluation of AKc
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3. Evaluation of AO

Let a be the difference between the vehicle's orientation 6 and the

orientation e, of the initial ray. Also let PI be the difference between the

orientation 'q'(P, P) and the vehicle's orientation 0 (Figure 5.20).

-(,P Pf

q =(p,0, K) a :,

0r 1 >00

01 =Oo--6 /2

Figure 5.20 : Evaluation of AO

Then

a =W(P, P) 0 (5.59)

P=6-o, (5.60)

When vehicle is on the parabola,

a=I3 (5.61)

Let this desired orientation be 64,
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Od = normalizel( 2P(pJ) - 016, 0.. (5.62)

Where normalizel is a function which normalizes its argument into a range of

-,-2 2by addition of ±n+r if necessary. Then the variable AO is evaluated as

AO=0-Od (5.63)

4. Evaluation of Ad

Let d1 be the distance between p and p1 , and d, be the signed distance

from p to qo (Figure 5.21).

d1 = (x-x) 2 +(y-y) 2  (5.64)

d2 = -(x - xo)sin 0o + (y -yo)cos 0o (5.65)

di
q =(p, 0, jr) .

d2 1> 0 qO

01 = 0o- T/2

Figure 5.21 : Evaluation of Ad

The signed variable Ad is evaluated as

Ad= d2 --4 (if 1>0) (5.66)

Ad= d2 +d, (if 1< 0) (5.67)
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S. Simulation Result

The result of algorithmic simulation can be found in Figures 5.22, 5.23,

5.24 and 5.25. Figures 5.22 and 5.23 show the case where the 1 is positive.

Figures 5.24 and 5.25 show the case where the I is negative.

Figure 5.22 shows the case of p1 = (0,200), qo = ((0,0),0,0), the initial

configuration of the vehicle is q = ((-300,200), 0,0), where there are eight cases of

the initial 0 6 0, 45, 90, 135, 180, 225, 270, 315 degrees. Figure 5.23 shows the

case where the initial configuration of the vehicle is q = ((-200,300), 0,0).

Figure 5.24 shows the case of p, = (0,-200), qo = ((0,0),0,0), the initial

configuration of the vehicle is q = ((-300,-200),0,0), where there are eight cases

of the initial 0 : 0, 45, 90, 135, 180, 225, 270, 315 degrees. Figure 5.25 shows the

case where the initial configuration of the vehicle is q = ((-200,-300), 0,0).

350 ,

.qC -"*pf" 0

300 - "Voronoi-boundary . .....
1"-0"
t-45"
"t-90 - ....

"1-135".
250 ""t-l80".

"t-225 . ..
'.."1.270" -

1-315----
200

ID -
150

50 --

0

-50
-400 -300 -200 -100 0 100 200

Figure 5.22 : Simulation Result of 1> 0, q = ((-300,200),9,0)
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350

S- " -

300 - "Nomrao bounda .....

1o9 .......
'"-135"

250 ""-183'
't-~225.----

I- "t-270"-
201-315----

1500

ISO

100

50

0

-50 I
-400 -300 -200 -100 0 100 200

Figure 5.23: Simulation Result of 1> 0, q = ((-200,300),0,0)

50

q0" -
*pf"

"Voronoiboundary . .....
"i-u" -...

"1,45" ------

"t.135".-50 "t- 180" ,..
"t-225 . ......
"1.270"
"1=315"

-100

*1 50

-200

-250

-300

-350 ,
-400 -300 -200 -100 0 100 200

Figure 5.24: Simulation Result of 1< 0, q = ((-300,-200),0,0)
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50

V "

"VoamnoiLboundary .....
1-45" - -----

"t- 135" -..

-50 't-180""-1=225" -----..
"t-270"
"t-315" ------

-100

-150

-200

-250

-300

-350 -
-400 -300 -200 -100 0 100 200

Figure 5.25 : Simulation Result of 1< 0, q ((-200,-300), 0,0)
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VI. CONCLUSION

A. RESULTS

Simulation results shows that when the objects are two points, two lines, or

one point and one line, we can safely navigate the vehicle to achieve equal

clearances from these objects. The motion of the vehicle is optimized at each

point directly from the information of the obstacles near the vehicle. After

calculating the steering function di/ds which is the derivative of the curvature of

the vehicle motion, the vehicle follows the Voronoi boundaries defined by the

environment

Previous work in the motion control of the autonomous vehicle Yamabico 11

used path tracking using a path specification for lines, circles and parabolas

which are images of the path. Before the mission began the vehicle was given a

track to follow; motion planning consisted of calculating the point on the track

closest to the vehicle and then steering the vehicle to get onto the track.

If the world navigated by the robot is large, it is complicated and inefficient to

calculate every Voronoi boundary of this world. It is better to calculate the

optimal motion of the vehicle at each point cirectly from the information of the

world by computing the steering function dic/ds without calculating the track to

follow.

Unlike. path tracking method, this method can be applied to avoid moving

objects since we calculate the optimal motion of the vehicle at each point directly

from the information of the world. Additionally, motion control is simpler and

faster than in the path tracking method.
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B. RECOMMENDATIONS

Based on the results of this thesis, recommended follow on work includes

leaving point calculation.

There are two goals for planning autonomous vehicle navigation planning:

shortest path and safe path. This safe navigation method is for only safe path

planning. The short path planning is represented by path ttacking using a path

specification for lines, circles and parabolas which are images of the path. When

we will combine this safe navigation method with short path planning, it will be

necessary to calculate the leaving point from one path to another. Afterwards, the

vehicle will continue on its way smoothly.
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APPENDIX

This appendix contains the C code for safe navigation which generated the

results found in this thesis.

A. POINTPATH.C

Author: Masahide Shirasaka
Project: Yamabico Robot Control System
Date: June 25 1994
Revised: July 12 1994
File Name: pointpath.C
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This Program contains functions for safe navigation

when the obstacles are two points.

#include <stdio.h>
#include <math.h>
#define DR (PI/180.0)
#define PI 3.14159265358979323846

// =PI
#define DPI 6.28318530717958647692

ii = 2.0*PI
#define BPI 1.57079632679489661923

/f = PI/2.0
#define RAD 57.29577951308232087684

// = 180.0/PI

FILE *fp0, *fpl;

struct: POINT

typedef struct I
double x;
double y;)

POINT;

struct: CONFIGURATION
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typedef struct{
POINT point;
double theta;
double kappa;

CONFIGURATION;

Function: normalize()
Purpose: This procedure is for a function which normalizes an angle

to within + or- PI values.

double normalize(double angle)

angle = angle - DPI*(ceil((angle + PI)/DPI) - 1.0);
return(angle);

Function: normalizelo
Purpose: A..is procedure is for a function which normalizes an angle

to within + or - PI/2.0 values.

double normalizel (double angle)

while(angle > P1/2.0)
{
angle = angle - PI;

while(angle <= -PI/2.0)I
angle -- angle + PI;I
return(angle);

FUNCTION: InputPoints0-
Purpose: This procedure Inputs the configurations of two points.

void InputPoints(POINT &plPOINT &p2)

/* Point obstacle p1 */
printf("Input Coordinates of the pl. N");
printf("X= \N");
scanf("%lf',&pl.x);
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printf("Y= \n");
scanf("%lf',&pl .y);

/* Point obstacle p2 *
printfQ'Input Coordinates of the p2. Nn");
printf('X= Nn");
scanf("%lf',&p2.x);
printf("Y= \n");
scanf("lfC',&p2.y);

FIJNCflON: LnputlnitConfig()
Purpose: This procedure Inputs the initial Configration of the vehicle,

size constant and step size.

void InptitlnitConfig(CO-NFIGURATION &q,double &sO,double &DS)

I* Corfig of q*/
printf("Input initial Configuration of the vehicle q. \n");
printfk"'X= \n");
scanf("%lf ',&q.point~x);
printfQ'Y= 'n");
scanf("%lf',&q.point~y);
printf(theta-- \N");
scanft7%lf",&q.theta);
q.theta=norrnalize(q.thetalRAD);
printf("kappa=- Nn");
scanf("%lf',&q.kappa);

1* Size constant */
printf("Lnput the size constant s(IM");
printf("tosO =\n");
scanf( "%lf,&sO);

1* DS */
printf("input the step size DS.Ni");
printf("DS =N\n");
scanfC'%lf",&DS);

FUNCTION: GedlnitThietaDesire()
Purpose: This p, n:-edure is for a fi: --tion which compute the value of

desirex. aial theta.

double GetlnitThetaDesire(CONFIGURATION qPOINT p1 POINT p2.)
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POINT p0;

pO.x = (pl.x + p2.x)12.0;
pO.y = (pl.y + p2.y)/2.O;
return(normalizel ((atan2(pl1.y-q.point.ypl .x-q.point.x)

+ atan2(p2.y-q.point.y~p2.x-q.point.x))Y2.O
- atan2(~pO.y-q.point.y,p0.x-q.point.x) )
+s atan2(pO.y-q.point.y,pO.x-q.point.x));

RJNCTION: GetConstants()
Purpose: This procedure is for a function which compute the value of

constants k, a, b, and c.

void GetConstants(double SO,double &a,double &b,double &c)

double ConstK;

ConstK=1 .0/SO;
a=3 .O*ConstK;
b=3 .0*Co-nstK*ConstK;
c=ConstK*ConstK*ConstK;

FIJNCflON: GetSteeringFunc()
Purpose: This procedure is for a function which compute the value of

steering function dk,/ds.

void GetStecring(double a~double b,double c,CONF'IGURATION q,
POWN p1 POINT p2,double &thetaDesire,double &u)

double deltaKappa~deltalheta~deltaDist~dl ,d2;

/* Calculate deltaKappa *
deltaKappa = q.kappa;

/*- Calculate deltalheta *
thetaDesire = normalizel ((atan2(pl .y-q.point.y,pl .x-q.poinit.x)

+ atan2(p2.y-q.point.y,p2.x-q.point.x))/2.O
- thetaDesire) + thetaDesire;

deltaTheta = normaLize(q.theta - thetaDesire);

/* Calculate deltaDist *1
dl = sqrt((pl.x. q.point.x)*(pl .x-q.poi~nt.x)
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+ (p1 .y-q.point.y)*(pl1.y-q.point~y));
d2 = sqrt((p2.x-q.poiqt.x)*(p2.x-q.point.x)

+ (p2.y-q.point.y)*(p2.y-q.point.y));if (atan2(pl .y-q.point.y,pl .x-q.point.x)
- acan2(p2.y-q.point.y,p2.x-q.pont~x)>O)

deltaDist = d2 - d I;
else

deltaDist = dlI - d2;

/* Calculate Steering fucriction = u
u = -(a*deltaKappa + b*deltaTheta + c*deltaDist);

FLNCTION: GetDkappa()
Purpose: This procedure is for a function which computes the value of

dKappa.

double GetDkappa(double u,double ds)

return(u*ds);

FUNC'UON: GetKappa()
Purpose: This procedure is for a function which computes the value of

Kappa.

void GetKappa(double dkappaCONFIGURATION &q)

q.kappa=q.kappa + dkappa;

FUNCTION: GetDtheta()
Purpose: This procedure is for a function which computes the value of

dtheta.

double GetDtheta(CONFIGURATION ql,double ds)

return(ql.kappa * cis);

FU'NCTION: next()
Purpose: This procedure is for a function which computes the next

configration of the vehicle.
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void next(double ds,double, dtheta,double &s,CONFGIGRATION &q)

CONFIGURATION qi;
/* CONFIGURATION of qi *
qi .point.x = (1.0 - dtheta*dtkieta/6.0)*ds;
ql.point.y = (0.5 - dtheta*dtheta/24.O)*dtheta*ds;
ql.theta =dtheta;

s = s + ds;
/* CONFIGURATION of q ~
q.point.x = q.point~x + q1.point.x*cos(q.theta) - qi .point.y*sin(q.theta);
q.poinq = q.point-y + ql.point.x*sin(q.theta) + q l.point.y*cos(q. theta);
q.theta = q.theta + ql.theta;

FUNCTION: Openfile()
Purpose: This procedure opens the output file.

void Qpenfile(CONFIGURATION q,double s)

(P oe(pahdtW)
fpl = fopen("pathda","w");
fprintf(fpO," s x y the~ta[deg] kappa")
fprinlf(fpO," u deltaKappa deltan.heta deltaDist~ai");
printf(" s x y theta[degl kappaNn");
fprintf(fpO,"%4.4f %4.4f %4.4f %94.4f %4.4Ni",s, q.pomnt.x, q.point.y,

q-t~heta*RAD~q.kappa);
printf("%4.4f %4.4f %4.4f 964.4f %4.4Ni", s, q.point~x, q.point~y,

q.theta*RAD,q.kappa);
fprintf(fpl,"%f %NM", q.point~x, q.point~y);

FUNCHION: PrintfileO
Purpose: This procedure prints the result to the file.

void Prin~ifie(CONFIGURATION q,double s)

fprintf(fpO,"%4.4f 964.4f %14.4f 914.4f %4.4f "

s, q.point~x, q.point.y, q.theta*RAD,q.kappa);
printfC-%4.4f %4.4f %,4.4f %4.4f %4.4fPn",

s, q.point.x, q.point~y, q.theta*RAD,q.kappa);
fprintf(fpl ,"%f %f\n", q.point.x, q.point~y); /* for gnuplot *
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FU`NCTION: maino

void main(void.)

CONFIGURATION q;
POINTp1,p2;
double u; /* steering function *
double DS,s,sO,a~bc,thetaDesire;
double dkappa,dtheta;

Input.Points(p l,p2);
InputlnitConfig(q,sO,DS);
GetConstants(sO,a~b,c);

thetaDesire=Getlnit'metaDesire(q,pl ,p2);

S = 0.0;
Openfile(q,s);

do

GetSteering(a~b,c,q,pl ,p2,thetaDesire,u);
dkappa = GetDkappa(uDS);
GetKappa(dkappa,q);
dtheta=GetDtheta(qDS);
next(DS,dtheta,s,q),
Printfile(q,s);

while(s<=800.O);

fclose(fp);
fclose(fp 1),

B. LINEPATH.C

Author: Masahide, Shirasaka
Project: Yamabico Robot Control System

Date: June 26 1994
Revised: July 12 1994
File Name: linepath.C
Environment: GCC ANSI C compiler for the motorola 68020 processor

51



Description: This Program contains functions for safe navigation
when the obstacles are two directed lines.

#include <stdio.h>
#include <math.h>
#define DR (PI/180.0)
#define PI 3.14159265358979323846

// =PI
#define DPI 6.28318530717958647692

H/ = 2.0*PI
#define HPI 1.57079632679489661923

// = PI/2.0
#define RAD 57.29577951308232087684

// = 180.0/PI

FILE *fp0, *fpl;

struct: POINT

typedef struct
double x;
double y;}

POINT;

struct: CONFIGURATION

typedef struct
POINT point;
double theta;
double kappa;

}
CONFIGURATION;

Function: normalize(angle)
Purpose-: This procedure is for a function which normalizes an angle

to within + or - PI values.

double normalize(double angle)I
angle = angle - DPI*(ceil((angle + PI)/DPI) - 1.0);
return(angle);

5
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Function: normalize 1 (angle)
Purpose: This procedure is for a function which normalizes an angle

to within + or - P1/2.0 values.

double normalize 1 (double angle)

while(angle > PI/2.0)

angle = angle - PI;

while(angle <= -P1/2.0)

angle = angle + PI;

return(angle);

FUJNCTION: InputLines()
Purpose: This procedure Inputs the configurations of two Lines.

void InputLines(CONFIGURATION &q1,CONFIGURATION &q2)

/* Line obstacle qi 1
printfC'Input initial Configuration of qi.\n)
printf("X= \n");
scanfC'%lf',&ql .point~x);
printfC"Y= \n");
scanfQ'%If ,&ql.point.y);

scanf("%lf",&ql .theta);
qi .theta=normalize(ql .theta/RAD);
qi .kappa=O.O;

/* Line obstacle q2 *
printf("Input initial Configuration of q2. Nn");
printf("X= \a");
scanfC"%If',&q2.point.x);
prmntf("Y= \n");
scanf("%If' ,&q2.poin(.y);
printf("theta= Nn");
scanfQ'%If" ,&q2.theta);
q2.thet~a=normalize(q2.theta/RAD);
q2.kappa=0.0;
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FUNCTION: InputlnitConfig()
Purpose: This procedure Inputs the initial Configration of the vehicle,

size constant and step size.

void InputlnitConfig(CONFIGURATION &q,double &sO,double &DS)

/* Conf ig of q ~
printf("Input initial Configuration of the vehicle q. \n");
printf("X= Nn");
scanfC'%lf ',&q.poinLx);
printfC'Y= Vi");
scanf( '%lf',&q.poiniy);
printf("theta-- Nn");
scanf("%Jf ',&q.theta);
q.theta=normalize(q.theta/RAD);
printf("kappa= \N");
scanf("%lf',&q.kappa);

f* Size constant */
printf("Input the size constant sUft");
printf(" sO =N\n");
scanf("%lf ',&sO);

1* DS *1
printfQ'Input the step size DS.Ni");
printf("DS =\")
scanf("%lf",&DS);

FUNCITON: GetConstants()
Purpose: This procedure is for a function which computes the value of

constants k, a, b, and c.

void GetConstants(doiible SO,double &a~doubie &b,double &c)

double ConstK.;

ConstK=1 .0/SO;
a=3 .0*ConstK;
b=3 .0*ConstK*ConstK;
c=ConstK*ConstK*ConstK;

FUN~L1ON: GetSteering~unc()

54



Purpose: This procedure is for a function which computes the value of
steering function dk/ds.

double GetSteering(double a~double b,double c,CONFIGLJRATION q,
CONFIGURATION ql,CONFIGURATION q2)

double deltaKappa~deltaThieta,deltaDist~thetaDesire,dl ,d2;

/* Calculate DeltaKappa *
deltaKappa = q.kappa;

1* Calculate Deltalheta *
thetaDesire = normalizel ((qi .theta+q2.theta)/'2.O - qi .thet~a) + qi .theta;
deltaTheta = normalize(q.theta - thetaDesire);

/* Calculate DeltaDist */
dI = -(q.point~x - qi .point.x)*sin(ql .theta)

+ (q.point.y - qi .point.y)*cos(ql .theta);
d2 = -(q.point~x - q2.point.x)*sin(q2.theta)

+ (q.point.y - q2.point.y)*cos(q2.theta);
deltaDist = (dl + d2)/2.0;

/* Calculate Steering fucnction = u *
retum(-(a*deltaKappa + b*deltaTheta + c*deltaDist));

FUNCTION: GetDkappa()
Purpose: Ths procedure is for a function which computes the value of

dKappa.

double GetDkappa(double u,double ds)

return(u*ds);

FUNCTION: GetKappa()
Purpose: This procedure is for a function which computes the value of

Kappa.

void GetKappa(double dkappaCONFIGURATION &q)

q.kappa=q.kappa + dkappa;
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FUNMTON: GetDtheta()
Purpose: This procedure is for a function which computes the value of

dtheta.

double GetDtheta(CONFIGURATION qi ,double ds)

return(ql .kappa * ds);

FUNCTION: next()
Purpose: This procedure is for a function which ccemputes the next

configration of the vehicle.

void next(double ds,double dtheta,doiible &s,CONFIGURATION &q)

CONFIGURATION qi;

/* CONFIGURATION of qi *
qi .point.x = (1.0 - dtheta*dtheta/6.O)*ds;
qi .point.y = (0.5 - dtheta.*dtheta/24.0)*dtheta*ds;
ql.theta = dtheta;

s = s + cis;

f* CONFIGURATION of q *
q.point.x = q.point~x + qi .point.x*cos(q.theta) - qi .point.y*sin(q.thet~a);
q.point.y = q.point.y + qi .point~x*sin(q.theta) + ql.jpint.y*cos(q.theta);
q.theta = q.theta + ql.theta,

FUNCTION: Jpenfile()
Purpose: This procedure opens the output file.

void Openfile(CONFIGURATION q,double, s)

fp0 = fopen("path.dat","w");
fpl = fopen('"path","w");
fprintf(fp0," s x y thetaldeg] kappa';
fprintf(fpO," u deltaKappa deltaTheta deltaDist\,n");
pnintf(' s x y theta[deg] kappa\,n");
fprintf(fp0,-9%4.4f %4.4f %4.4f %1 4.4f %&4.4fWn",s, q.point.x, q.point.y,

q.theta*RAD,q.kappa);
printf("%4.4f %4.41' %4.4f %o4.4f %4.4M~", s, q.point.x, q.pomnt.y,

q .theta*RAD,q.kappa);
fprintf(f~pl,"%f %f\n", q.point~x, q.pomnt.y);
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FUNCTION: Printfile()
Purpose: This procedure prints the result to the file.

void Printlile(CONFIGURAITON q,double s)

fpinf(fpO"%4.4f %4.4f %4.4f %4.4f o4.4f I

s, q.point.x, q.point.y, q.theta*RAD,q.kappa);
printf("%4.4f %4.4f %4.4f %4.4f %4.4fAn",

s, q.point~x, q.point.y, q.theta*RAD,q.kappa);
fprintf(fpl,"%f %f~n", q.pomnt.x, q.point.y); f* for gnuplot *

FUNCTION: mnaino

void main(void)

CONFIGURATION q~ql,q2;
double u; /* steering function *
double DS,s~sO~Abc;
double dkappa,dtheta;

InputLines(ql ,q2);

Inp~utnitConfig(q,sO,DS);
GetConstants(sO,a,b,c);

s = 0.0;
Openfile(q,s);

do

u = GetSteering(a,b,c,q,ql ,q2);
dkappa = GetDkappa(uDS);
GetKappa(dkatppa~q);
dtheta=GetDtheta(q,DS);
next(DS,dtheta,s,q);
Printfile(q,s);

while(scZ=800.0);

fclose(Wp);
fclo~se(fp 1);
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C. PARAPATH.C

Author: Masahide Shirasaka
Project: Yamabico Robot Contol System
Date: May 15 1994
Revised: June 17 1994
File Name: parapath.C
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This Program contains functions for safe navigation

when the obstacles are one point and one directed line.

#include <stdio.h>
#include <math.h>
#define DR (PI/180.0)
#define PI 3.14159265358979323846

/ =PI
#define DPI 6.28318530717958647692

/ = 2.0*PI
#define BIPI 1.57079632679489661923

// = Pe/2.0
#define RAD 57.29577951308232087684

// = 180.0/PI

FIlu *fp0, *fpl, *fp2, *fp3;

shruct: POINT

typedef struct
double x;
double y;

I
POINT;

struct: CONFIGURATION

typedef struct {
POINT point;
double theta;
double kappa;

I
CONFIGURATION;
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Function: normalize()
Purpose: This procedure is for a function which normalizes an angle

to within + or - PI values.

double normalize(double angle){
angle = angle - DPI*(ceil((angle + PI)/DPI) - 1.0);
return(angle);}

Function: normalizel()
Purpose: This procedure is for a function which normalizes an angle

to within + or - PI/2.0 values.

double normalizel (double angle)I
while(angle > PI/2.0){
angle = angle - PI;}
while(angle <= -PI/2.0)
{
angle = angle + PI;}
return(angle);}

FUNCTION: InputParabolaO
Purpose: This procedure Inputs the Configrations of one point and

one directed line.

void InputParahola(CONFIGURATION &q0,POINT &p){
/* Config of qO */
printf("Input initial Configuration of the qO (directrix). Wn");
printf("X= •n");
scanf("%lf',&qO.point.x);
printf("Y= \n");
scanf("%lf',&qO.point.y);
printf("theta= Nn");
scanf("%lf',&qO.theta);
qO.theta=normalize(qO.theta/RAD);
qO.kappa=0.0;
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/* Point obstacle *
printf("Input Coordinates of the pf (focus). \n");
printf("X:= n");
scanf("%lf",&p.x);
printfC'Y= Nn"~);
scanf("%lf",&p.y);

FUNCTION: LnputlnitConfig()
Purpose: This procedure Inputs the initial Configration of the vehicle,

size constant and step size.

void InputlnitConfig(CONFIGURATION &q,double &sO,double &DS)

1* Config of q ~
printf("lnput initial Configuration of the vehicle q. \n");
printf("X= \n");
scanf('t%lf",&q.point.x);
printf("Y= W'");
scanf("%lf",&q.point..y);
printf("theta= Na");
sc~anf("%lf',&q.theta);
q.theta=normaiize(q.theta/RAD);
printfC'kappa-- W');
scanf('"%lf',&q.kappa);

1* Size constant*/
printfC'lnput the size constant WONW);

sc~anf("%lf',&sO);

I* DS *I
printf("Input the step size DS.Nn");
printfC'DS =\,u");
sc~anf("%W'",&DS);

FUNCTION: GetSize()
Purpose: This procedure is for a function which computes the value of

size of the parabola.

double GetSize(CONFIGIJRATION qOPOLNT p)

retum(-(p.x-q0.point.x)*sin(qO.theta) + (p.y-qO.point.y)*cos(qO.theta));
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FUNCTION: GetConstants()
Purpose: This procedure is for a function which computes the value of

constants k, a, b, and c.

void GetConstants(double SO,double &a,double &b,double &c)

double ConstK;

ConstK= 1.0/SO;
a=3 .O*ConstK;
b=3.0*ConstK*ConstK;
c=ConstK*ConstK*ConstK;

FUNCTION: GetSteeringFunc()
Purpose: This procedure is for a function which computes the value of

steering function dk/ds.

double GetSteering(double a~double b,double cCONFIGURATION q,
CONFIGURATION qOPOINT p~double size)

double kappaJPara~phi,deltaKappa~thetaN,thetaDesire,
deltalheta,deltaDist,dI4,2;

/* Calculate DeltaKappa *
if ( size >= 0.0)

phi =

else norrnalizeatan2(q-point.y-p.y, q.poiint~x-p.x) - (qO.theta-P112.O));
phi = normalize(-atan2(q.point.y-p.y, q.poitit~x-p.x) +

(qO.theta+PI12.0));
kappaPara. = cos(phi/2.0)*cos(pbiI2.0)*cos(phi/2.0)/size;
deltaKappa = q.kappa - kappaPara;

I* Calculate Deltalheta */
thetaN=((size >= 0.0) ? (qO.theta - PI/2.O):(qO.dieta + PM/.0));
thetaDesire =
normalizel((atan2(p.y-q.point.y, p.x-q.point~x) + thetaN)/2.0 - qO.theta)
+ qO.theta;
deltaTheta =normahize(q.theta - thetaDesire);

/* Calculate DeltaDist *1
dl = sqrt((p.x-q.point.x)*(p.x-q.point.x) + (p.y-q.point.y)*(p.y-q.point.y));
d2 = -(q.point.x-q0.point.x)*sin(q0.theta)

+ (q.point.y-q0.point.y)*cos(q0.theta);
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if (size >= 0.0)
deltaDist = d2 - dl;

else
deltaDist = d2 + dl;

/* Calculate Steering fucnction = u
return(-(a*deltaKappa + b*deltaTheta + c*deltaDist));}

FUNCTION: GetDkappa0
Pu.-pose: This procedure is for a function which computes the value of

dKappa.

double GetDkappa(double u,double ds)
I

retum(u*ds);I

FUNCTION: GetKappa0
Purpose: This procedure is for a function which computes the value of

Kappa.

void GetKappa(double dkappaCONFIGURATION &q)
{

q.kappa=q.kappa + dkappa;I

FUNCTION: GetDtheta0
Purpose: This procedure is for a function which computes the value of

dtheta.

double GetDtheta(CONFIGURATION ql,double ds){
return(ql.kappa * ds);}

FUNCTION: next()
Purpose: This procedure is for a function which computes the aext

configration of the vehicle.

void next(double ds,double dtheta,double &sCONFIGURATION &q)
{

CONFIGURATION ql;
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/* CONFIGURATION of q1 */
qi .point.x = (1.0 - dtheta*dtheta/6.0)*ds;
qi .point.y =(0.5 - dtheta*dtheta/24.O)*dtheta*ds;
qi .theta = dtheta;

s = s + ds;
/* CONFIGURATION of q ~
q.point.x = q.point.x + qi .point.x*cos(q.theta) - qi .point.y*sin(q. theta);
q.point.y = q.point.y + ql.point.x*smn(q.theta) + ql.Pomnt.y*cos(q.theta);
q.theta, = q.theta + qL~theta;

FUNCTION: Operfdie()
Purpose: 'This procedure opens the output file.

void Openfile(CONFIGURATION q,double s)

ft be(pahdtw)
fp0 = fopen('pathdt","w");

fprintf(fp0," s x y theta[deg] kappa )
fpri;ntf(fp0," u deltaKappa deltalheta deltaDistmi");
printf(" s x y theta[deg] kappa~jn");
fprintf(fpO,"%4.4f %4.4f %4.4f %o4.4f %4.4ftn",s, q.pont~x, q.point.y,

q.tbeta*RAD,q.kappa);
printf("%4.4f %4.4f %4.4f %4.4f %4.4ft~", s, q.poinix, q.point~y,

q.tbeta*RAD,q .kappa);
fprirnf(fpl,"%f %Ni", q.point~x, q.point~y);

FUNCflON: PrintfileO
Purpose: This procedure prints, the result to the file.

void Printfile(CONFIGURATION q,double s)

fprintf(fp0,"%4.4f %o4.4f %4.4f %4.4f %4.4f "

s, q.pouit.x, q.point~y, q.theta*RAD~q.kappa);
printfQ'%4.4f %4.4f %4.4f %4. Af %4.4f'n',

s, q.point~x, q~po~int.y, q.theta*RAD,q.kappa);
fprintf(fpl,"%f %t\nt ', q.point.x, q.point.y); /* for gnuplot

FUNCTION: niain()

void main(void)

63



CONHIGLRATION qO,q;
PoINTp;
double u; /* steering function *
double DS,s,sO,a~b,c,size;
double dkappa,dtheta;

InputParabola(qO,p);
size=GetSize(qO,p);

InputlnitCoafig(q,sO,DS);
GetConstants(sO,a,b,c);

s = 0.0;
Openfile(q,s);

do
f
U = GetSteering(a~b,c~q,qO,p,size,);
dkappa = GetDkappa(uDS);
GetKappa(dkappa,q);
dtheta=GetDtheta(q,DS);
next(DS,dtheta,s,q);
Printfile(q,s);

while(s<=2000.0);

fclose(fp0);
fclose(fp 1);

64



LIST OF REFERENCES

1. Kanayama, Y., "Mathematical Theory of Robotics: Introduction to 2D
Spatial Reasoning," Lecture Notes of the Advanced Robotics Course,
Department of Computer Science, Naval Postgraduate School, Whiter
Quarter 1994.

2. James, A. Alexander, Motion Control And Obstacle Avoidance for
Autonomous Vehicles Using Simple Planar Curves, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

3. Kanayama, Y., Ohnishi, M., "Locomotion Functions in the Mobile Robot
Language, MMIL," International EEE Conference on Robotics and
Automation, (1991) 1110-1115.

4. Preparata, P.F., Shamos, I.M., Computational Geometry, Springer-Verlag,
New York, 1985.

65



66



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library, Code 052 2
Naval Postgraduate School
Monterey, California 93943-5001

3. Chariman, Code OR 2
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943

4. Dr. Yutaka Kanayarna, Code CS/Ka 2
Department of Computer Science
Naval Postgraduate School
Monterey, Calitomia 93943

5. Dr. Gordon Hoover Bradley, Code OR/Bz
Department of Operations Research
Naval Poztgraduate School
Monterey, California 93943

6. Lieutenant Commander Don Brutzman, Code OR/Br
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943

7. Lieutenant Junior Grade Masahide Shirasaka 2
1049-5 Fujigaya Syonan-Machi Higashi-Katsushika-Gun
Chiba-ken, Japan 277

67


