
KA12

936

I 4 i



Best,
Avai~lable

Copy



This report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. The work was sponsored
by the Department of the Air Force under Contract F19628-90-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESC Public Affairs Office has reviewed this report, and
it is releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

rAdministrtive Contr zg Officer
Contracted Support Management

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

ADAPTIVE DETECTION AND COPY OF
COHERENT NARROWBAND WAVEFORMS WITH

UNCALIBRATED ARRAYS

Accesion For
K.W. FORSYTHE

Group 44 NTIS CRA&I
DTIC TAB
Urainanuc.rcd L
Just;iic:tion

B y ..................... ........
Dist, ib,.tio; I

AvuW;abiiity Co-,esTECHNICAL REPORT 994 %AvaU aLd!or

Dist I S)pecial

20 JUNE 1994

SI

Approved for public release; distribution is unlimited.

LEXINGTON MASSACHUSETTS



ABSTRACT

Adaptive detection and copy of temporally coherent narrowband waveforms
with multiple sensors is discussed. Unlike related problems treated in the radar
literature, the sensor response to the coherent signal of interest is assumed unknown.
Thus the techniques presented can be used with uncalibrated sensor arrays. The
signal processing takes advantage of the sensor array as well as the signal coherence
in order to form an adaptive spatial beam that suppresses cochannel interference.
More general signal models involving partial coherence are also considered.
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1. INTRODUCTION

Adaptive detection and copy of temporally coherent (i.e., known) narrowband waveforms

using multiple sensors has been treated extensively in the radar literature. Kelly [1] provides a
maximum likelihood (ML) formulation of the problem (see also Kelly and Forsythe [2]). For radar
problems, a fundamental assumption is that the sensor response to the signal of interest (Sol)
is known. Variations on this assumption lead one to study the performance loss associated with
imperfectly known sensor responses (wavefront mismatch).

In contrast, the problem of interest here is the detection and copy of a coherent waveform with

a completely unknown wavefront. Lack of knowledge about the wavefront can be due to unresolved
multipath or, more simply, to an uncalibrated (or uncalibratable) antenna array. The problem of

wavefront mismatch is absent given the techniques discussed in this report, but for many applica-
tions there can be other problems associated with imperfect use of the coherent signal waveform
(waveform mismatch). The impact of such problems is studied here. To make the techniques more

concrete, a particular frequency domain application is discussed. For this application, the signal
processing is called frequency feature processing (FFP).

In broad terms, the work presented here specializes the results of Kelly and Forsythe [2] to the

problems of detection and copy of a coherent waveform with unknown wavefront. Specific forms of

the detection statistic and adaptive beamformer are presented. These forms are suited to typical
applications. Problems associated with waveform mismatch are addressed.

More specifically, Section 2.1 recalls the signal model of Kelly and Forsythe [2]. To simplify

the exposition, the treatment of detection and copy in the body of this report is expressed in
terms of a specific frequency domain application. However, the appendices provide a more general

treatment. Section 2.2 expresses the generalized likelihood ratio detection statistic and copy weight
of Kelly and Forsythe [2] for the signal model of interest. Section 3 reformulates the detection

statistic and copy weight in forms more appropriate for applications. Section 4 discusses some
difficulties with detection and copy in practical applications and quantifies performance.
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2. DETECTION AND COPY STATISTICS

2.1 Signal Model

Let Z = (Z(1),..., Z(L)) be an N x L array of vector samples of the output of an N element
antenna array. Each column of Z represents, for FFP applications, a snapshot of the array output
in a particular frequency cell. It is assumed below that these snapshots are independent. The
entries of Z are taken to be jointly complex circular Gaussian. A more general signal model is
discussed in Appendix A.1.

One can partition the data Z into the N X M subarray Z4 (p-data) and the N x (L - M)
subarray Zq (q-data): Z = (Zp Zq). It is assumed that L > M + N. Each column of Z is assumed
to have the same covariance R. That is,

R = E[(Z(k) - E[Z(k)]) (Z(k) - E[Z(k)])H]

where E[.] denotes expectation. However, the modeled mean of Zq is assumed to be zero while that
of ZP is

E[ZP = VA HS
0 HNS

under the signal present (Hs) and signal absent (HNS) hypotheses. V is a N x J array, the columns
of which represent the array responses (signal wavefronts) of J emitters. A is a J x M array of
signal amplitudes.

The true mean of Z need not agree with the model. It can be written in general as

E-[Zp] = VAp

E[Zq] = VAq

where A = (ApAq) is a J x L array expressing contributions of the signal to both the p-data and

q-data. V is a N x J array expressing the true array responses of J emitters. When it is important
to make a distinction, a script font is used to signify true properties of the signal mean as opposed
to properties of the model (expressed in a roman font). Signal presence in the q-data is a form of
model mismatch that impacts the detection and copy procedures described below.

For FFP applications (the treatment is more general in the appendices) J = 1. Then A is
a vector representing the signal components in the p-data and q-data. Signal in the q-data is a
type of modeling inaccuracy due, for example, to uncertainty in the signal bandwidth. For FFP
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detection, M = 1 is assumed in addition. Then the modeled A is a scalar that lives in one and only
one frequency cell, which may or may not be known a priori.

The model of V may vary considerably, leading to different forms of parameter estimators.
V is assumed to be completely unknown in the FFP applications. Thus the pocedures described
below can be used with uncalibrated arrays. Note that there is no modeling mismatch associated
with V in this case: all V's are included in the model.

An example of a waveform amenable to FFP is a narrowband AM signal with significant
energy in the carrier. For detection purposes, the signal is modeled as a pure tone at the carrier
frequency. Thus detection suffers from model inaccuracies due to the true, multicell signal band-
width. The effect of this modeling error is assessed in Section 4.2. Copy also relies on the tone
model, but a guard band can be introduced to address the effects of an inaccurate model (see
Section 4.3).

2.2 Maximum Likelihood Formulation

Letting S dZf q the generalized likelihood ratio (see Appendix A.2 for a concise descrip-
tion of the test in a more general situation as well as in the special case treated here) for deciding
between the hypotheses HS and HNS is

VHS-IV
vH(ZZH)-lV"

The associated copy weight is expressed by

W = S-IV(VHS-IV)- 1 . (2)

The expression WHZp provides a ML estimate of the signal amplitude A.

To complete the detection statistic and determine the copy weight W, Equation (1) must be
maximized over V. V can be modeled, for example, by a calibration table for the antenna array.
Because detection and copy with uncalibrated arrays are of principal interest here, V is assumed
to be completely unknown. Thus Equation (1) must be maximized over all nonzero V. To do this,
one can use the following well-known result, valid for any hermitian matrices A and B, with B
positive definite.

XHAX XHB-1/ 2 AB- 1/ 2Xmam ax a= m(B-/AB /)=Am(B -'A),
X XHBX x XHX

where the maximization occurs over vectors X and Amax(') denotes the largest eigenvalue of its

argument. Let e,.(.) denote the principal eigenvector of its argument. Then
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X,,. = eH(B-'A).

Applying the above fact to Equation (1), one has

max VHSIV A [(S + = +

V VH(ZZH)-lV [ p PI

which occurs when

Vmax = ema[(s + ZPZ)S-'] = zp.

The copy weight associated with Vm is

w =s-zp(zs-z )-1. (4)

Detection based on Equation (3) enjoys a strong constant false alarm rate (CFAR) property.

Specifically, the distribution of the detection statistic under HNS does not depend on the spatial
distribution of interference.
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3. REFORMULATION OF DETECTION AND COPY

3.1 Detection

The detection and copy statistics presented above have more useful forms, especially when
the frequency cell containing the S0l is not known but must be located as part of the detection
precedure. The new statistics are derived by applying the Sherman-Morrison-Woodbury identity
(see Golub and Van Loan [3])

(S + Z= -1 - s-'ZP( + ZHS- 1Z )-,Z's'.

Consider detection first. The detection statistic is given by ZHS-'Z4. This applies to a
specific frequency cell. If the cell containiL.g the S01 is not known. the covariance estimate (unnor-
malized) S must be reformulated for each cell tested. However,

ZHS-1Zz4(z )'•= z•~(s + v±z z)--zz

Because x/(1 + x) is a monotonic increasing function, an equivalent form of the detection statistic
is given by the left-hand-side of the above equation, namely

Z (ZZ )-_ ZP. (5)

This version of the statistic uses only one unnormalized covariance estimate ZZH for all cells tested.

3.2 Copy

A similar (though less useful) reformulation is possible for the copy weight based on a partic-
ular cell:

(ZZH)-iZP(ZH(ZZH)-IZP)-Y = [S-'Zp(1 +zs-Iz

• [(zHs-lzp)(1 + zHS-1ZP)-1 1]-

= S-IZP(Z•'sZ)-'.

The right-hand side of the above equation can be recognized as the adaptive copy weight introduced
in Equation (4). Thus the adaptive weight can be written in the form

( ZZH)-,ZP( ZH( ZZ1)-iZP)-. (6)
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4. PERFORMANCE ASSESSMENT

Both the detection statistic of Equation (5) and copy weight of Equation (6) can suffer from
modeling inaccuracies in practical applications. The signal model assumes that the SO! is concen-
trated in a single frequency cell while the interference, in principle, is found in all cells. Typical
applications of FFP involve signals with spectral lines due to residual carriers or due to periodicities
in the data. Thus a substantial fraction of the SOI power is concentrated in one or several cells, but
there can be considerable signal power in other cells as well. In order to characterize performance,
these modeling inaccuracies must be taken into account.

4.1 SNRs and Emitter Separations

Typically, the performance of adaptive array algorithms is assessed in terms of emitter levels
and emitter separations. Some basic definitions of both are introduced next. More discussion of
emitter separations is presented in Appendix C.

The array signal-to-noise ratio (ASNR) of an emitter in a background environment (noise and
possibly some, but not all, interference) is the SNR at the output of an optimal beamformer. It is
the largest SNR achievable with adaptive beamforming in the given environment. What constitutes
the "background environment" as opposed to "interference" is largely a question of what is known
as opposed to unknown. Because the background is often known, it is incorporated i,. the definition
of ASNR because, in this case, the data can be prewhitened by the background before adaptive
processing, which handles additional, unknown interference. In other words, it is useful to include
any known background in the definition of ASNR in order tc gauge performance against unknown
(typically discrete) sources. In some cases it is convenient to exclude known interference from the
concept of background environment. For example, the noise floor may be determined by spatially
diffuse environmental sources rather than by thermal noise. Such a background, if it does not
appear spatially white, can be suppressed to some extent by adaptive techniques. By excluding
such interference from the definition of background, this suppression can be assessed (in terms of
array signal-to-interference ratio (ASIR); see below]. However, it is worth noting that adaptive
techniques provide the most benefit against discrete sources.

The calculation of ASNR is based on the covariance decomposition

signal coy.

R= Rs + RN

background coy.

In the following, the reader can safely assume RN = IN, where IN is the N x N identity matrix,
representing a spatially white background. This leads to the most common definition of ASNR; but
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as the discussion above indicates, other definitions can be useful. Adaptive beamforming maximizes
the SNR at the output of the beamformer, forming

maxWH RsW W Am.x(R'Rs),Wa WHRNW

which is achieved when

W. = emnX(RN'Rs).

Note that there is assumed to be no correlation between signal and background. In practice,
Rs = psVVH, expressing the contribution of a single coherent emitter to the total covariance. V
(a column vector here) is the emitter steering vector and ps is the emitter power. In this case,

ASNR = Amax(R- 1Rs) = pSAmax(RN1/ 2 VVHRN1/ 2 ) = ps(VHR-'V)

and

WM.x = RN'V.

In an interference environment, the covariance is expressed by R = Rs+R1 , where RI >_ RN is
the contribution of interference sources (typically discrete) as well as the background environment.
With the signal model discussed above, the optimal ASIR is given by ps(VH R 1V). This leads
one to define the interference induced loss

VHR 7•• V
VHRN 1 V

This is the loss of signal-to-interference ratio (SIR) due to the presence of the additional interference
contained in R1.

In a special case of interest, the added interference is due to a single coherent emitter, so

that RI = RN + pIWWH, with W the steering vector of the interferer. Define the separation in
beamwidths between the two steering vectors V and W as

def IVHRýTIWI (7b = (2 /1r)arcos(IlV IIRIIlW IIR,) (7)
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where IIVIIRN I-e (VHRN lV)l/2, etc. Appendix C explains this definition. When RN oc IN, this
definition agrees closely with the physical notion of beamwidth for values of b less than one-half.
Note that b = 1 corresponds to the orthogonality of vectors V and W. Because (Sherman-Morrison-

Woodbury again; see, for example, Golub and Van Loan [3])

R1 = ?N1P1 RN' WWg RN')
R7'="-RN-- 1+ pWHRNR'N

the interference induced loss becomes

pl WH RN'1W [VHRN W1W2

1+pWHR-lW (WHR 1; W)(VHR V)

ASNRI cos2 (7rb/2), (9)

1 + ASNRI

where ASNRI is the ASNR of the interferer. As ASNRI increases, this expression reaches the

asymptote sin 2 (irb/2). Figure 1 shows some examples of the interference induced loss as a function
of ASNRI and the beamwidth separation of the emitters. Note that an emitter separation of
one-half beamwidth leads to a loss (the reciprocal of Equation (9) is plotted on dB scale, for

convenience) of at most 3 dB. If, on the other hand, the emitters are within 0.1 beamwidths of each
other, the loss can approach 16 dB.

Some additional comments on SIRs are necessary for the discussion below. The definition of
ideal ASIR (when J = 1, M arbitrary) can be stated in terms of the signal model of Section 2.1

using the terminology appropriate for FFP applications. A more general definition is given in the
appendices.

Let Ak, the kth component of A, be the signal amplitude in the kth frequency cell, then the
ideal ASIR becomes 1A112 (VHR-1V)IL. Note that this is really an average ideal ASIR taken over

L observations. This can also be called the p-data ideal ASIR when Ak = 0 in the q-data. When
there is SOI contamination of the q-data, one can define separate p-data and q-data ideal ASIRs
by restricting hJA1l 2 to the p or q components (tIApJh2 or tJAqJ12 ).

There is a distinction between the ideal ASIR just defined, which is a per sample SIR, ap-
propriate for characterizing copy performance, and the ideal total ASIR (TASIR), which is needed
to characterize detection. The ideal TASIR, for FFP detection applications, is L times the ideal

ASIR. Recall that L is the number of available samples. The ideal TASIR incorporates coherent
and incoherent (M > 1) SOI integration into the SIR. For convenience, the ideal TASIR is called
simply TASIR below.
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4.2 Simulation Results: Detection

All the plots in this section are based on the TASIR (or sometimes the p-data and q-data
versions).

Figure 2 shows the cumulative distribution functions (CDF) of the normalized detection statis-
tic Equation (10) for SOI TASIRs of 10, 20, and 30 dB. The figure is based on a Monte Carlo
simulation utilizing the statistical normal forms discussed in Appendix D.1. The dimensional pa-
rameters are N = 4, M = 1, and L = 1000. Also shown in the figure is the statistic with no signal
present (false alarm statistic). Note that the detection statistics are essentially constant when the
SOI TASIR is much larger than unity.

To see how the figures can be used, consider a signal with an ASNR of -4 dB that is 0.1
beamwidth away from a very strong interferer. Figure 1 shows that the interference induced loss
is at most 16 dB. Thus the ideal ASIR is at least -20 dB. With L = 1000, the TASIR becomes 10
dB. The corresponding curve in Figure 2 can be used to determine detection performance. Note
that the signal can be detectable even if the ASIR does not support good copy.

The false alarm probability can be characterized when J = 1 = M. See Appendix D.3.2
for the calculations and some simple approximations. Figure 3 shows false alarm probability for
N = 2,4,8,16 when L is large. The normalized detection statistic of Equation (10) is used. Because
Figure 3 shows a per look false alarm probability, very low values are displayed. The false alarm
rate is independent of the spatial distribution of the interference. However, it does depend on the
spectral distribution of the interference. If the interference is not spectrally flat, higher false alarm
rates can result.

Appendix D.3 provides an approximation for the normalized detection statistic

L M Pm[Z S-(10)

when L > 1. Assume M = 1, because this is the case of most interest for FFP applications. Let
TASIIR~ denote the TASIR of the SOI in the p-data. Similarly, let TASIRq denote the TASIR of the
SOI in the q-data. The detection statistic is essentially constant when TASIRP > 1 and assumes
the approximate value

TASIRP (11)
LL + TASIRq"

When TASIRq << L, the approximate value is TASIRP. When TASIR, > L, this value
saturates at about L TASIRp/TASIRq. In either case, a significant peak in the statistic occurs at
lines in the SO spectrum because, in this case, the value of TASIlP/TASIRq is comparable with
unity and because L is large.

12
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Figure 4 is based on the same dimensional parameters as Figure 2. The SOI has a fixed (for
each curve) TASIR of 30 dB in the p-data and TASIRs of 30, 20, and 10 dB in the q-data. Note
that the SOI contamination of the q-data leads about a 3 dB loss in the detection statistic given 30
dB contamination, consistent with the approximations above. Contamination of 20 or 10 dB leads
to little loss in detectability.

Similar comments apply to Figure 5 and Figure 6 where the p-data TASIR is reduced to
20 dB, the q-data TASIRs become 20, 10, and 0 dB, and the number of looks is 1000 (Figure 5)
and 100 (Figure 6).

Finally, Figure 7 shows an SOI with 10 dB p-data TASIR and q-data TASIRs of 10, 0, and
-10 dB. There are 1000 looks. Detectability suffers no essential loss.

4.3 Simulation Results: Copy

The copy performance achieved with the adaptive beamformer of Equation (4) is expressed
in terms of the ASIR at the output of the copy beam. In Appendix D it is shown that this achieved
ASIR (which is a random variable) has a distribution that depends only on the ideal ASIR and
on the dimensional parameters L and N (recall, M = 1 in the applications discussed here). In
other words, the achieved SIR depends on a particular scenario through the ideal ASIR. Scenario
details such as interference spatial/polarization distributions are irrelevant to characterizing copy
performance unless they alter the ideal ASIR.

Figure 8 shows the ideal and achieved ASIRs for a four element array using 100 samples.
The vertical line in the figure indicates ideal ASIR, namely 10 dB. This line also represents the
CDF of an ideal adaptive beamformer. The curved line shows the CDF of achieved ASIR (in dB)
provided by FFP. The achieved ASIR is within a few tenths of a dB of the ideal. This is due to the
large number of samples (100 here) typical of an FFP application with a consequent large coherent
integration gain. In this example, the ideal TASIR is 30 dB.

When signal is present in the q-data, performance is degraded. As shown in Appendix D.4,
the achieved ASIR depends only on the ideal ASIRs of the SOI in both the p-data and q-data,
as well as on the dimensional parameters mentioned above. The next set of figures shows the
performance degradation as a function of these ideal ASIRs. Each figure is based on a fixed ideal
ASIR (shown in the caption) for the SOI in the p-data. The ideal ASIR of the SOI in the q-data is
varied as indicated in the legend. The term "No Q-DATA" means that the signal lies only in the
p-data. The dimensional parameters are varied as shown on the figures.
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The reader should note tl •t the CDFs of achieved ASIR shown below are based on the p-data
ideal ASIR. This is a convenient way to present the results given some of the processing options
described below (i.e., guard bands). However, copy performance involving the p-data is not directly
of interest because that component of the signal is already known upon detection and, hence, does
not contain any additional information. It is more likely, but not necessary (see below), that the
achieved ASIR of the q-data is of interest. In this case, the CDF curves should be translated by
the difference (in dB) between the q-data and p-data ideal ASIRs. For example, a CDF curve of
achieved ASIR based on an ideal p-data ASIR of 30 dB and an ideal q-data ASIR of 20 dB should
be translated left by 10 dB.

Figure 9 shows that there is essentially no loss in achieved ASIR when L > 1 unless the
q-data ASIR is much greater than the p-data ASIR. Here, the ideal p-data ASIR is low (10 dB).
The loss due to q-data contamination increases as the number of looks (L) is reduced (Figure 10)
and as the p-data ideal ASIR is increased (Figure 11 and Figure 12). However, these losses are not
significant as long as the q-data ASIR is much less than the p-data ASIR.

If, as mentioned above, the achieved ASIR for the q-data is of interest, one can rephrase the
preceding statements. As long as the q-data ASIR is less than (approximately) the p-data ASIR,
copy performance improves with increasing q-data ASIR (but fixed p-data ASIR). Once the q-data
ASIR exceeds the p-data ASIR, copy performance degrades. For example, Figure 11 shows that a
q-data ASIR of 20 dB leads to a median achieved ASIR (for the q-data) of about 18 dB. However,
a q-data ASIR of 30 dB (which exceeds the p-data ASIR by 10 dB) leads to a median achieved
ASIR of about 15 dB. In other words, copy performance has been degraded.

It is worth bearing in mind that the copy performance described in the figures is conditioned
on detecting the SOI. When this is not possible with high probability, copy performance can deviate
significantly from that shown in the figures due to mislocating the cell containing the SOI spectral
line (for FFP applications). In the figures shown here only the 30 dB q-data curve of Figure 12 is
effected.

It is possible for the SOI contamination of the q-data to have a more serious impact on
performance. Figure 13 shows the effect of contamination at a high ideal ASIR. Figure 14 examines
the same scenario with the addition of a 0.01 beamwidth mismatch between the SOI wavefront in the
q-data and the p-data (which is taken to be truth). Note that the losses due to SOI contamination
are considerably larger. Steering vector mismatch can arise for a number of reasons. For example,
large multipath delays can cause wavefronts to vary across the signal bandwidth, violating the
assumption that the SOI is narrowband.
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For FFP applications, the q-data consists of all frequency cells ex. At the cell(s) containing
the SOI lines. Thus the ideal ASIR in the a-data can be large. This could severely degrade copy
performance, particularly when there is some wavefront variation over the band, as the figures
indicate. To avoid this problem, a guard band can be centered about the line(s). One can think of
preprocessing the data by notching out everything in the guard band, but allowing the line(s) to
come through. The preprocessed data does not have significant SOI contamination in its q-data if
the guard band is chosen appro 'ately. Of course, SOl power is thrown away (but only for weight
determination) if the guard band is notched out. Instead, one can redefine the p-data so that it
contains the guard band instead of just the line(s). However, if the line(s) contains a large fraction
of the signal power, this will not improve performance significantly. Of course, if a guard band
is used, the calculation of the q-data (instead of p-data) achieved ASIR described above must be
modified.
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5. SUMMARY

The work in Kelly and Forsythe [2] is reformulated and extended for applications involving
the detection and copy of coherent waveforms with unknown wavefronts. An important application
of this work (and a convenient example in the exposition) is called frequency feature processing
(FFP). For this application, the waveforms are narrowband with significant power concentrated in
one or several spectral lines. These waveforms have unknown wavefronts that differ from those of
any cochannel interferers. The wavefront differences allow spatial nulling of the interference.

Detection and copy performance are discussed. Direction-finding is not considered because
antenna calibration is assumed to be unavailable.

Detection enjoys a constant false alarm rate property such that the probability of false alarm
does not depend on the spatial distribution of the environment, including interference. It must, of
course, depend on the spectral distribution of the environment/interference. Detection performance
relies on spatial nulling in addition to coherent integration of the signal of interest's (SOI) spectral
line(s). As a result, signal detectability is substantially greater than that achievable with a discrete
Fourier transform (DFT) alone.

A typical application involves a SOI with spectral line(s) (i.e., carrier or rael lines) in cochan-
nel broadband (spectrally fiat) interference. Because the SOI can have significant power outside of
the lines, SOI self-nulling is a potential problem. Self-nulling can occur when the SOI signal level
is large and most of the SOI power is not contained in the line(s). Loss of performance due to this
problem is quantified.

The appendices discuss a more general signal model than that treated in the body of the
report. Applications of this more general model are not pursued here.
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APPENDIX A
STATISTICAL SIGNAL PROCESSING

The treatment in this appendix is more general than that in the body of the report. In
particular, the signal model is much more elaborate. After recalling the maximum likelihood
statistic in a form given in Kelly and Forsythe [2], some interesting reformulations are presented.

A.1 Signal Model

Let Z be an N x L array of vector samples of the output of an N element antenna array.
Each column of Z is a snapshot of the array output at a particular time. It is assumed below that
these snapshots are independent although the initial formulation is somewhat more general. The
entries of Z are taken to be jointly complex circular Gaussian with mean

E[Z] = VAT. (A.1)

V is a N x J array, the columns of which represent the array responses of J emitters. T is a M x L
array, the rows of which can be interpreted as time domain basis waveforms. A is a J x M array
of signal amplitudes. In one case of interest here M = 1 and J = 1. Then VAT expresses the time
history of a single coherent waveform. In the formulation of hypothesis testing problems in Kelly
and Forsythe [2], the A array is assumed to be completely unknown. However, prior knowledge of
V and T may vary considerably, leading to different forms of parameter estimators.

The covariance of Z is given by

(cov(Z))(ij);(k'1) E[(Z13 - ) (Zk - TU*] (A.2)

where the overbar designates expected value and the * denotes complex conjugate. It is often the
case that the covariance has the special structure expressed by

cov(Z) = R ® C* (A.3)

where the Kronecker (tensor) product of matrices A and B is defined by

def
(A 0 B)(ij);k,1) = AikBil (A.4)
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The tensor product structure of the covariance can be interpreted as a factoring into spatial
(R) and temporal (C) factors. For the applications of interest here, the factor C is assumed to be
known. It can express, for example, the time domain correlation imposed on a wideband waveform
by the bandpass characteristic of a receiver.

A.2 Maximum Likelihood Decision Statistic

Some additional notation and machinery is required. Consider data-independent matrices F
and D that pre- and postmultiply the data, Z. F can represent spatial processing of the data while
D can represent temporal processing. It is easy to show that

E[FZD] = FE[ZJD (A.5)

and that (see Kelly and Forsythe [21, Equation A1-44)

cov(FZD) = (FRFH) ® (DHCD)*. (A.6)

In the following, it is assumed that C = IL, the L x L identity matrix.

An orthonormal basis of the row space of T can be chosen by defining

P = (TTH)-I/2T. (A.7)

This is an M x L array, the rows of which span the same subspace as the rows of T. Furthermore,
the rows of P are orthonormal, that is

ppH = IM. (A.8)

Choose a K = L - M by L array, Q, the rows of which are orthonormal and span the orthocom-
plement of the row space of P. The P and Q arrays have the following properties:

IL = p- p + QHQ
pQH = 0

ppH = IM

QQH = IK.
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Postmultiply the data array Z with a data independent, unitary, L x L matrix, ULH, where

Then

ZULH (ZPH ZQH) = (ZP Zq) (A.10)

is a left-right partition of the transformed data. Postmultiplication by U/H constitutes time-domain
processing of the data array, Z, with a bank of orthogonal filters. The covariance machinery
presented above tells us that

cov(ZUH)= R ® ULILUH = R ® IL. (A.11)

In order to find the transformed mean of Z, write

VAT = VBP (A.12)

where

B =f A(TT H)1/2. (A.13)

Then

E[Zp] = VBPPH = VB; E[Zq] = VBPQH = 0. (A.14)

Thus Zp and Z. are independent Gaussian arrays with independent columns and identical col-
umn (spatial) covariances. Zq has zero mean while Zp has a nonzero mean containing the signal
parameters. Let S d=f ZqZH for use below. In addition, note that ZZH = ZPZH + S.

From Kelly and Forsythe (2] (Equations 2-1, 2-2, 2-8, 2-57), the generalized likelihood ratio
(GLR) decision statistic, maximized over A, can be written
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SIVHS_,VI L =maXR, A 7r-NLIRI-Le-trR-I(Z-VAT)(Z-VAT)H (.5
IVH(ZZH)_1VI ) =a maxRlNLIRlLe -trR_1ZZH , (A.15)

with the maximum likelihood (ML) estimate of A given by (Kelly and Forsythe [2], Equation 2-49)

WHZTH(TTH)-'

where

W = S-iV(VHS-IV)-l.

For the special case treated in the body of the report,

T = (IM OM,L-M)

and hence Z = (Z4 Zq), so that

ZTHf(TTH)- 1 = (Z4 Zq)(IM OM,L-M)H = Zp.

Thus the ML estimate of A is WHZ,,.

Let Ak(-) denote the kth largest eigenvalue of its argument. In Kelly and Forsythe [2] Equation
2-61 it is shown that (see also Appendix B)

max VHS-VI = I A(S-lZZH) - Ak(IN + S-lZZH
V (ZZ)'V k=

- I-(1 + Xk(ZPH S-Zp)). (A.16)

The last step follows from the fact that the nonzero characteristic values (including multiplicity,
i.e., counting each occurrence of repeated values) of the products of any n x I F and I x n D, namely
FD and DF, are the same. To see this, recall that the polynomial I, + xCI, for any square matrix
C, has degree rank C and has zeros of the form -A-' where A runs over the nonzero characteristic
values (roots of the characteristic polynomial) of C. In particular, if C is diagonalizable, these
characteristic values are the same as eigenvalues. From a determinant identity given in Appendix

1 (Equation A1-3) of Kelly and Forsythe [2], one has II,, + xFDI = lIz + xDFI, and hence FD and
DF have the same nonzero characteristic values. In the application above, both FD and DF are
diagonalizable and thus have the same nonzero eigenvalues.
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The result above can be recast in a more useful form for applications. Using the Sherman-

Morrison-Woodbury identity (see Golub and Van Loan [3]) one can write

ZH(ZZH)-lZ = Z~Hs +

= zH(s-1 _ S-'ZP(IM + zHs-I)-lzHs-1)z

= (Z7"S-'Z,)(IM + zHs-1z )-I

Because f(x) d= x/( I + x) is monotonic increasing in x for x > 0, it follows that

\,(H(ZH)l Z)_ Ak(ZP'S' 4)
1 + Ak(ZtS-'ZP) (A.17)•(zF~z•)-'•) =1 + Ak(zps,•

and hence that

1 + ,k(Z•S-Zp)= (1P- Ak(ZH(ZZH)Zp)). (A.18)

Thus
ma vHs-ivl P IZ)

max IVH(ZZH)-IVI = (1+ = \k(ZS

J

= II( -_ Ak(ZH((ZZH-z,))- . (A.I9)
k=1

When J = M this becomes

i'M - Z•(zzH)-Zp-. (A.20)

A.3 Special Case: J = 1 = M

With Pz LI ZH(ZZH)_IZ and J = 1, the detection test statistic Equation (A.19) becomes

(1 - Am.(ZH(ZZH)- Zl,))-I = (1 _m\.(ppZpH))-1. (A.21)
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With M = 1 this is just

(1 - IIPPzII2)-.

Thus, if P varies over a parameterized family of waveforms, the GLR detection test involves max-
imizing

I TPzTH

IlPPzlI2 = TPTH (A.22)

This can be viewed as minimizing the angle between the waveform, T, and the row space of the
observations, Z.
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APPENDIX B
A MAXIMIZATION PROBLEM

Consider maximizing the determinant ratio

m IXHAXJ (B.1)

max IXHBXJ

over all full rank N x J matrices X (J - rank(A)). A and B are both hermitian positive semi-
definite and in adaition B > 0. Then

xH AXI Ix H13-1/2 AL3-I[2X I
max - max
"X IX"BXI x IXHXI

=max [(x(xHx)-112)H]6-1]2"AB-1]2(x(xHx)-i/2)A
X j(X(XHX)-1/2)H(X(XHX)-1/2)I

= max 1£I-1-2.AB-112EI

J J

= 1-k AB1/2) = flAk(BA)
k=1 k=1

where E runs over N x J arrays with orthonormal columns (that is, satisfying £H/ = Ij). The

second to last equality is well-known (see, for example, Bellman [4], p. 129). This inequality can
also be viewed as a consequence of the stronger result (Poinci•i separation theorem)

\k(B-1/ 2 AB- 1 1 2 ) > Ak(gHB-1/ 2AB-1/ 2 6)

found, for example, in Horn and Johnson [5]. Letting ej(.) denote the N x J matrix, the columns
of which are the top J eigenvectors of its argument, the maximum occurs when X = ej(B- 1 A)F,

where r is an arbitrary nonsingular J x J array.
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APPENDIX C
ARRAY BEAMSHAPES

The angle b of Equation (7) is fundamental in the geometrical interpretation of signal pro-

cessing. Mathematically, b is proportional to the geodesic distance between the two array responses
R7 1/2 V and R-1/2W, interpreted as points in projective space. Note that b has been normalized so
that b = 1 corresponds to orthogonal array responses in the noise-whitened coordinates. To make
physical sense of this definition, consider the important special case in which RN 0( IN.

Some new notation is required. For the most part, the notation in this section is not used
in the rest of the report and any conflicts should be ignored. Let V(0,0) be the array response
paxameterized by zenith angle (complement of elevation) 9 and azimuth angle 4. A convenient
coordinate system is provided by the unit direction-of-arrival vectors u(O, 0):

u(O, 4) IV (sin(9) cos(4)), sin(O) sin(O), cos(9))T

For arrays with perfectly matched element patterns (a common modeling assumption), the response
of the kth element can be written (V = (v1,.. . ,VN)T)

vk(O, )) = g(9, O)e ;C (B')

where dk is the three-dimensional location of the kth antenna element and g(6,4) is the antenna
pattern common to all elements. Let

clef

uA = U(01,,1) - U(02, 2).

Armed with this notation, one has the approximation (b < 1)

I 2b(OO))2 2'"b\x -IvH(0 2,0 2)v(01,,)J)2
1-_ . cosjb(e,4))= IIV(0 1, O,))l'1lV(0 2 , 2)11J2

where

N
D LefN-E kT

D =' v••ad

k•1
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and

N

d' UN- Edk.
k=l

Thus an approximate expression for b becomes

b2  1616P -týT2uA ( - ddf )uA.

When u& is small, this expression indicates that the array responses at angle b from a fixed array
response V(0 2 ,02) form an ellipse (planar arrays) in (us,u.) space. Furthermore, this ellipse

has the same shape no matter what point of reference V(0 2,02) is used. By extrapolating this
expression out to b = 1 (where the array responses V(8 1, 01) and V(0 2, 02) would be orthogonal if
the approximation held] one has the definition of beamshape:

16 T (D - ddT)ua. (C.1)

This equation is motivated by a peak-to-null definition of beamwidth. As mentioned above, the
normalization of b is chosen so that b = 1 corresponds to a null (orthogonality) in the pattern.

For planar arrays, Equation (C.1) describes an ellipse in (u,, u,) coordinates with major and
minor semiaxes given by

\ . \/ 2 (D - ddT) and A. \/2(D - ddT ).

Equation (C.1) can be applied to arbitrary array geometries to yield a physical beam. For
example, a completely filled (sampled arbitrarily finely) line array of length A has a beam of size
v3/'•4 A/A. A filled (including interior) circular array of diameter A has a circular beamshape
of radius A/A. In all cases, the beam size is related to A/A where A is a characteristic size of
the array. Similar beamshapes can be motivated by Cram~r-Rao bounds on direction-finding (see
Delong [6]).
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APPENDIX D
PERFORMANCE

It is difficult to characterize analytically the statistical performance of the tests described

above, at least in the general case. However, some simple coordinate transformations allow these

statistics to be cast in simpler forms that depend on a reduced set of parameters. These normal

forms can be the first step in an analytical characterization of performance, but they also can be

used as the basis of Monte-Carlo evaluations. For the most part, this is the approach taken here.

D.i Normal Forms

Let the data Z have covariance R ® IL, as above, but let the mean of Z be VAT instead of

the expected VAT. Here, A is J x M (instead of J x M) and T is M x L (instead of M x L).

This models a mismatch between the expected signal structure and the true structure. V has the

same dimensionality N x J, but represents a specific value of V below. Choose a unitary U so that

UR-1/ 21V(VHR-IV)-1/ 2 = Ej = (ei,... ,ej)

where ek, is the column vector of length N with all zero entries with the exception of a single one

in the kth entry. Define Z 4 UR-1/ 2 Z. Consider the partitioning

(Z, Zq) = Z ( () H =(R 2 ZP UR" 2Zq).

The covariances of these new variables are

cOv(Z) = IN 0 IL

cov(Zp) = IN 0 IM

coV(Zq) = IN® IL-M.

It is convenient to introduce some notation to describe their means. Define

B .ef (VH R-1 V)1/
2 A(TTH )1/ 2

C def B(TTH)-1 /2TPH

D ddef B(TTH)- 1 /2TQH.
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Then the means of the new variables are

E[Zp] = EjC

E[Zq] = EjD.

D.2 Detection

The detection statistic can be expressed equivalently through the top J eigenvalues of

ZH Q-1 7P (D.1)

This form is convenient for characterizing detection performance. Define S 2e-f ZqZH. In terms of
the new random variables, one can write

ZHS-'Zp = (UR-'/ 2 Zp)H[(UR-I/2Zq)(UR-1 2Z,)H]-l(UR-1/2 ZP) = ZHs-Zp.

Thus the detection statistic can be expressed in a normal form that does not involve the scenario
parameters other than through the new parameters C and D.

One can replace Z with

H

where UM and UL-M are unitaries. This causes Zp to be replaced by ZpUM and Zq by ZqULM.

The detection statistic (depending only on eigenvalues) is unchanged. However, the p-mean becomes
EjCUM while the q-mean becomes EjDUL-M. Thus detection depends only on the values of CCH

and DDH. These values are determined next.

Define

r e (TTH)-1I2(TTH)(TTH)-1/ 2

so that

CCH - BrrHBH

DDH = B(Im - rrH)BH = SBH - CCH.

36



Note that

CCH = (VHR-IV) 1/ 2 [AT (TH(TTH)-'T) THAH] (HR-1V)1/ 2  (D.2)

< (VHR-IV)1/ 2 (ATTHAH) (VHR-.V)1/2 = BBH (D.3)

with equality when M = M and T = T. In addition

DDH = (VHR-11V)1/ 2 [AT(IL - TH(TTH) -T) THAH] (VHR-IV) 112

< (VHR-1V)1/ 2 (ATTHAH) (VHR-IV)1/ 2 = BBH.

Detection performance depends only on the dimensional parameters (N, L, M, J, M), the nor-
malized signal level 8, and the mismatch expressed, for example, by pFH.

When there is no mismatch (i.e., M = M and T = T), one can show that the detection
statistic depends only on the eigenvalues of CCH (see also Kelly and Forsythe [2]). To show this,
let the N x N unitary U be defined so that

0 IN-j

Consider changing random variables: Z ý-* UZ. The detection statistic is based on the top J
eigenvalues of

S-,Z ZH .Z4S-I ZPZUHZI

and hence is unchanged. The covariance of Z is also unchanged. However, the p-mean and q-mean
of Z are altered:

E[UZp] = UEjC = EjUjC

E[UZq] = UEjD = EjUjD = 0.

Thus the detection statistic depends only on UJCCHUjH for arbitrary Uj, and hence it depends on
the eigenvalues of CCH, which are, from Equation (D.3), the eigenvalues of 6 5H, namely, those of

(VH R-IV) (ATTHAH). (D.4)

When J = 1, this is a scalar called the ideal total array signal-to-interference ratio (TASIR).
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D.3 Special Case

For an application such as frequency feature processing (FFP), as discussed in the body of
the text, consider the special case when J = 1, M = card(C), M = L, T is unitary, and T = Tc,
the array formed from a subset C of rows from T. Note that card(-) counts the number of elements
in a set. The rows of T can represent any orthonormal signal basis (e.g., Fourier components or
wavelets) with the signal of interest (SOl) concentrated in a particular subspace (i.e., subband or
time-frequency cell).

Let Ap denote the row vector of amplitudes corresponding to the rows indexed by C: AF =

(Aj,.. . , Aj). Similarly let Aq be the row vector, the entries of which come from the complement

of C: Aq = (Ak,'... ,AkLM)" One has

E[ZA] = ejC

E[Zq] = ejD

with

C = (VHR-1V)1/2Ap

D = (VHR-1 V)l/ 2 Aq.

Then

CCH1  = (V 1R- 1 V)Z JAj 2 = (VH R-V)IIApII2 = TASIRp
jEc

DDH = (VHR- 1V) EIAj!2 = (VHR-M  V)IIAql1 2 = TASIRq
joc

where TASIRP (TASIRq) is the ideal total array signal-to-interference ratio for the p-data (q-data).
From Equation (D.4), TASIR = TASIPk + TASIRq.

The signal powers in the p-data and q-data can be identified with the averages IIApjI 2/L and
IlAqII2/L. If V has unit norm and the noise floor has identity covariance, these averages are called,
more precisely, array signal-to-noise ratios (ASNR) (see Section 4.1 for definitions; note that the
noise floor covariance is denoted RjN there).

D.3.1 Detection

The detection statistics shown in the figures are essentially constant when the ideal TASIR
of the SOI is large. A heuristic argument can be given to approximate this constant value.
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Write the detection statistic as

LMM L-MM

The means of Zp and Zq can be written

E[ZPI = ei(VHR- V)11 2 (A3 .,.. .,Aj,) = el(VHR-JV)l/2Ap

E[Zq] = el(VH R-1V)1 /2 (Ak 1 .... .,AkLM) = el(VHR-iV)1/ 2Aq-.

When

def M-1 (VHR-V)IIAp112 > 1,

one has

M-1 z aeleH.

Unfortunately, a similar approximation is not always appropriate for S. Define

t3 tef(L - M)- (V HR-iV)JlAq•12.

Let S,, be the random matrix obtained by replacing (VHR-IV11, /Ak, with pt, drawn from a set of
independent identically distributed complex Gaussian random scalars with zero means and variances
/. Then

(L - M)-I(VHR-lV)IlAq 12 = (L - M)- 1 E[Z Ip, 2] ; (L - M)-1I Ipl 2

1

because, when L - M > 1, the right-hand side has a complex X2 distribution that is tightly
distributed about its mean. Then, because the distribution of S depends only on (VHR1VV)IiAqll 2 ,
not on the specific vector Aq,

(L - M)-'S z (L - M)-'Sp = (L - M)-1 E[S,] = IN + /3eeH.
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Finally,

LM M aS'ppIY + ±eje,')'eje'] = a/(1 + /).

In the important case when M = 1, one can write, when L > 1,

a/(1 + ) = 1 TASIR, L TASIRp L TASIRp
I + TASIRq/(L - 1) L + TASIRq TASIRq

where TASIRp and TASIRq are the total ASIRs in the p-data (which is now a single sample) and
q-data. The final approximation holds when TASIRQ > L.

D.3.2 False Alarm Statistic

This section discusses the false alarm statistic in the special case J = 1 = M. Aside from
the first few paragraphs, it is self-contained; the notation used here is not necessarily related to the
notation in the rest of this report.

The false alarm statistic can be expressed as (J = 1 = M)

prob{L ZHS-Zv > T}.

The reason for introducing the factor L will be apparent below. Recall that Zp and Zq (and
hence S = ZqZH) are independent. Condition on the value of Zp and choose a unitary U so that
UZp cc el. Then

ZHjS' ZP = (UZP)H(USUII)-I(UZV) = IIZ'1I 2 (USUH 11

where, in general, Xi' denotes the (i,j)th element of the inverse of X. But USUH and S have the
same distribution (denoted USUH , S) because

cov(UZq) = cov(Zq) = 'N ®IL-I.

Thus

(usuH)II ,,, ,l (D.54X 2(L- N)(D5
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where X2 (L- N) is a complex X2 random variable of degree L- N. Recall that, in general, x2(n) has

the distribution of the sum E=l IlzkI12 where the {zk} are independent complex circular Gaussians

of zero mean and unit complex variance. The last equivalence in Equation (D.5) is a specific case of

a well-known property of Wishart distributions (see, for example, Appendix 1 of Kelly and Forsythe

[21). Summarizing thus far, conditioned on Zp, one has

ZHSI1Z 11411f
P-P X 2(L- N)"

Because the denominator does not depend on the conditioning, one can write

ZHS. 1 Z, (N
PS P X 2 (L - N).

Recall that the incomplete beta function is defined

B(n,m,a) 4-f 1a tn'(I - t)m-ldt

so that the complete beta comes

def i\ _r(n)r(m)

B(n, m) Id B(n,m, 1) - r(n• +m)

Integrating by parts, one has

a'n(I - a)'-' m -1
B(n,m,a) =• n + n B~n+ 1, m- 1,a).

Iterating this leads to

(n ,m ,-1 (M - -(m - k)a+k a)m-_- 1B(,•,m, E n ,... (n + k) '+(-
k--O

so that

B(n,m)-1 B(n,m,a) = an(1- a) m- 1  (n+m-1 a k (D.6)k=o m -1- k -a

a=,e+n _i n- n + m - a k D7

=E am ~Z(~n1)(~k (D-7)
1=O k
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The left-hand side of the above equation is the cumulative distribution function (CDF) of a complex
,3(n, m) random variable (see Kelly and Forsythe [2] for a thorough discussion of the complex
random variables introduced here). This random variable can be expressed in terms of a complex
random variable F(m, n) which, in turn, is the ratio of two independent, mean zero, complex X2

random variables:

3(n,m) 1
1 + F(m, n)

F(m, n) -,(M)

Consider the false alarm probability for the detection statistic (J = 1 = M)

prob{LF(N,L - N) > T} = prob{f/(L - N,N) < 1 1

Using Equation (D.7) one has, for large L (which is the case of interest in the applications) the
limiting behavior

L-.oo ~~N-iT(D)
lim prob{L F(N,L - N) >_ T} = e-T :1j. • (D.8)

This expression provides the large L false alarm behavior shown in the figures.

The false alarm probability can also be evaluated by employing a Chernoff bound. To do this,
consider the moment generating function for the log of the beta random variable:

E(eA Infl(nm)l = B(n, m)-' I t )+n-i(1 - t)m-i dt = B(A + n, m)
B(n,m)

r(A + n) r(n + nm-i n+k

r(A + n+ ) r(n) - 0 +k+Ak=0

Let Q =ef In -'•. Then

prob{3(n, m) • j - prob{ln/3(n,m) < Q}.
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Define
rn--I

daEef (_•) n+ k
f (A) =1") = eAQ n + k-"

k=O n + k A

Chernoff's bound on the distribution tail is given by

prob{ln# • Q} • inf E[e',(Q-n)] = inf f(\).
A>0 A>-

The derivative of f(A) is given by

M-1f'(A) : [Q +_, n + k- A. •.'n +
k=O

It is clear that the stationary points are relative minima. One can thus express the Chernoff bound
parametrically as

rn-i 1

= (D.9)
k=0

f(A) = eAQ(\)1 lkA (D.10)

k=O

T = e-Q(A)-I. (D.11)

A limiting form of the Chernoff bound is relevant for this report. Let m = N and n = L - N for
the application to FFP. Further, replace T with TIL where L > 1. Then

1 N-i -~
prob{/(L -N, N) < 1 Ne-Q() ILN+k-

l+T/L L - N + k-A

and

xim Q (,\) N-1 L-N' T (•Ne Tira e( )-+ 4 e-L--*oo L - N" +-k - A, N
k=O
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when T > N, because Amin ; L(T-N) and Q(A) ; -TIL (really, AminQ(Amin) --* N - T and
-+1 - )

Figure D-1 compares the asymptotic expressions and bounds discussed above to the true false
alarm probability in one example. For this example, L = 1000 and N = 4. The Chernoff bound
is given by the parametric expression above. The asymptotics of this expression are also shown.
It is clear that the asymptotics of the incomplete beta [Equation (D.8)] are quite accurate; these
asymptotics are used for Figure 3.

D.4 Copy

Copy can be understood in terms of signal-to-interference ratios (SIR). This section considers
very general notions of SIRs based on the estimate of the parameters A. These SIRs are specialized
to FFP applications in a subsection.

23028-15

100 ,

j - INCOMPLETE BETAq 10-4 . ......... ASYMPTOTIC-
W ..... ASYMPTOTIC
0 -----C H E R N O F F

io- N=4 L =1000

1l-8

"LL10-10

10-12 I I I I
4 6 8 10 12 14 16 18

THRESHOLD (dB)

Figure D-1. Comparison of Incomplete Beta function, bounds, and asymptotics.
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Some additional notation is required. Define the JK column vector Vec(X) of the J x K
matrix X so that

Xjk = (Vec(X))(j-l)K+k.

Some properties of Vec are easily verified for arbitrary matrices (with conformal dimensions)
X, Y, C, D:

1. Vec(X)HVec(Y) = tr(XHY)

2. (C ® D)Vec(X) = Vec(CXD T )

3. Vec(Y)H(C ® D)Vec(X) = tr(yfICXDT) .

Recall that Kronecker products are defined in Section A.1. The ML estimate A of the signal
amplitudes A is given by

A = WHZTH(TTH)-' = (W ® TH(TTH)-1)HVec(Z). (D.12)

Thus one can view both W and T as weights. To form W, one needs an estimate V of V, provided
by

where ej(.) denotes the N x J array formed by the top J eigenvectors of its argument. Only the
column span of ej is unique. The ambiguity is expressed by the post-factor E, which changes bases
for the column space. Because, in general,

W = S-1fV(VHS-IV)-,

one has

W -ej(S-= zpzf)@-

Again, the postfactor 0 (different each time) expresses nonuniqueness. Define

W = UR"12 W = ei(S-1 O.

45



Ideally, one would characterize the estimate A by providing distributional information, or
failing that, first and second moment information. A less ambitious, but physically reasonable
approach is taken here. In this approach W (and hence W) is assumed constant in the calculation
of a SIR based on first and second moments of A. Then the statistical behavior of W is introduced
to characterize this SIR as a random variable. This makes sense if, for example, the data used
to determine W (and T) and the data used in Equation (D.12) are independent. Then, using the
properties of Vec described above and the properties of covariance described in Section 2.1, one can
write

covw(A) = (WHRW) 0 (T ) = (WHW) 0 (TTH)-T.

In addition,

Vec(Ew[A]) = Vec[WH VA(TTH)(TTH)-1] = Vec[WH EjBI(TTH)-1/2]

= (W ® (TTH) 1/2)H Vec[EjBr].

These "mean" and "covariance" statistics are based on a fixed value of W; hence the W subscripts.

One can define a random variable called the achieved TASIR as follows:

IXHVec(Ew[AI)1 2 = Vec(Ew[A])Hcovw(A)-YVec(Ew[A]).max

x XHcovw(A)X

Upon using the properties of the Kronecker product and of Vec, this becomes

Vec(EjBr)H (W(WHW)-IWH ® iM) Vec(EJBr)

= Vec(B)H [(E W(WHW)-IWHEJ) ® (rrH)T]Vec(B)

= tr[BHE4W(WHW)-IWHEJBrrLH

= tr[EHW(WIHW)-IWHEJCCH]

where C is defined in Section D.1.

Note that W(WHW)-IWH depends only on the column space of W, because it is the or-
thogonal projector onto that subspace. Furthermore, the argument of Section D.2 shows that the
distribution of this projector only depends on the dimensional parameters N, M, J, L, and on the
signal levels expressed through CCH and DDH. Because the projector is the only random variable
in the achieved TASIR expression above, this is the desired normal form for copy performance.
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More generally, one is interested in the SIR based on

WH ZTH (TtH-1,

where W (and T) are determined as above, but the M x L array T "selects" a different part of A
(see special case below). Defining C so that

OOH = (VHR-IV)1/ 2 [AT (TH(TTH)-fT)THAH] (VHR-IV)'/ 2, (D.13)

the calculation above yields an achieved TASIR given by

tr[EHW(W4HW)-IWH Ej6CH].

As before, W depends only on the dimensional parameters, CCH, and DDH.

The reason for the more general SIR is that the weights W and T may be determined by only
part of the signal (the spectral lines in FFP applications) but copy performance may be required
on a different part.

D.4.1 Special Case

Recalling the expression for OOH above, when J = 1, the achieved TASIR becomes

(e11W(WHWfl1WHe1) (VHRI'V) (ATTH(ttHfITHH)

(eHW(WHW)-fW e1)(VHR-V)
ke

where t = Tj (see Section D.3 for notation). The first factor expresses the loss due to sampling
(including suppression effects due to mismatch, as expressed by DDH). The second factor (if V has
unity norm) expresses the loss of SIR due to the spatial distribution of interference, and the last
factor is the signal energy in the subband expressed by the set C. It is important to note that the
loss factor is common to all SIR expressions, no matter what part C of the signal is used to assess
copy. In the particular case when C = C, the above can be written

(eH)W(WHW)-fWHe,) TASIR,.

Of course, the achieved ASIR, which is defined on a per look basis, is always smaller by a factor of
L.
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