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This paper presents a model-based algorithm for tracking feature points over a long sequence
of monocular noisy images with the ability to include new feature points detected in successive
frames. The trajectory for each feature point is modeled by a simple kinematic motion model. A
Probabilistic Data Association Filter is first designed to estimate the motion between two consecu-
tive frames. A matching algorithm then identifies the corresponding point to subpixel accuracy and P
an Extended Kalman Filter (EKF) is employed to continually track the feature point. An efficient
way to dynamically include new feature points from successive frames into a tracking list is also
addressed. Tracking results for several image sequences are given.
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I Introduction

Motion estimation has been an important topic in the field of computer vision for more than a

decade. Based on matches of a few discrete features such as points and lines over two or three

frames, many algorithms for estimating the motion of the camera and the structure of the feature

points have been proposed. Although linear algorithms result when two or three frames are used,

high sensitivity of the estimates to input errors has been observed [1, 2, 11, 13). In the meantime, 5

the robustness of approaches that use a sequence of images has attracted the attention of many

researchers [6, 17, 18, 19]. The issue of finding feature correspondences over a long sequence of

images needs to be addressed in such approaches.

Besides manual tracking algorithms, existing techniques for tracking a set of discrete features

over a sequence of images generally fall into two categories: two-frame based and long-sequence

based.
D

(1) Two-frame based approaches: In this category, finding feature correspondences over a se-

quence of images is broken into successive problems of two-view matching. For example, in

[16], Weng, Ahuja and Huang used multiple attributes of each image point such as intensity,

edgeness and cornerness which are invariant under rigid motion in the image plane along with

a set of constraints to compute a dense displacement field and occlusion areas in two images.

Cui, Weng and Cohen [9] then used an intensity-based cross-correlation method to refine the

two-view matching results and obtain feature point correspondences over the sequence. In I
[21], Zheng and Chellappa first apply an image registration technique to compensate for the

motion of the camera between two consecutive frames. Feature point correspondence prob-

lems are then solved by repeatedly identifying the matching points to subpixel accuracy using

the correlation matching method. I

(2) Long-sequence based approaches: In this category, smoothness constraints are employed to

exploit the temporal information existing in the sequence. For example, assuming that the

motion of an object does not change abruptly, Sethi and Jain [15] formulated the correspon- p

dence problem as an optimization problem. The trajectories of a set of feature points are

obtained by searching for a set of trajectories each of which has maximal smoothness. Blostein

and Huang [5] used Multistage Hypothesis Testing (MHT) to detect small moving objects

in each image; a feature trajectory is determined by repeatedly detecting the same feature

point over the sequence. Chang and Aggarwal [7] assumed a 2-D kinematic motion model



)

and applied Joint Probabilistic Data Association (JPDA) to track line segments, with the

ability to initiate or terminate the trajectory of a line segment. Employing a 3-D kinematic (•)

motion model and a Mahalanobis distance based matching criterion, Zhang and Faugeras [20] 0

applied an Extended Kalman Filter (EKF) to track a set of line segments. A fading memory

type statistical test was suggested to take into account the occlusion and disappearance of

line segments. D

In this paper, a long sequence based approach is proposed. Finding the trajectory of a feature

point over a sequence of images is formulated as a recursive state estimation and measurement iden-

tification problem. A discrete 2-D constant translational and rotational motion model is adopted to 6

describe the motion of every feature point. Using the information in other feature points detected

in subsequent images, a Probabilistic Data Association Filter (PDAF) [4] is employed to estimate

the motion parameters between two consecutive frames. However, because of the imperfect fea-

ture detection algorithm, a local image interpolation technique combined with weighted correlation D

matching, an image differential method, and interpolation of pixel locations are used to identify the

matching point to subpixel accuracy. After the identification of corresponding points, an EKF is

applied to refine the estimates of the motion parameters. In addition, to maintain a certain number 6 *
of feature points on the tracking list, the dynamic inclusion of new feature points extracted from

successive frames is also considered. We have tested the feature tracking algorithm on several real

image sequences commonly employed in motion estimation. Due to space limitations, we present

results only on four of these sequences. I

The organization of the paper is as follows. Section 2 presents an algorithm for tracking a

dynamic set of feature points. The tracking results for four real image sequences are shown in

Section 3. Conclusions are presented in Section 4. 0

2 Feature Point Tracking

In this section, an algorithm for tracking a dynamic set of feature points is presented. The motion I

model for a feature point moving over a sequence is first formulated. A scheme for estimating the

motion between two consecutive frames and procedures for identifying the matching points are then

suggested. The issue of the inclusion of new feature points is addressed afterwards.

2
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2.1 Motion Model

To model the motion of a feature point over a sequence of images, a coordinate system zyt shown 4

in Figure 1 is first established with the origin coinciding with the center of the first image and the

x-y plane parallel to the image plane at each time instant. Then, assuming that the image center

of each frame is located on the t-axis, the coordinates of the center of the kth image are (0, 0, tk)T.

The state vector for a feature point at time tk is therefore defined as follows:

1(k) = [4(k) y(k) v.(k) v,(k) 0(k)]T  (1)

where (x(k), y(k), tk)T are .the coordinates of a feature point in the kth image, (v.(k), vy(k))T is

the associated translational velocity along the (x, y) direction, and O(k) is the rotation angle from

the (k - 1)'t image to the kth image. We describe the motion model of a feature point as well as

the relationship between the associated state vector and the image plane coordinates in the form

of plant and measurement equations in the following. P

t

x

Figure 1: The coordinate system xyt-

Dist '

A. The Plant Equations

Under the assumption that a feature point moves with constant translation and rotation over the

sequence, the plant equation for the recursive tracking algorithm can be written as

1(_ )=Lzk]+wk+1 (2)
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where x

x(k) cos 0(k) - y(k) sin O(k) + vy(k)T
x(k) sin 6(k) + y(k) cos 6(k) + v•,(k)T

)= v.(k) (3)

v,(k)

O(k)

and the plant noise w(k) is assumed to be zero mean with covariance matrix Q(k). The addition of

the plant noise takes into account possible deviations of the true motion from the assumed simple

model. The time interval between two consecutive frames is assumed to be T.

B. The Measurement Equations

For each feature point, the measurements used for the corresponding recursive tracking filter at

time tk consist of the image plane coordinates of the corresponding point in the kth image. Thus,

the measurement is related to the state vector in (1) by

1(k) = Hz(k) + n(k) (4)

where I 0(10000)
H 1 (5)

0 1 0 0 0

and the measurement noise n(k) is assumed to be zero mean with covariance matrix R(k).

After the plant and measurement equations have been formulated, the EKF can be applied to

recursively estimate the motion between two consecutive frames and track the feature point.

2.2 In-frame Motion Estimation

For every feature point being tracked, to simplify the matching algorithm in identifying the cor-

responding points in successive frames, the motion between two consecutive frames needs to be

compensated. In our work, the PDAF which was originally proposed by Bar-Shalom [3] and used S

for tracking a moving object in a cluttered environment is applied to provide initial estimates of

the motion parameters. In the following, assuming that the trajectory of a feature point has been

established up to the kth frame of a sequence, procedures for estimating the in-frame motion be-
S

tween the kth and (k + 1)st frames are described. The detailed derivation of the PDAF can be

found in [4]; only a brief review is given in the Appendix for the sake of completeness.

4

S



First, for a feature point, the predicted location of its corresponding point j(k + 11k) is obtained
as follows: c si kk) -sni kk) i k k .kk 61

( sin(i(klk)) cos(i(klk)) '(klk) ) v(klk)

where [i(klk), ý(klk)), i.,(kjk), O(klk), i(klk)] is the estimated state vector at tk computed by the

EKF.

Subsequently, a window centered at &(k + ilk) is extracted from the (k + I)th image and the

feature point extraction algorithm reported in [141 is applied to the window to identify salient

feature points. Since points which are far away from the predicted location are less likely to be

correct, a validation gate based on the Mahalanobis distance [8, 10] is constructed to select potential

measurements. Specifically, a validation gate centered at &(k + lIk) and with parameter y is defined

[4, 8]:

Vk+l(-Y) = {z: [I - "(k + llk)ITS-l(k + 1)[_z - &(k + Ilk)] _ 4 (7)

where S(k + 1) is the covariance matrix of the innovation vector z - _(k + Ilk), and -y decides

the scope of the validation gate and can be obtained from the chi-square distribution table. A

set of potential measurements thus consists of the extracted points whose distances are less than *
-y. The PDAF then combines the information in the potential measurements using (38) in the

Appendix to provide estimates of the motion parameters between the kth and (k + 1)st images. For

convenience, the resulting estimates are denoted by Vx(k+ 1lk+ 1), fv,(k+llk+ 1), and 6(k-l1 lk+ 1)

respectively to differentiate them from the outputs from the EKF. For feature points for which none

of the extracted points qualify as potential measurements, the predicted motion parameters in (34)

are used instead.

2.3 Feature Matching

After the initial estimates of the motion parameters between the kth and (k + 1)st images have

been obtained, in order to find corresponding points (or measurements for the EKF), a sequence of

steps similar to those in [21] is applied to achieve subpixel accuracy matching. First, a local image

registration technique is used to compensate for the motion between two consecutive frames. The

resulting compensated image is then compared with the original image and the matching points

for the neighboring pixels are identified using weighted correlation matching. However, because 4

of the 3-D motion of the camera, a verification procedure is employed to exclude some possible



wrong matches from the correlation matching before applying the subpixel correction and location

interpolation schemes to obtain the corresponding point. In this subsection, the scheme for finding 4

the corresponding point at the (k + 1)st frame is described in detail. 4

A. Window Interpolation

Given two images between which the perspective projection distortion is negligible, the accuracy

of using the intensity-based correlation matching method to find the matching point relies on

image plane compensation for rotation and scale change. Instead of applying a global registration

technique, a local image registration technique which considers small patches of images in which

the feature point appears is employed fo. each feature point.

Since only small patches of two images are considered at any given time, the scale change

in the two windows is assumed to be insignificant. The more accurate predicted location of the I

corresponding point, denoted by (x'(k + l1k), y'(k + l1k))T, can be obtained using the estimates

provided by the PDAF as(cos(O(k +11k+1)) - sin(O(k +1k +1)) i(k) )+( Výýqc + 11lk + 1) (8) S0
sin(e(k + Ilk + 1)) cos(4§(k + ilk + 1)) ý(k) 'v•(k + Ilk + 1)

where (i(k), ý(k))T is the corresponding point in the kth frame.

Thus, centering on the predicted location and assuming that the pixels near the predicted I

location undergo the same motion, a window denoted by I, is generated using back propagation

followed by bilinear interpolation of the intensity function, i.e. for the point whose coordinates are

(z(k + 1), y(k + 1))T in the (k + 1)st frame and which belongs to 1, the corresponding point in the

kth frame is computed by 0(x(k) (cos(6(k + 1ilk + 1)) sin(O(k +11lk + 1)) x(k + 1) - V/,(k + ilk + 1)

y(k) - sin(6(k +ljk + 1)) cos(O(k +llk+1)) y(k + 1) - Vy(k + Ilk + 1))

(9) 5

Because (z(k), y(k))T may not be at a grid point, the intensity of the pixel (x(k + 1), y(k + 1))T is

obtained by interpolating the intensities of the four nearest neighbors of (x(k), y(k))T:

g[x(k + 1), y(k + 1)] = (1 - d.)(1 - dy)gll + d.(1 - dy)g 12 + (1 - d.)dyg21 + d4dyg 22  (10) 5

where d., d. are the distances between (x(k), y(k))T and its neighboring pixel ([x(k)], [y(k)])T, and

6
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{gll,gl2,921,922} represent the intensities of the four nearest neighbors of (x(k), y(k))T, i.e.

d. = x(k) - [x(k)] (11)

dy = y(k)-[y(k)]

and

gi = g([n(k)], [y(k)])

912 = g([r(k)],[y(k)]+ 1) (12) I

g2l = g([x(k)] + 1, [y(k)])

922 =- g([x(k)]+ 1,[y(k)] + 1)

Note that [e] in (11) and (12) represents the floor function which converts a real number into an

integer.

B. Window Extraction

As in the procedure used in estimating in-frame motion, for each feature point, another window,

denoted by 12, centered at the predicted location of the corresponding point (z'(k+llk), y'(k+llk))T

in (8) is extracted from the (k + 1)st image. The correlation matching method described below is

then applied to I, and 12 to find the corresponding point. 0

C. Correlation Matching

Since the motion between the time instants tk and tk+j has been compensated, a simple intensity- 0

based correlation matching method is employed to find the matching points in I, and 12. Two

approaches are possible, as suggested in [21]: a hierarchical matching method (which first uses a

large template to achieve coarse matching and then searches for the corresponding point around the

neighborhood of the coarse matching result with a small template to achieve better localization) or

a weighted correlation matching method. It has been found in our experiments that weighted corre-

lation matching outperforms hierarchical matching not only computationally but also in accuracy.

For two points (X, y)T E IA and (., P)T E 12, define the similarity measure as [21] *

0 9192 (X, y; , #) = ] yij[g1(X + i, y + j) -,4 1][g2(i + i, ý + j)- 42] (13)
v' Nj i[gi(x + i, y + j) - /']2•ij 7f T[g2(i + i, ) + j) - 2]21

where

*41

Ai = -VZgi(x+i,y+j) (14)
i~j

7
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A2~~i. .2i+i

I O~

Here N is the number of pixels in the template Q, -yij is the weight associated with points (X + i, y+ 0

j)T and (& + i, i + j)T, and g, and g2 are the intensity values of the pixels in 1 and 12 respectively.

For the point (x + i, y + j)T or (i + i, ý + j)T in the template, we define its distance from the

center of the template as

max(IiI, IlI)

In order to achieve better localization, weights are assigned to pixels based on their distances from

the center of the template. In addition, contributions from points of the same distances (i.e. the

summation of the corresponding weight coefficients) are restricted to be the same for different levels.

Therefore, we choose the weights as follows:

= 1 {ij ) = (0,0)

Sm•,hlTl'l-1 (i) # (0,0)

where c is a constant and is chosen to account for the relative weights at different levels. Once the

weights have been chosen, the matching point for (x, y)T can be found by searching over a small

region in 12 for the point which has maximal value of the similarity measure (13) with (x, y)T.

It is clear that the above correlation matching method can only match a grid point in I, with

another grid point in 12. Since the predicted location of the corresponding point, ('(k + l1k), y'(k +

11 k))T, usually does not coincide with a grid point, the matching points of its four nearest neighbors,

(X11, yI1)T, (X1 2,y1 2)T, (x 21 , y 21 )T and (x22 , y22)T, are first found using the correlation matching

method, where

(x1l,yii) = ([x'(k + Ilk)], [y'(k + ilk)])

(X12, y12) = ([x'(k + Ilk)], [y'(k + lk)] + 1) (16) S

(x 21 , y2l) = ([x'(k + l1k)] + 1, [y'(k + ilk)])

(x 22,y22) = ([x'(k + l1k)] + I , [y'(k + 1ik)] + 1)

and an interpolation scheme is then applied to obtain the corresponding point. 6

D. Occlusion and Perspective Distortion Verification

Due to the 3-D motion of the camera, there may exist severe perspective projection distortion

between two windows I, and 12, as well as occlusion of feature points. Either case is likely to

8
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introduce large errors when correlation matching is used. A scheme to exclude possible wrong 0
matches for the four neighboring pixels is employed before continuing the tracking process.

For tbh similarity measure Vglg 2 defined in (13), it has been shown that 121)

I 1 (17)

and the following equality holds:

09g2= 1 1, if g9(2+i,y+j)-Pl =g 2(-i-+i,/+j)-p 2  V(i,j) E (18)1 -1, if g1(x + i,y+ j)- A1 = -[92(i + i, + - J2]

If the perspective projection distortion between two windows is large or if occlusion occurs, it is likely

that the similarity measures corresponding to the four neighboring pixels will be small. A threshold,

say TH. is set to account for wrong matches. Denote the matches resulting from correlation

matching for the four neighboring pixels by (xII, Yll; i1l, #1), (X 1 2 , Y1 2 ;, 12 , 1 2 ), (X21, Y21; i21, ý21)

and (X 22 , Y22; x 2 2 , 122). Three cases are considered in the following.

Case 1: More than two matching pairs have similarity measures less than TH.

In this case, the possibility that the feature point is occluded in 12 or that severe distortion

exists in the two windows is very high. We remove the feature point from the tracking list.

Case 2: Three matching pairs have similarity measures greater than TH.

Because there is only one matching pair with a high possibility of a wrong match, the feature

point is assumed to exist and the perspective projection distortion between I, and 12 is considered

not to be too severe. An extrapolation scheme is therefore introduced to correct the wrong match.

Without loss of generality, let (X22, Y122; x 2 2 , 122) be the matching pair whose similarity measure is

less than TH. Since the four neighbors of the feature point form a square in 11, the four matching *
points are assumed to form a parallelogram in 12. The matching point for (X22, Y22 )T is then

recalculated by { 22 = 11 2 +X 2 I (19)

1122 = 1112 + i3 121 - 4

and the tracking process continues.

Case 3: All the four matching pairs have similarity measures greater than TH.

In this case, the four similarity measures show high similarity between the two windows. There- 4

fore the outputs from the correlation matching are considered reliable and tracking continues.

9



E. Subpixel Accuracy Correction 6
For tracking over a sequence of images, the quantization errors in matching grid points to grid points

accumulate, resulting in deviations in the trajectories. In order to reduce accumulated errors, the

matches obtained from the correlation matching method need to be refined before applying the

location interpolation scheme to find the corresponding points.

Since a good initial match has been obtained, the image differential method [12, 21] provides

a simple and effective way to achieve subpixel accuracy matching. Assuming that (x, y)T E 1i is

matched to (i, 9 )T E 12 and the original intensity function g2(1, 9) is offset by (6w, b,) relative to

the interpolated intensity function g1(x, y), i.e.

g2(i,9) = g1(x - .,- by) (20)

Then the difference in g9(x, y) and g2(.,9) can be written as [12, 21]

d(x,y; ,9) = gX(x,y)-g2(i,9)

- gI(XY)(- g(x- 6,Y- by) (21)

Ogi(x, Y) 6  agl(x, y)b
S Ox a -

For each matching pair (x, y: i., 9), suppose that the above approximation holds for a small neigh-

borhood of size (2wd + 1) x (2Wd + 1): then a set of equations can be formed as follows:

D = G& (22)

where

d(x - Wd, Y wd; - Wd, W - wd)

d(x, y; i,) (23)

d(x + wd, y + wd; 5i + Wd, + wd)

Og(-a~-d 
8

Q1(x--wd,3--wd)

ay

G - • V,11) (24)

104
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and/

)(25)
The offset vector , is then the least square solution of (22) and can be obtained as

(GTG)-IGTf (26)

Thus, (X, y)T is matched to (i + b." i + b,)T which achieves subpixel accuracy matching. In our

experiments, a neighborhood with Wd = 3 was employed.

F. Location Interpolation

After the matching pointb of the four nearest neighbors have been found to subpixel accuracy, the

point corresponding to the feature point is obtained by the location interpolation scheme described

below [21].

For each matching pair (x, y; i, •), assume that the relationship between (X, y)T and (i, ý)T can

be expressed as { & lX +& 2 Y + &3XY + 4  (27)0

or expressed relative to the match of (X11, y11 )T as

{ i-- 1 1  = al(z - Zll) + a2(y -- Yl) + a3(X - Xll)(Y - Y•) + a 4  (28)

i-9 11 = 01(Xr-- ll) + 2(Y/-- 1) "+-]3(X -- r1)(y/--y11) + ]4

Then from the four matching pairs and the relationships between the four nearest neighbors in

(16), the coefficients aj and 0j, i = 1,...,4 are [21]

at1  = x 2 1 - -ill (29)

01= 112 - il{a2 = 12 in (30)

S= i12 -11

0a3 = 122 + i 11 - i 12 -121 (31)

j3 = 22 + ill - i12 - i21

11
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and0
(®

a4 = 0 (32)
34 = 0

®
Substituting (29-32) into (28), the feature point location interpolation formula can be written as

i ill + (121il-1)f. + (il2 - ~il)'Ey + (i22 + ill - i2- x020)EýCE

= 1 + -2 ý1r)f. + 0p12 - ýii)fy + 0p22 + ý11 1 - -~)EE (33)
Cz "" X -- Xll

Cy = Y - Z/ll

It has been shown in [21] that if the quadrangle formed by (ill, ý 1 1 )T, (iU2, 12)T, (P 21 , ý 2 1 )T and

(:22, ý 2 2 )T is convex, the corresponding point interpolated from (33) is also inside the quadrangle.

This completes the task of identifying the point corresponding to a feature point in the (k + 1)st

image. The EKF can now use this matching point as the measurement to update the corresponding

state vector as well as the covariance matrix, and the algorithm is ready to continue tracking the

feature point to the next time instant.

2.4 Inclusion of New Features

When tracking a feature point over a long sequence, it is possible that the point moves out of the

field of view or is occluded by the other objects after some time instant. This results in a decrease

in the number of feature points being tracked. In addition, because of the motion of the camera,

features not detected at earlier instants are likely to be identified later. It is therefore necessary to

consider a strategy for including new feature points extracted from the successive frames. In our

work, an extracted point is considered to be a new feature point if it does not correspond to any

point currently being tracked. Furthermore, instead of initiating tracks for all new feature points,

which results in a rapid growth in the number of feature points, validation gates as defined in (7)

are employed to screen the newly detected feature points. A new feature point is added to the

tracking list if it lies outside all the validation gates associated with the feature points currently

being tracked.

For example, in Figure 2, eight validation gates which correspond to the eight feature points in

the tracking list are formed. Another nine feature points extracted from the current frame are also

shown. Since only zl, z6 and z9 do not fall into any validation gate, they are added to the tracking

list.

12
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Figure 2: The inclusion of new feature points: eight validation gates and nine newly extracted
feature points

In other words, the newly extracted feature points are not tracked if they are too close to the

currently tracked feature points. This is particularly useful for estimating the motion of the camera

since uniformly distributed points are more likely to cancel out the effects of imperfect knowledge

of the camera parameters such as the imaging center and the field of view. The proposed scheme

not only takes into account the decrease in the number of feature points on the tracking list but

also prevents the number of feature points from growing too fast since as the number of feature

points on the tracking list increases, the image region covered by the validation gates also grows.

3 Experimental Results

In this section, tracking results are presented for four real image sequences taken by cameras

undergoing different types of motion. For each sequence, in addition to the trajectory termination

criterion in Section 2.3, depending on the size of the area correlation mask, feature points too close

to the image boundary are removed. A tracking list which contains the matching points as well

as the new feature points is created and updated at every frame. For visual purposes, only the

trajectories of the feature points tracked from the first frame as well as the new feature points

added to the tracking list at subsequent time instants are displayed. The dynamic behavior of the

algorithm is shown in a table which lists the number of feature point trajectories being maintained

or removed from the tracking list and the number of new points selected from every frame.

13
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3.1 UMASS PUMA2 Sequence

The first sequence is known as the UMASS PUMA2 sequence; it consists of thirty 256 x 256 frames. 4

The camera is connected to the end of a PUMA robot arm and rotates about a rotation center

which is close to the image center. The tracking results for a set of manually selected points which

was used in [18] to estimate the motion of the camera are shown in Figure 3. Figure 4 shows the

trajectories for a set of feature points automatically extracted from the first frame by the algorithm I

reported in [14]; the trajectories are shown up to the 7th, 13 th, 1 9 th, 2 5th and 3 0 th frames. The

motion parameters corresponding to the two points marked in Figure 4(a) computed by the EKF

are displayed in Figure 5. Note that the coordinate system illustrated in Figure 1 has been changed, 4

with the x-axis pointing downward instead of upward for convenience. Since the rotation center

does not coincide with the image center, a nonzero translational velocity is observed for both points.

The number of feature points being tracked varies with time, as shown in Table 1. The new feature

points extracted by the feature extraction algorithm from frames 3, 7, 13, 19, 25 and 30 are shown 9

in Figure 6, in addition to the labeled points which were added to the tracking list at different time

instants. As seen in Table 1, the algorithm for adding new points to the tracking list efficiently

maintains the number of points on the list. 0 *

Table 1: The number of feature points in the tracking list for the UMASS PUMA2 Sequence

frame number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# of points in the list 0 21 19 28 31 35 38 40 41 40 41 43 43 44 46
# of points extracted 23 23 22 26 24 27 29 29 28 28 25 16 19 20 24
# of new points 23 0 9 4 5 5 3 3 4 4 3 1 2 2 5
frame number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# of points in the list 49 48 49 48 50 49 51 50 53 50 52 52 53 54 53
# of points extracted 18 21 20 21 20 21 20 19 23 25 24 24 27 24 15
# of new points 2 3 1 3 1 3 0 4 0 3 0 3 2 1 1 U

3.2 Coke Can Sequence

The second sequence is the Coke Can Sequence, in which the camera is approaching the scene, with

the Focus of Expansion (FOE) located on the coke can. Fifteen frames chosen from the densely

sampled sequence, spaced 10 frames apart, axe used. The original 512 x 512 images are down-

sampled to 256 x 256 before applying the algorithm. The resulting trajectories from the first frame

to the 5t', 1 0 th and 1 5 th frames are shown in Figure 7. The estimated motion parameters of the
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Figure 5: Motion parameters for the UMASS PUMA2 Sequence computed by the Kalman Filter
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S

two points marked in Figure 7(a) are displayed in Figure 8. As seen from the figures, because of

the pure translation of the camera, the trajectories of the feature points diverge from the FOE and

are well described by the motion model. Table 2 lists the number of tracked feature points at each

time instant. The new feature points added at the 2 nd, 5 th, 1 0 th and 1 5 th frames are marked in

Figure 9.

S

(a) Feature points in the first frame (b) Trajectories up to the fifth frame

- .
mI

(c) Trajectories up to the tenth frame (d) Trajectories up to the 1 5 th frame

Figure 7: Trajectories for the Coke Can Sequence

3.3 Rocket ALV Sequence

The third sequence is the 30-frame UMASS Rocket ALV Sequence. Again, the 512 x 512 images are

down-sampled to 256 x 256 before applying the algorithm. In this sequence, the camera is mounted

19
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Figure 8: Motion parameters for the Coke Can Sequence computed by the Kalman Filter
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(a) Feature points in the second frame (b) Feature points in the fifth frame

. 4
(c) Feature points in the tenth frame (d) Feature points in the 15th frame

Figure 9: Automatically detected new feature points in the Coke Can Sequence
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Table 2: The number of feature points in the tracking list for the Coke Can Sequence

frame number 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 1
# of points in the list 0 12 13 16 18 20 22 22 22 26 27 28 28 28 28
# of points extracted 13 12 15 12 13 17 15 15 16 15 14 17 15 17 14
# of new points 13 1 4 2 2 2 1 1 5 1 1 2 0 1 1

* 4
on the vehicle which appears to be moving along a straight line to the left and into the image

plane with almost no rotation. Due to the uneven terrain, the motion of the camera is not smooth.

The trajectories for the feature points up to the 7 th, 1 3 th, 1 9 th, 2 5th and 3 0 th frames are shown in

Figure 10. Figure 11 displays the motion trajectories corresponding to the two points marked in 4

Figure 10(a). The uneven motion of the camera results in the motion trajectories in Figure 11 being

more jerky than those in Figure 5 and Figure 8. Table 3 lists the number of feature points on the

tracking list.1 The extracted feature points as well as the new points selected by the proposition 4

in Section 2.4 from the 2 nd, 7 th, 13 th, 1 9 th, 2 5 th and 3 0 th frames are shown in Figure 12. As seen

from the figures, many feature points move out of the field of view in the first few frames. It is

therefore necessary to include new feature points when they become available. Also, it is apparent

from the sequence that the vehicle has an abrupt change in heading direction at the 1 6 th and 2 0 th S 0 "

frames, but the algorithm still keeps tracking most of the feature points.

Table 3: The number of feature points in the tracking list for the UMASS Rocket ALV Sequence

frame number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# of points in the list 0 19 19 23 22 22 19 16 19 21 24 22 22 23 21
# of points extracted 25 20 16 12 14 13 16 16 13 18 14 21 16 17 14
# of new points 25 4 6 1 3 0 7 8 6 6 2 2 3 1 1
frame number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# of points in the list 19 19 18 18 21 19 24 25 27 29 28 26 27 25 25

#ofpointsextracted 19 19 19 18 22 15 17 16 18 18 17 16 19 19 18
# of new points 2 1 3 5 1 7 1 4 2 3 3 2 4 5 2

'The feature points on the clouds are manually removed from the tracking list because of their nonrigid shapes,
and so are the feature points detected at the bottom of each image due to the strip patterns.

22

*

* . ....... ... -... ...... ........ 3 ... ....... ... ... 0 .... . . k .m 0 *



4

O

Saj Feature points in the first frame (b) Trajectories up to the seventh frame

C 1 Trajectories up to the 13 th frame (d) Trajecto ies up to tbe 1 9 th frame

I I raj',ctori, qi1) t-I 1h 2 5 "h frar, (f) Traj,,ctoris iip to the 30th frani,
I

'igi rf, I0: Ira jcrtrieý for I li' Rockt A. V I t'qiwIii ,

23

0D• • • •• • •



24) Tmko Vd•WK d ft 1 10':2 2-D Rý A.& hi g I •

I ,'4

-1.3

2 .

-2.5

"O 3 to 35 20 2 3 5 0 5 30 2.5 30

(a) (b)
243 T,**m Vdwmt o( 2 .1o0 2-D im An* of 2 P 2

4Q2

2 I4.0.

I .04

00

-I

13 0 15 20 25 30 0 5 3 0 15 2D is 30

(c) (d)

Figure 11: Motion parameters for the Rocket ALV Sequence computed by the Kalman Filter
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3.4 Martin Marietta R3 Sequence

The last sequence is one of the four sequences distributed by Martin Marietta. As in the third

sequence, the camera is mounted on a vehicle and the images are taken when the vehicle is moving

through an outdoor environment. The original sequence consists of densely sampled images of

size 347 x 238; only thirty frames, five frames apart, were used in the experiment. During the

acquisition of the images, the vehicle moves to the right and slightly into the scene. Figure 13

shows the trajectories of a set of feature points from the first frame to the 7 th, 1 3 th, 1 9 th, 2 5 th and

3 0 th frames. As seen from the figures, the points on the mountain are far away from the vehicle

resulting in small movements on the image plane. The computed motion parameters of the two

points marked in Figure 13 are shown in Figure 14. The nonsmooth behavior is in part due to

the uneven terrain. The dynamic inclusion of the new feature points is summarized in Table 4.

Figure 15 shows the feature points detected in the 2 nd, 8 th, 1 3 th, 1 9 th, 2 5 th and 3 0 th frames and

the points added to the tracking list.

Table 4: The number of feature points in the tracking list for the Martain Marietta R3 Sequence

frame number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# of points in the list 0 9 12 18 21 20 23 22 25 25 27 27 30 30 28 0

# of points extracted 9 15 17 18 15 15 13 14 10 17 11 15 17 10 12
# of new points 9 4 8 3 0 3 0 3 1 4 0 3 2 0 2
frame number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# of points in the list 27 29 30 31 32 33 33 33 37 38 37 37 37 39 37

# of points extracted 18 19 18 11 15 17 15 17 19 19 20 15 16 10 17 j
# of new points 2 1 4 1 2 2 1 4 1 2 3 3 5 0 3

4 Conclusions

An algorithm for tracking a dynamic set of feature points to subpixel accuracy over a sequence

of images has been presented. In particular, a simple 2-D kinematic motion model is employed

to describe feature point trajectories, instead of a more complicated 3-D model. To account for

deviations from the 2-D motion model, the PDAF is used to provide initial estimates of the in-frame

motion parameters. The application of local image registration, taking into account the varying

depth of the scene and compensating for the motion between two consecutive frames, reduces S

the search area and matching errors. In addition, the inclusion of new feature points makes the
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(a) Feature points in the first frame (b) Trajectories up to the seventh frame
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(c) Trajectories up to the 1 3 th frame (d) Trajectories up to the 1 9 th frame

I

(e) Trajectories up to the 2 5 th frame (f) Trajectories up to the 3 0 tb frame

Figure 13: Trajectories for the Martin Marietta R3 Sequence
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(e) Feature points in the 2 5 th frame (f) Feature points in the 3 0 th frame

Figure 15: Automatically detected new feature points in the Martin Marietta R3 Sequence
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algorithm useful for the estimation of the pose and motion of the camera.

References

[1] J.K. Aggarwal, "Motion and Time-Varying Imagery-An Overview," in Proc. IEEE Workshop

on Motion: Representation and Analysis, Kiawah Island, SC, pp. 1-6, May 1986.

[2] J.K. Aggarwal and A. Mitiche, "Structure and Motion from Images: Fact and Fiction," in Proc.

Third Workshop on Computer Vision: Representation and Control, Bellaire, MI, pp. 127-128,

Oct. 1985.

[3] Y. Bar-Shalom, "Tracking Methods in a Multitarget Environment," IEEE Trans. Automatic

Control, Vol. AC-23, pp. 618-626, Aug. 1978.

[4] Y. Bar-Shalom and T.E. Fortmann, Tracking and Data Association, San Diego, CA: Academic

Press, 1988.

[5] S.D. Blootein and T.S. Huang, "Detecting Small, Moving Objects in Image Sequences Using

Sequential Hypothesis Testing," IEEE Trans. Signal Processing, Vol. 39, pp. 1611-1629, July

1991.

[6] T.J. Broida and R. Chellappa, "Estimating the Kinematics and Structure of a Rigid Object

from a Sequence of Monocular Images," IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-13,

pp. 497-513, June 1991.

[7] Y.L. Chang and J.K. Aggarwal, "3D Structure Reconstruction From an Ego Motion Sequence

Using Statistical Estimation and Detection Theory," in Proc. IEEE Workshop on Visual Mo-

tion, Princeton, NJ, Oct. 1991.

[8] I.J. Cox, "A Review of Statistical Data Association Techniques for Motion Correspondence,"

International Journal of Computer Vision, Vol. 10, pp. 53-66, Aug. 1993.

[9] N. Cui, J. Weng, and P. Cohen, "Extended Structure and Motion Analysis from Monocu-

lar Image Sequences," in Proc. Third International Conference on Computer Vision, Osaka,

Japan, pp. 222-229, Dec. 1990.

[10] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, New York: Wiley, 1973.

30

*A 4 --



S

[11] J.Q. Fang and T.S. Huang, "Some Experiments on Estimating the 3-D Motion Parameters of

a Rigid Body From Two Consecutive Image Frames," IEEE Trans. Patt. Anal. Mach. Intell.,

Vol. PAMI-6, pp. 545-554, Sept. 1984. 5

[12] T.S. Huang, ed., Image Sequence Analysis, Berlin/Heidelberg: Springer-Verlag, 1981.

[13] T.S. Huang et al., "Motion Detection and Estimation from Stereo Image Sequences: Some

Preliminary Experimental Results," in Proc. IEEE Workshop on Motion: Representation and

Analysis, Kiawah Island, SC, pp. 45-46, May 1986.

[14] B.S. Manjunath, R. Chellappa, and C.V. Malsburg, "A Feature Based Approach to Face

Recognition," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Champaign,

IL, pp. 373-378, June 1992.

[15] I.K. Sethi and R. Jain, "Finding Trajectories of Feature Points in a Monocular Image Se-

quence," IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-9, pp. 56-73, Jan. 1987.

[16] J. Weng, N. Ahuja, and T.S. Huang, "Matching Two Perspective Views," IEEE Trans. Patt.

Anal. Mach. Intell., Vol. PAMI-14, pp. 806-825, Aug. 1992. * S
[17] J. Weng, T.S. Huang, and N. Ahuja, "3-D Motion Estimation, Understanding, and Prediction

from Noisy Image Sequences," IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-9, pp. 370-

389, May 1987.

[18] T.H. Wu and R. Chellappa, "3-D Recovery of Structural and Kinematic Parameters from a

Long Sequence of Noisy Images," in Proc. ARPA Image Understanding Workshop, Washington,

DC, pp. 641-651, Apr. 1993. Accepted for publication, International Journal of Computer

Vision. 0

[19] G.S. Young and R. Chellappa, "3-D Motion Estimation Using a Sequence of Noisy Stereo

Images: Models, Estimation, and Uniqueness Results," IEEE Trans. Patt. Anal. Mach. Intell.,

Vol. PAMI-12, pp. 735-759, Aug. 1990.

[20] Z. Zhang and O.D. Faugeras, "Three-Dimensional Motion Computation and Object Segmenta-

tion in a Long Sequence of Stereo Frames," International Journal of Computer Vision, Vol. 7,

pp. 211-241, Aug. 1992.

31

91I



S

[21] Q. Zheng and R. Chellappa, "Automatic Feature Point Extraction and Tracking in Image 0
Sequences for Arbitrary Camera Motion," Tech. Rep. CAR-TR-628, Center for Automation

Research, Univ. of Maryland, College Park, MD, 1992. Accepted for publication, International

Journal of Computer Vision.

Appendix A 0

We describe the PDAF in this appendix. Assuming that the trajectory of a feature point over

the image sequence has been established up to the kth image, the time-varying behavior of the

corresponding state vector between t k and tk+1 as well as the relationship between the measurements 0

and the state vector are the same as (2) and (4), i.e.

(k + 1) = L[_(k)] + x(k + 1)

z_(k + 1) = H k + 1) + n(k + 1) 0

Since the plant equation is nonlinear, in order to linearize the nonlinear function f using the first

order Taylor series expansion, the following matrix is defined:

Of 0
F = F•Ox_

Then at t k+1, before taking into account any measurement, the PDAF [4] first propagates the state

vector and the covariance matrix from ti. to tk+1 and predicts the location of the corresponding 0

point, j(k + l1k), by [4]

_& + Ilk) = F[i(klk)]j(k~k)

P(k + l1k) = F[j(klk)]P(k1k)F[_(klk)]T + Q(k + 1) (34) 0

&(k + lk) = H&_(kk)

Subsequently, in order to incorporate the information contained in the (k + 1)st image, a validation

gate constructed based on the Mahalanobis distance in (7) is applied. Only the extracted points S

with distance less than a threshold, say yý, are considered as the possible corresponding point for the

feature point. Without loss of generality, assume that there are mk+1 points inside the validation

gate. The PDAF is ready to update the state vector and the covariance matrix using the past and

present information. •
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Since there is an ambiguity in deciding which point among the mk+l points corresponds to the

feature point, the a posteriori probability of each point being correct given the past information is

evaluated. In other words, the association probability for the jth point, zj(k + 1), is defined as

Pi(k + 1) = Pr [Oj(k + 1)IZ t(k + 1)] (35)

where Z (k + 1) is the collection of all possible measurements at each time instant and

Oi(k + 1) = {z 3j(k + 1) is the corresponding point}

In addition, the probability that none of the mk+l points is correct is considered and denoted by

,30 (k + 1). As above, if each point is assumed to be normally distributed about &(k + l1k) with the

corresponding innovation vector represented by _jz(k + 1), the association probabilities are shown

to be the following (4]:

/j(k + 1) = ei J = 1,...,mk+1

_1=2i' ~el (36)
'30(k + 1) = b

where
ej = exp[-½Kj(k+ 1)TS(k+ 1)-'2j(k+ 1)] (37) j *
b = (09 k+1

In (37), Pg and Pd represent the a priori probabilities that an extracted point falls into the validation

gate and that the corresponding point is detected by the feature extraction algorithm respectively.

These prior probabilities are set to be the same for each feature point being tracked.

After the association probabilities are obtained, the state vector as well as the covariance ma-

trix are updated by combining the information contained in the mk+1 points with the predicted

estimates as follows:

K(k + 1) = P(k + llk)HT[HP(k + llk)HT + R(k + 1)]-'

+ I lk + 1) = & +(k+lk)+K(k+1)_(k+1) (38)

P(k +lIlk+ 1) = Oo(k+ 1)i'(k+ilk)+ [1I - o(k+ 1)]Pc(k+llk+ 1) + P(k+ 1)

where
(k +1) = E-n"' 0,(k + 1)p(k+)

11(k + 1) = K(k + 1)[(-EJLkj O3(k + 1)vj(k + 1)kj(k + 1)T - v(k + 1) (39)

y(k + 1)TIK(k + 1)T

PC(k+llk+l) = [I - K(k + i)H](I(k + ilk)
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This completes one cycle of the PDAF. As seen in (38), the uncertainties in the measurements 4
result in the mk+1 extracted points being combined with different weights to correct the predicted ()

state vector in (34), and the uncertainties in the state estimates are increased as shown in (38). 5

It is worth noting that in the derivation of the PDAF, all measurements falling within a val-

idation gate are considered equally likely to be the correct measurements. However, if additional

information is available so that the ambiguity cau be resolved and one of the measurements, say •

zj, is identified as the correct measurement, its corresponding association probability, Oj(k + 1),

should be set to 1. This leads to the well known EKF.
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