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ABSTRACT

A new approach to interference suppression is developed to enhance the audi-
bility of signals corrupted by amplitude-modulated (AM) and frequency-modulated
(FM) tonal interference. The suppression algorithm uses a short-time, least-squares
estimation of the parameters of an AM-FM model of the time-varying tonal interfer-
ence. The method, developed in a sine-wave analysis/synthesis framework, can be
integrated with time and frequency modifications for further signal enhancement.
Suppression is applied to single and multitone synthetic and actual AM-FM inter-
ference, the latter including man-made signals (e.g., siren interference) and those
that occur naturally (e.g., biologic interference). The relative advantages and disad-
vantages of the sine-wave framework in contrast to a short-time Fourier transform
overlap-add framework are described. The enhancement techniques are robust in a
large range of environments and can be designed to preserve a random noise back-
ground. Finally, it is shown that interference suppression on multichannels prior to
beamforming enhances beamformer performance.
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1. INTRODUCTION

There are numerous scenarios in which a desired signal is corrupted by amplitude-modulated
(AM) and frequency-modulated (FM) tonal interference. These include, for example, interfering
multitonal biologics in underwater exploration, background sirens in vehicle communications, and
interfering rotating machinery for machine tool diagnosis. A characteristic of the interfereii e is
that the AM and FM may be rapidly varying and thus difficult to track and remove. In addition,
the interference typically may be at a higher level than the underlying signal of interest. 'Tracking
and removing such large time-varying interference is often difficult to achieve without distorting
the signal of interest.

In this report, sine-wave analysis/synthesis [1,2] is used as a framework in which to develop
a new approach to interference suppression for erhancing the audibility of signals corrupted by
single or multitones with AM and FM [31. The suppression algorithm uses a short-time, least-
squares estimation of the parameters of an AM-FM model of the time-varying interference. An
interference signal is constructed from the estimated model parameters. Those components of
the sine-wave representation of the received signal that are due to the interference are removed
to form the sine-wave representation of the desired signal. Because the synthesis of the desired
signal is sinusoid-based, it is straightforward also to perform signal modification such as slow-
motion audio replay. This technique extends the time duration of a signal without changing its
frequency characteristic and allows the listener to capture short-duration, rapidly changing events.
The new approach to enhancement is being developed with the additional constraint of preserving
the perceptual quality of the environment (e.g., a colored noise background) in the enhanced output
to minimize the detection of falsely perceived acoustic signals. Preliminary processing of synthetic
and actual interference, the latter including man-made acoustic signals (e.g., siren interference)
and those that occur naturally (e.g., biologic interference), shows significant enhancement in the
audibility of the desired signal.

The approach of this report differs from conventional method& of time-varying tone suppres-
sion (e.g., adaptive notch filtering [4-61), not only in the short-time analysis/synthesis framework,
but also in that these approaches were not designed with the enhanced perception of wi&band
acoustic signals as the objective.1 The goal of improved audibility raises issues not seen when the
end result is improved automatic detection or enhanced visual displays; error in parameter esti-
mation or a measure of the degree of suppression does not illustrate the complete performance of
an algorithm. For example, the residual that remains after suppression, although small, may be
a perceptible artifact that can be mistaken for a signal of interest. The frequency domain frame-
work allows control of this residual as well as flexibility in guiding the suppression algorithm in the

'A brief overview of state-of-the-art estimation of modulated tones and their suppression is given

in Appendix A.



presence of complex backgrounds. In addition, conventional techniques lack the versatility of the
approach in this report, which integrates signal modification with interference suppression.

The outline of the report is as follnws: Section 2 reviews the sine-wave signal representation,
demonstrates its applicability to a general class of signals, and review. an alternate short-time
overlap-add analysis/synthesis procedure. Section 3 describes the new approach to single-tone
interference suppression, applies it to synthetic signals, presents an approach to background preser-
vation, and compares sine-wave and overlap-add frameworks with respect to signal time resolution
and interference suppression. oection 4 gives the extension to multitone interference, demonstrates
the approach with a number of actual signals, and int-.)duces the use of frequency guides in the
suppression of complex multitone interference, including ha monic guides generated from estimates
of a fundamental frequency of the interference. Section 5 describes the use of the algorithm in
the context of beamforming and shows that beamformer performance improves after multichan-
nel interference suppression. Section 6 then integrates the suppression algorithm with time-scale
modification for enhancement, and Section 7 summarizes and discusses future directions.
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2. SINE-WAVE REPRESENTATION OF ACOUSTIC SIGNALS

The sine-wave representation of a signal is given by a sum of sine waves with time-varying
amplitudes, frequencies, and phases [1,2]:

N

s(t) = A(t, k) cos[O(t, k)] , (1)
k= 1

where the amplitudes and phases for the kth sine wave are denoted by A(t, k) and 0(t, k), respec-
tively. The time-varying frequency of each sine wave is given by the derivative of the phase and is
denoted by w(t, k) = O(t, k), which is sometimes referred to as the kth "frequency track." Although
this model was originally formulated for speech signals, it is also capable of representing complex
acoustic nonspeech signals.

2.1 Analysis/Synthesis

Using the sine-wave model of Equation (1), a discrete-time 2 analysis/synthesis system has
been developed [1,2] (see Figure 1). On each analysis frame the sine-wave parameters are estimated
at time samples n = mQ, where the frame number m = 0, 1, 2..., and where Q is the number of
samples in the frame interval. The dependence of the sine-wave parameters on the discrete-time
variable n is therefore replaced by their dependence on the frame number m, e.g., A(n, k) is replaced
by A(mQ, k) or for simplicity by A(m, k). A 3- to 10-ms frame interval has been found to produce
high-quality reconstruction for most signals of interest. The analysis window (Hamming, typically
5 to 25 ms in duration) denoted by w(n), is placed symmetric relative to the origin, which is defined
as the center of the current analysis frame. A discrete short-time Fourier transform (STFT) is then
computed over this duration with a fast Fourier transform (FFT), typically 1024 or 2048 points.
The frequencies w(m, k) are estimated by picking the peaks of the uniformly spaced (FFT) samples
of the short-time Fourier transform magnitude (STFTM). The sine-wave ampiitudes A(m, k) and
phases 0(m, k) at the center of each analysis frame are then given by the amplitude and phase of
the STFT at the measured frequencies.

The first step in synthesis requires associating the frequencies w(m, k) measured on one frame
with those obtained on a successive frame. This initial step is accomplished with a nearest-neighbor
matching algorithm, which incorporates a birth-death process of the component sine waves, i.e.,
they are allowed to come and go in time. The amplitude A(m, k) and the phase 0(m, k) parameters
are then interpolated across frame boundaries at the matched frequencies to upsample to the

2Because measurements are made using digitized sounds, sampled-data notation is used typically
throughout this report.
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Figure I. Sinusoidal transform analysis/synthesis system: (a) block diagram of anal-
ysis/synthesis with enhancement, (b) STFTM with sine-wave peaks, and (c) sine-wave
frequency matching.

original sampling rate. The amplitude is interpolated linearly and the phase is interpolated with a
cubic polynomial, the latter being done using the methods described in McAulay and Quatieri [1]
and Quatieri_ and McAulay [2]. The interpolated amplitude and phase components are then used
to form an estimate of the waveform according to Equation (1).

2.2 Application to Nonspeech Signals

The enhancement problem is concerned with two signal classes: the desired acoustic signal
(i.e., the signal to be enhanced) and the unwanted background signal. Because the interest is to
enhance nonspeech as well as speech sounds, about 25 signals were collected from audio recordings
of complex acoustic signals (e.g., a bouncing can, a slamming book, a closing stapler). These
signals were selected to have different attack characteristics and a variety of time envelopes and
spectral resonances. Various synthetic and real background signals, comprising AM-FM tonal
interference as well as random noise, were collected. AM-FM interference included man-made
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signals (e.g., a blaring siren), biologic signals (e.g., a porpoise cry), and geologic signals (e.g.,
rubbing ice plates). Random background signals included white and colored synthetic noise as well
as actual backgrounds (e.g., an ocean squall and an underground explosion).

Although the sine-wave analysis/synthesis is not strictly an identity, the sine-wave recon-
struction of such complex acoustic signals was found to be nearly perceptually indistinguishable
from the original. An example of reconstruction of an acoustic signal from a closing stapler is
shown in Figure 2. To attain the time and frequency resolution required to reconstruct such sig-
nals, the duration of the analysis window w(n), the number of sine-wave peaks N, and the frame
interval Q are adapted to the signal type. In this example, a 7-ms analysis window, a 3-ms frame,
and about 50 peaks were used. Because the window duration is typically set to obtain adequate
spectral resolution, some temporal smearing can occur for short duration signals and signals with
sharp attacks (as observed in Figure 2) and sometimes perceived as a mild dulling of the sound.
In the reconstruction of random (background) signals, because the number of peaks may not be
adequate for a noise representation, occasionally a slight (nearly imperceptible) "tonality" may be
introduced.

229952-2
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Figure 2. Sine-wave reconstruction of acoustic signal from closing stapler: (a) original,
(b) reconstruction, (c) and (d) spectrograms of (a) and (b).
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For a large class of signals, sine-wave analysis/synthesis is nearly a perceptual identity system,
and signals are expressed in terms of a functional model describing the behavior of each of its sine-
wave components. The sine-wave. representation, therefore, provides an appropriate framework for

developing signal enhancement techniques based on transforming each of the functional descriptors
(see Figure 1).

2.3 Comparison with Overlap-Add Analysis/Synthesis

Many methods in this report can also be developed in a short-time overlap-add framework,
where a discrete-time signal is represented by its STFT

S(mQ, w) = E s(n)w(n - mQ)exp[jwn] , (2)
n

where the signal s(n) is windowed with w(n), the short-time analysis window, and Q is the frame
interval. The sliding window and frame interval are designed for perfect reconstruction in time [7]

w(n -mQ) =1 (3)

so that overlap-add analysis/synthesis, unlike sine-wave analysis/synthesis, is an identity. On the
other hand, sine-wave analysis/synthesis gives a functional description of the underlying signal
components that is not provided by the overlap-add representation.

2.4 Discussion

In reviewing sine-wave and overlap-add analysis/synthesis for signal representation, although
sine-wave analysis/synthesis appears to be at a disadvantage in terms of recovering a signal, i.e.,

it is not (mathematically) an identity, the overlap-add method suffers from a disadvantage in its
suppression capability as well as in integrability with signal modification schemes. A comparison
of the overlap-add and sine-wave frameworks with respect to time and frequency resolution, as well
suppression performance, is given in Section 3.5.

6



3. INTERFERENCE SUPPRESSION

The AM-FM tonal interference model is assumed of the form

i(t) = atcos(O)], (4)

where a(t) is the amplitude envelope, and where the signal frequency w(t) is given b" lerivative
of the phase 0(t), i.e., w(t) = ý(t). The amplitude and frequency are assumed to vat arly over
a short-time duration (e.g., 10 to 50 ms). A piecewise linear model, therefore, is assumed for the
amplitude modulation

a(t) = Ao + Ast (5)

and the phase is modeled as piecewise quadratic

0(t) = wot + w(r)dr +±o , (6)

where wo is the "carrier" frequency, w(t) = w.t with ws being the frequency sweep rate, and 00 is the
initial phase. In practice, a single-tone interference signal does not strictly follow the piecewise linear
amplitude and frequency model, but the model is sufficiently dynamic to reasonably approximate
many interference signals of interest.

The received signal r(n) to be processed is given in discrete time by

r(n) = d(n) + i(n) + b(n) , (7)

where d(n) is the desired acoustic signal, henceforth referred to as the "information signal," i(n) is
the AM-FM interference signal [which is assumed to have a larger power level than d(n)], and b(n)
is some other background interference (e.g., white noise). Assuming for the moment that b(n) = 0,
the sine-wave components of d(n), estimated on each analysis frame as described in Section 2, can
be thought of as corrupted by the STFT of i(n) evaluated at the sine-wave frequencies of d(n).
This relation is written in complex form on the mth frame and for the kth sine wave as

R(m, k) = D(m, k) + I(m, wk) , (8)

where R(m, k) and D(m, k) are the sine-wave representations of r(n) and d(n), respectively, and
where wk = w(m, k) (with the argument m dropped for simplicity) are the sine-wave frequencies
that are obtained by peak-picking the STFT magnitude of the received signal r(n). It is assumed

7



that this one frequency set respresents the sine-wave frequencies for both r(n) and d(n). R(m, k)
can be expressed in terms of the measured sine-wave amplitude and phase

R(m, k) = A,(m, k)exp[jOr(m, k)] (9)

Likewise, D(m, k) can be written in terms of the desired sine-wave amplitude and phase

D(m, k) = Ad(m, k)exp[jfd(m, k)] (10)

and I(m, w), the STFT of i(n), can be expressed

I(m,w) = Aj(m,w)exp[jOj(m,w)] (11)

For Equation (8) to strictly hold, I(m, w) is assumed sufficiently "smooth" so as not to introduce
peak frequencies that are not components of d(n). This smoothness constraint is illustrated in
Figure 3, where an acoustic signal from a bouncing can has been added to an FM chirp signal; the
Fourier transform magnitude of a short segment (25 ms) shows that the main and sidelobes of the
interference are smooth relative to the spectral magnitude of the can, which is characterized by a
rapidly varying spectrum.

Interference suppression in the context of sine-wave analysis/synthesis is accomplished by
removing the interference contribution in the sine-wave representation of the received signal (see
Figure 4). Two different approaches are considered: magnitude-only suppression, which removes
the interference contribution to the sine-wave amplitude and leaves the phase of R(m, k) intact;
and complex suppression, which removes the sine-wave amplitude and the phase contributions due
to the interference.

3.1 Magnitude-Only Suppression

In magnitude-only suppression, the estimate of the sine-wave amplitudes and phases of the
desired signal is given by 3

Ad(m, k) = A,(m, k) - Ai(m, Wk) (12)

Od(m,k) =0 (m,k) (13)

3Because Ai(m, wk) is an estimate, it is possible that Ad(m,k) may be negative; and because
negative sine-wave amplitudes are not meaningful, these values of Ad(m, k) are set to zero.

8
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where "hat" denotes estimate. With the amplitude and phase estimates in Equations (12) and
(13), an estimate of the desired signal can be made using the sine-wave synthesis of Section 2.

Interference suppression requires that an estimate of the sine-wave magnitude contribution
from the interference signal, Ai(m, wk), be computed for each trame. From Equations (4), (5), and
(6), the interference signal on frame m is modeled in discrete time as

n2i(n) A= Acos(won + Ws•+ ¢o) (14)

with n = 0 corresponding to the center of the analysis window [where reference to frame m in
(Equation (14) is implicit], where the sampling period is equal to unity, and where a(t) in Equation
(5) has been made piecewise constant over each frame. There are four unknown parameters of
i(n): the amplitude A0, the carrier frequency wu, the initial phase 0, and the sweep frequency
w,. Because the AM-FM signal is assumed to change linearly and "slowly" over the duration of
the symmetric analysis window, and because the interference is assumed to dominate the desired
signal, estimates of A0, 0, and wu are obtained at the maximum in the magnitude of the STFT
of the received signal, IR(m,w)j [8]. The sweep frequency w, is estimated by tracking w0 over
successive frames; specifically, the estimate 2s is the slope of a line that is a least-squares fit to
the successive values of w0 . The STFTM of the AM-FM interference estimate is then evaluated
at the measured sine-wave frequencies wk to form the estimated sine-wave amplitudes due to the
interference Ai(m, wk). These amplitudes are subtracted from the received signal to form the sine-
wave representation of the information signal.

3.2 Complex Suppression

An implicit assumption in the magnitude-only suppression algorithm is that the measured
peak amplitudes are the sum of the peak amplitudes of the information signal and samples of
I I(m, w)I; this assumption is an approximation due to the complex nature of the Fourier transform.
This approximation and the use of the phase of the received signal in the reconstruction introduces
distortion in the estimated information signal; ideally, then, a complex subtraction should be
performed.

In complex suppression the sine-wave amplitudes and phases are obtained by a vector sub-
traction

b(m, k) = R(m, k) - R(m,wk) , (15)

where hat denotes the estimates of the respective quantities in Equation (8). As in magnitude-
only suppression, an estimate of the parameters of I(m, w) can be obtained via the maximum of
I R(m, w)I. The complex nature of the subtraction, however, prohibits an accurate suppression with
these coarse estimates (see Appendix B).

10



To account for this sensitivity, the error function defined by

,E= -w(n)[r(n)-i(n)]]f , (16)
n

where w(n) is the analysis window, is minimized over the parameters of the model for i(n) given
by

n2i(n) = (Ao + Ash)COS[won + ws-j- + ¢0]I (17)

where a linear sweep is incorporated back into the amplitude envelope to improve the accuracy of
the model. This error minimization approach was selected for parameter estimation because similar
estimation methods are known to give good performance for the linear FM/constant amplitude case
[8]. The highly nonlinear problem of minimizing E with five free parameters can be solved with
various well-established iterative methods. The Powell method was chosen for its computational
ease and relatively rapid convergence [9,101. The starting point in the Powell iterative method
uses the coarse parameter estimates derived from magnitude-only suppression. The iteration ends
when the change in the mean-squared error falls below a fixed threshold; for the signals of interest,
typically 5 iterations (with a maximum of about 20) are required in the Powell algorithm. (See
Appendix C for further discussion of this approach and alternate methods that have been considered
for least-squares estimation.)

Although the least-squares error approach has been motivated by complex suppression, it
can also be used in refining the magnitude-only subtraction technique. Specifically, the coarsely
estimated parameters used in Section 3.1 can be replaced by the (iteratively) refined estimates.
This approach to magnitude-only supression is considered further.

3.3 Examples

Figure -5 shows the result of the complex suppression algorithm applied to multiple bounces
of a bouncing can with an AM-FM interference at about a 25-dB interference-to-signal ratio
(ISR);' the can is barely audible in the presence of the interference. The interference signal used
in this experiment is a tone with a sinusoidally varying instantaneous frequency w(t) = 1500 +

"4ISR is defined by measuring the average power in the information signal over its duration and
dividing this result into the average power of the interference. Defining the "duration" of a transient
signal is difficult, as for example, a closing stapler or a bouncing can. Thus the signal averaging
was performed only when the instantaneous power (measured using a sliding window of length of
1 ms) of the signal exceeded a threshold of 10% of the maximum instantaneous power.

11



400sin[2,r(0.532)t] comprising a center frequency of 1500 Hz with a swing of 400 Hz and a maxi-
mum slope of about 1500 Hz/s; and a sinusoidally varying amplitude A(t) = 1 + 0.2sin[2ir(0.617)t]
comprising a constant of unity with a swing of 0.2 and a maximum amplitude slope of about 0.6/s.
Because these modulations were selected to avoid regularities in the waveform, and because this
interference signal does not strictly follow the short-time linear assumption, it provides a good test
of the suppression algorithm. A 10-ms Hamming window, a 4-ms frame, and a 2048-point DFT
were used; these parameter values are used throughout this report unless otherwise indicated .
Suppression.is performed with little change in the quality of the falling can with a resulting slight
"whishing" residual from the interference. The suppression ratio (defined as the average power
in the interference before suppression divided by the average power in the interference residual
after suppression) for this case is about 40 dB so that the resulting interference residual is below
the transient by about 15dB. The signal of interest, almost imperceptible in the original signal, is
clearly audible in the processed version.

A closer view of the fine time structure of the process is shown in Figure 6, which compares
applying magnitude-only and complex suppression with a different test signal consisting of the
AM-FM interference added to an information signal generated from a closing stapler about 25
dB below the interference. This example illustrates that complex suppression can provide a more
accurate reconstruction of the information signal, but as will be shown, at the expense of a larger
interference residual.

Another example (Figure 7) demonstrates the robustness of the complex suppression algo-
rithm in a complicated background. In this example the interfering signal is a synthetic linear-FM
chirp with a frequency sweep of 1000 Hz/s, and the signal of interest is an acoustic signal from a
bouncing wrench. The background consists of an ocean squall, a multitonal whale cry, and ocean
noise. In removing the interfering chirp, the falling wrench is enhanced while the complex back-
ground has been preserved, barring the spectral nulls at chirp center frequencies. This spectral
nulling effect, the robustness of the algorithm, as well a comparison of the magnitude-only and
complex suppression methods are addressed more quantitatively in Sections 3.4 and 3.5.

3.4 Performance

3.4.1 Suppression and Signal Clarity

Both magnitude-only and complex suppression provide a substantial reduction of the inter-
ference signal with the perceptual character of the information signal essentially preserved. A

5 These parameters were empirically selected to trade-off suppression residual for reconstruction
fidelity of a class of information signals with fast attacks and short duration such as a bouncing
can. Further discussion of the selection of the analysis window is given in Appendix D.

12
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quantitative measure of suppression is the suppression ratio, earlier defined as the ratio of the in-
terference power before suppression to the interference power remaining after suppression. Table
1 gives the suppression ratios measured by performing suppression on an interference signal with
no information signal present. For completeness, the suppression measurements were made for
magnitude-only and complex subtraction with both coarse (i.e. from the maxima of IR(m, w)1)
and refined parameter estimates [i.e., from error minimization using Equations (16) and (17)].
The interference signal used in this experiment is the preceding tone with a sinusoidally varying
instantaneous frequency w(t) = 1500 + 400sin[2ir(O.532)t] and a sinusoidally varying amplitude
A(t) = 1 + 0.2sin[2ir(0.617)tJ. Table 1 shows that the magnitude-only method provides greater sup-
pression than the complex method. This is not surprising because the tormer clips negative spectral
regions in obtaining the estimate Ad(m, k) in Equation (12). The refined estimation scheme im-
proves on the coarse estimation for both suppression methods.

TABLE 1

Suppression Performance

Interference Parameter Coarse Refined
Estimation Method

Suppression Method Magnitude Complex Magnitude Complex

Suppression ratio 31.6 dB 26.0 dB 51.6 dB 38.5 dB

Subjective suppression 3rd 4th 1st 2nd

Information signal clarity 4th 2nd 3rd 1st

The results of an informal listening test are also listed in Table 1, based on the judgment
of interference reduction and clarity of the information signal after suppression. One test signal
was created by adding the acoustic signal from a bouncing can to the interference of the previous
experiment; in a second test signal the interference was added to the response of a closing stapler.
In both cases the interference signal power level was about 25 dB higher than the information
signal, which is virtually inaudible. Two listeners were asked to rate the interference suppression
and the clarity of the estimated information signal on a scale of 1 to 4. Ratings were averaged over
listeners and test signals and then rank ordered. The perceived reduction in interference follows the
measured suppression ratios. The table also shows that the clarity of the information signal is better
maintained by complex suppression, regardless of the method used to estimate the parameters of
the interference. Because interest is primarily in enhancing the detection and discrimination of
the information signal, its clarity after suppression may be more important to the listener than
the amount of suppression. On the other hand, the residual interference, which is perceived as a
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background moiidated whishing, may be misinterpreted as an information signal. Determining the
optimal trade-oft oetween suppression and clarity requires more extensive evaluation.

3.4.2 Robustness

As a demonstration of the robustness of the algorithm, the suppression obtained from the
least-mean-squared estimation (for complex suppression) in the presence of background noise [i.e..
b(n) in Equation (7)] is shown in Figure 8. The interference signal used in this experiment is a tone
with a sinusoidally varying frequency w(t) = 1500 + 400sin[2ir(O.532)t] and a constanr amplitude.6

The parameter estimation technique was found to be robust at low interference-to-noise ratios
(INRs). The suppression ratio was determined by measuring the interference parameters in the
presence of noise, suppressing the original interference signal (without noise present), and then com-
paring the power in the interference signal before and after suppression. Although the suppression
ratio drops as the INR increases, the perceived interference residual in noise is removed at low INRs.
In addition to measurements of complex suppression, Figure 8 also shows that magnitude-only sup-
pression (using refined estimation) is greater than that from complex suppression; magnitude-only
suppression also has an advantage with respect to computation because iterations (for coarse esti-
mation) and phase computations are not required. These advantages are obtained at the expense
of larger distortion of the information signal.
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Figure 8. Suppression ratio as a function of SNR: (a) magnitude-only and (b) complex.

6A constant amplitude was selected because in this test a constant signal-to-noise ratio (SNR) is
desirable; with AM, SNR changes with time.
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3.5 Preservation of Background

In performing interference suppression in the presence of background noise b(n). it is impor-
tant that the perceived character of the background be maintained to minimize false detection of
information signals. Magnitude-only and complex suppression largely preserve background, both
synthetic (e.g., white noise) and real (e.g., an ocean squall). In the region of the time-varying
AM-FM tone, however, a spectral null is formed. The problem is that the least-squares parame-
ter estimation represented by Equations (16) and (17) yields a biased estimate of the background
spectrum [11], forcing it to zero in the vicinity of the interfering chirp frequency; the suppression
algorithm thus nulls the spectrum of the received signal in this region (as seen in Figure 7).7 As the
duration of the analysis window decreases, the region over which the spectrum is nulled increases;
this nulling may be exacerbated by the the accuracy of the interference parameter estimates de-
creasing as the window length decreases (see Appendix D). This notch follows the instantaneous
frequency of the interference; therefore if the background is broadband, the notch is perceived as
an FM modulation that can be mistaken as an information signal. Figure 9 illustrates an example
of an FM notch placed in the spectrogram of the example in Figure 5 when white noise is added
to the background. This section presents two heuristic approaches to reduce the spectral notch
without degrading suppression performance.

Because the spectrum of the interference at its peak frequcncy tends to swamp smaller peaks
in its vicinity, few sine-wave peaks are picked in this region. One approach to recovering sine
waves, and perhaps reducing unwanted modulation introduced by the spectral null, is to reconstruct
a signal using a set of new sine waves, different from those measured on the received signal and
obtained after applying suppression. Using complex suppressior, this iecovery can be accomplished
by finding spectral peaks in the STFTM given by IR(m, w) - i(m, w)I and then determining the
sine-wave representation of the information signal plus background, d(n) + b(n). Although the
method reduces the time-varying spectral notch, an FM whishing is nevertheless heard in the
residual and correlates with a visible (although somewhat reduced) notch in the spectrogram. The
original spectral bias is not fully removed by this approach.

A second approach applies a spectral compensation to the data based on the assumption of
a slowly varying background. Assuming for the moment that the information signal is not present,
an estimate of the background spectrum on the mth frame is obtained by averaging the squared
STFTM, i.e., averaging the periodogram. The spectral density of the background is estimated as

B(m,w) = acb(m- 1,w) + (1 - a)IR(m,W)1 2  (18)

'The least-squares method of suppression, which under certain conditions (e.g., a Gaussian noise
assumption and constant amplitude and frequency) is equivalent to maximum likelihood spectral
estimation, is biased. Specifically, the estimator finds the maximum value in the spectrum [11] that
when subtracted yields a zero residual at the maximum location; hence a notch.
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where R(m, w) is the STFT of the received signal r(n) and a is a smoothing constant. This method
is similar to the Welch method of spectral estimation [12]. When the background is a stationary
random process, it can be shown that the expected value of B(w; mL) is a smooth version of the
desired spectrum

21r8

E[B(w; mL)] = -y]f B (,r) IW (w - -r) I'dr ,(19)

where Bi(w) is the underlying spectral density of the background, W(w) is the Fourier transform
of the window w(n), and -1 is a function of both the window length and the smoothing constant a.
When the interference is present and a spectral notch arises from suppression, the spectral density
of the notched spectrum can be estimated as

N(m, L) = 3~(m - 1, w) + (1 -,6) 1IR(m, w) _ I(m' W)12 (20)
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under the assumption that the spectral notch is slowy varying. A compensation filter is then formed
as

C(m,w) = B3(M,w)1" 2 _-N(m,w)1/ 2 for -col <

= 0for1w- 0 I>6 , (21)

where 6 defines the region over which the compensation is applied, and where Co is an estimate
of the chirp center frequency. The filter C(m, w) is characterized by a single-peak spectrum at wo,
which is considered the complement of the notch. Compensation then forms a modified spectral
magnitude

Ib(m,)# = Ijb(m,)+C(m,w) (22)

which has the effect of "filling in" the spectral hole due to suppression. The phase (which is
dominated by the smooth phase of the chirp in the vicinity of the notch) is left intact by this
operation.

The periodogram averaging results in a smooth estimate of the background density; and
because the resulting phase is smooth, so is the phase of the compensated STFT in the neighborhood
of the notch. A smooth phase, however, is not consistent with a typical random background. One
approach to ensure a noise-like characteristic of the modified complex spectrum D(m, w) is to
impart phase randomization in the frequency region 1w - cDI -< 56. The phase of the resulting
STFT is given by

Lb(m,w•) = i'E for Iw,'--wo0 1--

= ZD(m,w) for Iw-cDo>6 > , (23)

where E is a random number falling uniformly in the interval [-1, 1].

An example of the removal of spectral bias is shown in Figure 10 for a steady tone in noise,
where the tone onset occurred two seconds into the noise. In this example the background spectral
estimator was applied only up to the onset of the tonal interference, at which point the compensation
filter was activated. The average of the spectral slices illustrates that the resulting spectrum in
the neighborhood of the notch is consistent with the surrounding background spectrum. Figure 11
illustrates another example of compensation with the AM-FM tone in noise that was illustrated

'An alternate approach synthesizes a signal by passing white noise through a linear system with
transfer function IC(m, w) I and then adding the resulting waveform to the signal derived from the
suppression algorithm.
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in Figure 9. As before, the background estimation occurs prior to the tone at which point the
compensation is activated. The spectrogram shows that the new procedure effectively eliminates
the spectral hole; furthermore, the perception of an FM residual is not present after compensation.
Finally, in Figure 9(c) the method is applied to the example of Figure 9(a),(b) of a notch occurring
in the spectrogram of the enhanced can in noise. When applying the compensation algorithm to
this signal, the background spectral estimate was run in the time interval 1.5 to 2 s, which is a region
roughly free of bounces of the falling can. The compensation filter was activated at 2 s, at which
point the perceived FM effectively vanishes. Nevertheless, a small residual (visible) notch remains
because the background estimator is somewhat influenced by the presence of the information signal;
ideally only background regions should be used for updating the background spectral estimate. In
addition, the presence of the information signal influences the spectral estimate of the notch. In
this case, the AM-FM tonal interference and information signal occasionally coincide in frequency;
hence, the background spectral extrapolation (in time) used to compensate for the notch should
extrapolate (in frequency) from the spectrum of the information signal and not from the noise
background. Such adaptive schemes require detection of the information signal and background
regions.
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Figure 10. Removal of spectral bias for steady tone in noise: (a) average spectrum after
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3.6 Comparison with Overlap-Add

In the overlap-add framework, suppression in Equations (12), (13), and (15) is performed over
the full spectral bandwidth rather than over only the sine-wave frequency components. In complex
suppression in particular, the modified STFT is given by

D(m, w) = R(m, w) - 1(m, w) ,(24)

21



where hat denotes estimates of the respective quantities. The modified short-time transform is then
inverted and the resulting segments overlapped and added to form the enhanced signal. Under the
perfect reconstruction condition Equation (3), the information signal would be exactly recovered
when the interference is completely removed. The overlap-add framework, therefore, is expected
to yield greater time resolution in the information signal, as well as greater background fidelity9

than the sine-wave framework. Although this advantage generally holds, the overlap-add method
achieves these gains at the expense of less interference suppression. The two frameworks are com-
pared with respect to the degree of suppression using the suppression ratio, as well as with respect
to the fidelity of the estimated information signal using a segmental SNR.

3.6.1 Degree of Suppression

A series of experiments was performed to compare the degree of suppression of the two
algorithms. Figure 12 shows the suppression ratio from the sine-wave suppression (SWS) and
overlap-add suppression (OLAS) algorithms as a function of window length. 10 Three different
interference signals are considered in increasing order of complexity: a steady continuous wave
(CW) tone, a linear AM-FM chirp, and a sinusoidally varying AM-FM tonal interference. Figure
12 illustrates that the sine-wave framework generally provides a greater degree of suppression than
its overlap-add counterpart. For both the CW tone and linear AM-FM chirp the suppression
ratio increases with window length; in these cases the accuracy of the parameter estimates of the
linear AM-FM model under study increases with window length. For long window durations, the
sinusoidally varying AM-FM chirp, however, violates the linear assumptions, and the accuracy of
the parameter estimates decreases. The selection of window length, then, is a function of the data
type; additionally, in the case of the sine-wave framework, the fidelity of the recovered information
signal must be considered as well because longer windows can reduce time resolution.

One plausible explanation for the improved suppression within the sine-wave framework is
based on the viewpoint that the interference estimate is most accurate at the center of the anal-
ysis window. This idea is consistent with the sine-wave analysis/synthesis strategy that estimates
sine-wave parameters at the window center. Overlap-add synthesis, on the other hand, uses the en-
tire analysis window for the reconstruction, permitting a poor interference estimate at the window
edges (e.g., the Hamming window trails off). In addition, within the sine-wave framework spec-
tral subtraction is performed only at the spectral peaks, where phase estimates are most reliable.

9Recall that sine-wave reconstruction can impart a slight tonality in the background.
101n the presence of noise, the suppression ratio is not the only criterion in selecting a window length.
A second consideration is the power removed, because this value partially reflects background
distortion. A study of these trade-offs is given in Appendix D for suppression performed within
the overlap-add framework, although the issues are similar for the sine-wave framework.
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Finally, sine-wave synthesis provides signal continuity over consecutive frames through phase and
amplitude interpolation while overlap-add may suffer from discontinuities at frame boundaries.

3.6.2 Information Signal Fidelity

To evaluate the capability of the algorithms to preserve the information signal, segmental
SNR was used as a measure of signal distortion. Segmental SNR is the signal energy of the
information signal divided by the mean squared difference between the original information signal
(averaged over many segments) and its estimate after suppression. The interference signal in this
study is the sinusoidal AM-FM tone used earlier. Table 2 shows that the overlap-add framework
provides greater segmental SNR for three different information signals. Included for reference
is the segmental SNR from sine-wave analysis/synthesis without interference and hence without
suppression, providing an upper bound on the accuracy of the sine-wave reconstruction. For the
stapler and the wire-wrap tool, overlap-add synthesis has a higher segmental SNR than the upper
bound for the sine-wave system. The segmental SNR shows that the overlap-add scheme yields
greater fidelity of the information signal than sine-wave analysis/synthesis, correlating with the
result of informal listening tests. 11 Of course, this result must be tempered by the lower degree of
suppression when using the overlap-add framework.

TABLE 2

Information Signal Reconstruction

Sine-Wave Sine-Wave Overlap-AddSine-Wave Synthesis Synthesis Sytei
Signal Synthesis (Magnitude-Only (Complex Synthesis

(No Interference) SM a ction) Subtrac- (Complex
Subtraction) tion) Subtraction)

Bouncing can 11.60 3.10 2.80 13.60

Stapler 8.70 2.70 1.00 8.10

Wire-wrap tool 9.30 3.70 3.40 12.70

"11A problem with the segmental SNR measure is that it reflects the interference residual as well

as signal distortion. Although in these examples signal distortion appears to dominate over inter-
ference residual, the accuracy of the comparison must, in general, be considered with care. For
example, comparison of sine-wave magnitude-only and complex suppression in Table 2 does not
reflect the difference in signal clarity.
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3.7 Discussion

An exhaustive comparative study of different approaches to suppression involves a complex
perceptual space: the fidelity of the information signal (e.g., duller attacks), the extent and nature
of the interference residual (e.g., an FM notch), and the fidelity of the background (e.g., tonality).
Selecting a metric to account for all three remains an open question. The ultimate judge is the
human listener's ability to detect and discriminate signals after suppression; more formal listening
tests are necessary to make a complete evaluation.
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4. MULTITONE INTERFERENCE SUPPRESSION

Interference signals of interest are typically characterized by multiple AM-FM tones; for ex-
ample, nonlinear distortion in the sound generation process may create harmonics of a fundamental
frequency or introduce new frequencies. The multitone interference i(n) is modeled by

M
i(t) = ,am(t)cos[(pm(t)] (25)

m=0

where M is the number of tones, and am(t) and 0,,b(t) are each represented, respectively, by the
linear and quadratic functions of Equations (5) and (6).

As with single-tone suppression, either a magnitude-only or complex suppression can be per-
formed. In magnitude-only suppression, a generalization of the single-tone case entails estimating
the STFTM of the interference using the spectral peaks (the highest M peaks), and then forming
a spectral magnitude subtraction as a generalization of Equation (12). Successively performing
the subtraction in order of increasing magnitude is efficient, but a problem with this approach
is that the resulting spectral amplitude may be truncated to zero in multiple spectral locations
whenever the difference in Equaton (12) becomes negative. Consequently, in losing a large portion
of its spectral energy the information signal can be severely distorted. 12 For this reason complex
suppression is selected for multitone interference.

In this section the complex suppression method of Section 3.2 is extended to the multitone
problem. Results similar to those for the single tone are obtained with a variety of multitone
interference signals, both in interference suppression and information signal clarity.

4.1 Complex Suppression

In complex multitone suppression, the error function defined by

Ek = Z[w(n)[r(n) - i(n)1]2 , (26)
n

where w(n) is the analysis window, is minimized over the parameters of the model for i(n) given by
Equation (25). This highly nonlinear, multivariable problem is simplified by minimizing Equation
(26) with respect to the parameters of one component of (25); i.e., the new error function becomes

12An alternate approach simultaneously estimates all tones rather than delete them iteratively,
which may reduce distortion because the spectral magnitude is constructed once and occurs after
multitone addition.
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S= (w (n)[r( ) - ak(n)COS[,k(n)]I) , (27)
n

which when minimized yields a solution of the form

ik(n) = k(n)Cos[ýk(n)] (28)

The estimate of the kth interference tone 4k(n) is then subtracted from r(n) to form

fk(n) = r(n) - ik(n) , (29)

and the minimization is repeated with fk(n) as the received signal. As with single-tone suppression
the iterative Powell method of minimization is used (see Appendix C for further discussion).

Without constraints, the global mininum of Equation (27) may not occur in the least-squares
minimization and thus may not yield the largest tonal component (or perhaps not any tonal com-
ponent) of i(n); in general, this procedure may be stymied by local minima. A means to avoid
unwanted minima is to initialize the minimization procedure by a guess near the largest interfer-
ence component. When the interference signals are quasi-harmonic in nature or with predictable
frequency relations (as from nonlinear distortion), an estimate of the fundamental frequency (or
few primary frequencies) helps guide the frequency search of tones belonging to the interference,
thus reducing the possibility of achieving undesired local minima. Some of these signal scenarios,
as well as the performance of the suppression algorithm, are illustrated next.

4.2 Performance

As a demonstration of the robustness of the complex suppression algorithm, the least-mean-
squared error estimation was performed in the presence of background noise [i.e., b(n) in Equation
(7)] with no information signal present. These measurements, illustrated in Figure 13, were made
using a synthetic seven-tone interference signal with linear FM (with constant amplitude, a funda-
mental frequency of 300 Hz with a frequency sweep of 50 Hz/s, and thus 350 Hz/s on the highest
harmonic) in the presence of white Gaussian noise. Each successive harmonic is down by 6 dB from
the previous. A 20-ms Hamming window, an 8-ms frame, and a 2048-point DFT were used. A
longer window is used than in previous experiments to account for the lower frequencies present in
the interference. The refined parameter estimation technique was found to be robust at INRs down
to 0 dB. As in the single-tone case, the suppression ratio was determined by measuring the interfer-
ence parameters in the presence of noise, suppressing the original interference signal (without noise
present), and then comparing the power in the interference signal before and after suppression. Al-
though the suppression ratio drops as INR decreases, as with single-tone suppression, the perceived
interference residual in noise is removed even at the low INR of 0 dB. Figure 13 also shows that
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the complex multitone suppression is less than for the single-tone (one harmonic) counterpart; the
difference for a large range of INRs is nearly constant, an observation that leads one to consider
the sidelobes from neighboring tones as an additional noise source.
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Figure 13. Suppression ratio as a function of INR: complex suppression on (a) multi-
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4.3 Examples

Complex suppression provides a substantial reduction of the interference signal with the
perceptual character of the information signal approximately preserved. A number of multitone
examples are illustrated: a reference synthetic multitone and real signals, including acoustic signals
from biologics, rubbing ice plates, and a siren disturbance. The examples illustrate both the features
and the limitations of the approach. A 25-ms window, 10-ms frame, and 2048-point FFT were used.
Spectral notch compensation was not applied to remove spectral bias.

4.3.1 Synthetic Multitone

In this example the synthetic interference signal consists of six harmonically related tones
derived from a initial fundamental frequency of 250 Hz with linear frequency sweep of 50 Hz/s.
The amplitude of the tones decreases by 6 dB as the harmonic frequency increases and is constant
for each tone. The information signal is an acoustic signal from a closing stapler, and ISR is about
15 dB. Figure 14 gives a time-domain comparsion of the original and enhanced information signals,
showing fidelity of the time structure in the reconstruction. In this case, about a 25-dB suppression
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ratio was obtained so that the interference residual is about 10 dB below the information signal.
Figure 15 gives a frequency domain view of a similar comparsion but with a 61hite background
noise added at a 20-dB INR. (The information signal is a closing stapler.) As expected, spectral
nulls are seen in the background noise as a result of the spectral bias of the least-squares parameter
estimator.

me•-,'

Q= (b)

.j

N (C)

40
TIME (ms)

Figure 14. Multitone interference suppression: (a) interference with closing stapler, (b)
processed, and (c) original closing stapler.

4.3.2 Biologics

Figure 16 illustrates an example -f a (six-component quasi-harmonic) whale cry in an ocean
background to which is added an information signal (the closing stapler). Six interfering frequencies
were sought with harmonic guidance.13 Harmonic interference is essentially removed, its perceptual
character preserved, and as expected, spectral notches are placed at the peak locations of the
interference. A second example of a biologic, illustrated in Figure 17, is the bark of a ringed
sea! to which is added the closing stapler. The interfering bark is characterized by rapidly and
periodically varying AM. Although other bark harmonics are observed, the bark is dominated by
its first harmonic, and in the vicinity of the peak amplitude of this component, the FM is roughly
linear. The bark is the loudest tonal signal among the other interfering ocean and biologic tonal
signals in the data. When only one frequency component is sought, the least-squares estimator

13The pitch estimation algorithm used in these examples is a derivative of a technique derived
originally in the speech context based on a sine-wave representation of a signal [131.
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readily tracks the dominating first harmonic, thus effectively removing the bark without altering
the background or the character of the information signal.
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Figure 16. Suppression of interfering whale cry: spectrogram of (a) biologic signal with
slamming book and (b) processed.

4.3.3 Slipping Ice Plates

Another signal that can interfere with underwater exploration is the sound generated from
slipping or rubbing ice plates. Such signals, although often quasi-harmonic, may consist of more
than one harmonic set due to slippage and cracking of the ice. These signals may consist of
rapidly varying and discontinuous FM, making their suppression particularly difficult. An example
of suppression of an acoustic signal emitted from ice is shown in Figure 18, where the ice signal
comprises a slowly varying harmonic FM. (The closing stapler was added to the interference.)
The first four harmonically related tones arc removed. The harmonic nature of the interference
allows the use of a pitch contour as a guide in suppression of the desired four tones. In this
example the frequency guides are necessary to avoid unwanted local minima in the least-squares
error minimization due to the presence of other tonal background signals.

A second example of suppression of a more complex ice signal is shown in Figure 19(a),
(b). The acoustic signal from the ice slippage in this case consists of two harmonic sets that
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Figure 17. Suppression of interfering seal bark: spectrogram of (a) biologic signal with

closing stapler and (b) processed.

intersect. Two sets of harmonic frequency guides are shown in Figure 19(c); the fundamental

frequencies of each set were obtained, in part, manually and, in part, by the sine-wave-based pitch

estimator. Although suppression is generally effective, residual is observed in the regions where

the two harmonic sets intersect, at which point the single-tone linear AM-FM model is violated.
Another condition in which the interference model does not hold is illustrated in Figure 20. In this

case, the frequency tracks are characterized by sudden discontinuities in frequency (or pitch) that

result in perceived glitches in the enhanced signal. (This example is further explored in Appendix

E.)

4.3.4 Siren Disturbance

As a final multitone example, a synthetic siren was generated using frequency characteristics

measured from an recorded siren. 14 The fundamental frequency trajectory of the synthetic siren was

generated by fitting a fourth-order polynomial to measured points of the trajectory (of the siren's

fundamental frequency), providing a frequency function for one cycle of the siren's frequency tra-
jectory. This frequency function is then repeated periodically. The fourth-order polynomial was

"14An actual siren was not used because of the unavailability of an uncorrupted recorded siren with
a desirable information signal.
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multiplied by two and by three to generate frequency trajectories for the second and third har-
monics of the siren. The phase functions are generated by integrating the instantaneous frequency
functions.

The synthetic siren is added to a voice (i.e., the information signal) with roughly a 25-dB ISR,
making the voice barely audible. After suppression, the voice is significantly enhanced (see Figure
21). A small background residual from the siren remains, except for short "bleeps" where the
discontinuity in frequency derivative15 of the synthetic siren occurs and which cannot be accounted
for by the linear-FM model under study (see Appendix E). The vertical striations that are observed
in the spectrograms of both the original and processed signals result from this discontinuity.

4.4 Discussion

As with single-tone, multitone suppression suffers from (multiple) spectral nulls in a noise
background. The multiplicity of these nulls makes the problem of background preservation particu-
larly important from an aural perspective. A compensation filter can be derived as a generalization
to the filter in Equation (21). Another challenge is the presence of more than one harmonic set
or the presence of multiple aharmonically related frequencies created by a nonlinear medium. Im-
proved multisignal pitch estimation and nonlinear prediction of such frequencies, to create frequency
guides, will be useful. Another issue is the selection of a window when analyzing multiple tones.
Ideally, the window should be long for low- and short for high-frequency tonal components or
transients, requiring a multiresolution analysis/synthesis. Finally, the limitation of the suppression
algorithm for discontinuous frequency (and frequency derivative) trajectories was observed; possible
solutions to this problem are discussed in Appendix E.

15Both phase and frequency functions are continuous; however, because the frequency trajectory
is derived by concatenating one function over successive periods, its derivative is discontinuous at
the end of each period.
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5. MULTICHANNEL BEAMFORMING

In a multichannel (spatial array) environment, beamforming can be used to suppress interfer-
ence coming from directions other than a desired information signal. Certain interference, however,
(e.g., a blaring siren) can be sufficiently high to leak through the beamformer sidelobes and domi-
nate the desired signal. Furthermore, putting a deep null in the direction of the interference signal
can distort the main beam; the approach fails completely when the interfering and information
signals lie in the same direction. This section explores use of the complex suppression algorithm
on multichannels prior to beamforming to enhance beamformer performance. 16

5.1 Problem Formulation

The multichannel suppression problem can be formulated as follows. Denote the received
signal on the kth channel by rk(n). Then

rk(n) = d(n + kAd) + i(n + kAj) , (30)

where d(n) and i(n) are the desired information and the interference signals, respectively, at a
reference sensor, and where the delay terms Ad and Aj are a function of the arrival directions of
the desired and interference signals. The enhanced signal after suppression on each channel is then
given by

qk(n) = Srk(n), (31)

where S denotes the suppression operator and can be written as

qk(n) = dk(n) + ek(n) , (32)

where ik(n) is an estimate of the desired signal and ek(n) is the interference residual at the kth
channel. A simple delay-and-sum beamformer is given by

q(n,A) =1 qk(n- kA) ( (33)
k

16 Suppression can also be performed after beamforming. In this case the interference residual may
be on the order of the information signal.
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where A is the interchannel delay, which in relation to the array spacing determines the look
direction of the array.

In applying interference suppression to each channel prior to beamforming, it is important
that the underlying signal of interest d(n) not suffer from a phase distortion, which can degrade
beamformer performance as measured through its array gain [14]. For example, if on each channel
the distortion on d(n) is simply a random phase 6k that results from suppression, then the result is

c/(n,A)=-•dk(n-kA+6k)+ek(n-kA) (34)
k

An alternate problem that may degrade performance is a possible correlation in the interference
residual across channels, and this correlation exhibits itself as artifacts after beamforming (i.e.,
beamforming enhances the residual). For example, if each residual were identical across channels,
then Equation (33) becomes

q(n,A) = dk(n - kA)+ e(n -kA) , (35)
k

where the residuals on each channel are related by a delay.

The following examples demonstrate that interference suppression does not degrade beam-
forming performance. On the contrary, beamforming with the multichannel preprocessing enhances
the signal of interest while further reducing the interference.

5.2 Examples

Experiments were formulated with a simulated 16-channel linear array of elements. The in-
terference and information signals were summed with delays corresponding to different angles of
arrival. A background noise scenario was simulated by using 16 different white Gaussian noise se-
quences for background noise and adding to each the interference and desired signal. In the following
examples, a 100-ms analysis window was used (because the interference FM is slowly varying), and
overlap-add synthesis was performed, although sine-wave synthesis gives similar results.

5.2.1 Multitone Interference without Background Noise

A multitone signal with FM (250-Hz initial fundamental frequency with a 50-Hz/s linear
sweep, six harmonics, and constant amplitude) is added to the acoustic signal from the closing
stapler with an ISR of about 15 dB. The interchannel delay of the information signal is zero (for an
angle of arrival of 900) while the interference has an intermhannel delay of 0.1 ms (the corresponding
angle of arrival depending on the distance between array elements). Background noise is not present,
and the 16 channels are summed with zero delay between channels to generate the beamformed

40



output in the direction of the information signal (the closing stapler). Figure 22 illustrates that
beamforming enhances the signal fidelity over the single-channel suppression case.

W -(b)
A
a.

a A (c)

(d)I

40
TIME (ms)

Figure 22. Interference suppression followed by beamforming: (a) interference with sta-
pler, processed with (b) I channe, (c) 16 channels, and (d) original stapler.

5.2.2 Multitone Interference with Background Noise

The interchannel delay of both the interference and information signal is zero, corresponding
to an angle of arrival of 900 between the array elements and these two signal components (an
interchannel delay of zero).

In the .first example the desired signal is a weak tone at 1000 Hz, and the interference is
a synthetic, four-tone linear-FM chirp signal with a 700 Hz fundamental and a 50-Hz/s sweep
frequency. 17 The interference suppression algorithm selects the strongest tone as the fundamental
chirp frequency and uses this frequency and its three harmonics as suppression guides so that the
tone of interest is not affected by suppression."8 Figure 23(a) shows spectrograms of the weak tone

"i7A weak tone was specifically chosen for the information signal to provide a good test for the
beamformer.
18 1t is assumed that the tone of interest has a lower power level than the fundamental of the
interference signal.
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in noise, the weak tone in noise with the synthetic linear-FM interference, and the processed version
of the latter signal. (The tone is so weak that it cannot be seen in the spectrogram of a single
channel.) The figure illustrates that the interference is suppressed without introducing artifacts,
barring spectral nulls in the vicinity of the chirp interference. In Figure 23(b), spectrograms of the
bearnformer output for an interchannel delay of zero samples are shown for the weak tone in noise,
the weak tone with interference in noise, and the processed version of the latter signal. The weak
tone becomes visible as a result of beamforming, while the interference is effectively suppressed.
Figure 23(c). shows spectra of the beamformer output with respect to interchannel delay (i.e., angle
of arrival), where a delay of zero corresponds to the direction of the interference and signal of
interest. These displays are shown for the weak tone in noise, the weak tone with interference in
noise, and the processed version of the latter signal. These last displays were formed by averaging
the magnitudes of four 1024-point DFTs of sequential segments of the beamformed output at each
interchannel delay.

When interference is present, the tone of interest cannot be seen after beamforming because
it is obscured by the sidelobes of the interference spectrum with the additional problem that
the interference may be misconstrued as a signal of interest. With the application of interference
suppression prior to beamforming, the interference is removed and the tone becomes visible. Figure
23(d) gives a different perspective of this performance, showing spectral slices of the beamformed
output for an interchannel delay of zero and also showing that without preprocessing, the tone
of interest is obscured by the interference but is easily detected when interference suppression is
applied prior to beamforming.

The next example, illustrated in Figure 24, is identical to the previous example but with the
tone of interest at a higher power level. The tone is visible in the spectrogram of a single channel
prior to beamforming. In this case the tone of interest has enough power so that in Figure 24(c) its
spatial sidelobes can be seen. These sidelobes are not disturbed by interference suppression, and
as before no artifacts are introduced.

5.3 Discussion

The effectiveness of multichannel suppression prior to beamforming has been demonstrated. It
was shown that the interference residual neither introduces artifacts in the beamformed output nor
degrades the beamformed information signal. On the contrary, beamnformer performance improved.
An implication is that phase distortion (dispersion) in the information signal or correlation in the
residual across channels is negligible.

42



2?8%2-23

PROCESSED:
WEAK TONE + NOISE WEAK TONE + NOISE

+ SYNTHETIC + SYNTHETIC
WEAK TONE + NOISE INTERFERENCE INTERFERENCE

5,000
4,500 a
4,000

3,500
3,000
2,500

2,000

1,500
1.000

500
0

4,500

>- 3,000

4 ,000

3,0

2S ,500

2L ,000F_ 'a

1,500

500

0
- .2 0.4 0. 0. 2-2 - .4 0. 1. 2-2 -1 4 06 1.2

DELAY (Smls)

3,003



100

~60

40(d)

60

20

0 1,000 2,000 3,000 4,000

FREQUENCY (Hz)

Figure 23 (Continued). Synthetic example, case 1: (d) spectral sAces of beamformed
output (at an interchannel delay of zero) for signal with and without preprocessing.
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6. SLOW-MOTION AUDIO REPLAY

In slow-motion audio replay, the magnitude, frequency, and phase of the sine-wave components
are modified to expand the time scale of a signal without changing its frequency characteristic (see
Figure 1). This modification can be performed jointly while suppressing AM-FM tonal interference,
yet also preserving a random background.

6.1 The Algorithm

Consider a time-scale expansion by a factor of 3. By time-expanding the sine-wave frequency
tracks, i.e., w(c3t, k) = O(Qt, k), the instantaneous frequency locations and magnitudes are preserved
while modifying their rate of change in time. Because d/dt[0(ti3, k)/1l] = w(Ot, k), this modification
can be represented by

N

9(t) = E A(Ot, k) cos[O(/3t, k)/1)3] (36)
k=1

The discrete-time implementation of Equation (36) requires mapping the synthesis interpolation
frame duration Q to OQ, and then sampling over this longer frame the modified cubic phase and
linear amplitude functions derived for each sine-wave component.

An example of slow-motion audio replay applied to the closing stapler is illustrated in Figures
25(a) and (b), where a sequence of events are time expanded. Each component lingers over a longer
duration than the original, the effect of which is greater perceived separability of the time events
and a sharpening of the spectral resonances. In informal listening, the audibility of the stapler's
rapidly changing sequence of events is enhanced.

6.2 Background Preservation

As with interference suppression, signal modification should be designed so that the character
of the resulting background is not altered. For random backgrounds it was found that large time-
scale expansion may result in synthesized sine waves being perceived as tones, thus destroying the
noise-like character of the original background. The problem is that the long synthesis frames,
resulting from a large factor #, impose a time correlation on the sine-wave amplitudes and phases
that does not exist in the representation of the original background. To avoid this objectionable
tonality, a method is being developed to decorrelate the sine-wave phases across successive frames.

The essence of the technique is to add a random element to each sine-wave phase prior to
doing cubic phase interpolation in the synthesis stage. This perturbation, although decorrelating the
background phases, also decorrelates the phases of the information signal. Consequently, adaptive
procedures are being developed that add the phase perturbation only when the background is
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Figure 25. Example of slow-motion audio replay, stapler: (a) original, (b) after time-
scale expansion by a factor of 2, and (c) after combined interference suppression and
time-scale expansion by a factor of 2.

present (i.e., the information signal is not present). In one approach the modified phase for each
frame m is given by

(m, k) = o(m, k) + (m,k) , (37)

where

e(mk) = 7rD(mk) (38)

with 6 a random number falling uniformly in the interval [-1, 1], and D(m, k) takes on the value
zero when an information signal is present for the kth sine wave and one otherwise. This detection
is performed _by comparing the instantaneous energy in each band with a threshold derived from
a running average energy. This approach and its derivatives have shown promise in preserving the
background noise character while keeping the desirable properties of the time-scaled information
signal. More extensive evaluation and alternative structures for both background preservation and
improved temporal resolution of the sine-wave modification system are given in Quatieri, Dunn,
McAulay, and Hanna [15].

6.3 Joint Modification and Suppression

The flexibility of the sine-wave signal representation allows signal modification to be per-
formed jointly with interference suppression. From Equations (15) and (37), modification can be
performed using the sine-wave amplitudes and phases to which interference suppression has been
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applied. Figure 25(c) illustrates these joint operations in which the response of the closing stapler
is corrupted by the AM-FM interfering tone used in Figure 5.

6.4 Discussion

An advantage of the sine-wave framework for suppression is its straightforward integration
with signal modification schemes. A time-scale modification method was presented, but frequency
modifications are also being considered. One approach to preserving the character of the time-
scaled background was described. When applying interference suppression jointly with time-scale
modification, the method of preserving background can be integrated with the preservation method
developed in Section 3.5 for compensating a spectral null.
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7. SUMMARY AND FUTURE WORK

A new approach to interference suppression has been developed to enhance the audibility of
acoustic signals. The technique is applicable to single as well as multiple AM-FM tone suppression
and is robust in complex backgrounds. Because the approach was developed in the framework of
sine-wave analysis/synthesis, the suppression can be integrated with signal enhancement by slow-
motion audio replay. This technique is one of a class of signal modifications being developed,
including rapid audio scanning and sine-wave frequency manipulations. Random backgrounds are
approximately preserved with either suppression or modification by appropriate estimation and
manipulation of sine-wave components, a property that is essential for minimizing false detection
of information signals. Finally, it was shown that interference suppression on multichannels prior
to beamforming enhances beamformer performance. Although significant audibility gains were
achieved, much remains to be accomplished. Important directions were discussed throughout the
report; an overview of these future efforts is summarized next.

Selection of the Analysis Window: One unresolved area is the selection of an "optimal"
window duration over which to perform suppression. Ideally, the window duration as well as other
algorithm parameters should be tailored to the characteristics of the interference and information
signals, for example, a slowly or rapidly varying FM, a sharp or gradual onset, and the number
and orientation of tonal components. Although Appendix D formulates certain informal rules for
this selection, a more rigorous approach awaits.

AM-FM Discontinuities: Related to the selection of the analysis window duration is the
problem of discontinuity in AM and FM. In a real-world situation, the AM and FM (and their
derivatives) of the interference signal may be characterized by abrupt changes, as in a pulsed siren
or the sudden change of ice movement. These discontinuities introduced into the interfering signal
violate the assumed model because the signal under the analysis window is not accurately modeled
by a linear AM-FM signal, making both parameter estimation and interference subtraction prone to
error and resulting in artifacts, which may be misinterpreted as information signals. One approach
to reducing these effects is to adapt the analysis window to the interference by shifting the analysis
window so that stationary regions of the interfering signal lie within its extent. One approach to
selecting such regions is proposed in Appendix E.

Background Preservation: Another area for future work is the continued development of
methods to reconstruct the background signal- in regions where the suppression algorithm results
in spectral nulls; such spectral reconstruction improves both aural and visual displays. Alternative
methods of spectral extrapolation should be considered, such as white-noise driven synthesis and
methods in the style of band-limited extrapolation. Another remaining problem is integrating de-
tection (of the information signal) with determining the appropriate time-frequency extrapolation.

Suppression in Presence of Information Signal: A thorough evaluation of the algorithm
in the presence of information signals has not been performed, only in the presence of noise. In
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this context, it may be of interest to "close the loop": after suppression, subtract the information

signal estimate from the received signal and then repeat the least-squares parameter estimation.

Computational Complexity: To make the algorithm feasible, it is necessary to reduce the

complexity of the iterative technique that solves the least-squares parameter estimation problem

and is the dominant computational burden within the suppression algorithm.
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APPENDIX A
State of the Art

A.1 Estimation of Linear FM

A number of techniques exist for estimating parameters of an AM-FM tone with linear FM
and constant amplitude. This overview provides a flavor of the state of the art. A more exhaustive
tutorial can-be found in Boashash [8].

Bello [16]: A maximum-likelihood method was proposed for estimating Doppler delay (chirp
phase offset), Doppler (chirp center frequency), and Doppler rate (chirp frequency sweep rate) in
radar returns. A calculation was made of the Cramer-Rao variance bounds for these estimates. Bello
argued that under certain conditions, the maximum-likelihood estimate is close to the minimum
variance (least-squares error) estimate. Abatzoglou [17] applied Newton's method to find the peak
in the maximum-likelihood function. The procedure uses a coarse search followed by a fine search
via Newton's method. With moderate frequency rates the method breaks down at about a 15-dB
SNR, above which the Cramer-Rao bound is aproximately achieved.

Rao and Taylor [18]: A class of techniques estimates instantaneous frequency from the
peak in numerous time-frequency distributions; for example, a coarse estimate of a time-varying
frequency modulation can be obtained by tracking the peak in the STFTM. Rao and Taylor have
shown that the peak in the Wigner-Ville time-frequency distribution results in an instantaneous
frequency estimation that is optimal for linear FM signals with high to moderate SNR. This method,
however, degrades significantly at low SNR.

Djuric and Kay [19]: An estimate of the chirp phase was made using a parametric repre-
sentation of the phase (i.e., in terms of phase offset, frequency, and frequency sweep). Least-squares
estimation of the phase is performed (with respect to the unknown three parameters) not on the
waveform, but on the phase-an important distinction from earlier methods. This procedure im-
plies that the phase must be unwrapped prior to estimation. Phase unwrapping puts constraints on
the accuracy of the frequency rate estimate, especially in noise. Because a large frequency rate and
large noise can result in rapid phase jumps greater than 21r, ambiguity in the unwrapping process
can result. For moderate frequency rates, the procedure breaks down at an SNR of about 10 dB,
above which the Cramer-Rao bound is approximately obtained.

A.2 FM Interference Rejection

This section describes a number of techniques for rejecting FM tonal interference. As with
Section A.1, this overview provides a flavor of the state of the art and not an exhaustive review.

Widrow [20]: An adaptive finite-impulse response (FIR) notch filter was derived using the
LMS algorithm, which adapts the FIR filter coefficients as a function of time. This method requires
first, explicitly estimating the frequency of the interference (i.e., obtaining a reference frequency)
and second, implementing a notch filter at that interference. The method is capable of tracking very
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slowly varying frequency interferences (FM) by adaptively tuning the notch filter (with a center
frequency at the reference frequency) and can be generalized to multiple frequencies [4].

Rao and Peng [5]: An infinite impulse response (IIR) tracking notch filter was derived
to estimate the coefficients using a Gauss-Newton algorithm. This approach is porported to have
greater efficiency than adaptive FIR notch filters. Approximate and simple closed-form results
were derived for the tracking behavior of a second-order notch filter. In particular, for very slow
frequency variations (FM) in the signal, the behavior of the adapted filter coefficients can be studied
as a solution to a differential equation.

Wulich, Plotkin, Swarny [21]: The problem addressed is that of estimating the parameters
of a sine (e.g., amplitude and phase offset) in the presence of a closely spaced FM interference with
fast frequency modulation. A discrete-time differential equation is formulated as a notch filter for
FM signals of an arbitrary modulating function. The coefficients of the differential equation are a
function of the instantaneous frequency of the FM estimated using a phase locked loop. (A fixed
notch filter is first applied to remove a desired sine signal under the assumption that its frequency
is known--clearly not practical for wideband signals.) The system was demonstrated at a 30-dB
FM INR. This method is claimed to be more effective than linear FIR or IIR adaptive filtering, and
it can be improved by warping the time axis according to the instantaneous frequency estimate,
resulting in a tone without FM. A notch is then applied to the constant-frequency tone in the new
time axis and the inverse operation is applied to obtain the enhanced signal [6].
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APPENDIX B
Complex Suppression with Coarse Estimation

This appendix compares interference parameter estimation using the Powell least-mean-
squared (PLMS) algorithm [9,10] with the discrete Fourier transform (DFT) approach (using the
maximum spectral value and associated parameter estimates as derived in Section 3.1).19 The inter-
ference signal used in this experiment is a tone with a sinusoidally varying instantaneous frequency
w(t) = 1500±+ 400sin[2ir(O.532)t] (so that the frequency comprises a center frequency of 1500 Hz
with a swing of 400 Hz and a maximum slope of about 1500 Hz/s) and a sinusoidally varying
amplitude A(t) = 1 + 0.2sin[2ir(O.617)t] (so that the amplitude comprises a constant of unity with
a swing of 0.2 and a maximum amplitude slope of about 0.6/s). Because these modulations were
selected to avoid regularities in the waveform, and because the interference does not strictly follow
our short-time linear assumption, it provides a good test of the suppression algorithm. Analysis
parameters were a 10-ms Hamming window, a 4-ms frame, and a 2048-point DFT. As illustrated in
Table B-i, the PLMS method is clearly preferred, yielding a higher suppression ratio whether using
magnitude-only or complex subtraction. In addition, as expected the segmental SNR improves with
the refined suppression; however, the comparison of the magnitude-only and complex suppression
must be considered with care due to the presence of interference residual.

TABLE B-1

DFT versus PLIMS Parameter E. timation
Interference Parameter Coarse Refined

Estimation Method (DFT) (PLMS)

Suppression Method Magnitude Complex Magnitude Complex

Suppression ratio 39.00 dB 18.70 dB 52.50 dB 38.80 dB

Segmental SNR 2.70 dB -14.30 dB 3.10 dB 2.80 dB

19Table B-1 always uses the DFT approach for Ao so that the comparison entails estimating As,
wo, ws, and Oo by either the DFT or PLMS approaches. Eliminating this fifth variable from the
search in the PLMS approach was found to significantly reduce computational time. Moreover, the
suppression gained by estimating Ao via the PLMS approach was marginal.
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APPENDIX C
Least-Squares Estimation

In solving for the parameters of the AM-FM tonal interference model, the error function is
defined

E = Z(w(n)[r(n) - , (C.1)
n

where w(n) is the analysis window, r(n) is the measurement, and i(n) is the interference. The error
e is minimized over the parameters of the model for i(n) given by

n 2
i(n) = (A0 + Asn)cos[wn + W,-T + 0o] (C.2)

where both the amplitude and frequency are modeled by a linear trajectory. The highly nonlinear
problem of minimizing E with five free parameters can be solved with various well-established iter-
ative methods [8,10]. One possibility is to perform an exhaustive search over a plausible parameter
range; having a coarse initial estimate of the parameters allows defining such a parmeter range.
Although this approach is typically computationally intractable, it does provide insight into the
error surface associated with Equation (C.2). For example, when the parameters Ao, A., and wL
in Equation (C.2) are held fixed, and the frequency w0 and phase offset 0 o vary around a coarse
estimate (derived from the peak frequency), then the error surface (locally) is found to take on an
approximate "quadratic bowl" shape. A similar property was found when varying the frequency
sweep w, and phase offset 0o, while holding the remaining parameters fixed.

This observation motivates an iterative gradient descent procedure for minimization [20]. A
problem arises, however, in this approach due to the need of computing derivatives (an intensive
operation) and a feedback gain factor that must guarantee stability of the iterative descent under
a variety of .conditions. An alternative method is the Powell iterative method [9,10], which was
selected for its computational ease and relatively rapid convergence; it requires neither the direct
computation of derivatives nor a gain factor.

For the single-tone case, the starting point in the Powell method uses the coarse parameter
estimates derived in Section 3.1. With this starting point, the iteration converges rather quickly
(typically 5 with a maximum of about 20 iterations) to the desired local mimimum. As a demon-
stration of the robustness of the algorithm, the parameter accuracy of the least-mean-squared error
estimation in the presence of background noise [(i.e., b(n) in Equation (7)] is shown in Figure C-1.
These measurements were made by comparing the known parameters of a synthetic interference
signal (a linear FM sweep with constant amplitude, wo = 1000 Hz, and wS=1000 Hz/s) with the pa-
rameters as measured in the presence of white Gaussian noise. A 10-ms Hamming window, a 4-ms
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frame, and a 2048-point DFT were used. As seen in Figure C-1, the iterative least-squares method
breaks down at an SNR of about 0 dB (i.e., where the knee in the curve occurs). With multiple
tones, again using initial coarse estimates derived in Section 3.1, the Powell method was found to
have properties similar to the single-tone case when each AM-FM tone is removed independently.
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Figure C-1. Mean-squared estimation error (MSEE) versus INR for (a) 0,,, (b) wo, and
(c)NL.
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APPENDIX D
Analysis Window Selection

The purpose of this appendix is to give a flavor for the considerations required in the se-
lection of the the analysis window length used in the suppression algorithms. This study was
performed in the context of the overlap-add framework because window selection does not effect
the reconstruction of the information signal (the overlap-add analysis/synthesis being an identity
system). Similar considerations will hold for the sine-wave framework with respect to suppression;
however, unlike the overlap-add framework, the window length must be considered with respect to
the reconstruction of the information signal because as window length increases, time resolution
decreases.

The goal of this study is to select a window duration that maximizes performance of the
suppression algorithm while minimizing artifacts that might be introduced into the background.
A measure P" power removed was defined as the ratio of the average power in the signal to the
average powtc in the processed signal. In numerous examples with this measure, it was observed
that the power removed decreases as the length of the analysis window increases. Spectrogram
analysis of the processed signals, however, revealed that interference suppression and preservation
of the background spectrum are generally improved when the analysis window length increases.

To help isolate the cause of this apparent discrepancy, a controlled experiment was designed. A
synthetic linear-FM interference signal was generated, comprising a chirp and four harmonics (650-
Hz fundamental frequency with a 40-Hz/s linear sweep) with constant amplitude. White Gaussian
noise was added at a 10-dB interference-to-noise level. 20 Figure D-1 shows that the power removed
by the suppression algorithm decreases as the analysis window duration increases. The apparent
contradiction is resolved by observing that the power removed from the received signal is due not
only to the interference, but also to the background noise in the neighborhood of the frequency of
the interference. The frequency band over which the noise is removed increases as the length of the
analysis window decreases, which is consistent with the parameter estimatmr in Section 3 yielding
a biased estimate of the background spectrum, forcing it to zero in the vicinity of the interfering
chirp frequency. The suppression algorithm thus nulls the spectrum of the received signal in this
region. As the duration of the analysis window decreases, the region over which the spectrum is
nulled may increase; this nulling may be exacerbated by the accuracy of the interference parameter
estimates decreasing as the window length decreases.

A third experiment was performed to verify this observation. The parameters of the synthetic
interference were estimated in the presence of the white Gaussian noise background, and an estimate
of the interference was reconstructed from the parameter estimates. The estimate of the interference

201nterference-to-noise level is defined as the ratio of the power in the interference to the power in
the noise.
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Figure D-1. Power removed from a synthetic signal unth respect to analysis uwndow
length. The signal was a synthetic linear-FM with four harmonics and a white Gaus-
sian noise background.

was then subtracted from the synthetic interference (without the noise present) to form a residual
signal. A measure of interference suppression was defined as the ratio of the power in this residual
signal to the power in the synthetic interference (the earlier defined suppression ratio). Figure D-2
is a plot of interference suppression versus analysis window length, demonstrating that interference
suppression does indeed increase as the analysis window length increases.
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Figure D-2. Suppression of a linear-FM interference with four harmonics and a white
Gaussian noise background with respect to analysis window length.

These experiments indicate that the "optimal" analysis window is the longest possible. This
selection achieves a maximum degree of suppression and reduces background artifacts by decreasing
the width of the spectral nulls; however, one must also consider that a long analysis window may
lead to a data segment that violates the current linear-FM model. For rapidly varving FM, as well
as for signals with abrupt onsets and offsets, the actual interference only approximately matches

60



the model, and this approximation improves if the analysis window is shorter. Consequently, a
Hamming window of duration in the range 5 to 100 ms was generally chosen. The selection is a
function of the characteristics of the specific data class.
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APPENDIX E
Tracking Abrupt Frequency Changes

To account for onsets and offsets of the interference signal, as well as rapid variations in the
AM and FM (which violate the linear AM and FM model), the analysis window duration should
be made adaptive. One approach to achieve this adaptivity is first to track these changes and
then shift the analysis window to encompass a quasi-stationary region of the interference. A new
method for tracking such changes based on an "instantaneous" energy operator proposed by Teager
[22-251 is being developed. The operatcr, representing the energy of a simple harmonic oscillator
and originally developed in continuous timc, has a discrete-time counterpart; a function of this
discrete operator yields an estimate of the AM and FM of a signal using five time samples and thus
has excellent time resoiution. An example of the time resolution of the algorithm is illustrated in
Figure E-1, where an abrupt change in a sine-wave frequency is tracked to within a few samples.
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Figure E-1. Instantaneous frequency tracking using Teager operator: (a) waveform and
(b) FM estimate.

This frequency tracker can be applied to the siren and erratic ice interference investigated
in Section 4, both of which are characterized by abrubt change in FM. Figure E-2 shows the FM
estimate of the first harmonic of the siren in the region of abrupt change as measured by the new
operator; the frequency trajectory is characterized by a repeated discontinuity in its derivative,
which violates the assumed model. Figure E-3 shows evidence of rapid frequency change of the
second har! ionic (obtained by bandpass filtering) in the erratic ice example of Section 4.3. In this
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case it appears that the frequency change is not only abrupt at a specific time instant, but exhibits
rapid oscillatory behavior prior to the change.21 Given that the abrupt change may correspond to
the slippage of two rubbing ice plates, the oscillatory frequency behavior may be a result of tension
between the plates prior to the slippage. This rapid oscillation in FM (roughly four or five cycles
over the duration of a 10-ms analysis window) violates the linear-FM model and may explain the
increase in interference residual observed in the region of the abrupt frequency change.
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Figure E-2. Instantaneous frequency of first harmonic of siren using Teager operator.

21A more rigorous development of this approach requires showing that the observed frequency
variations are not significantly influenced by the background noise.
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Figure E-3. Measuring abrupt frequency changes in ice using Teager operator: (a) spec-
trogram of ice, (b) bandpass-filtered second harmonic, and (c) FM estimate.
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