\ -4

Form Approved
AD-A285 111 NTATION PAGE
OFPM No.
T TR TR
Ik e I 10 [A ated 10 average 1 hour per responsa, indluding 1ha bMe for “eviewing NStICtIONS. $earching exstng data
Ll g el Aol 5, K wing the collecion of tformaucn. Send commants regading th s burder. to Washington Heacquaners
15 Jeflerson Davis Highway, Sutte 1204, Ariingon, VA 22202-4302, anc to the Oftice of Intormauon ano
n, DC 20503
1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES

4. TITLE AND Compiler:VADS PowerPC SELF, Product #2100-01445, Version
6.2
Host/Target: 1BM PS/6000 Model 250 (under AlIX 3.2.5)

6. AUTHORS:

Wright-Patterson AFB, Dayton, OH

5. FUNDING

7. PERFORMING ORGANIZATION NAME (S) AND

Ada Validating Facility, Language Contro! Facility ASB/SCEL, Building 676, Rm.
135

Wright-Patterson AFB, Dayton, O 45433

8. PERFORMING
ORGANIZATION

9. SPONSORING/MONITORING AGENCY NAME(S) AND
Ada Joint Program Office, Defense Information System Agency
Code TXEA, 701 S. Courthouse Rd., Arlingion, VA

22204-2199

10. SPCNSORING/MONITORING
AGENCY

11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILAB!ILITY: Approved for public release; distribution
unlirited

12b. DRISTRIBUTION

13. (Maximum 200

Rational Software Corporation, 940630W1.11365

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary

Report, Ada Compiler Val. Capability Val. Testing, Ada Val. Office, Ada Val. Facility

ANSI/Mil-STD-1815A

15. NUMBER OF

16. PRICE
17 SECURITY 18 SECURITY 19. SECURITY 20. LIMITATION OF
CLASS!FICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN

| Y ORIV IEUF Y

(.o . ."14.4395

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 30 June 1994.

Compiler Name and Version: VADS PowerPC SFLF,
Product Number: 2100-91443, Version 6.2

Host Computer System: IBM RS/6000 Model 250
under AIX 3.2.5

Target Computer System: Same as host
Customer Agreement Number: 94-05-12-RAT

See section 3.1 for any additional information about the testing environment.
As a result of this validation effort, Validation Certificate 340639W1.11365
is awarded to Rational Software Corporation. This certificate expires two
y:ars after MIL-STD-1815B is approved by ANSI.
This report has been reviewed and is approved.

TN

E:E Vaélggt%on Facility

Dale E. Lange

Technical Director

645 CCSG/sCsL

Wright-Patterson AFB OH 45433-5707

SR
i Accewsiou Por
| RTTS c2agg

Lyt Lz |
Lo v R | D
Ja .
Dictector, ——— e e]
Defense Information Systems Agency,
Center for Information Management

AVF Control Number: AVF-VSR-593.0694
Date VSR Completec: July 21, 1994
94-05-12-RAT

Ada CCMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 940630W1.11365
Rational Software Corporation
VADS PowerPC SELF, Product Number: 2100-01443, Version 6.2
IRM RS/6000 Model 250 under AIX 3.2.5

(Final)

Prepared By:
Ada validation Facility
645 CCSG/SCSL
Wright-Patterscn AFB OH 45433-5707

DIIC QUALITY INSPE(TED 3

94 9 28 085

Oy
" Y94-31048

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 30 June 1994.

Compiler Name and Version: VADS PowerPC SELF,
Product Number: 2100-01443, version 6.2

Host “cmputer System: IBM RS/6000 Model 250
under AIX 3.2.5

Target Computer System: Sane as host

Customer Agreement Number: 94-05~12-RAT

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940630W1.11365
is awarded to Rational Software Corporatiori. This certificate expires two
years after MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

QA0 ¢ D
\HSH N\ g R
Ada validation Facility O
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

[\ LORP R S Alsn

P a g’f on Organization

Directory \Conputer and Software Engineering Division
Institute Yor Defense Analyses

Alexandria VA 22311

Ada Joint Program Office
Donald J. Reifer
Director, AJPO

Defense Information Systems Agency,
Center for Information Managemerit

ATTACHMENT I

DECLARATION CF CONFORMANCE
Customer: Rational Software Corporation

Ada Validation Facility: 645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

ACVC Version: 1.11
Ada Implementation:

Compiler Name and Version: VADS PowerPC SELF, Version 6.2
Produc: # 2100 01443

Host Computer System: IBM RS/6000 Model 250 (AIX 3.2.95)

Target Computer System: IBM RS.’6000 Model 250 (AIX 3.2.5)

Customer’s Declaration:
(I/we), the undersigned, declare that [I/wel have no
knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation
listed above.

\
54‘%/ ('ﬁ',qv..__./ Date: b/@/Q(/

Stephen Zeigler

1600 N W Compton Drive
Suite 357

Beaverton, Cregon 97006

[

E
3

oL
iz Lol ok

f

TABLE OF CONTENTS

?

C INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPOR![.
ACVCTFS'I‘CIASSES..............
DEFINITION OF TERMS . .

. .
Bw o

¢ .

. » . . e ® o s e * e

IMPLEMENTATION DEPENDENCIES

INAPPLICABLE TESTS.« « « « ¢« + « « .

P
W B

PROCESSING INFORMATION

TESTING ENVIRONMENT « . « .« . .
SUMMARY OF TEST RESULTS

w W w w (S SN 8 (8] | ol ool ol o

. s .
W N

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

TEST MODIFICATIONS. . . +. & ¢ ¢ ¢ o o ¢« o o o »

CHAPTER 1

INTI.ODUCTION

The Ada implementation described above was tested according to the Ada
Valiuation Procedures [Pro92] against the Ada Standard (Ada83) using the
current Ada Compiler validation Capability (ACVC). This validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide {UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the naticnal luws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth ir this report are
accurate and coumplete, or that the subject implementation has no
nonconformities to the Ada Standard other than those prestnted. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service ¢
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the : .lidation test results should be
directed to the AVF which performed this validation or to:

Als Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandyia VA 22311-1772

i-1

INTRODUCTION

1.2 REFERENCES

(Ada83) Reference Manual for the Ada Programming Lang;g%e,
ANSI MIL-STD-181%A, | ~ uary ¥ and ISO -1387.

{Pro92) Ada Compiler vValidation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UG89) Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it helongs Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packay«s REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
cptimizations allowed by the Ada Standard that would Circumvent & tost
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that u.ll violations of
tha Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not oe flagged illegal by the compiler. This behavior is
also verified.
L

Class L tests check that an Ada implementation correctly detects violation of
the Ada sStandard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation~dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the avr,
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’'s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program cuidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part cf the certification body that provides technical
Validation quidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version,
an Ada

Implementation .
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution cf the program; executes user-written or
user-desiynated programs; performs user—designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

INTRODUCTION
Conformity

Qustomer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

150

LRM

Operating
System

Target
Computer
System

validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for which
validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test cbjectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The ada standard, or Language Reference Manual, rublished as
ANSI/ MIL-STD-1815A-1983 and IS0 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implenentations ave possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

2An Ada implementation that has been validated successfully
either by AVF testing or by registration [PreS2]).

The process of checking the conformity of an Ada compiler to

the Ada programming language and of 1ssu1ng a certificate for
this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVD or the AVF, The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507k
C35507L C35507N C355070 €35507p C355081 C355087
€35508M C15508N C35702A Cc35702B C37310A B41308B
C43004A C45114A C45346A C45612A 456128 C45512C
C45651A C46022A B45008A B45006E AS4002A CESe06n
AT4006A C74308A B8302zB B83022H B83025E B83025D
C83026A B83026B C83041A B85001L CB86001F C94021Aa
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CcCl2z3a BC1226A CC1226B BC30098B BD1B02B BD1BO6A
AD1BO8A BD2A02A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A

CD4022D JD4024B CD4024C CD4024D CD4031A CD4051D
CD511lA CD7004C FD7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B ADT206A BDB0O2A BD8B004C
CD9005A CDS005B CDA201E CE21071 CE2117A CE2117B

CE2119B CE22(05B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A

CE3814a CE3902B .

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may be
suppcrted by documents issued by the 1SO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

IMPLEMENTATION DEPENDENCILZS

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..72 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

The following 20 tests check for the predefined type LONG INTEGER; for
thic implementation, there is no such type:

C35404C Cc4%5231¢C C453%4C C45411C C€45412C
C45502¢C C45503C €45504C C45504F C45611¢C
C45612C C45614cC C45631C C45632C B52004D
C55B07A B55B99C B86001W €86006C CD7101F

C35713C, BB6001U, and CBED0EG check for the predefined type LONG FLOAT;
for this implementation, there is no such type.

C35713D and BS6001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST, FIOAT'LAST may be used as a range
constraint in a floating-point type declaration; for hic
implementation, that range exceeds the range of safe numbers of the

largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (B tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper excepdion is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; tor this implementation, MACHINE OVERFLOWS is TRUE.

1
BB6001Y uses the name of a predefined fixed-point type cther than type
DURATION; for this implementation, there is no such type.

C36005B uses values of type DURATION’s base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size

for a floating-point type; this implementation does not support such
sizes.

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2AS4E, CD2AB4I..J (2 tests), and CD2AB40 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT _FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO
CE2102I CREATE IN FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN_FILE SEQUENTIAL IO
CE2102P OPEN OUT_FILE SEQUENTIAL_10
CE2102Q RESET OUT _FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT .0
CE2102V OPEN OUT_FILE DIRECT IO
CE2102w RESET OUT_FILE DIRECT IO
CE31028 CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE — TEXT_I0
CE3102I CREATE OUT_FILE TEXT 10
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUT FILE TEXT IO.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external seguential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
externr' direct file is exceeded; this implementation cannot restrict
file capacity.

1
CE3304A checks that SET_LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inappropriate value for the external file; there are
no inappropriate values for this implementation.

CE34138 checks that PAGE raises LAYOUT ERROR when the value of the page
rumber exceeds COUNT’LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impractical.

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 21 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009Aa B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC300%B BD2303A BD2D03A
BD4003A

A35801FE was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST as
the range constraint of a floating-point type declaration because the bounds
lie ocutside of the range of safe numbers (cf. LRM 3.5.7:12).

CD1009A, CD10091, CD1C03a, and CD2A31A..C were graded passed by Evaluation
Modification as directed by the AVO. These tests use instantiations of the
support procedure LENGTH CHECK, which uses Unchecked Conversion according to
the interpretation given in AI-00590. The AVO ruled that this interpretation
is not binding under ACVC 1.11; the tests are ruled to be passed if they
produce Failed messages only from the instances of LENGTH CHECK—i.e, the
allowed Report.Failed messages have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE_ID> FAILED."

AD9001B was graded passed by Test Modification as directed by the AVO. This
test checks that no bodies are required for interfaced subprograms; among the
procedures that it uses is one with a parameter of mode OUT (line 36). This
implemenation does not support pragma INTERFACE for procedures with
parameters of mode QUT. The test was modified by commenting o.: line 36 and
40; the modified test was passed.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The . Ada implementaticn tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Sam Quirang

Rational Software Corporation
1600 NW Compton Dr,, Suite 357
Aloha, OR 97006-1992

(503) 690-1116

Testing of this Ada implementation was conducted at the customer’s site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Pragramming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92]. '

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that reguire a floating-point
precision that exceeds the implementation’s maximum precision (item e; see
section 2.2), and those that depend on the support cf a file system — if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and £, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3796

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 69
d) Non-Processed 1/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 270 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see c2rction 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun SPARCcenter 2000 and then copied to the
host computer system.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked and executed on the host computer system.
The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect
-W Suppress warning diagnostics.
Test outjut, compiler and 1lirker 1listings, and job lcgs were captured on

magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

[

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG8%]. The
paraneter values are presented in two tables., The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN—also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value
$MAX IN LEN 499 - Value of V
$8IG ID1 (1..v-1 => 'A’", V= '1")
$BIG 1D2 (1..V-1 => '8!, vV &> 727)
$BIG 1D3 (1..v/2 => 'A’") & '3’ &
(1..V-1-v/2 => 'A’)
$BIG_ID4 (1..v/2 => 'a’) & "4’ &

: (1..V-1-v/2 => 'A’)
$BIG_INT LIT (1..v=3 => '0’) & "298" -
$BIG REAL LIT (1..v-5 => 0') & "690.0"
$BIG_STRINGI U og (1..V/2 > A7) & '
$BIG_STRING2 Frrog (1..V-1-V/2 w> 'AY) 4 71 &
$BLANKS (1..v=-20 => ')

$MAX LEN INT BASED LITERAL
“2:" & (1..V-5 = r0’) & "11:"

SMAX LEN REAL BASED LITERAL
"16:" & (1..,Vv=7 =« '0') & "F.E:"

A-1l

v— —

W

MACRO PARAMETERS
$MAX STRING LITERAL
The following table lists all

respective values.

Macro Parameter

g (1..V-2 = A" &'
of the other macro parameters and their

Macro Value

$ACC_SIZE
SALIGMENT
SCOUNT_LAST
$DEFAULT MEM SIZE
$DEFAULT_STOR_UNIT
$DEFAULT SYS_NAME
$DELTA DOC
SENTRY_ADDRESS
SENTRY_ADDRESS1
$TNTRY_ADDRESS2
SFIELD LAST
SFILE_TERMINATOR
SFIXED NAME
SFLOAT NAME
SFORM_STRING

SFORM_STRING2

32

4

2147483647

16777216

8

POWER_SELF
0.0000000004566612673077392578125
SYSTEM."+" (16440%)
SYSTEM."+" (164804)
SYSIEM. "+" {16%#1004)
2147483647

NO_SUCH TYPE
NO_SUCH_TYPE

"CANNOT_RESTRICT FILE CAPACITY"

SGREATER THAN DURATION .

100000.0

SGREATER THAN DURATION BASE LAST

T0000T00.0

$GREATER THAN FLOAT BASE LAST

1.8E+308

$GREATER THAN FLOAT SAFE LARGE
5.0E307

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE_LARGE

$HIGH PRICRITY

9.0E37
99

SILLEGAL EXTERNAL FILE NAMEl

/illegal/file name/2}]$$FILEL.CAT

$ILLEGAL EXTERNAL FILE NAME2

7/illegal/file name,/2})$$FILE2.DAT

$INAPPROPRIATE_LINE LENGTH

-1

$INAPPROFRIATE PAGE LENGTH

$INCLUDE_PRAGMAL
$INCLUDE_PRAGMA2
$INTEGER FIRST
$INTEGER LAST
$INTEGER_LAST PLUS 1
SINTERFACE LANGUAGE

SLESS_THAN DURATION

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("828006D1.TST")
-2147483648

2147483647

2147483648

C

-100000.0

SLESS_THAN DURATION BASE FIRST

SLINE_TERMINATOR

$LOW_PRIORITY

-10000000.0
ASCII.LF
¥

$MATHINE_CODE_STATEMENT

$MACHINE CODE_TYPE
$MANTISSA DOC

$MAX DIGITS

$MAX INT
$MAX INT PLUS 1
$MIN_INT

SNAME

CODE_ 0’ (OP => NOP);
CODE_0 ‘
31

15

2147483647

2147482648

2147483648

TINY INTEGER

A-3

MACRO PARAMETERS

$NAMF, LIST POWER_SELF
SNAME SPECIFICATIONl ,usr/acvcl.ll/c/e/X2120A
SNAME_SPECIFICATION2 ,usr/acvcl.ll/c/e/X2120B

SNAME SPECIFICATION3 ,usrs/acvcl.il/c/e/X3119A

SNEG_BASED_INT 164FO00000E#
SNEW_MEM_SIZE 16777216

$NEW_STOR UNIT 8

SNEW_SYS_NAME POWER_SELF
$PAGE_TERMINATOR ASCII.LF & ASCII.FF

$RECORD DEFINITION RECORD SUBP: OPERAND; END RECORD;
$RECORD_NAME CODE 0

$TASK SIZE 32

$TASK STORAGE SIZE 2048

$TICK 0.01

$VARIABLE ADDRESS VAR 1’ADDRESS

$VARIABLE ADDRESS1 VAR 2'ADDRESS

$VARIABLE ADDRESS2 VAR _3'ADDRESS

SYOUR PRAGMA PRAGMA PASSIVE

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation,
Appencdix, are provided by the customer.
references

report.

as described in this
Unless specifically noted otherwise,
in this appendix are to compiler documentation and not to this

COMPILATION SYSTEM OFTIONS

ada Command Reference ada
ada - invoke the Ada compiler
Syntax

ada [options] [source_file]... [object _file.o}...

Arguments
object_file.o non-Ada object file names. These files will be passed
on to the linker and will be linked with the specified
Ada object files.
_options . options to the compiler. These are:

-A (disassemble) Disassemble the units in the source file after
compiling them. -A can be followed by arguments that further
define the disassembly display (e.g., -Aa, -Ab, -Ad, -Af,
‘Al' -As) .

a Add hexadecimal display of instruction bytes to
disassembly listingy.

Disassemble the unit body [default].

Print the data section (if present) as well.

Use the altermative format for ocutput.

Put the disassembly output in file "file name.das”
Disassemble the unit spec.

O ~MmAD

-a file name
{archive) Treat file name as an object archive file created
by ar. Since some archive files end with .a, -a is used to
distinguish archive files from Ada source files.

-Bstatic/dynamic (SPARCompiler Ada only)
(static) If static is indicated, the Ada program is compiled
and linked statically. The default is dynamic. -

-c suppress the control messages generated when pragma PAGE
and/or pragma LIST are encountered. 1

-D identifier type value
(define) Define an identifier of a specified type and value.

-DAl1.0

-pal.l

-DA2.0

g (architecture) Specify the architecture version the compiler
§

should generate code for. These options override the ARCHITECTURE
INFO directive (Default: ~DAl.1] (HP PA~RISC only)

~d (dependencies) Analyze for dependencies only. Do not do

B-2

COMPILATION SYSTEM OPTIONS

semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. The —d option is
used by a.make to establish dependencies among new files.
This option will attempt to do imports Ior any units
referenced from outer libraries. This should reduce
relocation and reduce user disk space usage.

~E

-E directory
(error output) Without a directory argument, ada processes
error messages using a.error and directs a brief message to
standard output; the raw error messages are left in
source file.err. If a directory name is given, the raw error
output” is placed in directory/source file.err. The file of
raw error messages can be used as input to a.error. Only
one -e or ~-E option should be used.

-e (error) Process compilaticn error messages using a.error and
send it to standard output. Only the source lines containing
errors are listed. Only one -~e or -E option should be used.

-Eferror file source file
(error) Process source file and place any error messages
in the file indicated by error_file. Note that there is
no space between the -Ef and error_file.

-El

-El directory
(error listing) Same as the -E option, except that a source
listing with errors is produced. Note that the source listing is
directed to standard out while the raw errors are placed in
source_file.err.

~e]l (error listing) Intersperse error messages among source
lines and direct to standard output.

-Elferror file source file '
(error listing) Sane as the -Ef option, except that & source
listing with errors is produced and directed to standard output.
The raw errors are written to error_file.

-ev (error vi(l)) Process syntax error messages usiny a.error,
embed them in the source file and call the environment editor
ERROR EDITOR. If ERROR EDITOR is defined, the environment
variable ERROR PATTERN should also be defined. ERROR_PFATTERN
is an editor search command that locates the first occurrence
of ‘4###’ in the error file. If no editor is specified, vi(l)
is invoked.

The value of the environment variable ERROR TABS, if set,
is used instead of the default tab settings (8).

~F (full DIANA) Do not trim the DIANA tres before output to
net files. To save disk space, the DIANA tree will be

B-3

COMPILATION SYSTEM OPTIONS

trimmed so that all pointers to nodes that did not involve
a subtree that define a symbol table will be nulled
(unless those ncdes are part of the body of an inline or
generic or certain other values needing to be retained for
the dekugging or compilation information). The trimming
generally removes initial values of variables and all
statements.

(GVAS) Display suggested values for the MIN GVAS_ADDR
and MAX GVAS ADDR INFO directives.

(keep) Keep the intermediate language (IL) file produced
by the compiler front end. The IL file will be placed in
the .objects directory with the file name Ada source.

-L library name

(library) Operate in VADS library lihrary name.
(Default: current working directory]

-1file abbreviation (VADSself only)

{1Ibrary search) This is an option passed to the 1d(1)
linker, telling it to search the specified library file.
(No space between the -1 and the file abbreviation.)

-M unit name

(main) Produce an executable program by linking the named
unit as the main program. unit name must already be
compiled. It must be either a parameterless procedure or
a paraneterless function returning an integer. The
executable program will be named a.out unless overridden
with the —-o option.

-M source file

(main)] Produce an executable program by compiling and
linking source file. The main unit of the program is
assumed tc be the root name of the file (for foo.a the
unit is foo). Only one file may be preceded by -M. The
executable program will be named a.out unless overridden
with the -o option,

(no code sharing) Compile all generic instantiations
without sharing code for their bodies. This option
overrides the SHARE BODY INFO directive and the SHARE CODE
or SHARE BODY pragmas.

(NX) Link with NX startup code and with the NX archive libraries.
This option is valid only if the -M option has also been invoked.
(Sun SPARC => Paragon only)

-0(0-9}

{optinize) Invoke the code optimizer. An optional digit
(there is no space hefore the digit) provides the level of
optimization. The default is -04.

B-4

COMPILATION SYSTEM OPTIONS

-0 full optimization
~00 no optimization
~0l copy propagation, constant folding, removing
dead variables, subsuming moves between scalar
variables
-02 add common subexpression elimination within
basic blocks
~03 add global common subexpression elimination
~04 add hoisting invariants from loops and address
optimizations
~05 add range optimizations, instruction scheduling
and one pass of reducing induction expressions
~06 no change
~07 add one more pass of induction expression reduction
-08 add one more pass of induction expression reduction
~09 add one more pass of induction expression
reduction and add hoisting expressions common to
the then and the else parts of if statements

Hoisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

Note that using the -00 option can alleviate some problems when
debugging. For example, using a higher level of optimization,
you may receive a message that a variable is no longer active o:
is not yet active. 1If you experience these problems, set the
optimization level to O using the -C0 copticn.

-0 executable file

-pP

(cutput) This option is to be used in conjunction with
the -M option. executable_file is the name of the executable
rather than the default, a.out (self) or a.vox (cross).

Invoke the Ada Preprocessor.

-R VADS library

~sh

~-T

(recompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of any that are out
of date. VADS library is the library in which the
recompilation is to occur. 1f it is not specified, the
recompilation occurs in the current working direétory.

(recreate) Recreate the library’s GVAS TABLE file. This option
reinitializes the file and exits. This allows recovery from
"GVAS exhausted"” without recompiling all the files in the library.

(suppress) Apply pragma SUPPRESS to the entire compilation
for all suppressible checks.

(show) Display the name of the tool executable but do not
execute it.

(timing) Print timing information for the compilation.

B-5

COMPILATION SYSTEM OPTIONS

-trb
(trace block) Generate code to trace entry into basic blocks and
calls and returns (for use with a.trace only)

~v (verbose) Print compiler version nunber, date and time of
compilation, name of file compiled, command input line,
total compilation time and error summary line. Storage usage
information about the object file is provided.

-w (warnirgs) Suppress warning diagnostics.
source_file name of the source file to be compiled.

Description

The ada command executes the Ada compiler and compiles the named Ada
source file, The file must reside in a VADS library directory. The
ada.lib fiie in this directory is modified after each Ada unit is
compiled.

By default, ada produces only object and net files. If the -M option
is used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the rain program,

For cross systems, the compiler generates object files compatible with
the host linker in VOX format. The VOX format is discussed in

A Al A A & i
Appendix A of thre Programmer’s Guide.

Non-Ada object files (.o files produced by a compiler for another

language) may be given as arguments to ada. These files will be pacsed
on to the linker and will be linked with the specified Ada object files.

Command line options méy be specified in any order but the order of
compilation and the order of the files to be passed to the linker can
be significant.

Several VADS compilers may be simultaneously available on & single
system. Because the ada command in any VADS_location/bin on a system
will execute the correct compiler components based upon visible
library directives, the option -sh is provided to prln* the name of
the components actually executed.

Program listings with a disassembly of machine code instructions
are generated by a.db or a.das.

NOTE: If two files of the same name from different directories are
compiled in the same ada library using the ~L option (even if the
contents and unit names are different), the second compilation will
overwrite the first. For example, the compilation of
/usr/directory2/foo.a -L fusr/vads/test will overwrite the
compilation of ,susr/directoryl/foo.a -L Susr/vads/test in the

VADS library ,usr/vads/test.

COMPILATION SYSTEM OPTIONS

NOTE: It is possible to specify the directory for temporary files by
setting the enviionment variable TMPDIR to the desired path. If TEMPDIR

is not set, /tmp is used. If the path specified by TMPDIR aoes not exist
or is not writeable, thz program exits with an error message to that effect.

Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the RM. Each RM reference includes a
section number and optionally, a paragraph number enclosed in
parentheses.

See Also

a.app, a.dss, a.db, a.error, a.info, a.ld, a.make, a.mklib, appendixf

LINKER OPTICNS

The linker options of this Ada implementation, as described in this Appendix,
are’

provided by the customer. Unless specifically noted otherwise,
references in this

avpendix are to lirker documentation and not to this
report.

COMPILATION SYSTEM OPTIONS

a.ld
a.ld -

Syntax

Command Reference a.ld

build an executable program from previously compiled units

a.ld [options) unit name [linker options]

Arguments

linker options

All arguments after unit name are passed to the linker.
library abbreviations or object files.

- options - options to the a.ld command. These are:

-DAal.0
-DAl.1l
~DA2.0

-Du

-Dx

~DX

(architecture) Specify the architecture version the compiler
should generate code for. These options override the ARCHITECTURE
INFO directive [Default: -DAl.1] (HP PA-RISC only)

(objects) Use partially linked objects instead of archives
as an intermediate file if the entire list of objects cannot
be passed to the linker in one invocation. This option is
useful because of limitations in the archiver on some hosts
(including ULTRIX, HP-UX and System V). (VADSself only)

(time) Displays how long each phase of the prelinking process
takes,
unit laist

(units) Traces the addition of indirect dependencies to the named
units.

(dependenzies) Displays the elaboration dependencies used each
time & unit is arbitrarily chosen for elaboration.

{debug) Debug memory overflow (use in cases wher'e linking
a large number of units causes the error message "local
symbo) overflow" to occur).

-E unit name

(elaborate) Elaborate unit_name as early in the elaboration
order as possible.

(files) Print a list of dependent files in order and suppress
linking.

(kecep) Do not delete the termorary file containing the list of
object files to link. 7This file is only present when many object

B-8

COMPILATION SYSTEM OPTIONS

files are being linked.

-L library name
(library) Collect information for linking in library name instead

of the current directory. However, place the executable in the
current directory.

-NX (NX) Link with NX startup copde and with the NX archive libraries.
(Sun SPARC => Paragon only)

-0 executable file

(output) Use the specified fielname as the name ~f the output
rather than the default a.out (self) or a.vox (cross).

-sh (show) Display the name of the tool executahle but do not
execute it.

~T (table) List the symbols in the elaboration table to standard
output.

~U (units) Print a list of dependent units in order and
suppress linking.

-v (verhose) Print the linker command before executing it.
-V (verify) Print the linker command but suppress execution.
-w (warnings) Suppress warning messages.

unit_name
nane of an Ada unit. It must name a non-generic subprogram.
If unit name is a function, it must return a value of the
type STANCARD.INTEGER. This integer result will be passed back
to the shell as the status code of the execution.

Description

a.ld collects the object files needed to make unit name a main
program and calls the 1d(1l) linker to link together &ll Adu and

other language objects required to produce an executable image in
a.out (self) or a.vox (cross). The utility uses the net files produced
by the Ada compiler to check dependency information. a.ld produces

an exception mapping table and a unit elaboration table and passes
this information to the linker. The elaboration list generated by

a.ld will not include library level packages that do not need
elaboration. Similarly, packages that contain no code that can raise
an exception will no longer have exception tables.

a.ld reads instructions for generating executables from the ada.lib
file in the VADS libraries on the search list. Besides information
generated by the compiler, these directives also include WITHn
directives that allow the automatic linking of object modules
compiled from other languages or Ada object modules not named

in context clauses in the Ada source. Any number of WITHn

B-9

COMPILATION SYSTEM OPTIONS

directives may be placed into a library but they must be
nunbered contiguously beginning at WITH1. The directives are
recorded in the library’s ada.lib file and have the following form.

WITHL:LINK:object file:
WITH2 :LINK:archive file:

WITHn direccives may be placed in the local Ada libraries or in
any VADS library on the search list.

A WITHn directive in a local VADS library or earlier on the
library search list will hide the same numbered WITHn directive
in a library later in the library search list.

Use the tool a.info to change or report library directives in
the current library.

For VADSself on Silicon Graphics Computer Systems, the
USE_LAST LINK INFO directive speeds relinking by retaining a list
of units, their types, seals and dependencies.

VADS location/bin/a.ld is a wrapper program that executes the
cerrect executahle based upon directives visible in the ada.lib
file. This permits multiple VADS compilers to exist <n the same
host. The -sh option prints the name of the actual executable file.

NOTE: It is possible to specify the directory for temmorary files by
setting the environment variable TMPDIR to the desired path If TIPDIR

is not set, /tmp is used. If the path specified by TMPDIR does not exist
or is not writeable, the program exits with an error message to that effect.

Files

a.out (self), a.vox (cross) default output file

.nets Ada DIANA net files directory
.Objects/* Ada object files
VADS_location/standard/»* startup and standard library routines

Diagnostics

Self-explanatory diagnostics are produced for missing files,
etc. Additional messages are produced bv the 1d linker!

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed inplementation dependencies correspo to
implementation-dependent pragmas, to certain machine-dependent conven...ns as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and nct to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix r, are:

package STA'.LARD is
type INTEGER is range -2147483648 .. 2147483647;
type TINY INTEGER is range -128 .. 127;
type SHORT INTEGER is range -32768 .. 32767;

type FLOAT is digits 15

range -1,79769313486231E+308 .. 1.79769313486231E+308;
type SHORT FLOAT is digits 6 range -3.40282E+38 .. 3,40282E+38;
type DURATION is delta 0.0001 range -214748.3648 .. 214748.3647;

APPENDIX F QF THE Ada STANDARD

APPENDIX F. Implementation-Dependent Characteristics

1. Implementaticn-Dependent Pragmas
1.1. INITIALIZE Pragma

Takes one of the identifiers STATIC or DYNAMIC as the single
argqument. This pragma is only allowed within a library-
level package spec or body. It specifies that all objects
in the package be initialized as requested by the pragma
(i.e. statically or dynamically). Only library-level
objacts are subjec: to static initialization; all objects
within procedures are always (by definition) dynamic. If
pragma INITIALIZE(STATIC) 1is used, and an object cannot be
initialized statically, code will be generated to initialize
the objsct and a warning message will be generated,

1.2, INLINE ONLY Pragma

The INLINE ONLY prasgma, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erronecusly makes an INLINE ONLY subpro—
gram recursive a warning message will be emitted and an
PROGRAM ERROR will be raised at run time.

1.3. BUILT_IN Pragma

The BUILT IN pragma is used in the implementation of some
predefined Ada packages, but provides no user access. It is’
used only to implement code bodies for which no actual Ada“
body can be provided, for example the MACHINE CODE package.

1.4. SHARE CODE Pragma ¢

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first arqument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit the pragma applies
to all instantiations of that generic. When the first argu-

C-2

APPENDIX F OF THE Ada STANDARD

ment is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic,
Wwhen the second argument is FALSE each instantiation will
get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has the same effect as SHARE CODE. It is
included for compatability with earlier versions of VADS.

i.5. NO_IMAGE Pragma

The pragma suppresses the generation of the image array used -7
for. the IMAGE attribute of enumeration types. Tnis elim =
inates the cverhead required to store the array in the exe- o
cutable inage. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAM_ERROR raised at run time.

1.6. EXTERNAL, NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram oOr
variable defined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.7. INTERFACE NAME Pragma

The INTERFACE NAME pragma takes the name of a a variable or -
subprogram defined in ancther language and allows it to be
referenced directly in Ada. The pragma will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link_argument. The pragma . f
is allowed at the place of a declarative item in a package S
specification and must apply to an object or subprogram
declared earlier in the same package specification. The 3
object must be declared as a scalar or an access type. The =y
object cannot be any of the following: '

a loop variable,

a constant,

an initialized variable,

an array, or

a record.

APPENDIX F OF THE Ada STANDARD

1.8, IMPLICIT CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment.. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.
The default is ON.

1.9. OPTIMIZE CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies whether the code should be optim-
ized by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.
2. Inplementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the
da M.

2.4. INTERFACE
T. s pragma supports cal's to ‘C’ and FORTRAN functions. The'
2da subprograms can be either functions or procedures. The
m=¢ of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTEM.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.
2.5. LIST

This pragma is implemented as described in Appendix B of the
Ada RM.

2.6. MEMORY SIZE

This pragma is recognized by the implementation. The imple-

Cc-4

APPENDIX F OF THE Ada STANDARD

mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.7. NON_REENTRANT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-
ately within a library package spec or body. It indicates
to the compiler that the subprogram will not be called
recursively allowing the compiler to perform specific optim-
izations. The pragma can be applied to a subprogram or a
set of overloaded subprograsm within a package spec or pack-
age body.

2.8. NOT ELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration pack~
age or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

Th

1s
E€nm
e T

pragma is recognized by the implementation but has no

[

2.10. PACK

This pragma will cause the compiler to choose a rnon-aligned
representation for composite types. It will not causes
obiects to be packed at the bit level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the .
Ada RM. .

2.12. PASSIVE
The pragma has three forms :

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHRE) ;
PRAGIA PASSIVL(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task
type declared imeediately within a library package spec or
body. The pragma directs the compiler to optimize certain
tasking operations. It is possible that the statements in a

Cc-5

APPENDIX F OF THE Ada STANDARD

task body will prevent the intended optimization, in these
cases a warning will be generated at compile time and will
raise TASKING_ERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the
Ada RM.

2.14. SHARED

This pragma is recognized by the implementation but has no
effect.

2.15. STORAGE UNIT

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.16, SUPPRESS

This pragma is implemented as described, except that
DIVISION CHECK and in some cases OVERFLOW CHECK cannot be
supressed.

2.17. SYSTEM NAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. P'REF

For a prefix that denotes an object, ¢ program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage units allocated toc P. For a subprogram, pack-
age, task unit, or label, it refers to the address of , the
machine code associated with the corresponding bedy or
statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this
attribute,

(For a package, task unit, or entry, the 'REF =zttribute is

c-6

APPENDIX F OI' THE Ada STANDARD
not supported.)

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique
task id associated with a task. The value of this attribute
is of the type ADDRESS in the package SYSTEM.

4. Specification Of Package SYSTEM

with UNSIGNED TYPLS;
package SYSTEM is

pragma suppress(ALL_CHECKS);
pragma suppress(EXCEPTION TABLES);
pragma not_elaborated;
type NAME is (~ower_self);
SYSTEM NAME : constant NAME := power_self;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 16_777 _216;

— System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAX_INT : constant := 2 147_483 647;
MAX DIGITS : constant := 15; -

MAX MANTISSA : constant := 31;

FINE DELTA : constant := 2.0%*(-31);
TICK : constant := 0.01;

— Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 ..99;

MAX REC SIZE : integer := 64*1024;

type ADDRESS is private; L
function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;

function ">="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<¢="(A: ADDRESS; B: ADDRESS) return SOOLEAN;

function "-" (A: ADDRESS; B: ADDRESS) return INTE SER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I1: INTEGER) return ADDRESS;

function "+" (I UNSIGNED_TYPES.UNSIGNEQ_INTEGER) return ADDRESS;

c-7

APPENDIX F OF THE Ada STANDARD

function MEMORY ADDRESS
(I: UNSTGNED TYPES.UNSIGNED INTEGER) return ADDRESS renames "+";

NO_ADDR : constant ADDRESS;

type TASK ID is private;
NO TASK ID : constant TASK 1D;

type PASSIVE TASK ID is private;
NO PASSIVE TASK ID : constant PASSIVE TASK_1D;

subtype SIG STATUS T is INTEGER;
SIG_STATUS_SIZE: constant = 4;

type PROGRAM 1D is private;
NO_PROGRAM _ ID : constant PROGRAM 1D;

type BYWE ORDER T is (
"LITTLE , ENDIAN,
BIG ENDIAN
) B
BYTE ORDER: constant BYTE ORDER T := BIG_ENDLAN;
type LONG ADDRESS is private;
NO_LONG ADDR : constant LONG ADDRESS;

function "+" {A: LOMGC ADDRESS; I: INTEGER) return LONG ADDRESS;
function "-" (A: I.ONG__ADDRESo, I: INTEGER) return I.ﬁv'G_ADDREZSS;

function MAKE LONG ADDRESS (A: ADDRESS) return LONG ADDRESS;
function LOCALIZE(A: LONG ADDRESS ; BYTE SIZE : INTEGER) return ADDRESS;
function STATION OF(A: LONG ADDRESS) return INTEGER;
— Internal RTS representation for day. If the calendar package is used,
— then, this is the julian day.
subtype DAY T is INTEGRR; i
—- Constants describing the confiquration of the CIFO ado-on product.
SUPPORTS_INVOCATION BY ADDRESS : constant BOOLEAN := TRUE;
SUPPORTS_PREELABORATION : constant BOOLEAN := TRUE;
MAKE ACCESS SUPPORTED : constant BCOLEAN := TRUE;

— Arguments to the CIFO pragma INTERRUPT TASK.
type INTERRUPT TASK KIND is (SIMPLE, SIGNALLING);

function RETURN ACDRESS return ADDRESS;

private

type ADDRESS is new UNSIGNED TYPEC.UNSIGNED INTEGER;

c-8

APPENDIX F OF THE Ada STANDARD

NO_ADDR : constant ADDRESS := 0;

pragma BUILT IN(">");
pragma BUILT IN("<");
pragma BUILT IN(">-")
pragma BUILT IN("<=");
pragma BUILT IN(" -");:
pragma BUILT IN("+");

-

type TASK iD is new UNSIG\IED TYPES. UNSIGNED INTEGER;
NO_TASK ID : constant TASK 1D := 0;

type PASSIVE TASK ID is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_PASSIVE TASK ID : consta:t PASSIVE TASK ID := 0;

) type PROGRAM ID is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_PROGRAM 1D : constant PROGRAM ID := 0;

type LONG ADDRESS is

RECORD
station : UNSIGNED TYPES.UNSIGNED INTEGER;
addr : ADDRESS;

END RECORD;

NO_LONG ADDK : constant LONG ADDRESS := (0, 0);

pragma BUILT IN(MAKE LONG ADDRESS);
pragma BUILT IN(LOCALIZE);
pragma BUILT IN(STATION OF);

pragma BUILT IN(RETURN ADDRESS);
end SYSTEM;
5. Restrictions On Representation Clauses
5.1. Pragma PACK ’

In the absence of pragma PACK record components are padded
so as to provide for efficient access by the target
hardware, pragma PACK applied to a record eliminate the pad-
ding where possible. Pragma PACK has no other effect on the
storage allocated for record components a record representa-
tion is reqguired.

5.2. Size Clauses

For scalar types a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation

c-S

APPENDIX F OF TIE Ada STANDARD

clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the component type 1is a
discrete type. An error will be issued if there is insuffi-
cient space allocated., The SIZE attribute is not supported
for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since
default initialization of a varjable requires evaluvation of
the variable address elaboration ordering requirements
prohibit inititalization of a variables which have address
clauses. The specified address indicates the physical
address associated with the variable.

5.4. Intefrupts

Interrupt entries are supported with the following interpre-
tation and restrictions:

An interrupt entry may not have any parameters.

A passive task that contains one or more interrupt entries
rmust always be trying to accept each interrupt entry, unless
it is handling the interrupt. The task must De executing
either an accept for the entry (if there is only one) or a
select statement where the interrupt entry accept alterna-
tive is open as defined by Ada RM 9.7.1(4). This is nut a
restriction on normal tasks (i.e., signal ISRs).

An interrupt acts as a conditional entry call in that inter-
rupts are not queued (see the last sentence of Ada RM
13.5.1(2) and 13.5.1(6)).

No additional requirements are imposed for a select state-
ment containing both a terminate alternative and an accept °
alternative for an interrupt entry (see Ada RM 13.5.1(3)).

Direct calls to an interrupt entry from another task are
allowed and are treated as a normal task rendezvous. .

Interrupts are not queued.

The address clause for an interrupt entry does not specify
the priority of the interrupt. It simply specifies the
interrupt vector number. For passive ISRs, the nnn of the
passive(interrupt,nnn) pragma specifies the interrupt prior-
ity of the task.

5.5. representation Attributes

APPENDIX F OF THE Ada STANDARD

The ADDRESS attribute is not supported for the £following
entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides
an assembly language irteriyace for the target machine. It
provides the necessary record type(s) needed in the code
statement, an enumeration type of all the opcode mneumonics,

a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as fol-
lows:

CODE n’(opcode, operand {, operand});
vhere n indicates the number of operands in the aggregate.
A special case arises for a variable number of operands.
The operands are listed within a subaggregate. The format
is as follows:

CODE N’ (opcode, (operand {, cperand}));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODE 0'(op => opcode);

The opcode must be an enumeration literal (i.e. it cannot be’
an object, attribute, or a rename).

An cperand can only be an entity defined in MACHINE_CODE: or
the 'REF attribute.

The arguments to any of the functions defined in
' MACHINE CODE must be static expressions, string literals, or
the functions defined in MACHINE COLE. The 'REF attribute
may not be used as an argument in any of these functions.
Inline expansion of machine code procedures is supported.

€. Conventions for Implementation-generated Names

c-11

APPENDIX F OF THE Ada STANDARD

There are no implementation-generated names.
7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as
physical addresses.

8. Restrictions on Unchecked Conversions

None.

9, Restrictions on Unchecked Deallocations

None.
10. Implementation Characteristics of 1,/0 Packages

Instantiations of DIRECT IO use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) when the size
of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAX . RECORD_SIZE
is defined in SYSTEM and can be changed by a program before
instantiating DIRECT 10 to provide an upper limit on the
record size. In any case the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT IO will raise USE_ERROR
if Max . REC SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL IO use the value MAX REC SIZE
as the record size (expressed in STORAGE UNITS) when the
size of ELEMENT TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used instead.
MAX RECORD SIZE is defined in SYSTEM and can be changed by a
projram before instantiating INTEGER IO to provide an upper
limit on the record size. SEQUENTLAL 10 imposes no limit on
MAX REC SIZE.

1l1. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up tb or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
4,000,000 x STORAGE UNITS. The maximum size of a statically

c-12

- APPENDIX F OF THE Ada STANDARD

sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaratlon that exceeds these limits
will generate a warning message.

11,3. Default Stack Size for iasks

In the absence of an explicit STORAGE SIZE length specifica-
tion every task except the main program is allocated a fixed
size stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGE SIZE for a task type T.

11.4. Default Collection Size

In the absence of an exp11c1t STORAGE SIZE length attribute
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGE SIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If
this value is exceeded the compiler will terminate the com-
pilation cof the unit with a FATAL error message.

