AD-A285 108 NTATION PAGE [or™

OPM No.

, e))

AR

“ L : I iI. | ‘ | [h l i | A I i [k ated 1o average 1 hour por response, indluding the tma for reviewing instructions, searching existng data
wing the collection of information. Send comments regacing this burden, to Washinglon | leadquarters
215 Jetlerson Davis Highway, Sulte 1204, Arlington, VA 22202-4302, and to the Office of information and
n, OC 20503

1. AGENCY USE (Leave 2. REPORT 3. REPORY TYPE AND DATES

4. TITLE AND: Compiler: SKI Computers, Inc. 5. FUNDING
Compiler: SKYvec ADA, Release 3.6

Host: SPARCstation 10 Model 462 (under SunOS 4.1.3)
Target: SKYbolt Modei 8146-V (under SKYmpxrt release 3.6)

6. AUTHORS:

Wright-Patterson AFB, Dayton, OH

7. PERFORNING ORGANIZATION NAME (S) AND 8. PERFORMING
Ada Validating Facility, Language Control Facility ASB/SCEL, Building 676, Rm. | ORGANIZATION
135

Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITGRING AGENCY NAME(S) AND 10. SPONSORIL. :G/MONITORING
Ada Joini Program Oflice, Delense Information System Agency . - -y ACENCY

Code TXEA, 701 S. Courthouse Rd., Arlington, VA ¥ %
22204-2199

H '!"-
11. SUPPLEMENTARY

L
&

12a. DISTRIBUTION/AVAILABILITY: Approved for public release; distribution
unlimited

13. (Maximum 200

SKY Computers, Inc., 940803W1.11374

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary 15. NUMBER OF
Report, Ada Compiler Val. Capability Val. Testing, Ada Val. Office, Ada Val. Facility
ANSI/Mil-STD-1815A 16. PRICE

17 SECURITY 18. SECURITY 19, SECURITY 20. LIMITATICN OF
CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN

AVF Control Mumber: AVF-VSR-602.0894
Date VSR Completed: 9 August 1994
94-06-22--5KY

LY

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificaie Number: 940803Wl1.11374
SKY Computers, Inc.
SKY¥vec ADA, Release 3.6
SPARCstation 1J, Modei 402 under Sun0OS, 4.1.3 =>
SKYbolt Model 8146~V under SKYmpxrt, release 3.6

(Final)

Accesion Tor

NTIS CRA&I g
DTIC TAB
Prepared By: Unannounced g
Ada validation Facility Justification
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

By .
Dintibution|

Availabil: ;y Codes

1 Avail andjor
Dist Special

M

DIIC QUALITY T goTrn 3

Ly

94-309

o

L H T T

e
Nl

Certificate Information

The follcwing Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 3 August 1994,

Compiler Name and Version: SKYvec ADA, Release 3.6

Host Computer System: SPARCstation 10, Model 402
under SunOS, 4.1.3

Target Computer System: SKYbolt Model 8146-V
under SKYmpxrt, release 3.6

Customer Agreement Number: 94-06-22-SKY

See section 3.1 for any additional information about the testing environment.

As a iesult of this validation effort, Validation Certificate 940803wWl.11374
is awarded to SKY Computers, Inc. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

/“j N ~ N

Ada Validation Facility
Dale E. Lange
Technical Director

645 CCSG/SCSL
Wright-Patterson 2FB OH 45433-5707

ogeyy
rgaiization
Director, ter and Software Engineering Division
Institute fur Defense Analyses

Alexandria VA 22311

Director,
Defense Information Systems Agency,
Center for Information Management

DECLARATION OF CONFORMANCE
Custor:ar: Sky Computers, Inc.
Ada Validation Facility: CTA Inc.
5100 Springfield Pike, Suite 100
Dayton, Ohio 45431
ACVC Version: 1
Ada Implementation:
Compiler Name and Version: SKYvec ADA release 3.6

Host Computer System: ~ SPARCstation-10, Model 402, Sun Microsystems
Host Operating System: SunOS 4.1.5

Target Computer System: SKYbolr Model 8146-V
Target Operating System: SKYmpxrt release 3.6

Customer's Declaration

I, the undersigned, representing SKY Computers, Inc., declare that SKY Computers, Inc.
has no knowledge of deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A in the implementation listed in this declaration.

I deciere that SKY Computers is the owner of the above implementation and the certificates
shall be awarded in the name of the owner's corporate name.

Wit
‘f/él/ﬁ Date: July 1, 1994

Leo Mirkin

Manager, Languages & Tools,
SKY Computers, Inc.

27 Industrial Ave.
Chelmsford, MA 01824

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 USE OF THIS VALIDATION SUMMARY REPCRT .
1.2 REFERENCES. . « . ¢« ¢« v ¢ v v ¢+ o &
1.3 ACVC TEST CLASSES ¢ « v ¢ v & o o « «
1.4 DEFINITION OF TERMS . , . o« e e e s
CHAPTER 2 IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS « . . .
2.2 INAPPLICABLE TESTS.
2.3 TEST MODIFICATIONS. . . . + « + &« « &
CHAPIER 3 PROCESSING 1NFORMATION
3.1 TESTING ENVIRONMENT
3.2 SUMMARY OF TEST RESULTS . .,
3.3 TEST EXECUTION. « . « .+ .
APPENDIX A MACRO PARAMETERS
APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

¢ o o e

The Ada implementation described above wae tested according to the Ada
validation Procedures [Pro92) against the Ada Standard [AdaB83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Sumnary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92).
A detailed description of the ACVC may be found in the current ACVC User’'s
Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make tull and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act™ (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this

report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report ace
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield va 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

ada validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES
{Ada83] Reference Manual for the Ada Programming Language,
ANSI MIL-GTD-1BI5A, February 193? and 150 Eggg-§§87.

(Pro9z) Ada Compiler validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

{UGB9) Ada Compiler Validation Capavility User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested Ly means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are esecutable. Class B and
rlass L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used o defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by mary tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of tbe Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CEFCK_FILE is checked by a set of
executable tests. 1f these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified. ¢

Class L cests check thzt an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled umits. Errors are
expected at link time, and execution is attemn"-=d.

tn some tests of the ACVC, certain macro strings have to bc replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional cnanges may be
required to remove unforeseen conflicts between the tests and
implementation-cependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

-y

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing wi*lirawn tests \see section 2.1), and possibly
removing some inapplicable ter’ - (<ce section 2.2 and [UG8?)).

In order to pass an ACVC an * implementation must process each test of the
customized test suite according to the Ada Standard.

1.1 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformacion of Ada programs into erecutable form and
execution thereof.

Mda Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’'s quide and the template for the validation summary
(ACVC) report.

Ada An Ada compiier with its host computer system and its
Irplementation target computer system.

Ada Joint The part of the certification body which piovides policy and
Proqram quidante for the Ada certification system.

Office (AJPO)

Na The part of the certification body which carries out che
validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
validation guidaiice for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation .
Cemp..ter A functional unit, coasisting of one or more computers and
System associated softwvare, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-desiguated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consict of several inter-connected
units.

1-3

Crw

-

INTLODUCTION

Conformity

Customer

Declavation of
Conformance

Host Computer
System

Inapplicaizle
test

150

LRi1

Operating
System

Target
Computer
System

Validated Ada
Compiler

validated Ada
Inplenentation

validation

Withdrawn
test

Fulfilluent by a product, process, or service of all
requirements specified.

An irdividual or corpurate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized cr attainable cn the Ada implementation for which
validation status is realized.

A computer system where Ada source programs are transfcrmed
into executable form.

A test that contains one or more tes: objectives found to be
irvelevant for the given Ada implementatinn.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, puplished as
BNSI,MIL-STD-1815A-1983 and ISC 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/ovtput contrcl, and data manayement. Usually, operating
systems are predominantly sottware, but partial or complete
hardware inplexentations are possible,

A corputer systenm where the executable form of Ada programs
are executed,

The compiler of a validated rda implementation.

An Ada implementation that has been validated .successfully N
either by AVF testing or by registration [Pro%2j.

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

A test found tou be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objeciive, fails to meet its test objective, or contains
erronecus ¢r illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publicatinn date for this list of withdravn tests is 22 November 1993,

B27005A E28005C B28006C C€22203A C34006D C35507K
C35507L C35507N €355070 C35507p C355081 355083
C35508M C35508N C35702A €35702B C37310A B41308B
C43C04a C45114A C45346A C456122 C456128 C45612C
C45651n C46022Aa B49008A B49008E AS54B0zA C55B06A
A74006A €74308a B83022B BB83022H B83025B B83025D
C83026A B83026B C83041A BB85001L C86001F C94021A
C97116A 980038 BA2011A CB7001A CB7001B CB7004A
CCl223Aa BC1226A CCl226B BC30098 BD1E02B BD1BOEA
AD1BO08A BD2A02A CD2A21E CD2A23E Cn2A32A CD2A41A
CD2R41E CD2A87A Cb2B1S5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A €Dp4051D
CDS111A CD7004cC ED7005D CD7005E ADT006A CD7006E
AD7201A AD7201E CD7204B ADT206A BD8002A. BDBOVAC
Cp9005A CD9005B Cha201E CE21071 CE2117A- CE2117R
CE2119B CE2205B CE2405A Cr3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C Cr35CG7D CE3B812A
CE3814A CE3902B

.

2.2 INAPPLICABLE TESTS

A test 1is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may be
supported by documents issued by the IS0 and the AJPO known as Ada
Commentaries and commonly referenced in the format Al-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentavies ave included as
appropriate.

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L,.Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L. .2 (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C454233, B66001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, theie is no such type.

C35713Dp and BB86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45423A, C45523A, and C45622A chieck that cthe proper exception is raised
if MACHINE OVERFLOWS 1is TRUE and the results cf various floating-point
operations lie outside the range of the base type; for this
implementation, MACHINE OVERFLOWS is FALSE.

C45521M..P and C4S5532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86C0lY uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C end CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and A1-00506 such that the conpilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA30G4E..F (6 tests) check pragma INLINE for
procedures and functions; this implementation does nct support pragma
INLINE.

CD1009C checks whether & length clause can specify a non-default size

for a floating-point type; this implementation does not support such
sizes.

CD2AB4A, CD2ALsE, CD2AB4I..J (2 tests), and CD2AB40 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

BD8001s, BD8003A, BDRBO04A..BE (2 tests), and ADS8011A use machine code
insertions; this implementation provides no package MACHINZ CODE.

2-2

IMPLEMENTATION DEPENDENCIES

AE2101Cc and EC2201D..E {? tests) use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with wunconstrained array type. and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Methcd
CE2102D CREATE IN FILE SEQUENTIAL I0
CE21J2E CRELTE OUT FILE SEQUENTIAL 10
CE21C2F CREATE INOUT_FILE DIRECT IO
CE21021 CREATE IN FILE DIRECT IO
CE2102J CREATE OUT_FILE DIRECT 10
CE2102N OPEN IN FILE SEQUINTIAL 10
CE21020 RESET JIN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CEZ102Q RESET OUT FILE SEQUENTTAL 10
CE2102R OPEN INOUT FILE DIRECT IO
CE2102s RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT 10
CE2102W RESET OUT_FILE DIRECT 10
CE3102E CREATE IN FILE TEXT 10
CE3i02F RESET Any Mode TEXT 10
CE3102G DELETE —_— TEXT_I0
CE31021 CREATE OUT FILE TEXT_10
CE3102J OPEN IN_FILE TEXT_IC
CE3102K OPEN OUT_FILE TEXT_I0.

The following 16 tests check operations on sequential, direct, and text
files when multiple iaternal ililes are associated with the same external
file and one or more are cpen for writing; USE ERROR is raised when this
association is attempted.

CE2107B..E CE¢107G..II CE2107L CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

raises
exceeded;

CE2203A checks that WRITE
external sequential file is
restrict file capacity.

USE_ERROR
this

if the capacity of an
implementation cannot

IMPLEMENTATION DEPENDENCIES

CE2403A checks that WRITE raises USE ERROR if the capacity of an

external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inappropriate value for the external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
nunber exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 7 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B83033B B85013D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit’s body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contzin uses of the types that require a constraint. However, the
generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units obsolete—no
errors are uwtected. The processing of these tests was modified by
re-compiling the obsolete wunits; all intended errors yere then detected by
the compiler.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validacion effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Michael LeRlanc
SKY Computers, Inc.
27 Industrial Ave.
Chelmsford MA (1824
(508) 250-1020

Testing of this Ada implementation was conducted at the customer'. site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it proacesses each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92]. .

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.

All tests were processed, except those that were withdrawn pecause of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation’s maximum precision (item e; see
section 2.2), and those tha2t depend on the support of a file system — if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and £, below).

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3781

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 84
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating~Point

Precision Tests 201

f) Total Number of Inapplicable Tests 285 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the wvalidation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the Ethernet, and run. The results were captured on the host
computer system. :

Testing was performed using command scripts provided by the customer and
reviewed by the wvalidation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options.

No explicit options were used for testing this implementation.

Test output, campiler and linker 1listings, and job logs were captured on
magnetic *ape and archived at the AVF. The listings examined on-site by the
validation team were also archived. '

APFENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UGB9]. The
parameter values are presented in two tables. The first taktle lists the
values that are defined in terms of the maximm input-line length, which is
the value for $MAX IN LEN——also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter . Macro value
SMAX IN LEN 200 — value of V
$BIG_ID1 (1..V=1 => 'A’, V => '1")
$BIG ID2 (1..V-1 => A", V => '2')
$BIG_ID3 (1..v/2 => 'A’; & '3 &
(1..v-1-v/2 => 'A")
$BIG 1D4 (1..v/2 => ‘A*) & ‘4’ &
(1..v-1-v/2 => ‘A’)
$BIG_INT LIT (L..v=3 = 0"} & "298"
$BIG REAL LIT (1..v=-5 => '0’) & "690.0"
$BIG_STRINGL Y& (1..V/2 => ‘A7) ; e
SBIG_STRING2 s (1..V-1-V/2 => 'AY) & 'L & T
$BLANKS (1..v=20 => r *)

$MAX LEN INT BASED LITERAL
"2:" & (1..V-5 => *0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

Al

[Ape——

MACRO PARAMETERS

$MAX STRING LITERAL

following table lists all
respective values.

Macro Parameter

tMro& (1..V=-2 => 'AT) & T

of the other macro parameters and their

Macro Value

SACC_SIZE

SALIGNMENT

$COUNT_LAST

S$DEFAULT MEM SIZE
SDEFAULT STOR UNIT

$DEFAULT_SYS NAME

$DELTA_DOC

SENTRY ADDRESS

$ENTRY_ADDRESS1

SENTRY_ADDRESS2

$FIELD LAST

$FILE _TERMINATOR

$FIXED NAME
$SFLOAT _NAME
$FORM_STRING

$FORM_STRING2

32
4

2 147_483 646
104

8

BOLT

2.0%*(--31)

_1640%

16414
16424
2 147 483 647

r e

NO_SUCH_FIXED_TYFE

NO_SUCH_FLOAT_TYPE

"CANNOT RESTRICT FILE CAPACITY"

SGREATER THAN DURATION

90_000.0

SGREATER THAN DURATION BASE LAST

T0 000_000.0

$GREATER_THAN_FLOAT BASE LAST

SGREATER THAN TLOAT SAFE LARGE

3.5E+38

3.4E+38

MACRO PARAMETERS

$GREATER_THAN SHORT FLOAT SAFE LARGE

| 3.4E+38
SHIGH PRIORITY 20
SILLEGAL EXTERNAL FILE NAMEl
/NODIRECTORY,/F1LENAMEL
$ILLEGAL EXTERNAL FILE NAME2
/NODIRECTORY,/FILENAME2
; $INAPPROPRIATE__LINE_LB\K€TH
$Imppaopamm_pmz_nmcl;m
SINCLUDE_PRAGMAL PRAGMA INCLUDE ("A28006D1.ADA")
SINCLUDE PRAGMAZ PRAGMA INCLUDE ("B28006F1.ADA")
SINTEGER FIRST -2147483648
$ NTEGER_LAST _ 2147453647

SINTEGER _LAST PLUS 1 2147483648
$INTERFACE LANGUAGE C
SLESS_THAN DURATION -90_000.0

$LESS_THAN DURATION BASE FIKST
i -13_000_000.9

SLINE TERMINATOR ASCII.LF

$LOW_PRIORITY 1

SMACHINE CODE STATEMENT
NULL;

S$MACHINE CODE TYPE INSTRUCTICN

$MANTISSA DOC 31

$MAX DIGITS 15

$MAX_INT 2147483647
$MAX INT PLUS 1 2147483648
$HMIN INT -2147483648
$NAME BYTE INTEGER

A-3

.. o=
Clawl

MACRO PARAMETERS

SNAME LIST

$NAME SPECIFICATION]
$NAME_SPECIFICATIONZ
SNAME_SPECIFICATION3
$NEG_BASED INT
SNEW_MEM_SIZE
$NZA_STOR_UNIT
SNEW_SYS_NAME
SPAGE_TERMINATOR
$RECORD_DEFINITION
SRECORD_NAME

$TASK SIZE
$TASK_STORAGE SIZE
$TICK

$VARIABLE ADDRESS
$VARIABLE_ADDRESS1
SVARIABLE ADDRESS2

$YOUR_PRAGMA

BOLT
/acve/val/X2120A
sacve/val/x21208
/acvc/Aval/X3119A
168FFFFFFFES
1024

8

BOLT

ASCII.LF & ASCII.FF
NZW INTEGER
INSTRUCTION

C32

2048

1.0
FONDECL . VAR_ADDRESS
FCNDECL . VAR_ADDRESS1
FCNDECL . VAR_ADCRESS2
NO_SUCH_PRAGMA

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada
Appendix, are provided by the customer.
references

report.

implementation, as described in this

: Unless specifically noted otherwise,
in this appendix are to compiler documentation and not to this

ada

Invocation ada (options . . .] file.ada

Description
The acda command invokes the SKYvec Ada compiler.

A program iibrary must be created using mklib of newlib in advance of any
compilation. The compiler aborts if it is unable 10 find a program librar, (either
the default, ada.lib, in the current working directory or the library name specified
with the -L opfion).

Note that the source file has the extension . ada. Just about any non-empty file
extension is permitted. The ones not allowed include those used by the SKYvec
Ada compiling system for other purposes such as . o for object module files. If
an illegal extension is given, the error message "missing or improper file
name” is displayed. Some othsr commonly used source file extensions are:

.ads for package specification source files

.adb for package body source files
.sub for subunit (separate) source files

Options

-fo Generate debugging ourput. The —£p option causes the compiler 1o gen-
erate the anpropriate code and data for operation with the SKYvec Ada
Debugger. For more information on using this option and using the De-
bugger, see Chapter 9.

Gencrate error log file. The ~£E option causes the compiler to generate
a log file containing all the error messages and waming messages pro-
duced during compilation. The etror iog file has the same name as the
source file, with the extension .err. For example, the error log file for
simple.ada issimple.erxr. Theerrorlog fileis placec in the current
working directory. Inthe absence of the -£E optiop, the error log infor-
mation is ;ent o the standard output stream.

Generate exception location information. The - £ L option causes location
information (source file names and line numfbers) to be maintained for
internal checks. This information is useful for Gebugging in the event that
an "Exception never handled” message appears when an excention prop-
agates out of the main program (see section Exception Never Handled on
page 3-10). This option causes the code to be somewhat larger. If -fL
is not used, exceptions that propagate out of the main program will be-
have in the same way, but no location information will be printed with the
"Exception never handled" message.

Suppress numeric checking. The - £N opiion suppresses twe kinds of nu-
meric checks for the entire compilation:

SKYvec Ada User’ s Guide

1. division_check
2. overflow_check

These cherks are descnbed in section 11.7 of the LRM. Using -£N re-
duces the size of the code. Noie that there is a related ada vption, -£s to
suppress all checks for a compilation. See also section Exccprion Never
Handled on page 3-10.

The -£N option must be used in place of pragma suppress for the
two numeric checks, because presently pragma suppress is not sup-
ponted for division_check and overflow_check. Pragma sup-
press works for other cliecks, as aescnbed in section Reducing
Program Size on page 2-4. In the absence of the - £N option, the numenc
checks are always performed.

-fs Suppress all checks. The -£s option suppresses all automatic checking,
including numeric checking. This option is equivalent to using pragma
suppress on all chacks. This option reduces the size of the code. and
1s good for producing "procaction quality” code or for benchmarking the
compiler. Note that there is a related ada option, -£N 1o suppiess only
certair kinds of numeric checks. See also sections Reducing Program
Size on page 2-4 and Automatic Checks on page 3-11.

-fv Compile verbosely. The compiler prints the name of each subprogram,
package, or generic as it is compiled. Information about the symbol table
space remawing {0iowing compilaiion of the namcd cntity is also printed
in the form "{nK]". ‘
-fw Suppress waming messages. With this option, the compiler does not .
print waming messages about ignored pragmas, exceptions that are cer- T

tain to be raised at run-time, or other potential problems that the compiler ;
is otherwise forbidden 1o deem as errors by the LRM. .

-q The ~g option instructs the compiler w run an additional optmization
pass. The optimizer removes common sub-expressions, dead code and
unnecessary jumps. It also does loop optimizations. This option is dif- - .
ferent from the ~g option t0 bamp. The -g option 10 ada optimizes the ~
specified unit when it is compiled; no inter-unit optimization is done. The
-g option to bamp analyzes and optimizes the entirc program at link time. ‘
Note: Even if -g is specified for the ada command, the -K option t0'ada
must still be specified for the ~g option to bamp to be effective.

- -k Keepintemal form file. This option is used in conjunciion with the Op- W
timizer (see Chapter for more information). Withour this option, the)
compiler deletes internal form files following code generation. -

-lmecdifiers
Generaie lisung file. The -1 option causes the compiler to crezte a list-
ing. Optional modifiers can be given to affect the listing format. You can
use none or any combination of the following modifiers:

c continuous lisling format

SKYvec Ada User's Guide 10-3

16-4

P obey pragma page dirzctives
s usc standard output
t relevant text output only

The formats of and options for listings are discusscd in section Listings
on page 16-6. The default lisiing file gencrated has the same name as the
source file, with the extension . 1st. For example, the default listing file
produced for simple.ada has the iame =imple.lst. The listing file is
placed in Uy current working directory. Note: -1 also causes an ermr
log file to be produced, as with the ~£E option.

-L library-name
Default: ada.1ib

Use altemate library. ~L cption specifies an altemative name for the pro-

gran: library.

Noie: Options beginning with -f can be combined, as in "-fsv.”
This is equivalent to specifying the options separatelv,e.g. "-fs
~£fv." Options beginning with -1 can be similarly combined or
separated, as in "-lcs” or "~1c -1s” (see section Lisfings on

page 16-6).
Compiler Qutput Files
Files produced by compilations, other than listings and error logs, are:
Files Desciiption
.atr interface description files
.int Meridian Intemnal Form files
.gnn generic description files; nn is a two-digit number
.0 object code files
.sep subunit environment descniption files

Also produced are various intermediate files; these are usually deleted as a mat-
terof course. You nommally need not concemn yourself with most of these output
files with the exception of assembly language files.

Output files are placed either in the cumrent working directory cr in the auxiliary
directory. depending on the configuration of the prog;ram library (as determined
by mklib or newlib). The name of an auxiliary dxreuory associated with a
program library can be determined by using the -1 option 10 the 1slib com-
mand.

The name of an output file is derived from the first 10 characters of the compila-
tion unit name, but when a name collision occurs, the library system assigns an
arbitrary unique name that may bear no relation to the source file name (it might
look like "aaaaaaabh™). The -1 opiion to the 1slib command must be used to
determine the base name used to derive the output file names for a particular li-
brary entry. The base name is displayed as the "Host system file name".

The name of an output file is denived from the compilation unit name.

SKYvec Ada User's Guide

Supplementary files ttiat may be produced by a compilation are:

.err error log files (only when ~£fE option used)
.lst listing files (only whea -1 option used)

These arc discussed in section Listings on page 16-6.

Non-Local Compilations

The compiler is able to compile files that reside in directories other than the cur-
rent working directory. As always, a program library (typically ada. 1ib) must
be present it the current working directory. All outyaur files are placed in the cur-
rent working directory or in the local auxiliary directory (ada.aux).

-Compile-Time Error Messages

When syntactic or semantic ermors are detected in the source code, the SKYvec
Ada compiler produces either error messages or waming messages. These mes-
sages are normally produced on the standard output stream. If the -£E option is
given, these messages are written, instead, to an error log file. The error log file
has the same name as the scurce file, with the extension .err.

When error messages are printed, processing does not proceed beyond the first
pass. No object code file is produced. Warning messages do not prevent further
processing. Other passes (e.g. the code generator) may print error messages as
well, but these are a2imest centain to be error messages related 1o problems inter-
nal to the compiler itself. and should be reponted to SKY Computers, Inc.

Error messages have the form:
"filename”, nn: English explanation of error (LRM l1.m.n/p)

whers filename is the name of the program source file in which the erroy was
detected, nn is the specific line number in the source fil2 where the error oc-
curred, followed by an explanation in English of the error, and, when appropri-
ate, a reference to the LRM. The LRM reference gives the chapicr (1), section |
{(m), subsection (n), and paragraph number (p).

An example follows.
“rt.ada", 245: record component redeclared [LRM 3.7/3]

Depending on the severity of the error, the SKYvec Ada compiler may attempt
to recover and continue compiling the source code, or may terminate compilation
immediately.

Waming messages have the form:
"filename", n: <<warning>> message
An example warming message is shown below.
*rt.ada", 297: <<warning>> INLINE: pragma has no effect

Error messages that begin with

SKYvec Ada User's Guide

*®x% Compiler Error

are intemal compiler encr messages. If any appear, they should be repored to
SKY Computers.

All error messazes and waming messages should be self-explanatory.

Listings

The compiler by default does not produce listings. The -1 option causes the
compiler to produce beth alisting file and an error log file. The -£E option caus-
es the compiler to produce only an error log file. In the absence of these options,
the compiler prints an error log to the standard output stream alone.

Listing File Contents
The listing file contains line-numbersd, paginated source text with error and
waming messages interspersed. Listing file error messages appear in the format:

*xxx*xE error message *
Waming messages appear in the fortnat:
++++++W warning message +

The listing generated when - 1 is specified obeys pragma list and pragma page
as described in the LRM. Pragma 1ist and pragma page have no effect in the
absence of the -1 option.

Listing Format Control

Listing format is contolled via modifiers to the ~1 option or via a compiler de-
fault option description file named ada.ini. Refer to section Defauit Option
Description File on page 16-7 for information about the ada. ini file.

The ~1 option has the form -1modifiers, where modifiers are zero or more
of these letters:

c Use continuous listing format. The listing by default contains a header

on cach page. Specifying -1c suppresses both pagination and header
output, producing a continuous listing.

Obey pragma page directives. Specifying -ip is only meaningful if
-1c has also been given. Nommally ~1c ‘suppresses all pagination,
whereas -1cp suppresses al! pagination except where explicitly cailed
for within the source file with a pragma page directive.

Use standard output. The listing by default is written 10 a file with the
same name as the source file and the extension . 1st,asin simple.lst
from simple.ada. Specifying -1s causes the listing file 10 be wrinien
to the standard output stream instead. This output may be redirected any-
where (e.g. to the PRN device).

Generate relevant text output only. The listing by default contains the
entire source program as well as interspersed error messages and waming

SKYvec Ada User's Guide

messages. Specifying -1t causes the compiler to list only the source
lines to which crror messages or wamning messages apply, followed by the
messages themselves,

Any, all or none of the suffix letters c. p, s, and t may be given folowing -1,

asin -lcs, -lct, or -1cat. The options can also be given scparately, as in -
1c ~1ls.

Default Option Description File

Compiler behavior can be modified not only by command line options, but also
by a default option description file named ada.ini. Default options are given
in 1ib/ada.ini in the installation directory’, while local overriding options
can be giver: in an ada.ini file in the current working directory. At present,

only listing formut parameters can be set in a compiler default option description
file.

The ada. ini file1s an ordinary text file that may be created or edited with any
editor used to edit Ada programs. The detault 1ib/ada. ini file contents are:

-- SKYvec Ada compiler default option descri.:ion f:le

66; -- min:

--page_length (= 5
--top_margin =6 -- min: 2
--bottom_margin 1= 6 ~- min: 2
--left_margin = 4; -- min: 0
--page_width = 132, -- min: 40
--lineno_width t= 5 -- min: 0
--marker lines =1 -~ min: 0
--header_ timestamp := true

;==summary = true
;=-graphic_controls i= true;

--error_tag := “E";--warning_tag:= "W":

The 1ib/ada.ini file as it is initially configured consists solely of comments
showing examples of parameter assignments. The compiler default option de-
scription file may consist of Ada comments, blank lines, or assignments. In the
example above, the initial comment characters (- -") must be deleted to n;akc
any parameter assignment effective. The comments show the default values of
the parameters, so there is no need to un-comment any particular assignment un-
less the value is 10 be changed. An example of a local ada. ini file might be:

~—-- Local SKYvec Ada . ompiler default option
-—- description file

page_width := 79;

-- Use all other defaults.

1. See your Software Releasc notes for installation information.

SKYvec Ada User’ s Guide

16-8

The parameters to which assignments can be made are:

bottom margin This parameter sets the number of lines in the bottom mar-
gin of each page. The bottommost lines ai¢ blank. The min-
imum number of bottom margin lines that can be specified
is 2. The bottom margin is suppressed by using the ~1ic
(continuous listing) option.

error_tag This parameter specifies the character string that is dis-
played at the beginning of any error messages that occur in
the listing. This string serves to highlight the error message.

graphic_controls

This parameter determines how non-printable characters in
the Ada source file are printed. Non-printable characters
include the ASCII DEL character and all ASCII control
characters except for ASCII honzontal tab and the normal
line terminator characters. If this parameter's value is true,
then the control characters are printed as Ax where x is
the printable character derived by adding the number 64
(decimal) to the ASCII code value of the control character.
For example, the ASCII BEL character, also known as Con-
trol-G (*QG), is printed as AG. Other non-printable charac-
ters are displayed as ~?7. If the parameter's value is set to
false, then the non-printable characters are displayed as is
with no conversion.

header_timestamp
This parameter specifies whether the heading information
should include the date and time wher :he listing was gen-
erated. If its value is true, then the date and time are dis-
played. If its value is false, no date or time is printed.

left_margin This parameter specifies the number of blanks printed in
each line before anything else (including line numbers,
source lines, messages, and heading information). The left
margin can be no smaller than O characters.

lineno_width This parameter specifies the number of characters reserved
for the line numbcr that appears to the left of each source
line listed. The line number width can be no smaller than 0
characters. If O is specified, no line numbers are generated.

marker_lines This parameter specifies the number of marker lines to
print before and after ai: error or waming message. Marker
lines serve to make these messages stand out more from the

rest of the listing. The minimum number of marker lines is
0.

page_length This parameter sets the number of lines pnnted per page. A
page eject is placed at the end of each page. The minimum
number of lines that can be specified for the page is 5. The

SKYvec Ada User's Guide

page eject can be suppressed by using the -1c (condnuous
listing) option.

page_width This parameter specifies the number of characters in the
longest line that will be printed before the line is broken
to the next line. The page width can be no smatler than 40
characters. This value does not include the number of char-
acters specificd by the left_margin and lineno_widtn
parameters.

summary This parameter specifics whether the listing should include
a compilation summary at the end. If a summary is aesired.
this parameters value should be set to true, otherwise it
should be set to false.

top_margin This parameter sets the number of lines in the top margin of
each page. Centered in the topmost lines of each page a
heading is printed containing a page number, file name, and
date. The minimum number of top margin lines that can be
specified is 2. The top margin and heading information can
be suppressed altogether by using the -1c¢ (continuous lisi-
ing) option.

warning_tag This parameter specifies the character string that is dis-
played at the beginning of any warning messages that oc-
cur in the listing. This string serves to highligh: the waming
message.

Examples

Example 34

Compile x.ada in the usual manner:
ada x.ada

Do not forget to type the extension. If you do not zype the extension the ada pro- -
gram displays the error message "'missing oc improper file name”. -

Example 35
Compile x.ada with exception jocation maintenance code:
ada ~-fL x.ada
This is most useful when debugging a program that raises an exception.
Example 36

Compile x.ada, but with all automatic checking suppressed:

ada -£fs x.ada

This is most useful after a program has been debugged and it is time 10 generate
a "production” version of the program that is smaller and runs more quickly.

SKYvec Ada User' s Guide

Example 37
Compile x . ada, but with numeric checking suppressed:

ada -fN x.ada
This retains most of the useful checks, while speeding up the program and de- .
creasing its size. R
Example 38
Compile x.ada, y.ads, and z.adb in the usual marnner:

ada x.ada y.ads z.adb

Each source file is compiled in the order given. -

Example 39
Compile x . ada using an altemnate program library named z . 1ib:
ada ~-L z.lib x.ada
This presumes that z . 1ib was created in the current working directory with the
mklib program prior to compilation. °
Example 40
Compile x . 2da verbosely, suppressing waming messages:

i ada =-fvw =.ada

For the -£v option, the compiler prints the name of each subprogram, package,
or generic as it is compiled, along with the amount of symbol table space remain-
ing. For the -fw option, the compiler suppresses warning messages.

Example 41
Compile simple.ada, producing a listing file:
ada -1 simple.ada
This produces a listing file named simple . 1st and an error log file, simple.err.

Example 42
Compile simple.ada. producing a continuous-form listing file on standard output:
ada -lsc simple.ada .

This produces a listing on standard output in continuous format (no headers or
pagination), as well as an error log file, simple.err.

Example 43
Compile simple.ada in a non-local directory, producing a local object file:
ada /x/ada/simple.ada N

An ada.1ib file must be present in the current directory. Al output files are
placed in the current directory or in the local auxiliary directory (ada. aux).

16-10 SKYvec Ada User's Guide

Exampile 44

Compile simple.ada normally, but retain information for the global optimizer:
ada -K simple.ada

Runs the compiler normally, but does not delete simple.int, which can be
used by a subsequent global optiinization (bamp ~g) command.

SKYvec Ada User's Guide

16-11

. COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,

are provided by the customer. Unless
references

report.

specifically notec otherwise,
in this appendix are to linker documentation ancl not to this

COMPILATION SYSTEM OPTIONS

Invocation
bamp [options...] [main-procedure-name)

Description

The bamp (Build Ada Main Program) command creates an executable program
given (an MPW tool by default, see section) the name of the main subprogram.
The main-procedure-name given to bamp nust be a parameterless procedure

that has already been compiled.

Note: Be careful not to confuse the name of the source file containing the
main subprogram (e.g. simple.ada) with the actual name of the main subprogram
(e.g. simple).

If a main~procedure-name is nct specified on the bamp command line, bamp
links using the last-compiled subprogram that fits the profile for a main
subprogram. To determine which subprogram will be used when no main
subprogram is given to bamp, use the lslib -t option. When in doubt, it may
be best to specify the main subprogram explicitly.

Note that when no main subprogram is specified, bamp selects the most recently
compiled subprogram, not the most recently linked subprogram. If several
different main subprograms are linked between compiles, still the most recently
compiled subprogram is selected if no subprogram is explicitly specified.

The bamp program functions as a high-level linker. It works by creating a top~
level main program that contains all necessary context clauses and calls to
package elaboration procedures. The main program is created as an internal
form file on which the code generator is run. Following this code generation
pass, all the required object files are linked.

An optional optimization pass can be invoked via the bamp commancl. The
details of optimization are discussed in Chapter 7. The bamp options relevant
to optimization, -g and -G , are discussed below.

Programs compiled in Debug mode (with the xada -fD option) dre
automatically linked with the SKYvec Ada source level debugger.

Options

4
-A Aggressively inline. This option instructs the optimizer to
aggressively inline subprograms whan used in addition to the -G option.
Typically, this means that subprograms that are only called once are inlined.
1f only the -G option is used, only subprograms for which pragma inline has
been specified are inlined.

—Cc compiler-program-name

Default: As stored in program library. Use alternate compiler. Specifies the
complete (nonrelative) directory path to the SKYvec Ada compiler. This

option overrides the compiler program name stored in the program library.
The -c option is intended for use in cross-compiler configurations,

although under such circumstances, an appropriate library configuration is

COMPILATION SYSTEM OPTIONS

normally used instead.

-f Suppress main program generation step. Suppresses the creation and
additional code generation steps for the temporary main program file. The

-f option can be used when a simple change has been made to the body of

a compilation unit. If unit elaboration order is changed, or if the
specification of a unit is changed, or if new units are added, then this option
should not be used. The -f option saves a few seconds, but places an

additional bookkeeping burden on you. The option should be avoided under

most circumstances. Note that invoking bamp with the -n option followed

by another invocation of bamp with the -f option has the same effect as an
invocation of bamp with neither option (-n and -f neutralize each other).

-g Perform global optimization only. Causes bamp to invcke the global
optimizer on your program. Compilation units to be optimized globally
mist have been compiled with the xada -K option.

-G Causes bamp to perform both global and local optimization. This
includes performing pragma inline. As with the -g option, compilation units
to be optimized must have been compiled with the xada -K option.

-1 Link the program with a version of the tasking run-time which supports
pre-eriptive task scheduling. Produces code which handles interrupts more
quickly, but has a slight negative impact on performance in general.

~L library-nane
Default: ada.lib. Use alternate library, specifies the name of the program
library the bamp program consults. (Overrides default library name).

-n No link. Suppresses actual object file linkage, but creates and
performs code generation on the main program file. Note that invoking bamp
with the -n option followed by another invocation of bamp with the -f option
has the same effect as an invocation of bamp with neither option. That is, -n
and -f neutralize each other.

~N No operations. Causes the bamp command to do a "dry run"; it prints
out the actions it takes to gerierate the executable program, :but does not
actually perform those actions. Similar to the -P option. -

-0 output-file-name
Default: file. Use alternate executable file output nam2. Specifies the
name of the executable program file written by the bamp command. This

option overrides the default output file name.

cont . bamp

-P Print operations. Causes the bamp command to print out the actions it
takes to generate the executable program as the actions are performed.

-v Link verbosely. Causes the bamp command to print out information about
what actions it takes in building the main program such as:

. The name of the program library consulted.

COMPILATION SYSTEM OPTIONS

. The library search order {(listed as "saves" of the library units used
by the program).

. The name of the main program file created (as opposed to the main
procedure name).

. The elaboration order.

. The total program stack size.

. The name of the executable load module created.

. The verbose code generation for the main program file.

Suppress warnings. Allows you to suppress warnings from the optimizer.

The

APPENDIX C

APPENDIX F OF THE Ada STANDARD

only allowed implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this

report.

Implemertation-specific portions of the package STANDARD, which are

not a part of Appendix F, are:

end STANDARD; \

INTEGER is range -2147483648 .. 2147483647;

LONG_INTEGER is range -2147483648 .. 2147483647;

SHORT INTEGER is range -32768 .. 32767; :
BYTE INTEGER is range -128 ..127; '

FLOAT is digits 6 range -3.40282E+038 .. 3.40282E+038;
LONG_FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

DURATION is delta 0.0001 range -86400.0 .. 86400.0;

.....

Appendix F
implementation-Dependent
Characteristics

This appendix lists implementation-dependent characteristics of SKYvec Ada.
Note that there are no preceding appendices. This appendix is called Appendix F
in order to comply with the Reference Manual for the Ada Programming Lan-
guage (LRM) ANSI/MIL-STD-1815A which states that this appendix be named
Appendix F.

Implemented Chapter 13 features include length clauses, enumeration represen-
tation clauses, address clauses, interrupts, package system, machine code inser-
tions, pragma interface, and unchecked programming.

Pragmas .,
The implemented pre-defined pragmasl are:
elaborate Sec iiie LRM secion 10.5.
interface See section Pragma Interface on page F-2.
list Seethe LRM Appendix B.
pack See section Pragma Pack on page F-3.
page Seethe LRM Appendix B.
priority Seethe LRM Appendix B.

suppress See section Pragma Suppress on page F-4.

inline See the LRM section 6.3.22.

The remaining predefined pragmas are accepted, but presently ignored:

controlled optimize system_naiae
shared storage_unit memory_size
interface

L pack&amed parameter notation for pragmas is not supported.
2-This-pragma is not actually effective unless you compile/link your
program using the global optimizer.

SKYvec Ada Uscr's Guide

When illegal parameter forms are encountered ar compile time, the compiler issues
a waming message rather than an error, as required by the Ada language definition,
Refer 10 the LRM Appendix B for additional information about the pre-defined

nragmas.

Pragma Interface
The form of pragma interface in SKYvec Ada is:

p-agma interface(language, subprogram (, “link-name”)});

where:

language

subprogram

This is the interface language, one of the names assem-
bly,builtin,¢, oOrinternal. The namesbuiltin and
internal are reserved for use in run-time support packag-
€s.

This is the name of a subprogram to which the pragma in-
terface applies. If link~name is omitted, then the Ada
subprogram name is also used as the object code symbol
name. Depending on the language specified, some automat-
ic modifications may be made to the object code symbol
name.

This is an optional string literal specifying the name of the
non-Ada subprogram corresponding to the Ada subprogram
named in the second parameter. If 1ink-name is omitted,
then link-name defaults to the value of subprogram trans-
lated t0 lowercase. Depending on the language specified.
some automatic modifications may be made to the link-
name to produce the actual object code symbol name thatis
generated whenever references are made to the correspond-
ing Ada subprogram. The object code symbol generated for
link-name is always translated to upper case. Although
the object linker is case-sensitive, it is a rare object modulc
that contains mixed-case symbols.It is appropriate to use the
optional 1ink-name parameter 10 pragma interface
only when the interface subprograrh has a name that does
not correspond at all to its Ada idantifier or when the inter-
face subprogram name cannot be given using rules for con-
structing Ada identifiers (e.g. if the name contains a *$’
character).

The characteristics of object code symbols generated fo: each interface language

are as follows:

assembly

The object code symbol is the same as Link-name. I{ no

link-name string is specified, then the subprogram name
is translated o lowercase.

SKYvec Ada User's Guide

builtin Theobject code symbol is the same as 1ink-name, but pre-
fixed with one underscore character (*_""), whether or not a
link-name string is specified two underscore characters ('_
_™). This language interface is reserved. The builtinin-
terface is presently used to declare cenain low-level run-
time operations whose names must not conflict with pro-
grammer-defined or language system defined names.

c Theobijectcode symbol is the same as 1ink-name, but with
one underscore character (*_") prepended. This is the con-
vention used by the C compiler.subprogram name. If no
1ink-name string is specified, then the subprogram name
ic translated 1o lowercase.

internal Noobject code symbol is generated for an internal language
interface; this language interface is reserved. The intemal

interface is presently used to declare certain machine-level
bit operatons.

No automatic data conversions are performed on parameters of interface subpro-
grams. It is up to the programmer to ensure that calling conventions match and that
any necessary data conversions take place when calling inwerface subprograms.

A pragma interface may appear within the same declarative part as the subpro-
gram to which the pragma interface applies, following the subprogram declara-
tion, and prior to the first use of the subprogram. A pragma interface that ap-
plies to a subprogram declared in a package specification must occur within the
same package specification as the subprogram declaration; the pragma intez-
£ace may not appear in the package body in this case. A pragma interface dec-
laration for either a private or nonprivate subprogram declaration may appearin the
private pan of a package specification.

Pragma interface for library units is not supported.

Refer to the LRM section 13.9 for additional information about pragma interface. .

Pragma Pack a
Pragma pack is implemented for composite types (records and arrays). 4

Pragma pack is permitted following the composite type declaration to which it ap-
plies, provided that the pragma occurs within the same declarative part as the com-

posite type declaration, before any objects or components of the composite type are
declared.

Note that the declarative part restriction means that the type declaration and accom-
panying pragma pack cannot be split across a package specification and body.

The effect of pragma pack is to minimize storage consumption by discrete com-
ponent types whose ranges permit packing. Use of pragma pack does not defecat
allocations of alignment storage gaps for some record types. Pragma pack does not
affect the representations of real types, pre-defined integer types. and access types.

SKYvec Ada User's Guide F-3

Pragma Suppress

Pragma suppress is implemented as described in the LRM section 11.7, wiw
these differences:

Q Presently,division_check and overflow_check mustbe suppressed
via a compiler flag, ~ £N; pragma suppress is ignored for these two numer-
ic checks.

Q Theoptional “ON =>" parameter name notation for pragma suppress is
ignored.

Q0 The optional second parameter to pragma suppress is ignored: the prag-
ma always applie; to the entire scope in which it appears.

Attributes
All atributes described in the LRM Appendix A are supported.

Standard Types

Additional standard types are defined in SKYvec Ada:
0 byte_integer
Q short_integer

Q 1long_integer

The standard numeric types are defined as:

Type Ranee

byte integer -128 .. 127;

short_integer -32768 .. 32767;

integer ~2147483648 .. 2147483647;
long_integer =2147483648 .. 2147483647;
float (6 digits) -3.40282E+038 " 3.402825+038;

long_float (15 digits) -1.79769313486231E+308 .. 1.79769313486231E+308;
duration (0.0001 delta) -66400.0000 .. 86400.0000;

Package System

The specification of package system is:

package system is

type address is: new integer;
type name is: (BOLT),
system_name: constant name:= BOLT,;

SKYvec Ada User's Guide

storage_unit: constant:= §;
memory_size: constant:= 1024;

-- System-Dependent Named Numbers

min_int; constant:= -2147483648;
max_int: constant:= 2147483647,
max_digits: constant:= 15;
max_mantissa: constant:= 31;
fine_delta; constant:= 2.0 ~1;

tick: constant:= 1.0;

-- Other System-Dependent Declarations
subtype priority is integer range 1.. 20;

The value of system.memory_size is presently meaningless.

Restrictions on Representation Clauses

Length Clauses

A size specification (v’ size) is rejected if fewer bits are specified than can ac-
commodate the type. The minimum size of a composite type may be subject to ap-
plication of pragma pack. It is permitted to specify precise sizes for unsigned in-
teger ranges, e.g. 8 for the range 0..255. However, because of requirements im-
posed by the Ada language definition, a full 32-bit range of unsigned values, i.=.
0..(232-1). cannot be defined, even using a size specification.

The specification of collection size (v’ storage_size) is evaluated at run-time
when the scope of the type to which the length clause applies is entered, and is
therefore subject 10 rejection (via storage_error) based on available storage at
the time the allocation is made. A collection may include storage used for run-time .
administration of the collection, and therefore should not be expecied to accommo- -
date a specific number of objects. Furthermore, centain classes of objects such as
unconstrained discriminant array components of records may be allocated outside

a given collection, so a collection may accommodate more objects than might be
expected.

The specification of storage for a task activation (t’ storage_size) is evaluated
at run-time when a task to which the length clause applies is activated. and is there-
fore subject to rejection (via storage_error) based on available siorage at the
time the allocation is made. Storage reserved for a task activation is separate from
storage needed for any collectons defined within a task body.

The specification of small for a fixed point type (¢’ small) is subject only to rc-
strictions defined in the LRM section 13.2.

SKYvec Ada User's Guide

Enumeration Representation Clauses

The intemnal code for the literal of an enumeration type named in an enumeration
epresentation clause must be in the range of standard.integer.

The value of an intemal code may be obtained by applying an appropriate instan-
tation of unchecked_conversionto an integer type.

Record Representation Clauses

The storage unit offset (the at static_simple_expression pan) is given in
terms of 8-bit storage units and must be even.

A bit position (the range pan) applied to a discrete type component may be in the
range 0..15, with 0 being the least significant bit of a component. A range specifi-
cation may not specify a size smaller than can accommodate the component. A
range specification for a component not accommodating bit packing may have a
higher upper bound as appropriate (e.g. 0..31 for a discriminant string component).
Refer to the intemnal data representaticn of a given component in determining the
component size and assigning offsets.

Components of discrete types for which bit positions are specified may not straddle
16-bit word boundaries. *

The value of an alignment clause (the optional at mod part) must evaiuaic tu 1, 2,
4, or 8, and may not be smaller than the highest alignment required by any compo-
nent of the record.

Address Clauses

, An address clause may be supplied for an object (whether constant or variabie) or
' a task entry, but not for a subprogram, package, or task unit. The meaning of an
address clause supplied for a task entry is given in section /nterrupis on page F-7.

An address expression for an object is a 32-bit linear segmented memory address
of type system. address. -

Interrupts ;

A task entry's address clause can be used 1o associate the entry with a UNIX signal.

Values in the range 0..21 are meaningful, and represent the signals corresponding
to those values.

An interrupt entry may not have any parameters.

Change of Representation

There are no restrictions for changes of representation effccted by means of type
conversion.

F-6 SKYver Ada User's Guide

L T

Implementation-Dependent Components

No names are generated by the implementation to denote implementation-depen-
dent components.

Unchecked Conversions

There are no restrictions on the use of unchecked_conversion. Conversions be-
tween objects whose sizes do not conform may result in storage areas with unde-
fined values.

Input-Output Packages

A summary of the implementation-dependent input-output charactenstcs is:

Q Incalisto open and create, the form parameter must be the empty string
(the default value).

Q More than one intemal file can be associated with a single external file for
reading only. For writing, orily one internal file may be associated with an
external file. Do not use reset to get around this rue.

Q Temporary sequential and direct files are given names. Temporary files
are deleted when they are closed.

Jd File /O is buffered; text files associated with terminal devices are line-
buffered.

Q The packages sequential_io and direct_io cannot be instantiated
with unconstrained composite types or record types with discriminants
without defaults.

Source Line and ldentifier Len3ths

Source lines and identifiers in Ada source programs are presently limited to 200
characters in length.

SKYvec Ada User's Guide

