
AD-A285 108 NTATIQN PAGE OrM Appove

tated to average i hiour pe 'esponse. inciuding ti* time tor reviewing instructions. 6eardling eXIstig data
wing Ti* oollectioi of infoirmation. Send comimenlts regau;ng lINS bulef. to Washir)Qton Iea2dquarterA
215 Jeflersori Davis Highway. Suite 1204. Arlington, VA 22202-4302, arid to UVe Offic of Inlormatiori arnd
in. C 20503.

1. AGENCY USE (Leave 2.REPORT 3.REPORni TYPE AND DATES

4. TITLE AND: Compiler: SKI Computers, Inc. 5. FUNDING
Compiler: SKYvec ADA. Release 3.6
Host: SPARCstation 10 Model 402 (under SunOS 4.1.3)
Target: SKYboft Model 8146-V (under SKYmpxr, release 3.6)

6. AUTHORS:

Wright-Patterson APE, Dayton, OH

7. PERFORMJING ORGANIZATION NAME (S) AND 8. PERFORMING
Ada Validating Facility, Language Control Facility ASB/SCEL, Building 676, Rm. ORGANIZAT;ON
135
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSOR ING/MONITORING AGENCY NAME(S) AND 10. SPONSORI. G/MON ITOR ING
Ada join! Pfogfrim Of Iice, Defense Information System Agency A01W AGENCYI-
Code TXEA, 701 S. Courthouse Rd., Arlington, VA
22204-2199 -

11. SUPPLEMENTARY

12a. DIS7RIBUTION/AVAILABILITY: Approved for public release; distribution 1 2b. DRISTRIBUTION
unlimited

13. (Maximum 200

SKY Computers, Inc., 940803W1.1 1374

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary 15. NUMBER OF
Report, Ada Compiler Val. Capability Val. Testing, Ada Val. Office, Ada Val. Facility
ANSI/Mil-STD-1 81 5A 16. PRICE

17 SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN

AVF Control NtMber: AVF-VSR-602.0894
Date VSR Completed: 1 August 1994

94-06-22-sKy

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certifica"e Number: 940803W1.l1374
SKY Computers, Inc.

SKfvec ADA, Release 3.6
SPARCstation 10, Model 402 under SunOS, 4.1.3 -
SKYbolt Model 8146-V tnder SKYmpxrt, release 3.6

(Final) i
Accesion For

NTIS CRA&I
DTIC TAB

Prepared By: Unannouriced 1
Ada Validation Facility Justification -

645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707 By

-• ~Oi:t' ib,,tion I

Avadabil. j Codes

Avail and for
r4- 0 8 Special

94-30981-
IIIL! 111IIII lll i~lll H! I• 14z-• t • " -

"'" "'"i''• "_V--5 •

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 3 August 1994.

Compiler Name and Version: SKYvec ADA, Release 3.6

Host Computer System: SPARCstation 10, model 402
under SunOS, 4.1.3

Target Covputer System: SKYbolt Model 8146-V
under SKYmpxrt, release 3.6

Customer Agreement Number: 94-06-22-SKY

See section 3.1 for any additional information about the testing environment.

As a zesult of this validation effort, Validation Certificate 940803W1.11374
is awarded to SKY Computers, Inc. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Vaidation Facility
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFEB OH 45433-5707

ýaai Vlakl / gaz~ization
Directr r and Software Engineering Division

f Institute; r Defense Analyses
Alexandria VA 22311

-- Snald J./ ifer "

Director, P0O"
Defense Information Systems Agency,
Center for Information Management

DECLARATION OF CONFORMANCE

Custor-.'r: Sky Computers, Inc.

Ada Validation Facility: CTA Inc.
5100 Springfield Pike, Suite 100
Dayton, Ohio 45431

ACVC Version: 1.1!

Ada Implementation:

Compiler Name and Version: SKYvec ADA release 3.6

Host Computer System: SPARCstation-10, Model 402, Sun Microsystems
Host Operating System: SunOS 4.1.3

Target Computer System: SKYbolt Model 8146-V
Target Operating System: SKYmpxrt release 3.6

Customer's Declaration

I, the undersigned, representing SKY Computers, Inc., declare that SKY Computers, Inc.
has no knowledge of deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A in the implementation listed in this declaration.

I declere that SKY Computers is the owner of the above implementation and the ccrtificates
shall be awarded in the name of the owner's corporate name.

_ _ _ __ Date: July 1, 1994

Leo Mirkin
Manager, Languages & Tools,
SKY Computers, Inc.
2 7 Industrial Ave.
Chelmsford, MA 01824

TABLE OF CONTENTS

CHAPTýM 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SI!MMARY REPCRT. 1i
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPrLMMTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MLACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above wav tested according to the Ada
Validation Procedures (Pro92) against the Ada standard [Ada83J using the
current Ada Compiler Validationb Capability (ACVC). This Validation Summnary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide (UG89J.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and ccapiler versions identified in this
report.

The organizations represented on the signature page off this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implemnntation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 pcrt Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVE' which performed this validation or to-

Ada validation Organization
Coqmuter and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANsI/R:L-STDZ-1815A, February1983 and ISO 8652-1987.

(Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UG89] Ada Couipiler Validation Capaýoility User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested "Y means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are e;recutable. Class B and
class L tests are expected to produce errors at compile time and link time,

respectively.

The executable tests are written in a self-checking manner and produce a

PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are

executed. Three Ada library units, the packages REPORT- and SPFRT13, and the

procedure CHECK FILE are used for this purpose. The package REPORT also

provides a set of id'.ntity functions used to defeat s.1 b ,ColJAe
optimizations allowed by the Ada Standard that woulI circumvent a test

objective. The package SPPFrKl3 is used by many tests for Chapter 13 of the

Ada Standard. The procedure CHECK FILE is used to check the contents of text

files written by some of the Class C tests for Chapter 14 of the Ada

Standard. The operation of REPORT and CE.CK FILE is checked by a set of

executable tests. If these units are not ope~ating correctly, v'alidation
testing is discontinued.

Class B tests check that a compiler detec:ts illegal language usage. Class B
tests are not executable. Each test in this class is 'copiled and the
resulting compilation listing is examined to verify that ill violations of

the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compilet. This behavior is
also verified. k

Class L tests check thrt an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attemV-?d.

!n rome tests of the ACVC, certain macro strings have to bL replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be

required to remove unforeseen conflicts between the tests and
inplementation-crependent characteristics. The modifications required for

this imJplementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implemnentation, a customized tebt suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing witirawn tests ksee section 2.1), and possibly

removing some inapplicable te•- ('ste section 2.2 and rUG89]).

In order to pass an ACVC an 1 implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transfornaaon of -da programs into eyecutable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validat.on consisting of the test suite, the support programs, the ACVC
Capability user-s guide and the template for the validation sumwary
(ACIC) report.

AM An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
LPer_.m cjidan'e for the Ada certification system.

Office (AJFO)

Ada The pact of the certification body which carries out the
validation procedires required to establish the compliance of an Ada
Facility (AVF) -implementation.

.Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Comp.ter A functional unit, consisting of one or more computers and
System associated software, that uses c on storage for all or Part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-desigl ated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INtI'ODUCTION

Conformity Fuifillraent by a pioduct, process, or service of all
requirements specified.

Customer An individual or corpurate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statoment from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computec A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRII The Ada standard, or Language Reference rManual, published as
ANSIA4IL-STD-1815A-1983 and ISO 8652-1987. Citations from the
ý-.RM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System poqides services such as resource allocation, scheduling,

input/ou'tput control, and data management. Usually, operating
systems are predomin-antly software, but partial or complete
hardware imrplementations are possible.

Target A computer system wheLe the executable form of Ada progLams
Computer are executed.
System

Validated Ada The compiler of a validated Ada imp]enentation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implewentation either- by AVE testing or by registration [Pro92].

qalidation The process of checking the conformity of an Ada compiler to
the Ada prograzming language and of i-su.,.ng a certificate for
thic imp] ementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

tbst objective, fails to meet its test objective, or contains
erroneous cr illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMEWATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A1 C45612B C45612C
C45651A C46022A B49008A 5490088 A54i01A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BDIB06A
AD1B08A BD2A02A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024D CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A. BD8004C
CD9005A CD9005B CDA.201E CE21071 CE2117A- CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE31l8A
CE3411B CE3412B CE3607B CE3607C CE.3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test ubjectives which are irrelevant
for a given Ada implementation. Reasons "or a test's inapplicability may be
supported by documents issued by the ISO and the AJPC known as Ada
Commentaries and commonly referenced in the fornat AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries a.-e included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCI ES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C454233, B66001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, thele is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, ther-e is no such type.

C45423A, C45523A, and C45622A check that the proper exception is raised
if MACHINE OVERFLOWS is TRUE and the results of various floating-point
operations lie outside the range of the base type; for this
implementation, MACHINE OVERFLACWS is FALSE.

C455311M..P and C4.532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANtISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DuRATION; for this implementation, there is no such type.

CA2009C end CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and Al-00506 such that the con.oilation of the generic unit
bodies makes the instantiating uzits obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE for
procedures and functions; this implementation does not support pragma
INLINE.

CD1009C checks whether a length clause can specity a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2AS4.E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHIN CODE.

2-2

IMPLEMENTATION DEPENDENCIES

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and recorl types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 1O
with unconstrained array type,- and record types with discriminaints
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the gTiven combination
of mode and access nethod; this implementation supports these
operations.

Test File operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CRE2.TE OUT FILE SEQUENTIAL IO
CE2lC2F CREATE INOiT FILE DIRECT IO
CE2102I CREATE IN FILE DIRECT IO
CE2102J CREATE (UT FILE DIRECT_10
CE2102N OPEN INFILE SEQU1=NIAL IO
CE21020 RESET .. N--FILE SEQULNTIALIO
CE2102P OPEN OUT FILE SEQUENTIALIO
CE2102Q RESET OUT-FILE SEQUENTIAL0IO
CE2102R OPEN NOF'Tr FILE DIRECT 10
CE2102S RESE'T INODT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECTIO
CE2102U RESET IN FILE DIRECTIO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE DIPRCT IO
CE3102E CREATE IN FILE TEXT I1
CE3102r RESET Any Mode TEXT IO
CE3102G DELETE TEX. IO
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IC
CE3102K OPEN OUT__FILE TEX"_-IO.

Thr following 16 tests check operations on sequential, direct, and text
files when multiple i.aternal files are associated wi~th the same external
file and one or more are open for writing; USEERRDR is raised when this
association is attempted.

CE2107B..E CE4107G..H CE2107L CE2110B CE2110D
CE2111D CE211111 CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded7 this implementation cannot
restrict file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this-implementation cannot restrict
file capacity.

CE3304A checks that SET LIVE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inappropriate value for the external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
nuntber exceeds COJNTL'AST; for this- implementation, the value of
COUNT'ILAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 7 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B83033B B85013D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and LC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the
generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units obsolete-no
errors are u.tected. The processing of these tests was modified by
re-compiling the obsolete units; all intended errors rere then detected by
the compiler.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Michael LeBlanc
SKY Computers, Inc.
27 Industrial Ave.
Chelmsford MA 01824
(508) 250-1020

Testing of this Ada implementation was conducted at the customer,. site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it prcicesses each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programmi.ng Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those th.t depend on the support of a file system - if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (cowuted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3781
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 84
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 285 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTIONai

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the Ethernet, and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options.

No explicit options were used for testing this implementation.

Test output, compiler and linker listings, end job logs were captured on
magnetic t ape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MLCRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN-also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

S1MAX I'll L" 200 - Value of V

$BIGIDI (l..V- -> 'A', V -> '1')

$BIGID2 (l..V- -> 'A', V -> '2')

$BIGID3 (1..V/2 > 'A'W & '3' &
(1..V-1-V/2 -> 'A'l)

$BIG.ID4 (l..V/2-> 'A') & '4' &
(i..v-l-V/2 -> 'A')

$BIG INT LIT (l..V-3 -> '0') & "298"1

$BIG REAL-LIT (l..V-5 -> '0') & "690.0"

$BIGSTRINGI '"' & (l..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (l..V--V/2 -> 'A') & 'I' &

$BLANKS (1..V-20 -> '

$MAX LEN INT BASED LITERAL
"2:" & (l..V-5 1> '0') & "!1:"

SMAX LEN REAL BASEDLITERAL
"16:" & (I..V-7 •> '0') & "F.E:"

A--I

MACRO PARAMETERS

SMAXSTRINGLITERAL '"' & (1..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMET 4

$COUNT LAST 2_147_483 646

$DEFAULT MEM SIZE 1024

$DEFAULTSTOR UNIT 8

$DEFAULTSYS NAME BOLT

SDELTA DOC 2.0**(.-31)

SENTRY ADDRESS .. 16#0#

$ENTRY ADDRESS1 16#i#

$ENTRYADDRESS2 16#2#

$FIELDLAST 2_147_483_647

$FILETERMINATOR ' r

$FIXEDNAME NOSUCHFIXED TYPE

S FLOATNAME NOSUCHFLOATTYPE

$FORM _STRING ""

$FORMSTRING2 "CANNLY_ RESTRICTFILECAPACITY"

$GREATERTHANDURATION 9
190_000.0

$GRFATERTHANDURATION BASE LAST [

- - I~o_oo _ooo. o

$GREATERTHANFLOATBASE LAST
3.5E+38

$GRFATER THAN TLQAT SAFE LARGE
3.JE+36

A-2

MIACRO PARML-ETrMS

$GREATERTHANSHORT FLOAT SAFELARGE
_ - 3.4k+38

$HIGHPRIORITY 20

$IL.LEGALEXTERNALFILE NAMEl

7WDIRECTORY/TIzaNAMEl

$ ILLEGAL EXTERNALFILE NAME2
/NODIRECIDRY/FILZ4AK'E2

$INAPPROPRIATELINEW4NGTH
-1

$ INAPPROPRIATE PAGE LENG-TH

$ INCLUDEPRAG4A1 PRAGNA INCLUDE ("A280O6D1 .ADA")

SINCLUDEPRAG4A.2 FPAGMA INCLUDE ("B28006F1.ADN'1

$INTEGERFIRST -2147483648

$:m"TEGERLAST 2147453647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELAN4GUAGE C

$LFSSTHANDURATICZt! -90_000 .0

$LESSTHANDURATICZ4_BASE FIRST
-- 1-6000_000.0

$LINETERt4INA'IOR ASCII.LF

$LCW4PRIORITY 1

SMACHINECODESTATEET~

NULL;

$?IACHINE_-CODETYPE INSTMtICTI(XI

SMANTISSADOC 31

Si1AXDIGITS 15

SMAXINT 214748364?

$MAXINT-_PLUS_1 2147483648

S.Z4lNINT -2147483648

$NAMIE BYTEINTEGER

A-3

M1ACRO PARAME!TERS

SNAMELIST BOLT

SNA!MESPECIFICkTICNI /acvc~/va1/X21 20A

$NAMESPECIFICATlcN2 /acvr:/val/X21208

$NAMESPECIFICATICN3 /acvc/val/X3119A

SNEGBASEDINT 16*FFFFFFFE4

SNE'1_ M¶SIZE 1024

$NZdSTORUNIT 8

$NEWSYSN&ME BOLT

$PAGETERMINATOR ASCII .LF & ASCII.FF

SRECORDDEFINITIal NEW INTEGER

$RECORD-NAME INSTRUJCTIONq

$TASKSIZE .32

$ThSKSTORAGESIZE 2048

$TICK 1.0

$VARIABLEADDRESS F(CNDECL .VARADDRESS

$VARIABLEADDRESSi FCNDECL.VARADDRESSi

$VARI-ABLEADDRESS2 FCNDECL .VA~RADCRESS2

$YOUJRPRAGMA NO0_SUCHPRA~ikA

A-4

APPENDIX B

COMPILATION SYSTEM OPTICNS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-1

ada
"Invocation ada (options .]file.ada

Description
The ada command invokes the SKYvec Ada compiler.

A program iibrary must be created using mkrib or newlib in advance of any
compilation. The compiler aborts if it is unable to find a program librar. (either
the default, ada.lib, in the current working directory or the library name specified
with the - L option).

Note that the source file has the extension, ada. Just about any non empty file
extension is permitted. The ones not allowed include those used by the SKYvtc
Ada compli.ng system for other piurposes such as. o for object module files. If
an illegal extension is given, die error message "miss ing or improp' r file

"nawe" is displayed. Some other commonly used .ource file extensions are:

. ads for package specification source files

. adb for package body source files
* sub for subunit (separate) source files

Options
-fD Gene".. e debugging output. The -fD option causes the cornmpilprt gPn-

erate the appropriate code and data for operation with the SKYvec Ada
Debugger. For more information on using this option and using the De-
bagger, see Chapter 9.

-fE Generate error log file. The -f. option causes the compiler to generate
a log file containing all the error messages and warning messages pro-
duced during compilation. The error log file has the same name as the
source file, with the extension .err. For example, the error log file for
s zmple .ada is s irmple, e rr. The error log file is, placed in the current
working dirctory. In the absence of the - f E optiopl, the error log infor-
mation is ;cnt to the standard output stream.

-fL Generate exception location information. The -fL Option causes location
information (source file names and line nurrabers) to be maintained for
internal checks. This information is useful for debugging in the event that
an "Exception never handled" message appears when an excention prop-
agates out of the main program (see section Exception Never Handled on
page 3-10). This option causes the code to be somewhat larger. If -fL
is not used, exceptions that propagate out of the main program will be-
have in the same way, but no location information will be printed with the
"Exception never handled" message.

-fN Suppress numeric checking. The - tN option suppresses two kinds of nu-
meric checks for the entire compilation:

16-2 SKYvec Ada User's Guide

1. division check

2. overflow-check

These chec.ks are described in section 11.7 of the LRM. Using -f N re-
duces the size of the code. Nowe that there is a related ada option, -fs to
suppress all checks for a compilation. See also section Exccption Never
Handled on page 3-10.

The -fN option must be used in place of pragma suppress for the
two numeric checks, because presently pragma su1ppress is not sup-
ported for divisioncheck and overflow check. Pragma sup-
press works for other checks, as aesn;bed in section Reducing
Program Size on page 2-4. In the absence of the - f N option, the numeric
checks are always performed.

-fs Suppress all checks. The -fs option suppresses all automatic checking.
including numeric checking. This option is equivalent to using pragma
suppress on all checks. This option reduces the size of the code, and
is good for producing "proc;ucuon quality" code or for benclimatking the
compiler. Note that there is a related ada option, -f N to sUppress only
certain kinds of numeric checks. See also sections Reducing Program
Size on page 2-4 and Automatic Checks on page 3-11.

-fv Compile verbosely. The compiler prints the name of each subprogram,
package, or generic as it is compiled. Information about the symbol table
space rcmnauing oillowing .o....ila.tion o'f nUed tcis "i1 so pr.nted
in the form "lnKl".

-fw Suppress warning messages. With this option, the compiler does not
print warning messages about ignored pragmas. exceptions that are cer-
tain to be raised at rn-time, or other potential problems that the compiler
is otherwise forbidden to deem as erTors by the LRM.

-g The -q option instructs the compiler to run an additional optimization
pass. The optimizer removes common sub-expressions, dead code and
unnecessary jumps. It also does loop optimizations. This option is dif-
ferent from the -9 option to bamp. Thie -g option to ada optimizes the
specified unit when it is compiled. no inter-unit optimization is done. The
-g option to bamp analyzes and optimizes the entirc program at link time.
Note: Even if -g is specified for the ada command, the -K option to'ada
must still be specified for the -g option to bamp to be effective.

-K Keep internal form file. This option is used in conjunction with the Op-
timizer (see Chapter for more information). Without this option, the
compiler aeletes internal form files following code generation.

-limodifiers
Generate listing file. The -I option causes the compiler to create a list-
ing. Optional modifiers can be given to affect the listing format. You can
usc nune or any combination of the following modifiers:

c continuous listing format

SKYvec Ada User's Guide 16-3

p obey pragma page dir..ctives
s use standard output
t rtevant text output only

The formats of and options for listings are discussed in section Listings
on page 16-6. The default listing file generated has the same name as the
source file, with the extension . ist. For example, the default listing file
produced for simple.acla has the name ,nimple. 1st. The listing file is
placed in the current working directory. Note: -1 also causes an error
log file to be produced, as with the -f E option.

-L library-name
Default: ada. Iib
Use alternate library. -L option specifies an atcrnative name for the pro-

graw library.

Note: Options beginning with -f can be combined, as in "-fsv."
This is equivalent to specifying the options separately, e.g "- fs
-fv." Options beginning with -1 can be similarly combined or
separated, as in "-ics" or "-ic -is" (see secuon Listngs on
page 16-6).

Compiler Output Files
Files produced by compilations, other than listings and error logs, art:

Files Description

P.tr interface description files
Sint Meridian Internal Form Qfles
. gnn generic description files; nn is a two-digit number
. 0 object code files
* sep subunit environment description files

Also produced are various intermcdiate files: these are usually deleted as a mat-
terof course. You normally need not concern yourself with most of these output
files with the exception of assembly language files.

Output files are placed either in the current working directory or in the auxiliary
directory, depending on the configuration of the prog;ram library (as determined
by mrlib or newl.ib). The name of an auxiliary'directory associated with a
program library can be determined by using the -h option to the islib com-
mand.

The name of an output file is derived from the first 10 characters of the compila-
tion unit name, but when a name collision occurs, the library system assigns an
arbitrary unique name that may bear no relation to the source file name (it might
look like "aaaaaaah"). The -1 option to the islib command must be used to
determine the base name used to derive the output file names for a particular li-
brary entry. The base name is displayed as the "Host system file name".

The name of an output file is derived from the compilation unit name.

16-4 SKYvec Ada User's Guide

Supplementary files utiat may be produced by a compilation ame:

.err error log files (only when -fE option used)

. 1-t listing files (only when -1 option used)

These are discussed in section Wrsings on page 16-6.

Non-Local Compilations
The compiler is able to ccrnpile files that reside in directories other than the cur-
rent working directory. As always, a program library (typically ada. 1ib) tfust
be present in the current working directory. All oututAI files are placed in the cur-
rent working directory or in the local auxiliary directory (ada. aux).

Compile-Time Error Messages
When syntactic or semantic errors are detected in the source code. the SKYvec
Ada compiler produces either error messages or warning messages. These rnes-
sages are normally produced on the standard output stream. If the -f E option is
given, these messages are written, instead, to an error log file. The error log file
has the same name as the source file, with the extension . err.

When error messages are printed, processing does not proceed beyond the first
pass. No object code file is produced. Warning messages do not prevent further
processing. Other passes (e.g. !he code generator) may print error messages as
well, but these am. a-i-ost certain to -e error messages related to problems inter-
nal to the compiler itself. and should be reported to SKY Computers. Inc.

Error messages have the form:

"filename", nn: English explanation of error [LRM 1.m.n/p3

where filename is the name of the program source file in which the erroi was
detected, nn is the specific line number in the source i where the error oc-
curred, followed by an explanation in English of the error, and, when appropri-
ate, a reference to the LRM. The LRM reference gives the chapter (l), section
(W), subsection (n), and paragraph number (p).

An example follows.

"rt.ada", 245: record component redeclared [LRM 3.7/210

Depending on the severity of the error, the SKYvec Ada compiler may attempt
to recover and continue compiling the source code, or may terminate compilation
immediately.

Warning messages have the form:

"filename", n: <<warning>> message

An example warning message is shown below.
"rt.ada", 297: <<warning>> INLINE: pragma has no effect

Error messages that begin with

SKYvec Ada User's Guide 16-5

Compiler Error

are internal compiler enror messages. If any appear, they should be reported to
SKY Computers.

All error messages and warning messages should be self-explanatory.

Listings
The compiler by default does not produce listings. The -i option causes the
compiler to produce both a listing file and an error log file. The - f E option caus-
es the compiler to produce only an error log file. In the absence of these options,
the compiler prints an error log to the standard output stream alone.

Usting File Contents
1he listing file contains line-numbered, paginated source text with error and
warning messages interspersed. Listing file error messages appear in the format:

******E error message

Warning messages appear in the format:

.+++++W warning message +

The listing generatedwhen -i is specified obeys pragma list and pragma page
as described in the LRM. Pragma list and pragma page have no effect in the
absence of the -i option.

Usting Format Control
Listing format is controlled via modifiers to the -1 option or via a compiler de-
fault option description file named ada . ini. Refer to section Default Option
Description File on page 16-7 for information about the ada. ini file.

The -1 option has the form -imodifiers, where modifiers are zero or more
of these letters:

c Use continuous listing format. The listing by default contains a header
on each page. Specifying -1c suppresses both pagination and header
output, producing a continuous listing.

p Obey pragma page directives. Specifying -p is only meaningful if
-ic has also been given. Normally -ic Asuppresses all pagination,
whereas -acp Euppresses all pagination except where explicitly called
for within the source file with a pragma page directive.

s Use standwrd output. The listing by default is written to a file with the
same name as the source file and the extension . ist, as in simple. 1st
from simple. Ada. Specifying -is causes the listing file to be writen
to the standard output stream instead. This output may be redirected any-
where (e.g. to the PRN device).

t Generate relevant text output only. The listing by default contains the
entire source program as weU as interspersed error messages and warning

16-6 SKYvec Ada User's Guide

"0 I ' j'I I" l!" r:r =!! •j F!i!' ••!••

messagc.s. Specifying -it causes the compiler to list only the source
lines to which error messages or warning messages apply, followed by thc
messages themselves.

Any, all or none of the suffix letters c. p. s, and t may be given following -1,
as in -ics, -lct, or -icat. The options can also be given separately, as in -
Ic -ia.

Default Option Description File
Compiler behavior can be modified noT only by command line options, but also
by a default option description file named ada . ini. Default options are given
in l ib/ada, ini in the installation directory', while local overriding options
can be given in an ada. ini file in the current working directory. At present,
only listing format parameters can be set in a compiler default option description
file.

The ada. ini file is an ordinary text file that may be created or edited with any
editor used to edit Ada programs. The default lib/ada. ini file contents are:

SKYvec Ada compiler default option descri..ion fýLe

-- page length : 66; -- min: 5
-- top_margin : 6; -- min: 2
-- bottom__margin : 6; -- min: 2
-- left_margin : 4; -- min: 0
-- page width : 132; -- min: 40
-- lineno width : 5; -- min: 0
-- marker lines : 1; -- min: 0

-- headertimestamp : true
; -- summary . true
S--graphic_controls : true;

-- error tag : "E";--warningtag:= "W":

The lib/ada .ini file as it is initially configured consists solely of comments
showing examples of parameter assignments. The compiler defallt option de-
scription file may consist of Ada comments, blank lines, or assignments. In the
example above, the initial comment characters ("- -") must be deleted to m ake
any parameter assignment effective. The comments show the default values of
the parameters, so there is no need to un-comment any particular assignment un-
less the value is to be changed. An example of a local ada. £ni file might be:

Local SKYvec Ada . mpiler default option
-- description file

page width :- 79;
-- Use all other defaults.

1. See your Software Release notes for installation information.

SKYvec Ada User's Guide 16-7

The parameters to which assignments car, be made are:

bottommargin This parameter sets the vumber of lines in the bottom mar-
gin of each page. The bottommost lines aie blank. The min-
imum number of bottom margin lines that can be specified
is 2. The bottom margin is suppressed by using the -ic
(continuous listing) option.

errortag This parameter specifies the character string that is dis-
played at the beginning of any error messages that occur in
zhe listing. This string serves to highlight the error message.

graphic_controls
This parameter determines how non-printable characters in
the Ada source file are printed. Non-printable characters
include the ASCII DEL character and all ASCII control
characters except for ASCII horizontal tab and the normal
line terminator characters. If this parameter's value is true,
then the control characters are printed as Ax where x is
the printable character derived by adding the number 64
(decimal) to the ASCII code value of the control character.
For example, the ASCII BEL character, also known as Con-
vol-G (AG), is printed as AG. Other non-printable charac-
ters are displayed as A?. If the parameter s value is set to
false, then ,he non-printable characters are displayed as is
with no conversion.

header_timestamp
This parameter specifies whether the heading information
should include the date and time wher .he listing was gen-
erated. If its value is true, then the date and time are dis-
played. If its value is false, no date or time is printed.

left-margin This parameter specifies the number of blanks printed in
earth line before anything else (including line numbers,
source lines, messages, and heading information). The left
margin can be no smaller than 0 characters.

lineno width This parameter specifies the number of characters reserved
for the line number that appears to the left of each source
line listed. The line number width can be no smaller than 0
characters. If 0 is specified, no line numbers are generated.

marker-lines This parameter specifies the numtxber of marker lines to
print before and after ai t error or warning message. Marker
lines serve to make these messages stand out more from the
rest of the listing. The minimum number of marker lines is
0.

pagelength This parameter sets the number of lines pnnted per page. A
page eject is placed at the end of each page. The minimum
number of lines that can be specified for the page is 5. The

16-8 SKYvec Ada User's Guide

page eject can be suppressed by using the -ic (condnuous
listing) option.

page wi..dth This parameter specifies the number of characters in the
longest line that will be printed before the line is broken
to the next line. The page width can be no smaller than 40
characters. This value does not include the number of char-
acters specificd by the left margin and lineno widtn
parameters.

summary This parameter specifios whether the listing should include
a compilation summary at the end. If a summary is aesired.
this parameter's value should be set to true, otherwise it
should be set to false.

top margin This parameter sets the number of lines in the top nmargin of
each page. Centered in the topmost lines of each page a
heading is printed containing a page number, file name, and
date. The minimum number of top margin lines that can be
specified is 2. The top margin and heading information can
be suppressed altogether by using the -ic (continuous list-
ing) option.

warning_tag This parameter specifies the character string that is dis-
played at the beginning of any warning messages that oc-
cur in the listing. This string serves to higilhgh: the warning
message.

Examples
Example 34

Compile x. ada in the usual manner-.

ada x.ada

Do not forget to type the extension. If you do not type the extension the ada pro-
gram displays theerror message "miasing or improper file name".

Example 35

Compile x. ada with exception location maintenance code:

ada -fL x.ada

This is most useful when debugging a program that raises an exception.

Example 36

Compile x. ada, but with all automatic checking suppressed:

ada -fa x.ada

This is most useful after a program has been debugged and it is time to generate
a "production" version of the program that is smaller and runs more quickly.

SKYvec Ada User's Guide 16-9

Example 37

Compile x. ada, but with numeric checking suppressed:

ada -fN x.ada

This retains most of the useful checks, while speeding up the program and de-
creasing its size.

Example 38
Compile x. ada, y. ads, and z. adb in the usual manner:

ada x.ada y.ads z.adb

Each source file is compiled in the order given.

Example 39

Compile x. ada using an alternate program library named z. lib:

ada -L z.lib x.ada

This presumes that z. Iib was created in the current working directory with the
rnklib program prior to compilation.

Example 40

Compile x . eda verbosely, suppressing warning messages:

ada -fvw x.ada

For the -tv option, the compiler prints the name of each subprogram, package,

or generic as it is compiled, along with the amount of symbol table space remain-
ing. For the -fw option, the compiler suppresses warning messages.

Example 41

Compile simple. ada, producing a listing file:

ada -1 simple.ada

This produces a listing file named simple. ist and an error log file, sImple. err.

Example 42

Compile simple. ada. producing a continuous-form listing file on standard output:

ada -lsc simple.ada f

This produces a listing on standard output in continuous format (no headers or
pagination), as well as an error log file, simple .err.

Example 43

Compile simple. ada in a non-local directory, producing a local object file:

ada /x/ada/simple.ada

An ada. Iib file must be present in the current directory. All output files are
placed in the current directory or in the local auxiliary directory (ada. aux).

16-10 SKYvec Ada User's Guide

Example 44
Compile simple.ada normaiiy. but retain information for the global optimizer

ada -K simple.ada

Runs the compiler normally, but does not delete s.imple. int, which can be
used by a subsequent global optimization (bamp -g) command.

SKYvec Ada User's Guide

ML

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

COMPILATION SYSTEM OPTIONS

bamp

Invocation
bamp [options...] [main-procedure-name]

Description

The bamp (Build Ada Main Program) command creates an executable program
given (an MPW tool by default, see section) the name of the main subprogram.
The main-procedure-name given to bamp must be a parameterless procedure
that has already been compiled.

Note: Be careful not to confuse the name of the source file containing the
main subprogram (e.g. simple.ada) with the actual name of the main subprogram
(e.g. simple).

If a main-procedure-name is not specified on the bamp counand line, bamp
links using the last-compiled subprogram that fits the profile for a main
subprogram. To determine which subprogram will be used when no main
subprogram is given to bamp, use the islib -t option. When in doubt, it may
be best to specify the main subprogram explicitly.

Note that when no main subprogram is specified, bamp selects the most recently
compiled subprogram, not the most recently linked subprogram. If several
different main subprograms are linked between compiles, still the most recently
compiled subprogram is selected if no subprogram is explicitly specified.

The bamp program functions as a high-level linker. It works by creating a top-
level main program that contains all necessary context clauses and calls to
package elaboration procedures. The main program is created as an internal
form file on which the code generator is run. Following this code generation
pass, all the required object files are linked.

An optional optimization pass can be invoked via the bamp command. The
details of optimization are discussed in Chapter 7. The bamp options relevant
to optimization, -g and -G , are discussed below.

Programs compiled in Debug mode (with the xada -fD option) sre
automatically linked with the SKYvec Ada source level debugger.

Options

-A Aggressively inline. This option instructs the optimizer to
aggressively inline subprograms when used in addition to the -G option.
Typically, this means that subprograms that are only called once are inlined.
If only the -G option is used, only subprograms for which pragma inline has
been specified are inlined.

-c compiler-program-name
Default: As stored in program library. Use alternate compiler. Specifies the
complete (nonrelative) directory path to the SKYvec Ada compiler. This
option overrides the compiler program name stored in the progrln library.
The -c option is intended for use in cross-compiler configurations,
although under such circunistances, an appropriate library configuration is

COMPILATION SYSTEM OPTIONS

normally used instead.

-f Suppress main program generation step. Suppresses the creation and

additional code generation steps for the temporary main program file. The

-f option can be used when a simple change has been made to the body of

a compilation unit. If unit elaboration order is changed, or if the

specification of a unit is changed, or if new units are added, then this option

should not be used. The -f option saves a few seconds, but placeE. an

additional bookkeeping burden on you. The option should be avoided under

most circumstances. Note that invoking bamp with the -n option followed

by another invocation of bamp with the -f option has the same effect as an

invocation of bamp with neither option (-n and -f neutralize each other).

-g Perform global optimization only. Causes bamp to invoke the global
optimizer on your program. Compilation units to be optimized globally
must have been compiled with the xada -K option.

-G Causes bamp to perform both global and local optimization. This
includes performing pragma inline. As with the -g option, compilation units
to be optimized must have been compiled with the xada -K option.

-I Link the program with a version of the tasking run-time which supports
pre-emptive task scheduling. Produces code which handles interrupts more
quickly, but has a slight negative impact on performance in geneial.

-L library-nane
Default: ada.lib. Use alternate library, specifies the name of the program
library the bamp program consults. (Overrides default library name).

-n No link. Suppresses actual object file linkage, but create,. and
performs code generation on the main program file. Note that invoking bamp
with the -n option followed by another invocation of bamp with the -f option
has the same effect as an invocation of bamp with neither option. That is, -n
and -f neutralize each other.

-N No operations. Causes the bamp command to do a "dry run"; it pr:nts
out the actions it takes to generate the executable program, .but does not
actually perform those actions. Similar to the -P option. -

-o output-file-name
Default: file. Use alternate executable file output naxrr. Specifies the
name of the executable program file written by the bamp command. This
option overrides the default output file name.

cont.bamp

-P Print operations. Causes the bamp command to print out the actions it
takes to generate the executable program as the actions are performed.

-v Link verbosely. Causes the bamp command to print out information about

what actions it takes in building the main program such as:

The name of the program library consulted.

COMPILATION SY!;TEM OPTIONS

• The library search order (listed as "saves" of the library units used
by the program).

The name of the main program file created (as opposed to the main
procedure name).

• The elaboration order.

The total program stack size.

• The name of the executable load module created.

• The verbose code generation for the main program file.

-W Suppress warnings. Allows you to suppress warnings from thE optimizer.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2147483648 .. 2147483647;
type LONG INTEGER is range -2147483648 .. 2147483647;

type SHORT INTEGER is range -32768 .. 32767;
type BYTE_TNTEGER is range -128 .. 127;

type FLOAT is digits 6 range -3.40282E+038 .. 3.40282E+038;
type LONGFLOAT is digits 15

range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD,

C-I

Appendix F
Implementation-Dependent
Characteristics
This appendix lists implementation-dependent characteristics of SKYvec Ada.
Note that there are no preceding appendices. This appendix is called Appendix F
in order to comply with the Reference Manualfor the Ada Programming Lan-
guage (LRM) ANSI/MIL-STD-18 1SA which states that this appendix be named
Appendix F..

Implemented Chapter 13 features include length clauses, enumeration represen-
tation clauses, address clauses, interrupts, package system, machine code inser-
tions, pragma interface, and unchecked programming.

Pragmas
The implemented pre-defined pragmas1 are:

elaborate See the LRM section 10.5.

interface See section Pragma Interface on page F-2.

list See the LRM Appendix B.

pack See section Pragma Pack on page F-3.

page See the LRM Appendix B.

priority See the LRM Appendix B.

suppress See section Pragma Suppress on page F-4.

inline See the LRM section 6.3.22.

"Ihe remaining predefined pragmas are accepted, but presently ignored:

controlled optimize system-na'ie
shared storageunit memory size
interface

1. packNamed parameter notation for pragmas is not supported.
"-2.-Ihis-pragma is not actually effective unless you compile/link your
program using the global optimizer.

SKYvec Ada User's Guide F-I

When illegal parameter forms are encountered at compile time. the compiler issues
a warning message rather than an error, as required by the Ada language definition.
Refer to the LRM Appendix B for additional information about the pre-defined
pragmas.

Pragma Interface
The form of pragma interface in SKYvec Ada is:

p:agma interface(language, subprogram (, "link-name"));

where:

language This is the interface language, one of the names assem-
bly, builtin, c, or internal. The names builtin and
internal are reserved for use in run-time support packag-
es.

subprogram This is the name of a subprogram to which the pragma in-
terf ace applies. If link-name is omitted, then the Ada
subprogram name is also used as the object code symbol
name. Depending on the language specified, some automat-
ic modifications may be made to the object code symbol
name.

link-name This is an optional string literal specifying the name of the
non-Ada subprogram corresponding to the Ada subprogram
named in the second parameter. If link-name is omitted,
then link-name defaults to the value of subprogram trans-
lated to lowercase. Depending on the language specified.
some automatic modifications may be made to the link-
name to produce the actual objcct code symbol name that is
generated whenever references are made to the correspond-
ing Ada subprogram. The object code symbol generated for
link-name is always translated to upper case. Although
the object linker is case-sensitive, :t is a rare object module
that contains mixed-case symbols.hL is appropriate to use the
optional link-name parameter to pragma interface
only when the interface subprograrh has a name that does
not correspond at all to its Ada identifier or when the inter-
face subprogram name cannot be given using rules for con-
stucting Ada identifiers (e.g. if the name contains a '$'
character).

The characteristics of object code symbols generated fo, each interface language
are as follows:

assembly The object code symbol is the same as link-name. If no
link-name string is specified, then the subprogram name
is translated to lowercase.

F-2 SKYvec Ada User's Guide

builtin The object code symbol is the same as link-name, but pre-

fixed with one underscore character ("_"), whether or not a

link-name suing is specified two underscore characters (-_
_"). This language interface is reserved. The built in in-

terface is presently used to declare certain low-level rin-

time operations whose names must not conflict with pro-

grammer-defined or language system defined names.

c The object code symbol is the same as link-name, but with

one underscore character ('-') prepended. This is the con-

vention used by the C compiler.subprogram name. If no

link-name string is specified, then the subprogram name

is translated to lowercase.

internal No object code symbol is generated for an internal language
interface; this language interface is reserved. The internal
interface is presently used to declare certain machine-level
bit operations.

No automatic data conversions are performed on parameters of interface subpro-

grams. It is up to the programmer to ensure that calling conventions match and that

any necessary daM conversions take place when calling interface subprograms.

A vragmna interface may appear within the same declarative part as the subpro-

gram to which the pragma interface applies, following the subprogram declara-

tion. and prior to the first use of the subprogram. A pragma interface that ap-

plies to a subprogram declared in a package specification must occur within the

same package specification as the subprogram declaration; the pragma inter-

f ace may not appear in the package body in this case. A pragma interf ace dec-

laration for either a private or nonprivate subprogram declaration may appear in the

private part of a package specification.

Pragma interface for library units is not supported.

Refer to the LRM section 13.9 for additional information about pragma interface.

Pragma Pack
Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to which it ap-

plies, provided that the pragma occurs within the same declarative part as the com-

posite type declaration, before any objects or components of the composite type are
declared.

Note that the declarative part restriction means that the type declaration and accom-

panying pragma pack cannot be split across a package specification and body.

The effect of pragma pack is to minimize storage consumption by discrete com-
ponent types whose ranges permit packing. Use of pragma pack does not defcat

allocations of alignment storage gaps for some record types. Pragma pack does not

affect the representations of real types, pre-defined integer types. and access types

SKYvec Ada User's Guide F-3

Pragma Suppress
Pragma suppress is implemented as described in the LRM section 11.7, wi,L,
these differences:

U) Presently, division check and overf lowcheck must be suppressed
via a compiler flag, -f N; pragma suppress is ignored for these two numer-
ic checks.

Q The optional "ON =>" parameter name notation for pragma suppre3s is
ignored.

El The optional second parameter to pragma suppress is ignored; the prag-
ma always applies to the entire scope in which it appears.

Attributes
All attributes described in the LRM Appendix A are supported.

Standard Types
Additional standard types are defined in SKYvec Ada:

13 byte-integer

o shortinteger

O longinteger

The standard numeric types ame defined as:

Iz Ran
byteinteger -128 .. 127;

short_integer -32768 .. 32767;

integer -2147483648 .. 2)i7483647;

long_integer -2147483648 .. 2147483647;

float (6 digits) -3.40282E+038 "L" 3.40282E+038;

longfloat (15 digits) -1. 7 9 7 6 9313486231E+308 .. 1. 7 97 69313486231E+308;

duration (0.0001 delta) -86400.0000 .. 86400.0000;

Package System
The specification of package system is:

package system is

type address is: new integer;
type name is: (BOLT);
systemname: constant name:= BOLT;

F-4 SKYvec Ada User's Guide

storage unit: constant:= 8;

memory-size: constant:= 1024;

-- System-Dependent Named Numbers

min int: constant:= -2147483648;
max int: constant:= 2147483647;
max_digits: constant:= 15;
maxjmantissa: constant:= 31;
finedelta: constant:= 2.0 -31;
tick: constant:= 1.0;

-- Other System-Dependent Declarations

subtype priority is integer range 1.. 20;

The value of system. memorysize is presently meaningless.

Restrictions on Representation Clauses

Length Clauses
A $eie secification (t' size) is rejected if fewer bits are specified than can ac-

commodate the type. The minimum size of a composite type may be subject to ap-
plication of pragma pack. It is permitted to specify precise sizes for unsigned in-
teger ranges. e.g. 8 for the range 0..255. However, because of requirements im-
posed by the Ada language definition, a full 32-bit range of unsigned values, i.'!.
0..(232.1), cannot be defined, even using a size specification.

The specification of collection size (t, storage_5 ize) is evaluated at run-time
when the scope of the type to which the length clause applies is entered, and is
therefore subject to rejection (via storage -error) based on available storage at
the time the allocation is made. A collection may include storage used for run-time
administration of the collection, and therefore should not be expected to accommo- -

date a specific number of objects. Furthermore, certain classes of objects such as
unconstrained discriminant array components of records may be allocated outside
a given collection, so a collection may accommodate more objects than might be
expected.

The specification of storage for a task activation (t' storage-s ize) is evaluated
at run-time when a task to which the length clause applies is activated, and is there-
fore subject to rejection (via storage ..error) based on available storage at the
time the allocation is made. Storage reserved for a task activation is separate from
storage needed for any collections defined within a task body.

The specification of small for a fixed point type (t' small) is subject only to re-
strictions defined in the LRM section 13.2.

SKYvec Ada User's Guide F-5

Enumeration Representation Clauses
The internal code for the literal of an enumeration type named in an enumeration
'epresentation clause must be in the range of standard. integer.

The value of an internal code may be obtained by applying an appropriate instan-
uation of unchecked-conversion to an integer type.

Record Representation Clauses
The storage unit offset (the at static_siimpleexpression pan) is given in
terms of 8-bit storage units and must be even.

A bit position (the range part) applied to a discrete type component may be in the
range 0.315, with 0 being the least significant bit of a component. A range specifi-
cation may not specify a size smaller than can accommodate the component. A
range specification for a component not accommodating bit packing may have a
higher upper bound as appropriate (e.g. 0..31 for a discriminant string component).
Refer to the internal data representation of a given component in determining the
component size and assigning offsets.

Components of discrete types for which bit positions are specified may not straddle
16-bit word boundaries. -

The value of an alignment clause (the optional at mod pan) must evaluate tu 1, 2,
4, or 8, and may not be smaller than the highest alignment required by any compo-
nent of the record.

Address Clauses
An address clause may be supplied for an object (whether constant or variable) or
a task entry, but not for a subprogram, package, or task unit. The meaning of an
address clause supplied for a task entry is given in section Interrupts on page F-7

An address expression for an object is a 32-bit linear segmen'ed memory address
of type system. address.

Interrupts
A task entry's address clause can be used to associate the entry with a UNIX signal.
Values in the range 0..31 are meaningful, and represent the signals corresponding
to those values.

An interrupt entry may not have any parameters.

Change of Representation
There are no restrictions for changes of representation effected by means of type
conversion.

F-6 SKYvec Ada User's Guide

Implementation-Dependent Components
No names arm generated by the implementation to denote implementation-depen-
dent components.

Unchecked Conversions
There are no restrictic .is on the use of uncheckedconver s ion. Conversions be-
tween objects whose sizes do not conform may result in storage areas with unde-
fined values.

Input-Output Packages
A summary of the implementation-dependent input-output characteristics is:

Q In calls to open and create, the form parameter must be the empty string
(the default value).

El More than one internal file can be associated with a single external file for
reading only. For writing, ordy one internal file may be associated with an
external file. Do not use reset to get ai-und this rule.

U Temporary sequential and direct files are given names. Temporary files
are deleted when they are closed.

43 File I/O is buffered: text files associated with terminal devices are line-
buffered.

Q The packages sequentialio and directio cannot be instantiated
wvith unconstrained composite types or record types with discriminants
without defaults.

Source Line and Identifier Len gths
Source lines and identifiers in Ada source programs are presently limited to 200.

characters in length.

SKYvec Ada User's G!(ide F-7

