AD-A285 107 NTATION PAGE

Form Approved

OPM No.

l!“ I|il!|||| e

H i : I " -

““Il” }"““i ‘Ii |||||i! I I':I ! 3 atad to average 1 hour per response, incuding the tme lor reviewing Instructions, searching existing dala
o EE i il B R

5 Jefferson Davis Highway, Suile 1204, Arlingten,
n, OC 20503.

wing the coll.cuon of information. Send commenws regading his burden, 1o Wash ngton Haadquarisrs

VA 22202-4302, and to the Office of Information ang

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES

4. TITLE AND: Compiler: VADS Sun4 => PowerPC, Prduct #2100-01444,
Version 5.2

Host: Sun SPARCcenter 2000 (under Solaris 2.3)

Target: Motorola MVME1601 (PowerPC 601) (bare machine)

6. AUTHORS:

Wright-Patterson AFB, Dayton, OH

5. FUNDING

7. PERI-ORMING ORGANIZATION NAME (S) AND

Ada Validating Facility, Language Control Facility ASB/SCEL, Building 676, Rm.
135

Wright-Patterson AFB, Dayton, OH 45433

8. PERFORMING
ORGANIZATION

9. SPONSOR!NG/MONITORING AGENCY NAME(S) AND
Ada Joint Prograim Giiice, Defense information System Agency
Code TXEA, 701 S. Courthouse Rd., Arlington, VA

22204-2199

L JRING/MONITORING

11. SUPPLEMENTARY

12a. DISYRIBUTION/AVAILABILITY: Approved for public release; distribution
unlimited

12b. DRISTRIBUTION

13. (Maximum 200

Rational Software Corporation, 940630W1.11369

14. SUBJECT: Ada Programming Language, Ada Compiler validation Summary
Report, Ada Compiler Val. Capability Val. Testing, Ada Val. Qffice, Ada Val. Facili
ANSI/Mil-STD-1815A

15. NUMBER OF
ty

16. PRICE

17 SECURITY 18. SECURITY 19, SECURITY
CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

20, LIMITATION OF

| UNCLASSIFIED

NSH

AVF Control Number: AVF-VSR-597.0694
Date VSR Completed: July 21, 1994

. 94-05-12-RAT

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Numper: 940630wl.11369
Rational Software Corporation
VADS Sund => PowerPC, Product Number: 2100-01444, Version 6.2
Sun 4 Model SPARCcenter 2000 under Solaris 2.3 =>
Motorola MVME1601 (PowerPC 601 bare machine)

(Final) _éccesion For
NTIS CRAG! X
DiiC TAG 1
Urarinoraced L]
Justie L ion
Prepared By: A
Ada validaticn Facility

645 CCSG/SCSL By

Wright-Patterson AFB OH 45433-5707 | Diatibetion]

—

Av labiity Codes

e — e

Avan aad/or
HPLCI

e 0 i]

\L&.‘U %’UJ&Z—';J X oagvini, ' 15ka

94-30988 0 ac 070
v ©% ¢ 7

Certificate Information

The following Ada implementation wae tested and determined to pass ACVC 1.11,
Testing was completed on 30 June 1994.

Compiler Name and Version: VADS Sund => PowerPC,
rroduct NMumber: 2100-01444, Version 6.2

Host Computer System: Sun 4 Model SPARCcenter 2000 under Solaris 2.3

Target Computer System: Motorola MVMEL601 (PowerPC 601 bare machine)

Customer Agreement Number: 94-05-12-RAT

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, validation Certificate 940630W1.11369
is awarded to Rational Software Corporation. This certificate expires two
years after MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

&\\;’O < -9\0_——5\0

Ada validation Facility

Dale E. Lange

Technical Director

645 CCSG/SCSL

Wright-Patterson AFB OH 45433-5707

Ada ¥al g on Organization

61 Direlstor ~Computer and Software Engineering Division
Institute for Deferise Analyses

Alexandria VA 22311

Director, 2JPO
Defense Information Systems Agency,
Center for Informatiun Management

DECLARATION OF CONFORMANCE

Customer: Rational Software Corporation

Ada vValidation Facility: 645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

ACVC Version: 1.11
Ada Implementation:

Ada Compiler Name and Version: VADS Sund => PowerPC
Product # 2100 01444, Version 6.2

Host Computer Sysvem: Sun 4 Model SPARCcenter2000 under Solaris 2.3

Target Computer System: Motorola MVME1601 (PowerPC 601 bare machine)

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-181SA,

IS0 8652-1987, FIPS 119 as tested in this validation and documented
in the Validation Summary Report.

ooee:_IJ19/9Y

Stephef Zeigler

1600 N W Compton Drive
Suite 357

Beaverton, QOregon 97006

.. TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 USE OF THIS VALIDATION SUMMARY REPORT . . B, i
1.2 REFMCES. s e o e *r o & o s e« e o e & o . . 1-2
1.3 ACVC TEST CLASSES . . &+ v ¢ o o o o o s o « o o o o 122
1.4 DEFINITION OF TERMS « ¢« v ¢ ¢ & « » « & . 1-3
CHAPTER 2 IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAIWN TESTS . + « o « o o o o o o o s o o o » o 2=1
2.2 INAPPLICABLE TESTS. . « « & « s o« o« o o = s« + o + » 2-1
2.3 TEST MODIFICATIONS. ¢ v+ « ¢« o « o o o o » + 2-4
CHAPTER 3 PROCESSING INFORMATION
3.1 TESTING ENVIRONMENT « « & o « « &+ + o o« « o 3-1
3.2 SUMMARY OF TEST RESULTS + « « + « « « « .« . 3-1
3.3 TEST EXECUTION. « + ¢ o« + o o o o s o o« o o 322
APPENDIX A MACRO PARAMETERS
APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested asccerding to che Ada
Validation Procedures (Pro92) against the Ada Standard {AdaB8?j using the
current Ada Compiler Validation Capability (ACVC). ‘fhis Validation Summary
Report (VSR) gives an account of the testing of this Ads implementation. For
any technical terms used in this report, the reader is referrea to (P:rud2].
A detailed description of the ACVC may be found in the current ACVC User’s
Guide [UG8B9].

1,1 USE OF THIS VALIDATION SUMMARY REPCRT

Consistent with the national lawe of the originating countrv, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in tkis
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this repurt are
accurate and complete, or that the subject implementation hiaz no
nonconformities to the Ada Standard other than tnuse presdnted. Ccpies ot
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Spri~gjfield VA 22161

uestions regarding this report or ¢he validation test resuits shoula he
directed to the AVF which performed this validation or to:

Ada vValiidation Organization

Computer and Software Engineerir:g Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

e

INTRODUCTION

1.2 REFERENCES

(Ada83]) Reference Manual for the Ada Programming Langga%e.
ANSI/MIL-STD-1815A, Fetruary and IS0 -1987.

{Pro92) Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1952,

(UG89] Ada Compiler Validation Capability User’'s Guide, 21 June 1989,

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contajns a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. <Class A, C, D. and E tests are executable. Class B and
class L tests are expected to produce errcrs at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLITABLE ressage indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHKECK FILE are used for tnis purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allcwed by the Ada Standaid that would circumwvent a test
objective. The package SFPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of thne Class C tests for Chapter 14 of the Ada
Standard. The operatiorn of REFORT and CHECK FILE is checkad by a set of
executable tests. 1f these wunits are not operating correctly, validation
testing is discontinued.

Class B tests check that a conpiler detects illegea) language usage. Ciass B
tests are not executahle., Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that all violations of
the Ada Standurd are detected. Some of the class B tests contain lecal Ada
cod® which must not be flagged illegal by the compiler. This behavior is
also verified. .

Clats L tests check that an Ada inplementation correctly detects violation of
the acda Standard involving multiple, separately compiled units. Errors are
expected at link time, unl execution is attempted.

In some tests of the ACVC, certa:n macro strings have to be ieplaced by
implement: lion-specific values -— for example, the largest ‘rteger. A list
of the wvalues used for this implementation is provided in Appendix A. 1In
addition to these anticipated test acdifications, additicnal changes may be
required to remove unfcreseen conflicts between (he tests and
implementaion-dependent characteristics. The modifications required for
thiz implemer.tation are described in section 2.3,

1-2

For each dda implementation, a custumized test suite is produced by the AVF.
This customization consists of making the modifications described in the
precerling paragraph, removing withdrawn tests {see section 2.1), and possibly
removing some inapplicable t-~gts (see section 2.2 and (UGBI]}.

In order to pass an ACVC ~ da implementation must process each test of the
customized test suite acc -uing to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Conpiler The software and any needed hardware that have to be added to
a gqiven host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler Tne means for tescing complicnce of Ada implementations,
Validation consisting of the test suite, the support progcams, the ACVC
Capability user’s gquide and the template for the validation summary
{ACVC) report.

Ada An Ada compiler with its host —omputer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program quidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification vody which carries out the
validaticn procedures required to establish the compliance of an Ada
Facility (AVF) inplementatica.

Ada The part of the certification body that provides technical
Velidation quidance for operations of the Ada certification system.
Organization

(AVC)

The ability of the implementatiun %o pass an ACVC version.

Compliance of
an Ada
Implementation
L}
Computet A functional unit, consistine of one nr more computers and
System agsociated software, that uses common storage fcr all or part

of a pregram and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated prograuns; performs user-designated data
manipulation, including arithmeric operations and legic
operations; and that can execute programs that modify
themselves during executicn. A computer system may be a
stand-alone unit or may consist of several inter-connected

units.

e TNTRODUCTICN

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

"~ Validated ada
N Compiler

validated Ada
Implementation

- Validation

Withdrawn
test

Fulfillment by a product, process, or service of alil
requirements specified.

An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and cornditions for AVF
services (of any kind) to be performed.

A formal statement from > customer assuring that conformity
is realized or attainable on the Ada implementaticn for which
validation status is realized.

A computer system where Ada source programs arg transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Menual, pubiished as
ANSI MII-STD-1815A~1933 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>.”

Software that controls the execution of programs and that
provides services such as resource allocaticn, scheduling,
input/output control, and data maragement. Usually, operating
systems are predominantly secftware; but partial or complete
hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that hae been validated successfully
either by AVF testing or by registration [Pro3il.

The process of checking the conformity of an Ada compiler to

the Ada programming language and of issuing a certificare for
xhis implementation. ¢

A test found to be incorrect and not used in corformity
testing. A test may be incorrect pecause it has an invalid
test objective, fails tov meet its test objective, or contauins
erroneous or ilileaal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test 1is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993,

B27005A E28005C B28006C C€32203A C34006D C35507K
C35507L C35507n €355070 C35507p €355081 €35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A €45114A C45346A C45612A C456128 C45612C
45651A Cd6022a B49008A B49008B AS4B02A C55B06A
AT34006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B €83041A B85001L C86001F C94021A
C97116A €98003B BA2011A CB7001A CB7001B TB7004A

CCl223A BC1226A CC1226B BC3009B BDiB02B BD1BO6A
AD1BUBA BD2A02A CD2A21E CD2A23E Ch2A32A CD2A41A
CD2A41% CD2ABTA CD2B15C BD3006A BD4008A CD4022A

CD40.2D CD4924B €D4024C Cp4024pD CD4031A CD4051D
{D5111A Cb7004C ED7005D CD7095E AD7006A CD7006E
AD7201A AD7201E CD72048B AD7206A BD8002A BD8004C
CD3005A CD9005B CDA201E CEZ1071 CEZ117x CE2117B
CE2119B CE2205B CE2405Aa Ce3lalC CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B
{

2.2 iINAPPLICABLE TESTS

A test is inapplicable 1f it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Comrentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENC (ES

The foliowing 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y {14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241u.,.7 (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

The following 20 tests check for the predefined type LONG_INTEGER; for
this implementation, there is no such type:

€35404C C45231C C45304C C45411cC cdé5412C
€45502C €45503C €45504C C45504F C45€11C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09. B86001W C86006C CD7101F

C35713C, BB6001U, and CB600EG check for the predefined type LONG FLOAT;
for this implementation, there is no such type.

C35713p and BB6001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for chis
inplementation, there is no such type.

A35801E checks that FLCAT’FIRST..FLOAT’LAST may be used as a range
constraint in a floating-point type declaration; for this
implemencation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and nust be rejected. (See
section 2.3.)

C45531M..F and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OVERFIOWS is TRUE.

B8600LY uses the name of a predefined fixed~point type other than type

o+

DUFATION; for this implementation, there is no such type.

C96005B uses values of type DURATION’s base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same .

(D1009C <hecks whether a length clause can specify a non-default size

for a floatiag-point type; this implementation does not support such
sizes.

IMPLEMENTATION DEPENDENCIES

CD2AB4A, CD2AS4E, CD2AB4I..J (2 tests), and CD2AB40 use length clauses
to specify non—default sizes for access types; this implementation does
not support such sizes,

Th. tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combhinatiun
of mode and access method; this implementation supports these

operations,
Test File Operation Mode File Access Method
: CE2102D CREATE IN FILE SEQUENTIAL 10
: CE2102E CREATE OUT FILZ SEQUENTIAL 10
CE2102F CREATE, INOUT FILE DIRECT IO
CE21021 CREATE IN_FILE DIRECT 10
CE2102J CREATE OUT_FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL IO
B CE21020 RESET IN FILE SEQUENTIAL_IO
. CE2102P OPEN OUT FILE SEQUENTIAL_IO
CE2102Q RESET (UIT FILE SEQUENTIAL 10
CE2102R OPEN INOUT FILE DIRECT IO
CE2102s RESET INOUT FILE DIRECT IO
. CE2102T OPEN IN FILE DIRECT 10
- CE2102U RESET IN FILE DIRECT 10
CE2102v OPEN OUT_FILE DIRECT IO
_ CE2102W RESET OUT_FILE DIRECT IO
= CE310ZE CREATE IN_FILE TEXT IC
N CE3102F RESET Any Mode TEXT 10
. CE3102G DELETE —_ TEXT 10
K CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILF TEXT 10
CE3102K OPEN OUT_FILE TEXT I0.

> CE2203A checks that WRITE raises USE ERROR if the capacity of an
L, external sequential file is exceeded; this inplementation cannot
restrict file capacity.

x CE2403A checks that WRITE raigses OUSE ERROR if the capacity of an
B external direct file is exceeded; this impiementation cannot restrict
file capacity.
L3
CE3304A checks that SET_LINE LENGTH and SET PAGE LENGTH rajse UGE_ERROR .
' if they specify an inappropriate value for the external file; there are ;.

b no inappropriate values for this implementation.

R CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page

L number exceeds COUNT'LAST; for this implementation, the wvalue of e

J COUNT'LAST is greater than 150000, making the checking of this objective S
impracticai. et

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 21 tests.

The following tests were split inte two or more tests because this
implementation did not report the viclations of the Ada Standard in the way
expected by the original tests,

B24009A B33301B B38003A B38003B B33009A B368009B
B85008G B85008H BC1303F BC3005B BD2B03A BD2D0O3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT’'FIRST..FLOAT'LAST as
the range constraint of a floating-point type declaration because the bounds
lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

CD1009A, CD1009I, CD1CO3A, and CD2A31A..C were graded passed by Evaluation
Modification as directed by the AVO. These tests use instantiations of the
support procedure IENGTH CHECK, which uses Unchecked Conversion according to
the interpretation give.. in AI-00590. The AVO ruled that this interpretation
is not binding under ACVC 1.11; the tests are ruled to be passed if they
produce Failed messages only from the instinces of LENGTH CHECK—i.e, the
allowed Report.Failed messages have the general form:

" % CHECK ON REPRESENTATION FOR <TYPE_ID> FAILED."

ADA001B was graded passed by Test Modification as directed by the AVO. This
test checks that no bodies are required for interfaced subprograms; among the
procedures that it uses is one with a parameter of mode OUT (line 36). This
implemenation does not support pragma INTERFACE for procedures with
parameters of mode OUT. The test was modified by commenting out line 36 and
40; the modified test was passed.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Sam Quiring

Rational Software Corporation
1600 NW Compton Dr., Suite 357
Aloha, OR 97006-15992

(503) 690-1116

Testing of this Ada implementation was conducted at the cusvomer’s site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Langquage
Standard, whether the test is applicable or 1napp11cab1e, otherwise, the Ada
Implementation fails the ACVC (Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of tast
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation’s maximum precision (item e; see
section 2.2), and those that depend on the support of a file system — if
none is supported (item d). All tests passed, exceprt those that are listed
in sections 2.1 and 2.2 (cournted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests
b) Total Number of Withdrawn Tests
¢) Processed Inapplicable Tests 69
-d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 270 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape contai.iing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto the host computer syster.

After the test files were 1loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and 1linked on the host computer system. The
executable images were then downloaded to the target via a serial port and
executed. The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
rteviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default opticns. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

~ Suprpress warning diagnostics.

Test oucput, compiler and 1linker listings, and job logs were captured on
magnetic tawe and archived at the AVF. The listings examined on-site by the
validaticn team were also archived.

[}

APTENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UGB9]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

SMAX TN LEN 499 — value of V

$BIG ID1 (1..V-1 => 'A’, V=> '1’)

SBIG_ID2 (1..V=1 => 'a’, V= '2")

$BIG 1D3 (1..V/2 => 'A') & '3 &
(1..V-1-v/2 => 'A’)

$BIG_ID4 (L..v/2 => 'A') & "4 &
(1..v-1-v/2 => 'A’)

$BIG_INT LIT (1L..V=3 => *0’) & "298"

$BIG REAL LIT (1,.v-5 = *0’') & "690‘.0"

$BIG_STRING1 g (1..V,2 = ‘A7) I& rue

SBIG_STRINGZ e g (1,..V-1-V/2 => AT} & 1" & 'V

SBLANKS (1..v-20 => *)

SMAX_LEN INT BASED LITERAL
"2:" & (1..V-5 = '07) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V=7 => '0’) & "F.E:"

A-1

MACRO PARAMETERS
$MRX STRING LITERAL & (1..v-2 = 'AT) & "7

The following table lists all
respective values.

of the other macro parameters and their

$DEFAULT SYS_NAME
$DELTA_DOC

SENTRY ADDRESS
$ENTRY_ADDRESS1
SENTRY _ADDRESS2
$FIELD LAST
$FILE_TERMINATCR
SFIXED NAME
$FLOAT NAME
$FORM_STRING

$FORM STRING2

$GREATER THAN DURATION

Macro Parameter Macro value
$ACC_SIZE 32
SALIGNMENT 4
$COUNT LAST 2147483647
$DEFAULT MEM SIZE 16777216
$DEFALLT _STOR UNIT 8

SUN4_CROSS_NEW_PPC601
0.0000000004566612873077392578125
SYSTEM."+"(16£40%)

SYSTEM. "+" (16#804%)

SYSTEM. "+" (164#1004%)

2147483647

NO_SUCH_TYPE

NO_SUCH_TYPE

-

“CANNOT_RESTRICT FILE CAPACITY"
)

100000.0

SGREATER THAN DURATION BASE LAST
T10000000.0

$GREATER THAN FLOAT BASE LAST

-—

1.BE+3(8

$GREATER THAN FLOAT SAFE LARGE

5.0E307

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE

SHIGH PRIORITY

9.0E37
99

SILLEGAL EXTERNAL FILF_NAMEL

/illegal/file name,/2}]$$FILE1.DAT

SILLEGAL EXTERNAL FILE NAME2

7/illegal/file name/2} }$$FILE2.DAT

$INAPPROPRIATE LINF_LENGTH

-1

$INAPPROPRIATE PAGE_LENGTH

SINCLUDE PRAGMAI
$INCLUDE_PRAGMAZ
SINTEGEK FIRST
$INTCGER LAST
$INTEGER LAST PLUS_1
S INTERFACE LANGUAGE

SLESS_THAN DURATION

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006D1.TST")
-2147483646

2147483647

2147483648

C

-100000.0

$LESS_THAN DURATION BASE FIRST

$LINT TERMINATOR

$LOW_PRICRITY

-10000000.9

ASCII.LF

0

$MACHINE CODE_STATEMENT

$MACHINE CODE_TYPE
$MANTISSA_DOC
$MAX DIGITS

SMAX_ INT
$MAX INT PLUS 1
$MIN INT

SNAME

CODE_0'(GP => NOP);
CODE_0 .
31

15

2147483647

2147483643

-2147483648

TINY INTEGER

A3

MACRO PAFAMETERS

SNAME_LIST SUN4_CROSS_NEW_PPC601
SNAME_SPECIFICATIONL ,usr/acvcl.ll/c/e/X2120A
SNAME_SPECIFICATION2 ,usr/acvcl.ll/c/e/X2120B

SNAME SPECIFICATION3 ,usr/acvel.ll/c/e/X3119A

SNEG_BASED_INT 16¥FO00000E#
SNEW_MEM_SIZE 16777216

SNEW_STOR UNIT 8

SNEW_SYS_NAME SUN4_CROSS_NEW_PPC601
SPAGE_TERMINATOR ASCII.LF & ASCII.FF

SRECORD DEFINITION RECORD SUBP: OPERAND; END RECORD;
SRECORD_NAME CGDE_0

STASK_SIZE 32

STASK _STORAGE_SIZE 2048

$TICK 0.01

$VARIABLE_ADDRESS VAR_1’ADDRESS

SVARIABLE ADDRESS1 VAR 2'ADDRESS

$VARIABLE ADDRESS2 VAR _3'ADDRESS

SYOUR_PRAGMA PRAGMA PASSIVE

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation,

Appendix, are provided by the customer.
references

as described in this
Unless specifically noted otherwise,

in this appendix are to compiler documentation and not to this
report.

COMPILATION SYGTEM OFYIONS

ada

Toxmand Reference ada

ada - invcke the Ada compiler

Syntax

ada [options] [scurce_file]... [object file.o]...

Argquments
object file.c non-pda object file names. These files will be passed
on to the linker and will be linked with the specified
Ada cbject files.
options options to the compiler. These are:
-A (disassemble) Disassemble the units irn the scurce file after

compiling them. -A can be followed by arguments that further
define the disassembly display (e.g., -Az2, -Ab, -Ad, -Af,
-Al, -hs).

a 2Add hexadecimal display of instruction bytes to
disassembly listing.

b pisassemble the unit body [default].

d Print the data section (if present) as well.

£ Use the alternative format for ourmt.

1 Put the disassembly output in file “flle name .das"

s Disassemble the unit spec.

-a file name

(archive) Treat rile name as an object archive file created
by ar. Since some archive files end with .z, -a is used to
distinguish archive files from Ada source files,

-Bstatic/dyramic (SPARCompiler Ada cnly)

‘static) If static is indicated, the Ada program is compiled
and linked statically. The default is dynamic.

suppress the control messages generated when pragma PAGE
and/cr pragma LIST are encountered.

-D identifier type value

-d

(define) Define an identifier of a specified type and value.

(archztectute) Specify the architecture version the compiler
should generate code for. These options override the ARCHITECITURE
INFO directive [Default: -DAl.l1] (HP PA-RISC only)

(dependencies) Analyze for dependencies only. Do not do

B-2

. COMPILATION SYSTEM OPTIONS

semantic analysis or code generation. Update the likrarcy,
marking any defined unics as uncompiled. Thh d option is
used by a.make to establish dependenciss among new files.
This option will attempt to do imports fo: any units
referenced from outer libraries. This should reduce
relocation and reduce user disk space usage.

~E

~E directory
(error output) Without a directory argument, arla processes
error messages using a.error and directs a brief message to
standard output; the raw error messages are left in
source_file.err. If a directory name is given, the raw error
ocutput is placed in directory/source_file.err. The file of
raw error mes3ages can be used a2s input to a.error. Only
one -e or -E option should be used.

—e (error) Process compilation error messages using a.error and
send it to standard output. Only the source lines containing
errors are listed. Only one -e or -E option should be used.

~Eferror_file source file
terror) Process source file and place any error messages
in the file indicated by error_file. Note that there is
no space between the -Ef and error_file.

directory

(error listing! Same as the -E option, except that a source
listing with errors is produced. Note that the source listing is
directed to standard out while the raw errors are placed in
source_file.err.

—-el (error listing) Intersperse error messages among source
lines and direct to standard output.

-Elferror_file source file
(erzor listing) Same as the ~Ef option, except that a source
listing with errors is produced and directed to standard output.
The raw errors are written to error_file.

(error vi(l)) Process syntax error messages using a.error,
embed them in the source file and call the environment editor
ERROR EDITOR. If ERROR EDITOR is defined, the environment
variable ERROR PATTERN should also be defined. ERROR PATTERN
is an editor search command that locates the first occurrence
of '##%’ in the error file. If no editor is specified, vi(l)
is invoked.

The value of the environment variable ERROR TABS, if set,
is used instead of the defaul: tab settings (8).

(full DIANA) Do not trim the DIANA tree before output to
net files. To save disk space, the DIANA tree will be

B-3

COMPILATION SYSTEM OPTIONS

trimmed so that all pointers to nodes that did nct involve
a subtree that define a symbol table will be nulled
(unless those nodes are part of the body of an inline or
generic or certain other values reeding to be retained for
the debugging or compilation information). The trimming
generally removes initial values of variables and all
statements.

-G (GVAS) Display suggested values for the NIN GVAS ADDR
and MAX GVAS ADDR INFO directives.

-K (keep) Keep the intemniediate language (1L) file produced
by the compiler front end. The IL file will be placed in
the .objects directory with the file name Ada source.

-L library name
(library) Operate in VADS library library name.
[Default: current working directory]

~1lfile abbreviation (VADSself only)
(1ibrary search) This is an option passed to the 1ld(1)
linker, telling it to search the specified library file.
(No space between the -1 and the file abbreviation.)

~M unit name
(main) Produce an executable program by linking the named
unit as the main program. unit name must already be
compiled. It must be either a parameterless procedure or
a parameterless function returning an integer. The
executable program will be named a.out (VADSself) or a.vox
(VADScross) unless overridden with the -0 option,

-M source file
(main) Produce an executable program by compiling and
linking source file. The main unit of the program is
assumed to be the root name of the file (for foo.a the
unit is foo). Only one file may be preceded by -M. The
executable program will be named a.out (VADSself) or' a.vox
(VADScross) unless overridden with the -0 option.

(no code sharing) Compile all generic instantiations
without sharing code for their bodies. This option
overrides the SHARE BODY INFO directive and the SHARE CODE
or SHARE BODY pragmas.

-NX (NX) Link with NX startup code and with the NX archive libraries.
This option is valid only if the -M option has alsc been invoked.

(Sun SPARC => Paragon only)

-0[0-9)
(optimize) Invoke the ccde optimizer. An optional digit
(there is no space before the digit) provides the level of
optimization. The default is -04.

B-4

COMPILATION SYSTEM OPTIONS

full optimization

no optimization

copy propagation, constant folding, removing

dead variables, subsuming moves between scalar
variables

add common subexpression ~liminaticn within

basic blocks

add global common subexpression elimination

add hoisting invariants from loops and address
optimizations

add range optimizations, instruction scheduling
and one pass of reducing induction expressions

no change

add one more pass of induction expression reduction
add one more pass of induction expression reduction
add one more pass of induction expression

reduction and add hoisting expressions common to
the then and the else parts of if statements

Hoisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

Note that using the -00 option can alleviate some problems when
debugging. For example, using a higher level of optimization,
you may receive a message that a variable is no longer active cor
is nct yet active. If you experience these problems, set the
optimization level to 0 using the -00 option.

-0 executable file
(output) This option is to be used in conjunction with
the -M option. executable file is the name of the executable
rather than the default, a.out (self) or a.vox (cross).

~P Invoke the Ada Preprocessor.

~R VADS library
(recompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of any that are out
of date. VADS library is the library in which the
recompilation iIs to occur. If it is not specified, the
recompilation occurs in the current working diréctory.

(recreate) Recreate the library’s GVAS TABLE file. This option
reinitializes the file and exits. This allows recovery from
"GVAS exhausted" without recompiling all the files in the library.

(suppress) Apply pragma SUPPRESS to the entire compilation
for all suppressible checks.

(show) Display the name of the tool executable but do not
execute it.

(timing) Print timing information for the compilation.

B-5

F—__—T

COMPILATION SYSTEM OPTIONS

~trb
(trace block) Generate code to trace entry into basic blocks and
calls and returns (for use with a.trace only)

-v (verbose) Print compiler version number, date and time of
compilation, name of file compiled, command input line,
total compilation time and error summary line., Storage usage
information about the object file is provided.

-w (warnings) Suppress warning diagnostics.
source _file name cf the source file to be compiled.

Description

The ada command executes the Ada compiler and ccmpiles the named Ada
source file. The file must reside in a VADS library directory. The
ada.lib file in this directory is modified after each Ada unit is
compiled.

By default, ada produces only object and net files. If the -M option
is used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the main program.

For cross systems, the compiler generates object files compatible with
the host linker in VOX format. The VOX format is discussed in
Appendix A of the Programmer’s Guide.

Non-Ada cbject files (.o files produced by a compiler for another
language) may be given as arguments to ada. These files will be passed
on to the linker and will ke linked with the specified Ada object files.

Command line options may be specified in any order but the order of
compilation and the order of the files to be passed to the linker can
be significant.

Several VADS compilers may be simultaneously available on 4 single
system. Because the ada command in any VADS location/bin on a system
will execute the correct compiler components based upon visible
library directives, the option -sh is provided to print the name of
the components actually executed. .

Program listings with a disassembly of machine code instructions
are generated by a.db or a.das.

NOTE: If two files of the same name from different directories are
compiled ir. the same ada library using the -L option (even if the
contents and unit names ace different), the second compilation will
overwrite the first. For example, the compilation of
s/usr/directory2/foo.a -L susr/vads/test will overwrite the
compilation of Susr/directoryl/foo.a -L fusr/vads/test in the

VADS library ,usr/vads/test.

COMPILATION SYSTEM OPTIONS

NOTE: It is postible to specify the directory for temporary files hv
setting the environment variable TMPDIR to the desired path. If TEMPDIR

is not set, /tmp is used. 1I1f the path specified by TMPDIR does not exist
or is not writeable, the program exits with an error message to that effect.

Diagnostics
The diagnostics produced by tre VADS compiler are intended to he
self-explanatory. Most refer to the RM. Each RM reference includes a
section number and optionally, a paragraph number encloused in
parentheses.

See Also

a.app, a.das, a.db, a.error, a.infu, a.ld, a2.make, a.mklib, appendixf

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Uialess specifically noted otherwise,
references in this appendix are to linker ducumentation and not to this
report.

COMPILATION SYSTEM OPTIONS

a.ld
a.ld -

Syntax

Command Reference a.ld

‘build an executable program from previously compiled units

a.ld [vptions] unit name [linker_options]

Arguments

linker options

All arguments after unit name are passed to the linker.
library abbreviations or object files.

options options to the a.ld command. These are:

-DAl1.0
-DAl.1l
"DAZ.O

(architecture) Specify the architecture version the compiler
should generate code for. These options override the ARCHITECTURE
INFO directive [Default: -DAl.1] (HP PA~RISC only)

(objects) Use partially linked objects instead of archives
as an intermediate file if the entire list of objects cannot
D2 passed to the linker in one invocation. This option is
useful because of limitations in the archiver on some hosts
(including ULTRIX, HP-UX and System V). (VADSself only)

(time) Displays how long each phase of the preli. xing process
takes.

unit list

{units) Traces the addition of indirect dependencies to the named
units.

(dependencies) Displays the elaboration dependencieé used each
time a unit is arbitrarily chosen for elaboration.

{debug) Debug memory overflow (use in cases where linking
a large number of units causes the error message "local
symbol overflow" to occur).

-E unit name

(elaborate) Elaborate unit name as early in the elaboration
order as possible.

(files) Print a list of dependent files in order and suppress
linking.

(keep) Do not delete the termorary file containing the list of
object files tc link. This file is only present when many object

B-8

COMPILATION SYSTFI1 OPTIONS

files are beingy linked.

~L library name
(library) Collect information for linking in library name instead
of the current directory. However, place the executable in the
current directory.

-NX (NX) Link with NX startup copde and with the NX archive libraiies.
{Sun SPARC => Paragon only)

-0 executable file
(output) Use the specified fielname as the name of the output
rather than the default a.ont (self) or a.vor (cross).

-sh (show) Display the name of the tool executable but do not
execute it.

~T (table) List the symbols in the elaboration table to standard
output.

. =U (units) Print a list of dependent units in order and
suppress linking.

~v (verbose) Print the linker command before executing it.
-V (verify) Print the linker ccmmand but suppress execution.
-w (warnings) Suppress warning messages.

unit name
name of an Ad2 unit. It must name a non-generic subprogram.
If unit name is a function, it must return a value of the
type STANDARD.INTEGER. This integer result will be pasced back
to the shell as the status code of the execution.

Description

a.ld collects the cbject files needed to make unit name a main
program and calls the 1d(1) linker to link together all Ada and

other language objects reguired to produce an executable image in
a.out (self) or a.vox (cross). The utility uses the net files prcduced
by the Ada compiler to check dependency information. &.ld produces

an exception mapping table and a unit elaboration table and passes
this information to the linker. The zlaboration list generated by
a.1d will not include library level packages that do not need
elaboration. Similarly, packages that contain no code that can raise
an exception will no longer have exception tables.

a.ld reads instructions for generating executables from the ada.lib
file in the VADS libraries on the search list. Besides information
generated by the compiler, these directives also include WITHn
directives that allow the automatic linking of object modules
compiled from other languages or Ada object modules not named

in context clauses in the Ada source. Any number of WITHn

B-9

COMPILATION SYSTEM OPTIONS

ditectives may be placed into a library but they must be
numbered contiguously beginning at WITHl. The directives are
recorded in the library’s ada.lib file and have the following form.

WITHL:LINK:object_file:
WITH2:LINK:archive file:

WITHn directives may be placed in the local Ada libraries or in
any VADS library on the search list.

A WITHn directive in a local VADS libracy or earlier on the
library search list will hide the same numbered WITHn directive
in a library later in the library search list.

Use the tool a.info to change or report library directives in
the current library.

For VADSself on Silicon Graphics Computer Systems, the
USE_LAST LINK INFO directive speeds relinking by retaining a 1'st
of units, their types, seals and dependencies.

VADS location/bin/a.ld is a wrapper program that executes the
correct executable based upon directives visikle in the ada.lib
file. This permits multiple VADS compilers to exist on the same
host. The -sh option prints the name of the actual executable file.

NOTE: It is possible to specify the directory for temporary files by
setting the environment variable TMPDIR to the desired path. If THPDIR

is not set, /tmp is used. If the path specified by TMPDIR does not exist

. or is not writeable, the program exits with an error message to that effect.

Files
a.out (self), a.vox (cross) default output file
.nets Ada DIANA net files directory
.objects/* Ada object files
VADS location/standard/* startup and standard library routines
ii Diagnostics - i

Self-explanatory diagnostics are produced for missing files, 5
etc. Additional messages are produced by the 1d linke;j. -

B-10

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation—dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as de: :ribed in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in t(his Appendix are to compiler documentation and not to this
reporct. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type TINY INTEGER is range -i28 .. 127;
type SHORT INTEGER is range -32766 .. 327€7;

type FLOAT is digits 15

range -1.79769313486231E+308 .. 1.79769313486231E+308;
type SHORT FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type DURATION is delta 0.0001 range -214748.3648 .. 214748.3647;

APPENDIX F OF THE Ada STANDARD

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1.1. 3INITIALIZE Pragma

Takes one of the identifiers STATIC or DYNAMIC as the single
arqument. This pragma is only allowed within a library-
level package spec or body. It specifies that all objects
in the package be initialized as requested by the pragma
(i.e. statically or dynamically). Only library-level
objects are subject to static initialization; all objects
within procedures are always (by definition) dynamic. If
pragma INITIALIZE(STATIC) is used, and an object cannot be
initialized statically, code will be generated to initialize
the object and a warning message will be generated.

1.2. INLINE ONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram mus
always be inlined. This pragma also suppresses the genera—
tion of a callable version of the routine which saves code
space. If a user erronecusly makes an INLINE ONLY subpro-
gram recursive a warning message will be emitted and an
PROGRAM ERROR will be raised at run time.

1.3. BUILT IN Pragma

The BUILT IN pragma is used in the implementation of some

predefined ada packages, but provides no user access. It is:
used only to implement code bodies for which no actual Ada

body can be pravided, for example the MACHINE CODE package.
1.4, SHARE CODE Pragma ‘

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argqument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit the pragma applies
to all instantiations of that generic. When the first argu-

C-2

APPENDIX F OF THE Ada STANDARD

reerit is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic.
When the second arqument is FALSE each instantiation will
get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit,

The name pragma SHARE BODY is also recognized by the imple-
mentation and has the same effect as SHARE CODE. It is
included for compatability with earlier versions of VADS.

1.5. NO_IMAGE Pragma

The pragma suppresses the generation of the image array used
for ths IMAGE attribute of enumeration types. This elim-
inztes the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAM ERROR raised at run time.

1.6. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable defined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.7. INTERFACE NAME Pragma

The INTERFACE NAME pragma takes the name of a a variable or
subprogram defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram
declared earlier in the same package specification. The
object must be declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,

a constant,

an initialized variable,

an array, or

a record.

APPENDIX F OF THE Ada STANDARD

1.8. IMPLICIT CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.
The default is ON.

1.9. OPTIMIZE CODE Pragma

Takes one of the identifiers ON or OFF as the single argqu-
ment. This pragma is only allowed within a machine code
procedure. It specifies whether the code should be optim-
ized by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.
2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C’ and FORTRAN functions. The’
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYYTEM.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.

2.5, LIST

This pragma is implemented as described in Appendix B of the
Adz RM.

2.5, MEMORY SIZE
This pragma is recognized by the implementation. The imple-
C-~4

AFPENDIX F OF THE Ada STANDARD

mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.7. NON_REENTRANT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-
ately within a library package spec or body. It indicates
to the compiler that the subprogram will not be called
recursively allowing the compiler to perform specific optim-
izations. The pragma czn be applied to a subprogram or a
set of overloaded subprograsm within a package spec or pack-
age body.

2.8. NOT_ELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration pack-
age or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no
effect.

2.10. PACK

This pragma will cause the compiler to chcose a non-aligned
representation for composite types. It will not causes
cbjects to be packed at the bit level.

2.11. PAGE

This pragmz is implemented as described in Appendix B of the:
ada RM. :

2.12. PASSIVE
The pragma has three forms :
PRAGMA, FASSIVE;

PRAGMA PASSIVE(SEMAPHORE) ;
PRAGMA PASSIVE(INTEZRRUPT, <numbery);

This pragma Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
body. The pragma directs the compiler to optimize certain
tasking operations. It is possible that the statements in a

c-5

APPENDIX F OF THE Ada STANDARD

task body will prevent the intencded optimization, in these
cases a warning will be generated at compile time and will
raise TASKING ERROR at runtime.

2.13. PRIORITY

This pragma iz implemented as described in Appendix B of the
ada PM.

2.14. SHARED

This pragma is recognized by the implementation but has no
etfect.

2.15. STORAGE UNIT

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that
DIVISION CHECK and in some cases OVERFLOW CHECK cannot be
supressed.

2.17. SYSTEM NAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. P'REF

For a prefix that denotes an object, a program unit, a
label, or an entry: :
This attribute denotes the effective address of the first of
the storage units allocated to P. For a subprogram, pack-
age, task unit, or label, it refers to the address of! the
machine code associated with the corresponding body or
statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this
attribute.

(For a package, task unit, or entry, the 'REF attribute is

C-6

APPENDIX F OF THE Ada STANDARD

not suppotted.)

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique
task id associated with a task. The value of this attribute
is of the type ADDRESS in the package SYSTEM.

4. Specification Of package SYSTEM

with UNSIGNED TYPES;
package SYSTEM is

pragma suppress(ALL CHECKS);
pragma suppress(EXCEPTION TABLES);
pragma not_elaborated;
type NAME is (sund_cross new ppc60l);
SYSTEM NAME : constant NAME := sun4_cross new ppc60l;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 16 _777_216;

— System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAX_INT : constant := 2 T47_d83 647;
MAX DIGITS : constant := 15;

MAX MANTISSA : constant := 31;

FINE DELTA : constant := 2.0%%(-31);
TICK : constant := 0.01;

— Other System—dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 99;

MAX REC SIZE : integer := 1024;

type ADDRESS is private; $

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNED TYPES.UNSIGNED INTEGER) return ADDRESS;

c-7

APPENDIX F OF THE Ada STANDARD
function MEMORY ADDRESS
(I: UNSIGNED TYPES.UNSIGNED INTEGER) return ADDRESS renames "+";
NO_ADDR : constant ADDRESS;

type TASK ID is private;
NO _TASK ID : constant TASK_ID;

type PASSIVE TASK ID is private;
NO_PASSIVE _TASK ID : constant PASSIVE TASK ID;

subtype SIG STATUS T is INTEGER;
SIG_STATUS SIZE constant = 4

type PROGRAM ID is private;
NO_PROGRAM 1D : constant PROGRAM ID;

type BYTE ORDER T is (
TLITTLE_ENDIAN,
RI5_ENDIAN
)i
BYTE ORDER: constant BYTE ORDER T := BIG ENDIAN;

type LONG ADDRESS is private;
NO LONG ADDR : constant LONG ADDRESS;

function "+" (A: LONG_ADDRESS; I: INTEGER) return LONG_ADDRESS ;
function "-" (A: LONG ADDRESS; I: INTEGER) return LONG ADDRESS;

function MAKE;I.ONG_ADDRESS (A: ADDRESS) return LONG ADDRESS;
function LOCALIZE(A: LONG ADDRESS ; BYTE SIZE : INTEGER) return ADDRESS;
function STATION OF(A: LONG ADDRESS) return INTEGER;
— Internal RTS representation for day. If the calendar package is used,
-— then, this is the julian day.
subtype DAY T is INTEGER;
— Constants describing the configuration of the CIFO add-on product.
SUPPORTS INVOCATION BY ADDRESS constant BOOLEAY := TRUE;

SUPPORTS_PREELABORATION constant BOOLEAN := TRUE;
* MAKE_ACCESS_SUPPORTED constant BOOLEAN := TRUE;

— Arguments to the CIFO pragma INTERRUPT TASK.
type INTERRUPT TASK KIND is (SIMPLE, SIGNALLING);

function RETURN ADDRESS return ADDRESS;
private

type ADDRESS is new UNSIGNED TYPES.UNSIGNED INTEGER;

Cc-8

APPENDIX F OF THE Ada STANDARD

NO_ADDR : constant ADDRESS := 0;

pragma BUILT IN(">");
pragma BUILT IN("<");
pragma BUILT IN(">=");
pragma BUILT IN("<=");
pragma BUILT IN("-");
pragma BUILT IN("+");

type TASK ID is new UNSIG@ED TYPES. UNSIGNED INTEGER;
NO_TASK _ 1D : constant TASK 1D := 0;

type PASSIVE TASK ID is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO_PASSIVE TASK ID : constant PASSIVE TASK ID := 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNZD INTEGER;
NO_PROGRAM _ ID : constant PROGRAM ID := 0;

type LONG ADDRESS is

RECORD
station : UNSIGNED TYPES.UNSIGNED INTEGER;
addr : ADDRESS;

IND RECORD;

NO_LONG ADDR : constant LONG ADDRESS := (0, 0);

pragma BUILT IN(MAKE LONG ADDRESS);
pragma BUILT IN(LOCALIZE);
pragma BUILT IN(STATION OF);

pragma BUILT IN(RETURN ADDRESS);
end SYSTEM;
5. Restrictions On Representation Clauses
5.1. Pragma PACK

In the absence of pragma PACK record components are padded
so as to provide for efficient access by the target
hardware, pragma PACK applied to a record eliminate the pad-
ding where possible. Pragma PACK has no other effect on the
storage allocated for record components a record representa-
tion is required,

5.2. Size Clauses

For scalar types a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation

c-9

APPENDIX F OF THE Ada STANDARD

clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the component type is a
discrete type. An error will be issued if there is insuffi-
cient space allocated. The SIZE attribute is not supported
for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since
default initialization of a variable requires evaluation of
the variable address elaboration ordering requirements
prohibit inititalization of a variables which have address
clauses. The specified address indicates the physical
address associated with the v:riable.

5.4. Interrupts

Interrupt entries are supported with the following interpre-
tation and restrictions:

An interrupt entry may not have any parameters.

A passive task that contains one or more interrupt entries
mist always be trying to accept each interrupt entry, unless
it is handling the interrupt. The task must be executing
either an accept for the entry (if there is only one) or a
select statement where the interrupt entry accept alterna-
tive is open as defined by Ada RM 9.7.1(4). This is not a
restriction on normal tasks (i.e., signal ISRs).

An interrupt acts as a conditional entry call in that inter-
rupts are not queued (see the last sentence of Ada RM
13.5.1(2) and 13.5.1(6)).

No additional requirements are imposed for a select state-
ment containing both a terminate alternative and an accept
alternative for an interrupt entry (see Ada RM 13.5.1(3)). ~

Direct calls to an interrupt entry from another task are
allowed and are treated as a normal task rendezvous. ‘

Interrupts are not queued.

The address clause for an interrupt entry does not specify
the priority of the interrupt. It simply specifies the
interrupt vector number. For passive ISRs, the nnn of the
passive(interrupt,nnn) pragma specifies the interrupt prior-
ity of the task.

5.5. Representation Attributes

- APPENDIX F OF THE Ada STANDARD

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides
an assembly language interface for the target machine. It
provides the necessary rec cd type(s) needed in the code
statement, an enumeration type of all the opcode mneumonics,
a set of register definitions, and a set of addressing mode
functions.

'{he general syntax of a machine code statement is as fol-
ows:

CODE n’(opcode, operand {, operand});
vwhere n indicates the number of operands in the aggregate.
A special case arises for a variable number of operands.
The operands are listed within a subaggregate. The format
is as follows:

CODE N’ (opcode, (operand {, operand}));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODE 0’ (op =» opcode);

The opcode must be an enumeration literal (i.e. it cannot be
an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE CODL or
the ’REF attribute.

The arquments to any of the functions defined in
MACHINE CODE must be static expressions, string literals, or
the functions defined in MACHINE CODE. The 'REF attribute
may not be used as an argument in any of these functions.
Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

c-11

*

APPENDIX F OF THE Ada STANDARD

There are no implementation-generated names.
7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as
physical addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of 1/0 Packages

Instantiations of DIRECT IO use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) when the size
of ELEMENT TYPE exceeds that value, For example for uncon-
strained arrays such as string where ELEMENT TYPE’SIZE is
very large, MAX REC SIZE is used instead. MAX RECORD SIZE
is defined in SYSTEM and can be changed by a program before
instantiating DIRECT IO to provide an upper limit on the
record size. In any case the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT IO will raise USE ERROR
if MAX REC SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE
as the record size (expressed in STORAGE UNITS) when the
size of ELEMENT TYPE exceeds that value. For example for
un~onstrained arrays such as string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is ueed instead.
MAX RECORD SIZE is defined in SYSTEM and can be changed by a
program before 1nstantlat1ng INTEGER IO to provide an upper
limit on the record size. SEQUENTIAL IO imposes no limit on

MAX REC SIZE.

11. Implementation Limits .
The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resocurces up %0 or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line 1length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
4,000,000 x STORAGE UNITS. The maximum size of a statically

Cc-12

L 4

APPENDIX F OF THE Ada STANDARD

sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaration that exceeds these limits
will generats a warning message.

11.3, Default Stack Size £or Tasks

In the absence of an e¢xplicit STCRAGE SIZE length specifica-
tion every task except the main program is allocated a fixed
siz» stack of 10,240 STORAGE UNITS. Thi¢ is the value
returned by T'STORAGE SIZ2E for a task type T.

11.4. pefault Collection Size

In the absence of an explicit STORAGE SIZE length attribute
the default collection size for an access type is 100 times
the size of the desiquated type. This is the value returned
Ly T'STORAGE SIZE for an access type T.

11.5. L'mit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If
this value is exceeded the compiier will terminate the com-
pilation of the unit with a FATAL error message.

