
AD-A285 107 NTATION PAGEI PNo

II!I~ II IIIii~ I ~j I~ia sed to average I hour per responSe rIncudring Mhe tme for reviewing inlstructions, searching existing data
I ii I Iwing the o cli.con t information. Send comnmerno regadring Mlir burden. to Wasr' rigton Hsadquarmxs

!15 Jefferson Dayis Highway, Suite 1204. A rlingicr VA 22202-4302, an to the Office of Information n
rin DC 20503.

1. AENCYUSE Leav 2. EPR3. REPORT TYPE AND DATES

4. TITLE AND. Compiler. i/ADS Sun4 => PowerPC, Prduct #2100-01444, 5 UDN
Version 5.2
Host: Sun SPARCcenter 2000 (under Solaris 2.3)
T arget: Motorola MVMVE1 601 (PowerPC 601) (bare machine)

6. AUTHORS;

Wright-Patterson AFB, Dayton, OH

7. PERI-ORMING ORGANIZATION NAME (S) AND 8. PERFORMING
Ada Validating Facility, Language Control Facility ASB/SCEL, Building 676, Rm. ORGANIZATION
135
Wright- Patterson AFB, Dayton, OH 45433

S9. SPONSOR!NG/MONITOR!NG AGENCY NAME(S) AND 10. SPONLORING/MONITORING
Ada Joint Programr Oiiice, mulns ifrnto Systemn Agency A ENCYl%
Code TXEA, 701 S. Courthouse Rd., Arlington, VA y rmý.a

22204-2199 j

11. SUPPLEMENTllARY ~i

12a. DIS1 RIBUTION/AVAILABILITY: Approved for public release, distribution 12b. DRISTRIBUTION
unlimited

13 (MaxImumn 200

Rational Software Corporation, 940630W1 .1 1369

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary 15. NUMBER OF
Report, Ada Compiler Val. Capability Val. Testing, Ada Val. Office, Ada Val. Facility
ANSI/MiI-STD-1 81 SA 16. PRICE

17 SECUR'TY .l1. SECURITY 119. SECURITY 20. LIMITATION OF
CLASSIFICAT'ION CLASSlI-1CAT11ONI
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN

AVF Control Number: AVF-VSR-597.0694
Date VSR Completed: July 21, 1994

94-05-12-RAT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940630W1.11369
Rational Software Corporation

VADS Sun4 => PowerPC, Product 'fumber: 2100-01444, Version 6.2
Sun 4 Model SPApCcenter 2000 under Solaris 2.3 ->

Motorola ?4VIE1601 (PowerPC 601 bare machine)

Accesion ForNTISq CfRA&! i

D-12 I,." 1i 4
L r..,:i:,u'.i ced Li

.Pret:• red By :
Prepared By:

Ada Validaticn Facility By-
645 CCSG/SCSL

Wright-Patterson AFB OH 45433-5707 D,.t jbdiufl!

A,- 'abihty Code,.

-Avudlid,7T! or

94-30988 c. i- 7 0

rertificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 30 June 1994.

Compiler Name and Version: VADS Sun4 -> PawerPC,
Product Nmzber: 2100-01444, Version 6.2

Host Computer System: Sun 4 Model SPARCcenter 2000 under Solaris 2.3

Target Computer Syctem: Motorola MVME1601 (PowerPC 601 bare machine)

Customer Agreement Number: 94-05-12-RAT

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940630W1.11369
is awarded to Rational Software Corporation. This certificate expires two
years after MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Aa Validation Facility)
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

~~ - a [io OJ rganization

Diresto,•-Computer and Software Engineering Division
institute for Defense Analyses
Alexandria VA 22311

PA____t_]"tram offWe
Donal ,d 3 Reifer
Directo' V.A.JPO
Defense Information Systems Agency,
Center for Informatiun Management

I

DECLARATION OF CONFORMANCE

Customer: Rational Software Corporation

Ada Validation Facility: 645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: VADS Sun4 => PowerPC
Product # 2100 01444, Version 6.2

Host Computer System: Sun 4 Model SPARCcenter2000 under Solaris 2.3

Target Computer System: Motorola IVME1601 (PowerPC 601 bare machine)

Declaration:

I, the undersigned, aeclare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A,
ISO 8652-1987, FIPS 119 as tested in this validation and documented
in the Validation Suzmnary Report.

Date: I tj
Stee ,er
1600 N W Compton Drive
Suite 357
Beaverton, Oregon 97006

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPL]ATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST M4ODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIROIt..T 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENIDIX C APPENDIX F OF THE Ada STANDARD

II

S!i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard (Ada8li usijig the
current Ada Compiler Validation Capability (AXCVC). This Valid;tion Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referrea to [P.o92].
A detailed description of the ACVC may be found in the current A'XC User's
Guide rUG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT
...... • ths W._tio%! lat of thp originating country, the Ada

Certification Body may make full and free public disclosure of this repor t..
In the United States, this is provided in accordance with the "Freerdc•n of
Information Act" (5 U.S.C. 6552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation h.3 no
nonconformities to the Ada Standard other than those preshnted. Ccpies ot
this report are available to the public from the A'V which performue this
validation or from:

National Technical Information Service
5285 Port Royal Ro3d
Spri-gfield VA 22161

Questions regardina this report or the validation test resuits shoulc l
directed to the AW which performed this validation or to:

Ada validation Organization
Computer and Software Engineerir;g Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-i

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,,
ANSI/MIL-STD-181SA, February 19B3 and-05 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Versioin 3.1, Ada Joint
Program Ofi-ce, Augt 1992.

[UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada imnplementations is tested by means of the ACJC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E test.s are executable. Class B and
class L testr, are ekpected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLIrABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CliECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions uzed to defeat some compiler
optimizations alllcoed by the Ada Standaid that u---Id cir- ,,--nt- a tent
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of tne Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CAfECK FILE is checked by a set of
executable tests. If these units are not ope7rating correctly, validation
testing is discontinued,.

Class B tests check that a compiler detects illegal language usage. class 6
tests are not executakile. Each test in this class is. compiled dnd the_
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain lecal As:
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Cla-s L tests check tUkt an Ada implementation correctly detects violation of
the Ada StandarA involving m.ltiple, separately compiled units. Errors are
eApected at link time, =.-I execution is attempteŽd.

In some tests of the ACVC, certa.in mar-ro strings have to be ieplaced by
imppementaZion-specific values -- for example, the largest "rnteger. A list
o! the valuL• used for this inglementation is provided in Appendix A. In
addition to these anticipated test =idifications, additional changes may be
required to removme unforeseen conflicts betwe.en the tests and
implewa-:itaion-dependent characteristics. The modifications required for
this implemer.Lation are deacribed in section 2.3.

3-2

INTRODUCTION

For each Ada implementation, a custumized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, remuving withdrawn tests (see section 2.1), and possibly
removing some inapplicable t-ots (see section 2.2 and (UG89]1).

In order to pass an At& *da implementation must process each test of the
customized test suite acc -riig to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer bystem to allow
transformation of Ada programs into executable form and
execution thiereof.

Ada Compiler The means for testing complicrnce of Ada implementations,
validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validaticn procedures required to establish the compliance of an Ada
Facility (AVF) inplementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVC,)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

ComputeL A functional unit, consisting of one or more computers and
System associated software, that uses common storage fcr all or part

of a prcgram and also for all or part of the data necessary
for the execution of the program; executes user-writter. or
user-designated progra-ts; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

TNTRODUCT10[4

Conformity ulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from t customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MII-STD-1815A-19a3 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as rezource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly softwa re; Lh.,t partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implefrentation either by AVF testing or by registration [Proý21.

Validation The process of checking the conformity of an Ada compilei" to
the Ada programming language and of issuing a certificate for
"this implementation.

Withdrawn A test found to be incorrect and not used in corfortuity
test testing. A test may be incorrect becausc it has an invalid

test objective, fails to meet its test objective, or cont.Lns
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLE•ENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507-N C355070 C35507P C355081 C355083
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B4900BB A54BO2A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2UM1A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDIB02B BDIB06A
ADlBCSA BD2AO2A CD2A2lE CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2BI5C BD3006A BD4008A CD4022A
CD40:2D CD4024B CD4024C CD4024D CD4031A CD4051D
",DS11IA CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2117?: CE2117B
CE2119B CE2205B CE2405A CE31•1IC CE3116A" CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3614A CE3902B

2.2 LNAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AKPO known as Ada
Conrientaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Coumentaries are included as
appropriate.

2-1

IMPLEMENtATION DEPENDEVU LES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 l-ests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LaqG_INTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613- C45614C C45631C C45632C B52004D
C55B07A 955B9M. B86001W C86006C CD7101F

C35713C, B86001U, and C86006G check for the predefined type LONGFLOAT;
for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LCNG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIKST..FLQAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implemenration, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (8 te3ts) check fixed-point operations for
types that require a SYSTEM.MAX MWNTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 4".

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types ahd the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE.OVERFLOWS is TRUE.

4.

B86001Y uses the nem of a predefined fixed-point type other than type
DUPATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating--point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATION DEPENDENCI ES

CD2A84A, CD2A84E, CD2AB4I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support suchi sizes.

Th.) tests listed in the follotaing table check that USE ERROR is raised
if the given file operations are not supported for the given comhination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEUfrIAL-IO
CE2102F CREATE IwOOT FILE DIRECTIO
CE2102I CREATE IN FILE DIRECT 10
CE2102J (31EATE Wrf FILE DIRECT_-0O
CE2102N OPEN IN _ILE SEQUENTIAL 10
CE21020 RESET IN -FILE SEQUENTIAL-IO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET (XIt-FILE SEQUENTIALIO
CE2102R OPEN INOT FILE DIRECT 10
CE2102S RESET INJUf-FILE DIRECT--10
CE2102T OPr IN FICE DIRECT-IO
CE2102U RESET IN-FILE DIRECT-_10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT--IO
cE3(02E CL-LE IN FILE Tmr I5
CE3102F RESET Any Mode -EXT-IO
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXT- 0
CE3102J OPEN IN FILE TEXT-I0
CE3102K OPEN OUTFILE TEXT--IO.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this-implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SETI PAGE LENGIT raise USE ERROR
if they specify an inappropr-Tate value for TEhe external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the Lage
number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impracticai.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 21 tests.

The following tests were split into two or more tests because this
implementation did not repoft the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B33009A B38009B
B85008G B85008H BC1303F BC3005B BD2BO3A BD2DO3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST as
the range constraint of a floating-point type declaration because the bounds
lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

CD1009A, CDI0091, CDlC03h, and CD2A31A..C were graded passed by Evaluation
Modification as directed by the AVO. These tests use instantiations of the
support procedure IENGTh CHECK, which uses Unchecked Conversion according to
the interpretation give.. In AI-00590. The AVO ruled that this interpretation
is not binding under ACVC 1.11; the tests are ruled to be passed if they
produce Failed messages only from the instinces of LENGTHCHECK-i.e, the
allowed Report.Failed messages have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

.Tn900!B wa.s graded passed by Test Modification as directed by the AVO. This
test checks that no bodies are required for interfaced subprograms; among the
procedures that it uses is one with a parameter of mode OUT (line 36). This
implemenation does not support pragma INTERFACE for procedures with
parameters of mode OUT. The test was modified by commenting out line 36 and
40; the modified test was passed.

2-4

CHAPTER 3

POCESSING INflRMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial ,,Rges of this report.

For technical and sales information about this Ada implementation, contact:

Sam Quiring
Rational Software Corporation
1600 NW Comoton Dr., Suite 357
Aloha, OR 97006-1992
(503) 690-1116

Testing of this Ada implementation was conducted at the cusx.omer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Progranming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC (Pro92]. %

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Prograxmming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e. see
section 2.2), and those that depend on the support of a file system - if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-I

L 91, I , ,"'-•",iri l • , i m l• " I Pl ' • qI Ir ~ !r• i Im "" l 'qq

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3796
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 69

-d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 270 (c+d+e)

g) Total. Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape contai.iing the customized test suite (see section 1.3) was
taken on-site by tne validation team for processing. The contents of the
magnetic tape were loaded onto the host computer syster.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system. The
executable images were then downloaded to the target via a serial port and
executed. The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default opticns. The options invoked explicitly for validation testing
during this test were:

Option/Swii tch Effect

-w Suppress warning diagnostics.

Test output, compiler and linker listings, and job logs "were captured on
magnetic ta.;e and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMEteRS

This appendix contains the macro parameters used for customizing the ACVC.
The uteaning and purpose of these parameters are explained in (UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the, value for $MAX IN LEN-also listed here. These values are expressed here
as Ada string aggriega~tes, where "V'" represents the maximum input-line length.

Macro Parameter Macro Value

$_•_X IN LEN 499 - Value of V

$BIG IDI (1..V-1 -> 'A', V -> '1')

$BIG_1D2 (1..V-2 -> 'A', V -> '2')

$BIGID3 (1. .V/2 -> 'A') & '3' &
(l..V-l-V/2 -> 'A')

$BIGID4 (1..V/2 m> 'A') & '4' &
- (I..V-1-v/2 -,> 'A')

$BIGINTLIT (l..V-3 -> '0') & "298"

$BIGREAL LIT (l..V-5 -> '0') & "690.0"

$BIG STRINGI '"' & (l..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (l..V-I-V/2 -> 'A') & 'I' & '"'

$BLANKS (l.V-20 -> v)

SMAX LEV INT BASWD LITERhL"2:" & (1..V-5-> '0') & "ii:"

$MAXVLN REAL BASED LITERAL
"16:" & (l..V-7 1> '0') & "F.E:"

A-i

MACRO PARAMETERS

$MAXSTRINGLITERAL '"' & (1.-V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAULT MEMSIZE 16777216

$DEFAULT S'IOR UNIT 8

$DEFAULTSYS_.NAME SuN4_CRO5S NEW PPC601

$DELTA DOC 0.0000000004566612873077392578125

SENTRY ADDRESS SYSTEM."+"(16#40#)

$ENTRY ADDRESSI SYSTEM.."+" (16#80#)

$ETRY ADDRESS2 SYSTEM."+"(16#100#)

$FIELDLAST 2147483647

SFILETERMINATOR ' #

$FIXED NAME NOSUCHTYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING ""

SFORM STRING2 "CANNOT RESTRICT_FILECAPACITY"

$GREATER THAN DURATION
100000.0

$GREATER THAN-DURATION BASE LAST- - 10000•00.0

SGREATER THANFLOAT BASE LAST
- 1.SE+308

$GREATER THAN FLOAT SAFE LARGE
5.UE307

A-2

M'ACRO Ptjwq;rERS

c-GMEA~TERTHANSHORTFLOA~TSAFELARGE
9.0OE37

SHIGHPRIORITY 99

S ILLEGALEXTERNRL FILF NAIIE1
_ - i11ega1/f i e-name/2) J$%FILE1. OAT

5 ILLEGALEUTEEALFILENAME2
/illega/f ile-flameI/2) J$%FILE2.Ukr

S INAPPROPRIATELINFLFlVGTHi
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRACG4A1 pRAQ'IA INCLUDE ("A28006Dl.TST")

$INCLUDEPRAGM1A2 PRAGM INCLUDE ("B28006D1.TST")

$INTEGER FIRST -2147483646

$tINTIEGERLAST 2147483647

$INTEGERFASTPLUS_1 2147483648

$ INTERFACELAWUAGE C

$LESSTHANDURATIOt4 -100000.0

$LESS -THANDURATICNBASE FIRST
-1-6000000.0

$LINr-ETMINATOR ASCII.LF

$LOW _PRIORITY 0

$M1ACHIINECODESTWEEEN'12T
CODE_0'(OP NOI~P);

SM&cHINECODE_¶EYPE CODE_0

*MIANTISSADOC 31

$MAXDiGITS 15

SMAXINT 21474836V~

$MAXINT_-PLUS_1 2147483648

$MININT -2147483648

$NAME TINYINTEGER

MACRO PARAMETrERS

SNAMELIST STJN4_CROSSNjEKPPC601

SNAZIE SPECIFICA~TIcO41 /usr/etcvcl 11/c/e/X2120A

SNAMESPECIFICATIc142 /usr/acvcl ll/c/e/x2l20B

SNAMESPECIFICATION3 /usr/acvcl . 1/c/e/X3119A

SNEGBA.SWINT 16#F000000E#

SNEW'IMEMSIZE 16777216

$ND'WSTORUN4IT 8

$NEKWSYSNAME SUN4_CROSSNEKPPC6O1

SPAGETERMINA¶IOR ASCII.LF & ASCII.FF

SRECORDDEFINITION RECORD SUBP: OPERAND; ENID RECORD;

$RECORD_1HAME CODE_0

$TASKSIZE 32

$TASKSTORAGESIZE 2048

$YTICY, 0.01

$VARI.ABLEADDRESS VAR 1'ADDRESS

$VARIABLEADDRess 1 VAR_2 'ADDRMSS

$VARIABLEADDRESS2 VAR 3 'ADDRESS

s$cxipPRA~iA PRAGMA PASS IVE

A-4

APPENDIX B

CCMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-1

COMPILATION SYSTEM OPfIOXNS

ada C:ommand Reference ada

ada - invoke the Ada compiler

Syntax

ada [options] (source-file]... [object file.oJ...

Arguments

object file.o non-Ada object file names. These files will be passed
on to the linker and will be linked with the specified
Ada object files.

options options to the compiler. These are:

-A (disassemble) Disassemble the units in the source file after
compiling them. -A can be followed by arguwents that further
define the disassembly display (e.g., -Aa, -Ab, -Ad, -Af,
-Al, -As).

a Add hexadecimal display of instruction bytes to
disassembly listing.

b Disassemble the unit body [default].
d Print the data section (if present) as well.

u Use the altern.ative fcr.at for out•vt,
1 Put the disassembly output in file "file name.das':
s Disassemble the unit spec.

-a file name
(arzhive) Treat file name as an object archive file created
by ar. Since some archive files end with .a, -a is used to
distinguish archive files from Ada source files.

-Bstatic/dyriamic (SPARCompiler Ada only)
'static) If static is indicated, the Ada program is ýcompiled
and linked statically. The default is dynamic.

-c suppress the control messages generated when pragma PAGE
and/or pragma LIST are encountered.

-D identifier type value
(define) Define an identifier of a specified type and value.

-DA1.0
-A.1

-DA2.0
(architecture) Specify the architecture version the compiler
should generate code for. These options override the ARCHITECTURE
INFO directive (Default: -DAl.l1 (HP PA-RISC only)

-d (dependencies) Analyze for dependencies only. Do not do

E-2

COMPILATION SYSTEM OPTIONS

semantic analysis or code generation. Update the library,
marking any defined units as uncompiled. Th, d option is
used by a.make to establish dependencies among new files.
This option will attempt to do imports foc any units
referenced from outer libraries. This should reduce
relocation and reduce user disk space usage.

-E directory
(error output) Without a directory argument, ada processes
error messages using a.error and diects a brief message to
standard output; the raw error messages are left in
source file.err. If a directory name is given, the raw error
output-is placed in directory/source file.err. The file of
raw error messages can be used as input to a.error. Only
one -e or -E option should be used.

-e (error) Process compilation error messages using a.error and
send it to standard output. Only the source lines containing
errors are listed. Only one -e or -E option should be used.

-Eferror file source file
terror) Process iource file and place any error messages
in the file indicated by error file. Note that there is
no space between the -Ef and error file.

-El
-El directory

(error listing) Same as the -E option, except that a source
listing with errors is produced. Note that the source listing is
directed to standard out while the raw errors are placed in
sourcefile.err.

-el (error listing) Intersperse e.rror messages among source
lines and direct to standard output.

-Elferror file source file
(error listing) Same as the -Ef option, except that a source
listing with errors is produced and directed to standard output.
The raw errors are written to error-file.

-ev (error vi(1)) Process syntax error messages usirLg a.error,
embed them in the source file and call the environment editor
ERROR EDITOR. If ERROR EDITOR is defined, the environment
variasle ERROR PATTERN-should also be defined. ERROR PATTERN
is an editor search command that locates the first occurrence
of '###' in the error file. If no editor is specified, vi(l)
is invoked.

The value of the environment variable ERROR TABS, if set,
is used instead of the default tab settings (8).

-F (full DIANA) Do not trim the DIANA tree before output to
net files. To save disk space, the DIANA tree will be

B-3

COMPILATICN SYSTEM OPTIONS

trimed so that all pointers to nodes that did not involve
a subtree that define a symbol table will be nulled
(unless those nodes are part of the body of an inline or
generic or certain other values needing to be retained for
the debugging or compilation information). The trimming
generally removes initial values of variables and all
statenents.

-G (GVAS) Display suggested values for the JINGAS _ADDR
and KMX_GVAS ADDR INFO directives.

-K (keep) Keep the internediate language (IL) file produced
by the compiler front end. The IL file will be placed in
the .objects directory with the file name Ada_source.

-L library name
(library) Operate in VADS library libraryname.
[Default: current working directory]

-lfile abbreviation (VADSself only)
(ltbrary search) This is an option passed to the ld(l)
linker, telling it to search the specified library file.
(No space between the -1 and the file abbreviation.)

-N unit name
(maln) Produce an executable program by linking the named
u-nit as the main program. unit name must already be
compiled. It must be either a parameterless procedure or
a parameterless function returning an integer. The
executable program will be named a.out (VADSself) or a.vox
(VADScross) unless overridden with the -o option.

-M source file
(mainT Produce an executable program by compiling and
linking source file. The main unit of the program Is
assumed to be The root name of the file (for foo.a the
unit is foo). Only one file may be preceded by -M. The
executable program will be named a.out (VADSself) or a.vox
(VADScross) unless overridden with the -o option.

-N (no code sharing) Compile all generic instantiations
without sharing code for their bodies. This opt!on
overrides the SHARE BODY INFO directive and the SHARECODE
or SHARE BODY pragmas.

-NX (NX) Link with NX startup code end with the NX archive libraries.
This option is valid only if the -M option has also been invoked.

(Sun SPARC -> Paragon only)

-0[0-9]
(optimize) Invoke the ccde optimizer. An optional digit
(there is no space before the digit) provides the level of
optimization. The default is -04.

B-4

COMPILATION SYSTEM OPTICOS

-O full optimization
-00 no optimization
-021 copy propagation, conbtant folding, removing

dead variables, subsuming moves between scalar
variables

-02 add comn subexpression "limination within
basic blocks

-03 add global common subexpressior elimination
-04 add hoisting invariants from loops and address

optimi zations
-05 add range optimizations, instruction scheduling

and one pass of reducing induction expressions
-06 no change
-07 add one more pass of induction expression reduction
-08 add one more pass of induction expression reduction
-09 add one more pass of induction expression

reduction and add hoisting expressions coumon to
the then and the else parts of if statements

Hoisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

Note that using the -00 option can alleviate some problems when
debugging. For example, using a higher level of optimization,
you may receive a message that a variable is no longer active or
is not yt active. if you experience these problems, set the
optimization level to 0 using the -00 option.

-o executable file
(output) This option is to be used in conjunction with
the -M option. executable file is the name of the executable
rather than the default, i.out (self) or a.vox (cross).

-P Invoke the Ada Preprocessor.

-R VADS library
(recompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of any that are out
of date. VADS library is the library in which the
recompilation is to occur. If it is not specified, the
tecompilation occurs in the current working dirtctory.

-r (recreate,' Recreate the library's GVAS TABLE file. This option
reinitializes the file and exits. This allows recovery from
"GVAS exhausted" without recompiling all the files in the library.

-S (suppress) Apply pragma SUPPRESS to the entire compilation
for all suppressible checks.

-sh (show) Display the name of the tool executable but do not

execute it.

-T (timing) Print timing information for the compilation.

B-5

COMPILATION SYSTEM OPTIONS

-trb
(trace block) Generate code to trace entry into basic blocks and
calls and returns (for use with a.trace only)

-v (verbose) Print compiler version number, date and time of
compilation, name of file compiled, commrand input line,
total compilation time and error summary line. Storage usage
information about the object file is provided.

-w (warnings) Suppress warning diagnostics.

sourcefile name of the source file to be compiled.

Description

The ada command executes the Ada compiler and ccmpiles the named Ada
source file. The file must reside in a VADS library directory. The
ada.lib file in this directory is modified after each Ada unit is
compiled.

By default, ada produces only object and net files. If the -M option
is used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the main program.

For cross systems, the compiler generates object files compatible with
the host linker in VOX format. The VOX format is discussed in
Appendix A of the Programmer's Guide.

Non-Ada object files (.o files produced by a compiler for another
language) may be given as arguments to ada. These files will be passed
on to the linker and will be linked with the specified Ada object files.

Command line options may be specified in any order but the order of
compilation and the order of the files to be passed to the linker can
be significant.

Several VADS compilers may be simultaneously available on a single
system. Because the ada command in any VADS location/bin on a system
will execute the correct compiler componenti based upon visible
library directives, the option -sh is provided to print the name of
the components actually executed.

Program listings with a disassembly of machine code instructions
are generated by a.db or a.das.

NOYrE: If two files of the same name from different directories are
compiled ir the same ada library using the -L option (even if the
contents and unit names ace different), the second compilation will
overwrite the first. For example, the compilation of
/'usr/directory2/foo.a -L /usr/vads/test will overwrite the
compilation of /usr/directoryl/foo.a -L /usr/vads/test in the
VADS library /usr/vads/test.

B-6

COMPIATION SYST1W; OPTIONS

SNOTE: It is posi.ible to specify the directory for ten•orary files by
setting the environment variable T1PDIR to the desired path. If TEMPDIR
is not set, /trmp is used. If the path specified by TMPDIR does not exist
or is not writeable, the program exits with an error message to that effect.

Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. most refer to the RM. Each RM reference includes a
section number and optionally, a paragraph number encltused in
parentheses.

See Also

a.app, a.das, a.db, a.error, a.infu, a.ld, a.make, a.mklib, appendixf

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
aLe provided by the customer. Ualess specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.

B-7

COMPILATION SYSTEM OPTIONS

a.ld Command Reference a.ld

a.ld - build an executable program from previously compiled units

Syntax

a.ld [options) unit-name [linkeroptions]

Arguments

linker options
All arguments after unit name are passed to the linker.
library abbreviations or-object files.

options options to the a.ld command. These are:

-DAI .0
-DA1.1
S-DA2. 0

(architecture) Specify the architecture version the compiler
should generate code for. These options override the ARCHITECIURE
INFO directive [Default: -DA1.I] (HP PA-RISC only)

-DO (objects) Use partially linked objects instead of archives
as an intermediate file if the entire list of objects cannot
be passed to the linker in one invocation. This option is
useful because of limitations in the archiver on some hosts
(including ULTRIX, HP-Ux and System V). (VADSself only)

-DT (time) Displays how long each phase of the preli. xing process
takes.

-Du unit list
(uniCs) Traces the addition of indirect dependencies to the named
units.

-Dx (dependencies) Displays the elaboration dependencies used each
time a unit is arbitrarily chosen for elaboration.

-DX (debug) Debug memory overflow (use in cases where linking
a large number of units causes the error message "local
symbol overflow" to occur).

-E unit name
(eliborate) Elaborate unit-name as early in the elaboration
order as possible.

-F (files) Print a list of dependent files in order and suppress
linking.

-K (keep) Do not delete the termorary file containing the list of
object files to link. This file is only present when many object

B-8

.COPILRTIOCN SYSTFI OPTIONS

files are being linked.

-L library name
(library) Collect information for linking in library name instead
of the current directory. However, place the executable in the
current directory.

-NX (NX) Link with NX startup copde and with the NX archive librar.ies.
(Sun SPARC -> Paragon only)

-o executable file
(output) Use the specified fielname as the name of the output
rather than the default a.out (self) or a.vox (cross).

-sh (show) Display the name of the tool executable but do not
execute it.

-T (table) List the symbols in the elaboration table to standard
output.

-U (units) Print a list of dependent units in order and

suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker conmmand but suppress execution.

-w (warnings) Suppress warning messages.

unit name
name of an Ada unit. It must name a non-generic subprogram.
If unit name is a function, it must return a value of the
type STNDARD.INTEGER. This integer result will be passed back
to the shell as the status code of the execution.

Description

a.ld collects the object files needed to make unit name a main
program and calls the ld(l) linker to link togethe-i all Ada and
other language objects required to produce an executable image in
a.out (self) or a.vox (cross). The utility uses the net files prcduced
by the Ada compiler to check dependency information. u.1d produces
an exception mapping table and a unit elaboration table and passes
this information to the linker. The elaboration list generated by
a.ld will not include library level packages that do not need
elaboration. Similarly, packages that contain no code that can raise
an exception will no longer have exception tables.

a.ld reads instructions for generating executables from the ada.lib
file in the VADS libraries on the search list. Besides information
generated by the compiler, these directives also include WITHn
directives that allow the automatic linking of object modules
compiled from other languages or Ada object modules not named
in context clauses in the Ada source. Any number of WITHn

5-9

COMPILATION SYSTEM OPTIONS

directives may be placed into a library but they must be
numbered contiguously beginning at WITH1. The directives are
recorded in the library's ada.lib file and have the following form.

WITH1:LINK:object file:
WITH2:LINK:archive_file:

WITHn directives may be placed in the local Ada libraries or in
any VADS library on the search list.

A WITHn directive in a local VADS libracy or earlier on the
library search list will hide the same numbered WITHn directive
in a library later in the library search list.

Use the tool a.info to change or report library directives in
the current library.

For VADSself on Silicon Graphics Computer Systems, the
USE LLAST LINK INFO directive speeds relinking by retaining a]Ast
of units? their types, seals and dependencies.

VADS location/bin/a.ld is a wrapper program that executes the
correct executable based upon directives visible in the ada.lib
file. This permits multiple VADS compilers to exist on the same
host. The -sh option prints the name of the actual executable file.

NOTE: It is possible to specify the directory for temporary files by
setting the environment variable TMPDIR to the desired path. If ThPDIR
is not set, /trap is used. If the path specified by TMPDIR does not exist
or is not writeable, the program exits with an error message to that effect.

Files

a.out (self), a.vox (cross) default output file
.nets Ada DIANA net files directory
.objects/* Ada object files

VADS location/standard/* startup and standard library routines

Diagnostics

Self-explanatory diagnostics are produced for missing files,
etc. Additional messages are produced by the ld linke-:.-

B-10

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as de! .'ribed in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDMARD is

type INTEGER is range -2147483648 .. 2147483647;
type TINY INTEGER is range -i28 .. 127;
type SHORTINTEGER is range -32766 .. 32767;

type FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type SHORT FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type DURATION is delta 0.0001 range -214748.3648 .. 214748.3647;

end STANDARD;

C-1

APPENDIX F OF THE Ada STANDARD

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INITIALIZE Pragma

Takes one of the identifiers STATIC or DYNAMIC as the single
argument. This pragma is only allowed within a library-
level package spec or body. It specifies that all objects
in the package be initialized as requested by the pragma
(i.e. statically or dynamically). only library-level
objects are subject to static initialization; all objects
within procedures are always (by definition) dynamic. If
pragma INITIALIZE(STATIC) is used, and an object cannot be
initialized statically, code will be generated to initialize
the object and a warning message will be generated.

1.2. INLINEONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, inciUcates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erroneously makes an INLINE CNLY subpro-
gram recursive a warning message will be ienitted and an
PROGRAMERROR will be raised at run time.

1.3. BUILTIN Pragma

The BUILT IN pragma is used in the implementation of some
predefined Ada packages, but provides no user access. It is
used only to implement code bodies for which no actual Ada-
body can be provided, for example the MACHINECODE package.

1.4. SHARE CODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pracmma is only allowed irmnediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit the pragma applies
to all instantiations of that generic. When the first argu-

C-2

APPENDIX F OF THE Ada STANDARD

rerit is the name ot a generic instantiation the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic.
When the second argument is FALSE each instantiation will
get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has the same effect as SHARE CODE. It is
included for compatability with earlier versions of VADS.

1.5. NOIMAGE Pragma

The pragma suppresses the generation of the image array used
for thz IMAGE attribute of enumeration types. This elim-
inrtes the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAMERROR raised at run time.

1.6. EXTEALNAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable def'ined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.7. INTERFACE NAME Pragma

The INTERFACE NAME pragma takes the name of a a variable or
subprogram defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram
declared earlier in the sawe package specification. The
object must be declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

C-3

APPENDIX F OF THE Ada STANDARD

1.8. IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF az the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.
The default is ON.

1.9. OPTIMIZE CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies whether the code should be optim-
ized by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. C•,FTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the
Ada Rm.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The'
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTEM.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragima is implemented as described in Appendix B of the
Adz RM.

2.6. MEMORY-SIZE

This pragma is recognized by the implementation. The imple-

C-4

APPENDIX F OF THE Ada STANDARD

mentation does not allo,' SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.7. NCNREENTRrNT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-
ately within a library package spec or body. It indicates
to the compiler that the subprogram will not be called
recursively allowing the compiler to perform specific optim-
izations. The pzagma can be applied to a subprogram or a
set of overloaded subprograsm within a package spec or pack-
age body.

2.8. NOTELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration pack-
age or an Ada package that is referenced from a language
other than Ada, The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no
effect.

2.10. PACK

This pragma will cause the compiler to chrose a non-aligned
representation for composite types. It will not causes
cbjects to be packed at the bit level.

2,11. PAGE

This pragma is implemented as described in Appendix B of thci_-
Ada RM.

2.12. PASSIVE

The pragma has three forms

PRAGVA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAC21A PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
body. The pragma directs the compiler to optimize certain
tasking operations. It is possible that the statements in a

C-5

APPENDIX F OF THE Ada STANDARD

task body will prevent the intended optimization, in these
cases a warning will be generated at compile time and will
raise TASKING ERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the
Mda Pr.

2.14. SHARED

This pragma is recognized by the implementation but has no
effect.

2.15. STORAGEUNIT

.This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that
DIVISION CHECK and in some cases OVERFLOW CHECK cannot be
supressed.

2.17. SYSTEM NAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage units allocated to P. For a subprogram, pack-
age, task unit, or label, it refers to the address of'. the
machine code associated with the corresponding body or
statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this

attribute.

(For a package, task unit, or entry, the 'REF attribute is

C-6

APPENDIX F OF THE Ada STANDARD

not supported.)

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique
task id associated with a task. The vilue of this attribute
is of the type ADDRESS in the package SYSTEM.

4. Specification Of Package SYSTEM

with UNSIGNED TYPES;
package SYSTEM is

pragma suppress(ALL CHECKS);
pragma suppress(ECtEPTIcNTABLES);
pragma not-elaborated;

type NAME is (sun4_cross new ppc601);

SYSTEM_NAME : constant NAME :- sun4_crossnew ppc60l;

STORAGE UNIT constant :- 8;
MEMORY SIZE : constant :-16_777_216;

- system-Dependent Named NumbWers

MIN INT : constant :--2 147 483 648;
MAX-INT : constant :- 2 147 -83 _47;
MAX -DIGITS : constant :-IS; -
MAX-MANTISSA : constant :- 31;
FINE DELTA : constant :-.0*(-31);
TICK- : constant :-0.01;

- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAX RECSIZE : integer :- 1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function - (A: ADDRESS; B: ADDRESS) return INTEGER;
function + (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS;

C-7

APPEN4DIX F OF THE Ada STANDARD

function MEMORY ADDRESS
(I: UNSl(NED_TYPES.UNSIGED_INTEGER) return ADDRESS renames "+";

NO ADDR : constant ADDRESS;

type TASK ID is private;
NOTASKID : constant TASKID;

type PASSIVE TASK ID is private;
NOPASSIVE_TASK_ID : constant PASSIVETASKID;

subtype SIG STATUS T is INTEGER;
SIGSTATUSSIZE: constant :- 4;

type PROGRAM ID is private;
NOPROGRAM_ID : constant PROGRAMID;

type BYTE ORDER T is (
LITTLE ENDIAN,
tI3 ENDIAN

BYTE ORDER: constant BYTEORDER T :- BIG ENDIAN;

type LONG ADDRESS is private;

NOLONG ADDR : constant LOQG ADDRESS;

function h+" (A: LONG ADDRESS; I: INTEGER) return LONG ADDRESS;
function "-" (A: La4G-ADDRESS; I: INTEGER) return LON--ADDRESS;

function MAKELONG ADDRESS (A: ADDRESS) return LONG ADDRESS;

function LOCALIZE(A: LO2WG ADDRESS ; BYTESIZE : INTEGER) return ADDRESS;

function STATION_OF(A: LONG_ADDRESS) return INTEGER;

- Internal RTS representation for day. If the calendar package is used,
- then, this is the julian day.
subtype DAY T is INTEGER;

- Constants describing the configuration of the CIFO add-on product.
SUPPORTS INVOCATION BY ADDRESS : constant BOOLEANJ :- TRUE;
SUPPORTS PREELABORATICN : constant BOOLEAN :- TRUE;

.MAKE ACCESSSUPPORTED : constant BOOLEAN :- TRUE;

- Arguments to the CIFO pragma INTERRUPT TASK.

type INTERRUPTTASKKIND is (SIMPLE, SIdýALLING);

function RETURNADDRESS return ADDRESS;

private

type ADDRESS is new UNSIGNF.D_TYPES.UNSIGNED INTEGER;

C-8

APPENDIX F OF T7E Ada STANDARD

NO ADDR : constant ADDRESS :- 0;

pragma BUILT IN(">");
pragma BUILT -IN("<") ;
pragma BUILT-IN(">-");
pragma BUILT--IN("<-");
pragma BUILT-IN("-");
pragma BUILT-IN("+");

type TASK ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NO TASKID : constant TASK ID :. 0;

type PASSIVE TASK ID is new UNSIGNED TYPES.UNSIGCTED INTEGER;
NO PASSIVETASK ID : constant PASSIVE TASK ID :- 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGN_ INTEGER;
NO PROGRAMID : constant PROGRAMID :- 0;

type WUG ADDRESS is
AiCORD

station : UNSIGNEDTYPES.UNSIGNED INTEGER;
addr : ADDRESS;

M RECORD;

NO LQNG ADDR : constant LWNG ADDRESS :- (0, 0);

pragma BUILT IN(MAKELCNG ADDRESS);
pragma BUILT IN(LOCALIZE);
pragma BUILTIN(STATIONOF);

pragma BUILTIN(RETURN ADDRESS);

end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are pAdded
so as to provide for efficient access by the target
hardware, pragma PACK applied to a record eliminate the pad-
ding where possible. Pragma PACK has no other effect on the
storage allocated for record components a record representa-
tion is required.

5.2. Size Clauses

For scalar types a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation

C-9

APPENDIX F OF THE Ada STANDARD

clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the component type is a
discrete type. An error will be issued if there is insuffi-
cient space allocated. The SIZE attribute is not supported
for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since
default initialization of a variable requires evaluation of
the variable address elaboration ordering requirements
prohibit inititalization of a variables which have address
clauses. The specified address indicates the physical
address associated with the vz riable.

5.4. Interrupts

Interrupt entries are supported with the following interpre-
tation and restrictions:

An interrupt entry may not have any parameters.

A passive task that contains one or more interrupt entries
must always be trying to accept each interrupt entry, unless
it is handling the interrupt. The task must be executing
either an accept for the entry (if there is only one) or a
select statement where the interrupt entry accept alterna-
tive is open as defined by Ada RM 9.7.1(4). This is not a
restriction on normal tasks (i.e., signal ISRs).

An interrupt acts as a conditional entry call in that inter-
rupts are not queued (see the last sentence of Ada RM
13.5.1(2) and 13.5.1(6)).

No additional requirements are imposed for a select state-
ment containing both a terminate alternative and an accept
alternative for an interrupt entry (see Ada RM 13.5.1(3)). '

Direct calls to an interrupt entry from another task are
allowed and are treated as a normal task rendezvous.

Interrupts are not queued.

The address clause for an interrupt entry does not specify
the priority of the interrupt. It simply specifies the
interrupt vector number. For passive ISRs, the nnn of the
passive(interrupt,nmn) pragma specifies the interrupt prior-
ity of the task.

5.5. Representation Attributes

c-lO

APPENDIX F OF THE Ada STANDARD

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides
an assembly language intorface for the target machine. It
provides the necessary reL rd type(s) needed in the code
statement, an enumeration type of all the opcode vneumonics,
a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as fol-

lows:

CODE n'(opcode, operand {, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands.
The operands are listed within a subaggregate. The format
is as follows:

CODE_N'(opcode, (operand {, operand)));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODE_0'(op -> opcode);

The opcode must be an enumeration literal (i.e. it cannot be
an object, attribute, or a rename).

An operand can only be an entity defined in MACHINECODW or
the 'REF attribute.

The arguments to any of the functions defined in
MACHINE CODE must be static expressions, string literals, or
the functions defined in MACHINE CODE. The 'REF attribute
may not be used as an argument ini any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

C-l1

APPENDIX F OF THE Ada STANDARD

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as
physical addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) when-the size
of ELEMENT TYPE exceeds that value. For-example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAX RECORD SIZE
is defined in SYSTEfM and can be changed by a pr-ogram before
instantiating DIRECT_10 to ;,ovide an upper limit on the
record size. In any case the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USEERROR
if MAX REC SIZE -xceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE
as the record size (expressed in STORAGE UNITS)-when the
size of ELEMENT TYPE exceeds that value. For example for
un'-onstrained irrays such as string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used - instead.
MAX RECORD SIZE is definea in -SYSTEM and can be changed by a
program before instantiating INTEGER 10 to provide an upper
limit on the record size. SEQUENTIAL_10 imposes no limit on
MAXRECSIZE.

11. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes
The maximum size of a statically sized array type is
4,000,000 x STORAGE UNITS. The maximum size of a statically

C-12

APPENDIX F OF THE Ada STANDARD

sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaration that exceeds these limits
will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an _xplcit STORAGE SIZE length specifica-
tion every task except the main program is allocated a fixed
siztý stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGE_SIZE for i task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute
the default collection size for an access type is 100 times
the size of the desigiated type. This is the value returned
by T'STORAGESIZE for an access type T.

11.5. L-iudt on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If
this value is exceeded the compiler will terminate the com-
pilation of the unit with a FATAL error message.

C-13

