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Executive Summary

Objective

The objective of this work was to identify useful approaches for measuring the
effectiveness of data fusion systems applicable to the zase of a distributed pro-
cessing architecture.

Approach

A literaturs search for relsted work dealing with measures of effectiveness (MOEs)
was performed, followed by an analytical evaluation of their generalizability to
the multi-targev, multi-hypothesis, distributed architecture case.

Results

Most of the MOESs seen in previous work can be applied only with great caution
here. A localization MOE based on target density functions with distinguish-
able areas of interest for each processing node can be applied directly. Certain
entropy methods might be applicable if a coordinate system zppropriate to the
problemn could be defined.
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. 1 Introduction

Data fusion software systems have been evaluated with a variety of Measures
cf Eftectiveness (MOESs) in the past, many of them being 6d hoc measures oup-
ported mainly by heuristic reasoning, applied to a sparse sample of the kinds of
input data expected to be encountered in operational use. Often, the confidence
that users have in a system is due not so much to the fact that it achieved pass-
ing scores from a buttery of MOEs as the fact that, in running the system, the
users usually abtained credible results, ancd the system’s failures did not seem
unreasonable. Part of the difficulty in formulating formal data fusion MOEs is
due to “data fusion” not being one problem but a whole family of superficially
similar problems. Each Data Fusion System (DFS) kas its own unique user re-
quirements and intended environmental conditions, all of which strongly affect
the design process and the definition of sircess. As a conseyuence, the field of
data fusion does not have a small toolbox of generally accepted and understood
m=asures like “array gain,” “maximum relative error,” or “SPECmarks.” An-
other parpt of the difficuity lies in the fast increasing complexity and generality
of the fusion algorithms being introduced nowadays, as well as the increasing
comprehensiveness of the fused world view to be displayed for the user. The in-
creasing capacity of these systems must be tested by means of MOEs of greater
xenerality and power than those used in the past.

This seport surveys MOEs applicablc to data fusion systems addressing Level
1 of the taroromy of data fusion processes identified by the Joint Directors of
Labs Data Fusion St:bnanel, (reference 1), particularly as they apply to the de-
tection, association, and localization subproblems, with less attention paid to
the classification rubproblem. These are presented starting with those appli-
cable to the simplest fusion systems and ending with the most complex type,
i.e., the mnultiple-target, multiple-gensor, multiple-hypothesis, distributed data
fusion system. The applicability of each and its shortcomings are discussed,
with the perspective oriented toward applicatious involving Navy ASW.

2 What part of the system is being evaluated?

Essentially all of the MOEs apglied to sensor data fusion systems actualiy mea-
sure the effectiveness of the DFS software and the sensor hardware and software
in combination, as th:y operate in a certain environment and target scenario. In
order to eviluate the sensors and the DFS by themselves, the environment and
terget scenario cre controlled, sampling them over an operationally significant
range of valucs. it can be difficult to evaluate just the DFS by itself because the
sampie space of potential scenarios, environments, and sensor sui‘es is 5o huge
and complex.

Directly comparing two candidate DFSa can be hindered by the fact that dif-
ferent DFSs tend to make cifferent assumptions about how much side information




will be included in the input streams and which preprccessing functions may or
may not be required upstream of the DFS, i.e., by the sensors. This can make
a competition between two DFSs difficult to desiga fairly, since reasonable de-
fault actions and default values have to be assigned tor missing functions and
parameters.

Isolating the performance of the DI'S itself and answering questions such as:
“How much benefit can we get by ausing multipi= kypotheses? or “How much
mote performance might be achieved by an optimal system?” can be approached
by coniparing the performance of the syatem under consideration agsinst a re-
lated, but idealized, system. There does not seem to be any known perfor-
mance bounds for tracker/correlators analogous to the Cramar-Rao bound, but
an upper bound can be obtained by allowing the algorithm to cheat, e.g., by
using access to information on .he true data associations to avoid association
errors, and by performing Target Motion Analysis with an asymptotically op-
timal mstimation algorithm, and initializing any iterative estimation processes
with the true value of the parameter. Lower bcunds on performance might be
obtained from runs of any simple, least effective (but still rational) algorithm,
e.g., a nearest-neighbor tracker. Sometimes, this least effective algorithm can
be impleinented by simply configuring the DFS being evaluated to use ninimal
memary, pruise maximally, ete.

3 Single-target MCEs

The well-known Probability of Detection, Pp, and the Probability of False
Alarm, Pra, measures seen in signal-processing textbocks assess the capability
of the DFS to perform: detection, i.c., to distinguish objects from noise, under
varjous circumstances. The usual analysis tests a binary hypothesis: noise-only
versus noise plus signal from a single target. Attenipts to apply this analysis to
multiple-target detectors have several problems. Aliasing effects like side-lobes,
muiti path propagation, shadowing, and convergence zone propagation inake it
questior.able whether an energy peak measured in a certain beam/bin is due
to one target or several. This invalidates likelihcod calculations based on hy-
pothesizing a single target versrus no targets. In practical operational systems,
the detection decisions made are generally soft de.isions, announced in several
stages, e.g., data are iabeled as threshold crossings, potential tracks, confirmed
tracks, system tracks, and lost tracks.

An additiona! factor that complicates the analysis of detcction in DFSs is
that most detectors are expacted to ot only filtrr out noise peaks but also
to eliminate clutter, where the definition of “clutte.” can be vaghe but variss
according to the application. A detector may or may not be expected to “detert”
ses. mounts, shrimp beas, ice features, shipping lanes, or consort vessels, fcr
example. ‘This creates a large gray area where detection is rot clearly distinct
from classification.




Even where the classifica. . being performed is clearly separated itom
detection, its analysis can of " :esemble the analysis of detection, simply be-
cause the critical decision being made is threat vs. non-threat, given thai the
target is already correctly devected. This was the type of classification requite-
ment nained, for example, in the SQQ-89 improvement program request for
proposals, where errors were measured in terms of probability (or frequency) of
false alert and the probability (or frequency) of missed threat. A sirnilar type of
binary analysis can be applied to the case where exact ciassification into one of
many categories is required by measuring the probability of correct or incorrect
classification, assuming that the question of which incorrect classification was
assigned 18 not of primary importance.

Work at Faramax, (reference 2), has applied the concept of a Bayesian Per-
cent Attribute Miss distance (BPAM) to classification, in the case where there
1s a Bayesian prior distribution available in the form of a ~omplete Order of
Battle, and where the fusion system describes the track attributes in the form
of propositional bodics of evidence, e.g., Dempster/Shafer measures of belief,
as in refcrence 3. In thie case, they define a metric on the propositional bodies
of evidence. and then defiue the BPAM MOE to be the distance between the
actual output and a claseification output that was both 109% correct and 100%
certain. While the strong raquirement of knowing the Crder of Battie in advance
»an be werked around, the applicebility of this approach is still imited by the
assuinption that for each track there is a true target classification. If we have
te deal with mulliple targets, and there is a possibility of tracks being impure,
i.e., composed of data originating from more than one target, then defining a
“true classification” for each track becomes protiematic.

For tae problem of localizing single targets, the direcy analog of the BPAM
MOE is that of “sadial miss distance”™ and ite one dimensional analog often
used with passive seusors, “range erior " A radisl miss distance is simply the
magnitude of the vecior difierence betwesa the best estimate of targat position
repocted by the DFS and the tiue target position. This MOE takes no account
of the uncertainty attached 10 the lozalizalron estimate and i motivated by
the idea that if 4 weapon were fired on that track it would have to be aimed
at the pest position estimate, regardless of its uncertainiy, and therefore the
probability of kill would directly deperd on the distance between the aim point
and the true target position. The accuracy of the velocity estimatie can generally
be assessed by supposing that the present track state is dead-reckoned ahead to
some future titne at which the radial misa distance is measured again. Then the
increase in position errof over time s attributable to the error in the velocity
components of the track state.

Insteai of Euclidean distances, some other distance metric can be used to
measure mss distances. A range error MOE evaluates the magnitude of Lhe
down-range compcnent of the vectur difference hetween the aim-point and the
true target position. This is appropriate for pussive sensor systemns where the
down-range component generally dominates the errer. A Mahalanobis Miss




Distance MOE simpiy weights the position error by the inverse covariance of
the estimate provided by the tracker, i.e., if the estimated track state mean
and covariance are 1 and T and the true state is u, then the Mahalanobis Miss
Distance has this value.
(= )T~ )

If the track position is modeled as a Gaussian random variable, then the like-
lihood attributed by the tracker to the true position is a menotonic function
(an exponential) of the Mahalanobis Miss Distance. Averaged over many repe-
titions, this MOE does not so much measure the strength of the tracking algo-
rithin as the proper scaling of the error sensitivity analysis, since a conservative
algerithm could simply play it safe by inflating all its covariance estimates so as
to achieve small Mahalanobis Miss Distances. Hall and Linn, (reference 4), have
shown the susceptibility of the Mahalancbis distance measure to degiadation by
noise.

4 Multi-target MOEs

A muititarget tracker outputs one or more tracks, each of which represents
the data associated with 2 certain hypothesized target and contains a state
probability density conditioned on that data. If ithe tracker does a good job
of estimating target positions and moiions, then it ay be that the number of
tracks produced by the tracker equals the nuraber of targets present in the region
of interest. If this is the case, then it may be possible tc define a one-to-one
correspondence between the tracks and the actual targets, based on nearest-
neighbor matching. It ofien happens that the tracker produces irore tracks
than there are targets. This can occur if one set nf measurements fails to be
associated with other measurements originating from the same target. Another
possibility 1= that the tracker produces fewer tracks than there are actual targets.
This case might result from measurement sets emanating from diffesent targets
beiag er;oneously combined to produce one track. In general, the situation can
becorne very complex with several false associations and missed associations
occurring in the same scenario.

The single-target MOEs sketched in the last section fail to generalize easily
to the multiple-target case because of the difficulty of assigning a single tar-
get to correspond to a track that is impure, or of assigning a single track to
correspond to a target from which the data set has been fragmented instead
of fully associated. However, if the data association problem is unambiguous
and easy, then the MOEs obtained from each track/target pair can be averaged
together almost as if they were just independent repetitions of a single-target
experiment. Obviously, if such averaging is cootemplated, an MOE must be
chosen for which averages have a useful meaning. For example, average Radial
Miss Distance is unlikely to have any more than heuristic significance, because
the position error distribution is likely to be different for each track. Hewever,




if the relationship between Radial Miss Distance and “Probability of Kil!” for a
particular missile-delivered weapon is known, then averaging ihe Probability of
Kill over the set of all tracks produces a meaningful overall Probability of Kill
for the particular weapon, DFS, and scenario being ccnsidered. This could be a
sensible application of a single-target MOE to a multi-iurgel tracking problem,
assuming no difficulty in the data zssociation and little interaction between the
tracks.

4.1 Statistics based on the confusion matrix

Several of the MOEs commonly used to assess performance of the dzta associ-
ation function of a DFS are based on the “confusion matrix.” The confusion
matrix is coastructed by grouping all the measursments processed by the DFS
according to which track they were placed in and which target they truly origi-
nated from. The element in the i'th row and j’ch column of the matrix, C;;, is
the count of measurements originating from target j and placed in track i. I
order to obtain these counts, both the DFS output and a krowledge of the true
associations for all the micasurements must be available. If the data association
prucess is perfectly successful, then the confusion r.atrix will be square and
contain exactly one nonzero element in each row and <slumn, ar:d by permuting
rows and columns ene could obtain a diagonal confusion matrix.

‘the Track Purity (TF) MUOE fur track i is computad fecrn the confusion
matrix according to the foliowing definition.

J
The Correct Assignment Ratio (CAR) MOE for target j is analogously defined
by this equation.
CAR; = ™% Cy

2 Gy
Weignted averages of Track Purity taken over all tracks (TPWA), or of Conect
Assignment Ratio taken over all targets (CARWA), have a pa:ticularly conve-
nient form if the weight given each track is the number of measurements put in
that track, and if the weight given each target is the number of measurements
criginating from that target. Here are the resulting definitions of the MOE
weighted averages.

3, max; Cij

TPWA = ‘& -~
Zi Ej Cij

. max; Cjj

CARWA = 2; ma G

Ej Zi C-'J'
Figure i shows an example confusion matrix generated at scan 90 by the
NCCOSC RDTALE Division ADM algorithm working on the scenario designated




by S9. At this scan, nine tracks arc generated in two clusters, labeled 2 and 4.
There are eight targets in the scenario, but only seven have been detected up
to this scan. Target 47 bas not vei been detected.

From figure 1 we can see that all 22 detections in track 23 originated from
the same target (target 41}. The TP for this track is therefore 1.00 or 100%.
For track 65, 19 of the 20 detections originated from the same target (target 2);
therefore the track purity is 0.95 or 95%. Tracks 11, 77, 26, 13, 54, and 2 also
have a track purity score of 1.00.

Target 32 has a CAR of 0.52, which is equal to the frac.ion 11/21. A total of
21 detections emanated from target 52. and eleven came from the same track.
The correct assignment ratio for targets 1, 2, 5, 3i, and 41 is 1.00 since ail
detections from any of these targets are found in the same track.

The higher the values of TP and CAR, the better the association perfor-
mance is, in general. It should be pointed out, hovever, that both measures
are important; one should not monitor only one measure. If the DFS were to
place each detection in a diiferent track, then TP would be 1.00 for each track.
The CAR values, however, would be quite low. Conversely, if the DFS were to
assign all detections to the same track, then the CAR values would be 1.00, but
the track purity would be low.

The confusion matrix and the TP and CAR MOEs seem to be very specific
to assessing the success of the data associaiion process in a DFS, since only
the association results are examined, but this apparent narrowness of focus
is llusory. The information used by the DFS to make association decisions
comes from the localization and classification processes, and vice versa, and
each deg 2nds heavily on the others being successful. Since association decisions
are so tightly coupled with localizalion and classification, they cannot reaily be
evaluated separately. However, the confusion matrix does have separate value
in post-mortem analyeis of a BFS run, e g., in blaming the bad localization in
a particular track on its being impure, or in identifying vargets from which the
data set was badly fragmented.

4.2 Distinct tracks are not independent subproblems

Single-target localization MOEs do not taeasure the resolution of 3 multi-target
tracker, that is to say, the ability to distinguish and separately track targets that
are close together and might be confounded. 'This is practically important, for
example, because of the rieed to be certain that nonhostile vessels near targets
not be attacked by accident. Close-together tracks tend to interact because of
the association ambiguities between them. On the other hand, a fused scene that
identified the presence of threats clumped together in a certain region could well
be a useful output, even if the exact number of threats or their precise relative
positions might be uncertain. A perfect solution of the data associatinn problem
may or ruay nok be critical to success in supporting the human decision-maker.

The <apability of identifying cross-fixes by passive sensors, and of rejecting
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Figure 1: Sample excerpt from cfm.dat




ghost cross-fixes, is another example of a localization effectiveness issue that is
not easily related to a single-target MOE like radial miss distance.

4.3 Target density functions

These shortcomings of MOEs designec for single target trackers highlight the
need for localization MOEs that deal with the fused track picture as a composite
whole, not just as a list of independent tracks. The central concept applied to
address this concern is the target density function, which measures the expected
number of targets per unit area in each infinitesimal box in the surveillance re-
gion. Let the track-state probability density function for track i be written
pi(z). Each pi(z) might be represented, say, as a convex combination of one
or mcre Gaussian densities, or perhaps of one or more densities uniform over
polygonal regions. (The usefulness of employing convex combinations of ele-
mentary density functions lies in the flexibility of being able to represent state
densities that are multimodal or nearly singular.) Whatever the form in which
pi(z) appears, the target density function, V, describing the whole scene, is the

following sum over all 1.
V(z) = Ep,(x) -1
i

This fermula 2pplies to nearest-n. ighbor trackers that maintain only one as-
sociation hypothesis at a time. To generalize to the multi-hypothesis case, we
need only sum over. the entire list of all tracks in all association hypotheses,
multiplying the stzte densities by the probability ¢; that the track belongs to
the true association hypothesis.

V(z)= Zps(z)qe

This track probability g; is computable sitnply as the sum of the probabilities of
all the hypotheses that contain this ’th tr.ck. As demonstrated in section 4.4,
this target density function can be further generalized by multiplying each of
the terms by some kind of cost or utility associated with each track, e.g., by
the expected payoff of attacking whatever target underlies the track. The result
would be a kind of expected payoff distribution.

Several statistics can be derived from a track density function that provide a
composite view of localization effectiveness and that are appropriate for multi-
target, multi-hypothesis DFSs. The simplest is just the integral of V2, or the
square of the two-norm of V. For a given fixed total number of targets, this
notm measures the amount of overall accuracy to which the tracker claimsto be
localizing the targets; e.g., a collection of diffuse track state probability densities
will yield a norm aear zero, while densities approximating a combination of delta
functions will yield a very large two-norm. Along with this inner product of V'
with itself, onc would naturally think of calculating the inner product of V with




a sum of delta functions representing knowledge of the truth. Work at Wagner
Associates, (reference ), combined these two ideas (and tailored them slightly
by inserting a weight function representing the limits of the region of interest)
to obtain their Weighted Sum of Densities (WSOD) MOE. The WSOD MOE
takes this form

WSOD = 3 f(z:)V (=) - % /R f(z)V(z)kdz

where z; is the true position of target 7, and f(z) is an appropriately normal-
ized weight function supported on the region of interest. The meaning of the
coefficient of nne-half is not clear, as it allows the MOE to take on positive
and negative values, and the value of zero does not correspond to some distin-
guished situation such as ignorance or perfect knowiedge. Still, Schweiter and
Stromquist in reference 5 claim that the WSOD is the “most satisfactory single
MOE for evaluating tracker/correlators” of those they were familiar with.

4.4 Search area target value relation

The Search Area Target Value Relation (SATVAR) MOE is also based on a
target density function, and its definition can be foimulated in highly satisfying
operaticnal terms, so that we obtain a clearer picture of just how well the
DFS is supporting the human decision-maker. Moreover, SATVAR evaluates
the resclution as ‘-ell as the accuracy of the tracker outputs, because of the
oppositely signed payoffs attached to friendlies and hostiles.

Our approach in deriving the SATVAR MOE formula will be to modc a
greatly simplified combat system in order to count or weigh the number of
threat targets that can bz successfully attacked becaus+ of good tracking. This
approach hzs been implemented in software, using both of the approximation
algorithms described below, and it has been used for informal evaluations and
for development work.

4.4.1 System concept

At one fixed point in time, we assuine, the commander will be presented a
tactical picture, consisting of tracks and data association hypotheses, with their
probabilities. Attached to each track is current state information in the form
of a 2-D positional state density, along with an estimate of the payoff (utility
or value) expected for destroying a target represented by that pretrack. The
commander then chooses an optimal targeting plan based on that picture and
fires one salvo. We compare the plan against the true picture and add up the
payoffs, positive and negative, attached to the objects the salvo would have
actually hit.

If the value or utility measures assigned to the targets are not all equal, e.g.,

positive for & hostile target, negative for a friendly one, then we must groap




the possible targets into classes of targets having equal value. The track-state
information must include the prebabilities assigned by the tracker (classifier)
of the target belonging to each of these classes, so that we can compute as
a weighted average the statistically expested payoff for destroying whichever
target is associated with that pretrack.

The armament available to the commander can be characterized by a single
scalar parameter, A, measured in units of area. We assums the commander is
capable of chocsing any (vopologically open) region of ocean, R, with an area
not greater than A, and when he fires the salvo, everything within the region
R is surely destroyed. (Allowing for a propability of kill less than one would
make che description of an ~ptimal plan much more difficult.) The commander
selects his targeting regio. R so as to destroy the most hostiles and the fewest
friendlies possible, i.e., maximize his expected payoff. Usually this region would
consist of a certain amount of area arranged around each of the most threat-like
tracks.

Localization effectiveness is measured either by the payoff actually achieved
by means cf a certain area A or by the size of A requiied to achieve a certain
payoil goal. Such measures seem to capture the intuitive concept of “localiza-
tion” as the process of reducing the areas of uncertainty around tracked objects
and of resolving objects of interest among clutter.

4.4.2 Notations and definition

Let T;,i=1,..., N denote all the tracks found in all the bypotheses present in
the tactical picture output by the DFS. For =ach pretrack there is a probability
¢i, which is the sum of the probabilities of the association hypotheses that
contain T;, a= well as a state density function p;(z), which is at least upper
semicontinuous, and an expected payoff v;, representing the utility of destroying
the target represented by T;. If only one association hypothesis is considered,
then g; = | for all i, and N is the number of tracks in that hypothesis. More
generally, Ef\;l i - 1 would be the expected number of targets detected. The
pi(z) might commonty be 2D Gaussian densities or muxtures of the same. If the
v; are not all set to 1, ther they should be scaled so that the commander would
prefer not to attack a target for which v; < 0.

Similarly, let 75,7 = 1,..., M be the true targets, with true positions z;,
and true payoffs u; for destroying 7j. A rational commander would have v; and
u; consistent with each other in the abvious way.

The commander’s targeting strategy depends entirely on the function

N

V(z) =Y viaipi(z)

=1

which deserilies the expected payofi for sanitizing a unit area of oceau around
x. The optimal targeting strategy will always be to choose a targeting region

10




R that blankets all the places where V takes oa iis highest values, i.e., he nee.
only choose a nonnegative number r and define R thus.

R={z:V(z)>r}

The value of 7 is chosen to be as low as possible, provided only that the area of
R does not exceed A, the re-ource constraint on armament.
Given the strategy just outlined, we can define the localization MOE L to

be this step function:
LAM) = )
T,€ER(r)

for A > 0. "ihis 1s the total payoff for destroying those targets found within
the optimal targeting region R of area A. The function (.4) will often be
nondecreasing, buc this property will fail when the sensor data are poor enough
that for some 7, V(z;) > 0 while u; < 0, i.e., a friendly sitz in scme taigeting
region.

Various scalar statistics could be extracted from this basic MOE. An example
might be: the smallest value of A for which L(A) is beiter than the payoff given
for destroying 75% of the hostiles and 5% of the friendlies.

It should be admitied that an ambiguity aiises witha this definition if V has
flat spots, i.e., if, for some r > 0, the region {z : V(z) = r} hes positive area. If
this is the case, the optimal targeting strategy will not be uniquely determined
for A in some interva! without making additional assumptions. This problem
never occurs if only Gaussian or other analytic density functions are involved,
which is the case we are interested in, but it would arisz when evaluating a
quadrilateral (or polytope) tracker.

4.4.3 Lake bottora analogy

One of the best ways to visualize the search payoff distribution, V, is to make an
analogy to .opographic maps. Suppose we imagine a lake that has interesting
top igraphical features such as valleys and peaks beneath its surface. Let us
further suppose that it is possible to drain water from the lake, the shape of
the shoreline revealing these features at various water levels. If a target densicy
function is plotted as the z coordinate on an x-y surface map, then the resulling
three-dimensioral surtace is analogous to the lake bottom described above.

Jf a target’s position is accurately known, then the corresponding peak in the
probability densi‘y function is very steep and narrow. Since for one given target
the total probability is unity, such a narrow peak is high. If the measuremenis
pertaining to a given track are iraprecise or the ineasurements from one target
are confused with measurements from another, then the corresponding peak
would hav: a gentle slone and would cover a large regien of the lake bottora.
Some trackers produce multi-modal estimates of target positions. For such
position estimates, the probability of fiuding a target is not localized to 2 single

il




peak, but multiple peaks represent the likelihood of finding the target in various
regions.

If the true target positions are known, these locations can be projected onto
the lake bottom. First, suppose the lake is filled until all the peaks are covered
with water. Mow, when the lake is being drained, eventually the highest part
of the highest peak will be uncovered. This is approximately the maximum
likelihood estimate of the position of the DFS’s best localized track. In general,
this point will not correapond exactly with the actual position of a target due
to measurement errors and the effect of the {ails of the distributions around the
other targets. When the iake has just been drained to ihe point of first un-
covering a target position, then the two-dimensional area of the exposed islands
represents the search area required to find that first target. (There is no guaran-
tee that the detections primarily responsible for this peak in the surface actnally
originated from the first target uncovered, although that is highly likely.) If the
level of the lake is lowered fucther, other peaks will become exposed and other
targets will be revealed. As each target is exposed, the two-diinensionai area

of the exposed land represents the region that must ve searched to find that
Larges.

4.4.4 Graphic example

Figure 2 illustrates two level curves of V, which is a linear combination of three
Gaussian density functions, with means located at points m,, ms, and m3. The
two levels correspond to two different values of the aliitude, r and #'. Notice that
m; lies only in the outermost region R above the altitude r/, but not the region
above the altitude r. The long triangle anchored tc the point m is suggestive
of an incremeni of area dA4, which results from tracing along the level curve a
distance dt.

4.4.5 Computation of R and L(A)

Picture for a inoment the situation where V is a weighted sum of K Gaussian
densities. Assume that V is positive sornewhere; otherwise L(A) = 0 for all
A and no further computation is needed. Now, if K were 1, then the payoff
distribution V" would be a simple Gaussiai: and R an elliptical regicn with area
A bounded by a level curve of V. If V' were a combination of Gaussians which
were well separated, then R would be the union of no :nore than K approximately
elliptical regions, and their total area corresponding to any given threshold r
is easily computed in this case. However, if the Gaussians are not all well
separated, problems arise in dealing with their interactions. How might this
area computation be handled in the presence of more general interactions?
First, we do know the exact values of r connected with each of the jumps
in the step function L(A). L changes value instantaneously when the region
R expands so as to include one of the target positions z;. This occurs when
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Figure 2: Payoff function level curves.

r = V(z;). So, evaluate ¢; = V(z;) for each of the targets j=1,..., M. Sort
the values {¢;} into some nonincreasing order, i.e., obtain a permutation k of
the set {1,..., M} such that Sr(1) = bi2) = - - 2 drm)- Let k(K') be the
last subscript for which ¢(x:) > 0. Notice that the targets 74(j) for j > K’
will never be attacked, because V(Ig('))) < 0. We conclude that as A increases,
L(A) will take on the values Up, = EJ-:, ug(j) for m = 0,...,K’, in that order.

The remaining problem is to compute approximations to the values of A
at which L(A) jumps from one step to the next. Two approachcs have been
implemented in software to date: one intuitive and accurate, but potentially
unstable, the other more brute-force and reliable, although siower to attain a
given accuracy.

4.4.6 Recursive triangularization approach

The slower and more reliable algorithm for measuring the areas requires only
that V be continuous instead of requiring continuous first partial derivatives.
In this first approach, one merely partitiors the surveillance region into small
triangles. Then, when V is approximated by a linear function on each triangle,
the level contours of V are straight lines, and the fraction of the triangle’s area
found above the level of each contour can be easily calculated by interpolation
of the values of V at the vertices of the triangle. All the areas obtained fromn
each small subtriangle are added up to obtain the total areas desired, without

13




any need to reconstruct the connzactions between the contour segments.

It is hard to estimate in advance the number of triangle subdivisions needed
to ensure that the sum of the errors caused by the linear approximations will
be acceptably small. We desire flat regions of ¥ to be surveyed with large tri-
angles, and regions of detailed variation in V to be finely subdivided into many
triangles. Accordingly, we begin with twe large triangles covering a rectanguler
surveillacce region, and we vecursively subdivide each triangle into four sub-
triangles by cuts that connect the midpoints of the sides of the triangle. We
adaptively quit subdividing whenever a measure of nonflatti.ss of V (approxi-
mating an average second derivative) falls below a certain threshold.

This approach has been implemented in software in Ada, by means of a
set of packages that can easily be inserted into the source code of RayR-2 or
the NRaD ADM. The heuristics controlling the depth of recursion succeed in
keeping the amount of computation required within reasonable bounds.

4.4.7 Approach of tracing enclosing contours

The other area aporoximation method computes the sum of the areas of the
connected components of the region R. The ulgotithm approaches each compo-
nent oy s.arting near a local maximum of V, e.g., at the mean m’ of one of the
Gaussian components with positive weight. If V(m') <= r, i.e., we are outside
of R, then we search uphill until we either obtain a point m for which V'(m) > r
or we discard the peak for lack of sufficient altitude. Now do a line search in
any direction ¢ find any point on the contour where V(z) = r. By integrating
the following a- ionomous ordinary differential equations:

= Vn

dt — JVEFVE

d:z _Vt‘

a ~ (WVIFVE
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one can trace the contour circling m a single revolution and compute the area
inside the region. The equation fcr # may not be absolutely necessary, but
it seems useful for checking the winding nvmber of the curve traced. Finally,
taking care not to duplicate regions, we repeat this area computation for each
potential peak of V.

The practical problem with this approach lies in the numerical trouble that
arises in the vicinity of a saddle point of V, because of the zero gradient there. A
condition called “stiffness” arises in integrating the Ordinary Differential Equa-
tion (ODE), which is graphically discernible in that the contours converge into
a bottleneck and fan out again as they approach and leave the neighborhood
of the saddle point. This stiffness is occasionally so severe that the standard
variable-order, variable-step predictor-corrector algorithm being used to inte-
grate the ODE fails. In any case, stiffness g-eatly increases the computational
effort required to retain stability in the integration algorithm. One possible
work-around not attemptea would be to approximate the location of the sad-
dle point itself and then explicitly gencrate a Taylor expansion of V about that
point, in order to approximaie the contour with a hyperbola in these difficult re-
gions. The software implementing this approach is sketched in section 6, which
describes the EVAL program and its usage.

Under either of the approaches just sketched, the final ocutput of the algo-
rithrm measuring localization effectiveness will then be the function L, as repre-
sented hy the areas A, for j=1,..., K’ and the payofi~ U, for m =0,... . K'.
This fuiiction is computed from the tracking results available at the end of the
scenario, at least, and in many cases i3 repeatedly :omputed at several iuterme-
diate Jime points of interest dunng the evolution of the scenario, in order Lo see
when it is that probleniz arise or to estimate the length of tracking time needed
to atiain a certain targeting accuracy.

4.5 Entropy measures

In reference 2 and elsewhere, one takes the viewpuiat that a DFS is like a
communication channel and asks how much inic:mation is present in the output
of the DFS, or else what is the difference in the amew.t of information present in
the DFS output comparted to the DFS input, or cotapared to a sure knowle. ‘e
of the ground truth. Such questions are addressed by defining various entropy
and cross-entropy measures.

For example, the Paramax information scoring meiric in scction 3.4.3 of ref-
erence 2 is essentially the probability density assigned by the DFS in its output
to the ground truth state of the world. This is conceptually simple for a single-
target tracker, say, that might only involve evaluating a Gaussian probability
density function at a single point. The complexity arises in trying to defin= a
distribution on whole tactical scenes, involving sets of an unknown number of
tracks, each having various discrete and continuous state variables depending
on each other. In full generality, Goodman’s theory of random sets is required,
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as developed in reference 6. Insiead, Paramax’s work:ng imple.nentation uses
some pragmatic approximations, because of difficulties in treating the number
of targets as a random varialle, ar area where the anaiysis in reference 7 might
be of benefit.

While entropy methods seem to have great generality aud wide aprlicability,
they are all arbitrary or artificial in one certain respect: their value deo=nds on
the coordinate system used for describing the output of the DFS. The cause of
this dependency lies essentially in the derivation of the entropy measures from
probability arguments applied to a finite, discrete state space. The cont:nuoue
state space actually used by the DFS gets discretized in a seeiningly arbitrary
way that depends ou a coordinate system. It seems rather difficuit to define cr
even imagine what coordinate system most naturally reflects the geometry of
the data being handled, so that no objection could be raised that the coordinate
system is producing artifa<ts in the results, e.g., the singularity at the origin of
a polar coordinate system distorting the significance of resuits at short ranges.

5 Distributed Data Fusion MOEs

“Distributed” data {usion generally refers to data fusion processing in an archi-
tecture where there is no single central processar responsible for outputting the
global scene, bul rather the sensor date are processed at two or more nodes,
10 one of which processes all the data, with no single point of failure and no
single communications bottleneck. Any one of the processing nodes might have
its performance evaluated by means of the MOEs discussed above, just as if
its fellow processors Gid not exist. The performance observed may or may not
equal what would be expected from essentially the same algorithm being ap-
plied in a nondistributed architecture, because of how well or how poorly the
algorithm might be dealing with problems of information feedback and errors
introduced by communicaticn. Besides some sort of Total Effectiveness, which
is to be discussed last, there are iwo other maain aspects of DFS performance
that are peculiar to a distributed architecture: (1) communic ation requirements
and (2) scene mismatch beti-en processors.

The communication bandwidth required in a distributed architecture may
well be measured in units like bits-per-second, but actually thinking in terms
of bits raay confuse the issue somewhat, if it leads to trading off complicated
bit-packing schemes and compression methods aud weighing whether the third
decimal place is significant enough to be worth transmitting or not. This con-
fusion is avoided by fixing some simple uncompressed format for communicated
data and inen measuring communications requirements in terms like tracks-per-
hour or scenes-per-hour.

The main factors determining the communications requirements ate the net-
work topology and the reporting rates, which are interrelated of course. The
topology determines, first of all, whether any feedback loops are potentially
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present in the flow of sensor data through the network. 1If theie are, then
nut only must the fusion algorithms be ready o take special account of these
feedbacl: effects, but the tracks transmitted from one node to another must be
accornpanied by a substantial amount of tracing information globally identifying
the sources of all information, 3o that re-reported data can be effectively sub-
tracted out. The network topology also determines such factors as the number
or nodes that must produce output and the number of source nodes multiplexed
tcgether into each processor node receiving data. The reporting rates of the
processing nodes depend on external interface requirements as well as on the
amount of latency and scene mismatch between nodes that can be tolerated.
Maurer, Oates, and Chrysostomou in rererence 8 analyze a DFS that continu-
ally adjusts reporting rates in real time to meet some a prio1i scene consistency
criteria. Two measures of consistency between a sensor’s local scene and the
DFS global scene are monitored, and when a threshold is crossed, consistency is
improved by the sensor broadcasting its current local scene. In operational sys-
tems, though, it is more realistic to expect that the communications resources
available will be fixed in advance and the DFS will make the best use it can of
the bandwidth allotted to its use.

This view of communications bandwidth as a cost factor instead of an MOE
is highly analogous to an attitude commonly assumed toward DFS requirements
of computer memory and processing time. The computing resources available
to an operaiional DFS are not flexible as in a big time-sharing system, with
the option of buying more time on days with hard problems and saving one’s
money instead when there is nothing challenging to do. In an embedded DFS,
the resources are fixed when the system is built, and the DFS must make the
best use of the processor that is available. There is no benefit gained by leaving
processor cycles unused,

Any mismatch between the scenes output by two processors in a distributed
DFS could be an occasion for dissatisfaction in the human operators that mon-
itor such nutputs, even if there is no theoretical basis for complaint. Complaint
1s called for if two processors too often track the same target but output track
states that differ by a statistically significant amount. 1t would be no surprise
at all that the scene output by one processor contains tracks not present in
the scene cutput by another processor, or vice versa. Since any two processors
generally operate on two overlapping but unequal badies of sensor data, they
cannot be expected to produce identical outputs, only consistent outputs. Very
possibly, each processor has its own defined region of interest, and it discards,
nr does not request, data not relevant to that region. If so, close comparisons
between output scenes ought to be considered only inside the region that is of
interest to both processors, if any.

The analysis in reference 8 examines two measures of scene dissimilarity,
one comparing the data association hypotheses by means of a graph-theoretic
metric, the other comparing the track state densities by means of a Kullback-
Leibler mecasure, introduced in reference 9. Unfortunately, the Kullback-Leibler
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measure has two major problems relative to distributed DFSs: (1) it is not a
metric, i.e., it does not satisfy the triangle inequality, and (2) applying it to track
state probability density functions or target density functions requires identi-
fying a one-to-one correspondence between the tracks present in each output
scene heing compared. As alrerdy discussed above in section 4, there may not
be any reasorable mapping that matches up a set of tracks against the set of
true targets, much less one that matches up two sets of tracks that may or may
not even be assembled out of the same pool of sensor data. The graph-theoretic
metric discussed in the same reference does not have either of these problems,
and it appears promising in general, especially since its value can be computed
and updated recursivel, as the scenes being compared are updated. Neverthe-
less, it is unclear how well the value of this metric, which describes association
hypothesis dissimilarity, can be related to more visible issues like track state
inconsistency.

While some kind of Girand Total Measure of Effectiveness of an entire dis-
tributed DFS might seem desirable, it is questionable whethetr some such number
as “average average track purity” would convey much meaningful information
to the user. One approach combining MOEs over the nodes of a distributed
DFS that could have promise is based on the idea of “regions of irterest.” One
common reason for choosing a distributed DFS architecture might be that none
of the processors in the system actually needs a global tactical picture; each
is mainly concerncd with some more local region assigned to it. These regions
may overlap or be fuzzily bounded, but they serve as a means of focusing pro-
cessing resources and of partitioring a huge global fusion prablem into pieces of
manageable size.

To make this concept more precise, define interest functions fj(z) for each
DFS processing node j over all locations z in the entire surveillance region.
These interest funciions might be normalized so that Z:)- fi(z) = 1 for all z,
or else they could take nonnegative values measured in units like dollars per
square kilometer. In any case, f;(z) = 0 if node j is uninterested in location z.
Assume that we have interest functions that are normalized and each processor
evaluates the targeting payoff function V,(z) as in section 4.4.2 on the SATVAR.

Then
V()= fi(2)Vi(2)
J

could usefully serve as a global search payoff function from which a global SAT-
VAR MOE could be computed. This approach would not penalize a node for
localizing poorly in areas it was not responsible for, but it could attach greater
weight to the localization results obtained in areas of higher strategic importance
or greater difficulty of search.

Partitioning the world up geographically is not the cnly feasible way to define
an interest function. Some nodes could interest themselves only in aircraft,
others only in neutral shipping, others only in ESM emitters. Any state variables
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that are tracked by the trackers could be used to delineate regions of interest.
The main requirement for this approach to be effective is that the nodes all be
logically on the same level of the processing hierarchy. One node in the list, for
instance, should not obtain all its inputs from some other nodes in the list, since
the first node should be thought of as higher in the processing hierarchy than
the other nodes it feeds off of. It should be possible io view the nodes being
combined as peers.

6 EVAL Program

EVAL is a software program implemented in Ada that measures DFS effective-
ness in two respects. It evaluates the statistics discussed in the section of this
paper on the “confusion matrix,” and it evaluate. the SATVAR MOE described
in the previous section wsing the contour tracing approach. The integration of
the ODEs defining the contours and the areas emplovs an Ada implementation
of the Shampine-Gordon algor;ibm, which is based on variable-step, variable-
order Adams-Bashforth-Moulion integration formulas. Error returns from the
Skampire-Gordon package that signal a problem with stiffness of the ODE sys-
temn are simply resumed.

The target scenes evaluated by the software are obtained by parsing the
output of the DFS in the “hyptiks” format defined in the TACSIM User’s Guide,
(reference 10). This ASCIH DFS output format is sufficiently standardized that
it is supported by tke BayR2, ORCA, Lira, CMIDS, TRAPPR, MIIT, and
NRaD ADM systems.

6.1 Computational strategy

The following is an outline of the computational procedure:
Select a desired time for MOE calculation
For each truz target position at the desired time
Generate a contour line passing through this point.
Check to see which peaks are encircled by this contour
Store this information in an array
Arrange the targets in order of decreasing heights
For each ordered target
For each peak not encircled by a target contour
Generate a contour encircling the peak at this target height
Compute the total area enclosed by all contours at this level

6.2 Instructions for using EVAL

EVAL must be executed in a directory containing the required input files. The
following subsections contain descriptiors of the input files, output files, and
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interactively supplied input parameters.

6.2.1 Input files

The EVAL program uses three files as input. The following is a brief description
of these files:

eval.dat This file contains the tracks, hypotheses, and clusters arranged to
conform with the “hyptrks” format documented in reference 10.

tsue data.dat The second file contains a description of the true scenario. It
includes information on the positions of all the vessels in the scenario at the
times of interest. Its format is that of the “auxstream” file in reference 11).

geodnput.dat Conta.ns information pertaining to the placement and scaling
of the graphical output.

Having data from both the truth and reports files, EVAL is able to provide
an assessment of algorithm performance.

6.2.2 Output files

EVAL preduces several output files. Some of these files can be printed dirzctly,
and some are designed to be processed by various graphing aud plotting pio-
grams. The following.is a brief summary of these files:

tek.dat This file contains commands for a Tektronix 4010 terminal or emu-
lation program. The resulting plot is a contour plot of search iegions -
required to find each of the targets present in the scenario. ‘

gnu.dat This file is a list of x-y coordinate pairs of points in all the contours.
It can be processed by Gnuplot to produce an on-screen plot or a printed
plot, similar to the above mentioned Tektronix output, but realized on
. any of the wide variety of devices supported by Gnuplot.

gru.cmd This file contains a script of Gnuplot commands to produce a PostScript
plot very similar to that written to the tek.dat file. An example below
demonstrates how to run Gnuplot to generate these plots.

map.dat This file contains a time history of the weighted track purity and the "
. weighted correct assignment ratio parameters derived from the confusion
matrices determined at each specified time.

brief.dat This is a text file summarizing the results of the EVAL run. .

cfin.dat A text file containing a time history of confusion matrices aud their
associated parameters at each desired time. )
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locanoe.dat This file contains a summary of the value of the SATVAR MOE
comiputed by EVAL. This information can be fed into Quattro or a simils.

spread-sheet prograin to procuce a graphical display of the search area
MOE.

Twou ways Lo generate a PostScript graphic of the search regions using the
Gnuplot software are illustrated by the following terminal trarscript.

% gnuplot

set terminal postscript
sSet output "gnu.ps"

plot "gnu.dat" with lines
quit

% gnuplet

set terminal postscript
load "gnu.cmd"

quit

6.2.3 Input parameters

Upon running EVAL, the user will be prompted to enter various parameters
interactively. The following is a list of the input parameters:

loc_plot Ifloc_plot is 1, then a List of localization summary areas is produced.

plot_desired If plot.desired is 1, then a plot is produced.

merged_ellipses If merged.ellipses is 1, then the resulting plots will reflect the
interaction of all the Gaussian peaks. If it is not 1, then each peak will
be plotted as if i were the only peak in the scenario. In this mode it is
possible that the displayed elliptical contours might overlap. If the truth
file (true_data.dat) is not available, then this is a useful option.

tek file If tek file is 1, then the Tektronix plotting commands ate stored in the
file “tek.dat” for later processing. If the program is running in a tektoel
environment and tek_fil.: 1s not 1, then the contours are plotied in the
window. in real-time. In this mode, interactive commands can be given to
zoom ia and out and change the map center.

first scan The n -mber of the first scan to be processed.
last_scan The number of the last scan to be processed.

pv-wave If pv_wave is 1, then a three-dimensional display generated by PV
WAVE is sent to a wirdow for viewing,.




verbosity index This parameter controls the amount of data to be sent to the
screen. The larger this integer, the more output is produced.

reporting.interval Output to the files cfin.dat and brief.dat will be generated
for each scan that is a multiple of reporting_interval.

algorithm_code Gives a choice of algorithms. The chief purpose of this pa-
rameter is to ensure that the proper notation is affixed to the output files
and plots.

Scenarioname The scenario abbreviation (one to three characters) is at-
tached to various ocutputs as a means of identificaiion.
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