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WORK SUMMARY
The following tasks were proposed and carried out for USAF Contract No. F 30602-

92-C-0031.
(1) Performance evaluation and analysis of fault tolerance of existing neural

networks. Different evaluation measures may be needed for neural networks intended to

perform different tasks. Various sensitivity measures were developed, modeling many differ-
ent kinds of faults: single node failures, single link failures, multiple node failures, multiple
link failures, and also small degradations in multiple links or nodes.

(2) Designing new fault tolerant training algorithms for feedforward neural
networks. Several variations of the basic backpropagation algorithm were designed and

implemented, yielding improvements in fault tolerance. The learning rule was modified,
penalizing higher magnitude weights.

(3) Network modification on detecting faults. The "Addition-Deletion" algo-
rithm was designed to successively modify the size of a network by deleting redundant nodes
that do not contribute to fault tolerance, and to add new nodes in a way that is assured to

improve fault tolerance.
The techniques designed in this project were compared with alternative methods sug-

gested by other researchers, and found to improve robustness. In addition to these tasks,

research was also carried out on methods of extending these methods to hardware implemen-
tations of neural networks. An algorithm "Refine" was defined, which takes a robust network
that does not satisfy hardware restrictions on magnitudes of various network parameters and
transforms it into another network that does satisfy hardware constraints.
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Fault Tolerance of Neural Networks

Kishan Mehrotra, Chilukuri Mohan, Sanjay Ranka

School of Computer and Information Science
Syracuse University, NY 13244-4100

1 Problem Description

Neural networks' have been used in various applications, including classification tasks, pat-
tern recognition, image processing, expert systems, and adaptive control systems. In recent
years, various hardware implementations of neural networks have also been developed. Since
neural networks often contain a large number of computational units, in excess of the mini-
mum required, they have considerable potential for fault tolerance. However, there has been
very little systematic study of the fault tolerance of neural networks, and classical neural

learning aigorithms like backpropagation do not make an attempt to develop fault tolerant
neural networks. Using neural networks with no built-in or proven fault tolerance can lead to

disastrous results when localized errors occur in critical parts of neural networks. Therefore,
it is important to study the reliability aspects of neural networks, and develop neural learning
techniques that effectively utilize the redundancy inherent in neural networks. Applications
based on such networks will be far more reliable than less carefully designed neural networks.

1.1 Fault Tolerance

Fault tolerant computing systems [2, 15, 18, 121 are those that produce correct results or
actions even when some of their components and subsystems fail; this is often achieved
by introducing redundancy and error-correcting mechanisms. A system has potential for
fault tolerance if the amount of resources used by the system exceed the minimum required.
There is more to fault tolerant design than merely introducing redundant computational
units in a haphazard way. Duplicating all computational resources in a system assures fault
tolerance at great computational expense. On the other hand, a system in which only a few
computational units are duplicated is not fault tolerant with respect to potential failures

'We use the phrase 'neural networks' strictly in the sense of artificial neural computing systems, and not

biolugical mechanisms.
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in other units. Partial redundancy is only a precondition, and does not ensure robustness.

The design of a system may make it selectively fault tolerant to errors in some components

but not in others. The challenge in fault tolerant design comes from the goal to use as few

redundant resources as possible while ensuring the maximum fault tolerance with respect to

as many potential failures throughout the system as possible.

1.2 Neural Networks

The design of neural networks is sometimes motivated by fault tolerant neurophysiological

mechanisms in animals. In this context, the distributed nature of human memory has been

a well-studied phenomenon: cells in the human brain are constantly dying and new ones

taking their place, without significantly affecting memories of past events. Destruction of a

small part of a distributed memory does not eliminate any integral piece of information from

the memory, although performance as a whole degrades (gracefully); holograms provide a

useful analogy. If knowledge representation in neural networks is truly distributed, we should

expect similar fault tolerant behavior.

Neural networks often contain a large number of computational elements and links.

Hence, in any hardware implementation of a neural network, there is a high probability of

some node or link being faulty. Many researchers have assumed that neural networks are

fault tolerant; the reasoning is that since there are a large number of computational nodes,

some degree of redundancy must exist automatically. However, in applications which require

high reliability, the usefulness of a neural network cannot be taken for granted without a

clear analysis of its fault tolerance, and without techniques which ensure a desired degree

of fault tolerance. This appears to be a relatively new topic of research. Our investigations

indicate that very few significant results in this direction have been achieved for commonly

used neural network models of non-trivial size, although the importance of this problem

has been recognized (see, e.g., recent papers [7, 20, 21, 24]). We have therefore developed

methods for measuring the robustness of neural networks designed to solve specific problems,

and techniques to ensure the development of neural networks which satisfy well-defined

robustness criteria.

In our research, we have analyzed the most commonly used 'feedforward' type of neural

networks, trained by back-propagation of error, the method popularized by Rumelhart et

al. [22]. For convenience of presentation we consider a feedforward neural network with

one hidden layer. A neural network with I input nodes, H nodes in the hidden layer, and

O nodes in the output layer is conveniently denoted as I-H-O network. A 3-4-2 network is

shown below in Figure 1.
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Output Layer. 0 = 2

Hidden Layer. H = 4

Input Layer I = 3

Figure 1: A 3-4-2 neural network.

The computation performed by each hidden and output node is of the form

1
Xj  -- 1 +w i,' i + 0j

where wj,i is the weight from the ih node of the preceding layer to the jth node, xi is the

output of the ith node, and 9j is a 'bias' or threshold term that allows the net input to
be translated by a desired amount; 9j will determine the value of xj when the activation

of each node in the preceding layer is xi = 0. The bias is often represented as a weight

attached to a special node whose output is always fixed at 1, for notational convenience,

and so that the bias can be adjusted by a learning algorithm in the same way as other

weights are adjusted. With the inclusion of such a bias node at input and hidden layers,

there will be (I + 1) nodes in the input layer and (H + 1) in the hidden layer. There will be

[(I + 1) x H + (H + 1) x 0] = [(I + 0 + 1) x H + 0] = K links in this neural network.

Each node in the hidden layer has (I + 1) fan-in links and 0 fan-out links.

The problem dictates the size of I and 0, the number of input and output nodes,

respectively. The number of hidden nodes, H, is chosen in an arbitrary manner. There

are two phases in building such a neural network to solve a problem: the training phase

followed by the testing phase. In the training phase, the network 'learns' from a set of

training samples, i.e., the weights of links and states of computational elements are modified
to represent a solution to the desired problem. The performance of the trained network on

the test data is then analyzed, in the testing phase.
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1.3 Motivation

When we examined oft-touted neural networks published in the literature, we found that

even single node/link failures can completely destroy the functionality of the neural network,

although it is often claimed that neural networks are fault-tolerant. For instance, consider

the encoder-decoder network described in [22] and discussed in various other places. In such

a neural network, even the loss of a single node is sufficient to destroy the functionality of

the neural network.

This may be an extreme case, since that neural network was optimized to have the

smallest possible number of nodes. However, even in neural networks which contain many

more nodes than needed from an information-theoretic viewpoint, the redundancy is haphaz-

ard, and not well-structured enough to allow us to have any assurance about the robustness

of the neural networks. For instance, in a 6-2-1 neural aetwork for solving the symmetry

(palindromic strings) problem described in [22], the result of failure of even one node is

catastrophic. This happens even if other hidden nodes are introduced and a larger neural

network is routinely trained (for the same prcblem).

All we can conclude from previous work is that it would seem possible to build neural

networks in a fault-tolerant way: existing network-building mechanisms do not assure this,

and they cannot be relied upon to build fault tolerant neural networks. As hardware im-

plementations of neural networks become widely used in critical applications, research into

their fault tolerance and that of fault tolerant neural network design methodology becomes

an urgent need.

Faults may occur at either phase, in neural network development as well as in the actual

use of the network in an application. Faults occurring in the training phase may slow down

the training time, but are less likely to affect the performance of the system. This is because

the training process will not be concluded until the faulty components are compensated

for by non-faulty parts of the network, assuming that there is enough redundancy and

functionality in the neural network. Many physical faults occur at a single component of a

neural network, and hence we discuss single faults with greater detail than multiple faults.

If faults are detected in the testing phase, retraining with the addition of new resources can

solve the problem. Such a fix would not be possible after system development is complete

and if faults occur in a neural network application which has already been installed and is

in use. Fault tolerant design would ensure the correct functioning of a nonfaulty system

in operational use, with graceful degradation in performance if the network's parameters

change.
The simplest suggestion to ensure fault tolerance follows explicit redundancy principles,

as practiced in classical fault tolerant hardware design, by introducing a multiplicity of

elements. In this approach, no implicit assumption is made, but either the entire network
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or parts of it are duplicated. In the worst case, each neural network contains several copies

of each node and link, with majority estimation being used to resolve errors in the case of

faults. This approach is generally not appropriate for neural netw'orks, since no advantage

is being taken of the potential for "inherent" fault tolerance in a neural network.

The amount of resources needed by the above approach is painfully large; this can

be compensated to some extent by analyzing a neural network using sensitivity parameters

(discussed in a later section), and introducing redundant copies for only those nodes and

links whose errors are considered critical to the performance of the entire neural network.

Even without exhaustive analysis, nodes/links associated with high magnitude values may

be duplicated, especially those at the outer layers in a multi-layer neural network.

1.4 Related Work

Belfore [5] has studied performance evaluation of Hopfield-type neural networks with faults.

He proposes measures to evaluate the performance of 'average' neural networks, averaging

over all possible ways in which a specified number of faults can occur in a neural network.

Sequences of neural network state transitions are modeled as Markov chains, and the condi-

tional probability of a neuron firing is obtained using the Boltzmann probability distribution

function.
Venkatesh [25] has shown that (in the average case) with random failures, neural net-

works which implement associative memories are fault-tolerant, with a graceful degradation

in storage capacity with increasing losses of interconnections, assuming that each node re-

tains at least about (log n) of its original n interconnections. However, it is not clear that

average case analysis suffices for robustness considerations. In particular, the storage capac-

ity of a neural network can be seriously impaired if a large number of connections to one

crucial node fail; this is not inconsistent with the results of [25].

If it is possible to detect failures and instantly retrain the network, then graceful

degradation of the network capacity is sufficient for fault-tolerance. However, training times

are the most expensive aspect of neural computations, and it may not be feasible to halt

a system and retrain its neural network component when faults are detected. Hence our

concern is with the damage done to existing (already trained) neural networks, rather than

with storage capacity alone.

1.5 Overview

In section 2, we present the fault models we have studied. This is followed by a formalization

of intuitive notions such as sensitivity and robustness, for failures in neural networks. This

enables us to make quantitative judgements in comparing different networks with respect to
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their sensitivity. Some theoretical discussions are then presented in section 4. The prob-

lems with which we have experimented to judge the performances of suggested methods are

described in section 5. We then present the first sets of methods to improve robustness by
modifying the learning equations used by neural networks. Section 8 contains the Addition-

Deletion algorithm. Hardware-specific issues are discussed in section 9 and in it we suggest

an algorithm to improve robustness of neural networks that are to be implemented on hard-
ware that places certain constraints on the magnitudes of weights in the network. This is

followed by a comparison of our approach with other competing methods.

2 Fault Models

In digital circuits, commonly occurring faults studied are those resulting when parts of the
system are stuck at 1/0 values. Similarly, a connection or link in an analog neural network

may be grounded (zero weight value) or saturated (a large weight value). Node failures may

also occur, resulting in outputs that are zero or high (saturated) or excessively negative. Our

analyses confirm that the location of a node/link failure affects the extent of deterioration

of performance of a neural network. For instance, the effect of a fault at the output node is

typically higher than the effect of a fault at a hidden node.
Errors in data ("noise") are not considered faults in the neural network; correct per-

formance in the face of noisy data is considered a performance characteristic and may be
dependent on the learning algorithm used. Robustness with respect to noise is not the same

as being fault tolerant: thus a neural network which handles noisy inputs well may not be

fault tolerant, and a fault tolerant system may not handle noisy inputs well for a particular

problem.
In our research, we have studied ways of handling the following kinds of single faults

in feedforward networks:

1. Severing of an edge in the network, so that the associated weight is treated as zero.

2. Saturation of an edge weight forcing it to be the maximum possible value, if the maxi-

mum is constrained to be a finite value.

3. Degradation of a weight value on an edge, reducing its magnitude, and making the value

drift towards zero.

4. Random perturbation of a weight value by some percentage of its current value. Note

that a perturbation of -100% is equivalent to changing that weight to 0.

5. "Stuck-at-one" failure of a single node, saturating its output to be the maximum mag-

nitude possible.
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6. Loss of a node from the network, such that its output is to be treated as zero by the

rest of the network.

7. Degradation in the magnitude of a node's output, moving it closer to 0.

8. Random perturbation of a node's output value by some percentage of its current value.

We have also studied the possibility that multiple faults may occur simultaneously in

the system. Different fault models are possible when multiple faults can occur in a system.

One simple assumption is complete randomness: faults occur independently at different spots

at different instances; so the probability of an entire subsystem failure is low, as long as each

subsystem is robust to single faults. A more complex model allows for simultaneous failures

at different parts of a system.

3 Measures for Evaluating Fault Tolerance of Networks

In order to develop fault tolerant nedral computing techniiues, the first prerequisite is to

have evaluation mechanisms that can measure the fault tolerance of a given neural network.

Different evaluation measures may be needed for neural networks intended to perform dif-

ferent tasks such as classification and function approximation. For example, Karnin [13]

suggests the use of a sensitivity index to determine the extent to which the performance

of a neural network depends on a given node or link in the system. Karnin estimates the

sensitivity of each link by keeping track of the incremental changes to the synaptic weights

during backpropagating learning. These values are then sorted so that the small value are

treated as insensitive links that can be pruned. For a given failure, Carter et al. [7] measure

network performance in terms of the error in function approximation; and Stevenson et. al.

[23] estimate the probability that an output neuron makes a decision error. Their results

are developed for the special case of "Madalines," one class of neural network with discrete

inputs.

Fault tolerance and robustness measures can be obtained by theoretical analysis and

by experimentation. Since our focus is to improve the robustness of neural networks instead

of the analysis of sensitivity, we will measure the robustness using the essential experimental

methods. We modify the weight matrix randomly, injecting artificial faults into the sys-

tem, then measure the change in output values when training inputs are supplied. Broadly

speaking, the robustness is measured by comparing output perturbation to a function of the

magnitude of the fault. The disadvantage is that it needs to be conducted for large ranges
of values and errors, and this will cost much computational time.

In this section, we first design the faulting methods that inject artificial faults to neural

networks. Based on these methods and given error measure, we define the sensitivities for
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the components of neural networks. To evaluate the fault tolerance of neural networks,

we compare the sensitivities of different networks oil three classification problems: Fisher's

Iris data; four-class grid determination; and five-character recognition. Those results are

described in detail in secLion 5.

3.1 Injecting Artificial Faults

We consider the following possible faults of multi-layered feedforward neural networks, and

assume that faults will only occur ac hidden nodes and links. The possible link defects are

perturbation of weight value, and link stuck at zero, i.e., tl,,e value of weight is forced to zero.

For node defects, we only consider stuck at 0/1 faults. Specificalty, the methods that inject

artificial faults to networks are shown below:

1. Single link faults. Perturb one link at a time by changing wi to wi(1 + a), where -1 <

a <1.

2. Midtiple link faults. Randomly inject simultaneous artificial faults to k links.

3. Single link stuck at zero. Force one link weight to remain at zero at a time. Experiments

are performed examining worst case and average case, with different links chosen for

fault injection.

4. Single node stuck at 0/1. Force one node output to remain at 0 or 1 at a time. The

node function used here is sigmoid 1/1 + exp-h.

Based on fault models presented in the preceding section, we define sensitivities for

evaluating fault tolerance of neural networks. Typically, redundancy is obtained by using

a large number of nodes in the hidden layer. Consequently, in one-hidden-layer networks,

we are interested in developing a measure for the usefulness of only hidden layer nodes. In

net rorks with more than one hidden layer, it is desirable to evaluate the usefulness of various

hidden layers. Toward these goals we define link, node, layer, and network sensitivities.

Notation: The vector of all weights (of the trained network) is denoted by W = (wI,... , WK).

If the ith component of W is modified by a factor Q (i.e., wi is changed to (I + CV)wi)

and all other components remain fixed, then the new vector of weights is denoted by

W(i, a) = (wl,..., (1 + a)wi,..., WK). To measure the error of a network, we use mean

squared error (MSE),
in 0E_1 E J-•(k, - tkj)',

n k=l j=l

where Oki is the output of an output node for the kth sample and tk, is the target output.
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3.2 Link Sensitivity

Fora given weight vector W, E(W) denotes the MSE of the network over the training set,

and ER(W) denote the mean square error over the test set R. The effect on MSE of changing

W to W(i, a) is measured in terms of the difference

s(i, a) = E(W(i, a)) - E(W) (1)

or in terms of the partial derivative of MSE with respect to the magnitude of weight change

9(i, a) = E(W(i, a)) - E(W) (2)

1w x al

The quantities s(i, a) and 9(i, a) will be non-negative, because by changing the weight of

the trained network we can only decrease its performance, thereby increasing the MSE. This

assumes that W represents the result of successful training of the network to minimize MSE,

and that the perturbation caused by changing W to W(i, a) does not lead to crossing the

energy barrier into the valley containing a different (potentially lower) minimum for the

MSE. If E(W(i, a)) < E(W), then a better set of weights must have been accidentally

obtained by perturbating W, and retraining can occur for W(i, a). The relative change, a,

is allowed to take values from a nonempty finite set A containing values in the range -1 to 1.

Definition 1 Link sensitivity: Two possible definitions for the sensitivity of the ith link e,
are: eSt() = 1 s(i, a) 

(3)
JI CA)

1,i 1: .(i, a).2  (4)
S i) -• = AIEA

To compute the sensitivity of each link in a network, all weights of the trained network

are frozen except the link that is being perturbed with a fault. E(W) is already known and

E(W(i, a)) can easily be obtained in one feedforward computation with faulty links.

3.3 Node, Layer, and Network Sensitivities

Node defects may occur in two situations according to our faulting methods. The output of

a node may be affected by all the faulted links associated with the node, or caused by the

abnormal behavior of the transfer function of the node. Based on these, two definitions are

possible for node sensitivity.

2 
S(i) is an numerical approximation for fE I s(i, a)da.
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Definition 2 Node sensitivity:

(i) Let 11(j) denote the set of all incoming links incident on the jt" hidden node, nj, from
the input nodes; let Io(j) denote the set of outgoing links from nj, and let T(j) =

11(j) Ut Io(j). The f -sensitivity (link faulted sensitivity) of a node, nj, is

(Sj(i), (5)
iElk(j)

where Ik(j) is the set of the k largest sensitive links in 1(j) and St(i) is the link sensi-

tivity of link i.

(%ii) Let set A be a set of some discrete values between the range of normal node output. For

sigmoid function used in usual neural networks, all the values of A will be in the range

(0, 1). The N-sensitivity (node faulted sensitivity) of a node, n3 , is

S•d(J) = 1-- E sa(nj)' (6)
JA 'EA

where
sa(nj) = E(W, o(nj) = a) - E(W),

o(nj) is the output of node nj, E(W) is MSE of weights W, and E(W, o(nj) = ao) is the

MSE with output of node nj set to be a.

In fault tolerance aspect, we have to consider what is the maximal fault that a system
can tolerate. In our problem of the fault tolerance of neural networks, we consider the most
critical components of the neural networks. By applying this concept to the definition of
node sensitivity, we should consider the most critical link associated to the node. But, when
multiple link faults occur in a network, it is possible that a node that was considered most
critical with respect to single faults (because its perturbation has the most effect on the
network outputs) may not be the most critical with respect to multiple faults. Hence, by
merely considering the most critical single link is not sufficient, and the need for a definition
of sensitivity, parameterized by the number of faults one may expect in the system. Thus, we
formulate the first definition of node sensitivity, examining the most critical links associated
with a node.

Since this measure is based on the link faults, it may have some deviation on measur-
ing the node defects, or the abnomal behavior of node transfer function. In this case, we
define the second node sensitivity based on node defects. The sensitivity is calculated by
summarizing the various deviations of node defects.

12



Node j S•(j) I Sa(j) I S6(j) I sd(j)

0 0.00086 0.00054 0.00041 0.00267

1 0.00431 0.00429 0.00353 0.01340

2 0.00602 0.00542 0.00422 0.01510

3 0.28027 0.21124 0.19246 0.25794

4 0.00063 0.00040 0.00031 0.00233

5 0.09081 0.06033 0.04905 0.14546

6 0.29254 0.35865 0.37223 0.19379

7 0.16116 0.18567 0.20460 0.15304

8 0.02237 0.01769 0.01586 0.05704

9 0.14105 0.15578 0.15732 0.15925

Table 1: Comparison of different measures of sensitivity on Fisher's Iris data with 10 hidden nodes.

Another alternative for the definition of node sensitivity is to combine both definitions
defined above to comprise those faulting properties.

Definition 3 Compound node sensitivity: The C-sensitivity of a node, nj, is

Sn(j) = Plk(j) " Sn(j) + Pnd(j) . snd(j), (7)

where pik(j) is the probability that the links associated to node nj are defected, and Pnd(j) is

the probability that the output of node nj is defected.

For convenience of implementation, we assume that plk(i) is independent to Pnd(i), and

each node has equally faulted probability.
The comparison of node-defect-sensitivity and link-defect-sensitivity shows that they

can both partition the sensitive and insensitive nodes correctly. But the ranks of nodes with

close sensitivities are slightly different. For convenience, we normalize the sensitivities of

each measure. Table 1 and figure 2 shows the normalized sensitivities of different measures.

From figure 2, node 0,1,2,4 and 8 can be classified as insensitivie nodes, while node 3,5,6,7

and 9 as sensitive nodes.

Using these definitions of a node sensitivity, we define layer-sensitivity and the network-

sensitivity as follows.

Definition 4 Layer sensitivity: Sensitivity of layer k is

SL(k) = max {IS(j)}, (8)
jEA3(k)
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Figure 2: Comparison of different sensitivity measures.

where Sn(j) is one of the node sensitivities defined in definition 2 and .Af(k) is the set of

nodes at layer k.

Definition 5 Network sensitivity: Sensitivity of a network N with layers L is defined as

SN = max{SL(k)}. (9)
kEr-

For one hidden layer network, it is defined as

SN = max {Sn(k)}, (10)
kEHL(N)

where HL(N) is the set of hidden layer nodes in N.

The fault tolerance of a neural network is measured by injecting artificial faults, intro-
duced in section 3.1, to the network, and then computing the sensitivity of the network using
the definitions defined in section 3.1. All the methods (developed in the reported research)

to improve the fault tolerance of neural networks are evaluated by comparing the sensitivity
of the original network with that of the network evolved using our proposed methods. Ro-
bustness of a network is measured in terms of graceful degradation in MSE and MIS(fraction
of misclassification errors) on the test set and the training set. We claim a network N, is
more robust than another network N 2 if N, has better performance (i.e. lower MSE or MIS)
than N2 when both the networks are subjected to the same faults.
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4 Theoretical Analysis

It is necessary to analyze and understand the behavior of arbitrary neural networks when
failures occur. One straightforward approach is to assume that all weights are randomly

distributed in a given I - H - 0 network. We can then estimate the expected change in
output value due to the failure of a random node or link.

A more realistic case is to assume that specified nodes are highly correlated (are gen-

erally simultaneously ON or simultaneously OFF). We can again estimate the change of
output function of the nodes in the next layer when one of these nodes fails. In general, it
remains to be explored whether (and to what extent) failures can be compensated simply
by modifying the weights of the other (correlated) nodes.

When multiple failures occur in a neural network, it is likely that the worst dam,
is caused when all failures occur in the same localized region. Robustness of a systeiii
must be analyzed with respect to this worst case scenario: what happens when many nodes
successively fail in the same physical region (of hardware)? Does performance still degrade

gracefully?
The following analysis assumes that a neural network is trained using a method that

minimizes mean square error. For simplicity, we assume that the neural network has only

one output node and one hidden layer with H nodes. The MSE of this network is given by

1 
P

MSE = -(OP _ tp)2,
p =l

where Op denotes the observed output for the pth pattern and is given by

Op = (1 + e-(wlYl+ '.+WhYH+9))-1,

and tp denotes the target output for the pth pattern. In the above expression for Op, y's

denote the outputs of the hidden layer nodes, w's denote the weights associated with links
from the hidden layer nodes to the output node, and 0 denotes the bias term. In turn, the

hidden layer outputs are:

y= (1 + e-(wi1x1+'"+wi'x1+ei))-1.

First, we consider the effect of changing the weight w, to w? while all other weights remain
fixed. The change in the MSE that results from the change in wl is derived below.
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1 P= tPOO2_tPO2MSE(w') - MSE(w,) = { - -- : jO - op)(O {+t 00) (t -0 tp)}

2 YP1P

= = I -(o0_ tp(00 op + P I-(O _( 00)•2.

The neural network has already been trained, which implies that the difference (tp- OP)

is negligible for all values of p. Furthermore, since the minimization of MSE implies that

9MSE
aowl 0

and
aMSE a (I (t- o0)2 - 2

- - 0,)0,(1 - OP)y,

we may conclude that the first term in the previous expression for MSE(w?) - MSE(w!)

vanishes, i.e., -p EP=l(O, - tp)(O° - Op) = 0, whereas the second component of the above

expression is positive.

In other words, we would always expect MSE to change for the worse, and the above

expression allows us to evaluate the amount of deterioration in MSE due to this change.

To evaluate this expression, we first consider the difference (0' - O,) in the output due to

change in weight wl. To simplify the presentation, we denote w2Y2 + "" + WHYH + 0 = a.
Then:

(00 - 0,) = [+ e-(oyl+ -- [+. e-(± y+')]

{lCe-(wlyi+a) I I X I l+e-(vlyl+-)

= O,(i - O) {1 - (1 - OP) C}-Y,

where c = 1 - e-(w1-wi )Y'.

Consequently,

1 P
MSE(w°) - MSE(wI) ,-• E 02(1 - O)2 E2 {1 - (1 - O) f}-2.

p =l
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If we assume that (w° - wl) = Awl is small and further assume that the product (1 - Op)zAwl

is negligible, then to this level of approximation,

E 0l2 1 - p2,,MSE(w°) - MSE(wl) (---- O -O

p =l )

since f = 1 - e-(w-w1)Y1 y1.Aw1 . This quantity can be determined easily except for the

amount of intended change.

Similar results can be obtained when all or some of the weights are changed in a neural

network. Our empirical studies confirm the above results, and show how the MSE will

deteriorate for large changes in weights.

5 Problems used for experimentation

Three well-known classification problems were used to evaluate the fault tolerance of neural

networks in this research. They are described as follows:

Fisher's Iris data

This is a three-class classification problem, in which each sample is a four-dimensional

input vector. In building the neural networks, we rescaled the input data to fall between

0 and 1. There are 50 exemplars for each class. In our experiments we obtained a

training set of size 100 consisting of the first 34, 35, and 31 exemplars of the three

classes, respectively, and saved the remaining 50 exemplars to form the test set.

Four-class grid discrimination problem

In this problem we classify a given two-dimensional observation as belonging to one of

four classes. The training sample consisted of 400 exemplars, randomly and uniformly

generated to fall into 4 classes. The test set consisted of 600 more similarly generated

patterns. The 4-classes and associated input vectors are as shown in Figure 3.

Five-character recognition problem

The five letters "A" to "E" were selected from Letter Image Recognition Data created by

David J. Slate. The original 26 letters data was used by Slate to investigate the ability of

several variations of Holland-style adaptive classifier systems to learn to correctly guess

the letter categories associated with vectors of 16 integer attributes extracted from

raster scan images of the letters. The best accuracy obtained was a little over 80%.

The objective is to identify each of a large number of black-and-white rectangular pixel

displays as one of the 26 capital letters in the English alphabet. The character images

were based on 20 different fonts and each letter within these 20 fonts was randomly
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(0.1) (0.5,1) (1,1)
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(0.0) (0.5,1) (1,0)

Figure 3: 4-Class Discrimination Problem

distorted to produce a file of 20,000 unique stimuli. Each stimulus was converted into

16 primitive numerical attributes (statistical moments and edge counts) which were

then scaled to fit into a range of integer values from 0 through 15.

We select 1000 instances out of 3864 instances as training set, and leave the others as

test set. There are 789 instances for "A", 766 instances for "B", 736 instances for "C",

805 instances for "D" and 768 instances for "E". We shuffled all data, then selected the

first 1000 instances as training set which including 199 instances for "A", 215 for "B",

194 for "C", 198 for "D" and 194 for "E". The remaining 2864 instances are left as test

set.

5.1 Examples of Experimental Results

To show the results of single-link perturbation and multiple-link perturbation, two measures

are employed; the average case and the worst case. In the average cases of the single-link

perturbation, we plot the sets ACma. and ACmis, whereas in the worst cases we plot the sets

WCms, and WC,,mi, which are defined as follows, where I7 is the set of all links, ER(W) is

the mean squared errors and CR(W) is the fraction of misclassification errors.

"* AC,,,, = {(x, y)- 100 < x < 100, x mod 5 0, y = & EZ ER(W(i, 100))}

* WCm.e = {(x, y)l - 100 < x < 100, x mod 5 0, y - maxitE ER(W(i, X W))},

"* ACm.i = {(x, y)l - 100 < x < 100, x mod 5 -0, y = E .iET CR(W(i, 10))},

• WCmis = {(x,y)l- 100 < x < 100,x mod 5 O,y = maxiEzCR(W(i, 10))}"

Figure 4 shows the single-link perturbation of a 4-5-3 neural network after training

using backpropagation on Fisher's Iris data.
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Fisher's Iris data on training set
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Figure 4: Degradation in MSE and MIS for the training set on single-link perturbation, using networks with

5 hidden nodes, trained on Fisher's Iris data.
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Fisher's Iris data on training set, 10 faulty links, run for 1000 iterations
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Figure 5: Degradation in MSE and MIS for the training set on multiple-link perturbation, using networks
with 5 hidden nodes, trained on Fisher's Iris data. The experiment was run for 1000 times with 10 faulty
links selected for each iteration.

To evaluate the robustness of a network with multiple-link perturbation, we randomly

selected k links from the network, then injected artificial faults to these links and computed

the MSE and MIS of the faulted network. This process was executed for a large number

of iterations, then the average case and worst case were plotted out according to these

results. Figure 5 shows the example graphs on the multiple-link perturbation of the same

network configuration as figure 4. The experiment randomly selected 10 faulty links for 1000

iterations.

6 Performance degradation and network structure

One of the important questions we have addressed in our work is the following: Which of

the different nodes and weights in a neural network are crucial in the sense that small errors

in them lead to significant changes in the output? For the purpose of analysis, we examined

neural networks of 'minimal' size needed to accomplish a given task. Feedforward neural

networks with the smallest possible number of hidden nodes, all in one hidden layer, were
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examined. Our findings are as follows.

1. In neural networks in which the dimensionality of the input vectors is significantly larger
than the number of output nodes, the neural network is more fault tolerant to errors in
the weights between the output nodes and the hidden layer nodes. An example problem
of this category is two-class classification of samples in an n-dimensional sample space,
e.g., diagnostic problems in which many potential symptoms must be analyzed to decide
whether a patient has a particular disease.

2. In neural networks in which the dimensionality of the input vectors is significantly
smaller than the number of output nodes, the neural network is more fault tolerant to
errors in the weights between the input nodes and the hidden layer nodes. An example
problem of this category is multiclass classification of samples in two-dimensional input
space, e.g., character recognition over the roman alphabet.

3. In intermediate neural networks which do not fall into either of the above categories,
all we can say is that the sensitivity of network outputs to different weight values is
not uniform. In the problems that we have studied, one or two nodes and weights can
most often be isolated such that their influence on the network outputs is significantly
higher than the influence of other nodes and weights.

The last-mentioned issue was pursued further by experiments of the following kind.
Neural networks of different sizes (with differing numbers of hidden nodes) were trained
using the same training algorithm (back-propagation) for the same classification problem.
After successful training, faults of various magnitudes were injected into these networks, and
the performances of the networks were measured using two criteria:

1. the number of misclassification errors, and

2. the mean square errors, measuring how much the neural network outputs differed from
desired outputs.

To ensure that the random choice of the initial weights does not excessively influence the
outcome of the experiments, many such experiments were conducted. Average values of the
observed misclassification and mean square errors were measured, averaging over the results
obtained by injecting faults at different locations in each neural network. We also measured
the worst case for the misclassification and mean square errors, i.e., the highest error values
obtained when a weight in an neural network was perturbed.

Significant performance degradation results when such faults are injected into a network
trained for a four-class classification problem in two-dimensional input space. Each sample
belongs to one of four classes. For example, if the two-dimensional input (xI, x2) E {(0.5, 1) x
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[0.0, 0.5]} then it belongs to class II. The training set T consists of 1000 observations, 250
from each class. For each class, the inputs are generated randomly and associated with the
target output vectors given by

(0.9, 0.1, 0.1, 0.1) if the observation is from class I

t f(0.1, 0.9, 0.1,0.1) if the observation is from class II

= (0. 1, 0. 1,0.9, 0. 1) if the observation is from class III
(0.1, 0.1, 0.1, 0.9) if the observation is from class IV

Many different neural networks were trained to classify the data in four classes. All the
networks have one hidden layer, and contain 2 input nodes and 4 output nodes. These
networks are conveniently denoted as 2-h-4 networks, where h is the number of hidden
nodes. Neural networks with h > 2 are successful in classifying the patterns into their
respective classes, due to the nature of the problem.

The neural networks were trained with the given training set of 1000 patterns. After
training is complete, the weights connecting the input layer to the hidden layer and the

hidden layer to the output layer are changed in magnitude.
At least two hidden nodes were necessary for neural network training (using back-

propagation) to converge. In the average cases, fault tolerance of the neural networks im-
proves when additional (redundant) hidden nodes are introduced. In other words, for a given
percentage perturbation in a weight of the trained network, the average amount of output
errors introduced diminishes when we have more than two hidden nodes. This improvement
is observed when the number of hidden nodes increases from 2 to 3, and further from 3 to
4. However, the additional improvement is very small when the number of hidden nodes is

increased beyond 4.
While these results appeared to coincide with the expectation that fault tolerance

improves with the addition of redundant nodes in a neural network, this was contradicted
by examination of changes in the worst case errors when additional hidden nodes were
introduced. To wit, no improvement in worst case performance was observed by training a

neural network with more hidden nodes.
We then re-examined the average case results, and concluded that the apparent im-

provement in performance (when more hidden nodes were used) was merely a result of
averaging over a larger number of nodes and weights. The additional hidden nodes were
completely and uselessly redundant: their presence was not making any significant differ-
ence to the performance of the neural network. In other words, backpropagation does not
make good use of available redundancy, and fault tolerance is not improved as a result of
training a network with more hidden nodes than is absolutely necessary. These observations

are correct for the neural networks that we have examined, and we expect that the same
observations will hold for other neural networks.
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7 Training to Discourage Large Weights

We now explore how neural learning techniques may be modified for fault tolerance. Most

neural learning algorithms are crucially dependent on an error or energy function which is

minimized during the training period. It is possible to modify this error function in such a

way that the algorithm results in building fault tolerant neural networks.

One method we have examined is the following: a robustness term is introduced into

the error function being minimized; this term increases with the partial derivatives O f/Og,,

where f is the neural network output function and gi is the node output function for a specific

(ith) node. The weight given to this term is an additional parameter, a la the momentum

coefficient.

We now examine an alternate way of improving the fault tolerance of a feedforward

neural network. The amounts of perturbation introduced into a network have been specified

(E A) as fractions or multiples of the original values, not as fixed quantities. Therefore,

network performance is much more sensitive to degradations in large weights than small

weights. One possible approach to improve robustness is to build into the training algorithm

a mechanism to discourage large weights, but not rule them out altogether (because some

problems require networks with large weights). Instead of the mean square error E0 , the

new quantity to be minimized is of the form E0 + (a penalty term monotonically increasing

with the size of weights). This penalty term can be chosen in several different ways, and we

have implemented three different possibilities; the alternative learning rules minimize error

functions E 1
3 , E 2

4 and E 3
5 , modifying each weight wi by - -, 1-0Ea and -y-52, where

1r is the learning rate, and
OM i = E o + M ,( 1--i +cwi ,(1eOw 2 Ow,

9E2  0Eo(1
w -W Owi (+ cwj), (12)

aE3 M~o I=- (1l + -c w?) + cwi E0. (13)
Ow, wi 2

Note that the discouragement of high weights in (12) and (13) are less than in (11). Equa-

tion (11) amounts to minimization of El = E0 + 1c Ej w?. This and similar cost function

has been used earlier, see [11].

Experimental results show that all these modified learning rules do improve the ro-

bustness of the netwotk when compared to standard backpropagation, but the improvement

is much less than with the robustness-introducing algorithm described later (Figure 8). This
3 EI = Eo + i..w W?.
4 E 2 is chosen such that the amount by which a high weight is penalized is proportional to the weight as well as the mean

square error.
5 E 3 = Eo(1 + Ic E, w?).

23



Fisher's Iris data in average case
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Figure 6: Comparison of traditional backpropagation, alternative learning rule and robustness procedure.
These are trained on Fisher's data using Combination 0 with 10 hidden nodes measured in MSE. A/D
represents the addition/deletion process using our algorithm. Parameter c is equal to 0.00005.

observation was true for different values for parameter c (in the equations above); Figure 6
and Figure 7 compare the results of this approach, using error measure E1 and weight

change suggested in equation (11), with standard backpropagation and our A/D algorithm
described in the next section.
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Fisher's Iris data in average case
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Figure 7: Comparison of traditional backpropagation, alternative learning rule and robustness procedure.
These are trained on Fisher's data using Combination 0 with 10 hidden nodes measured in MIS. A/D
represents the addition/deletion process using our algorithm. Parameter c is equal to 0.00005.
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Let TR be the training set and TS be the test set.
Obtain a well-trained weight vector W0 by training an I-H-O network Xo on TJZ.
i = 0, and H* = H.
while terminating-criterion is unsatisfied do
/* .M is the i0' network, AX0 is the initial network. */

= SN(A/i) x 0.1 /* SN(A) is the worst node sensitivity of the network i. */
A = M - {nISn(n3) <-}
Wj+j= Wi- {all links connected to node n,}
Retrain the network ANi+1 .
H* = H* + 1
Mr+j Ai MU JnH_ I
Wj+• = Setting the weights of links incident on the new node nH., and modifying those

connected to the most sensitive node in AMi

end while

Figure 8: Addition/Deletion procedure for improved fault tolerance.

8 Addition/Deletion Procedure

In this section we present a procedure to build robust neural networks against link weight
changes. We also discuss several variations of the algorithm to improve robustness, and
compare their performance with each other and with an alternative learning rule R1 which
gives an extra penalty term to the delta rule to prevent weights growing too large. We
then discuss the extension of these to networks in which multiple faults occur. Our results
show considerable improvement in robustness over randomly initialized networks, trained
using the standard backpropagation algorithm, which were of the same size as the networks
developed using our algorithm.

Our methodology can be briefly summarized as follows. Given a well-trained network,
we first eliminate all "useless" nodes in hidden layer(s). We retrain this reduced network, and
then add some redundant nodes to the reduced network in a systematic manner, achieving
robustness against changes in weights of links that may occur over a period of time. The
process of retraining may transform the network, making some other nodes eliminable, in
which case the deletion-addition process is repeated.
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8.1 Elimination of Unimportant Nodes

To determine the proper size of a neural network for a specific problem is not easy. In most
networks, the number of nodes available exceeds the minimum required to ensure that the

network will solve the problem, with the hope that the extra nodes assure enough redundancy
to sustain fault tolerance. In practice, however, we have observed that many of these extra

nodes serve no useful purpose, and traditional network training algorithms do not ensure
that the redundant nodes improve fault tolerance. An analogy is that of building in extra

processors into a computer without ensuring that these processors are properly connected

to the rest of the components of the machine.

Once a network has been trained, the importance of each hidden layer node can be
measured in terms of its sensitivity. Given a reference sensitivity E, node nj is removed from

the hidden layer if S,,(j) < c. The value of f can be adjusted such that elimination of all
such nodes makes little difference in the performance of the reduced network compared to

the original network. In our experiments, described in Section 4, we have used e = 10% of

the maximum node sensitivity. This relative measure for reference E is the choice that we

have found to work well in both experiments, but other choices of E could also work well.

The deletion of nodes with a small sensitivity (the unimportant nodes) results in an I-
H*-O network that should perform almost as well as the original network. We have observed

in some experiments that H* may be considerably smaller than H.

8.2 Retraining of Reduced Network

Removal of unimportant nodes from the network is expected to make little difference in

the resulting MSE. But the resulting network with reduced dimensionality of weight space
may not be in its (local) minimum, due to the following reason. If (x1, ... , x,J) is a local

minimum of a function f(n) of n arguments, there is no guarantee that (x1 , ... , xn-i) is a local
minimum of a function f(n-i) defined as f(n-i)(x1 , ... , xni) = f(n)(x 1 , ... , Xn- 0, ... , 0). For
our problem, f(n) and f(ni) are the MSE functions over networks of differing sizes, where the
smaller one is obtained by eliminating some parameters of the larger network. Retraining

of the reduced network will locate the MSE at a (local) minimum in the new weight space.
In our experiments we have observed that the number of iterations needed to retrain the

network to achieve the previous level of MSE is usually small.

At this stage we have obtained a network that is "well-trained" and devoid of redundant

nodes, but it does not satisfy robustness against link faults. In the following section, we

describe a criterion to build a robust net out of this "lean" well-trained network.
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8.3 Addition of Redundant Nodes

To enhance robustness, our method is to add extra hidden nodes, in such a way that they

share the tasks of the critical nodes-nodes with "high" sensitivity.

Let Wi,k denote the weight from the kth input node to the ith hidden layer node, and let
Vi,k denote the weight from the kth hidden node to the ith output node. Let the jth hidden
node have the highest sensitivity, in a I-H*-O network. Let h = H*. Then the new network

is obtained by adding an extra (h + 1)th hidden node. The duties of the sensitive node are

now shared with this new node. This is achieved by setting up the weights on the new node's

links as defined by:

(1) First layer of weights: Wh+l,i = wj,i, Vi E I, {the new node has the same output as

the jth node}
(2) Second layer of weights: Vk,h+l = 'vk,j, Vk E 0, {sharing the load of the jth node}
(3) Halving the sensitive node's outgoing link weights Vkj, Vk E 0.

In other words, the first condition guarantees that the outputs of hidden layer nodes nj
and n7 H'+1 are identical, whereas the second condition ensures that the importance of these

two nodes is equal, without changing the network outputs.

After adding the node nH*+l, node sensitivities are re-evaluated and another node,

nH*+2, is added if the sensitivity of a node is found to be 'too' large. On the other hand, a

node is removed if its sensitivity is 'too' low. Our primary criteria for sensitivity of a link

and a node are equations (3) and (7). In our experiments, we have found that there is not

much difference in the results obtained using the other definitions of sensitivity. A node is

deleted if its sensitivity is less than 10% of the sensitivity of the most critical node.
We continue to add nodes until the termination criterion is satisfied, i.e., the improve-

ment in the network's robustness is negligible. We have experimented with two termination

criteria. The first criterion is adding extra nodes until the sensitivity of the current most

critical node is less than some proportion of the sensitivity of the initial most critical node.

The second criterion is adding extra nodes until the number of nodes are equal to the original

number of nodes, in order to compare two networks of the same size.

Notation: Let E(Nn) denote the error obtained when the link weight vmn in the network

N is replaced by (1 + a)vm,.. Similarly, let E(Nl) denote the average error obtained when

each of the link weights Vmk in the network N is replaced by (1 + a)LVmk. We remind that

vii denotes the weight on the link from the jth hidden node to the ith output node.

Theorem: Let N be a well-trained6 1-h-O network in which link vi, is more sensitive than every
other link in the second (v) layer, where sensitivity is defined as the additional error resulting

from perturbation of any umn to (1 + a)vmn, for some ca (i.e., with the singleton perturbation

"6 'Well-trained" means that the network error is almost 0.
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set A = {1}) such that these perturbations degrade performance, (i.e., the error E(N) <

maxm,n{E(Nan)}. Let M be the network obtained by adding a redundant (hl+ 1)"t hidden node

to M and adjusting weights of links attached to this new node and to the Jth hidden node, as

specified in the addition/deletion algorithm given earlier. Then M is more robust than N, i.e.,

the sensitivity of M is lower than that of N.
The above theorem pertained to the special case where A was a singleton set. This

result extends to the case when A contains many elements, and for node faults; details are

given in the Appendix (for continuity of presentation). As shown in the Appendix, the

theorem holds even with minor variations in the definitions of the sensitivity. A premise

of the above theorem is that perturbations should degrade performance: if such is not the

case, i.e., if network error actually decreases as a result of introducing "faults" into the

system, then our algorithm replaces the network by the new 'perturbed' network with better

performance, and retrains that network.

8.4 Comparison of Robustness of Different Algorithms

In the following subsections, we compare the robustness of neural network training by tra-

ditional backpropagation (BP) learning using the generalized delta rule, the learning rule

R 1 (described below), and with variations of our add/delete (A/D) algorithm (discussed

above) in which the network is further retrained after adding nodes. A node is deleted if its

sensitivity is less than 10% of the sensitivity of the most critical node.
We have used two termination criteria in our experiments. The first criterion is adding

extra nodes until the sensitivity of the current most critical node is less than some proportion

of the sensitivity of the initial most critical node. The second criterion is adding extra nodes
until the number of nodes are equal to the original number of nodes. The second criterion

is used to obtain a comparison of two networks of the same size.

The weight modification rule R1 was defined as follows:

S= ±+ cw) (14)

This rule is used to discourage large weights in the network, improving the robustness of

the network because degradations in large weights may affect the network outputs to a large

extent.

As usual, robustness of a network is measured in terms of MSE (mean square error)

and MIS (fraction of misclassification errors) on the test set and the training set. Again, two

measures are employed; the average case and the worst case. In the average cases, we plot

the sets ACmse and ACmis, whereas in the worst cases we plot the sets WCmse and WCmis,

which are defined as follows,
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a ACme= {(x, y)- 100 < x < 100, x mod 5 O,y= ZiE, ER(W(i,yl ))},

* WCme = {(x, y)l - 100 < x < 100, x mod 5 -0, y = maxi ER(W(i, x•))},

* AC'mi = {(x, y)- 100 < x < 100,x mod 5 O,y= y Eil C(W(i, x))},

* WCmi, = {(x,y)l- 100 < x < 100, x mod 5 0, y = maxiEICR(W(i, x0))},

where I is the set of all links and CR(W) is the fraction of misclassification errors on test

set.

8.5 Experimental Results

We evaluate our algorithm by comparing the sensitivity of the original network (with re-

dundant nodes, randomly initialized and trained using the traditional backpropagation al-
gorithm) with that of the network evolved using our proposed algorithm.

We performed four series of experiments for each problem using the following combi-
nations of sensitivity definitions, where A is the set of values by which a weight is perturbed,
when testing sensitivity.

Combination 0: Maximal node sensitivity, and A = {-1}.

Combination 1: Normalized maximal node sensitivity and A = {-1}.

Combination 2: Normalized maximal node sensitivity and A = {+0.1, -0.1}.

Combination 3: Normalized maximal node sensitivity and A = {+1, ±1}.

The same nodes are found to be most sensitive using each of Combinations 0, 1, and
3, since they all examine large perturbations in weights. Experimental results are shown
first for Combination 0, and for Combinations 1, 2 and 3 in the next subsection. We have
presented the experimental results on Fisher's Iris data, four-class discrimination on grid
and two-character recognition data. Each experiment presents the following results:

1. comparison of training using BP and R1,

2. comparison of BP with further retraining and without further retraining after adding
node, and

3. evaluation of multiple faults based on new measure of sensitivity.

For convenience, we denote a network trained by BP as KfBp and trained by R1 as
KfR1 , the network A(,,,e after running A/D process by Jrule-AD, where rule is either BP or
R1. We have compared
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o N BP vs. N BP-AD,

oNRI vs. N RI-AD,

o NBP vs. N RI-AD,

o N BP-AD vs. N R I-AD.

Experimental results show that our definition of sensitivity and A/D process are effective tbr

multiple faults.

8.5.1 Fisher's Iris Data

This is a three-class classification problem, in which each sample is a four-dimensional input

vector. In building the neural networks, we rescaled the input data to fall between 0 and I. There

are 50 exemplars for each class. In our experiments, we obtained a training set of size 100

consisting of the first 34, 35, and 31 exemplars of the three classes, respectively, and saved the

remaining 50 exemplars to form the test set.

On Fisher's data, results of the comparison of different learning rules R I and BP are shown

in Figure 9 (MSE) and Figure 10 (MIS, mis-classification) for training data, and Figure I1 and

Figure 12 for test data. To start with, we trained a 4-10-3 neural network. The algorithm shown

in Figure 8 reduced it to a 4-4-3 network in the first deletion step and then it was built up,

successively, to a 4-10-3 network. The deletion/addition process, represented in the form 10 4

5 6 7 8 9 7 8 9 10, implies that in the original network there were 10 hidden nodes,

our criterion reduced it to 4, then increased it to 10 as described in Table 2. When a 9-node

network was obtained in this manner and retrained, two nodes could again be removed due to the

sensitivity criteria, and more nodes were then added following our algorithm in Figure 8. The

original 10-node network was found to be roughly as robust as a 6-node network for high

perturbations, and worse than all other cases for small perturbations.
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Fisher's Iris data, Average Case, BP, Training set
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Figure 9: Comparison of BP and RI on the MSE of Fisher's data on training set.
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Fisher's Iris data, Average Case, BP, Training set
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Figure 10: Comparison of BP and Ri on the MIS of Fisher's data on training set.
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Fisher's Iris data, Average Case, BP, Test set
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Figure 11: Comparison of BP and R1 on the MSE of Fisher's data on test set.

34



Fisher's Iris data, Average Case, BP, Test set

0.13 1 r

0.12 BP-initial

0.11 BP-final
Ri-initial

0.1 Rl-final

0.09 O
MIS 0.08 -

0.07

0.06

0.05

0.04

0.03 I I I
-100 -50 0 50 100

Injected faults to weight %

Fisher's Iris data, Worst Case, BP, Test set
0.7 1 1

0.6 BP-initial
BP-final

5Ri-initial0.5 Rl-final -

0.4MIS

0.3

0.2

0.1

0
-100 -50 0 50 100

Injected faults to weight %

Figure 12: Comparison of BP and R1 on the MIS of Fisher's data on test set.
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Fisher's Iris data, Average Case, BP, Training set
0.02 - I I
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I w/o retraining
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Fisher's Iris data, Worst Case, BP, Training set
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0
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Figure 13: Comparison of BP with and without further retraining after adding node on the MSE of Fisher's

data on training set.
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Fisher's Iris data, Average Case, BP, Training set
0.07
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Figure 14: Comparison of BP with and without further retraining after adding node on the MIS of Fisher's
data on training set.
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Fisher's Iris data, Average Case, BP, Test set
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Fisher's Iris data, Worst Case, BP, Test set
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Figure 15: Comparison of BP with and without further retraining after adding node on the MSE of Fisher's

data on test set.
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Fisher's Iris data, Average Case, BP, Test set
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Figure 16: Comparison of BP with and without further retraining after adding node on the MIS of Fisher's

data on test set.
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Fisher's Iris Data, BP, Average Case, Test set, 6 faults
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Figure 17: Comparison of A.Bp and K(BP-AD on the MSE of Fisher's data on test set using multiple faults
evaluation.
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Fisher's Iris Data, BP, Average Case, Test set, 6 faults
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Figure 18: Comparison of A/'Bp and KVBP.-AD on the MIS of Fisher's data on test set using multiple faults

evaluation.
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Fisher's Iris Dait, R1, Average Case, Test set, 10 faults
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Figure 19: Comparison of AMR, and A/RI-AD 'on the MSE of Fisher's data on test set using multiple faults
evaluation.
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Fisher's Iris Data, RI, Average Case, Test set, 10 faults
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Figure 20: Comparison of AfR, and .MR,-AD on the MIS of Fisher's data on test set using multiple faults

evaluation.
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Fisher's Iris Data, BP-R1, Average Case, Test set, 10 faults
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Figure 21: Comparison of KVBp and A/R, on the MSE of Fisher's data on test set using multiple faults

evaluation.
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Fisher's Iris Data, BP-R1, Average Case, Test set, 10 faults
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Figure 22: Comparison of AfBp and AKR, on the MIS of Fisher's data on test set using multiple faults

evaluation.
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Fisher's Iris Data, BP/AD-Rl/AD, Average Case, Test set, 10 faults
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Figure 23: Comparison of IVBP-AD and A.R,-AD on the MSE of Fisher's data on test set using multiple
faults evaluation.
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Fisher's Iris Data, BP/AD-R1/AD, Average Case, Test set, 10 faults
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Figure 24: Comparison of .'/BP-AD and P/R, -AD on the MIS of Fisher's data on test set using multiple

faults evaluation.
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4-Class, BPTR, Average Case, Training set, 8 nodes
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Figure 25: Comparison of BP with and without further retraining after adding node on the MSE of 4-class

discrimination data on training set.
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4-Class, BPTR, Average Case, Training set, 8 nodes
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Figure 26: Comparison of BP with and without further retraining after adding node on the MIS of 4-class

discrimination data on training set.
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4-Class, BP, Average Case, Test set, 8 nodes
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Figure 27: Comparison of BP with and without further retraining after adding node on the MSE of 4-class

discrimination data on test set.
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4-Class, BP, Average Case, Test set, 8 nodes
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F-gure 28: Comparison of BP with and without further retraining after adding node on the MIS of 4-class

discrimination data on test set.
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4-Class, BP, Average Case, Test set
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Figure 29: Comparison of AiBp and AfBP-AD on the MSE of 4-class data on test set using multiple faults

evaluation.
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4-Class, BP, Average Case, Test set
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Figure 30: Comparison of AKBp and A/BPAD on the MIS of 4-class data on test set using multiple faults

evaluation.
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Performance degradations of the initial and final 4-10-3 networks are shown in Table 2 and

Figure 31. Our robustness procedure achieved 83% improvement on average sensitivity and 81%

improvement on worst sensitivity for this problem.

On both average case and worst case for the training set, the robustness of BP and R I are

similar both in initial state and after applying A/D. For the test set, BP and RI both obtain

similar improvements in robustness. The MSE in this case is increased because in both networks

we havc further retraining which causes over-fitting on the training set and yields poor

generalization on the test set.

Figures 13 to 16 show the comparative results of BP without further retraining after adding a

node and with further retraining after adding a node. For the training set, MSE does decrease

after further retraining, but the robustness which is gained from A/D is destroyed at the small

scales in the average case. In Figure 13, although some robustness is lost, the MSE is decreased

by a large amount which makes the loss of robustness irrelevant. For the test set, over-training

results in poor generalization, and both robustness and performance are worse than for the one

without further retraining. See Figure 15 and Figure 16.

Figures 17 to 24 show the several comparisons using the evaluation method of multiple faults.

8.5.2 Four-Class Grid Discrimination Problem

In this problem we classify a given two-dimensional observation as belonging to one of four

classes. The training sample consisted of 400 exemplars, randomly and uniformly generated to

fall into 4 classes. The test set consisted of 600 more similarly generated patterns. The starting

neural network was of size 2-8-4, it was reduced to 2-4-4 in the first stage of the algorithm, and

was built up to 2-8-4. Results are given in Table 3 for the test set only. Our robustness procedure

achieved a 71% improvement on average sensitivity and 69% improvement on worst sensitivity

for this problem.

On both the average case and the worst case for the training set, the robustness of BP and R I

are similar both in initial state and after applying A/D. For the test set, BP and RI both obtain

similar improvements in robustness. The MSE in this case is increased because in both networks

we have further retraining, which causes over-fitting on the training set and yields poor

generalization on the test set.

Figures 25 to 28 show the comparative results of BP without further retraining after adding a

node and with further retraining after adding a node. These figures show that further retraining

improves performance.

Figures 29 and 30 show the comparison using the evaluation method of multiple faults. We

have compared NPI" v.s. NBIAI) on 3-link failures and 10-link failures, respectively.
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Initial Net Final Net

Hidden nodes 10 10

Training MSE 0.005130 0.005129

Testing MSE 0.025139 0.022123

Training Correctness(%) 99.00 99.00

Testing Correctness(%) 94.00 96.00

Avg. Sensitivity 0.025686 0.004314

Wst. Sensitivity 0.110977 0.021464

Table 2: Results of Fisher's Iris data on Combination 0. Deletion/addition process is 10 -* 4 -- 5 - 6

7 -" 8 --+ 9 --4 7 -' 8 - 9 -- 10.

Initial Net Final Net

Hidden nodes 8 8

Training MSE 0.003038 0.003038

Testing MSE 0.005132 0.004797
Training Correctness(%) 99.50 99.25

Testing Correctness(%) 97.83 97.83

Avg. Sensitivity 0.091697 0.026260

Wst. Sensitivity 0.229797 0.071189

Table 3: Results of 4-class discrimination problem on Combination 0. The deletion/addition process is

8 - 4 - 5 - 6 --+ 7 --+ 5 - 6 --. 7 - 8.
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Fisher's Iris data in average case
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Figure 31: The above graph shows all curves of deletion/addition process using combination 0. The sequence

shown is 10 -- 4 -- 5 --+ 6 - 7 -- 8 -- 9 --* 7 -ý 8 - 9 -* 10, indicating the number of hidden nodes.
Observe that the original 10-node network is roughly as robust as a 6-node network for high perturbations

and worse than all other cases for small perturbations.
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8.&53 Two-Character Recognition Data

The two letters "A" and "B" were selected from Letter Image Recognition Data created by David
J. Slate. The original 26 letters data was used by Slate to investigate the ability of several
variations of Holland-style adaptive classifier systems to learn to correctly guess the letter
categories associated with vectors of 16 integer attributes extracted from raster scan images of
the letters. The best accuracy obtained was a little over 80%. The objective is to identify each of
a large number of black-and-white rectangular pixel displays as one of the 26 capital letters in
the English alphabet. The character images were based on 20 different fonts and each letter
within these 20 fonts was randomly distorted to produce a file of 20,000 unique stimuli. Each
stimulus was converted into 16 primitive numerical attributes (statistical moments and edge
counts) which were then scaled to fit into a range of integer values from 0 through 15.

We select 500 instances out of 1555 instances as a training set, and leave the others as a test
set. There are 262 instances for "A" and 238 instances for "B" in the training set. The
configuration of neural network is 16-15-I for the input, hidden and output layers, respectively.

For convenience, we show the node sensitivities of NBIp and NI? 1 in Table 4. This table
shows that most of the nodes (13 out of 15) NRI are insensitive and will be removed when A/D
is applied. On the other hand, NBIp only removed 4 nodes out of 15 nodes. So we can see that
the robustness improvement in NI?1 is much better than NBIP because NRI added more than
three times the number of nodes added by NB? to the original network.

In the absence of further retraining, we continue to add nodes until the improvement in the
network's robustness is negligible, or until the number of nodes reached equals the number of
nodes in the initial network, to allow fair comparison of the robustness of networks of equal size.
Other possible criteria can also be used, such as adding extra nodes until the sensitivity of the
current most critical node is less than some proportion of the sensitivity of the initial most
critical node. The termination criterion for retraining, if conducted after adding nodes, is to cease
retraining when improvement in MSE is negligible.

8.6 Results for Other Measures of Sensitivity

This subsection shows the experimental results of combination 1, 2 and 3, on Fisher's data and
the 4-class problem.

8.6.1 Results for Combination I

Results for Fisher's data are shown in Table 5 and Figures 32 and 33. Results for the 4-class
problem are shown in Table 6 and Figures 34 and 35.

57



Node j K'Bp . 'n,

0 0.011100 0.000516

1 0.308812 0.000516

2 0.033333 0.000516

3 0.294912 0.000516

4 0.479885 0.343697

5 0.318664 0.000516

6 0.283962 0.033032

7 0.264837 0.000516

8 0.487141 0.000516

9 0.480943 0.313870

10 0.000008 0.000516

11 0.361462 0.000516

12 0.000043 0.000516

13 0.299816 0.000516
14 0.369992 0.000516

MSE 0.018012 0.098332

Table 4: Node sensitivities of A/(Bp and A/R, after training and before applying A/D for two-character
recognition data with 15 hidden nodes.

Initial Net Final Net

Hidden nodes 10 10

Training MSE 0.005130 0.005129

Testing MSE 0.025139 0.022988

Training Correctness(%) 99.00 99.00

Testing Correctness(%) 94.00 96.00

Avg. Sensitivity 0.004074 0.002652

Wst. Sensitivity 0.010754 0.009945

Table 5: Results of Fisher's data problem on Combination 1. The deletion/addition process is 10 - 6
7 -- 8 --* 6 -- 7 --* 8 -- 9 -+ 10.
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Initial Net Final Net

Hidden nodes 8 8

Training MSE 0.003038 0.003038

Testing MSE 0.005132 0.005067

Training Correctness(%) 99.50 99.00

Testing Correctness(%) 97.83 98.00

Avg. Sensitivity 0.004266 0.001663
Wst. Sensitivity 0.008332 0.005135

Table 6: Results of 4-class discrimination problem on Combination 1. The deletion/addition process is

8 --*7 --*8"-*7 -*8.
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Fisher's Iris data in average case
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Fisher's Iris data worst case
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0.02
-100 -50 0 50 100

Injected faults to weight %

Figure 32: Results of Fisher's Iris data on Combination 1 with 10 hidden nodes for test set measured in

MSE.
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Fisher's Iris data in average case

0.075 ,
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0.065
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MIS 0.055

0.05

0.045

0.04

0.035 I i I
-100 -50 0 50 100

Injected faults to weight %

Fisher's Iris data in worst case
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Figure 33: Results of Fisher's Iris data on Combination 1 with 10 hidden nodes for test set measured in MIS.
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4-Class in average case
0.03 I
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MSE
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4-Class in worst case
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Figure 34: Results of 4-class discrimination problem on Combination 1 with 8 hidden nodes, for the test set,

measured in MSE.
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8.6.2 Results for Combination 2

Results for Fisher's data are shown in Table 7 and Figure 36 and 37. Results for 4-class

problem are shown in Table 8 and Figure 38 and 39.

4-Class in average case

0.11

0.1 initial

0.09 final -

0.08

0.07

MIS 0.06

0.05

0.04

0.03

0.02

0.01
-100 -50 0 50 100

injected faults to weight %

4-Class in worst case
0.6

initial -
0.5 final

0.4

MIS 0.3

0.2

0.1

-100 -50 0 50 100
injected faults to weight %

Figure 35: Results of 4-class discrimination problem on Combination 1 with 8 hidden nodes, for the test set,

measured in MIS.
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Initial Net Final Net

Hidden nodes 10 5

Training MSE 0.005130 0.111194

Testing MSE 0.025139 0.143500

Training Correctness(%) 99.00 66.00

Testing Correctness(%) 94.00 62.00

Avg. Sensitivity 0.000296 0.001382

Wst. Sensitivity 0.001414 0.005251

Table 7: Results of Fisher's data problem on Combination 2. The deletion/addition process is 10 - 4
5 --+ 4 --+ 5 --+ 4 - 5.

Initial Net Final Net

Hidden nodes 8 8

Training MSE 0.003038 0.003038

Testing MSE 0.005132 0.004799

Training Correctness(%) 99.50 99.25

Testing Correctness(%) 97.83 98.00

Avg. Sensitivity 0.001240 0.000220

Wst. Sensitivity 0.005238 0.000843

Table 8: Results of 4-class discrimination problem on Combination 2. The deletion/addition process is
8-. 3--. 4 -. 54-.6 -- 74--8.
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Fisher's Iris data in average case
0.16 i f i
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Fisher's Iris data worst case
0.3 

i ni ia

0.25 nal

0.2

MSE 0.15

0.1

0.05
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Figure 36: Results of Fisher's Iris data on Combination 2 for test se, measured in MSE, with 10 hidden
nodes initially and 5 nodes finally.

8.6.3 Results for Combination 3

Results for Fisher's data are shown in Table 9 and Figure 40 and 41. Results for 4-class

problem are shown in Table 10 and Figure 42 and 43.
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Fisher's Iris data in average case
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Fisher's Iris data in worst case
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Figure 37: Results of Fisher's Iris data on Combination 2 for test set measured in MIS, with 10 hidden nodes

initially and 5 nodes finally.
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4-Class in average case
0.03 I I

initial -

0.025 final -

0.02

MSE 0.015

0.01

0.005

0 I I I

-100 -50 0 50 100
injected faults to weight %

4-Class in worst case
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Figure 38: Results of 4-class discrimination problem on Combination 2 with 8 hidden nodes, for the test set,

measured in MSE.
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4-Class in average case
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4-Class in worst case
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Figure 39: Results of 4-class discrimination problem on Combination 2 with 8 hidden nodes, for the test set,

measured in MIS.
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Initial Net Final Net

Hidden nodes 10 10

Training MSE 0.005130 0.005129

Testing MSE 0.025139 0.024016

Training Correctness(%) 99 19.00

Testing Correctness(%) 94.Uu 96.00

Avg. Sensitivity 0.001965 0.000936

Wst. Sensitivity 0.005447 0.002975

Table 9: Results of Fisher's data problem on Combination 3. The deletion/addition process is 10 - 6

7 -- 8 -* 9 -" 10.

Initial Net Final Net

Hidden nodes 8 8

Training MSE 0.003038 0.003038

Testing MSE 0.005132 0.005643

Training Correctness(%) 99.50 99.25

Testing Correctness(%) 97.83 97.83

Avg. Sensitivity 0.003173 0.002530

Wst. Sensitivity 0.008718 0.007428

Table 10: Results of 4-class discrimination problem on Combination 3. The deletion/addition process is

8 -# 7 -*8.
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Fisher's Iris data in average case
0.03 - ,
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Fisher's Iris data worst case
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Figure 40: Results of Fisher's Iris data on Combination 3 with 10 hidden nodes for test set measured in

MSE.
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Fisher's Iris data in average case
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Figure 41: Results of Fisher's Iris data on Combination 3 with 10 hidden nodes for test set measured in MIS.
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8.7 Remarks

We have compared the robustness of feedforward neural network training using two different

learning rules, BP and R1. K/RI has better generalization than ./Bp after training, but

does not improve fault tolerance when compared to KiBp. After applying our new algorithm

(A/D), MR, will be usually more robust than K/Bp because there are more adaptive operations

on K'R,. We have investigated the robustness of networks with further retraining after adding
nodes in the A/D process. Further retraining will improve the performance on the training

4-Class in average case

0.03 I

initial -
0.025 final

0.02

MSE

0.015

0.01

0.005 I _ _ _ _ _
-100 -50 0 50 100

injected faults to weight %

4-Class in worst case
0.3 - i
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0.25 final

0.2 -

MSE 0.15 -

0.1

0.05

0
-100 -50 0 50 100

injected faults to weight %

Figure 42: Results of 4-class discrimination problem on Combination 3 with 8 hidden nodes, for the test set,

measured in MSE.
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4-Class in average case
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Figure 43: Results of 4-class discrimination problem on Combination 3 with 8 hidden nodes, for the test set,

measured in MIS.
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set, but destroy dhe implanted robustness of the network and spoil the generalization when

the initial network is well-trained.
We have developed multi-fault sensitivity measures and an algorithm for evaluating

multiple faults. This can help us estimate the percentage of faults which the network can

tolerate. We have modified our A/D algorithm to develop networks that tolerate multiple

faults and degrade gracefully.

One possible direction for future research is to develop a hybrid algorithm of training

and A/D to train and scale the size of the network dynamically, starting with a non-well-

trained network. We can also compare the recovery speed (number of steps needed for

retraining after faults occur) of networks A" and MAD when a tolerable number of faults

occur.
Another possible approach to improve robustness is to build into the training algorithm

a mechanism to discourage large weights: instead of the mean square error E 0, the new

quantity to be minimized is of the form E 0+ (a penalty term monotonically increasing with

the size of weights). We implemented three different possibilities, modifying each weight

wi by the quantities -77 ('E + cw,), - 7"0 (1 + cw(), and -7 (M&(1 + 1c 0) + cwiEo)a w, - w aw, 2* + )w) anI• c iw

respectively, for many different values of c. This approach does improve robustness slightly,

when compared to plain backpropagation, but the results are much less impressive than with

our addition/deletion procedure.

We also performed experiments combining both approaches. The resulting improve-

ments over the addition/deletion procedure were slight for Fisher's data and for the grid

problem, but more pronounced for a character recognition data set (obtained from the

database available from the Univ. of California at Irvine). Table 11 shows the result of

robustness algorithm on two-letter character recognition data using the first modified learn-

ing rule mentioned above, changing each weight wi by -,(OEfO + cwi).

9 Fault Tolerance Enhancement for Neural Net Hardware

We have developed methods to adjust the weights of neural network such that all weights are

within a limited range and still retain high robustness. The weights after adaptation can be

directly used in a real neural network chip, such as Intel 80170NX ETANN, without reducing

network performance. All inputs of networks are restricted from OV to 2.8V, weights are

restricted from -2.5V to 2.5V, and the built-in bias is always set to be 1V.

The learning rule used here is

Awi = -- '7( -M- + Awi) (15)

which, in addition to the gradient descent term, has an extra term to penalize high magnitude
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Initial Net Final Net

Hidden nodes 15 15

Training MSE 0.097931 0.099207

Testing MSE 0.105506 0.103928

Training Correctness(%) 86.20 86.40

Testing Correctness(%) 84.17 84.45

Avg. Sensitivity 0.025901 0.001453

Wst. Sensitivity 0.174443 0.013324

Table 11: Character Recognition using modified learning rule Awi = -q°'(EU + cw,), with c = 0.00005. The

deletion/addition process is 15 3 - 4 -+ 3 - 4 - 5 -- +6 7 --+ 8 - ...-- * 15.

weights[11]. Large weights will be generated only if they are really necessary. This will

minimize the number of sensitive nodes, and the networks can be made more robust by

reconfiguring with the Add/Delete procedure described in earlier reports.

Three methods are explored and tried on networks trained on Fisher's Iris data and

a two-character recognition problem, injecting networks with many kinds of artificial faults.
The first method is to clip the large weights which are out of range. The second method is

to modify the training program such that all weights are trained within the limited range.

The last approach is to design an algorithm which can convert a non-restricted network to a

range-restricted network. We found that method three can retain the same performance and

have better robustness than the original network since extra nodes are added systematically.

(1) Clipping: The simplest way to have all weights in a given range is to clip all

weights of a well-trained neural network such that no weight is out of range. Since there

is no retraining after clipping the weights, the performance of the clipped network is much
worse than the original network.

(2) Training by Restricting Range of Weights:

To restrict the weights of a network to a given range, we modify the training algorithm
by adding a restriction that a weight is allowed to be updated only if the weight will not

thereby fall out of range. The learning rule is modified to be the following:
wi~~t) + Awl(t)) if w ..i, :5 wi (t) - ql ( w t) ý ,,,- + awi~ t)<wo

wi(t + 1) = Wma. if wi(t) - rj( + Aw1 (t)) > Wmrax

Wmin if wi(t) - +?C) Aw <(t)) <

where Wmin and Wmaz, are lower and upper bound of weights, respectively.

Training with restricted range of weights is similar to examining only a small portion
of the error surface, and will converge to desired minima only if the minima happen to be
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in this portion. From our experiments, it is difficult to reach a satisfactory minima using

this training method unless the number of hidden nodes is increased until the error surface
in the weight space of higher dimensionality contains the desired minima.

(3) Mapping Algorithm for Hardware Limitations

To adjust the parameters of a given network according to the physical limitations of
Intel 80170 ETANN chip, we have developed a mapping algorithm called REFINE which

reconfigures the given network to the hardware limitations.

In the proposed algorithm, there are two stages for adjustment of the weights of a neural
network. First, we adjust the input-to-hidden layer weights by rescaling input samples and
splitting input nodes, then we adjust the hidden-to-output layer weights by splitting hidden
nodes. Since the bias input to all nodes (including hidden nodes and output nodes) is built-in
with value 1, we have to avoid duplicating the threshold node. We made a small modification

in the training procedure restricting all weights of bias links always to remain in the limited

range.

To keep the same performance (same MSE) of the network after adjustment, we can
keep the inner product of the input vector of each node and its associated weight vector
unchanged. Suppose X is the original input vector and W is its associated weight vector,

we would like to find a set of nodes with inputs X', ..., X' and weights W', ... , W' such that

where all elements in X' and W• are within the limited range. X, and W, can be found by
rescaling X and W, then expanding the size of vectors to reduce their magnitudes. Vector
size expanding is implemented by adding extra nodes to reduce the magnitudes of the weights

by "splitting".

The algorithm shown below is a mapping from a given network to a network with given
physical limitations.

Notation: vi, is the weight from input node i to hidden node j, w3 k is the weight from

hidden node j to output node k, xi(p) is the ith input of pattern p, the limited weight
range is [-Wmax, +Wmax], and the limited input range is [0, Xmax].

Step 1 All bias weights are trained with the restriction that they remain in the limited

range.

Step 2 For some fan-out link of input node i, if the maximum absolute value of a weight is

out of range, then rescale all weights associated with this node such that no weight is
out of range. This will yield a factor ai which will be multiplied by ith column of input
patterns. Let
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( max-I{Ivl if maxj{jVijj} > Wmnax

1 W otherwise.

Then the weights and input patterns are rescaled to
s Vij

Vij -- O--

x',(p) = xi(p).- ,

for each i (nodes and weights in input layer).

Step 3 For column i of input patterns, if the maximum absolute value of this column is out

of range, then rescale this column such that no value of this column is out of range.

This will also yield another factor #i for multiplication with each weight associated to

input node i. Let

= max(l, maxP{Ix•(p)I}
IXmazI )

The input patterns and weights are re-adjusted to

11' ( - P)
III

Vi -?ij " i

for all nodes(i) in the input layer.

Step 4 For all fan-out links of input node i, if the maximum absolute value of weights is out

of range, add extra nodes to split the weights of node i, and duplicate the ith column of

input such that the inner product of the input vector and weight vector is unchanged.

Let

maxrIv".•l1l if max}{Iv" 1} > wmox

si - Wmaz i j

1 otherwise

If si > 1, the input node i is split into si nodes n, and for each node

nl,O < q < si,

VF3 _ 13V.13 i

x (p) = X'(P)
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Step 5 For hidden node j, if the maximum absolute value of fan-out links is out of range,
then add extra nodes to split the weights in hidden-output layer and duplicate the

weights in input-hidden layer. Let

t [ma ] if raXk (,I'Wj}I > ,1

1 otherwise

If tj > 1, the hidden node j is split into tj nodes Ino, n,.ný'-l} and for each node

nq, 0 < q <t,

q = W-k
Jk tj

Z3Vqj --= Vii.

The purpose of Step 2 and Step 3 is to add as few extra nodes as possible. Usually,

inputs are normalized between 0 to 1 which is a smaller range compare to our limitation

[0, 2.8], so there is some capacity here to help reduce magnitudes of weights between input
and hidden layer. We make values of weights as small as possible without allowing input

patterns to exceed their limitations. This will reduce the number of extra nodes to be

duplicated. After this procedure, all the new input samples have to be pre-processed by

rescaling and expanding, and all values larger than the maximum value of training samples

have to be clipped since the rescaling factors are yielded via the maximum value of training

samples. The new network is more robust than the original one because many extra nodes
have been added in a systematic manner, preserving the input-output mapping of a well-

trained network.

9.1 Experimental Results

We present experimental results on Fisher's Iris data and two-character recognition with

different configurations of neural network on test data which are not presented in training

samples. All the networks are tested on the following faults, and we assume that all faults
occur on weights other than bias (threshold) values:

1. Single link faults. Perturb one link at a time by changing wi to wi(1 + a), where -1 <

a<1.

2. Multiple link faults. Randomly inject simultaneous artificial faults to k links at a time
for 1000 iterations, then find the average and worst case output errors.
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3. Single link stuck at 0/1. Force one link weight to remain at 0 or 1 at a time. In our

case, stuck at 0 is equal to set the weight to be -2.5, and stuck at 1 is equal to set the
weight to be +2.5. Experiments are performed examining worst case and average case,

with different links chosen for fault injection.

4. Single node stuck at 0/1. Force one node output to remain at 0 or 1 at a time. The

node function used here is sigmoid a

For convenience, we use the following notation for each network:

1. NRI: Trained by learning rule R1, given in equation 15.

2. NRI/AD: Reconfigured by applying Add/Delete procedure to network NRI.

3. VR1-FB: Trained by R1 with the restriction that only bias weights are limited in the

given range which is [-2.5, 2.5] in our case.

4. NR-FBIAD: Reconfigured by applying Add/Delete procedure to NRI-FB.

5. NR1IFB/AD/RFN: NRIFB/AD after applying REFINE procedure.

Only network NRIFB/AD/RFN can be applied to Intel ETANN chip.

9.2 Fisher's Iris Data

Fisher's Iris data is for a three-class problem of classification and contains a four-dimensional

input vector for each pattern. In building the neural networks, we rescaled the input data to

fall between 0 and 1. There are 50 exemplars for each class. In our experiments we obtained
a training set of size 100 consisting of the first 34, 35, and 31 exemplars of the three classes,

respectively, and saved the remaining 50 exemplars to form the test set. All networks except

NRIFB/AD/RFN have 10 hidden nodes. NRIFB/AD/RFN is generated from NRIFB/AD by
REFINE, and the number of hidden nodes increase to 40 after reconfiguration.

Although the network size is large, speed of computation is not affected because differ-

ent hidden node computations are carried out in parallel, in the hardware implementaticn.
Training occurs before the network size is expanded, hence training time is not affected;

large network size hence does not mean that the learning algorithm is over-parameterized.
Figure 44 shows the comparison of different configurations with the first fault model,

single-link faults. Different configurations are generated by Add/Delete procedure and RE-

FINE after a 10 hidden-node network being trained by R1. Figure 45 shows the same

comparison as figure 44 but on the second fault model, multiple links fault, with 10 link
faults injected to network randomly at a time for 1000 trials. After applying REFINE pro-

cedure, network robustness improves significantly. Table 12 and 13 show the average and
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Avg. Correctness Wst. Correctness

Network Normal jstuck 0(-2.5) stuck 1(+2.5) stuck 0(-2.5) 1 stuck 1(+2.5)

1 NRI 94% 91'/0 90% 58% 26%

2 NRI/AD 94% 92% 91% 68% 30%

3 NRI-FB 96% 90% 90% 58% 54%

4 NR--FBIAD 96% 90% 91% 647 _54%

5 NRIFB/AD/RFN 96% 95% 94% 82% 74%

iable 12: Average and worst case performances of networks with single-link stuck at 0/1 on Fisher's Iris
data.

worst case on the third fault model, single link stuck at 0/1, and fourth fault mouel, single

node stuck at 0/1, respectively. Again, the network NRI/FB/AD/RFN has the best robustness.

9.3 Two-Character Recognition

Letters "A" and "B" are selected from Letter Image Recognition DaUa created by David J.

Slate ill the UCI Repository Of Machine Learning Databases. We select 500, out of 1555,

instances to form the training set, and leave the others for the test set. There are 262

instances of "A" and 238 instances of "B" in the training set. All networks have 15 hidden

nodes. NR-FB/AD/RFN is generated from NR1_FB/AD by REFINE, but no extra hidden nodes

need to be added because the conditions of Step 4 and Step 5 are not satisfied.

Figure 46 and 47 show results on first and second fault models, respectively. NRI/FB/AD

and NRI/FB/AD/RFN have the same robustness since no extra nodes are added after applying

REFINE procedure. Table 14 and 15 show the average and worst cases on the third and

fourth fault model, respectively.

9.4 Discussion

By merely modifying the weights that are out of range, we can neither retain the original

performance nor improve the robustness. New training techniques to restrict weights, or

mapping algorithms which reconfigure the network are necessary to develop robust networks

that satisfy physical hardware constraints. In our method, we first use a training technique

which restricts weights to the limited range during training. Since the weights are restricted

during training, this network will need more hidden nodes than a non-restricted network. We

have also designed a mapping procedure REFINE to change the :nfiguration of a network

to fit the limitation. The number of extra nodes needed depends on the magnitude of weights
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Fisher's Iris Data, Average Case, Test set
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Figure 44: Comparison of different networks after applying Add/Delete procedure and REFINE with single-

link fault on Fisher's Iris data.

Avg. Correctness Wst. Correctness

Network Normal stuck 0 [stuck 1 stuck 0 stuck 1

1 NRI 94% 82% 80% 66% 62%

2 NRI/AD 94% 88% 88% 80% 72%

3 NRI-FB 96% 77% 76% 62% 64%

4 NRI-FBIAD 96% 80% 81% 64% 64%

5 NRI-FB/AD/RFN 96% 95% 95% 94% 92%

Table 13: Average and worst case performances of networks with single-node stuck at 0/1 on Fisher's Iris

data.
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Fisher's Iris Data, Average Case, Test set, 10 faults
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Fisher's Iris Data, Worst Case, Test set, 10 faults
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MSE 0.3
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Amount of perturbation as a percentage of original weight

Figure 45: Comparison of different networks after applying Add/Delete procedure and REFINE with 10-link

fault injected to network at a time for 1000 trials on Fisher's Iris data.

Avg. Correctness Wst. Correctness

Network INormal _stuck_0(-2.5) stuck 1(+2.5) stuck0O(-2.5) stuck 1(+2.5)

1 NRI 85% 85% 85% 52% 65%

2 NRl/AD 84% 84% 84% 60% 82%

3 NRI-FB 85% 85% 85% 52% 65%

4 NR.-FBIAD 85% 85% 84% 61% 82%

5 NR1-FB/AD/RFN 85% 85% 85% 61% 81%

Table 14: Average and worst case performances of networks with single-link stuck at 0/1 on two-character

recognition problem.
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Two-character Recognition, Average Case, Test set
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0.108 RI-l B/AD/RFN -
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Two-character Recognition, Worst Case, Test set
0.28 1 1
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MSE 0.2 -
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Amount of perturbation as a percentage of original weight

Figure 46: Comparison of different networks after applying Add/Delete procedure and REFINE with single-

link fault on two-character recognition problem.

Avg. Correctness Wst. Correctness

Network Normal stuck 0 stuck 1 stuck 01 stuck 1

1 NRI 85% 77% 77% 50% 50%

2 NR1/AD 84% 79% 81% 69% 79%

3 NRI-FB 85% 77% 77% 50% 50%

4 NRI-FBIAD 85% 78% 81% 70% 78%

5 NR1-FB/AD/RFN 85% 84% 81% 84% 78%

Table 15: Average and worst case performances of networks with single-node stuck at 0/1 on two-character

recognition problem.

83



Two-character Recognition, Average Case, Test set, 10 faults
0.14 I 1 I

0.135 R1-FB -

R1-FB/AD .
0.13 Ri- B/AD/RFN -,--
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Two-character Recognition, Worst Case, Test set, 10 faults
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Figure 47: Comparison of different networks after applying Add/Delete proce/ure and REFINE with 10-link

fault injected to network at a time for 1000 trials on two-character recognit'on problem.
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and the number of spare resources available. We have tested these networks on four different

fault models: single link perturbation, multiple link perturbation, single link stuck at-i/0

and single node stuck at-i/0. Experimental results showed that the robustness of the network

is improved significantly after applying Add/Delete procedure and REFINE on these faults,

and the network obtained by these methods can be directly applied to the Intel 80170NX

ETANN chip which has hardware limitations.

10 Training by restricting weight magnitudes

In the previous section, we described an algorithm which can convert a non-restricted network

to a range-restricted network such that all weights are within a limited range and still retain

the robustness. The weights after adaptation can be applied to a real neural network chip,

such as Intel 80170NX ETANN, without reducing the performance of the network.

The methods we developed in the previous reports to improve fault tolerance of neural

networks are to adjust weights when training is completed. In this and the next section, two

training techniques are developed to improve the fault tolerance of neural networks during

the training process. One is to retain the low magnitude of weights during training and add
hidden nodes dynamically to ensure desired performance can be reached. The other is to add

artificial faults to the components of a network during training. The experimental results

showed that both methods can obtain better robustness than backpropagation training.

Given a well-trained neural network, we found that the highly sensitive links have

high magnitude weights in the network, but a link with high magnitude weight does not
necessarily have high sensitivity. The importance of a link is not only determined by the

weight it carries but also on the input it receives from the previous layer. If the input from
the previous layer is small, the link has low sensitivity even if its weight has high magnitude.

Restricting all weights to be small can guarantee that all links have low sensitivity.

10.1 Methodology and Algorithm

To obtain a more robust network, we should reduce the number of highly sensitive links

without decreasing performance. Low magnitude weights can be retained by penalizing high

magnitude weights during training. We have tried using R1, which has an extra term to
prevent high magnitude weights. However, the resulting weights using R1 are either too

large or too small because R1 only discourages high weights but does not prohibit them,

which means that high magnitude weights may be generated.

To ensure all weights are trained to be small, we modify the backpropagation training

algorithm by limiting the magnitude of weights, such that the resulting weights are in a

limited range with small magnitude. Since there is this extra restriction in the new learning
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fan-in fan-out

ns Wi a2

ns. Wi a2

ns2 Awj Vj

Table 16: Weights re-distribution after adding two new hidden nodes.

rule, the network resulting from training may need more nodes than usual. To avoid selecting

the number of hidden nodes in an ad hoc manner, we start with a small size network, then

add new nodes to the network for further training if training converges. Convergence is

detected by checking the amount of mean squared error changed in the most recent k steps;

if it is smaller than some reference value, then we judge that the network has converged.

Specifically, given a small value E, the training is stopped if

t

Z A E(i) < e,
i=t-k+l

where AE(i) is change in error in the ith step and t is the current step.

When convergence is detected, two new nodes are added to the network to supplement

the most sensitive node. After re-arranging the weight distribution, one node is added for

continuously monitoring the I - H layer weights, and the other is added to reduce the

sensitivities of H - 0 layer weights. Given the most sensitive node ns with fan-in weights

wi and fan-out weights vj, the two new nodes n,1 and ns2 are added with the weights re-

distributed as shown in Table 16. Awl is the most recently computed increment for wi,

according to the generalized delta rule, irrespective of whether wi + Awi is out of range.

Given a one hidden layer feedforward network N with initial number of hidden node3

h0 , the Weight-Restricted Training Algorithm(WRTA) is shown below:

Step 1 Given desired error, e, number of training iterations, tmaz, upper and lower bound

of weights wm,,, and Wmin, and maximal number of hidden nodes to be added, h,,,a.

Step 2 t=0, h=h 0 .

Step 3
Wi 7/ ' if Win <Wi(jt) -- E W.

Wi(t + 1) Wmax if wi(t) - 7E- > Wmax.

Wmin if wi(t) -
77wE- < Wmin.

Step 4 If MSE(N) < c then STOP.
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Step 5 If Zj=t-k+l AE(j) < 6 and h < hma, then

add two new nodes as described above, h = h + 2.

Step 6 t=t+ 1, gotoStep 3.

10.2 Experimental Results

1. The robustness of this new training technique is better than that of regular backprop-

agation, but many more training steps are required to achieve the same mean squared

error. The sensitivity of each node is roughly equal at the end of applying this algorithm,

which means all nodes are equally important.

2. The Add/Delete procedure with no hardware restrictions constructs more robust net-

works than the new training technique, but cannot be used for transferring the trained

network to hardware.

3. MSE falls more slowly during training, with this new algorithm.

11 Trained by Injecting Artificial Faults

Clay and Sequin[8] developed a training technique to improve the fault tolerance of neural

networks by randomly setting the outputs of some hidden nodes to be zero in each iteration

during training. Bolt[6] use the similar idea but setting the weights of links to be zero

instead of the outputs of hidden nodes. From our experiments on Clay and Bolt's methods

for improving fault tolerance, we found that injecting a specific fault to a network during

the training process can evolve a network which can tolerate that specific fault. In Clay's

method, for example, hidden units are disabled by setting the outputs of those units to zero,

which improved fault tolerance when the fault is to stick the output at zero. But a network

trained using this method does not tolerate other kinds of faults, e.g., when the fault is to

stick the output at one, or to some other perturbation. A similar situation occured in Bolt's

method which trains the network with randomly disabled weights.

11.1 Methodology

Based on these concepts of training to improve fault tolerance, we developed a method
that injects different types of faults into a network during the training process to produce

a set of weights that is more robust against various types of faults. Specifically, in each

iteration of the training process, we randomly choose a fixed number of hidden nodes, then

set the outputs of these nodes to be zero and one alternately. In the same iteration, a small
number of links are also selected randomly to be perturbed. When all the artificial faults are
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Network Normal I Avg. Correctness [Wst. Correctness

BP 99% 94% 65%

Clay(4) 98% 97% 92%

Bolt(5) 99% 96% 72%

Combl(4-5) 98% 97% 91%

Comb2(4-5) 97% 95% 77%

A/D 99% 98% 96%

Table 17: Average and worst case performances of networks with single-link stuck at 0 on Fisher's Iris
training data.

Network Normal Avg. Correctness Wst. Correctness

BP 94% 90% 58%

Clay(4) 96% 95% 92%

Bolt(5) 92% 91% 72%

Combl(4-5) 96% 95% 90%

Comb2(4-5) 94% 92% 76%

A/D 96% 94% 90%

Table 18: Average and worst case performances of networks with single-link stuck at 0 on Fisher's Iris test
data.

injected, feedforward computations are performed to obtain the delta errors of each weight,

then weights are updated with these delta errors. This is a combination of Clay and Bolt's

methods.

11.2 Experimental Results

We compare backpropagation, Clay's method, Bolt's method, and Add/Delete procedure

on Fisher's Iris data and the four-class grid discrimination problem; the results are shown

in the tables that follow. The best performance is obtained by our A/D algorithm for
worst case analysis, on almost every kind of fault. The next best results are obtained

for the new combination algorithms Comb1 and Comb2 that we have synthesized. Plain

backpropagation does worse than every other method, and Clay and Bolt's methods show

intermediate performance.
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Avg. Correctness Wst. Correctness

Network Normal stuck 0 stuck 1 stuck 0 stuck 1

BP 99% 83% 86% 63% 48%

Clay(4) 98% 98% 69% 98% 61%

Bolt(5) 99% 89% 82% 66% 55%

Comb1(4-5) 98% 97% 76% 92% 56%

Comb2(4-5) 97% 93% 87% 79% 74%

A/D 99% 96% 95% 91% 93%

Table 19: Average and worst case performances of networks with single-node stuck at 0/1 on Fisher's Iris
training data.

Avg. Correctness Wst. Correctness

Network Normal stuck 0] stuck 1 stuck 0] stuck 1

BP 94% 80% 86% 62% 50%

Clay(4) 96% 94% 72% 92% 64%

Bolt(5) 92% 87% 82% 70% 58%

Combl(4-5) 96% 95% 79% 94% 62%

Comb2(4-5) 94% 91% 86% 78% 74%

A/D 96% 94% 93% 88% 90%

Table 20: Average and worst case performances of networks with single-node stuck at 0/1 on Fisher's Iris
test data.

Network Normal I Avg. Correctness I Wst. Correctness

BP 96% 88% 49%

Clay(l) 95% 90% 59%

Bolt(3) 96% 92% 65%

Combl(1-5) 96% 94% 78%

Comb2(2-5) 96% 95% 91%

A/D 95% 93% 90%

Table 21: Average and worst case performances of networks with single-link stuck at 0 on Grid Discrimination
training data.
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Network Normal] Avg. Correctness Wst Correctness

BP 95% 87% 49%

Clay(l) 94% 89% 57%

Bolt(3) 95% 91% 63%

Combl(1-5) 96% 94% 76%

Comb2(2-5) 94% 93% 90%

A/D 96% 94% 87%

Table 22: Average and worst case performances of networks with single-link stuck at 0 on Grid Discrimination
test data.

Avg. Correctness Wst. Correctness

Network Normal stuck 0 stuck 1 stuck 0] stuck 1

BP 96% 79% 77% 49% 49%

Clay(l) 95% 89% 75% 82% 59%

Bolt(3) 96% 86% 81% 70% 65%

Combl(1-5) 96% 92% 87% 85% 78%

Comb2(2-5) 96% 93% 94% 90% 92%

A/D 95% 90% 90% 90% 90%

Table 23: Average and worst case performances of networks with single-node stuck at 0/1 on Grid Discrim-
ination training data.

Avg. Correctness Wst. Correctness

Network Normal stuck 0 stuck 1 stuck 0 stuck 1

BP 94% 78% 77% 49% 48%

Clay(l) 94% 88% 75% 83% 57%

bolt(3) 95% 85% 81% 72% 63%

Combl (1-5) 96% 92% 87% 85% 76%

Comb2(2-5) 94% 92% 92% 89% 90%

A/D 96% 92% 88% 92% 87%

Table 24: Average and worst case performances of networks with single-node stuck at 0/1 on Grid Discrim-

ination test data.
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APPENDIX (Proofs for theorem in Section 8) The statement of the theorem as

stated in Section 8 does not precisely mention the sensitivity measure used; in this appendix,

proofs are presented for various propositions that are different cases of the theorem for

different definitions of sensitivity.

Notation: Let E(N,",) denote the error obtained when the link weight vmn, in the network

N is replaced by (1 + a)v,,... Similarly, let E(Nk) denote the average error obtained when

each of the link weights Vmk in the network N is replaced by (1 + a)vmk. We remind that

vii denotes the weight on the link from the Jth hidden node to the ith output node.

Proposition 1 Let N be a well-trained' I-h-O network in which link vij is more sensitive

than every other link in the second (v) layer, where sensitivity is defined as (cf. Equations 3,

4) the additional error resulting from perturbation of any v,,, to (1 + a)vI,,, for some a

(i.e., with the singleton perturbation set A = {a}) such that these perturbations degrade

performance, (i.e., the error E(N) < max,,n{E(Ncn)}.

Let M be the network obtained by adding a redundant (h + 1)st hidden node to M and

adjusting weights of links attached to this new node and to the jth hidden node, as specified

in the ADP given earlier.

Then M is more robust than N, i.e., the sensitivity of M is lower than that of N.

Proof: M will be more robust than N iff maxm,n{E(< N•,)} > maxm,n{E(Mnn)}. Since Vii

is the most sensitive node in N, we need to show that E(Nia) > maxm,,{E(Mc,•)}. There

are two cases, depending on whether the link weight Vu.n was affected by the addition of the

h + Ist node (by modifying N to M).

Case 1: Links connected to unduplicated hidden nodes.

Since vij is the most sensitive node in N, E(Nj) > E(N*k', Vk. k 5 j & k 0 h + 1.

Since the output behaviors of M and N are identical (when neither is perturbed), and since

other links are left undisturbed, an identical change in error occurs in M and N when there

is a perturbation in any link other than those connected to the jth or the h + 1st hidden

nodes. In other words, Vk. k 5 j&k : h + 1, and Vm, E(N•,k) = E(M*k). Therefore

E(N ') > E(M•,k), Vk. k 0 j & k 0 h + 1.

Case 2: Links connected to jth and h + 1it hidden nodes. Then

0 < E(N) :_ E(N,•1 ) < E(N•),

by the premises of the Proposition. If the target value for the Ith output node is ti, and 'Sk'

abbreviates a sigmoid node function so that Sk(x) = ex+c/(1 + e +ck)), where ck abbreviates

other terms contributing to the kth node's output, then

0 < II(Si(v'jyj) - t1)ll + II(Sm(m,,,j) - tm)W l
7"Well-trained" means that the network error is almost 0.
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"< 11(Sj,(vjy) - t,)Il + II(Sm(v.jyj(1 + a)) - t.)II

"< II(S'(vjjyj(1 + a)) - t,)II + II(S(•v.mjyj) - t,)II.

This implies that vmj. >Ž 0 if tm -t 0, and vmja < 0 if tm ; 1. Also, irrespective of tin,

II(Si(vijyj(l+a))-ti)I+II(Sm(vmjyj)-tm)II-II(S'i(ljyj)-ti)I-II(Sm(vLmjyj(1+a))-t`)II > 0

(1)
Let n =j or n = h + 1, so that uVmn in M equals vmj/2 in N, and yn, = yj in both M

and N. Then
E(Ni'j) - E(MU n)

= Il(Sj(vyj(1+a))-ti)1+s±I(m(vmjyj)-tm)lI-Ij(Si(vijyj)-ti)II- I(Sm(vmjyj(1+a/2))-tm)lI
= ii(S(vjjyj(1+a))-ti)ll+ll(Sm(vmjyj)-tm)11-11(Si(v 1jyj)-ti)II- i(Sm(Lmjyj(1+a))-tm)lI

+ll(Sm(•mjyj(1 + a)) - tm)lI - II(Sm(vjyj(1 + a/2)) - t.)Il

> II(Sm(vmjyj(l+a))-tm)ll-II(Sm(v•yyj(l+1a/2))-tm)ll. If t. • 0, then this last quantity is
positive because vnja > 0 and hence vmjy(1+a)-- mjyj(1+a/2) < 0, given that yj is always
between 0 and 1, and the sigmoid Sm is a mapping into the interval [0,1]. Similarly, if tm ; 1,
then this quantity is positive because vja < 0, hence nmjy(l + oa) - vmjyj(1 + a/2) < 0.

0

One of the premises of the above proposition is that perturbations should degrade
performance': if such is not the case, i.e., if network error actually decreases as a result of
introducing "faults" into the system, then our algorithm replaces the network by the new
'perturbed' network with better performance, and retrains that network.

The above proposition pertained to the special case where A was a singleton set. If A
contains more elements, two definitions for link sensitivity are possible: one which considers
the average degradation of links (averaged over different perturbations E A), and another
which considers the worst case degradation of links (among different perturbations E A).
The above Proposition generalizes in both cases, with almost identical proofs, when a is
chosen to be the maximal element of A.

Proposition 2 Let N be a well-trained I-h-O network in which link vij is more sensitive

than every other link in the second layer, where sensitivity is defined as increase in error
caused by perturbation of any Vmn to maxikEA{(1 + ak)Vun}, for some A such that these
perturbations degrade performance, i.e., the error E(N) < maxzn,n{E(N,•,n)}, Va E A.

SA simple network can be constructed which does not obey this criterion, and hence splitting the node connected to the
most sensitive edge and perturbing edges does not yield as good an improvement of MSE as perturbing the link in the original
network.

92



Let M be the network obtained by adding a redundant (h + 1)"t hidden node to M and

adjusting weights of links attached to this new node and to the jth hidden node, as specified

in the ADP given earlier. Then M is more robust than N, i.e., the sensitivity of M is lower

than that of N.

Proof: M will be more robust than N iff maxm,, { E(Nak) } > maxm{E(-,,,, ) } Vak,Ca, c A.

Let a E A be the perturbation in vij causing most error. Since v,, is the most sensitive node,

we need to show that E(Nc) < max,,,,n {E(Mkn)} for every ak E A.

Case 1: Links connected to unduplicated hidden nodes.

As in the above Proposition, an identical change in error occurs in M and N when there is

a perturbation in any link other than those connected to the jth or the h + 1" hidden nodes.

So Vk. k 0 j&k : h + 1, Val E A, and Vm, E(N,,,k) = E(M,•'k) and E(NO) < E(N,'k) =

E(M M).

Case 2: Links connected to jth and h + 1is hidden nodes.

As in the preceding Proposition,

0<E(N) :!_ E(N•,,j) < E(.,J),

for any a1 E A, and

0 < II(S(•',jyj) - t,)ll + II(S,(i'.,,jYj) - tm)ll

<_ II(Siv 2j yj) - ti)II + II(S.,(v.,jyj (1 + a,)) - t.,)l

< I(Siv 1jYj(1 + a)) - ti)l II(S.,(vmjYj) - tm)Il.

This implies that vmjal > 0 if tm, ; 0, and m,,,jal < 0 if tm - 1. At,ain, irrespective of tin,

II(Sj(vjjyj(1•a))-ti)j•+ll(Sm(vmjyj)-tm)lf-il(Si(vijyj)-ti)ll--[(Sm(mjyj(1±+ai))-tm)I > 0

If n = j or n = h + 1, then

E(Na) - E(M.,I)

= IIS(•vjyj(1 + a)) - till + IISm(,,,.jyj) - t.ll - IISd(v•,Yj) - till - IlSm(.,jYj(1 + a,/2)) - t.11
= IlS,(v"jyj(1 + a)) - till + IIS.(vmYj) - t.l1 - IlS2(vjyj) - till -- IlSm(v'mjY,(I + at)) - t.l1

+IIS.m(vjyj(1 + a,)) - toll - IIS.m(v.,,j(1 + at/2)) - t.l1

> II(S.(v.mjyj(l+al))--t.)ll--II(S.(v.jyj(l+a,/2))-tm)ll. If tm - 0, then this quantity is

positive because v.jal >_ 0 and hence vmjy(1+al) -v umjyj(1+a,/2) < 0. Similarly, if tm - 1,

then this quantity is positive because Urnjoa1 < 0, hence vjy(1 + a,) - vmjy 3(1 + aO/2) < 0.

Since the above holds for any at E A, we have E(N•) > max,,,EA,&Vm E(M•,n)}

0
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Proposition 3 Let N be a well-trained I-h-O network in which link vj is more sensitive

than every other link in the second lapcr, where sensitivity is defined as increase in error

caused by perturbation of any ,mn, toI E,•,A{(1 + ±ak)Vn}1, for some A such that these

perturbations degrade performance, i.e., the error E(N) < max,,,,,{E(Nn) }, Va E A.

Let M be the network obtained by adding a redundant (h + 1)st hidden node to M and

adjusting weights of links attached to this new node and to the jth hidden node, as specified

in the ADP given earlier.

Then M is more robust than N, i.e., the sensitivity of M is lower than that of N.

Proof: As before, M will be more robust than N iff

Z{E(N•,)} > max,,, {E(Mn)}.
aEA aEA

Since vij is the most sensitive node, we need to show that

ZE(N.) < maxm,,, Z {E(Mn,,)}.
aEA aEA

Case 1: Links connected to unduplicated hidden nodes.

As in the above Proposition, an identical change ir. error occurs in M and N when there is

a perturbation in any link other than those connected to the jth or the It + It hidden nodes.

So Vk. k : j&k 0 h + 1, Val E A, and Vm, E(Nn) = E(M"k) and E(Ni•) < E(N•,k) =

E(M 7an').

Case 2: Links connected to jth and h + 1st hidden nodes.
As in the preceding Proposition,

0 < E(N) < E(N-,3)

for any a E A. Since vi-j is the most sensitive link,

E E(Ncj) < E E(Ni•j).
aEa aEa

As before, if n = j or n = h + 1, then

,-Ea[E(Nij') - E(Man)]
= EEa[II(Si(Q,,YJ(1 + a)) - t,)JI + II(Sm(Vmjyj) - tm)I1 - JI(S;(v4•yj) - t,)II - II(Sm(VmjYJ(1 +
a/2)) - tm)1]I

= E-aEa[I(Si(Vi•jy(1 + a)) - ti)II + 11(S-(•jyY) - W11 - 11(S,(•iJ) - t,)11- 11(Sm(V.,Yj(1 +

a)) - tW)l]

+ Z[II(Sm(vmyj(1 + a)) - tm)Il - IJ(Sm(vm.yj(1 + a12)) - tm)II]
czEa

> Eao[II(Sm(myijy (1 + a)) - tm)II - II(Sm(v•mjyj(1 + a/2)) - tm) I]

94



Again, if t,, ; 0, then each quantity in the summation is positive because vmjk > 0 and

hence vmjy(1 + a) - vmjyj(l + a/2) _< 0. Similarly, if tm Z 1, then each summed quantity is

positive because vlmja < 0, hence vLmjy(l + a) - vmjyj(l + a/2) < 0.

0

We turn our attention now to node sensitivity. Node sensitivity may be defined as the error

resulting from perturbing the node's output, rather than perturbing the weights of adjacent

links (Equation 5). However, since every hidden node has the same outdegree (=O, the

number of output nodes), the error obtained by perturbing a hidden node's output is a

constant multiple (0) of the average error obtained by perturbing the links outgoing from

that hidden node.

Proposition 4 Let N be a well-trained I-h-O network in which the ith hidden node is more

sensitive than every other hidden node, where sensitivity is defined as error degradation

caused by perturbation of links Vmn to (1 + &)Vmn, for some a, such that these perturbations

degrade performance.

Let M be the network obtained by adding a redundant (h + 1)5t hidden node to M and

adjusting weights of links attached to this new node and to the jth hidden node, as specified

in the ADP given earlier.

Then M is more robust than N, i.e., the sensitivity of M is lower than that of N.

Proof: Let the k h hidden node in M be the most sensitive.

As in the previous propositions, if k 0 j and k 5 h + 1, then 0 < E(Nk) = E(Ml) <

E(Nj'), hence M is less sensitive than N.

Now consider the case where if k = j or k = h + 1. We need to show that E(Na) >
E(Mka), i.e., E(Ncl) > E(MJ"), i.e.,

E[flSm(v.j(1 + a)yj) - tm.1 - IISm(vj(1 + a/2)y%) - t.mJ1 > 0.

m

The term in the summation is positive for each m, because of the premise that 0 < E(N) <

E(N*), since, as in the previous propositions,

t,,O =z 0 mj• >? O a =, vmjc > Vmja/2, and

tm ; I = Vmj&7 < 0 =• IIS.(vmj(1 + a)yj) - tmrl > IiSm(vmj(1 + a/2)y%) - tmIl

0
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Proposition 5 Let N be a well-trained I-h-& network in which link wij is more sensitive

than every other link in the first layer of weights, where sensitivity is defined as increase

in error caused by perturbation of any w,.,, to (1 + O)Wmn, for some a such that these

perturbations degrade performance.

Let M be the network obtained by adding a redundant (h + 1)"t hidden node to M and

adjusting weights of links attached to this new node and to the Jth hidden node, as specified

in the ADP given earlier.

Then M is more robust than N, i.e., the sensitivity of M is lower than that of N.

Proof: The perturbation of one first layer weight wij is precisely equivalent to perturbing the

relevant (i th ) hidden node's output by some quantity ai. Hence the result follows from the

previous proposition: perturbations in other hidden node outputs cause less network error

than the most sensitive hidden node's perturbation, and halving the outgoing link weights

from that node decreases the effect of perturbation of that hidden node.

0

As in the case of propositions 2 and 3, it can be shown that network robustness is

increased by our node duplication algorithm even for multiple first layer weight changes,

changes by a non-singleton set A of perturbations, multiple node changes, and perturbations

in any fixed number of multiple links.

Proposition 6 Let N be a well-trained I-h-O network in which link vij is more sensitive

than every other link in the second layer, where sensitivity is defined as perturbation of any

Vmn to V,,n + A, for some A such that these perturbations degrade performance, i.e., the error

E(N) < E(N,,) Vvm,,, where E(N,,) is the error obtained when the link Vmn is replaced by

,/,n + A .

Let N' be the network obtained by adding a redundant (h + 1)st hidden node to N and

adjusting weights as specified in the ADP given earlier.

Then N' is more robust than N, i.e., the sensitivity of N' is lower than that of N.

Proof: Similar to the preceding proposition.
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Robustness of Feedforward Neural Networks*
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Abstract- Many artificial neural networks In this paper, we propose techniques to ensure the
in practical use can be demonstrated not to development of feedforward neural networks [7] that
be fault tolerant; this can result in disasters satisfy well-defined robustness criteria. Faults occur-
when localized errors occur in critical parts ring in the training phase may increase training time
of these networks. In this paper, we de- but are unlikely to affect the performance of the sys-
velop methods for measuring the sensitivity tern, because training will continue until faulty corn-
of links and nodes of a feedforward neural ponents are compensated for by non-faulty parts.
network and implement a technique to en- If faults are detected in the testing phase, retrain-
sure the development of neural networks that ing with the addition of new resources can solve the
satisfy well-defined robustness criteria. Ex- problem. Such a repair would not be possible after
perimental observations indicate that perfor- system development is complete or if faults occur in
mance degradation in our robust feedforward a neural network application that has already been
network is significantly less than a randomly installed and is in use. This necessitates robust de-
trained feedforward network of the same size sign of neural networks, for graceful degradation in
by an order of magnitude. performance without the need to retrain networks.

Different evaluation measures may be needed for
I. INTRODUCTION neural networks intended to perform different tasks.

Artificial neural network applications with no built- Karnin [4] suggests the use of a sensitivity index to

in or proven fault tolerance can be disastrously hand- determine the extent to which the performance of a

icapped by localized errors in critical parts. Many neural network depends on a given node or link in the

researchers have assumed that neural networks that system; for a given failure, Carter et al. [3] measure
contain a large number of nodes and links are fault network performance in terms of the error in function

tolerant. This assumption is unfounded because net- approximation; and Stevenson et al. [8] estimate the
works are often trained using algorithms whose only probability that an output neuron makes a decisiongoal is to minimize error. Classical neural learn- error, for "Madalines" (with discrete inputs).
igoalgoisthminims sucheasrrop.Clagcatine l m eakrno- Our methodology can be briefly summarized as fol-ing algorithm s such as backpropagation m ake no at- l w .G v n a w l -r i e e w r , w i s l m n ttempt to develop fault tolerant neural networks. The lows. Given a well-trained network, we first eliminate

temp todevlopfaut tlernt eurl ntwoks.The all "useless" nodes in hidden layer(s). We retrain
existence of redundant resources is only a precon- all "usel nodes in hen ayers)We retran
dition and does not ensure robustness. Little re- this reduced network a n a some r ant
search has focused explicitly on increasing the fault nodes to the reduced network in a systematic man-
tolerance of commonly used neural network models ner, achieving robustness against changes in weights
of non-trivial size, although the importance of this of links that may occur over a period of time.problem has been recognized [2, 3, 6, 9]. In Section II, we describe our terminology and

measures of robustness. Methods to achieve a ro-
bust network are described in Section III. Section
IV contains experimental results, and conclusions are
discussed in the final section.

*This research was supported by USAF contract F30602-
92-C-0031.

tSupported in part by NSF Grant CCR-9110812.
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II. DEFINITIONS Definition 2 Node sensitivity: Let Z,(j) denote the

We consider feedforward I - H - 0 neural networks, set of all incoming links incident on the jth hidden
with I input nodes, H nodes in one hidden layer, node, ni, from the input nodes; let To(j) denote
and 0 output nodes. The vector of all weights (of the the set of outgoing links from n,, and let 1(j) =

trained network) is denoted by W = (w1,. .. , WK). If It(j) U lo(j). Two definitions are possible for node
the it0 component of W is modified by a factor a (i.e., sensitivity:
w, is changed to (1 + a)w.) and all other components (i) A-sensitivity (average sensitivity) of a node, n,
remain fixed, then the new vector of weights is de- is
noted by W(i,a) = (w 1,.. . ,(l+a)w1 ,... ,wK). For is)1
a given weight vector W, E(W) denotes the mean Sn(j) = St-) , (i). (5)
square error of the network over the training set, and 'EI(,)

ER(W) denote the mean square error over the test
set R. The effect on MSE of changing W to W(i,a) Sj = J 1(i). (6)

is measured in terms of the difference ,EZ(O)

s(i,a) = E(W(i,a)) - E(W) (1) (ii) M-sensitivity (maximal sensitivity) of a node,
nj, is

or in terms of the partial derivative of MSE with S*(j) = max SI(i). (7)
respect to the magnitude of weight change max .

t*(W = max SI(i). (8)
a) E(W(i, a)) - E(W) (2),Z)

Iwi X al Definition 3 The sensitivity SN of a network N is

If E(W(i,a)) < E(W), then a better set of weights maxjEHiL(N){Sn(j)}, where HL(N) is the set of hid-

must have been accidentally obtained by perturb- den layer nodes in N.
ing W, and retraining can occur for W(i,ca). The III. ADDITION/DELETION PROCEDURE
relative change, a, is allowed to take values from a
nonempty finite set A containing values in the range In this section, we present a procedure (Figure 1) to
-1 to 1. build robust neural networks that withstand individ-

ual link weight changes: we eliminate unimportant
Definition 1 Link sensitivity: Two possible defini- nodes, retrain the reduced network, then add redun-
tions for the sensitivity of the ith link ti are: dant nodes. These three steps are repeated until the

desired robustness is achieved.

St(i) = W -- j Z s(i, a) (3) A. Elimination of Unimportant Nodes
AEA In practice, many of the nodes in a large network

1 serve no useful purpose, and traditional network
S J(i) = FA Z .(i,a). (4) training algorithms do not ensure that redundant

,•EA nodes improve fault tolerance. Once a network has

To compute the sensitivity of each link in a net- been trained, the importance of each hidden layer
work, all weights of the trained network are frozen node can be measured in terms of its sensitivity.
except the link that is being perturbed with a fault. Given a reference sensitivity c, node ni is removed
E(W) is already known and E(W(i, a)) can easily be from the hidden layer if Sn(j) < c. The value of c can
obtained in one feedforward computation with faulty be adjusted such that -limination of all such nodes
links, makes little difference in the performance of the re-

duced network compared to the original network. In
our experiments, we have used e = 10% of the maxi-
mum node sensitivity. The deletion of 'unimportant'
nodes (with a small sensitivity) results in an I-H'-
0 network that should perform almost as well as the
original network. We have observed that H* is some-
times considerably smaller than H.
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C. Addition of Redundant Nodes
Let Ti• be the training set and TS be the To enhance robustness, our method is to add extra
test set. Obtain a well-trained weight hidden nodes, in such a way that they share the tasks
vector Wo by training an I-H-O network of the critical nodes-nodes with "high" sensitivity.
A(0 on TI?. Let w,,k denote the weight from the kth input node

to the i'4 hidden layer node, and let v,,k denote the
i=0, and H"=H. weight from the kVh hidden node to the ith output
while terminating-criterion is unsatisfied do node. Let the jth hidden node have the highest sen-

C = Spj(,IM) x 0.1 sitivity, in a I-H*-O network. Let h = H*. Then the
.V,+, = Af - {nijS,,(n,) < 6} new network is obtained by adding an extra (h+ 1 )lh

Wj+j = W,-{all links connected to nj} hidden node. The duties of the sensitive node are
Retrain the network N4+1. now shared with this new node. This is achieved by
H= H* + 1 setting up the weights on the new node's links as
A(,+1 = U {nHt. defined by:
Wj+j Setting the weights of links (1) First layer of weights: Wh+l,i = W3,,,Vi E I,

incident on the new node nH*, {the new node has the same output as the j`• node)
and modifying those connected to (2) Second layer of weights: vk,h+l = 'vk,),Vk E
the most sensitive node in 0M. 0, {sharing the load of the jth node)

=i + 1 (3) Halving the sensitive node's outgoing link
end while weights vk,,,Vk E 0.

In other words, the first condition guarantees that
the outputs of hidden layer nodes nj and ntH+i are

Figure 1: Addition/Deletion procedure for improved identical, whereas the second condition ensures that
fault tolerance. The terminating-criterion is de- the importance of these two nodes is equal, without
scribed in section III-C. SN(A,) is the worst case changing the network outputs.
node sensitivity of the network .f. The procedure After adding the node nH-+1, node sensitivities
for updating the second Wj+1 is described in section are re-evaluated and another node, nH.+2, is added
III-C. if the sensitivity of a node is found to be 'too' large.

On the other hand, a node is removed if its sensitiv-
B. Retraining of Reduced Network ity is 'too' low. Our primary criteria for sensitivity

of a link and a node are equations (3) and (7). In our
Removal of unimportant nodes from the network experiments, we have found that there is not much
is expected to make little difference in the result- difference in the results obtained using the other def-
ing MSE. But the MSE of the resulting network initions of sensitivity. A node is deleted if its sensi-
with fewer weights may not be in a (local) min- tivity is less than 10% of the sensitivity of the most
imum. In general, if (xl,..., x,,) is a local mini- critical node.
mum of a function j(n) of n arguments, there is no We continue to add nodes until the termination
guarantee that (Xi, ... , Xn- 0 is a local minimum of *Wcotneoadndsuti htrmainguarnction that (de,...,ind as alocin m o criterion is satisfied, i.e., the improvement in thea function f(-) defined as f(n-i)(x1 ,... ), n-i) = network's robustness is negligible. We have exper-
f(n)(XI,...,X,-i,0, ...,0). For our problem, f(n) and imented with two termination criteria. The first cri-
f(n-' are the MSE functions over networks of dif- tenon is adding extra nodes until the sensitivity of

fering sizes, where the smaller one is obtained by the current most critical node is less than some pro-

eliminating some parameters of the larger network.

Retraining the reduced network will change the portion of the sensitivity of the initial most critical
Re torai (local) miniumd Inetwourk experent, te node. The second criterion is adding extra nodesMSE to a (local) minimum. In our experiments, we until the number of nodes is equal to the original

have observed that the number of iterations needed number of nodes in er c ar to netorks

to retrain the network to achieve the previous level of the same size.

of MSE is usually small (< 10 in most cases).
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Notation: Let E(N,,,,) denote the error obtained * AC,, = {(x, y)J - 100 < x < 100, x mod 5 E
when the link weight ,�,, in the network N is re- 0,v = + E ', ER(W(i, ' ))},
placed by (1 + 'f)m,,. Similarly, let E(Nf) de-

note the average error obtained when each of the * WC,,m, = {(z, Y)I - 100 < X < 100, x mod 5
link weights £,m in the network N is replaced by 0, V = max,Ez ER(W(i, 1-100
(1 + a)vA,. Note that vij denotes the weight on the
link from the jth hidden node to the ith output node. -

Theorem: Let N be a well-trained' I-h-O network 0, Y = T217YEIZ CR(W(100)

in which link ui0 is more sensitive than every other 9 WCmi. = {(x,y)I - 100 < x < 100,x mod 5
link in the second (v.) layer, where sensitivity is de- 0, y = max,EZCR(W(i, I o)))}
fined as the additional error resulting from perturba-
tion of any ,i,, to (1 + a)i,m,,, for some a (i.e.. with We performed four series of experiments for each
the singleton perturbation set A = {a}) such that problem using the following combinations of sensitiv-
these perturbations degrade performance, (i.e., the er- ity definitions, where A is the set of values by which
ror E(N) < maxm,n{E(N,•n)}. Let M be the network a weight is perturbed, when testing sensitivity.
obtained by adding a redundant (h + 1)" hidden node
to M and adjusting weights of links attached to this Combination 0; Eq. (7) and A = {-1}.
new node and to the 3 th hidden node, as specified in Combination 1: Eq. (8) and A ={-1}.
the addition/deletion algorithm given earlier. Then M
is more robust than N, i.e., the sensitivity of M is lower Combination 2: Eq. (3) and A = {+0.1, -0.1).
than that of N. Combination 3: Eq. (8) and A = f±1, ± :½}.

The above theorem pertained to the special case C
where A was a singleton set. This result extends to Combinations 0, 1, and 3 have almost identical
the case when A contains many elements, and for performance, and also perform better than combina-
node faults; these additional results and proofs are tion 2, possibly because the former measure perfor-
omitted due to lack of space. The theorem holds mance for large changes in weights. Experimental
even with minor variations in the definitions of the results are shown only for combination 0, and only
sensitivity. A premise of the above theorem is that for one classic 3-class classification problem: Fisher's
perturbations should degrade performance: if such is Iris data, with a four-dimensional input vector for
not the case, i.e., if network error actually decreases each pattern, input values being rescaled to fall be-
as a result of introducing "faults" into the system, "ween 0 and 1. A third of the data points were not
then we replace the network by the new 'perturbed' used for training, and were used as a test set. To
network with better performance, which is then re- start with, we trained a 4-10-3 neural network. Al-
trained. gorithm 1 reduced it to a 4-4-3 network in the first

deletion step and then it was built up, successively,
IV. EXPERIMENTAL EVALUATION to a 4-10-3 network. There were 10 hidden nodes

in the original network; our criterion reduced it to
We evaluate our algorithm by comparing the sensi- 4, then increased it to 10 as described in Table 1.
tivity of the original network (with redundant nodes, When a 9-node network was obtained in this man-
randomly trained using the traditional backpropa- ner and retrained, two nodes could again be removed
gation algorithm) with that of the network evolved due to the sensitivity criteria, and more nodes were
using our proposed algorithm. Robustness of a net- then added following our algorithm in Figure 1. The
work is measured in terms of graceful degradation original 10-node network was roughly as robust as
in MSE and MIS(fraction of misclassification errors) a 6-node network for high perturbations, and worse
on the test set and the training set. In the average than all other cases for small perturbations.
cases, we plot the sets AC,,, and AC,m,., whereas in Performance degradations of the initial and final
the worst cases we plot the sets WCm,, and WCmu,, 4-10-3 networks are shown in Table 1, and Figures
which are defined as follows, where I is the set of all 2 and 3 for the test set. Our robustness proce-
links and CR(W) is the fraction of misclassification dure achieved 83% improvement on average sensi-
errors on test set. tivity and 81% improvement on worst sensitivity for

this problem.
"Well-trained" means that the network error is almost 0.
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Figure 2: Degradation in mean square error for Figure 3: Degradation in the number of misclassi-
the test set, using networks with 10 hidden nodes, fled samples for the test set, using networks with 10
trained on Fisher's Iris data. hidden nodes, trained on Fisher's Iris data.
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