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ABSTRACT

This thesis outlines the objectives, structure, and

operation of the software designed to meet requirements set

forth by Development Test Objective 700-6 for the space

shuttle Discovery mission STS-51. The primary goals were the

comparison of state vector information produced by GPS sources

and Discovery's inertial navigation computer, and the real-

time display of relative position and rendezvous information

between Discovery and a retrievable shuttle pallet satellite.

In-flight and post-flight examination of GPS and inertial

state vectors provided the first step in the development of

GPS as an on-orbit navigation system. Analysis of the Orbiter

and target satellite state vectors produced real-time

graphical displays of operationally significant data to the

Discovery's flight crew during rendezvous and proximity

operations.
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I. IUTODUCTION

On September 12, 1993, space shuttle Discovery mission

STS-51 successfully launched into orbit carrying several

pieces of hardware and software in support of Development Test

Objective (DTO) 700-6. The purpose of DTO 700-6 was to

investigate the use of the Global Positioning System (GPS) for

shuttle Orbiter navigation and Orbiter/satellite relative

navigation.

Components of the experiment included (1) the shuttle

Orbiter's navigation computer and pulse code modulation master

unit (PCMU) containing Orbiter navigation data and telemetry,

(2) a Trimble Advanced Navigation Sensor (TANS) QUADREX GPS

receiver for gathering GPS state vector information, (3) a GRID

1535 Portable GRID Systems Computer (PGSC) with software for

stripping and sending desired data packets from the Orbiter's

128 Kbyte data stream used by the PC4MU to (4) a second GRID

1530 PGSC with Naval Postgraduate School (NPS) and TANS GPS

software packages for analyzing and storing the data, and (5)

the German ORFEUS/SPAS satellite with an onboard GPS receiver.

A. STS-51 DTO 700-6 MISSION OVERVIZEW

The STS-51 mission was the first space shuttle flight to

successfully carry and operate a TANS GPS receiver in space.



This provided the unique science opportunity of collecting GPS

state vector data and comparing this data with Orbiter state

vector data generated by ground tracking and propagated by the

Orbiters navigation ccmputer to determine the reliability of

GPS as an on-orbit navigation aid. Additionally, the space

shuttle Discovery deployed and retrieved a shuttle pallet

satellite (SPAS) also carrying a GPS receiver. This presented

the opportunity to compare ground tracking state vectors with

SPAS GPS state vectors as well as evaluating TANS GPS and SPAS

GPS relative navigation during rendezvous and proximity

operations.

The TANS QUADREX GPS state vector data was compared with

the Orbit.r inertial navigation system (INS) state vectors

propagated by the Orbiter's navigation compiter. A comparison

of the states would demonstrate the feasibiiity of using GPS

data to update the Orbiter navigation system. The Orbiter INS

state vector is presently updated by data uplink from earth

based tracking stations approximately every five to eight

hours to correct for inertial system drift. Given reliable GPS

state vector information, it was expected that by comparing

the Orbiter INS state vector with the TANS GPS state vector,

the Orbiter inertial position vector drift away from the

Orbiter TANS GPS position vector over time would be observed.

On an INS update, it was predicted that the inertial position

would return to some position close to the TANS GPS position
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vector, lending some credibility to the concept of using GPS

for navigational updates.

The STS-51 mission profile called for releasing the

ORFEUS/SPAS satellite on flight day two, maneuvering the

Orbiter away from the satellite for several days to allow data

collection, then a rendezvous to capture SPAS on flight day

nine prior to de-orbiting. ORFEUS/SPAS state vector

information was available via data link of it's onboard GPS

receiver data, and by ground tracking and uplink of a target

state vector. Orbiter and JPAS state vectors were then

available on the 128 Kbyte data stream sent from the PCMMU to

the GRID 1535. The NPS software tools contained in the PGSC

received data packets from the GRID 1535 and the TANS GPS unit

to provide real-time INS/GPS difference plots, several real-

time relative motion displays, and relative position

prediction displays that normally would require ground

tracking information and manual plotting. These tools lay the

foundation for the use of GPS as an aid to on orbit navigation

and spacecraft rendezvous and docking. Lessons learned will be

useful for future shuttle missions and essential to the

development and operation of a manned space station.

B. PURPOSE OF DEVELOPMENT TEST OBJECTIVE 700-6

The DTO 700-6 objectives were defined by the DTO software

plan published by the STS-51 DTO 700-6 manager. The DTO

software was divided into four levels in order of priority.
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The Level I DTO objectives as stated in the software plan

were to operate the TANS GPS receiver, display data on the

PGSC CRT, and store state vectors and other GPS data packets

in files for post flight analysis (PFA).

The Level II DTO code was to visually display the relative

difference of the Orbiter INS state vector and the Orbiter

TANS GPS state vector in real time. If possible, Level II code

was also to perform a similar comparison between the target

vector for SPAS and the SPAS GPS. State vector inputs to the

program were to be manually or automatically input. Level II

DTO code is contained in the NPS software.

The Level III/IV DTO code objectives included using state

vector information supplied by the Orbiter, GPS and ground

tracking to provide real-time relative motion plotting of the

ORFEUS/SPAS satellite and the Orbiter. Level III/IV DTO code

is also contained in the NPS software.

C. NPS SOFTWARE OBJECTIVES

The NPS software package written for STS-51 was designed

to meet the requirements set forth in the DTO 700-6 software

plan. This was accomplished through the use of state vector

difference plots (Level II) and relative position plots (Level

III/IV). In addition, the NPS software was designed to provide

target locating data in the form of pitch/yaw/distance

information, as well as predicted motion plotting to aide in

rendezvous and proximity operations. These tools, while
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inspired by the GPS DTO, do not rely on GPS to provide

navigation solutions. The NPS software only requires target

and Orbiter state vectors. Therefore, any state vector source

(INS, GPS, ground targeting, approach radar, or a manual

keyboard entry) may be used to provide an automated

situational awareness tool to the flight crew.

D. SURBIRY

The scope of this thesis was to develop the Naval

Postgraduate School State Vector Analysis and Relative Motion

Plotting (NPS) software residing in the GRID 1530 PGSC,

integrate that software with existing software and hardware to

accomplish the DTO 700-6 objectives, support the STS-51

mission during training and actual flight, and perform post-

flight analysis of the collected data.

Testing of the NPS software was accomplished on a desktop

computer (PC) with software emulation of the flight inputs.

Testing of the complete integrated flight software package

(w/o TANS GPS data) and related DTO components was performed

in the space shuttle integrated flight simulator at Johnson

Space Center prior to flight aboard STS-51.

The NPS software was written in the 'C' programming

language using Borland C++. Several proven 'off the shelf'

software tools were integrated with tools developed as a part

of this project. 'Off the shelf' tools included a proven

Cowell orbit propagator, a GPS state vector filter, and

5



communications software. Developed software included interface

routines, data processing and plotting routines, and

rendezvous aids.

Details of the NPS software, its role in the STS-51

mission and DTO 700-6, code development, and post flight data

analysis are contained within this thesis. Chapter II contains

a description of DTO 700-6, including hardware and software

components. Chapter III contains an introduction to spacecraft

relative motion and plotting. Chapter IV contains an overview

of the STS-51 mission as it relates to DTO 700-6. Chapter V

contains a detailed desription of the NPS software structure

and organization. Chapter VI contains a detailed description

of major software functions. Chapter VII contains a desription

of the NPS program flow and operation. Chapter VIII discusses

data collection and analysis. Chapter IX discusses lessons

learned. Chapter X contains results and conclusions. A

glossary of terms, software user's manual, and the source code

are contained as appendices.
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11. DEV]LONIEIT TEST OBJECTIVE 700-6 DESCRIPTION

A. DEVELOPMENT TEST OBJZCTIV 700-6 OBJECTIVES

Generally stated, the purpose of DTO 700-6 is the

investigation of the use of GPS as a source for on orbit

inertial navigation system update and relative ion

determination between the space shuttle and a jet

satellite. The goals of DTO 700-6 are described in detail by

the objectives of each of the four levels of the DTO software

plan.

" Level I - Operate the TANS QUADREX GPS receiver. Display
data on the CRT and store state vectors and engineering
data in files.

* Level II - Input the Orbiter state vector by hand or
automatically to perform TANS GPS vs Orbiter state vector
comparison. If available, perform Orbiter target vector vs
SPAS GPS state vector comparison.

* Level III - Use Orbiter GPS and SPAS GPS state vectors in
a rendezvous display program to evaluate relative GPS
solution with ground and onboard solution.

* Level IV - Integrate the Orbiter GPS and inertial state
vectors, the SPAS GPS and target state vectors, and
Orbiter attitude data into one program showing the entire
rendezvous and proximity operations profile.

Level I objectives were met by TANS GPS software written

by Mike Arnie of the Lockheed Engineering and Sciences

Corporation for NASA. The TANS GPS software runs in the GRID

1530 PGSC and accepts input from the TANS GPS unit via an RS-

422 cable and port.
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Level II, III, and IV objectives were achieved by the NPS

software running co-resident in the GRID 1530 PGSC. The NPS

software accepted TANS GPS state vector information from the

TANS GPS software and all other necessary information from the

Orbiter's computer via the GRID 1535 PGSC and an RS-232 port.

B. DTO 700-6 COMPONENT DESCRIPTIONS

1. Hardware Components

a. Pulse-Code Modulation Master Unit (PCaIU)

The PCMMU was the source for the 128 Kbyte data

link information. This data stream contains up-link and down-

link telemetry used by the Orbiter and NASA flight

controllers. Information contained in the telemetry included

Orbiter and SPAS target state vectors, Orbiter attitude

information in the form of a quaternion, and SPAS telemetry

including SPAS GPS state vectors.

b. GRID 1535 Portable GRID Systems Computer (PGSC)

The GRID 1535 laptop computer was the interface

between the PCMMEJ and the GRID 1530 PGSC. It was linked to the

PCMM through a 128 Kbyte data link cable. The GRID 1535

contained the PC Decommutator (PCDecom) software package.

PCDecom transmitted data packets from the GRID 1535 PGSC to

the GRID 1530 PGSC via the RS-232 communications port for use

by the NPS software.

8



c. GRID 1530 Portable GRID System Computer (PGSC)

The GRID 1530 PGSC is a portable computer with a 10

MHz 80386 microprocessor, 8 Mbytes RAM, and 40 Mbyte internal

hard drive. The GRID 1530 PGSC contained the NPS software and

the TANS GPS software. It received state vector data from the

GRID 1535 via the RS-232 port and from the TANS QUADREX GPS

receiver via the RS-422 port.

d. TANS Quadrex GPS Receiver

The Trimble Advanced Navigation Sensor (TANS) is a

six channel GPS receiver which provides position, velocity,

time and other information to external data terminals. The

TANS GPS receiver was connected to the GRID 1530 PGSC via the

RS-422 port. Communications and control of the TANS unit was

handled by the TANS GPS software in the GRID 1530 PGSC. The

TANS GPS receiver has three antennae that were velcro mounted

in the Orbiter windows on Flight Day one of the mission. This

antenna arrangement made TANS GPS reception a function of the

Orbiter's attitude. For further information on the TANS GPS

receiver, see [Ref. 1].

e. ORFEUS/SPAS

The Orbiting Retrievable Far and Extreme

Ultraviolet Spectrometer (ORFEUS) housed onboard the German

built Shuttle Pallet Satellite (SPAS) contained a German made

space qualified GPS receiver. The ORFEUS/SPAS GPS unit was

used to provide state vector information in its telemetry. The

9



SPAS state vector information was then retrieved from the 128

Kbyte data link stream for use in the NPS software.

2. Software Components

a. PC Deci tator (PCeccw)

The PC Decommutator (PCDecom) software package

written by Tom Silva of The Telemetry Workshop resided in the

GRID 1535 PGSC. PCDecom is capable of reading data from the

128 Kbyte data stream, displaying selected data to the GRID

1535 PGSC display screen, and packetizing desired data for

serial transmission to other users. For DTO 700-6, PCDecom

transmitted data packets containing Orbiter, SPAS target, and

SPAS GPS state vectors as well as the Orbiter's quaternion to

the GRID 1530 via an RS-232 port for use by the NPS software.

b. TANS Software

The TANS GPS software, or level I code,

communicated with the TANS unit, displayed various TANS GPS

data on the GRID 1530 PGSC display screen, converted the TANS

GPS state vector from WGS-84 Earth-centered, Earth-fixed

(ECEF) coordinates to M-50 inertial coordinates, and provided

the M-50 GPS state vector data to the NPS software.

c. ZIPS Software

The NPS software, or level II, III, and IV code,

processed incoming state vectors for display on relative

motion plots and state vector difference plots. The NPS

software was run independently as a stand alone program when

10



TANS GPS data was unavailable during shuttle flight

simulations prior to the launch of STS-51, and as a

subordinate function to the TANS GPS level I code during the

STS-51 mission. Details of the NPS software are contained in

the Chapters V, VI, and VII. Further information is contained

in the User's Guide in Appendix B.

The relationship between the hardware and software

components of this experiment is illustrated in Figure 2-1.
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III. RELATIVE MOTION AND PLOTTING

The STS-51 mission objectives included the use of the TANS

GPS receiver to obtain GPS data on orbit, and the deployment

and recovery of the ORFEUS/SPAS 3atellite. These events

provided unique opportunities to test features of the NPS

software relative motion plotting functions and fulfill the

level III/IV objectives of DTO 700-6, specifically evaluating

relative GPS navigation for satellite rendezvous and

displaying in real time the rendezvous profile.

To appreciate the capabilities of the NPS software and its

employment, a basic understanding of spacecraft relative

motion, relative motion plotting, and Orbiter separation,

rendezvous, and proximity operations is necessary. The

following description, while by no means complete, serves to

provide the background to understand the NPS software's use

during the STS-51 mission.

A. RBLATIVU MOTION PLOTS (R-EAR/V-BAR)

The concept of relative motion between a target vehicle

and a chaser vehicle in space is complicated by the lack of a

constant reference when viewed in an inertial frame. To

simplify the presentation and explanation of relative motion,

the relative motion plot uses a local vertical, circular (LVC)

coordinate system. The LVC coordinate system is target-

13



centered. The Z-axis rotates with the target and is positive

directed radially toward the Earth (R-bar). The X-axis is

curvilinear and positive in the general direction of orbit

motion (V-bar). The Y-axis is normal to the target's orbital

plane and completes the right-hand coordinate system. The R-

bar/V-bar plot displays the relative motion between a target

and a chaser vehicle in LVC. This system is the one used by

NASA in planning shuttle Orbiter rendezvouis and proximity

operations. (Figure 3-1.)

TWO"
vehide

/ 10 % -%
M meaued S "

~~~Earth ereetXa liudifrnebtenheagt

%% Orbtr / I

Figure 3-1. Relative motion plot definition.

R-bar displacement is measured positively towards the

Earth and represents an altitude difference between the target

and the chaser. V-bar displacement is measured positively in

the target's direction of travel and represents the phase

difference between the target and the chaser. Thus, if the

14



chaser were directly below the target on the radius vector to

the Earth's center, it would appear on the +Z axis (R-bar) of

the relative motion plot. Similarly, if the chaser was ahead

of the target on the target's orbital path and at the targets

altitude, it would appear on the X axis (V-bar) on the

relative motion plot.

B. SINGLE IMPULSE, IN PLANE, ORBITAL MANEUVERS

The following maneuvers are the fundamental building

blocks of rendezvous and proximity operations. The resulting

motions described assume the Orbiter's initial position is co-

located with a non-maneuvering target and in a co-planer orbit

in order to provide a reference point to measure motion

against.

1. Posigrade Burn

A posigrade burn is one in which the thrust is in the

direction of the velocity vector. A posigrade burn increases

the energy of the orbit, increases the semi major axis and the

angular momentum, and increases the period of the orbit. For

a near circular orbit, a posigrade burn will raise every point

of the orbit except the thrust point. For example, if the

orbit was originally circular, a posigrade maneuver will

create an elliptical orbit, with the thrust point becoming

perigee and apogee occurring 180 degrees of orbit travel

away. [Ref. 2: p. 1-11] Results of a posigrade burn will be

separation from the target along the negative V-bar.
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2. Retrograde Burn

A retrograde burn is one in which the thrust is

opposed to the direction of the velocity vector. A retrograde

burn decreases the energy of the orbit, decreases the semi-

major axis and the angular momentum, and decreases the period

of the orbit. For a near circular orbit, a retrograde burn

will lower every point of the orbit except the thrust point.

For example, if the orbit was originally circular, a

retrograde maneuver will create an elliptical orbit, with the

thrust point becoming apogee and perigee occurring 180 degrees

of orbit travel away. [Ref. 2: p. 1-151 Results of a retrograde

burn will be separation from the target along the positive V-

bar.

3. Radial Burn

A radial burn is one in which the thrust is applied in

a direction perpendicular to the spacecraft's velocity vector

and in the orbital plane of the spacecraft.[Ref. 2: p. 1-18]

Radial burns result in a 'fly-around' maneuver. That is, to an

observer on the target, it appears as if the chaser vehicle

flies in an ellipse whose path size is dependent on the

magnitude of the burn and whose period is equal to the orbital

period of the chaser vehicle.

Figure 3-2 illustrates the resultant relative motion of a

chaser vehicle performing posigrade, retrograde, and radial

burn maneuvers (1 ft/s burns) with respect to a target
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vehicle. Both vehicles are initially colocated and in

circular orbits.

C. RENDZZVOUS MANUVZR SQUEIIC

The rendezvous is the act of bringing two vehicles

together. Considerations for rendezvous are numerous and

include orbital parameters such as altitude, phasing, and

inclination. The lighting conditions are also of importance as

the rendezvous must be conducted in the light and star

tracking of the target requires that it be illuminated.

Depending on the mission, the rendezvous sequence can begin as

early as launch time. For the STS-51 SPAS mission, rendezvous

commencement was from the negative V-bar, hence only maneuvers

relevant to rendezvous from near co-altitude, co-planer orbits

will be discussed.

1. Phase Adjustment Maneuvers

The phase adjustment maneuver, or nominal correction

(NC), is used to adjust the 'catchup' rate of the Orbiter to

the target. This is performed by raising or lowering the semi-

major axis through a posigrade or retrograde maneuver. The

nominal correction maneuver is ground targeted.

2. Corrective Combination Maneuvers

The nominal corrective combination (NCC) maneuver is

the first onboard targeted burn based on onboard sensor data

such as the star tracker or rendezvous radar.
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3. Tarudnal Initiation

The terminal initiation (TI) burn alters the approach

from one of phasing to one of direct intercept. TI occurs

approximately one revolution prior to intercept.

4. Midcourse Correction

The midcourse correction (MC) maneuvers are performed

to ensure correct trajectory from TI to target intercept. Four

MC burns were planned during the final revolution of the

rendezvous.

The scheduled rendezvous maneuvers were designed to

conclude with the Orbiter in a stable position 400 feet in

front of the target on the V-bar. The final approach to the

target is included in proximity operations maneuvering.

D. PROXIMITY OPERATIONS

Proximity Operations (PROX OPS) consist of several types

of maneuvers including close in station keeping, separation

maneuvering, and final approaches to the target.

1. Station Keeping

Station keeping is performed by matching the target

orbital plane and altitude. When precise station keeping is

not required, as is the case when the target is being held at

some stand-off distance, local phasing or fly-around maneuvers

can be executed to maintain station.
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2. Separation Maneuvers

Separation from the target can be achieved by means of

a posigrade or retrograde burn, a radial burn, or by a

combination of these. A separation maneuver is referred to as

a SEP burn.

3. Approach To Target

While there is no standard rendezvous procedure

applicable to all situations, three methods of approach

technique have been studied with respect to operations

feasibility, propellant consumption, and plume impingement.

The techniques are (1) the direct approach, (2) the V-bar

approach (from behind or ahead), and (3) the R-bar approach

(from above or below).[Ref. 2: p. 4-10] The STS-51 mission

profile called for a positive V-bar approach and an

explanation of this method is in order.

The positive V-bar approach is initiated by

establishing a closure rate toward the target via a

combination retrograde/radial outward burn. This results in a

'hop' on the V-bar toward the target. With no further thruster

inputs, the trajectory would fall below the V-bar and the

Orbiter would move ahead and away from the target. As the

Orbiter crosses the V-bar, a radially outward directed burn

from the primary reaction control system (PRCS) raises the

Orbiter slightly above the V-bar, allowing the Orbiter to slow

down and close with the target further. This sequence
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continues until the target is intercepted, where a braking

maneuver nulls the closure rate and stabilizes the Orbiter

with respect to the target. (Figure 3-3.)
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IV. MISSION DUSCRIPTION

A. MISSION OV3RVIEW

The STS-51 mission objectives included the use of the TANS

GPS receiver to obtain Orbiter GPS data on orbit, and the

deployment and recovery of the GPS equipped ORFEUS/SPAS

satellite. These events provided unique opportunities to test

features of the NPS software relative motion plotting

functions and fulfill the objectives of DTO 700-6.

B. STS-51 MISSION TIM LINZ

The STS-51 planned mission profile events pertaining to

DTO 700-6 and related events such as SPAS deployment and

retrieval are described in [Ref. 3] and were as follows:

Flight day one - The DTO hardware components (TANS GPS

receiver, GRID 1530/1535 PGSC's, antennas, etc) were assembled

in Discovery's flight cabin.

TANS GPS data recording was

initiated. fJ (D

Flight day two - SPAS

deployment and separation was

achieved. Through a series of

three separation (SEP) burns, Fiur 4-1. S 1 Maneuver
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Discovery was moved away from

the SPAS along the V-bar by

means of posigrade and

retrograde thrusts. Initial

separation was accomplished

at the SEP 1 (retrograde)

burn. (Figure 4-1., Table 4-

1.) The Orbiter arrived at

the positive V-bar after one

revolution. A posigrade burn

was performed to null rates ®
and allow V-bar station V .

keeping. The SEP 2

(posigrade) carried Discovery t

over the top and behind SPAS. Figure 4-2. B3 I. and 831 2

(Figure 4-2.) At V-bar

crossing, the SEP 3

(retrograde) burn was Tim Vent

performed and the Orbiter I ORUSSAS

2 SWl OI 0.ife+Z

advanced to a station keeping 
-

3 bow OwW -Z am Tu TMak
position on the V-bar between

4 V-bAi Anrral, "l Rno

+13 and +20 nmi. Nominal
3 V4 ian aaup

Correction (NC) 1 was
6 Sp2 :O.Sl s . rai

performed at this time and Table 4-1. ORFBUS/SPAS
MPRMAT!ON PROFILZ

Discovery maintained station
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here through a series of phasing maneuvers until f light day

six. (Figure 4-3.)

30 10U-10 -20 .30 uni

R-bar
Figure 4-3. SIP 3 manuver to V-bar station keeping.

Flight day six - NC 11 phasing maneuver (posigrade) was

performed. Discovery maneuvered towards and over the top of

the SPAS to take up a station keeping position on the V-bar at

-10 to -17 nmi. (Figure 4-4.)

NC1 4
NC15
NCI S

NC1

R4bar

Figure 4-4.
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Flight day eight - The rendezvous maneuver was performed. A

posigrade phasing maneuver moved the Orbiter from station

keeping to approximately -30 nmi on the V-bar. A second

retrograde phasing maneuver initiated the three revolution

approach to intercept. This was followed by target acquisition

with the Orbiter's star tracker, a relative navigation update,

and the NCC burn. The rendezvous radar acquired the target at

approximately two revolutions out. At V-bar crossing, one

revolution prior to intercept, the TI burn occurred. In the

final orbit of the approach, four MC maneuvers were performed

to ensure the Orbiter arrived slightly above the V-bar

approximately 400 feet ahead of the target. From here a

positive V-bar approach (discussed previously in chapter III)

was planned to complete the intercept. (Figure 4-5.)

NH

V-bar ___T NC18 ____ NC19

Cr -30 ami30 20 10 2010 o2

NCC

R-bar

Figure 4-5.

Flight day nine - Disassembly and storage of DTO hardware was

completed in preparation for return to Earth.
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V. NPS SOFIIARN ARCHITZCTURN

A. NPS SOFTWARZ DESIG PHILOSOPHY

The NPS software architecture design is an event driven

architecture. The NPS software must collect data from multiple

sources such as communications ports or files, process data,

control the screen, and respond to keyboard inputs. The

program cannot be dependent on any single event occurring such

as might be required in a loop. The NPS software must poll the

data source, then continue with its other tasks or return

control to the calling routine. The program must handle

keyboard interrupts without losing input data. It must be

robust enough to handle partial data packets or suspension of

data transfer without crashing.

The NPS software is organized on several levels. Data

types used by the system are organized into a hierarchy of

data structures for program efficiency and readability. The

code is organized into a versatile toolbox of functions that

allow for flexibility in programming and usage. The file

system is organized for ease of editing functions, adding new

functions or files, and compiling the code.

B. DATA STRUCTURES

The NPS software was designed to run on the GRID 1530

PGSC, a 10 MHz 80386 portable computer. The slow clock speed,
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combined with high data rates and computationally intensive

orbit propagation, necessitated an efficient code in order to

ensure no loss of data.

In order to minimize the time spent passing large data

structures (such as a state vector which contains 56 bytes)

around between functions, the NPS software maximizes the use

of pointers to access data structures. Simply passing the

pointer to a structure into a function allows access to the

entire structure in the function by referring to the memory

address of the structure.

Efficient use of structures internal to the NPS software

allow single functions, such as plotting routines, to be used

for multiple combinations of inputs, adding flexibility to the

code and reducing the executable file size. For example, there

is only one R-bar/V-bar plotting function. However, this one

function is able to display six distinct plots simply by

calling the function with pointers to structures containing

the plot data, titles, scales, and ring buffer files for the

individual plot desired.

Some defined structures are used for editing screens. An

editing screen allows the operator to manually input or modify

program variables such as state vectors or function toggle

switches. Again, the use of pointers to structures containing

edit information is a flexible and efficient way of

programming.

28



Several types of structures have been created for use in

programming. These include simple structures and complex

structures. A simple structure, such as the Vector structure,

consists of three doubles (double precision floating point

number, 8 bytes each), x, y, and z. A complex structure, such

as the State-vector structure, contains two Vector structures

and a double for time. The structure data types used by the

NPS software are defined here.

1. Vector Structure

A Vector structure consists of three doubles (8 bytes

each), x, y, and z. Vectors are used in complex structures

such as State_vectors and independently throughout the code.

2. State-vector Structure

The State-vector structure contains two Vector

structures, representing position and velocity, and a double

representing time. Statevectors are the primary information

source the NPS software was designed to examine.

3. RV-vector Structure

The RV-vector structure contains a position Vector

structure and a double representing time. An RV vector

contains the coordinates of the Orbiter with respect to the

target in the R-bar/V-bar coordinate system.

4. Diff vector Structure

The Diff vector structure contains an array of two

doubles, the difference of the magnitudes of two state
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vector's position and velocity vectors, and a double

containing time.

5. Quaternion Structure

A Quaternion structure contains five doubles, q, q2,

q3, q4, and time. A Quaternion is a four parameter

representation of a transformation matrix. It provides a

numerical relationship between coordinate frames. Quaternions

are used due to their convenient small size; that is, four

parameters, as opposed to nine parameters in a transformation

matrix (or direction cosine matrix).[Ref. 4, p 1-1] The

relationship between the Orbiter body and M-50 (Aries-mean-of-

1950 Cartesian coordinate system) inertial coordinate frames

comes into the NPS software as a quaternion. The quaternion is

then converted into a direction cosine matrix for use in the

program. Quaternion algebra is not used in the NPS software.

6. Packet Structures

State vectors and various other information are passed

into the NPS system in the form of data packets. A data packet

is a structure consisting of several other structures

including a Packetheader structure, packet specific

information, and a Packet-trailer structure. There are three

types of packets, (1) the Orbpacket (Orbiter packet), (2) the

Spaspacket (SPAS packet), and (3) the Orb_gpupacket (Orbiter

GPS packet). The Orbpacket contains an Orbiter State-vector

structure, Orbiter Quaternion structure, KU info structure,
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and target Statevector structure. The Spaspacket contains

the SPAS Statevector structure. The Orb_gpspacket contains

the Orbiter TANS GPS State-vector structure.

The KUinfo structure was included to allow input of

information relating to the KU-band radar used for approach

and rendezvous. This structure was not utilized for STS-51. It

was retained for possible future use.

7. Npsstate-vectorinfo Structure

The Nps_statevectorinfo structure contains the input

statevector structure, a second 'copy' statevector

structure, and various administrative flags and time markers

use( , the program to organize the information known about a

given state vector. The original input state vector is never

altered in the NPS system. Only the 'copy' is manipulated or

propagated. This preserves the original data should some other

function or higher level system require it.

8. Nps_quaternioninfo Structure

The Npsquaternioninfo structure serves the same

function for the Quaternion structure as the

Nps_statevectorinfo structure serves for the statevector

structure.

9. Gravitydata Structure

The gravity-data structure consists of five doubles

containing planetary constants such as Earth radius, u,.m

(Earth gravitational constant), the Earth flattening
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coefficient, the J2 zonal harmonic coefficient, and the earth

rotation rate w. The gravity_data structure also includes two

double arrays containing the GEM 9 gravity model sectoral and

tesseral harmonic coefficients.

For further information on gravity model data, see

[Ref. 5: Chapter 9].

10. Gravitymodeldata Structure

The gravity_modeldata structure contains a

gravity_data structure and three integers. Two of the integers

determine the number of sectoral and tesseral harmonics to use

in the gravity model. The third is an on/off mode switch.

11. Dragmodeldata Structure

The dragmodeldata structure consists of four doubles

defining the solar flux (F10.7), mean solar flux (F10. 7AVE),

the Earth's geomagnetic index, and a ballistic number for the

object to which the dragmodeldata structure is assigned.

12. Perturbations Structure

The Perturbations structure contains a

gravity_modeldata structure and a dragjmodeldata structure.

Each propagated object (ie Orbiter, ORFEUS/SPAS) has its own

Perturbation structure.

13. Npspredictorthrust Structure

The Npsypredictorthrust structure contains three

integer flags indicating the status (on/off) of the thrust

predictor function and the delayed thrust option, and the
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LVLH/body coordinate switch. This structure also contains a

double with the delayed thruster firing time, and a Vector

structure holding the delta-V components of the thrust.

14. Npspredictor Structure

The Nps_predictor structure contains a pointer to the

Perturbations structure, a pointer to the Npsquaternioninfo

structure, the Npspredictorthrust structure, three doubles

containing step size, delay time between predictor updates,

and the time when the predictor will execute next. The

structure also contains two integers declaring the number of

steps to predict and whether the function is active or not.

15. Npsgraphics info Structure

The Npsgraphicsinfo structure contains integers

defining the video screen width and height, screen center,

font size, page number (for text screens), and a text/graphics

mode flag.

16. Npsplot axis

The Npsplotaxis structure contains two doubles

representing the axis origin and the axis range for a single

axis on a given plot.

17. Npsplotinfo Structure

The Npsplot info structure contains pointers to plot

title strings and Nps_plotaxis structures for the x and y

axis.
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18. Nps_rvplot_into

Each R-bar/V-bar plot has a designated Nps_rvplotinfo

structure containing the Nps_plotinfo structure, a pointer to

the plot RV vector ring buffer, a pointer to the current menu

bar list, pointers to the associated state vectors, pointers

to the associated buffer storage file, a pointer to the

Nps_predictor structure, and various plot function flags. The

plotting function is called with this structure as the calling

argument. This permits a single relative motion plot function

or difference plot function to be customized to display any

one of the six possible combinations of desired state vector

comparisons with appropriate titles, plot scale, and other

features.

19. Nppdiffplotinfo Structure

Each 'Sawtooth' plot has a designated

Nps_diffplotinfo structure containing the Nps_plotinfo

structure, a pointer to the plot Diffvector ring buffer, a

pointer to the current menu bar list, pointers to the

associated state vectors, pointers to the associated buffer

storage file, and various plot function flags. The plotting

function is called with this structure as the calling

argument. This permits a single difference plot function to be

customized to display any one of the four possible

combinations of desired state vector comparisons with

appropriate titles, plot scale, and other features.
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20. Npspyplot_info Structure

Each Pitch/Yaw plot has its own Nps_pylotinfo

structure containing title strings and a pointer to the menu

structure. The Pitch/Yaw function is called with this

structure as the calling argument. This permits a single

Pitch/Yaw plot function to be customized to display pitch/yaw

information based on any one of the three possible

combinations of source state vectors with appropriate titles.

21. Npsfilterinfo Structure

The Nps_filterinfo structure contains integers,

doubles, and Vectors used for initializing and maintaining the

GPS Filter function and its' ring buffer.

22. Time dhms Structure

The Time dbms structure contains unsigned short

integers for the day of the year, and the hours, minutes,

seconds, and milli-seconds past midnight.

23. Edit-label Structure

The Edit-label structure contains two integers, the

text screen row and column location of the edit field title,

and a pointer to the character string contai-ing the edit

field title.

24. Edit field info Structure

The Edit field info structure defines the edit field

string location, flags, size, and cursor offset.
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25. Edit field Structure

The Edit_field structure defines screen location, data

location, and field edit routines for a single edit field.

26. Currentfield Structure

The current_field structure contains pointers to the

Edit_field and Edit_fieldinfo structures currently in use.

27. Edit-screen Structure

The Edit screen structure contains Editlabel and

Edit_field structures that make up an individual edit screen

and the current field structure. The Edit screen structure

also contains pointers to data used by edit screen processing

routines.

C. PROGRAM ARCHITECTURE

The NPS software is not a single program. It is a

collection of functions that can be mixed and matched to

create specific applications using the NPS relative motion

plotting and state vector analysis routines. One version of

the code might read its input from multiple communications

ports (ie the flight version) while another version acquires

its input from data files (ie for post-flight analysis of

recorded data). An all encompassing 'Do-it-all' version was

undesirable due to size limitations on the executable size of

the program.

The versions of most interest are the NPS 'stand-alone'

flight version and the TANS GPS/NPS integrated version as
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these were the versions flown on STS-51. Two other versions of

interest are the 'simulator' version, which creates its own

state vector inputs in realtime and is used for program

testing, and the 'replay' version, which plays back recorded

data (real or simulated). Despite the variety of possible

combinations, all variants of the program contain a common

architecture. An understanding of one yields an understanding

of the others.

1. The 'Main' funetion

All 'C' programs must have a 'main' function from

which to begin. The NPS software is no different. An important

feature of the NPS software is that it does not matter where

the 'main' function is or what it does, only that it calls the

appropriate NPS software subfunctions.

From the 'main' function the data source is

initialized. The source could be a data port or other device,

a file, or another simulator function. The NPS software does

not care where the data comes from, only that it is in the

appropriate format.

Following data source initialization, the NPS system

is initialized. System initialization includes the following:

(1) opening and reading configuration files containing memory

setup data, IERS data, and plot history files, (2) memory

setup, (3) plot ring buffer initialization, (4) graphics

driver initialization, and (5) keyboard handler designation.
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At this point, the main' function enters an infinite

loop of updating the NPS data buffers and awaiting keyboard

commands. The NPS system is running and processing incoming

data regardless of whether or not the plotting screens are up.

Control of the program resides with the controlling keyboard

handler. The 'main' routine has a keyboard handler and the NPS

program has a keyboard handler. When the 'main' program is

initiated, program control is held by the 'main' keyboard

handler. Control is passed to the NPS keyboard handler upon

selection of the NPS system. Both systems, the calling 'main'

program and NPS, are still running, only now the NPS keyboard

handler controls the program and will only respond to NPS

system assigned key strokes. Escaping from the NPS system

passes keyboard control back to the calling program but does

not terminate calls to the NPS software for data updates.

Upon 'main' program termination, the NPS system is

gracefully exited. This includes storage of plot history files

for future recall and the properly closing out of the data

sources (ie files, ports, etc.).

2. Keyboazd Control

Control of the program resides with the keyboard

handler. The main routine, which may be a program like the

TANS GPS program in the integrated version, the simulator

propagator in the simulator version, or simply a shell program

that does nothing, has a keyboard handler. This 'main'
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keyboard handler takes control of the keyboard upon start-up

of the 'main' program. Control is passed to the NPS keyboard

handler upon selection of the NPS system. Both the main

program and the NPS software as a lower level system are still

running, only now the NPS keyboard handler controls the

keyboard and will only respond to recognized key strokes

assigned by the NPS software. Escaping from the NPS system

passes keyboard control back to the calling program but does

not terminate calls to the NPS software for data updates.

As an example of program architecture, in the TANS GPS/NPS

integrated flight version of the program, the 'main' function

is the TANS GPS program. The TANS GPS program performs the

functions of communicating via the RS-422 port with the TANS

GPS unit, collecting and storing of TANS GPS data, and

presentation of TANS GPS data, as well as the NPS input port

and system initialization, and updating the NPS system with

TANS GPS state vectors. When TANS.EXE is executed, the TANS

GPS program is displayed and the TANS GPS keyboard handler is

in control. The NPS system is running but is not observed

until the NPS function key in the TANS GPS keyboard handler is

selected. At this time the NPS software displays are shown,

the NPS keyboard handler takes control, and the program

responds to all NPS software system commands. The TANS GPS

program is still collecting and storing TANS data and

performing it's other necessary functions. Exiting the NPS

system returns the display and keyboard control to the TANS
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GPS program but does not interrupt the flow of data to the NPS

system.

D. NP8 SOFT WRZ ILE DIRECTORT OIRGQMZTIOU

The NPS software files are organized into amain directory

with subdirectories. Files are located in subdirectories by

subject. A Borland C++ 'makefile' is used for compiling the

various versions of the code. The 'makefile' utilizes the

filing system described here to optimize compiling time.

The main directory name is arbitrary and referred to as

the 'NP551' directory for the purpose of this report.

Subdirectories included in the P_S51 directory are NP,

NPSSIN, TANS, TNSSIK, OR~MOCH1, UTIL, INC, CON, TEST, and

OBJ.

The NPS_51 directory contains the program executable

files, the current International Earth Rotation Service (IERS)

data file, configuration files and graphics drivers required

by the program, and the 'makefile' used for program

compilation. The NPS_51 directory will also include several

'.nps' files created by the NPS software for storing plot

information. Files contained in the NPS51 directory are the

only files necessary to run the program. Files contained in

all subdirectories are only required for source code

examination, program compiling, or modification.
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The UPS subdirectory contains source code directly related

to the NPS Relative Motion Plotting and State Vector Analysis

Program and subfunctions available to the NPS program.

The NPS_SIX subdirectory contains source code for the

shell programs of the various versions of the programs. These

shell programs call the appropriate initialization, operation,

and shutdown routines for the given version. These variations

give the user the option to generate simulated state vectors

and provide them to the program for program simulation,

generate state vectors and send them to a file, communications

port, or device, and to read simulated or actual state vectors

from a file, communications port, or memory into the NPS

program.

The ORBXNCH1 subdirectory contains source code for the

Cowell propagator. This propagator includes M-50 to WGS-84 and

WGS-84 to M-50 coordinate system transformations, Jacchia

atmosphere model and data files, the WGS-84 gravity model and

forcing functions, and the Runge-Kutta fourth order

integrator. The Cowell propagator was provided as an 'of f-the-

shelf' tool by the MacDonnell Douglas Corporation for DTO 700-

6. The internal structures and programming architecture of the

propagator are not necessarily the same as those used in the

NPS program.

The UTIL subdirectory contains source code for various

I.c' and '.asm' utilities called throughout the program by

other functions.
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The TANS and TANS 81 subdirectories contain source code

for the level I TANS GPS code.

The INC subdirectory contains source code for 'include'

files used at compile time.

The TEST subdirectory contains source code for various

routines written to develop or test segments of the NPS code.

The CON subdirectory contains source code for

communications routines used by the program for sending and

receiving data via the RS-232/422 port.

The OBJS subdirectory is required by the 'makefile' and

becomes the repository for object files created in the

compilation process.
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VI. PROGRAK FUNCTIONS

The NPS flight and test software was developed in a highly

modular fashion. It was designed as a group of common software

'tools' that could be used as plug-in modules. The functions

available include the standard 'C' library functions and an

assortment of functions specifically designed for use in the

NPS software. Because of the modularity built into the NPS

code, the flexibility exists to replace individual components

such as the propagator or plot routines, should more efficient

routines be developed at a later date, without making

modifications to the remainder of the code.

A. VECTOR/MATRIX FUNCTION LIBRARY

A collection of vector operation tools is included. These

tools are used extensively throughout the code. The following

are vector and matrix operators written for use in the

software.

The vectormagnitude function returns the magnitude of the

input vector. The protocol for vectormagnitude is:

double vector-magnitude(Vector *v)

The vector-unit function returns the unit vector of the

input vector. The protocol for vectorunit is:

int vector unit(Vector *vin, Vector *vout)
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The vectordot function returns the dot product of two

input vectors. The protocol for vector_dot is:

double vector dot(Voctor *vl, Vector *v2)

The vectorcross function returns the cross product of two

input vectors. The protocol for vectorcross is:

void vector cross(Vector *vlVector *v2,Vector *yout)

The vector transform function returns the transformed

vector product of an input vector and a transform matrix. The

protocol for vectortransform is:

void vector transfou(Vector *vin, Vector *vout,
double transtorm[3] [3])

The matrix-transpose function returns the transpose of the

input 3x3 matrix. The protocol for matrixtranspose is:

void matrix transpose (double min [31 [31,
double a out [31 [31)

The statevectoritolmatrix function returns the M-50

inertial coordinate system to LVLH coordinate system matrix

for the given input state vector. The protocol for

statevectoritolmatrix is:

int state_vectoritolmatrix(State_vector *sv,
double matrix[3] [31)

In addition to these useful operators, the vector rvbar

and vectordiff functions are used to manipulate the output

into the desired form for plotting.

The vectorrvbar function produces the position vector

from one state vector (target) to another state vector

(chaser). The inputs are assumed to be in GCI, and the output
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is returned in the LVLH of the principle state vector

(target). The output vector is used by the relative motion

plot. The protocol for vector rvbar is:

void vectorrvbar(Vector *target-pos,
Vector *target-vel,

Vector *chaser_pos,
Vector *rv)

The vectordiff function returns the difference vector of

two input vectors. The difference vector is used by the

'Sawtooth' plot to compare state vector position and velocity.

The protocol for vectordiff is:

void vector diff(Vector *vl, Vector *v2, Vector *vout)

B. COWELL PROPAGATOR

BGProp is a Cowell orbit propagator using a Runge-Kutta

fourth order integrator. BGprop was originally written by

Robert Gottlieb and Mike Fraietta of the McDonnell Douglas

Corporation for NASA and was modified for use in the NPS

software. (NOTE - The function BGProp is not written

internally with the same system of data structures or

modularity that exists in the remainder of the NPS software.)

BGProp provides high fidelity solutions for state vector

propagation at the expense of heavy computation. The

propagator consists of an M-50 to WGS-84 Earth centered Earth

fixed (ECEF) coordinate converter, the GEM-9 Earth gravity

model and a recursive forcing function routine, the Jacchia

atmospheric model, a Runge-Kutta fourth order integrator, and
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a WGS-84 to M-50 converter. While it is not the intent of this

paper to explain the details of the Cowell propagator, it is

necessary to provide some background of the components to

understand its function in the NPS software.

1. K-50 to WGS-84/WGS-84 to X-50 Converters

Integrating the equations of motion requires knowledge

of the forcing function acting on the body being propagated.

The forcing function is determined by the geopotential model

used. For an assumed spherical Earth (a two body problem), the

force acting on an orbiting object is a function of altitude

only. For an Earth with only zonal harmonics, the force is a

function of altitude and latitude. Either of these cases can

be integrated in inertial coordinates because rotation of the

Earth does not enter into the solution. Tesseral harmonics,

however, are dependent upon longitude and require knowledge of

ones position over the Earth relative to the Earth's

coordinate system. Use of these terms requires converting the

state vector from M-50 inertial coordinates to an ECEF

coordinate system. BGProp refers to this ECEF coordinate

system as a WGS-84 coordinate system.

2. G(-9 Gravity Model

The GEM-9 gravity model contains normalized zonal and

tesseral harmonic coefficients empirically determined from

actual satellite orbit tracking. These coefficients are

applied to a recursive non-spherical Earth potential function
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out to the specified number of harmonics (maximum of 30). This

forcing function is used to solve for body accelerations which

are integrated to obtain new velocities. Accuracy and

computation time for a propagation increase as more harmonics

are used. The gravity model selected during the flight

included four zonal and four tesseral harmonics.

3. Jacahia Atmospheric Model

An atmospheric model is necessary for drag

determination. There are many atmospheric models to chose

from, each with merits and limitations, and all subject to the

local uncertainty that is associated with weather forecasting.

For a study requiring knowledge of atmospheric constituents at

a specific place for a given amount of time, a highly accurate

model is desired. For the purpose of low Earth orbit drag

determination, where the body is moving rapidly through the

upper atmosphere and the average drag over a time period is

desired, a 'good' fast model will suffice.

The Jacchia '70' atmospheric model contained in this

code considers factors including latitude, longitude,

altitude, time of the year and local time of day, solar

activity and the Earth's geomagnetic activity and uses this

information to modify precomputed densities contained in

tabular form. The result is a fast atmospheric density

computation that approximates that density encountered by the

orbiting body as it circles the globe.
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The coded Jacchia 70 atmospheric model is limited to

use between 90 and 500 km altitude. The shuttle typically

flies between 200 and 350 km. The STS-51 mission flight

profile was between 300 and 350 km.

BGProp is called directly using the protocol:

void bgprop(double state vectortime,
Vector *positionin,
Vector *velocityin,
Perturbations *P,
double deltatime,
double step-size,
Vector *positionout,
Vector *velocityout)

or indirectly through the NPS interface function nps-bgprop

using the protocol:

int nps bgprop(State_vector *sv,
double new_time,
int is_orbiter)

C. P AND G FUNCTION PROPAGATOR

For propagations over relatively short time periods where

Keplerian motion (planer elliptical orbit) is assumed, the f and

g functions described in [Ref. 5] produce a good approximation

of the orbit motion with considerably fewer computations than

the Cowell propagator. These qualities make the f and g

functions desirable for use in the predictor and future thrust

functions, allowing fast calculation of predicted relative

motion into the near future (two to three orbits) without

consuming CPU time with the intensive calculations that are
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associated with the Cowell propagator. The f and g functions as

used in the NPS software are described in [Ref. 6].

The getolas function determines the classical orbital

elements from a given state vector. These classical elements are

used by the f and g functions. The protocol for getclas is:

void getclas(Vector *pos_o, Vector *velo,
double aeloMon[S], Perturbations *P)

The fandg function propagates the input state vector to a

given new time using the orbital elements derived in getclas.

The protocol for fandg is:

void fand_g(Vector *poso_, Vector *velo,
Vector *pos new, Vector *velnew,
double clas aeloMonES], double t dif)

The quickprop function is an implementation of getclas and

f and g and produces a new state vector for the given state

vector and new state vector time. This function is an

intermediate function that allows the use of any propagator to

be substituted for fand_g without changing the function call in

the calling routine. The protocol for quickprop is:

void quickprop(State-vector *old,
double new-time,
Perturbations *perts)

D. PREDICTOR FUNCTIONS

The NPS software utilizes the quickprop function described

previously to predict where the Orbiter will be with respect to

the target sometime in the future.
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The npsrvplotdisplayfuture function calls the f andg

function for a user specified number of times and step size for

a given R-bar/V-bar plot in order to display a predicted line of

motion of the chaser with respect to the target. Predicted

motion is displayed in steps ahead for the given step size. The

first ten steps are displayed as digits. For display of

predicted motion beyond ten steps, the "+" symbol is used for

each step and digits are displayed every tenth step. If

predicted motion based on user supplied thruster inputs is

desired, the npspredictorthrust function (explained below) is

called. The protocol for nps rvplotdisplayfuture is:

void nps_rvplot__displayfuture(Nps_rvplot-info *this)

The npspredictor__thrust function utilizes the quick-prop

function and arguments held in the Npspredictor structure to

add thrust velocity to the Orbiter state vector and implement

the quick_prop propagator to solve for the predicted relative

position of the Orbiter with respect to the target. Depending on

flags contained in the Nps_predictor structure, the solution may

be based on current orbital elements of the target and chaser,

or on the orbital motion following a programmed Orbiter burn at

some given time. To distinguish between predicted motion without

thrust and predicted motion with thrust, the "E" symbol is

substituted for the "+" for predicted motion following thrusts.

The protocol for npspredictorthrust is:

int npspredictorthrust(Nps_predictor *predictor,
State-vector *chaser)
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The npspredictor__ndv function is an implementation of the

two impulse time constrained rendezvous problem described in

[Ref. 5, p 179]. The function determines the thrust required to

intercept the target in a specified time. The protocol for

nps_predictor__rndv is:

int nps_predictorrndv(Ns_predictor *predictor,

State_vector *ta getin,
State_vector *chaor_in,
double time torendezvous)

(NOTE - The nps_predictorrndv function has been updated since

the STS-51 flight. The new algorithm is described in [Ref. 6])

B. PLOT/DATA FUNCTIONS

There are three types of plots: (1) six R-bar/V-bar plots

for various combinations of available state vectors, (2) four

'Sawtooth' plots for position and velocity comparisons of

Orbiter INS vs. TANS GPS and Orbiter Target vs. SPAS GPS

sources, and (3) three Pitch/Yaw plots for target pointing

information based on various input state vectors. Each plot has

common data handling functions and plotting functions.

The data handling functions for R-bar/V-bar and 'Sawtooth'

plots include a data initialization function, a data update

function, a display update function, a data save function, a

data flush function, and a data stop function. (The Pitch/Yaw

plot does not maintain a data history buffer, therefore it only

requires a display update function.)
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The data initialization functions, npszvplot__data init and

nps di!fplotdatamint, set up memory for the plot data history

ring buffer and load previously stored plot history files into

the buffer if applicable. Protocols for nps rvplot datainit

and np diffplotdatamint are:

int npsrvplotdata-init(Nps_rvplot_info *this,
ushort maxisa, ushort config_Am,
Zm-info *in)

int npsditffplotdatainit(Nps diffplotinfo *this,
ushort max - m, ushozt config_ m,
Im ino *i)

(ushort is a type definition for an unsigned short integer.)

The plot display initialization functions,

npsrvplotdisplayini t, ups diffplot display_init, and

npsyaplot__display_ int, call several subfunctions responsible

for displaying the initial plot graphics (axis, menu bars, etc.)

and plotting the historic data points stored in the ring buffer

for that display. Protocols for nps_rvplot displayinit,

nps diffplot displayinit, and npspyplot display_init are:

void npsrvplotdisplayinit(Npsrvplotinfo *this)

void npsdiffplot displayinit (Np. diffplot_info *this)

void npspylotdisplayinit(Npspylot_info *this)

The data update functions, np _rvplotdataupdate and

nps diffplot data update, take the latest appropriate state

vectors, processes plot information with either vector rvbar or

vector diff and load the processed plot data into the plot ring
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buffer. Protocols for ups_rvplot__data update and

ups dif fplot__datayupdate are:

void ups zvplot_data update (Nps rvplot info *this)

void ups diftplot__data-update(Nps _diftplot-into *this)

The display update functions, upsyvplot__display update,

ups-diffplot-display_.update, and upapyplot__display update,

take the latest appropriate state vectors, processes plot

information with either vector-rvbar, vector-diff. or

npspitchyaw, and display the processed plot data to the

screen. Protocols for ups rvplot_display update,

ups-ditplot display-update, and npspyplot__display_update

are:

void ups rvplot__display update (lps rvplot-into *this,
double target-time,
double chaser time)

- void ups diffplot display updte(Nps_dittplot_into *this,
double target-time,
double chaser-time)

void npspyplot__display update(Npspylot-into *this,
State-vector *target,
State-vector *orbiter,
Quatemnion *quat,
double target-time,
double orbiter time)

The data save functions, ups rvplot__data-save and

ups diffplot__data-save, store the current plot history ring

buffer to a file. Protocols for nps rvplot data-save and

ups-diffplot data-save are:
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void nps_rvplotdatasave(Nps_rvplot_info *this)

void npsdiffplot__datasave(Npsdiffplot info *this)

The data flush functions, npsrvplotdata-flush and

npsdiffplotdata_flush, clear the current plot history ring

buffer. Protocols for npsrvplotdataflush and

nps_diffplotdataflush are:

void nps rvplot dataflush(Nps_rvplotinfo *this)

void npsdiffplotdataflush(Npsdiffplot info *this)

The data stop functions, npsrvplot datastop and

npsdiffplot datastop, return the ring buffer memory reserved

in the data initialization process to the operating system.

Protocols for nps_rvplotdatastop and npsdiffplot data_stop

are:

void nps_rvplot datastop(Npsrvplot_info *this)

void nps diffplotdata stop(Nps diffplotinfo *this)

The plotting functions for each plot include a plot

initialization function, various functions for displaying state

vector times and other computed values such as distance to

target, and functions for displaying plot points (or lines in

the case of the Pitch/Yaw plot.)

F. GPS FILTER

The program contains a least squares fit GPS state vector

filter originally written in Fortran by Dr. Lubomyr Zyla of the

McDonnell Douglas Corporation for NASA. TANS GPS state vectors

provide high position accuracy on the order of a few hundred
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feet. TANS velocity vectors are not so accurate with errors on

the order of one meter per second. For state vector propagation

over short periods of time this is manageable. For longer

propagation, the velocity error can cause significant errors in

the propagated state. The purpose of a filter is to 'smooth' the

errors in position and velocity so that long propagations may be

used in the event the TANS unit is switched off or stops

functioning.

The GPS filter is a 'batch' filter, meaning all the

operations required to reach a solution are performed each and

every time a filtered state vector is desired. The filter

maintains a state vector buffer of the latest sixty TANS GPS

state vectors. When activated, the GPS filter propagates

backwards the latest seven TANS GPS state vectors through the

last sixty collected TANS GPS state vectors with a high fidelity

propagator (bgprop), and compares the outcomes with the recorded

state vectors. It uses the results to determine a new 'smoothed'

state vector. The large number of high fidelity propagations

make this function very CPU intensive.

The architecture of the filter code is similar to that of

the plot data functions. This allows for the inclusion of

alternate, faster and more accurate filters should they become

available in the future. The filter includes functions for data

update, data saving, data flushing, and filter execution.
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The upsfilterdatasave function saves a state vectors

position and time in the filter data ring buffer. The protocol

for ups_filter__datasave is :

void ups filterdatasave(Nps_filter_info *this)

The npsfilter__data_update function checks an incoming GPS

state vector against the last incoming GPS state vector to

determine if it is a new state vector. If it is new,

nps filterdatasave is called. The protocol for

ups filterdataupdate is :

void upsfilterdataupdate(Npsfilterinfo *this,
Statevector *new vector)

The npsfilter__dataflush function clears the filter data

ring buffer. The protocol for npsfilter__dataflush is:

void nps filter__dataflush(Nps_filterinfo *this)

The ls_filter function is a 'C' implementation of the least

squares fit GPS state vector filter. The protocol for ls_filter

is:

int lafilter(Statevector *tansin,
State_vector *tansout,
double tans buf[4] [603,
int fbi, int point_nu,
Perturbations *P)

The ups filterrun function uses data stored in the

filter buffer and calls lufilter to process this data and

produce a smoothed GPS state vector. The protocol for

nps_filterrun is:

void nps filter__run(Nps_filter info *this,

Statevector *outvector, Perturbations *P)
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G. UDIT FUNCTIONS

The program consists of several edit screens. Each screen

is composed of edit fields and labels. An edit field has a

screen position (x and y) and contains a converted character

string representing some binary variable value. An edit label

has a screen position and contains characters to be printed on

the screen.

The edit screens allow the user to manually input or edit

certain data for various functions. The data being edited may

be data that is currently in use by the program. It may even

be data that is changing such as a state vector. The program

can not stop to wait for data that it needs for processing to

be updated by a user. For this reason, real-time editing

screens are employed. The real-time edit screen holds the data

being edited in a temporary variable until the editing is

complete. The new or edited data is reinserted into the

original variable upon leaving the current edit screen.

Four types of edit fields exist: (1) integer edit fields,

(2) double edit fields, (3) "yesno" edit fields ("yes" is an

integer equal to one, "no" is an integer equal to zero), and

(4) day/hour/minute/second (dhms) edit fields.

For each type of edit field there are three edit field

call back functions, "get", "put" and "key". The "get"

function converts its data into a string. The "put" function

converts the string back to the appropriate data type. The

"key" function behaves like a mini key handler for the data
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field in use, allowing keyboard entry of the new data string.
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VII. SOFTWARE OPERATION

Like any program, the NPS software accepts input, operates

on that input, and produces output. These processes are the

subjects of this chapter.

A. PROGRAM INPUT

The NPS software uses data 'packets' containing state

vectors and a quaternion as input. These inputs are used to

produce the various plots for graphical display of the

information.

The state vector describes the motion of an orbiting body

in a rectangular coordinate system. It consists of a position

vector and a velocity vector each containing x, y, and z

components, and a time. All state vector comparisons contained

in the NPS software are performed in M-50 (Aries-mean-of-1950

Cartesian coordinate system) inertial coordinates. State

vector sources used in the NPS software include:

" Orbiter INS State Vector - defines the shuttle Orbiter
state. Initial states and updates are provided via a
ground tracking solution or the orbiters star trackers.
The states are propagated in the orbiter computer by the
'Super-G' propagator.

* Target INS State Vector - defines the state of the
ORPHEUS/SPAS or other satellite that the Orbiter is
conducting proximity operations with. Initial state is
provided by ground tracking.

* Orbiter GPS State Vector - defines the Orbiter state as
described by the onboard TANS GPS unit.
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0 SPAS GPS State Vector - defines the ORFEUS/SPAS satellite
state vector as described by the German GPS unit contained
onboard the ORFEUS/SPAS.

The Orbiter state vector operates in one of two modes,

inertial navigation mode and a relative navigation mode. In

the inertial navigation mode, the Orbiter state is updated via

ground tracking. This mode provides a state vector

representing the state of the Orbiter in inertial space. In

the relative navigation mode, a target state vector is up-

linked to the Orbiter. The target state vector is considered

to be a 'truth' vector. The Orbiter's star tracker is trained

on the target to smooth the Orbiter state vector relative to

the target. At closer ranges (<30 miles) this relative state

vector can be further smoothed using sensor data from the

Orbiter's KU-band radar to get an accurate real-time relative

tracking solution.

The quaternion relates the Orbiter body coordinate system

to the M-50 inertial coordinate system. It is calculated from

angular rates determined by the inertial measurement unit

(IMU) and updated by the Orbiter's star tracker. The

quaternion is required by the NPS software for computing

attitude related information such as pointing information to

the target.

B. DATA OPERATIONS

The NPS software receives M-50 inertial state vectors from

various sources and processes these to provide relative motion
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and vector difference plots. To accomplish this, the incoming

state vectors must be propagated to the same point in time,

then transformed into the appropriate form for display. The

following is a simplified explanation of how the code works by

way of an example.

A valid Orbiter INS state vector is received by NPS with

a time tag of 0:00:00. At time 0:00:04, four seconds later, a

valid Orbiter GPS state vector is received. The NPS software

recognizes that it has two different state vectors and that it

would like to compare them. The time stamp of the older state

vector is compared to the time stamp of the newer state vector

and the time difference, At, is computed (four seconds in this

case.) The older state vector and the At are arguments passed

to the propagator.

The propagator is responsible for matching the time stamps

of two state vectors. In the propagator, the passed M-50

inertial state vector is transformed into Earth Centered Earth

Fixed (ECEF) coordinates. In these coordinates, the Earth

gravity model and atmospheric model are applied to determine

the geopotential forcing function and drag. The resulting

forcing function is integrated over time At using the Runge-

Kutta integrator. The propagated ECEF state vector is

transformed back into M-50 inertial coordinates and returned

to the NPS main routine. The two state vectors are now matched

in time and comparison of position and velocity is performed.

61



C. PROGRAM OUTPUT

The NPS software presents state vector comparisons in

three different forms: (1) the R-bar/V-bar plot, (2) the state

vector difference or 'Sawtooth' plot, and (3) the Pitch/Yaw

display.

1. R-bar/V-bar Plots

The R-bar/V-bar plot displays the relative motion

between a target and a chaser vehicle and is of particular

importance during rendezvous and proximity operations. The

relative motion plot uses a target-centered coordinate system
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Figure 7-1. Sample R-bar/V-bar plot.
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*- which the Z-axis rotates with the target and is positive

"irected radially toward the Earth, the X-axis is curvilinear

and positive in the direction of orbit motion, and the Y-axis

is out-of-plane and completes the right-hand coordinate

system.

R-bar/V-bar plots are available for the following

target/chaser combinations of state vectors:

" SPAS GPS/Orbiter GPS

* SPAS GPS/Orbiter INS

* Orbiter GPS/Orbiter INS

* SPAS GPS/Orbiter target

* Orbiter target/Orbiter GPS

* Orbiter target/Orbiter INS

Figure 7-1 is an example of an R-bar/V-bar plot.

Orbiter GPS/Orbiter INS and SPAS GPS/Orbiter target

plots are not used as relative motion plots. They are used as

another method of viewing the difference vector and show on

the R-bar/V-bar display where the inertial navigation system

thinks the Orbiter or SPAS is located relative to where GPS

believes it to be.

2. Sawtooth Plots

The relative difference or 'Sawtooth' plots display

the difference in the magnitudes of the position or velocity

vectors of two source state vectors. This is the tool used to

quantify the error between the inertial navigation system and
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GPS. The term 'Sawtooth' was derived from the expected output

display of the plot. It is known that the inertial system will

drift over time. Assuming the GPS state vector error to be

small and the GPS position to be close to the true value, it

GPSINS Position Diference vs. Time
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Figure 7-2. Sample 'Sawtooth' plot.

was expected that the difference vector magnitude would grow

over time. On each occasion of an INS update from ground

tracking or onboard star trackers, it was expected that the

difference vector would be reduced to a small value as the INS

position and velocity were returned to values inside the GPS
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error. The results from these plots serve to validate or

invalidate the use of GPS for Orbiter state vector updating.

Two state vector source combinations for 'Sawtooth' plots are

available:

" Orbiter GPS/Orbiter INS

* SPAS GPS/Orbiter target

Figure 7-2 is an example of a 'Sawtooth' plot.

3. Pitch/Yaw Displays

The Pitch/Yaw display gives a graphical presentation

of the Orbiter (TOP and SIDE views) and a target pointing
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Orb-6PS 212/05:57:30.000

Pitch Distance Yau
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Figure 7-3. Sample Pitch/Yaw plot.
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vector measured in pitch up from Orbiter body X-axis and yaw

about the rotated Orbiter body Z-axis. These angles are

computed from the state vectors of the Orbiter and target, and

the Orbiter quaternion. Target distance is also shown. Three

Target/chaser state vector source combinations for the

Pitch/Yaw plot can be selected:

" SPAS GPS/Orbiter GPS

* Orbiter target/Orbiter INS

* SPAS GPS/Orbiter INS

Figure 7-3 is an example of a Pitch/Yaw plot.
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VIII. DATA COLLUCTIE AD ANALYSIS

During Discovery's ten day mission, hardware equivalent to

the flight hardware was assembled in Mission Control at the

Johnson Space Center (Figure 8.1). The 128 Kbyte downlink data

stream was wired into a desktop computer and a GRID 1535

laptop computer, each loaded with the "PCDecom" software. The

desktop "PCDecom" unit was used to record the downlink

telemetry for the entire flight on digital magnetic tape. This

data was used for playback and post-flight analysis. The

laptop "PCDecom" unit was connected via an RS-232 port to

another generic laptop computer loaded with the NPS software

(stand-alone flight version). This allowed ground personnel to

view the program in realtime exactly as the flight crew saw

it. All state vector information for the Orbiter inertial

system and the ORFEUS/SPAS were available for plotting. The

TANS GPS data was not available for viewing from Mission

Control during the flight.

Post-flight data analysis

included preparation of the

data for replay and merging

of the PCMMU recorded data

and the TANS GPS data stored

separately in flight.

Subsequent sections of this ig 8.1 DTO eqiit in

Kission Control during flight.
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chapter summarize the flight data collected and analyzed at

the time of this writing with respect to the objectives of the

DTO stated in Chapters I and II.

A. OPS STATE VECTOR ANALYSIS

The level II DTO objective, comparison of GPS state vector

data with corresponding inertial or ground tracking state

vector solutions, was met yielding very useful results.

Comparisons of both Orbiter INS vs TANS GPS and Orbiter target

vs SPAS GPS were obtained.

GPS/INS Position Oifferonce vs. Time

Orb-OPS 261/=2 15 12.750
Orb-INS 261/02z2351.813

,.,

JI0
50000 I~gzo 1ua=0 zu=o0 25000.0 30000.0

t.Imi(sec) maq(r) 1.099 Kft
time 27101 sac

Figure 8.2 Orbiter INS vs TANS GPS uSawtoothm plot
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1. Orbiter INS va TANS GPS

A comparison of the inertial solution for the Orbiter

state and the TANS GPS solution was performed during flight

when the Orbiter attitude was permitted four satellite GPS

reception. While continuous GPS state vector information was

not available throughout the flight, there were several

periods of continuous reception exceeding several hours in

duration. This allowed observation of the expected 'sawtooth'

predicted in the Orbiter INS vs TANS GPS difference plot.

Figure 8.2 shows the state vector differences for GPS

input states vs inertial states during the longest continuous

period of GPS state vector reception during the mission. Over

the eight hour period shown, the difference in the INS and GPS

position is observed to grow to approximately 35,000 feet

before a navigational update from the ground removes inertial

system drift error and reduces the error to approximately 1000

feet. GPS state vector reception is lost shortly after the

update.

Figure 8.2 shows the first step in validating the use

of GPS for on orbit navigation. While the inertial system

position accrues a significant error over time, the GPS

position error remains bounded by the limits of the GPS

receiver and the dithering of the incoming GPS signal caused

by selected availability (SA).

It is important to note that the data shown in Figure

8.2 includes only comparison of the incoming GPS state
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vectors, not the propagated GPS state. Propagation of the GPS

state vector yields a position difference plot with erratic

spikes between updated states due to errors in GPS velocity on

the order of one meter per second. Such errors are probably

due to the high Position Dilution of Precision (PDOP). of the

GPS signal observed during flight and concur with expected

errors for the observed PDOP. (Ref. 7]

2. Orbiter Target vs SPAS GPS

Comparisons of Orbiter target and SPAS GPS state

vectors were also made through clever manipulation of the post

flight data. During flight the target state vector was updated

only periodically when necessary to perform certain tasks such

as rendezvous commencement. During the rendezvous itself, it

was not necessary to continually update the target state

vector because, once the rendezvous commenced, the target

state was assumed to be a truth state and the Orbiter state

was computed relative to the target. Following the rendezvous

and capture of the SPAS, the SPAS GPS data could be compared

to the Orbiter inertial system since the Orbiter state and the

target state coincided.

Figures 8.3 and 8.4 show a comparison of position and

velocity between SPAS GPS and the coincident Orbiter

INS/target states for a sample time period following capture

of the SPAS. These plots show both the incoming state and its

NPS propagated value. State vector updates can be identified
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Figure 8.4 Representative data of comparison of SPAS GPS and
Orbiter target state vector velocity.

71



by the beginning of the discontinuities shown. These plots

illustrate the danger of propagating an orbit with a bad state

vector velocity. Position errors accumulate rapidly. The

updated position fixes, however, are quite consistent with

position errors around 1000 feet.

B. GPS RELATIVE NAVIGATION

The level III DTO objective of plotting the rendezvous

profile with relative GPS was a partial success. Relative GPS

navigation was not possible during the rendezvous due to the

lack of TANS GPS state vectors during this period. The four

satellite reception required for three dimensional GPS

position determination was not achieved by the onboard TANS

GPS unit during the rendezvous event. However, SPAS GPS

reception was good during this period and relative positioning

of the SPAS GPS with respect to the Orbiter inertial state

vector was possible. The relative motion plots produced were

similar in appearance to the relative motion plots produced

using inertial state vector sources but lacked the accuracy

and relative smoothing required for use during rendezvous

operations.

C. RELATIVE MOTION PLOTTING RENDEZVOUS AID

The level IV DTO objectives provided the most exciting

results of the project as the program demonstrated itself to

be a powerful and useful tool during the rendezvous with the
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ORFEUS/SPAS providing operationally useful information to the

flight crew in realtime.

Targ-INS 262/0S51:46.373 hbar
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Figure 8.5 SPAS Rendezvous. TI Burn (initial look)

Figure 8.5 shows the rendezvous profile up to one and one

half revolution prior -o intercept with the pre/post-TI burn

predictors displayed. Using the uplinked TI burn rates given

by mission control, the crew was able to view the predicted

results of the upcoming maneuver.

As the Orbiter closed tne distance to the SPAS, the

relative state vector solution is 'sweetened' by the
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rendezvous radar. As figure 8.6 illustrates, the NPS software

predicted the fact that the planned TI burn might cause the

Orbiter to fall short of the targeted intercept unless larger

than planned MC burns were performed following TI. The actual

TI burn did, in fact, target the Orbiter short and the crew

was well prepared when the larger MC burns required for

rendezvous were calculated.

Targ-INS 262/09 37:01.253 h,
Orb-INS 262/09:37:01.253 1

N S
-182.391 ft

-12.8K

-6.4K

I I , I I I I
76.8K 51.2K 25.6K -25.6K -51.2K -76.8K

6.4K

12.8K
vbar -51.871 Kft

bur 620 r bar -1.732 Kft
od 2047 dst 51.902 Kft

Figure 8.6 SPAS Rendezvous TI Burn. Predictor falls short
of target.

Given a similar situation in the future, using a certified

code with the NPS features, an operator could conceivably use
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the Predictor/Future Thrust option of the software to 'walk'

the post-TI predicted trajectory to the desired intercept

point and suggest modifications to burns as appropriate. The

value of this tool is even more evident in a situation where

realtime communications with mission control is impractical,

such as a manned mission to Mars, or when communications are

not possible due to communications loss such as that occuring

during the TDRSS gap.

Figure 8.7 shows the final minutes of the rendezvous. The

serpentine trajectory recorded is the result of several
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Figure 8.7 SPAS Rendezvous. Final Approach.
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braking and elevating (negative R-bar) maneuvers used to

achieve V-bar crossing 400 feet ahead of the target. Review of

the cockpit video tape taken during the rendezvous and debrief

discussions with Discovery pilot Bill Readdy revealed that the

NPS software confirmed information from 'approved' flight aids

as well as providing that information faster and more reliably

than previous programs used for rendezvous operations.

Significantly, the inertial system was able to sense the

firing of maneuvering thrusters allowing the NPS software

predictors to provide instantaneous feedback of a maneuver's

effectiveness to the crew. As a result of the improved

situational awareness provided by the NPS software and other

rendezvous software flown on STS-51, Discovery's mission

commander, Frank Culbertson, skillfully executed the most fuel

efficient rendezvous to date in the space shuttle program.

[Ref. 8] In fact, data provided in [Ref. 91 confirmed that the

actual fuel consumed during the manual flight phase of

Discovery's rendezvous was about 66 percent of budgeted fuel

usage for the same period.
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IX. LESSONS LEARNED

While the Development Test Objective was an unqualified

success, as with any project, there were many lessons learned

and areas for improvement found. The following is a summary of

items noted for both improvements to the software and to the

manner in which it is employed.

A. 'GIGO' (GARBAGE IN, GARBAGE OUT): GPS VELOCITY ACCURACY

The NPS relative motion plots are only as good as the

state vectors provided to the program. This introduces the

problem of poor accuracy of velocity derived from GPS data.

Assume that the GPS position information is good. If the

velocity error is significant, then any propagation of the

state vector will integrate that error over the time of

propagation. Unfortunately, GPS derived velocity errors are on

the order of a meter per second. This is a significant error

in terms of orbital motion. Propagation of state vectors with

velocity errors of this magnitude leads to significant

position errors in short time spans.

Solutions to this problem may include incorporation of a

Precise Position Service (Military) GPS receiver to reduce the

errors caused by selected availability, the use of recursive

Kalman filtering of the GPS state vector to smooth the

velocity solution, or a combination of both. The use of the

77



least squares fit GPS filter currently used by the program is

an inadequate solution due to the time it requires to produce

a smoothed state vector.

B. MORE "GIGO' OR 'NINO' (NOTHING IN, NOTHING OUT)

Related to the GIGO problem noted above is the problem of

discontinuous data. Again, the program output is only as good

as its input. Of course, if no target state vector is

available, then relative motion plotting is impossible. Such

was the case for significant portions of the flight.

The target state vector was not maintained by ground

tracking except (and fortunately) during separation,

rendezvous, and proximity operations with the ORFEUS/SPAS. The

SPAS GPS state vector was only available during limited time

periods during the flight due to the high volume of telemetry

from the ORFEUS/SPAS's onboard experiments. Segments of the

flight when neither the target state vector nor the SPAS GPS

state vector were available severely reduced the capabilities

of the relative motion plotting functions. Relative motion

plotting is still available if the target state vector is

known and hand keyed into the program. However, this

information is still dependent on the ground providing good

target state vector information to the crew. The lack of a

good target vector during periods of SPAS GPS reception also

hampered comparison of these two state vector sources.
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The TANS GPS data is not continuous as the GPS reception

was dependent upon the Orbiter's flight attitude. In addition,

while good TANS GPS reception was the rule during the flight,

the four satellite coverage required for three dimensional

position and velocity determination was the exception. As a

result, the actual percentage of flight time with good TANS

GPS state vectors was small. Possible solutions for this

include the use of exterior mounted GPS antennae in future

flights to increase the range of good Orbiter attitudes for

reception.

C. THE GPS FILTER

The GPS filter written by McDonnell Douglas for the

software, while functional, was inadequate for the required

task. This filter requires high fidelity propagation of the

latest seven GPS state vectors back through the last sixty

collected GPS state vectors (420 high fidelity propagations),

and comparison of the outcomes with the recorded state vectors

in order to solve for one 'smoothed' state vector. This

'batch' process takes on the order of one minute of CPU time

on the computers currently in use. This dedication of CPU time

to a single task was not an affordable luxury for the mission.

The need for continual GPS data reception, processing, and

storage to disk, as well as plotting functions of the NPS code

precluded use of the filter.
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A recommended replacement for the least squares fit GPS

filter might be a recursive filter that stores a solution and

updates that solution progressively rather than performing a

'batch' operation upon selection.

D. TDRSS COMUNICATIONS GAPS

Once every revolution the Orbiter experiences a total loss

of communications with the ground due to the gap in TDRSS

coverage over the Indian Ocean. This loss of signal, or LOS,

lasts between seven to eight minutes and includes a loss of

the down-link telemetry stream which is stored on digital

magnetic tape for post-flight analysis. The crew does not

experience this loss of data in flight. In fact, the telemetry

is stored onboard and down-linked after communications are

restored. The data can then be recovered and integrated with

the recorded data. This process requires additional data link

hardware, some clever programming, and considerable

coordination with NASA. An alternative approach might be to

store the NPS data packets on board on the laptop hard disk

during LOS in the same manner that the TANS GPS data was

stored throughout the flight. Integration of the 'gapped'

data collected on the ground and the NPS data packets stored

on board during LOS could be accomplished by much simpler

means than the process required to recover the LOS data from

NASA.
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R. A POST-FLIGHT DZBRIIF/TRAINING TOOL

The NPS software has a significant value as a post-flight

debriefing tool. Once the flight data is replayed from the

digital tape and the NPS packets are stored to disk,

rendezvous and proximity operations from the flight can be

reviewed by the flight crew and by crew members preparing for

future missions on the 'replay' version of the program. The

simulator version of the NPS software can also be used for

crews to practice their own maneuvers or demonstrate

hypothetical scenarios. Either replay or simulation require

only a desktop or laptop computer. While not a substitute for

current trainers and simulators, this capability is an

invaluable supplement to both flight crews and to support

personnel who otherwise might not receive expensive simulator

time.

P. GROUND CONTROLLERS AID

In a similar fashion to that described above, the NPS

software is also a valuable situational tool to mission

control/payload support personnel, providing a real-time

picture of the rendezvous when video down-link is not

available. (Use of the KU-band radar during rendezvous

precludes the down-link of video due to limited bandwidth.) It

is possible for ground personnel to plug into the data link at

mission control regardless of whether or not the Orbiter is

equipped with the appropriate hardware and software. This was
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the case in December 1993 when crew members of STS-60,

practicing for the Wake Shield Facility experiment in 1994,

and Hubble Space Telescope representatives used the NPS

software at mission control during the Hubble Space Telescope

rendezvous.
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X. CONCLUSIONS

The NPS software positively contributed to the outcome of

the STS-51 mission and continues to be a springboard for

research and experimentation in the use of real-time data for

situational awareness to assist the flight crew on orbit. The

best subjective review of the software comes from the flight

crew of STS-51. Their inputs concerning the project are

recorded in the STS-51 FLIGHT CREW REPORT (Ref. 10] and

appropriate remarks follow.

For reference, the certified rendezvous software used by

NASA is "Payload Bay" (PLBAY). PLBAY is not automated,

requiring the operator to manually input most parameters. The

program does not offer many of the options available in the

NPS software. It also does not offer the flexibility for

growth that the NPS software contains. The "Rendezvous/Prox

Ops Program" (RPOP), is an automated version of PLBAY,

offering reduced need for user interface, but no new

functionality over PLBAY. These programs are referred to in

the remarks regarding the NPS software.

A. Flight Crew Remarks

The most convincing argument for continued use of programs

like NPS on future missions comes directly from feedback

provided by the flight crew. Mission Specialist Dr. James
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Newman conuents on the use of the NPS software in the STS-51

FLIGHT CREW REPORT. Referring to the

npsrvplotdisplayfuture and npspredictorthrust

functions, he writes;

...These programs (PLBAY, RPOP, and NPS) ran from well
prior to TI through the entire rndz and prox ops. The NPS
code was able to perform future burns as well as "what if"
thruster firings and predicted that the TI burn would
result in a short rndz case. This was born out and MC1
through 4 all worked to correct this.

Dr. Newman compared the outputs and functionality of the NPS

software to PLBAY and RPOP, stating;

... RPOP and the NPS plots were evaluated against the
certified version of PLBAY and contributed to the overall
situational awareness. The NPS code had a number of
features desirable in operational versions of RPOP,
including the ability to select predictors more than 9
minutes in the future. It was also able to maintain the
no-thrust predicted trajectory and the "what-if"
trajectory at the same time, making comparisons of desired
thrust inputs easier to do. And NPS kept track of the
number of "what-if" firings in the various directions and
the net delta-v in the orbiter axes.

Dr. Newman's recommendations to NASA were clearly stated;

Incorporate desirable features from the NPS code into RPOP
to improve situational awareness during the rendezvous and
proximity operations.

Concerning the GPS on-orbit demonstration, Dr. Newman

reported;

... The NPS software produced a delta plot of the GPS
position and on-board position. The first time this was
observed, the delta was -18kft. A short while later it was
observed to be about 300 ft! This was just before and
after MCC unlinked a new orbiter state vector and showed
dramatically that the GPS was working as expected.
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Post-flight analysis of the GPS data, Orbiter onboard

position, and reference trajectory have since confirmed the

real-time data observed in flight. [Ref. 11]

B. Future NPS Software Development

The NPS software is not fixed. It is a continually

evolving experiment with the goals of rontinued improvement in

providing the flight crew with added situational awareness.

Since the return of STS-51, the software has been modified to

incorporate features suggested by astronauts and mission

planners. New features include the ability to view the

relative motion plot from side, top, and end on views, display

of closure rates, orbital plane crossing rate (Y-dot) and the

plane crossing time, and improvements to display options such

as scaling.

A modified version known as "NPS lite", processing only

the Orbiter and target state vectors, and displaying Orbiter

pitch, roll, and yaw angles (to observe Orbiter dynamics), was

prepared for use by STS-60 in 1994 for providing display of

the rendezvous and proximity operations of Discovery with the

Wake Shield Facility experiment.

Currently, STS-66, scheduled to fly late in 1994, is

evaluating the use of NPS for another GPS relative navigation

test. On this flight the GPS equipped SPAS will again be

deployed and retrieved. The TANS GPS receiver will be located

in the payload bay to improve GPS signal reception.
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Still cther flight opportunities exist if the NPS software

continues to offer useful features not currently available in

'approved' software. Some of these desirable features include

the incorporation of the payload bay laser data (this system

is being brought on line for use in MIR and Space Station

rendezvous), raw radar data solutions, and a 'Windows' version

of the program.

The NPS software serves as a working, "proven" test and

evaluation program for new uses of real-time data available

via "PCDecom". This includes evaluation of new algorithms for

rendezvous and relative motion display, comparison of future

test navigational sources, and visual display of non-

navigational data such as the shuttle's remote arm position.

The opportunities for future research and development are

unlimited. It is the hope of the thor that others will

continue to use and develop the NPS software, offering

improvements that will make it a still more valuable product

in our nation's space program.
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APPENDIX A

DWFINITIONS

Body Axis Coordinate System

A Cartesian right-handed coordinate system with origin at
the Orbiter center of mass. The X-axis is parallel to the
Orbiter structural body X-axis, positive towards the nose.
The Z-axis is parallel to the Orbiter plane of symmetry,
positive down with respect to the Orbiter fvselage. The Y-
axis completes the right-handed system.(Ref 2: p. A-2)

Earth-centered, Earth-fixed (ECEF) Coordinate System

A Cartesian coordinate system. The center is at the Earth's
center, The X-axis points toward the Greenwich meridian at
the equator, the Z-axis points toward the North Pole, and
the Y-axis completes the right-handed coordinate system.
The coordinate system rotates with Earth.

Local-vertical, Circular (LVC) Coordinate System

The LVC coordinate system is a target-centered coordinate
system. The Z-axis rotates with the target and is positive
directed radially toward the Earth. The X-axis is
curvilinear and positive in the general direction of orbit
motion. The Y-axis is normal to the target's orbital plane
and completes the right-hand coordinate system.

Local-vertical, Local-horizontal (LVLH) Coordinate System

The LVLH coordinate system is a target-centered coordinate
system. The Z-axis rotates with the target and is positive
directed radially toward the Earth. The X-axis is positive
in the general direction of orbit motion. The Y-axis is
normal to the target's orbital plane and completes the
right-hand coordinate system.
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Midcourse Correction (MC) Maneuver

Rendezvous maneuver performed as necessary to ensure a
correct intercept from Terminal Initiation (TI) to the
target.(Ref 2: p. 3-8)

M-50

Aries-mean-of-1950 Cartesian coordinate system. Inertial
coordinate system with the origin at the center of the
Earth. The epoch is the beginning of the Besselian year
1950 or Julian ephemeris date 2433282.423357. The X-axis
points toward the mean vernal equinox of epoch, the Z-axis
points toward the Earth's mean rotational axis of epoch and
is positive north, and the Y-axis completes the right-
handed system.(Ref 2: p. A-i)

Remote Manipulator System

Mechanical arm on the payload bay longeron. It is
controlled from the Orbiter aft flight deck to deploy,
retrieve, or move payloads.

Orbiter

Manned orbital flight vehicle of the Space Shuttle system.

Orbiter Star Tracker

The Orbiter star tracker (STRK) is an image dissector
electro-optical tracking device used to obtain precise
angular measurements of selected stars and sun illuminated
orbiting objects (targets). These measurements are used to
determine the Orbiter's attitude in inertial space, and
this data is used to align the inertial measurement units
(IMUs). The STRK also provides angular data from the
Orbiter to a target being tracked.(Ref 2: p. 2-1)

Posigrade Burn

A posigrade burn is one which increases the speed but does
not change the direction of the spacecraft at the point it
is applied. A posigrade burn increases the energy, semi-
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major axis, and period of the orbit. For example, if the
orbit was originally circular, a posigrade maneuver will
create an elliptical orbit,with the thrust point becoming
perigee and apogee occurring 180 degrees of orbit travel
away.(Ref 2: p. 1-11)

Radial Burn

A radial burn is one in which the thrust is applied in a
direction perpendicular to the spacecraft's velocity vector
and in the orbital plane of the spacecraft. (Ref 2: p. 1-18)

Retrograde Burn

A retrograde burn is one which decreases the speed but does
not change the direction of the spacecraft at the thrust
point. A retrograde burn decreases the energy, semi-major
axis, and period of the orbit. For example, if the orbit
was originally circular, a retrograde maneuver will create
an elliptical orbit,with the thrust point becoming apogee
and perigee occurring 180 degrees of orbit travel away. (Ref
2: p. 1-11)

RS-232

Standard serial port interface.

RS-422

Standard serial port interface.

Selected Availability

This is the name of the policy and implementation scheme by
which users of GPS will have their accuracy limited to 100
meters 2dRMS horizontal and 156 meters 2dRMS vertical. (Ref
1: p. D-3)

Space Shuttle

Orbiter, external tanks, and solid rocket boosters.
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State Vector

The state vector defines the state of an orbiting body. The
state vector consists of a position vector, a velocity
vector, and a time.

Terminal Initiation (TI)

The Terminal Initiation burn is designed to change the
rendezvous approach from one of phasing to a direct
intercept. The burn occurs approximately 5 minutes before
orbital noon at the apogee of the post NCC orbit. (Ref 2: p.
3-7)

Quaternion

A four parameter representation of a transformation matrix.
It provides a numerical relationship between coordinate
frames. Quaternions are used due to their convenient small
size; that is, four parameters, as opposed to nine
parameters in a transformation matrix (or direction cosine
matrix). This greatly reduces computer computation time
when numerous coordinate frames are involved in a
transformation.(Ref 4: p. 1-1)

WGS-84

World Geodetic System (1984), a mathematical reference
ellipsoid used by GPS, having a semi-major axis of 6378.137
km and a flattening of 1/298.257223563. (Ref 3: p. D-4) This
model is used for orbit perturbation harmonic prediction.

WGS-84 is also used to refer to an earth-centered, earth-
fixed (ECEF) coordinate system.
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£B533VIATIOUS

CCTV Closed Circuit Television
COAS Crew Optical Alignment Sight

DTO Development Test Objective

ECEF Earth-centered, earth-fixed coordinate system

GPS Global Positioning System

LVC Local Vertical Circular Coordinate System
LVLH Local Vertical/Local Horizontal Coordinate System

IMU Inertial Measurement Unit
INS Inertial Navigation System

KU-BAND 15.250 to 17.250 GHz

MCI Midcourse Correction Maneuver 1

NC1 Nominal Correction 1 (Phasing Maneuver)
NCC Nominal Corrective Combination (Maneuver)
NH Nominal Height (Adjustment Maneuver)

ORFEUS Orbiting Retrievable Far and Extreme Ultraviolet
Spectrometer

PCMMU Pulse Code Modulation Master Unit
PGSC Portable GRID Systems Computer
PRCS Primary Reaction Control System
PROX OPS Proximity operations phase

R-bar (R) Radius vector axis

SA Selected Availability
SEP Separation
SPAS Shuttle Pallet Satellite (German)
STRK Orbiter Star Tracker
STS Shuttle Transportation System

TI Terminal Initiation

V-bar (V) Velocity vector axis
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APPENDIX B

NPS SOFTWARE USER MAWUAL

A. Organization

This user manual is divided into two main parts.

" Getting Started - This first section describes how to
install and start the NPS State Vector Comparison and
Relative Motion Plotting program (referred to as the NPS
software).

* Tutorial - The Tutorial is an introduction to the NPS
software. The basic functions are described. For a
detailed reference of functions, see Chapters V, VI, and
VII of the Naval Postgraduate School thesis NPS State
Vector Analysis and Relative Motion Plotting Software for
STS-51 by Lt. Lee Barker, USN, and Chapters III, IV, and
V of the Naval Postgraduate School thesis Theoretical
Basis for State Vector Comparison, Relative Position
Display, and Relative Position/Rendezvous Prediction by
Lt. Lester Makepeace, USN.

B. Getting Started

1. NPS Software System Requirements

The NPS software written for STS-51 DTO 700-6 was

designed to run on the GRID 1530 Portable Grid Systems

Computer (PGSC). The GRID 1530 PGSC contains an 80386 10 MHz

CPU with an 80387 coprocessor, 4 Mbytes RAM, 200 Mbyte

internal hard disk, 1.44 Mbyte 3.5" floppy drive, and RS-

232/422 ports. The basic NPS software requires:

* IBM PC/XT or compatible MS-DOS computer, 10 MHz 80386 or
faster recommended.

* MS-DOS Version 3.0 or later.
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0 640 Kbytes of memory.

* Expanded Memory System recommended.

* A hard disk with 3 Mbytes of free space.

* A 1.44 Mbyte 3.5" floppy disk drive.

* Color Graphics Adapter (CGA), Enhanced Graphics Adapter
(EGA), Video Graphics Array card (VGA), AT&T Graphics card
(ATT), or compatible.

* Borland C++ Version 3.1 is required for executable file
compiling. Borland C++ is not required to run the program.

In addition, certain variants of the NPS software may

require additional hardware:

* An RS-232 port for software executable files utilizing the
communications port for data reception or transmission.

* An RS-422 port or RS-232 port with RS-422/RS-232 converter
is required for actual TANS GPS data collection.

2. Disk Contents

The NPS software is in compressed format on one or

more 1.44 M byte 3.5" diskettes. The disk should include the

following files:

nps_32.zip npsdat32.zip nps_exe.zip pkunzip.exe

After installation, your \STS51NPS directory will

contain the following subdirectories:

NPS NPSSIM TANS TANSSIM ORBMECHI

UTIL INC COM TEST OBJS

The STS51NPS directory contains the executable files,

the current International Earth Rotation Service (IERS) data
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file, configuration files and graphics drivers required by the

program, and the 'makefile' used for program compilation.

STS51NPS files include:

att.bgi cga.bgi egavga.bgi gpsalm.dat

iers.dat litt.chr makefile nps.cfg

ans.chr savedat.bat savesrc.bat tans.ild

tans.osc turboc.cfg worldmap.dat worldmap.raw

The STS51NPS subdirectory contains executable files

included in 'npsexe.zip' or additional files when created by

the 'makefile' and Borland C++ Version 3.1. These include:

tans.exe TANS, with NPS *** STS-51 Flight Version ***

tans spd.exe TANS, no NPS, with SPDRIVE

tans5lsm.exe TANS, with NPS, Sim from file

tans5lfn.exe TANS, no NPS, testing

tsim.exe TANS device simulator

testcom.exe Com-port tester (via built-in interrupts)

testdev.exe Com-port tester (via DOS device driver)

com_txrx.exe Com-port two-way tester (via interrupts)

vmode.exe Video-mode switcher

scom.exe NPS Simulator, input com-port (built-in), no

output

sdev.exe NPS Simulator, input com-port (DOS driver),

no output

sdev-dly.exe NPS Simulator, **post-flight data replay**,

input disk, no output

sprp.exe NPS Simulator, input propagator, no output

sdsk.exe NPS Simulator, input disk, no output
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smem.exe NPS Simulator, input memory (from disk), no

output

prp_dsk.exe NPS Generator, input propagator, output disk

prp_dev.exe NPS Generator, input propagator, output

com-port (DOS driver)

prp_com.exe NPS Generator, input propagator, output

com-port (built-in)

nps.exe NPS Stand-alone, ** STS-51 Flight Version **

test vec.exe Vector functions tester

map_raw.exe Map-file converter, text to raw

ermmtest.exe EMM functions tester

tansdump.exe TANS data-file dumper

tans vec.exe TANS data-file vector dumper

The STS51NPS subdirectory will also include several

'.nps' files created by the NPS software for storing plot

information. These files can be deleted using the Dos command

'del *.nps' prior to program start-up if the user does not

want to see the plots from an earlier run.

The NPS subdirectory contains source code for the NPS

program shell and plotting routines along with several other

available functions. NPS files include:

difdata.c dif-plot.c fandg.c 1sfilter.c

menuplot.c nps.c nps.h npsdap.c

nps_edit.c npsfilt.c npsm50.c nps-m5O.h

npsnone.c npsplot.c npspred.c plane.c

py_data.c pyplot.c rvdata.c rvplot.c
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The NPSSIM subdirectory contains source code for the

program shells of the various versions of the program. These

variants give the user the option to generate simulated state

vectors and provide them to the program for program testing

and simulation, generate state vectors and send them to a file

or communications port, or read simulated or actual state

vectors from a file, communications port, or memory. NPSSIM

files include:

gcomcom.c gcomdev.c gdisk.c gnone.c

nps-main.c scom.c scomdly.c scomold.c

sdisk.c sdisk2.c sim.c sim.h

smem.c sprop.c spropdsk.c

The ORBMECH1 subdirectory contains source code for the

Cowell propagator. The propagator includes M50 to WGS-84 and

WGS-84 to M50 conversions, Jacchia atmosphere model and data

files, the GEM-9 gravity model and forcing functions, and the

Runge-Kutta fourth order integrator. ORBMECH1 files include:

amatrix.c bgprop.c cowell.c der.c

gem9.c getiers.c gotpot.c iers.h

itowgs84.c jacatm.c jacdat.c m5Ornp.c

rk4.c rnpd.c rnpm5O.c util.c

util.h
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The UTIL subdirectory contains source code for '.cI

and '.asm' utilities used by the program. UTIL files include:

edit.c edit fld.c edit rt.c

emmcons.c emm_lowa.asm emm_map.c

emmimapm.c keyget.asm keyint9.asm

swapd.asm swapf.asm swaps.asm

tdblhms.asm tdblstr.asm tgps_utc.c

thins dbl.asm thins str.asm timer.asm

v j2000.c v_m50.c vmatrix.c

v_quat.c vrvbar.c vvector.c

The TANS and TANSSIM subdirectories contain source

code for the DTO 700-6 level I TANS GPS code written by Mike

Arnie for NASA. This code is required for compiling the

integrated program and is included for completeness but will

not be discussed in this report. TANS files include:

almanac.c almanac.h constant.h display.c

display.h exit.c log.c log.h

m5Oeph.c m50_eph.h maindis.c mapdis.c

mapdis.h miscdis.c miscdis.h miscfun.c

miscfun.h npsfake.c nps_if.c para_dis.c

para-dis.h prctpkt.c prctpkt.h spcedit.c

spcedit.h tanssys.c tans5l.c tans5l.h

tansfile.h tanstime.c tanstime.h tglbtype.h

tnsiof.c tns io f.h tnsprtfn.c tnsprtfn.h

tnsprtsm.c
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TANSSIM files include:

tsim.c tsim.h tsim_2x.c tsim_3x.c

tsim_5x.c tsimex.c tsim_pkt.c

The INC subdirectory contains source code for

'include' files used at compile time. INC files include:

comport.h comport.inc const.h edit.h

editrt.h emm.h keys.h npsif.h

orbmechl.h packet.h pkt-if.h swap.h

tanspkt.h times.h times.inc types.h

vector.h

The TEST subdirectory contains source code for various

routines written to develop or test segments of the NPS code.

TEST files include:

comtxrx.c emmtest.c map raw.c pkt_cln.c

pkt_show.c tansv2.c tansvec.c tansdump.c

test.c test com.c test dev.c test vec.c

testl.c test2.c vect old.c vmode.c

The COM subdirectory contains source code for

communications routines used by the program for sending and

receiving data via the RS-232/422 port. COM files include:

cominta.asm comintc.c orbfile.c orbpkt.c

orbport.c tanspkt.c tansfile.c tansport.c

tanspkt2.c
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The OBJS subdirectory is required by the 'makefile

and becomes the repository for object files created in the

compilation process.

Updates to the NPS software may contain additional

files not listed above.

3. Program Installation

The following instructions assume drive A is a 1.44 M

byte 3.5" floppy disk drive and drive C is the hard disk. If

this is not the case, substitute the correct drive designation

when following the instructions.

1. Create a directory on your hard disk called \STS51NPS
and set it to the current directory:

C> C:

C> MKDIR \STS51NPS

C> CD \STS51NPS

2. Insert the floppy disk labeled STS_51 NPS SOFTWARE into
drive A and copy the contents into C:\STS51NPS:

C> A:

A> copy *.* C:

A> C:

Remove the disk from drive A.

3. Decompress the files on the hard disk using the included
PKUNZIP.EXE:

C> pkunzip -d -o nps_32.zip

C> pkunzip -d -o npsdat32.zip

C> pkunzip -d -o npsexe.zip
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The subdirectories will be created and the files will
automatically be decompressed in the appropriate
directories.

4. Make an OBJS subdirectory in the STS51NPS directory:

C> MKDIR \OBJS

5. If using Borland C++ Version 3.1 to compile the NPS
software, edit the 'BCCPATH','LIBPATH', and 'INCPATH'
lines in the 'makefile' in the STS51NPS directory to
reflect the correct path of 'bcc.exe', and the Borland
C++ library and INCLUDE files.

This completes program installation.

4. Configuration

The NPS software utilizes the memory configuration

file, 'nps.cfg', located in the 'STS51NPS' directory, to

reserve RAM for program use. The amount of memory available is

system dependent. The amount of memory required by the program

includes the executable file and the sum of the eight plot

history buffers. Most systems will be limited to a total of

640 Kbytes. Each plot history buffer can hold a maximum of 64

Kbytes of data. The individual plot buffer sizes are set in

the configuration file to the desired amount using any ASCII

editor. The expanded memory option is also available by

editing this file.

In addition to the 'nps.cfg' file, the graphics driver

files (*.bgi), character files (*.chr), and the 'iers.dat'

file must be present in the STS51NPS directory.

The 'iers.dat' file contains daily variations in the

Earth's rotation vector from the Mean of 1950 (M-50) rotation
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vector. The file contains data for a 90 day window. The

program has been coded to fail if propagation is attempted

outside the 90 day window. This hard coded failure can be

removed but the propagations would assume no variation in the

Earth's rotation vector and produce erroneous results. The

'iers.dat' file included with the software includes the STS-51

flight window. For current IERS data, contact the US Nav '

Observatory.

C. Program Compiling

The included makefile and Borland C++ version 3.1 are used

to compile the executable files. The source code contains pre-

processor commands that allow customizing the compilation

process for a particular program. If optimal rendezvous

prediction functions are desired, the modifier -DRNDZ is used.

If GPS data is available, the modifier -DGPS is used.

For example, to compile the post-flight analysis version

of the software, "sdevdly.exe", including optimal rendezvous

prediction functions and GPS data, the command line input

would be:

C> make -DRNDZ -DGPS sdevdly.exe

The "makefile" was created this way in order to allow

compilation of the smallest possible executable file and still

meet the operators requirements. NOTE - Versions compiled

without the full capabilities of the NPS software will lack

some of the features discussed in this manual.
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D. Starting the NPS PrograU

Once the desired program version has been compiled using

the makefile provided, the program can be executed. Program

initiation procedures depends upon the version being run. For

the integrated TANS GPS/NPS version, the NPS program is called

from the TANS GPS program via a function key. For stand alone

versions, typing the executable file name at the DOS prompt

starts the program. Some versions prompt the user for

information at start up (ie communications port number, data

file paths/names, etc.). These are self explanatory.

The executable file "sdev-dly.exe" included is used to

play back post-flight data and is a good version to start with

for learning the program operation. The program needs the

"PCDecom" data packet file and the (optional) TANS GPS data

file for the desired time period of the flight.

After executing "sdevdly" at the command prompt, the user

is asked to provide the data source. The default is com-port

two. Over-write the default with the data file name (ie

51_r.dat) and press <ENTER>. The "SIM MENU" appears. Press

<Fl> to change the delay time between data points in the

playback. <ESC> always takes the user back to the previous

menu. From the "SIM MENU" press <alt S> to start or stop the

data playback. <F6> is used to enter the NPS program.
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3. A Program Tour

Upon entry into the NPS program, the CRT displays a

program title, four M-50 state vectors in raw received form

and in post-propagated form, and an options menu containing a

choice of plot displays and program settings menus. From the

start-up display, the user can immediately see if data is

being received from any of the four input state vector

sources: (1) Orbiter INS, (2) Orbiter GPS, (3) Orbiter target,

and (4) SPAS GPS.

1. Plot Menu Options

The NPS software presents state vector comparisons in

three different forms: (1) the R-bar/V-bar plot, (2) the state

vector difference or 'Sawtooth' plot, and (3) the Pitch/Yaw

display. These are selectable by use of the <FUNCTION> keys as

noted on the menu bar.

a. R-bar/V-bar Plots

The R-bar/V-bar plot displays the relative motion

between a target and a chaser vehicle and is of particular

importance during rendezvous and proximity operations. The

relative motion plot uses a target-centered coordinate system

in which the Z-axis rotates with the target and is positive

directed radially toward the Earth, the X-axis is curvilinear

and positive in the direction of orbit motion, and the Y-axis

is out-of-plane and completes the right-hand coordinate

system. (Figure B-1.)
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Figure 3-1. R-bar/V-bar plot.

As a relative motion plot is normally used when the

phase angle between the target and chaser is small, the

coordinate systems used in a relative motion plot can be

thought of as a local vertical/local horizontal (LVLH)

coordinate system centered at the target. Thus, if the chaser

were directly below the target on the radius vector to the

Earth's center (R-bar), it would appear on the +Z axis of the

relative motion plot. Similarly, if the chaser was ahead of
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the target on the target's velocity vector (V-bar), it would

appear on the +X axis on the relative motion plot.

R-bar/V-bar plots are selectively available through

the use of <FUNCTION> keys for the following target/chaser

combinations of state vectors:

* <Fl> SPAS GPS/Orbiter GPS

0 <F2> SPAS GPS/Orbiter INS

* <F3> Orbiter GPS/Orbiter INS

* <F4> SPAS GPS/Orbiter target

* <F5> Orbiter target/Orbiter GPS

* <F6> Orbiter target/Orbiter INS

Plots <F3> and <F4> are not used as relative motion

plots. These are used as another method of viewing the

difference vector and show on the R-bar/V-bar display where

the inertial navigation system thinks the Orbiter or SPAS is

located relative to where GPS believes it is.

R-bar/V-bar plots can be selected from the main

menu or from any other plot.
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b. Savtooth Plots

The relative difference or 'Sawtooth' plots display

the difference in the magnitudes of the position or velocity

vectors of two source vectors. (Figures B-2., B-3.) This is

the tool used to quantify the error between the inertial

navigation system and GPS. The results from these plots serve

to validate or invalidate the use of GPS for Orbiter state

vector updating. Two 'Sawtooth' plots are selectively

available through the use of <SHIFT> <FUNCTION> keys:

* <SHIFT> <F3> Orbiter GPS/Orbiter INS

" <SHIFT> <F4> SPAS GPS/Orbiter target

Once a 'Sawtooth' plot has been selected, the <F9>

key toggles the plot between position and velocity vector

comparison.

'Sawtooth' plots can be selected from the main menu

or from any other plot.

'Sawtooth' plots are only available on program

versions compiled with the -DGPS modifier.
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c. Pitech/Yaw Displays

The Pitch/Yaw display gives a graphical

presentation of the Orbiter (TOP and SIDE views) and a target

pointing vector measured in pitch up from Orbiter body X-axis

and yaw about the rotated Orbiter body Z-axis. (Figure B-4.)

These angles are computed from the state vectors of the

Orbiter and target, and the Orbiter quaternion. The Pitch/Yaw

display is selected with the <ALT><F5> keys. Target/chaser

state vector source combinations for the Pitch/Yaw plot can be

selected with the <F9> key. Choices include:

" SPAS GPS/Orbiter GPS

* Orbiter target/Orbiter INS

* SPAS GPS/Orbiter INS

The Pitch/Yaw display can be selected from the main

menu or from any other plot.
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d. Como= Plot Features

(1) Plot Labels

All plots display the source state vector

labels and the day/time of the most recent state vector from

that source in the upper left hand corner of the display.

(2) Plot History Buffers

The R-bar/V-bar and 'Sawtooth' plots each have

a ring buffer for storing screen displays. This permits the

user to leave a display and return to it later and see the

historical motion or difference plot. The buffer sizes are set

in the 'nps.cfg' configuration file. The maximum buffer size

for each plot is 64 kbytes. The type of plot determines the

number of bytes per data point required. The number of stored

data points and the total number of points available for each

plot is presented in the lower left hand corner of the

display.

(3) Menu Bars

Menu bars are used to assist the operator by

providing a quick reference of available functions at the

bottom of the display screen. The multiple menu bars are

cycled through by pressing the <SPACE> bar on the keyboard.
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2. Change Settings Menu Option

The NPS software package includes an interactive

settings display that allows the user to manually input state

vector information, alter default settings and data used by

the propagator, change default screen and buffer settings, and

adjust parameters in the thrust/predictor mode (discussed

later). The 'Change Settings' displays are entered by pressing

<FlO>. <Page Up> and <Page Down> are used to display the

desired settings page. There are seven settings pages:

* Sample and Step Rates

* Propagation Perturbations

* Orbiter Inertial State Vector

* Orbiter Target State Vector

* Orbiter GPS State Vector

* SPAS GPS State Vector

* Thrust Information

To change a setting on a display, the user must

advance the curser to the desired setting using <TAB> or

<ENTER>, overwrite the setting, and press <ENTER> prior to

exiting the settings menu.
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Sample and Step Rates

Sample rates (in secs, 0 - fast)
plots show: 0
buffer save: 10

Orb-GPS filter save: 9
auto-rerun: N rerun delay: 300

Step size for propagation (in secs): 10
Maximum propagation time (in secs): 1800

Position pre ctor settings
Points to splay: 40
Step size secs): 60
Auto-mode delay: 8

a. Sample and Step Rates Page

The Sample and Step Rates page displays for editing

plot show rate, buffer save rate, Orbiter GPS filter save

rate, filter auto-rerun and rerun delay rate, propagator step

size, maximum valid propagation time, and predictor settings.

These parameters are defined below.

* Plot Show Rate - minimum time, in seconds, between screen
writes of relative motion data.

* Buffer Save Rate - minimum time, in seconds, between plot
data points recorded in the plot buffer files.

* Orbiter GPS Filter Save Rate - minimum time, in seconds,
between TANS GPS state vectors stored in the GPS filter
buffer.

* Orbiter GPS Filter Auto-Rerun Switch - ON/OFF switch for
the filter auto-rerun feature. When active, the filter
will execute and solve for a new filtered state vector to
propagate from every rerun delay rate.
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" Propagator Step Size - Time increment, in seconds, for the
orbit propagator to step forward with.

* Maximum Valid Propagation Time - The maximum time, in
seconds, that the propagator will propagate forward to.

* Position Predictor Points to Display - Number of Predictor
points (defaulted to minutes) to display.

* Position Predictor Step Size - Step size, in seconds
between predictor points.

* Predictor Auto-mode Delay - Delay, in seconds, between
execution of automatic predictions when in AUTO PREDICT
mode.

All times/rates are in seconds.
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Propagation Perturbations

Drag Mode on: Y

Ballistic numbers
Orbiter: 64
Payload: 64

Drag Information
Solar Flux: 185.959340379
Mean Solar Flux: 178.644769868
Geomagnetic Activity Index: 178.644769868

Propagator Information
Zonal Harmonics: 4
Tesseral Harmonics: 4

b. Propagation Perturbations Page

The Propagation Perturbation page allows editing of

the current propagator parameters. These include:

" Drag Mode Status - ON/OFF switch for use of drag forces in
the propagator. Default is ON.

* Orbiter/target Ballistic Numbers - Ballistic coefficients
(m/CDA) for Orbiter and target used in determining drag
forces.

* Solar Flux - The predicted F-10.7 solar activity index.
This parameter affects the height of the atmosphere and,
hence, the atmospheric drag.

* Mean Solar Flux - The 90 day average solar activity index.
This parameter affects the height of the atmosphere and,
hence, the atmospheric drag.

* Geomagnetic Activity Index - Measurement of the Earth's
magnetic activity.

* Zonal/Tesseral Harmonics - The number of harmonic terms of
the geopotential function to include in the gravity model
(up to 30). Using more harmonics increases the accuracy of
the propagator at the cost of increased computation time.
Default is 4/4.
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Orbiter GPS State Vector

Position x: 15432.6498524
Kft y: -15172.9904659

z: 0.971861685925

Velocity x: 17.9049415653
Kft/s y: 18.1705472718

z: -0.00226579476339

Time (ddd/hh:mm:ss): 211/06:30:00.000

Use Realtime Vector: Y

Apply time correction: N (delta in secs): 0

Source for GPS vector (0 GPS-M50, 1 GPS-WGS84): 0

Converter for WGS84-M50 (0 iload file, 1 computed): 0

c. State Vector Pages (4)

The State Vector Pages present and allow keyboard

entry of each of the four state vector inputs. Definable

parameters include:

* State Vector Position - M-50 inertial coordinates X, Y,
and Z in kilofeet.

* State Vector Velocity - M-50 inertial velocity Vx, Vy, and
Vz in kilofeet/sec.

* Time - The universal time stamp of the given state vector
in day of the year, hour, minute, and second.

* Use Realtime Vector - An ON/OFF flag, determines whether
or not to accept new state vectors from the TANS or the
Orbiter's Navigation computer. This option would be turned
off in the event of erroneous data from the online
sources. Propagation would then take place from the last
given or hand keyed state vector shown on the page.
Default is ON.
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0 Apply Time Correction - An ON/OFF flag. OFF accepts the
time tag of a state vector as is. ON modifies the time tag
by a specified number of seconds. Default is OFF.

GPS source State Vector Pages include the following additional

options:

* Source for GPS State Vector - Flag for determining source
state vector coordinate system, M-50 or WGS-84. Default is
M-50.

* Converter for WGS-84 to M-50 - Flag for determining
conversion scheme of WGS-84 state vector to M-50 state
vectoi.. The 'iload file' option uses a data file with a
conversion matrix for a specified recent date and the
converter uses the matrix modified for the passage of time
sinc, the file date. The 'computed' option performs the
complete WGS-84 to M-50 conversion for each state vector.
The 'computed' option costs more computation time. Default
is 'iload file'.
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Thrust information (ft/s)

X-comp Z-comp
DAP-A +x up 0.056000 0.009870 10 deg pitch

-x down -0.056000 0.009470 9.6 deg pitch
+z out 0.055000
+z in -0.076000

(low-z) +z out 0.052000
+z in -0.076000

DAP-B +x up 0.016000 0.002820
-x down -0.016000 0.002700
+z out 0.024000
z in -0.034000

(low-z) +z out 0.013000
+z in -0.034000

Future thrust: N Note:future thrusts use the current
Now + 000/00:00:00.000 attitude, so answers are valid
or at 211/04:27:00.000 only during inertial hold, the

alternative is to apply thrust in
LVLH

hrust in LVLH: N
Thrust on: N Total thrust (XYZ): 0.0000 0.0000 0.0000

TTR (Do NOT pick whole orbit intervals!): 000/01:00:00.000
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d. Thrust Information Page

The Thrust Information Page presents and allows

keyboard entry of thrust vector data to be used by the

predictor for displaying predicted relative motion based upon

planned thruster firings. Parameters include:

" DAP-A/DAP-B Single Impulse Thrust Settings - Orbiter
impulse thrust components for the Digital Auto-Pilot (DAP)
A and B modes in feet per second. Default settings shown
are actual values for the Orbiter thruster system.

* Future Thrust - An ON/OFF flag for future thrust relative
motion predictor function. This function, when activated,
allows the programming of thruster firings at a specified
time in the future and displays the predicted relative
motion on the R-bar/V-bar display along side the predicted
motion of the Orbiter without thruster inputs.

* Future Thrust Activation Time - Time (ddd/hh/mm/ss) of
desired thrust inputs relative to present time or in
absolute UTC.

* Thrust in LVLH - An ON/OFF flag. ON indicates thruster
inputs are in the LVLH coordinate system. OFF indicates
thruster inputs are in Orbiter body coordinates. Default
is OFF.

* Thrust On - ON/OFF flag indicating if the thrust function
is active. Default is OFF.

* Total Thrust - Current thruster settings (XYZ) in feet per
second.

* Time to Rendezvous (TTR) - Input time used by the program
Rendezvous function for determining the optimal two
impulse rendezvous thrusts. This time cannot be a multiple
of the orbital period due to singularities in the
function. Default is one hour.

3. Additional Functions and Program Features

An assortment of tools and features were included in

the NPS software to provide additional information to the

user. These features can be found on the menu bar at the
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bottom of each plot. Multiple menu bars are available and can

be cycled through by pressing the <SPACE> bar.

a. Plot Scallg/Shlfting

All R-bar/V-bar plots are independently scalable in

the V-bar and R-bar direction. V-bar scaling is accomplished

through the use of left and right <arrow> keys. Similarly, R-

bar scaling is accomplished with the up and down <arrow> keys.

All 'Sawtooth' plots are scalable in magnitude (Y)

and time (X) with the same arrow key scheme.

Plot shifting (left,right,up,down) is available on

all R-bar/V-bar and 'Sawtooth' plots in a similar manner to

plot scaling using the <CTRL><arrow> keys.

b. Past Pitch/Yaw

If the program

operator desires current & .3
211,02 -2 0

pitch/yaw information while

remaining in an R-bar/V-bar -0.

plot, the Fast Pitch/Yaw

option, <ALT><F6>, is i I
4.0( 2.2k 1.4K

available. This option

displays the target's
Figure 3-5. Sample Fast P/Y

current pitch and yaw angles display.

in degrees and range in the

upper left hand corner of the current plot. (Figure B-5.) The

Fast Pitch/Yaw function is a one time calculation at time of
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execution, freeing up CPU time that is used for continuous

pitch/yaw plotting in the <ALT><F5> Pitch/Yaw display.

c. Predictora

Relative motion prediction is available by

propagating the orbits ahead in time, allowing the user to see

where the Orbiter will be in the future. The predictor

function can be singularly executed for a one-time prediction,

<F7>, or placed in an automatic update mode, <F8>. Initiation

of the predictor displays the future position of the Orbiter

on the screen in increments set by the user. The default

settings are for ten points at one minute intervals. Both the

number of points and the interval are adjustable by changing

settings in the 'Sample and Step Rates' Page of the Change

Settings <F10> function.
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d. H-bar Display

The R-bar/V-bar plot does not include out-of-plane

component information. To provide this information visually,

the H-bar, or momentum vector component of displacement can be

displayed in the upper right hand corner of the screen. This

display is toggled On or Off by the <ALT><F9> key. Default

setting is On.

e. GPS Filter

The program contains a least squares fit GPS state

vector filter developed by the McDonnell Douglas Corporation

for NASA. TANS GPS state vectors provide high position

accuracy on the order of a few hundred feet. TANS velocity

vectors are not so accurate with errors on the order of one

meter per second. For state vector propagations over short

periods of time this is manageable. For longer propagations,

the velocity error can cause significant errors in the

propagated state. The purpose of a filter is to smooth the

errors in position and velocity so that long propagations may

be used in the event the TANS unit is switched off or stops

functioning.

The filter is implemented by the <CTRL><Fl> keys.

This filter maintains a state vector buffer of the latest

sixty Orbiter GPS state vectors. In the event that the Orbiter

GPS state vector is lost due to a TANS failure, the GPS filter
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function solves for a smoothed state vector to continue

propagation with.

f. DAP made

The Digital Autopilot, or DAP, mode allows the user

to input thruster firings at present or future times to

examine the resulting relative motion on the R-bar/V-bar plot.

Activation of the DAP mode key <CTRL><F7> displays the DAP

menu bar. The DAP mode menu consists of the following options:

* DAP-A/DAP-B Mode <a>/<b> - Toggles the DAP mode between
DAP-A and DAP-B. This is essentially a change in the
magnitudes of thruster impulses.

* Low Z Mode <z> - Toggles the DAP mode between normal mode
where maximum efficiency of thruster is desired, and Low
Z mode where plume impingement on a nearby object located
above the Orbiter payload is the primary concern.

* LVLH/Body Mode <L> - Toggles the DAP mode to recognize
thruster inputs in Orbiter body or Local Vertical Local
Horizontal coordinates.

* Left/Right/Up/Down <arrow> keys - manually adjust the
input thrust one impulse per key depression.

* Reset <SPACE> - Turns DAP mode display off.

* Redisplay <ENTER> - Refreshes display with current DAP
mode thruster settings.

Thruster firings can be entered in LVLH or Orbiter body

coordinates by the arrow keys in this mode, or alternatively

from the Change Settings <F10> Thrust Information page. From

the Thrust Information page, the time of thrust implementation

may be set allowing for viewing of future Orbiter motion based

on planned maneuvers.

125



NOTE - Upon entering the DAP mode, keyboard control

is turned over to the DAP mode keyboard handler. NPS keyboard

functions such as scaling or plot selection are not available

in this mode. Keyboard control is returned to the NPS keyboard

handler upon exiting DAP mode (<ESC> key).

g. Rendezvous Predictor

The rendezvous predictor function, <CTRL><F6>, is

an application of the two impulse optimal rendezvous

algorithm. When activated, the rendezvous predictor solves for

the thrust required to complete the rendezvous and applies

this thrust to the predictor. This function is available only

when the program is compiled with the -DRNDZ modifier.
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