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DIGITAL FILTER DESIGNS THEAT ARE FREE OF
LIMIT CYCLES

Scott M. Bolen
April 1993

Abgtract: Finite word-length adders and quantizing methods used to
construct digital filters can cause non-linearities to occur in the
closed-loop filter system. Such non-linearities can degrade system
performance in what is known as a limit cycle behavior of the output.
Overflow oscillations are limit cycles that are induced by the repeated
overflow of finite word-length adders used in filter realizations. It
is possible to construct digital filters that are free of overflow
oscillations. Non-linear analysis techniques can be used to derive
conditions to govern digital filter designs that will be free of
overflow oscillations. This paper will formulate a general theorem to
snsure that nth order digital filters will be free of overflow
oscillations. An implementation of digital filters with two's
complement arithmetic adders is included to demonstrate the result of
the analysis.

I) INTRODUCTION

Digital filter systems are implemented using finite word-length
arithmetic adders. Because these adders are physical devices of finite
precision it is possible for overflow to occur in instances when large
signals are added together. The overflow of finite precision adders is
a non-linear operation. For repeatad overflow the output of the filter
can result in periodically recurring values that form a limit cycle.

Stable linear digital filters can be designed to be free of
overflow oscillations. Conditions can be imposed on the state variable
equation of the linear filter to ensure that overflow non-linearities
cannot exist. Thers are two basic approaches to the analysis which
derive such conditions. The most popular approach has been the Lyapunov
method. The other approach is to use a non-linear frequency domain
criteria similar to the circle or Popov criteria.

In 1969, Eber, Mazo, and Taylor (3] presented a comprshensive
investigation of limit cycles induced by adder overflow. They
characterized conditions for which second order digital filters can
remain free of limit cycles. In 1978, Mills, Mullis, and Roberts (1}
were able to extend this earlier work to include two theorems that
guarantee digital filter realizations that are free of overflow
oscillations. Also, in 1975, Claasen, Mecklenbrauker, and Peek [5) used
the non-linear frequency analysis criteria to develop filters that do
not exhibit limit cycles.

II) LYAPUNOV APPROACH [1]

A stable linear digital filter can be represented by the equation:
X(t+l) = AX(t) + bu(t). (1)

When the digital filter is implemented the linear filter system is
imposed with non-linearities and becomes the non-linear system given by:

X(t+l) = F(X(t),u(t)]. (2)
The state space of the digital filter can be described as:
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C = (XERM: |Xi| < 1 for each i}. - (3)

When the trajectories of the linear filter system, eq (1), remain inside
the state space described by C, then a zero-input digital filter behaves
properly, that is, no overflow oscillations will occur at the output of
the filter. However, when the trajectories of the filter system leave
the state space of the filter overflow oscillations can occur that will
induce a limit cycle behavior.

Conaider the non-linear digital filter model described by Mills,
Mullis, and Roberts:

P(X,u) = H(AX + bu) (4)
where A

|B(X)|i = h(xi) (5)
and the non-linearity h(*) must satisfy the conditions:

(1) |n(v)| <1 for all v

(1) h(v) = v if |v| < 1. (6)

These two conditions imply that

|h(v)| < |v] for all v. (7)
This model is valid when the non-linearity h(*) is a two's complement
characteristic and the filter is given in its state variable form.
Conditions for digital filters free of overflow oscillations will be
developed from this model. Por now the effect of quantization errors
will be neglected.

For u(t) = 0 the digital filter model reduces to a gero-input
system. The szero-input non-linear filter system can be written as:

X(t+l) = H{AX(t)]. (8)

Mills, Mullis, and Roberts have derived results that test for the
existence of overflow oscillations and provide conditions that guarantee
such pericdic solutions cannot occur in digital filter realizations.
Their results are stated in two theorsms (see also Appendix):

Theorem 1: If there exists a diagonal matrix D with positive
elements such that the matrix equation D - A'DA is positive definite
then overflow oscillations will be impossible. The only periodic
solution of the system

X(t+l) = H[AX(t))
is the identically zero solution.

Theorem 2: Theorem 2 gives conditions for which second-order .
digital filters will be free of overflow oscillations. PFor a 2x2 matrix
A whose eigenvalues satisfy |i| < 1, there exists a positive definite
diagonal matrix D
ife

(L) (al2)(a21) 20 (9)
or Lf (al2)(a2l) < 0, then

(11) |a11 - a22| + det(A) < 1. (10)
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The conditions of theorem 2 can be extended to form a more general
result. PFor an nth order digital filter consider theorem 3.

Theorem 3: For an nxn matrix A whose eigenvalues satisfy |A| < 1,
there exists a positive definite diagonal matrix D iff

(i) Permutations of (aii)(ajj) > O (11)
for 1,y = 1,2,3,...,n

(i1) (gau)z + 2 Z (Permutations of (aii)(ajj)) (12)
Z¥(det(n))2 < 1.

For any stable linear digital filter there exists a two's
complement implementation that will be free of overflow oscillations.
From the Lyapunov stability theorem it is known that the unique solution
P to the matrix equation

Pl = A'PA + I

is positive definite. If T is a symmetric square root of
P~1 then,

P~l = 1 - (T1laT)'I(T"1AT)

Hence, the coordinate transformation T will produce a new A that will
meet the conditions of theorem 1.

Example 1:
From theorem 2, digital filters can be designed that are free of

overflow oscillations. Por example, consider the second-order digital
filter of figure 1 [2): :

re 2 4 »- 2]

x =[]
From the conditions of theorem 2, the filter is free of overflow
oscillations if:
(al2)(a21) = -b2 > 0
or if
(al2)(a2l1) = -b2 <0,
then
|a1l - a22| + det(A) = b1 + b2 < 1.
Thersfore, overflow oscillations are absent if
|b1| + [b2] < 1.

This example shows how theorem 2 can be used to design "direct form"
digital filters (see also figure 2).
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Example 2:

Digital filters with the property A'A = AA’' are called "normal”.
Filters of normal form are free of overflow oscillations; this is
evident form theorem 1. Choose D = I, then the conditions for which
overflow oscillations cannot occur will be satisfied. This is true from
the spectral property of normal matrices. The eigenvalues of I - A'A
are (1 -F&}. Since A is stable, the eigenvalues of I - A'A are
positive. Hence, the symmetric matrix I - A'A is positive definite.
Other important features of normal filters is their low sensitivity to
parameter quantization, low round~off noise, and they are invariant
under frequency transformation.

III. FREQUENCY AMALYSIS APPROACH (S)

Again, consider the stable linear filter system described by
eq(l). In the realization of this filter quantizers are used to keep
signals form exceeding the finite precision of the practical devices
used in the system. Quantization is the truncation or rounding of a
signal to an arbitrary precision. Quantization of signals is a non-
linear operation which induces limit cycles to occur in the closed-loop
filter system. The model for digital filters with quantization errors
is shown in figure 3. The non-linear system has a linear part W and a
non-linesarity Q. Claasen, Mecklenbruaker, and Peek have used frequency
analysis techniques similar to the Popov and circle criteria to develop
conditions for which zero-input digital filters will be free of limit
cggécna Their results extend the earlier work done by A.I. Barkin in
1 {6}. .

If the non-linearity Q is a sector bounded non~linearity specified
by (see also figure 4):

Q(0) = 0 (13a)
and

0 < gﬁfl <k, for all x + 0 ' (13b)

then conditions can be derived on the state variable equation of a
digital filter to ensure that limit cycles will not occur in the zero-
input, closed-locp filter system. A number of theorems are presented by
Claasen, Mecklenbruaker, and Peek to summarize these conditions. The
appendix contains proofs of the theorems.

Theoxem 4: For a digital filter system with a non-linearity given
by equation (1), with linear part W(Z) which is finite for |Z| = 1, and
sector non-linearity that satifies equations (13a) and (13b), then limit
cycles of length L are absent if:
were

21 = exp (j(27M/L)1}.

To apply theorem 4 consider the following example:

Example 3:




For implementation of the filter system, choose the guantizer such
that for k = 1 truncation occurs and for k = 2 rounding occurs, then for
the digital filter shown in figure §,

W(Z) = (b1)z~} + (b2)z~2

Re{W(Z)) = (bl)cos((27/L)1l] + (b2)cos((271/L)1).

Limit cycles of length L = 1 cannot exist if
bl + b2 - 1/k < 0.

Moreover, all limit cycles are absent from the digital filter system if
(bl)cos(¢) + (b2)cos(¢) - 1/k <0, 0 < ¢ < 2 (15)

These results are shown in figure 6a. Filter coefficients chosen in the
shaded area will guarantee a filter that is free of limit cycles.

The remaining theorems will extend the concept put forth by
theorem 4. By imposing extra constraints on the non~linsarity of the
system a greater number of coefficients can be selected to provide
filters that are absent of limit cycles.

Theorem 5: For a system with a non-linearity that satisfies the
conditions of equation (13) and the additional constraint:

{Q(x+h) - Q(x)} h 2 0, for all x,h (16)
if there exists an a > 0 such that 1 = 0,1,...,L/2 and

Re(W(21)(1 + a(l - 21P))) - 1/k < O (17)

where £ = exp(j(27 /L)1), then limit cycles of length L will be absent.
Figure 6b shows all possible filter coefficients that satisfy the
conditions of the theorem.

Theorem 6: PFor a system with a symmetric non-linearity
characteristic that also satisfies the conditions of equations (13) and
(16) if there exists some arbitrary constants a,b > 0 such that for 1
=0,1,...,L/2

Re(W(Z1)[1 + (a(l - 21P) + B(1 + 2Z1P)))) (18)
-1/k <0

were Z1l = exp {j(2m /L)1}, then limit cycles of length L cannot exist.
Figure 6¢c shows the possible filter coefficients that will satisfy the
conditions of the theorem.

the symmetric non-linear characteristic of theorem 6 implies that

Q(-x) = -Q(x).

To apply the results of theorems 5 and 6 it is necessary to use linear
programming techniques to find solutions for the filter coefficients.

In each of the new theorems it is important to note that with additional
constraints imposed on the non-linearity of the system a larger number
of filter realizations exist that cannot have limit cycles. The next
set of theorems will generalize the results of this section.

In practice digital filter systems can contain several non-
linearities. It is possible to model such systems by extending the
results of the previous theorems. The sector boundary condition of each
non-linearity is arbitrary such that the following conditions are valid:




Qn(0) = 0 (19)

0 < Qﬂﬁgl < kn, for every x = 0. (20)

The next set of theorems will be developed from these contraints.

Theorem 7: For a system with n non-linearities that satisfy the
conditions of equations (19) and (20) if for
l=20,1,...,L/2 the Hermitian part of

W(Zl) - diag(l/k) (21)
is negative definite, then limit cycles of length L cannot exist.

Theorem 8: For a system with n non-linearities satisifing the
conditions of equations (19) & (20) and the additional constraint that:

{Q(x+h) - Q(x)}h 2 0, for esvery x,h (22)
if for 1 = 0,1,...,L/2 and the Hermitian part of

{1 + diag((a(l - 21P) + b(1 + Z1P)])wW(Zl) (23)
- diag(1/k)
is negative definite, then limit cycles of length L cannot exist.

For nth order digital filters with n non-linearities theoream 4 can
be used to determine the filter coefficients that would allow the system
to be free of limit cycles. Consider the second-order filter shown in
figure 7. S8ince the linear part is:

az~1l az-1
W( 81) -[bg_z bz'{l

the Hermitian part of W(2l1l) - (1/k)I is given by:

az"l + az - 2/k az"1 + bz?
(1/2)[: az + bz~2 bz=2 + bz2 - 2/k (24)

Por the filter to be free of limit cycles of any length the Hermitian
matrix given in eq(24) becomes

2acos( ) - 2/k =) + pel2
(1/3)[;..1 + be~J2 J:Zo-(z ) -214]

which is negative definite for 0K < 2. Pigure 8 shows the possible
coefficients that satisfy this condition.

IVv. SUMMARY

When finite word-length adders are used to implement digital
filter designs non-linearities can occur in the closed-loop filter
system. These non-linearities are caused by the overflow that can occur
during the addition operation. Limit cycles induced by the repeated
overflow of finite word-length adders are called overflow oscillations.

It is possible to construct digital filters that are free of
overflow oscillations. Mills, Mullis, and Roberts established a set of
theorems to determine the existence of such limit cycles and provided




conditions to eliminate limit cycles from the filter realizations.

Also, they reported that a class of digital filters exists that will not
supprot limit cycle behavior. Pilters with the special property

AA' = A'A are free of limit cycles. Pilters of this design are called
normal digital filters.

The non-linear operation associated with quantization can cause
limit cycles to persist in the closed-loop filter system. Classen,
Mecklenbrauker, and Peek used frequency analysis techniques similar to
the Popov and circle criteria to derive conditions for which digital
filters will be free of limit cycles. Their results were generalized by
the author to provide conditions for nth order filters that will be free
of the limit cycle behavior.

APPENDIX:

this appendix contains the proofs of the theorems presented in
this paper.

A) Theorem 1l:
proof:

Consider a zero-input digital filter; u(t) = 0. The non-linear
filter system is a composition of two parts; a linear part X(t) = AX(t)
and the application of the overflow non-linearity h(*) on the vector
AX(t). The existence test involves finding a norm under which each
operation is norm decreasing. That is,

l|ax|| < r||x]] for all x with r < 1 (A1)

lHae || s [1x|| for a11 x (A2)

If these conditions are true, then it follows that the zero-input
trajectories of the non-linear filter system

X(t+l) = H{X(t),u(t)]

tend to zero exponentially fast, that is

Hxer|] < 5l Ix@]].
Hence, the only periodic solution to
X(t+l) = H{AX(t))

is the identically zero solution.
For a quadratic norm defined by

Hx|] = (x+px)2/2,
where X' denotes the transpose of the matrix X, *
in order for equation (A2) to be true, for all overflow characteristics
h(*), the matrix D must be necessarily diagonal. This condition is also
sufficient since,

n
|8(x)]| = gmu) g(xi)?

- "g(du) xi2

"

= llxll2.




Then, for equation (A2) to be true, it is necessary and sufficient
that the matrix

Q=D - A'DA
be positive definite, since

r2||x||2 - ||ax]| = x*(@ - (1-r?)D]x.
If Q is positive definite then so is Q - (1-:2)0 for r sufficiently
close to unity. Therefore, the contitions of the theorem are valid iff
there is a diabonal matrix D with positive diagonal elements such that
the matrix D - A'DA is positive definite.
B) Theorem 2:
proof:

If there exists a positive diagonal matrix D such that D - A'DA is

positive definite then there also exists a non-singular diagonal matrix
T for which I- M is positive definite, where

M = (T"lar)' (T"1aAT).
The matrix (I - M) is positive definite iff the Tr(I -~ M) is positive
and the det(I - M) is positive (ie the eigenvalues of (I - M) are
positive). Consider,
det(I - M) = det(zI - M) for z = 1
= 1 - Tr(M) + det(M)
= 1 - Tr(M) + [det(A)]?
Tr(I - M) =2 - Tr(M)

> 1 + [det(A)]2 - Tr(M) = det(I - M)
So, consider only the det(I - M).

det(I - M) = det(A) (A3)
- (1112 + a122 +n212/t + a222]

where t = T22/T1l. Maximizing the right hand side of (A3) with respect
to ¢t yields the inequality:

det(I - M) < 1 + [det(A)]2 (A4)
- (2112 +2(al2)(a21) + a222) .-

= (1 + det(A))2 (AS)
- [Tr(A)]2 + 2(al2)(a2l) - |(al2)(a21)])

If the right hand side of (AS5) is positive then the ocnditions of
theorem 2 are valid. If (al2 a2l1) > 0 then the right hand side is the
product of (1 + Tr(A) + det(A)](1 - Tr(A) + det(A)]). Ebert, Mazo, and
Taylor have shown this quantity to be positive (3]. If (al2 a21) < O,
then the right hand side of equation (AS) is:




1 + (det(A)]2 - (a112 - 2(al2)(a2l) + a22?)
= (1 - det(A)]2 - (all - a22)2.

This quantity is positive definite iff |all - a22| + det(A) < 1.
Therefore, the conditions of theorem 2 are valid.
C) Theorem 3:
proof:

The proof of theorem 3 follows form the proof of theorem 2.

If there exists a positive definite diagonal matrix D such that D
- A'DA is positive definite then there also exists a non-singular

diagonal matrix T for which the matrix (I - M) is positive definite,
where

M = (T71aT)' (T"1AT)

The matrix (I - M) is positive definite iff Tr(I - M) is positive and
det(I - M) is positive. Consider,

det(I - M) = 1 - Tr(M) + [det(A)]2
= Tr(I - M).
In terms of the elements of T,
det(I - M) = 1 + (det(A)]2 - ( aii)2 - (T22/T11)al22

- (T33/Tll)5132 - ... = (Permutations of
(Tii/T3)) (aii)(al)))

Maximize the right hand side with respect to each Tii/Tjj then,

det(I - M) = {1 + det(A)]2 - [Tr(A))2
+ (¢ Permutations of
((aii)(ad3d) - |(aii)(ajs|n.
If each (aii ajj) > O, then from the proof of theorem 2; {1 + det(A)) -

(Tr(A)) is a positive quantity. if each
(aii ajj) < 0, then det(I -~ M) is positive if

n
1> (£aii)2 + 2( £ (Permutations of (aii)(ajj)}}
™= (det(n)]2.

D) Theorem 4:
proof:
Claasen, Mecklenbrauker, and Peek used the proof from A.I. Barkin

to develop the proof for theorem 4. Prom Barkin, the following
summation was used:

ol
P = (2/L){£Q(Xn) (Xn - (1/X)(Q(Xn))]}. (A6)

This function describe a zero-input digital filter system. Since the
system non-linearity satisfies the ocnditions of equation (13), then

p > 0. (A7)




e

The proof of this theorem is by contradiction. Suppose that X is
periodic with period length L. From Parseval's theorem equation (A6)
can be transformed into a Pourier representation:

[y
P = 42(:!'1)(::1 - (/%) (¥1)]. (A8)
1]
Also, the non-linear system is given as:
Xl = W(zl) Yl. (A9)

So, from equations (A7) and (A8),

ug
p =2|¥1|2(w(z1) - 1/x].
fs0

This sum is always negative, which contradicts equation (A7), hence
limit cycles of length L cannot exist.

B) Theorem 5:
proof:

The proof of this theorem is an extension of the proof of thecrem
4. Consider the summation:
=
p(al,...,an) = (2/N){£Q(Xn) [Xn = (1/k) Q(Xn)] (A10)
a ZQ(xn) (Xn - Xn+p]}.

nrp
The proof of this theorem Ll"by contradiction. Suppose that X is
periodic with period of length L. The first term of the function is
always positive. This is a result taken from Barkin [6]. The second
term can be shown to be of the same form as the first term,

rs

pep = £9(Xn) (Xn - Xnep)
) Wl
-,_i‘?.‘gampu) (Xkp+1l - Xkp+p+i)
-“iQ(zk(p.i)) (Zk(p,i) = Zk+1(p,i)],

hence from Barkin this term is also positive. Therefore, it has been
shown that p(al,...,an) is positive. Apply Parseval's theorem to the
function of eq (Al0). The result is:

wl =l

P = Iv112 (Rew(zl)) (1 +£ k1 - )} - (/K] (AL
[

If it is possible for limit cycles to occur then the right hand side of
equaiton (AlQ) is always negative, which is a contradiction. Therefore,
limit cycles ov length L cannot exist under the conditions of specified
by this theorem.

F) Theorem 6:
proof:

For the proof of this theorem add the term:

L=t I
; b (£Q(Xn) (Xn + Xn+p)]
] s,

to the function specified in equaiton (A10). Now it is necessary to
show that htis new term is non-negative for the abritrary constant b >

10




0. The inequality given by equation (18) is derived by applying
Parsavel's theorem to the new function p(al,...,an).
The term
)
sp = £Q(Xn) (Xn + Xn+p)
neo

can be shown to be the same as:

. 26\

(Q(Zk(p,i)) (Zk(p,i) = Zk+1(p,i)]). (A12)
20 K20

Again, form Barkin this term is always non-negative, hence the new
funciton will also always be non-negative. Therefore, for the
conditions specified in theorem 6, limit cycles of length L cannot
exist.

G) Theorem 7:

proof:

Consider the function of equation (A6), except that n non-
linearities are introduced, equation (A6) becomes:

&=\
pn =(2/L) { £ Qn(xa®) (Xa® - (1/k)(Qm(XaP))} (A13)
e
From the proof of theorem 4 it to;low- that

pn 2 0.

This means that “he sum over the number of non-linearities of pn is non-
negative. The 7roof of this theorem is by contradiction. Suppose that
X is periodic. Recall that for the non-linear system:

X = W(Z1l) Y. (Al14)

So, applying Parseval's theorem to the function and from equation (Al4)
a .Lnilat‘ffcult to theorem 4 is obtained:
P -'2!1 (- diag(1l/kn + W(Z1)]
20

for
A(Z) = - diag(l/km) + W(Z)

it follows that p is negative definite since the Hermitian part of A(Z)
is negative for all 1. This is a contradiction to the previous
statements. Therefore, limit cycles cannot exist under the conditions
of theorem 7.

H) Theorem 8:
. proof:

The proof of theorem 8 follows from the proofs of theorems 3 and
4. Adding the term:
_ (R
(W(Z) - diag(1/kn)) (dilQ(z_{a( 1 - zP) + b(1 - 3P)})]
!

to equation (21), it is necessary to show that:
(]
€ (a(1 - 2P) + b(1 - 2P)
(]
11

__—




—

is positive definite for the arbritary constants a, b > 0, and the

ric non~linearity of the system. Since if the above function is
positive definite for the given conditions then from theorem 4 limit
cycles cannot exist under the constraints of theorem S.
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Figure 3. Digital filter system with a linear part W and nonlinearity Q.

¥

Figure 4. The nonlinearity Q(-) is bounded in the sector [0,k].
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gure 5:

; (c) derived by theorem 6.

(b) derived by theorem 5

ympototic stabliity of the digital filter shown in fi

Figure 6. Area of as
(a) derived by theorem 4;
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MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability

science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoingy, Electromagnetic Technology,
Photonics and Reliability Sciences.




