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Abstract

The BDD-based symbolic model checking algorithm given in [1. 10] is extenlded to handle
real-time properties itsing the botidu d unlil operator [9]. \\'e believe t hat this algorit hil.
which is based on discrete titne, is able to handle rniaiy real-timnie properties that arise i1n
practical problems. One example of such a property is priorityj ii)r'rsion. This is a serious

problem that can make real-time systems uinpredictable in sulbt Iv ways. Omr work discusses
this problem and presents one possible solution. '[Fhe solution is formalized and verified
using the modified algorithm. We also propose auother extension to the model checking
algorithm. Timed transition graphs are transition graphs in which events may take lion-ilit

time to occur. The time it takes for a transition in a rT(; to happen is 'let ermniid I)Yh a
time interval. This allows the construction of smaller and more realistic moidls. .\ s•mbo'mliic
model checking algorithm is given for forintilas using the bouinulh'lit tli ope'ator in TlI(
models.
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1 Introduction

Temporal logic model checking is a technique for determining the correctness of finite-stale

systems. A large number of problenis in computer science can be modeled using finitc-
state representations. Real-time systems can often be represented in siich a way. Becaunse
they are used in many critical applications, being able to depend on them is vital. Model

checking [5, 6] can assist in demonstrating the correctness of such systems. The use of I his
technique can help increase the efficiency of their validation and help generate systlemuis wit h

higher reliability. This work explains how model checking canl be applied1 to the verification
of real-time systems.

In model checking, specifications are expressed as formulas of a propositional temporal
logic. The system to be verified is modeled as a state-transition graph. and the graph is
searched to determine if it satisfies the property. A symbolic liodel checking algorit hil is one,'
in which the transition relation is represented implicitly 1* boolean formuilas. and states are

not explicitly enumerated. Tile SM \v sYml)ol c model chleckking algorithli [1. 10] is the basis

of our approach. It is extended to handle real-time properties. The original riodel checkinm.Y

algorithm represents properties as formulas in the templ)oral logic ("TL ('omplitation Trev
Logic). This logic allows us to state properties such as "'event p will happen sorietkiie in
the future", but not -event p will happen in at, tuost x .rnits of tiune'. In real-i inie s. %seri•s

properties of the latter type appear frequently. because we iniiist bound1 the ''x'ciiion I ille
in order to make the system predictable. ke• augmient ('TL so that it is possille to express
real-time properties using the boundf d iutil operalor [9]. and show how to check fOrniii'la.
involving operators of this type using I -)1)-based syymbolic ,nody I ('lh ckinr hv c'i wquv .

Another extension to the algorithm conies from the fact I hat all I ransitions iin a S NI"
model take exactly one step to occur. Hlowever. in realistic i"odvels I his is not alway's i rire.
Various transitions frequently have dlilferent lengths in pract'ic('. It is also ip5ssih4 t hat o•ne

transition can take different amounts of time to occur ill dlilferen, •(,•'citonis. N•hbyhlei lL
this behavior in SM\V can Ile achieved by expanding a uon-inilt transition 1i11 aa sequ(lence

of transitions through several intermiediate stat es. Th'l ll( stat iyst ro(h(' Ic \ h i his ,iv'hni(iIi'

may significantly increase the size of 011' ,111041I. \'\e I)-I'-'0 se 11i ,'xte'siv V ,'a11 C IVIC i,, ,iv

Transition (;raph., (TT() to huatile I his sintat ion .. \ l'in•nle t'raiilt io r i.s a f ralisit 14)1l

graph that has timne intervals associated wit h transit ions. lhl il111' ie ievaIls s1j ei Iv a Io\\',r

and an tipper )oITid on the tutu' it, takes for a I ranisit ion It) occur.. \ Iraisil lol can I akc a

nondeterministic number of st.(ps to occ1~r. wvii hin I he boi•ids Sp)v'vi Ii•',l Ifid 1 i' I ( t. l'ontg'r
transitions that. are also non-d(,terniins's:,ic (wit hiu sp'cilie'dl I niiils) alow I lit, 1,1,,hlilIU, of

realistic systems without. the Itiidein of addinug extra states Io lthe 1114h'l. .\ s\'Vii li, 1 ,vh'lo
checking algorithm is presented for boiildvv' (T 'L forinti las ,1sing lT(;s as 1iovhels.

As an example of how these tech (liq cans ba e bsed. \we, Ilvo'l I he pvriovily in• cv.-iml [S. I I]

problem using t he extended verifier. Most reanl-t inie syst 'uts rv'l 'y oi priorilies to inainiaiii

predictability. [he fact t hat. higher priority tasks niist 1)*' 'Xi t'v Ihv '"•h'rv lowev r l ' pioril ' y asks

is essential for the. ('orrec'tness of s'ich systivIs. Ilowever. low I rioriIly Pr' )v,(s5 'a i Ica blk
high priority processes ind'filiki.ely. hbecalisv' of iilirv''t rioriti vcoiisl raills. This sit iat ilon is

cailed prioril/y i/nrm 'ion. This behavior inikys I hl' s'ysiv'ill 1l)rlic'tabhe. It is ,hvsv'rilIh ill

this paper. Se'v'ral sohl ions exist to i his I)ro)Ilv'in, all tiv1(' of I hosev'. pr'io ih iii rilav•c•. is



presented and formally verified.
Temporal logic model checking is described in section 2. Section 3 discusses biiiarv'

decision diagrams, which foi~n the basis for the symb~olic algorithms dlescribedc iln this work.I
The logic used in the model checker is presentedl in section 1. and inl section .5 Ole s ,ymbolic
model checking algorithm is explained. The extension that afllows real-time Properties to) be
expressed is described in section 6. In section 7 timed transition graphs are presented. alnti

a symbolic model checking algorithm for rTG, models is given. ,\if examphfle of how these

techniques work, the p~riority inversion prob~lem. is pre'se'ntedt in sect ion Ss. The paper enlds

in section 9 with a dliscussion of the result~s.

2 Temporal Logic Model Checking

Extensive simulation is currently thle most widely iised 'betificat ioni Iechifiicje. H owever.

simulation does not exhaust all possible behaviors of it coipitting sy stemi. l'xha~ist ive sihunl-

lation is too expensive. and non-exhaustiv~e simulation ('all miiss ant jortairit. even is. spt'(iad ' v
if the number of states inl the systemi being verified is large. Other approaches for verilica-

tion include theorem provers, termn rewriting systems aid proof ('hvckeis. Theluse techliii(Iiies.

however, are uisually very time conisuming. atild require user iiitervent~ioii to aI large degrree.

Suich characteristics limint the size of' the systems they c-anl verf 'ly inl practice.

Temporal logic rmodel checking [5. 61] is anl alternative approach t hal. has achieved signiif-
icant results recently. Efficient algorithms are able to verily p)roperties of ext reitiely larg~e
systems. In this technique, specificationts are writteni as formulas inl a proposit jimal I einip0-

ral logic and computer systems are represen~ted by state-tranisit.ion graphs. \'erilIicit ioll is

accomplished by an efficient breadth first search procedlure that views the t ratisit~ioti s ysvst e

as a model for the logic, and determines if the specificat-ions are satisfietd b) , hat mlodel.

There are several advantages to this approach. A\n important onle is th1at I lie lploc't'lii'e
is completely automatic. Trhe mnodel checker accept~s a model description. spt'ca icat ions

written as tenmploral logic formulas alii([ dte ermi Iit' 11' the lormid i as at(true ofi it'0'1iot for thata

model. Another ad vanitage is t hat.. if' t.he f'ormiula, is niot I riue. I it', mnod el checkier wvill pow i le

a counterexaniple. The c'oiiitert'xaiiilelt is all t'e('litioii Itrace thai. ShlowS \Vli*y Ilt'e l'01.int1 I;1

is not true. This is anl extr'emely itseful feat~ure because it. ('aill help locate Olie sot in ofe
the error and speed ilp the' debuigging proce'ss. Ainothier advantage is lie abilit ,y to veri'il'

partially specified systeims. I Iseltil inlformiationl abouit th1e t'or'iect ness of' tlie svsiciii (.,III be
gathered b~efore all the det'tails have been tieternih ied. *['llis alIlows Ithe yerificat l~oll of' at s , (illii

to proceed concurrently with its designi. ( otisequiientilY verificationi can protvide' valiuabi' hulfls

that will help designiers eliminate errors earl ier and tlehie better se ' \slvseiiis.
Properties to be yen fie.' are detsc'ribedlias roi'mnlas iii a. propositionlal t iii poi'al logit'. Thie

system for which the proper'ties should hold is giveil ais a state t~railisit ion graph. Il. (efl'lies

a model for thc' temporal logic' since.( the seiliantit's of the logic' art' giv't'i ill tlt'i'iis of state,
transition graphs. 'Flit' odel t'hteckc'r t~raverstes this graph antI vt'rilit's if'I tw lt'iii sill saislit's

the formula. Chiet'king t.hat, a sintght' inlotle.l satisfies a l'01-i mi hA is ii tuu'hm si iii ph'' I h alil~i~ poili g
that a formula is valid for all potssible miodels. lBt't'ast ol' tdlis fac. miotelt' cleckei's catl he4
more c'fftiri'ntly i inpleinentt'ed t. h~iai tflieoreii prtovers. Cl'a rkt' antid Eit'rsoni [5] del(veloped I thet

first, algorithm. T[his alIgom'i thl ln ist' at jljat'ecv lists to reprneseiit, thlit t i'aisi t i ml gralph a ut hiadt



a complexity that was polynomial in the size of the model and in tile length of the formula.
This and other equivalent systems were able to handle graphs with tip to 105 states.

Around 1987, however, the concept of symbolic modul checking was introduced [1. 10]. It

the new approach the transition relation is representedl implicitly by boolean formulas. and

implemented by ordered binary decision diagrams [1]. This usually results in a much smaller

representation for the transition relation, allowing the size of the models being verified

to increase up to more than 1020 states. The symbolic model checking approach will be

explained in more detail later.

3 Binary Decision Diagrams

Ordered binary decision diagrams (BDD) are an efficient way to represent boolearn formulas.

BDDs often provide a much more concise representation than traditional represenltatio|s
like conjunctive normal form or disjunctive normal forni. They can also be mnanipulated
very efficiently [1]. Another advantage offered hv 13DDs is that they\ provide a canooical

representation for boolean formulas. This prol)ertY ni'ans Ithat. two )ooleait formulas are

logically equivalent if and only if they have isomorphic representtations. It greatly situplifies
the execution of operations that are performed frequently like checking eqIiivalence of" iwo

formulas or deciding if a given formula is satisfiable or not.. liecause of lhiese characterist ics.

BDDs have found application in the implenmentation of inal ( '.\ CD tools.
Boolean formulas can be represented by biniary decision t rees. Thle nodes ill lhe decisiot

tree correspond to the variables of the formula. Descendant s of a. node are labelled with I'll
or fals.. The value of the formula for a. given assignment or values to tlie variables -aln be

found by traversing the tree from root to leaf. .\t each node lite descendant labelled wit h1
the value of that variable is chosen. Each leaf corresponds to a particular assignmentIt to !he

variables, and contain the truth value of t~he formula for that. assignlm|ent.
This representation is not i)articularl *I comp j)act. be'au se it Illa *y Store tlhe Sillt itl'or-

ination repeatedly in different. places. fIl)l)s are derived frotil billary' fl,'cisiolt t rE4,s bl,,l
its structure is a directed acvyclic graph itsltadI of a Iree. lRedtindailt itl'orinat toll i I ll,
structure is avoided by eliminating 'ontit•i.ot stb)t ret'vs..\s ill decisiot t rt'ves. ftledhs a•.t vis-

ited in sequence. from root to leaf. Ilowever. HI)l)s imptose a total ordering ill which the
variables occur in this sequence. lor exanit ple, thn' 131)1) ill ligitre I representis thl(' Io'lniliita

f = (a A b) V (c A d) using the ordering (I < b < c < d Ion I lit' variab•ehs.
Given an assignment for the variables in f we call decide if tlis assignl iienli sa islfis

the formula by traversing the B1)D froit root, to leaf. .\At ach node wt'e follow I1he paill
that corresponds to the value assigned to tile v'ariabh' in tlie node. The leaf itlticates if

the formula is satisfied or not for tihal. parlictlt|.r assignmltt(ent.. Notice that redut lit , a' is

eliminated in two ways. (C'ommton slbt~rees are not. rep)licatled, as can b)e seen from I he paihls
when a is false and when b is false. Also. wheti all tl he leaves of a sibtree lead it I the sain'
value, the subtree is eliminated. and a leaf of that. value is inserted at its p)lace. Notice ill
the figure that when a and b are both true a strt' cotinaiiita g tie variables c atnd d is
eliminated because all of its leaves would have flite value I.

For any boolean forrintta ad with a fixed v,'ialh orderig thinere exists ique tl 'I)1) [1].
nih size of the BDI) is critically dependeilit on the 'variable ordering. It is expotelvtial in
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Figure 1: BDD for formula (a A b) V (c A d)

the number of variables in the worst case. Given a good variable orderingg, however. l he
size is linear in most practical cases. U sing a good variable ordering is very importait. Bill
finding the optimal order is in itself a NP-complete l)rol)eini. Nevertheless. there are manmv
heuristics that work quite well in practice.

Efficient algorithms exist to handle boolean formulas represented by BDDs. Given B1)1)
representations for j and g. algorithms for computing -,f and( .f V g are given ini I1]. Algo-
rithms for quantification over boolean varia)les and substitLtion of va~riable names are also
required by the model checker. It is simple to. compute the restriction of a. formula .1" wit Ih a
variable v set to 0 or 1. We will denote the restriction of f with v, set to 0 by .',.= andI tie
restriction of f with v set to I by f 1,=j. Tne formula 31v[f] is (lefined as .J'1.=0 Vf/',.=,. and
Vv[f] is defined as -•v[-f]. Substitution of variable names can be accomplished iusing hie
quantification algorithm. f<i) +- tv> denotes the substitutiou of variable u, for variable r' in
formula f. It is computed as J'<, +- w>= 31'[(v #- r,) Af I]. These operations are performed
very frequently in the model checker, and uiore efficient algorithms are tisel iII tIhe a-ctual
system. Describing these algorithms is out of the scope of this palper, lit. thley 'cail be foiilld
in (2].

4 Computation Tree Logic

Computation tree logic, (YlL. is the logic iised by SSMV to express properties thait will be
verified. ('omputation trees are derived from state tranisition graphs. The gral)hi st iriict.'re
is unwound into an infinite tree rooted at tHie initial state. as seen in figure 2. Pathis In I his
tree represent all possible comp|tutatiouis of the program being modelhled. Formulhas ill ( 1'T,
refer to the computation tree derived from the uo(hel. ('T|, is classified as a. branthing li/M
logic, because it has operators that descril)e tie bratichiing structure of this tree.

Formulas in CTL are built from atomic propositions, where each iproposition correspol)lds
to a variable in the model, I)oolean coonectives - an( A, and cinpvall ol 'Orators. Eacih
operator consists of two parts: a path (liantifier followed hY a temporal operator. PIalt
quantifiers indicate that the property should be trite of all lpat his from a giveut state (A).
or some path from a given state (E). 'I'lie temp)oral (;iiaiiti ier describe how eveits should



a a

Figure 2: State transition graph and corresponding computation I ree

be ordered with respect to time for a path specified biy I he -)ath quantifier. They have I Ihe
following informal meanings:

* F p (p holds sometime in the fttture) is true of a path if there exists a slate in) the(,
path that satisfies 2.

e G ,G (,p holds globally) is trite for a p)ath if is satisfied by all states in Ihe pat It.

* X ýp (p holds in the next state) titeans that, p is truef in t IIe next state of the path.

9 V U I/, (p holds until G, holds) is satisfied by a path is u2 is I rle in some slate in Ilie

path, and in all preceding states, p holds.

Formally, the syntax for CTL can be defined by:

"* Every atomic proposition 1) is a C(L formula.

"* If f and g are CTL formulas, then so are -' f( f A y. EX f. EG .f" and E./'fU q.

The semantics of CT L formulas are (leliove wit lh respect Io a labeflcl siale-1'-ra .,itionl
graph. which is a 5-tuple M4 = (P. S. L..N. ,'). whlere f) is a set of at omic prot~sit ilouls. '
is a finite set of states, L is a function labeling each stalev with a set, of atoic prolosii lolls.
N C .5' x S is a transition relation, and .S is the set, of initial slates. .\ path is aII iliilte
sequence of states 5o.s-s42 .... such1 that N(s.i, si+l ) is true for every i.

If f is true in a state .s of structure M-I. we write s .= f .. \,\e write A. • f if f./.. f .1"
for all states s in .S50. The satisfaction relation is defined iud tctlively as follows (Ci von Ilie
model M, we abbreviate M. s p j by x • ý):

1. If p• is the atomic proposition v E P. then .- s if aid only if e E L(.,).

2. .= "- iff it is riot tOle case that, ."= ý... x ý p A i,, if = I- and .. N= t,,.

3. s = EX p iff there exists a path 7 = s13 .42... starting at .1 = N.O, sCh1 I fhat.s, -S .

4



4. s EG cp iff there exists a path 7r st~arting at, -i such thiat. for every state ,i' oil r

5. E[p U 0)J iff there exists a path 7r = ~~ ... st~arting ait. . *;0~( and~ somel~ i > IJ

such that si H ii' and for all j < i. sj H

The following abbreviat.ons are used in ('TI, forniulas:

AX f -,EX -,.f.

EF f E[trueUf I

AF f -EG -f

AG f -EF -f

A'fUg] = -'Ef-gU-.f A -!/]J A -'EG-!I.

Some examples of (ifL fornitlas are giVenI belW owI)illsra HC le CX l)I("V5i\IViC5S of I I 1v

logic.

"* AG(req -+AF ack): It. is alwaYs tile case t hat ii Ilie signal r( q Is highj. I 11(11 ('v('io iiallY
rick will also he high.

"* EF(started A -~reutd): It is possible to get to a state where .artI d rhod bw1115(i r ~id!/
does not hold.

"* AG EF r'estart: From any% state it is po~ssib~le to (Yet to thle r .0Ia r st ate.

"* AG( .send -+A[scend U rvc4' ) : It, is alway-s 1liecase ilhatif lt., n 4occl irs. i lien ('v('iiia II v

/TL'V is true. and i until that timie..i ndu ililis'l irillaili I ri'le.

5 Symbolic Model Checking

Early model checking algorithinis represenite I(41t i t raiisli Iio gra pi t irit 'dugi ad4jaceiicv
All existing states were explicitlY eniiiinerat~ed . Sillce t lie I 104 lel chleck il prob dleit' hii Ii all

exponential behavior in the worst. c'ase, thislrjiet lvNM-11 Cag 14'( st a it' ')I 11it , I de

The size of systems that ('011141 be verified wa~s severely iY ii 1111ed. ~vib I~iiillt'l c~loc'kIiii"
represents states and transitions iisiing I)4)04a ii formijitas. Thiis usi1ia liv t"I'ii4'iah I e lia I cl i p

resentations, hecalitse it, can atitoriaticall % eljiiiinate, reflnil)(alic vI In 1liet 'rajpi 11Icii)4iloie ilt-,ii

these hoolean formulas as 131)ls ieadls to very elhicient al~toroim iis for mdl~e cliu'ckili, Ohal

are able t~o verify mnuch larger syst~ems trha ii jpreviolis ot~ies. Tiii s 'ctoitn will C\'aIII,

symbolic modlel checking appiroachi.

6i



Representing the Model

A model of the system in our algorithm is a labeled state-transition graph k4. ;rinlI assert iols

about the system are expressed as .TL formulas. The kvY to thle eflicienrcv of t he al,_orit hur
is to use BDDs to rel)resent the labeled state-transition graph and to yenrifv if I hie forimlia is
true or not. The following method will Ibe used to represet It I.e le raI isiI iI relal iou IIas a Bi)I).
Assume that system behavior is determined I) the Ioolean varial)hes I' = {'. ..... ,-I 1. Ixt'I

1''= {t, 0,.... } Ibe a second copy of tliese varial)e's. We, will Iise III(' vari|abli•s iII I ,,

represent the value of the variables it t Ire c(lrrent state. air I ltI variables ii I" t, t o rejret•tll

the value in the next stat(e. The relat ionship between vahles of' variables il I lie cu rtretl a ll1(

the next states is written as a boolean formula iusinf V anrd I"'. Tliis will _,eneraic li,
boolean formula A` representing the transition relation. Thi s formnula will t lien Iv '(Oilveril ec <

to a BDD.
.V (,,) .... ",, t. "u.... " I )

\\e rel)resent states b)v the values o thOe atonilij" lrol)osit ios ill tirose, states. Ill )rd len lo
guarantee that we can ident ifv stales |iilli(Iely. we liluist Itrake thIle assililp i(JI h1al dit Irelerri

states have different labeling of proposit ions. More fornirallv. wv aassu rile iirat for a llv I xw

states .s an(d .*2 in S. if L(.,,) = L(,2) then . = . T. lis a.•s|iil)t ion does nrot. lroxever.

impose any, restrictions on the mo6del. sin(*(, ext ra atormic propositions can be added in order
to make L(.+ .) :A L(-.2) for distine(t states ";I alI(l -S2 [3].

Fixpoint characterization

(Consider a labeled transition gral)i .A withu s•et ol" states .';. \V(e (canl h' lo(' a latlI'ice ,1"

predicates over .' bY Pr d(.5). where each i)nredicat v is idetit ilied wit hr thbe set of stat v's ill .>"

that make it, trnie. and rise set. inclusion as ordlering..\ A I'retiona[ V 1' at I mapiias [ frp d(. ') It)

Pr-d(.q) is called a prtdi'tcr I ransform+ r. linformally. Pr((d(K') is a set olf slatwes. and V I' is a

fuinction ftrom sets of states to set of' states.
As described in [7]. if a predlicate It ,|isfon'1reF I" is iriiitO1)li'. 1Iiit a Ialast liMpoitit Ifp

z[FZ)=LJ, an. d a gr.,atc'st lixpoiril gfp Z[I.I Z )] = -,1." r( I. \\We can coliple

both fixpoints ly iteration. Sltart inl, with Z = JhI.'. ( )r lfp) Z" = /r11w 11,0r gfp1.

we have Z't+ = Z' ii H(Z') for lfp aid Z'+' = Z' C) H(Z') for gfp. P'IC lixpoiitl is 1o,01id

,, when Z' = Z'+'. If tlre niuulbelr ol (]'erierints in PrV( (A.",) is linit ('r. lrinliriat lou Is "ttaraiteed.
blcaiise there cani I•er no infinitev Seluence of Z's such t Ira t 7' - '.

\, earn idventify eac ('TIL on'mula .f wit.h t In piredicate {.C L .V..6 1 .]} ii I P uI(
(this is t'hle st of states lhat salisfy f). lhteni. we can cla'ract erize each11 basic ( "'II tI (ciiipor'l
Operator as jixp)oiit s of air ap)prop)riate prelicat v' I ranislortimr. Tli'e S(,O of stati 's I lat satl ilsfv
Olte irntil operator is given by the least. lixpointi E[./IU•,] of Z = .Y V (,/' A EX Z). IiitlorturallY
E[fUq] is true at, state .;. if eit, her q is trlte ill .,,. or f is trite ilit .s al ( ti rene exists a slic',ssor
state where E[fUqj is true. 'llre set of state's haft satisfV tlI' EG operator is rixeti bt li<e

greatest fixpoint EG f of Z = f A EX Z. Informially. tIis inrrlns that EG Jf holds ill a stalte,
.14 if f holds in ., and EG fi holds in a succ',ssor state, of S. Prool's tlhat tlie claractterizaltiols
above correspond to tOre expected setmantic's are( give'n ill [7].
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The Model Checking Algorithm

Given a CTL formula V and a model A4 represented as described above, we want to verif* if
s is satisfied in the initial states of A.I. The model checking algorithm is defined induc'rively
over the structure of CTL formulas. It accepts the formula as all argument (and A.4& as a

implicit argument), recurses over the structure of p and returns a BDD that has o1ne hooleati
variable for every atomic proposition in V. The resulting BDD is true in a state if and onlY
if p is true in that state. The algorithm is:

" If ,,ý is an atomic proposition p. return the 13DD that is trite if and only if p is truev.
This is simply the BDD for p.

"* If ýp is --f or fAg, use the standard BDD algorithms for computing boolean connectives.

"• If ý is EX f, then we must verify if f is trite in a successor state of Ihe ,utrrent statev.
EX f is true in a state t if and only if there exists a state .i such that ./" is trte iin state
s., and there exists a transition from I to -;:

/ • EX f iff 3.s[f(.s) A N(i..)I

where f(s) means the value of formula. ." in state .;. To couiliIte this value we silst it ut,,
the free variables in f by their values irl state .4 using the substitntion algorithJn. Ii
other words, f.(.,) is trte if and only ir f. The, relationtal wrodict ^s[I(s) A .(1..s
can be computed using the basic operations on BDDs. as described inl [3]. I lowever. this
operation occurs frequently, and it is important to contpitte it in an efficient matiner:
efficient algorithms for this purpose are discussed in [2].

" If ,P is E[fU9j. the comnputation of the set of states that satislv : can be c,'haract,'rizI't
as a fixpoint compiutation. as shown previouisly. The BDD that represents the stat('s
where E[fUI] is trite c'an be ,'omtmtied by finding tite- least fixpoitit E[.fU!] of:

E[fU:l = -- V (f A EX E[./'U!11)

"* If ; is EGf. tlie algorithint is defined in a similar wa. It searc'hes for lihe great est
fixpoint EGf iisttead, and uses the following fonuwila:

EG./" = .'A EX EG./"

"* All other (TIL operators are written in t,'rls of the, onles p)resen'ted.

6 Real-Time Logics

The logic c'TL can be uised to specify mltany prolp'erties of nlite st.a.t, systems. Ilowever.
there is an important class of properties that cannot, be adequa.tely handled u1sing this logic.
This class consists of the properties that involve qu(IanWildirc constraitits, that is. the (lass
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of properties which place bounds on response time. In ('TL it is possible to express I le
property that some event will happen in the future. but not, that some event will happen at

£ most x time units in the future. In this section we will discuss one way of augnienting ('I,
to permit representation of such properties.

In order to represent bounded properties. we add time intervals to the existing ternix)ral
operators, as described in [9]. The basic temporal operator that we ulse in our real-t itme logic
is the bounded until operator which has the form: O[,,.,]. where [a. hdilelines the t itte interval
in which our property must be true. We say that fU[,jg is trIe of soine patlh if y holds in
some future state .s on the path. f is trite in all states between the beginning of the patdI
and s, and the distance from this state to .x is within the ititerval [a. 4]. The bounded EG
operator can be defined similarly. Other temporal operators are detined in ternis of t liese.

More formally, we extend our CTL semantics to inchide the botlndtd ,,tittl by adding the
following clauses to the formal semantics given in section |:

6. .s • E[VU[,,.bjii'] iff there exists a path ,r = .swtl.t.2... starting at, . = .0, and some I siich
that a < i < h and .x t' and for all j < i..i) H ;.

7..s H EG[,.,)9 iff there exists a pat It , .•I).'2.*.. starting at., = .s, and SotIl I SlitChi

that a < I < =. ,; for allj <i.

As an example of the use of the boundf d until consider t ite property -It is always tr|te
that p may be followed by q within :3 t ite uinits-. t his property cati be expressed as AG(s-
EFt0.31q). The bounded F operator is derived from the bot ,nhd unildjitst as in t Ite |utbhotti|ded
case, i.e. EFIbbif - E[triteU[..blfI.

In order to implement this operator. we will use a fixpoint coint)pttat ion that is similar io
the one implemented in CTL. It is easy to see that tI le formula fh{fUe,,,:,' , expressed

in the form:

if a > 0 and 6 > 0: E[fU[,,.,hj. = f. EXA [fUt,,
if 6 > 0: EffU(1 .i,j!1J = y V (.f A ENE(U./'Uij.,-_j!qj)
and E[fUto.yI] = y

Other operators are defined si41ilarly
Consider the first. of these cas-,s. We colliplite I ie Set's of states where .1 is I ti-li for 'I steps.

During this computation. a fixpoint, may be reached befOrei a ilvtralitmis have passed. When
this happens, we can skip to the second case. 11 usinig this opt lirizal iol. I Ie tiiitilE 1u r of
required iterations may he redwced wlhe.i I lhe I i tin' intierval is large. I in t a fixpoihif is reacleuI
quickly. The same optimization can also applied iii t Ite stcoiidl case. If a fixpoint is reached'I
before b - a iterations. with 4 and a being respect ively thle tipper and lower homils of I Ihe
operator. we can imnmediately procee•d to hlie third rase.

7 Timed Transition Graphs

The extensions presented al)ove allow the verificat.io of a iminlr of real-tiine s*ystem|ls.
However, transition grap)hs have another ixiirtatit. limitation for miodeling Iime 6Io||n1le, I
computing systems. All transitions happen in one step. hi actual uhsYstems ('vents take
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Figure 3:z A non-unit transition in a TTG

different amounts of time to occur. Moreover, the time it. takes for some event, to take place
may change in different executions. We call this behavior boundld stlifI(rinq. A transition
can stutter if the time it takes to occur is not fixed. but is instead determined by a time
interval.

A transition that takes more than one step anti stutters caln also be modeled in a transit ion
graph. The longer path can be expanded into a series of one, step transitions. Elxtra. states
and transitions have to be added to the transition graph. This makes the verification process
more complex. The number of states added to the system is proportional to the size of the
transitions being expanded. Extra transitions b)etween states have to be added to introlihce
bounded stuttering. If there are many non-uinit transitions. or if the individual transitions
are long, this can cause state explosion problems.

We introduce the idea of Timed 7"ransilion (Giphs. ''(c, to help alleviate this iproblem.
TTGs remove the unit transition limitation from transition graphs. With each transition in
a TTG is associated a time range of the form [I. b]. where a.1) E N. A transition labelled
with (a, b] will happen in .r steps, where a < .r < b. This extension allows transitions with
length longer than one and also introdtces bounded stuttering. A transition takes .r st,,ps.
but r is chosen nondeterministically, within the bounds definedl by a and b.

Formally, a timed transition graph is a 5-tuple ." = (P.S. L. R.,Se). wher,, P is a set
of propositional variables. S is a set of states, L is a f[n.ction labeling each sta'e with a
set of propositonal variables that are true in that state, S•" is a set. of initial states and
R C S x N x N x S is a transition relation. ln1or'iallI• l?(.•,,l, a..s ) indi'ilats thIa tthe
transition between state s.) ani .st can take front I to ii steps to occnr.

The SMV model checking algorithm ('an be extended to verify propert ies oflh T( models.
Procedures for handling unbounded properties and boolhan conectives can Ie N lsed withount
modification. To verify bounded properties we nuist. first, extend the represenltation of the
transition relation to include the bounds for each transition. The' algorithiii uses a relation
R derived from R to represent the transition relatioi. 'R.(su,... ) is tre, iff there exists

4o0, 4 u, .s and I such that R(sf,. 1, ,z,.• ) is a transition of tte model. and I < I < ii. The
algorithm encodes variables and states as vectors of boohean variables. 'lThe time variable /
is also encoded as a vector of boolean varialbles. In the discussion below, though. we do not.
distinguish between the value of a state or anid its encoding.

The model checking algorithm is an extension of 1lIe, original one. It, is COMIIlut,,d byV
an iterative procedure. The algorithm nmainitaiins a current set. of' states that satisfy I.
Each iteration finds states that have a transition to an ('eetent, in the set compl)utied by the
previous iteration and updates the current set. 'Tlie fixpoint* of this iteraltion iproc'ess is the
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set of states that satisfy ýp. For example, to find the set of states that satisfy E[J'U[,,hI!qj we
use the method outlined below.

We compute the boulidcd unt.il for an interval as an extension of the Iounhded mitil for a
single time t. Notice that f.(s) iff s • .

E[fUtg]
(g(s) A it = O)V
3 t1, t 2 , s' [f(s) A (E [f.U,, g ])(,') A 1Z (A. /•./),A = 11 + 12]

The formula g(s) A t = 0 is true if state s satisfies y an(d the time )olind allows I li(, pal It
to have length 0. The formula. (E [.f Ut, g ])(.') A 1? (s.2. ,'). is t rile if .; has a t ransil iol
to a state s' and s' satisfies E[fU,,Y]. To verify if s satisfies the boniflded prl)oIrl)*y we W uist
see if the length of the path from W added I o the length of the path from .s to .s' is wi Iitin
the bounds. t = (t, + t-2) verifies if this requirement is satislied by .s' and some /I.f, t hat
satisfy the transitions on the graph. Equations that compute thi, set of slates I hal satisfy
other operators are similarly defined, and will not, be )res(ented h(ere for l)revit *v.

The TTG approach (foes not suffer from the same prol)lems as lIh( pat h eXpalisioli t,('ch-
nique, but it does add to the complexity of the fixpoiit c(alc('latit .olhe, existential qnail-
tification algorithm must be applied to the variables that represent thle line of a tranlsit ionl.
This is an expensive operation. and can also cause stale explosion problets. However. hlie
TTG algorithm is more efficient than lirolling states. The number of ioohean variables
added to the model to represent the time range is proportional to log it. where it is tlhe

largest tipper botind of all transitions. The existenLial quantiicitation is applied to these
variables. Also. this approach is indepelent. of thell( un muiber of long I rallsil ions and r Idoes jIol

introduce another overhead for sti tieri jig transit iois.

8 Examples

As an example of how these techniiqlues call be applied( to real-li me, systems. we'll Iiuo hI
the priority invertsion l)roblem. and a solution 1.o this I)robleil. prioritJy ihr ri/ ncr. Our
model shows how priority inversion afrectts the predictab)ility of rteal-1tilt, sysl ells. ad lI how
inheritance solves the problem. A description of the, problell and ti'e sollt ion is first. gie'ln.

Priorities are essential in real-time systetns. The correct ordehring of task execnll ioii is a
fundamental problem that must be solved if the svst-eom is to hbe predictal)he. \[all liv schedtili|ng
policies have been developed to define what constitutes a. correct, ordleuring and to e'nl fOrce
this ordering during thew execuition of the syst.el. i1 a scliediling policy re(qiuires thatI higher
priority tasks execute before lower priority tasks, it is fossibl, for a low priorit.y proc5ss to be
executing while a higher priority one is blocked.. This sitluatioll is called priari/y in I'r.Siol,.
Unbounded priority inrversions occutr when Ihigh priority processes are blocked iuddefi itely
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Figiire 1: Boilnded priority inversion

by low priority processes. When, this happens. the svstenl ilav ,lecotiWe ,nprediclable. The'
correct ordering of task exection will he coruprontised. and hle system may" fail to sat isf\"
its specification.

In order to present the problem in a niore ('oicrotv' frainework. we will int rohlice a htypo-
thetical air-traffic control system. We will cottcentrate our analysis in two of tlie plr)oCess(es it
the system. The first. calle(I .sen'sor. reads airplane posit ion dlata froin radars. sets alarmis on
catastrophic conditions (conditions that cannot wait for a detailed analysis). and puts the
data into shared memory. The other process is the r(po(rtr I that reads the data collected bY
the sensor, and updates the traffic controller screens. The .4( i.,or is a high priority process.
because it processes urgent events, artd must not. be blocked by other Iprocesses. 'I'lh v prporhf r
on the other hand. is a low prioritY procvss. Since it doesnl proces's urgenl events, it ilta\
be delayed by other nmore importantt tasks.

The sensor and the ir( -port(r processes share dlata.. l'o access tilis data ;Ipprol rialel'.
synchronization is necessary. In our systemn, the synchronlizat ion is ithplenient.ol h it a iwo (x
variable which guarantees mutual exclusion amlonlg I.hle processes accessinhg the lialta. T'h'e
mutex variable is locked every time shared data is acc'essed. I lowev'er. Ithis may rsullt in
priority inversion. Sitppose rrportcr is inside the critical section. and x• n.,or I ries to insert
new data into the buffer area. Tlhe .itnsor cant access the data and bhlocks,. waiting for
reporter to unlock the muutex. Now at high priority process is waiting for a low priorii.v
process, and p)riority inversion occurs. Figure I shows this situation.

This priority inversion sc(enario is houmded. The rrPorh r will delay the -,1 . ,.xoroinly while
it is inside the critical section. A 'ter the r'portcr releases the lock. the s. 11sot will start
executing, and the priority inversion will disappear. We can calculate the nmaxiutnun dillrat ion
of the priority inversion as the, time to execute the largest critical section, and incorporat.e
it in our calctilations for the execIutiou tiites. The svst-enl will still be predictable, alt.hough
there may be a little loss in accuracy ill execution tulnle predictions. ConsOequelilt.ly, if the
system is well designed, and the criti'cal sections ate sitall, 0 It•thleI priority inversions cau
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Figuire 3: I 'nbotinded priori tY Inversion

be tolerated. wvithout loosing predictabili ty.
In certain cases. it is possib~le to hiave iunbounided prioritY VInlversionis t hatI ca 111101 be

solved by this simple method. Suppose a thlird process. cal ledl Ii~e viviyeIis a' b e to lOw
system. This process reads dlata generatedl lbY othier coinpo)lieut s of ii ;i'air- Iria I c conltrol Icr
and processes it. The anualyzcr is less iniportanit t ha lcIIt I e sil nso r aI (Id I as a lower prilori I *v. I 311t

it is more important thani the r~porfir. since iirgent (coiidit ioniis naY a rise ats I lie re-silt of I lie
analysis and handling them is mnore itn portiant. I ani~i upukilt lg I lie, screen. C onsid er now i lie
same scenario as above, with tbe iyporlf r Inside' thle crit ical] sect ioni. aind t lie e~ t.o~m v;aiIi 11iQ-
on the mutex. At this point. the tuuily--ri' start~s execuintjg. It will block I Ilie cv pnrl 1% sinceA
it has higher priority. [However. tle qf uxor is wait ing rot Ithe 1 Port '. (; awl I Ii erefOre, ako fuor
the (rulflibzer). Since thie tinaljz~r I voesiit know I he( relation bet ween I the tv ptot/v r and I hec
xf n~sor. it. may execitit fobr an itnhotine iiiel aoiunt of t I1' ivle illi eki v lie .v f 1o rindeil iol ~v. I f

acatastrophic event. occurs, it will go uiiniot icede. becauise Ie .t(. ,(o i1,P s blocked.A., ;l reult

t he behavior of t hie systemIl becotites I l p)r'f lict atble. Fi gui re 5 shiows tII Is sj iation.
Priority inherit ance protocols are( oile way of pry'\-'ittiii ii 1b u iinldedI~u iii tvii ers-it nis.

A typical protocol miniigt. work in the fol lowing Iliuivia . Aser sooul i as a ligi process.i is i(W

blocked by a low priority one. Olhe low lpriorutly pr~ce'ss is I eiiiporar1ilyv iven 11lie pruority (411t li
blocked Process. While inside the critical1 sect iol t lie mvuMJI ris t -iviiig to aIccess. tIlie Iv porly r

will execitte at high priority. When thle cv pory ,rexits t lie- criticall sect io .. it will bec rest ored
to its original priority. Ini this way. I t( lie udvy:v r will not) be w ake to lil Ii ript( tIe( porh 1
when the .tn~sot' is waiting. We will show tHit, t Ii is p)rot ocol avoids I lIe uni1bouilid ed priorit~y
inversion problemn (except. possibly for deadlocks in accessing s~nciironiziattiont varia Ides).
This allows the designer of tie syst-ei to predi ct I hie imaxiimu ii pr" wit V Iniversioii I i me, ais

in the boiinderi case.
Priority iniversioni occiirrevl iii thlis exriil~l(' bevciauise tI Itlttd/ r~ lpreviill t I'll tw letp/otrhr.

Another caiise of priority iii'vrsuomi is qimlenviwig. ('oni 1111111 ic;It nnu prot ocols mmuavY expl)(ri('ice'

priority iniversion for tIlls reissomi. Fot exaliplle. 1)acket 5 to be sent. to I t( lie netork maI;Y have
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priorities. Low priority packets mnay be enuti~~eiedl ahead ol high priori lv ones mi some prot oCOl
queute. lIn a priorit~izedl network a, high jpriorit. 'v packet. mnn have to wait for a low p)riori11Y
one to be sent. If nieditinl priority packets start. arriving lin allot her processor's (Iiicue. I lie(\

may monopolize the network. preventing high priority packet~s front b~eing sent1. .\tai ii. Me
have uinbounded priority inversion. This type of jpriorit-y inversion coild also IlalleiIII Witur
system. if the dlifferent comp~onents were (listrilbuited over a ntwtwork. Vor e'xamplel. st i soli
packets could be quteuted after some low priority 1 ack-et~s iii a. (jliete. while ai(iI!Jzf r' packet s

were being trasmnitted.
The inheritance miechanismn that we have dlescribledl to avoid lliil1)(iflldedl Iniversionis is

called basic priority inhleritance p~rot ocol. There are 01 her prioriY t iinentaritace rot 04 (11
Some protocols are designed to avoid dleadlocks cauised whun crit i al sect lonls are( accessed '1ii
the wrong order. Other protocols are designed to liatid le cha it ( d bo tndi tit prio idly in Pr rM/IN

A chained inversion occutrs when it high priorit~y process wants to lock it iit exes that a rv
alreadv locked by low priority p~roceses lit this case. thle high priority process has t o wail fon.
all low priority processes to finish t heir cri tica~l sect ions. Wl~ile th is %vail is bomid ied . it uiavY
be too expensive to wa~it for thle 4:ita t ion oh'all critical sect ions. Onle possibI le s~olut ion to tfill!-

problem is to assign pr'iori ties to critical sections. b~asedl o~i tlie( priorities ol I ilie )rocv)4es5'
that niay access it. A p~rocess is allowed ito access a critical sect ion oiil vIt Iits jprionit\ Is
higher than the priorityV of all critical sect tons cii rrent lY I ei nr accessed. .A iiln tore i 11)14

study of these variouis a Igori tlnis and tiei r chiaract eris i cs c-all be f~id 1141ii t 1
Our iimplemenitat loll of thle b)asic priority inhenitalice prlot 140 is disculssed ill t lie lill ver'-

sion of thle palper. The It three prlocesses a l*( iml )emenCted4 as d escribI ed . We wan toi 30 l( Ien iliile

if the se~nsor can starve:

AG((., itn~.so.-%/ic = tring -,j ;tF-s 1iov.%O.sI1 = ('rilic(iI)

This property is false vi ioui t he pririt ly inhierit1anrce nieclia ii sii. '1' lie proper e't v 1)('o1)314 '

trite when priority inherit~ance is activated. Mloteover. we' (-;tit vvi'niL that thllerv Is ;uIl uipper

limit oil the( timie the M fl).sori' el'3i4 I lie critic'al s'ct ion with fit-14 follOWItig 1,01-i1iila:

9 Conclusions

In t his work we have s~how n how em pnjXla logic Illodlel chec'kin33g cal ki I 4' e44 to ve4'If prop31it-
ert ies of real-t irue s' * st ems. \e extenided al 4'xist tug s * uinkl )!ic mo1) de chiecker it) ha 31(114

p~roperties that, are I ulrnled ili t ime. *'T(e Imu(iidr ~ittilil operaton was iljl('rrertlt led to allow
t~he expression of suich propert ies.

Timed transition grap)hs were( p~roposed to exten (till 1,1e1n hu er tIll he ( )xl'4 '5i ve '34ss of I114e
too[. Iii a '[T(. transitions have tittle bo~lrhis. anid at truansistio i4;)1'at Ia 1w a 33434let4leriii IIist ic

time to occuir wit hini I hese hotimls. This allows i t(e rew.,sen'3t at toil 4)1' 1i1)on4 realist i(* Il)414'15.
A symbolic modlel checkinrg algorit hm was gi vei I 4) verily pu'vt'ties iutl'l T(;1111)4els.

As an exam ple of the( iisetftill ess of 1)111 14 ed oIperators, we' Iiscltsse I114 )i(, prioil * v4nIl
problem in real ftime systems. 'We formnialized a. 51)111itiol fon a part'tictillar ilist a314' of' this



problem and verified that it was correct using temporal logic model checking tcchiiques.
This example demonstrates that non-trivial p~roperties of real-time syslems can be proven
using symbolic model checking techniques.
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