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Abstract

The BDD-based symbolic model checking algorithm given in [ 10] is extended to handle
real-time properties using the bounded until operator [9]. We believe that this algorithm.
which is based on discrete time. is able to handle many real-time properties that arise in
practical problems. One example of such a property is priority inversion. This is a serious
problem that can make real-time systems unpredictable in subtle ways. Our work discnsses
this problem and presents one possible solution. The solution is formalized and verified
using the modified algorithm. We also propose another extension to the model checking
algorithm. Timed transition graphs are transition graphs in which events may take non-unit
time to occur. The time it takes for a trausition in a TTG to happen is determined by a
time interval. This allows the construction of smaller and more realistic models. .\ svmbolie
model checking algorithm is given for formulas using the bounded until operator in TTG
models.

Accesion For
NTIS CRA&I g

DTIC TAB

Unannounced d
Justification 4 ;—@“
By ]l
Distribution |

Availability Codes

) Avail and/or
Dist Special

-1 i




1 Introduction

Temporal logic model checking is a technique for determining the correctness of finite-state
systems. A large number of problems in computer science can be modeled using finite-
state representations. Real-time systems can often be represented in such a way. Because
they are used in many critical applications. being able to depend on them js vital. Model
checking [5. 6] can assist in demonstrating the correctness of such systems. The use of this
technique can help increase the efficiency of their validation and help generate systems with
higher reliability. This work explains how model checking can be applied to the verification
of real-time systems.

In model checking, specifications are expressed as formulas of a propositional temporal
logic. The system to be verified is modeled as a state-transition graph. and the graph is
searched to determine if it satisfies the property. A\ svmbolic model checking algorithm is one
in which the transition relation is represented implicitly by boolean formulas. and states are
not explicitly enumerated. The SMV symbolic model checking algorithm [1. 10] is the basis
of our approach. [t is extended to handle real-time properties. The original model checking
algorithm represents properties as formulas in the temporal logic ("T'L (Computation Tree
Logic). This logic allows us to state properties such as “event p will happen sometime in
the future”, but not “event p will happen in at most . nnits of time™. Tu real-time systems
properties of the latter type appear frequently. becanse we must bound the execution time
in order to make the system predictable. We angment ("T'LL so that it is possible to express
real-time properties using the bounded until operator [9]. and show how to check formulas
involving operators of this type using BDD-based symbolic moddl checking techniques,

Another extension to the algorithin comes from the fact that all transitions in a SMV
model take exactly one step to occur. However. in realistic models this is not always true.
Various transitions frequently have different lengths in practice. [t is also possible that one
transition can take different amounts of time to occur in different exeentions.  Modehng,
this behavior in SMV can be achieved by expanding a non-unit transition into a sequence
of transitions through several intermediate states. The states introdneed by this technigne
may significantly increase the size of the model. We propose an extension called [fmed
Transition Graphs (TTG) to handle this sitnation. .\ Timed transition graph is a transition
graph that has time intervals associated with transitions. The time intervals specily a lower
and an upper bound on the time it takes for a transition to oceur. N transition can take a
nondeterministic number of steps to ocenr, within the hbounds spectfied by the TGl Longer
transitions that are also non-deterministic (within specified bounds) allow the modeling of
realistic systems without the burden of adding extra states 1o the model. .\ symbolic model
checking algorithm is presented for hounded ("T'L formulas using T'TGs as models.

As an example of how these technigues can be used. we model the priorvity inecrsion [S. 11
problem nsing the extended verifier. Most real-time systems rely on priovities to matntain
predictability. The fact that higher priovity tasks mnst be exeented hefore lower priority tasks
is essential for the correctness of such svstems. However, low priority processes can block
high priority processes indelinitely, hecanse of indiveet priority constraints. This situation is
called priority inversion. This behavior makes the svstem anpredictable. 10 s deserthed in
this paper. Several solntions exist to this problem. and one of those. priovily inheritaned, is




presented and formally verified.

Temporal logic model checking is described in section 2. Section 3 discusses hinary
decision diagrams, which foi:n the basis for the symbolic algorithms described in this work.
The logic used in the model checker is presented in section 1. and in section 5 the symbolic
model checking algorithm is explained. The extension that allows real-time properties to he
expressed is described in section 6. In section 7 timed transition graphs are presented. and
a symbolic model checking algorithm for TTG models is given. An example of how these
techniques work, the priority inversion problem. is presented in section 8. The paper ends
in section 9 with a discussion of the results.

2 Temporal Logic Model Checking

Extensive simulation is currently the most widely used verification technique.  However.
simulation does not exhaust all possible behaviors of a computing system. Exhanstive simu-
lation is too expensive, and non-exhaustive simulation can miss important events, specially
if the number of states in the system being verified is large. Other approaches for verifica-
tion include theorem provers, term rewriting systems and proof checkers, These techuniques.
however, are usually very time consuming. and require user intervention to a large degree.
Such characteristics limit the size of the systems they can verify in practice.

Temporal logic model checking [5. 6] is an alternative approach that has achieved signif-
icant results recently. Efficient algorithms are able to verify properties of extremely large
svstems. In this technique, specifications are written as formulas in a propositional tempo-
ral logic and computer systems are represented by state-transition graphs. Verilication is
accomplished by an efficient breadth first search procedure that views the transition system
as a model for the logic, and determines il the specifications are satistied by that model.

There are several advantages to this approach. An important one is that the proceduare
is completely automatic. The model checker aceepts a model desceription. specilications
written as temporal logic formulas and determines if the formnlas are true or not for that
model. Another advantage is that. if the formula is not true. the model checker will provide
a counterexample. The counterexample is an execution trace that shows why the lormula
is not true. This is an extremely useful feature because it can help locate the source of
the error and speed up the debugging process. Another advantage is the ability 1o verify
partially specified systems. Useful information about the correctness of the system can be
gathered bhefore all the details have been determined. This alows the verification of a svstem
to proceed concurrently with its design. Consequently verification can provide valuable hints
that will help designers eliminate errors carlier and define better systems.

Properties to be verifie.. are deseribed as formmlas in a propositional temporal logic. The
systemn for which the properties shounld hold is given as a state transition graph. It defines
a model for the temporal logic since the semanties of the logic are given in terms of state
transition graphs. The model checker traverses this graph and verifies il the model satisties
the formula. Checking that a single model satisties a formula is much simpler than proving
that a formula is valid for all possible models. Because of this Tact. model checkers can be
more officiently implemented than theorem provers. Clarke and Emerson [5] developed the
first. algorithm. This algorithm used adjaceney lists to represent the transition graph and had
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a complexity that was polynomial in the size of the model and in the length of the formula.
This and other equivalent systems were able to handle graphs with up to 10° states.

Around 1987, however, the concept of symbolic model checking was introduced [1. 10]. In
the new approach the transition relation is represented implicitly by boolean formulas. and
implemented by ordered binary decision diagrams [1]. This usually results in a much smaller
representation for the transition relation. allowing the size of the models being verified
to increase up to more than 10%° states. The symbolic model checking approach will be
explained in more detail later.

3 Binary Decision Diagrams

Ordered binary decision diagrams (BDD) are an efficient way to represent boolean formulas.
BDDs often provide a much more concise representation than traditional representations
like conjunctive normal form or disjunctive normal form. They can also be manipulated
very efficiently [1]. Another advantage offered by BDDs is that they provide a canonical
representation for boolean formulas. This property means that two boolean formmlas are
logically equivalent if and only if they have isomorphic representations. It greatly simplifies
the execution of operations that are performed frequently like checking equivalence of two
formulas or deciding if a given formula is satisfiable or not. Becanse of these characteristics.
BDDs have found application in the implementation of manusy ('AD tools.

Boolean formulas can be represented by binary decision trees. The nodes in the decision
tree correspond to the variables of the formula. Descendants of a node are labelled with fruce
or false. The value of the formula for a given assignment of values to the variables can be
found by traversing the tree from root to leaf. At cach node the descendant labelled with
the value of that variable is chosen. Fach leaf corresponds to a partienlar assignment to the
variables, and contain the truth value of the formula for that assignment.

This representation is not particnlarly compact, becanse it may store the same infor-
mation repeatedly in different places. BDDs arve derived from binary decision trees bt
its structure is a directed acvelie graph instead ol a tree. Redundant information in the
structure is avoided by eliminating common subtrees. \s in decision trees, nedes are vis-
itedd in sequence, from root to leal. However. BDDs impose a total ordering in which the
variables occur in this sequence. For example, the BDD in figure | represents the formnla
F = (aAb)V(cAd)nsing the ordering @ < h < ¢ < d lor the variables.

Given an assignment for the variables in f we can decide il this assignment satistios
the formula by traversing the BDD from root to leal. At cach node we follow the path
that corresponds to the value assigned to the variable in the node. The leal indicates if
the formula is satisfied or not for that particv'ar assignment. Notice that redundaney is
eliminated in two ways. (‘ommon subtrees are not replicated, as can be seen from the paths
when « is false and when b is false. Also. when all the leaves of a subtree lead to the same
value, the subtree is climinated. and a leaf of that value is inserted at its place. Notice in
the figure that when « and & are both true a subtree containing the variables ¢ and o is
climinated because all of its leaves would have the value 1.

For any boolean formula and with a fixed variable ordering there exists a unigne BDD [1).
The size of the BDD is critically dependent. on the variable ordering. It is exponential in
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Figure 1: BDD for formula (¢ A b) V (¢ A d)

the number of variables in the worst case. Given a good variable ordering. however. the
size is linear in most practical cases. Using a good variable ordering is verv important. But
finding the optimal order is in itself a NP-complete problem. Nevertheless. there are many
heuristics that work quite well in practice.

Efficient algorithms exist to handle boolean formulas represented by BDDs. Given BDD
representations for f and g. algorithms for computing = f and [V g are given in [1]. \lgo-
rithms for quantification over hoolean variables and substitution of variable names ave also
required by the model checker. It is simple to compute the restriction of a formula [ with a
variable v set to 0 or 1. We will denote the restriction of [ with v set to 0 by f|,=¢. and the
restriction of f with v set to | by f{,=1. The formula Jo[f] is defined as fl.=y V fl.=1. and
Vo[f] is defined as =3v[-f]. Substitution of variable names can be accomplished using the
quantification algorithm. f<v « w> denotes the substitution of variable w for variable v in
formula f. It is computed as f<v — w>= Jr[(v & w)A []. These operations are performed
very frequently in the model checker, and more efficient algorithims are used in the actual
system. Describing these algorithms is out of the scope of this paper, but they can be found
in [2].

4 Computation Tree Logic

Computation tree logic, C'TL. is the logic used by SMV to express properties that will be
verified. Computation trees are derived from state transition graphs. The graph structnee
is unwound into an infinite tree rooted at the initial state. as seen in figure 2. Paths in this
tree represent all possible computations of the program being modelled. Formulas in (“T'LL
refer to the computation tree derived from the model. CTL is classified as a branching time
logic, because it has operatars that describe the branching structure of this tree.

Formulas in CTL are built from atomic propositions, where cach proposition corresponds
to a variable in the model, boolean conectives =~ and A, and lemporal operators. llach
operator consists of two parts: a path quantifier followed by a temporal operator. Path
quantifiers indicate that the property should be true of all paths from a given state (A).
or some path from a given state (E). The temporal quantifier deseribe how events should




Figure 2: State transition graph and correspon-ing computation tree
be ordered with respect to time for a path specified by the path quantifier. Thev have the
following informal meanings:

e F o (v holds sometime in the future) is true of a path if there exists a state in the
path that satisfies .

o G p (p holds globally) is true for a path if p is satisfied by all states in the path.
e X ¢ (p holds in the next state) means that o is true in the next state of the path.

e © U % (¢ holds until v holds) is satisfied by a path is ¢ is true in some state in the
path, and in all preceding states, p holds.

Formally, the syntax for ('TL can be defined by:
e Every atomic proposition p is a ("TL formula.
o If f and g are C'TL formulas, then so are ~f. f A g. EX [LEG [ and E[J U g¢].

The semantics of ('TL formulas are defined with respect 10 a labeled state-transition
graph. which is a 5-tuple M = (P.S. L. V. S). where P is a set of atomic propositions. S
is a finite set of states, L is a function labeling cach state with a set of atomie propuositions.
N C 5 xS is a transition relation, and Sy is the set of initial states. .\ path is an inlinite
sequence of states sgsysg.... such that V(s;, si4) is true for every /.

If f is true in a state s of structure M. we write M s & . Wewrite M= [it M.s = [
for all states s in So. The satisfaction relation is defined inductively as follows (Given the
model M, we abbreviate M.s = p hy s | »):

1. If p is the atomic proposition » € P, then s = 2 il and only il ¢ € L{s).
2. s =~ iff it is not the case that s Ep. s EpAvill s | 2 and s = oo,

3. s = EX ¢ iff there exists a path 7 = sps;s,.. starting at s = s, such that s, &= 2.
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4. s  EG ¢ iff there exists a path = starting at s such that for every state s" on =,
S

"E v

s = E[p U ) iff there exists a path 7 = sys)sy... starting at s = s¢ and some 7 >0
such that s; = ¥ and for all j <i.s; = o

Y]]

The following abbreviatons are used in CTL formulas:
AX f=-EX -f.
EF f = E[trueU ]
AF f=-EG ~f
AG f =-EF -f
A{fUg] = ~E[~gU~f A ~¢] A ~EG~y.

Some examples of ('TL formulas are given below 10 illustrate the expressiveness of the
logic.

e AG(req — AF ack): It is always the case that if the signal regis high. then eventnally
ack will also be high.

o EF(started A —ready): Tt is possible to get to a state where started holds but ready
does not hold.

o AG EF restart: From any state it is possible to get to the restart state.

e AG(send — Alsend U reer]): Itis always the case that if send ocenrs, then eventually
recr is true. and until that time. scnd mnst remain teue.

5 Symbolic Model Checking

Early model checking algorithms represented the transition graph throngh adjacency fisis.
All existing states were explicitly enumerated. Sinee the model cheeking problem has an
exponential behavior in the worst case. this frequently cansed state explosion problems.
The size of systems that conld be verified was severely limited. Sembolic model checking
represents states and transitions using boolean formmlas. This nsnally generates smaller rep-
resentations. because it can automatically eliminate rednndaney in the eraph. Imiplementing
these hoolean formulas as BDDs leads to very cefficient algorithms for model cheeking tha
are able to verify much larger systems than previous ones. This section will exnlain the
symbolic model checking approach.
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Representing the Model

A model of the system in our algorithm is a labeled state-transition graph M. and assertions
about the system are expressed as ('TL formulas. The key to the efficiency of the algorithm
is to use BDDs to represent the labeled state-transition graph and to verifv il the fornmla is
true or not. The following method will be used to represent the transition relation as a BDID).
Assume that system behavior is determined by the hoolean variables Vo= {rg e, oy} Let
V' = {v},....t’_ } be a second copy of these variables. We will use the variables in V7 1o
represent the value of the variables in the current state. and the variables in V' to represent
the value in the next state. The velationship between values of variables in the enrrent and
the next states is written as a boolean formula using V- and V', This will generate the
boolean formula .V representing the transition relation. This formula will then he converted
to a BDD.

NP eyttt 1)

n-1

We represent states by the values of the atomic propositions in those states. In order 1o
guarantee that we can identify states uniquely. we must make the assumption that ditferem
states have different labeling of propositions. More formally. we assnme that for any two
states sy and sy in S if L(s)) = L{ss) then s; = sy This assnmption does not. however,
impose any restrictions on the model. since extra atomic propositions can be added in ovder
to make L{s;) # L(xy) for distinct states sy and s, [3].

Fixpoint characterization

(‘onsider a labeled transition graph M with set of states S0 We can denote a lattice of
predicates over S by Pred(S). where cach predicate is identified with the set of states in 8
that make it true. and use set inclusion as ordering. .\ functional [7 that maps Pred(S) to
Pred(S)is called a predicate fransformer. Informally. Pred(S) s a set of states and 7 s a
function from sets of states to set of states.

As described in [7]. if a predicate transformer [ is monotonie, it has a least fixpoint Ifp
ZIFIZ)) = 0, falscyand o greatest fixpoint gfp Z[1F1Z3]) = 0, F (oo, We can compnte
both fixpoints by iteration. Starting with 2" = [ulse (for Ifp) or Z" = truc tfor gfp.
we have Z'*' = 722 IF(Z") for ifp and Z'*' = 20 (72" for gfp. The lixpoint is found
when Z' = 71 01 the number of elements in Pred(SY is finite, termination is guaranteced.,
because there can be no infinite sequence of Z's such that 27 %= 2+

We can identify cach CTL formula [ with the predicate {s | Mos &= [} i Prad(S)
(this is the set of states that satisfy [). Then, we can characterize cach basic CTL temporal
operator as [ixpoints ol an appropriate predicate transformer. The set of states that satisfy
the natil operator is given by the least fixpoint E{fUg| of Z = ¢ v ([ AEX 7). lnformally
E[fUg] is true at state s, if cither ¢ is true in scor [ s true in s and there exists a successor
state where E[fUg] is true. The set of states that satisly the EG operator is given by the
greatest fixpoint EG [ of Z = fAEX Z. Informally. this means that EG [ holds in a state
~f [ holds in s and EG [ holds in a suecessor state of s. Prools that the charactenizations
above correspond to the expected semantics are given in [7).




The Model Checking Algorithm

Given a CTL formula p and a model M represented as described above, we want 1o verifv if
 is satisfied in the initial states of M. The model checking algorithm is defined inductively
over the structure of CTL formulas. It accepts the formula as an argument (and .M as an
implicit argument), recurses over the structure of v and returns a BDD that has one boolean
variable for every atomic proposition in V. The resulting BDD is true in a state if and only
if ¢ is true in that state. The algorithm is:

o If » is an atomic proposition p. return the BDD that is true if and only il pis true.
This is simply the BDD for p.

e Ifpis —f or fAg, use the standard BDD algorithms for computing hoolean connectives.

o If o is EX f, then we must verify if f is true in a successor state of the current state,
EX f is true in a state ¢ if and only if there exists a state s such that [ is true in state
s, and there exists a transition [rom / to s:

PEEX fiff 3s[f(s) A V(L.s)]

where f(s) means the value of formula f in state s. To compute this value we substitute
the free variables in f by their values in state s using the substitntion algorithm. In
other words, f(s) is true if and only il s = [. The relational product 3s[f(s) A N (1. 5)]
can be computed using the basic operations on BDDs. as described in [3]. However, this
operation occurs frequently, and it is important to compute it in an efficient manner:
efficient algorithms for this purpose are discussed in [2].

e If o is E[fUy]. the computation of the set of states that satisfy @ can be characterized
as a fixpoint computation. as shown previously. The BDD that represents the states
where E[fUy] is trne can be computed by finding the least fixpoint E[fUy] of:

E(fUy] = g vV (J NEX E[/Uy))

o If ;- ix EG/. the algorithm is defined in a similar way. It searches for the greatest
fixpoint EG/[ instead. and uses the following fornwmla:

EG/ = ANEX EG/

o All other ("TL operators are written in terms of the ones presented.

6 Real-Time Logics

The logic CTL can be used to specify many propertics ol finite state systems.  However,
there is an important class of properties that cannot be adequately handled using this logic.
This class consists of the propertics that involve quantitative constraints, that is. the class
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of properties which place bounds on response time. In (“TL it is possible to express the
property that some event will happen in the future. but not that some event will happen at
most & time units in the future. In this section we will discuss one way of augmenting ('TL
to permit representation of such properties.

In order to represent bounded properties. we add time intervals to the existing temporal
operators, as described in [9]. The basic temporal operator that we use in our real-time logic
is the bounded until operator which has the form: Uy, 4. where [a. ] defines the time interval
in which our property must be true. We say that fUj, 5y is true of some path if ¢ holds in
some future state s on the path. f is true in all states between the beginning of the path
and s, and the distance from this state to s is within the interval [0, ). The bounded EG
operator can be defined similarly. Other temporal operators are defined in terms of these,

More formally. we extend our ('TL semantics to inclnde the bounded until by adding the
following clauses to the formal semantics given in section

6. s = E[pUj, 44 iff there exists a path 7 = sgs;s2... starting at s = sy and some ¢ such
that a < i< band s; = e and forall jy <15, F 2.

7. s |2 EGpyp iff there exists a path 7 = syspsq... starting at & = sy and some 7 sneh
that a <1 < b s, = plorall j <.

As an example of the use of the bounded until consider the property It is alwavs true
that p may be followed by ¢ within 3 time units™. this property can be expressed as AG(p —
EF(03j9). The bounded F operator is derived from the bounded until just as in the unbounded
case, i.e. EFy, 41f = E[trueUyp, 4 f].

In order to implement this operator. we will use a fixpoint computation that is similar 10
the one implemented in C'TL. It is easy to sce that the formula E{fU, yyf can be expressed
in the form:

ifa>0and 6>0: E[fUpygl=/AEXLE[[Up oy
if 6> 0: E(fUpngl =y Vv ([ A EXE[[Upiogg])
and E(fOpayl =9

Other operators are defined similacly. _

Consider the first of these cases. We compute the sets of states where [ is trae for a steps,
During this computation, a fixpoint may be reached before a iterations have passed. When
this happens. we can skip to the second case. By using this optimization. the number of
required iterations may be reduced when the time interval is lacge. but a lixpoint is reached
quickly. The same optimization can also applied in the second case. I a lixpoint is reached
hefore b — « iterations, with b and a heing respectively the npper and lower bounds of the
operator. we can iminediately proceed to the third case.

7 Timed Transition Graphs

The extensions presented above allow the verification of a number of real-time systems,
However, transition graphs have another important limitation for modeling time honnded
computing systems. All transitions happen in one step,  In actual svstems events take

Y
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Figure 3: A non-unit transition in a TTG

different amounts of time to occur. Moreover, the time it takes [or some event to take place
may change in different executions. We call this behavior bounded stuttering. A transition
can stutter if the time it takes to occur is not fixed. but is instead determined by a time
interval.

A transition that takes more than one step and stutters can also be modeled in a transition
graph. The longer path can be expanded into a series of one step transitions. lixtra states
and transitions have to be added to the transition graph. This makes the verification process
more complex. The number of states added to the system is proportional to the size of the
transitions being expanded. Extra transitions between states have to be added to introduce
bounded stuttering. If there are many non-unit transitions. or il the individual transitions
are long, this can cause state explosion problems.

We introduce the idea of Timed Transition Graphs, T'TG, to help alleviate this problem.
TTGs remove the unit transition limitation from transition graphs. With each transition in
a TTG is associated a time range of the form [a.b]. where a.b € N. A transition labelled
with {a.b] will happen in .« steps, whiere ¢ < . < b. This extension allows transitions with
length longer than one and also introduces bounded stuttering. A transition takes @ steps,
but r is chosen nondeterministically, within the bounds defined by a and b,

Formally, a timed transition graph is a 5-tuple M = (P.S. L. R. Sy). where P s a set
of propositional variables. 5 is a set of states, L is a function labeling cach state with a
set of propositonal variables that are true in that state. Sy is a set of initial states and
R C S5 xNxN xS isa transition relation. Informally, R(sy. !, u.s)) indicates that the
transition between state sy and s; can take from ! to u steps to ocenr.

The SMV model checking algorithin can be extended to verify properties of T'TG models.
Procedures for handling unbounded properties and boolean conectives can be used withont
modification. To verify bounded properties we must first extend the representation of the
transition relation to include the hounds for cach transition. The algorithm uses a relation
R derived from R to represent the transition relation. R{sg./.s¢) is true il there exists
so. L, u, 3y and ¢ such that R(sy.l, «, <) is a transition of the model, and I <1 < u. The
algorithm encodes variables and states as vectors of hoolean variables. The time variable /
is also encoded as a vector of boolcan variables. In the discussion below, though. we do not
distinguish between the value of a state or ¢ and its encoding.

The model checking algorithm is an extension of the oviginal one. It is computed by
an iterative procedure. The algorithim maintains a current set ol states that satisly p.
Each iteration finds states that have a transition to an clement in the set computed by the
previous iteration and npdates the current set. The lixpoint of this iteration process is the
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set of states that satisfy p. For example, to find the set of states that satisfy E[fUp,g] we
use the method outlined below.

SEE[fULyg| it s=E[fUg] Aa <1 <h]

We compute the bounded until for an interval as an extension of the hounded nntil for a
single time t. Notice that f(s) iff s |= f.

E(fU.g]=
(g(s) At =0)V
Fty,te, 8" [f(s) AE[f UL gD(&) AR (s hao 8" AN =1+ 1]

The formula g(s) At = 0 is true if state s satisfies g and the time bound allows the path
to have length 0. The formula. (E[ fU,, ¢]}(s) A R(s.f,.5"). is true if s has a transition
to a state s’ and ¢’ satisfies E[fU,, ¢g]. To verily il s satisfies the bounded property we must
see if the length of the path from 5" added to the length of the path from s to & is within
the bounds. t = (¢, + #;) verifies if this requirement is satisfied by s" and some #,.f, that
satisfy the transitions on the graph. Equations that compute the set of states that satisfv
other operators are similarly defined. and will not be presented here for brevity.,

The TTG approach does not suffer from the same problems as the path expansion tech-
nique, but it does add to the complexity of the fixpoint calculation. The existential qnan-
tification algorithm must be applied to the variables that vepresent the time of a transition.
This is an expensive operation. and can also cause state explosion problems. However, the
TTG algorithm is more efficient than nnrolling states. The number of boolean variables
added to the model to represent the time range is proportional to logu. where v is the
largest upper bound of all transitions. The existential quantification is applied to these
variables. Also. this approach is independent. of the number of long transitions and does not
introduce another overhead for stuttering transitions,

8 Examples

As an example of how these techniques can be applied to real-time svstems, we'll model
the priority inversion problem. and a solution to this problem. priority inhcritanec, Onr
model shows how priority inversion affects the predictability of real-time svstems, and how
inheritance solves the problem. \ description of the problem and the solution is lirst given.

Priorities are essential in real-time systems. The correet ordering of task execution is a
fundamental problem that must be solved if the system is to be predictable, Many scheduling
policies have bheen developed to define what constitutes a correct ordering and to enforee
this ordering during the execution of the system. If a scheduling policy requires that higher
priority tasks execute before lower priority tasks, it is possible {or a low priority process to be
executing while a higher priority one is blockeil., ‘This sitnation is called priority inversion,
Unbounded priority inversions ocenr when high priority processes are blocked indefinitely
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Figure 11 Bonnded priority inversion

by low priority processes. When this happens. the system may become unpredictable, The
correct ordering of task execution will be compromised. and the system may fail 1o satisfy
its specification.

In order to present the problem in a more concrete framework. we will introduce a hypo-
thetical air-traffic control system. We will concentrate our analysis in two of the processes in
the system. The first. called sensor. reads airplane position data from radars. sets alarms on
catastrophic conditions (conditions that cannot wait for a detailed analysis). and puts the
data into shared memoryv. The other process is the reporter, that reads the data collected by
the sensor. and updates the traffic controller screens. The sensoris a high priority process.
because it processes urgent events, and must not. be blocked by other processes. The reporter
on the other hand. is a low priority process. Since it doesn’t process urgent events, it may
be delayed by other more important tasks.

The sensor and the reporter processes share data. To access this data appropriately.
synchronization is necessary. In onr system. the synchronization is implemented by a mutex
variable which guarantees mutnal exclusion among the processes accessing the data, The
mutex variable is locked every time shared data is accessed. However, this may resnlt in
priority inversion. Suppose reporter is inside the critical section, and sensor tries to insert
new data into the buffer arca. The sensor can’t access the data and blocks. waiting for
reporter to nnlock the mutex. Now a high priority process is waiting for a low priority
process, and priority inversion occurs. Figure { shows this situation,

This priority inversion scenatio is bounded. The reporter will delay the ~onsor only while
it is inside the critical section. Aflter the reporter releases the lock, the sensor will start
executing, and the priority inversion will disappear. We can calculate the maximum duration
of the priority inversion as the time to execute the largest critical section, and incorporate
it in our calculations for the execution times. The system will still be predictable, although
there may be a little loss in accuracy in execution time predictions. Consequently, if the
system is well designed, and the critical sections are small, hounded priovity inversions can
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Figure 5: Unbounded priority inversion

he tolerated. without loosing predictability.

In certain cases. it is possible to have nnbounded priority inversions that cannot be
solved by this simple method. Suppose a third process. called the analyzer is added to the
system. This process reads data generated by other components of the air-tratlic controller
and processes it. The analyzeris less important than the sensorand has a lower priority. Bnt
it is more important than the reporter. since urgent conditions may arise as the result of the
analysis and handling them is more important than updating the sereen. Consider now the
same scenario as above. with the reportor inside the critical section. and the scnsor waiting
on the mutex. At this point. the analyzer starts executing. It will block the reporter. since
it has higher priority. However. the sensor is waiting for the reporter (and therefore also for
the analyzer). Since the analyzcr doesn’t know the relation between the reporter and the
sensor. it may execute for an unbounded amount of time and delay the scnsorindefinitelyv, If
a catastrophic event occurs. it will go wnnoticed. hecanse the sensor is blocked. \s o result.
the behavior of the svstem becomes nnpredictable. Fignure 5 shows this sitnation,

Priority inheritance protocols are one way of preventing unbounded priovity inversions.
A typical protocol might work in the following manner. \s soon as a high priority process is
blocked by a low priority one. the low priority process is temporarily given the priority of the
blocked process. While inside the eritical section the sensoris trving to aceess. the reporter
will execute at high priority. When the rmoporier exits the eritical seetion. it will be restored
to its original priority. In this way. the analyzcr will not be able to interrupt the moporter,
when the sensor is waiting. We will show that this protocol avoids the nnbhonnded priority
inversion problem (except possibly for deadlocks in accessing synchronization variables).
This allows the designer of the system to predict the maximum priority inversion time. as
in the bounded case.

Priority inversion occurred in this example because the analyzor preempted the reporter.
Another canse of priority inversion is quencing, Communication protocols mayv experience
priority inversion for this reason. For example, packets to be sent to the network may have
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priorities. Low priority packets may be enqueued ahead of high priority ones in some protocol
queue. In a prioritized network a high priority packet may have to wait for a low priority
one to be sent. If medium priority packets start arriving in another processor’s guene. they
may monopolize the network. preventing high priority packets from being sent. A\gain. we
have unbounded priority inversion. This tvpe of priority inversion could also happen in our
syvstem, if the different components were distributed over a network. For example. sensor
packets could be queued after some low priority packets in a quene. while analyzer packets
were being trasmitted.

The inheritance mechanism that we have described to avoid nnbounded inversions is
called basic priority inheritance protocol. There are other priority inheritance protocols,
Some protocols are designed to avoid deadlocks caused when eritical sections are accessed in
the wrong order. Other protocols are designed to handle chained boinded priovity inversions,
A chained inversion occurs when a high priority process wants to lock n mutexes that are
already locked by low priority processes. In this case. the high priority process has to wait for
all low priority processes to finish their critical sections. While this wait is bonnded. it may
be too expensive to wait for the duration of all eritical sections. One possible solution 1o this
problem is to assign priorities to critical sections. based on the priorities ol the processes
that may access it. A\ process is allowed to access a eritical section only if its priovity is
higher than the priority of all critical sections currently being accessed. A more complete
study of these various algorithms and their characteristics can be found in 8. 11].

Our implementation of the basic priority inheritance protocol is discussed in the full ver-
sion of the paper. The three processes are implemented as deseribed. We want to determine
if the sensor can starve:

AG(sensor.state = (rying — AFscnsor.state = erilical)

This property is false without the priority inheritance mechamsm. The property hecomes
true when priority inheritance is activated. Morcover. we can verify that there is an upper
limit on the time the sensor enters the eritical section with the following formmia:

AGsensor.stale = tryimg — Al qgsensor.stale = eritical)

9 Conclusions

In this work we have shown how temporal logic model cheeking can be used 1o verify prop-
erties of real-time systems. We extended an existing svmbolic model checker 1o handle
properties that are Founded in time. The bounded until operator was implemented to allow
the expression of such properties.

Timed transition graphs were proposed to extend even further the expressiveness ol the
tool. In a TTG. transitions have time bounds, and a transition can take a nondeterministic
time to occur within these bonnds. This allows the representation of more realistic models,
A symbolic model checking algorithim was given 1o verify properties in TTG models.

As an example of the uselulness of bounded operators, we disenssed the priovity inversion
problem in real time systems. We formalized a solution for a particular instanee of this
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problem and verified that it was correct using temporal logic model checking techniques.
This example demonstrates that non-trivial properties of real-time systems can he proven
using symbolic model checking techniques.
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