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Abstract

More and more low level vision algorithms are being carried out in the spatial
frequency domain, using Gabor filters. There are two basic problems concerned with
Gabor filterings we will address in this paper. One is the window size problem, in
which we will adopt a set of 2D variable window Gabor filters, and compare its per-
formance with those of fixed window filters. We will show that the variable window
scheme is more adaptive to image contents, while fixed window schemes may suf-
fer either large errors or instabilities when image contents are changed. The other
problem we will address is the stability of amplitude and phase information resulting
from convolving the filters with images. We will extend Fleet's ID phase stability
analysis to 2D phase and amplitude stability analysis based upon the assumption of
local resemblance of filter outputs to a single sinusoid. Applications on focus qual-
ity measurement and 2D correspondence are described, and the results demonstrate
improvements of performance by detecting unstable information using the criterion
developed.

Keywords: Computer vision, Low-level processing, Gabor filter, Depth from defo-
cus, Depth from stereo, 2D correspondence.
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1 Introduction

This paper addresses two problems raising in using Gabor filters to extract informa-
tion from images. The first problem is the window size problem, in which we use a set
of variable window Gabor filters to extract information at each frequency band. The
benefit of this set of filters is that we no longer need to adjust the window size param-
eter for every experiment. The other problem we will address is about the stability
problem caused by finite windows. We will extend Fleet's 1D phase stability analysis
to 2D phase and amplitude stability analysis, and develop a stability constraint in a
more general way. Finally, we will demonstrate the use of the tools in solving two
important vision problems, focus and correspondence.

In traditional approaches, the window size for low level operators is tuned manually
for specific experiments. Such a tuning process is usually undesirable for an algorithm
to be flexible and stable. Intuitively, to extract information of low frequency, large
windows are essential for the information to be stable, while for higher frequency com-
ponents, smaller windows are preferred to preserve locality. This suggests a variable
window scheme which decomposes a fixed window into a set of windows whose sizes
are directly related to their frequencies. A set of self-similar, rotation and translation
invariant 2D Gabor filters, which cover the whole spatial frequency plane up to the
Nyquist frequency, has been used to extract information from images. By combining
results from different frequency bands, a focus algorithm based on such decomposi-
tion demonstrates greater flexibility and adaptiveness than those based on the fixed
window size scheme.

It is well known that windowing in the spatial domain is equivalent to convolving
in the frequency domain, which limits overall frequency resolution. When amplitude
and phase information are extracted from windowed filtering, it is possible that they
are severly contaminated by the convolution. Therefore, if any algorithm makes use
of that information implicitly or explicitly without any further examination of the
stability, it is subject to either large error or total failure. One goal of this paper
is to provide a set of constraints which are capable of identifying the contaminated
information, and a generic framework for using information.

Focus quality measurement is a typical problem using Fourier amplitude informa-
tion. The problem can be formulated as measuring the change of amplitude between
two images. Applying the set of 2D variable window Gabor filters and the technique
of identifying unstable amplitude information, we can show that the performance of
the algorithm can be improved in stability, adaptiveness and precision.

2D matching is another typical problem which can be formulated using phase
information. Because shifting in the spatial domain is equivalent to phase change
in the frequency domain, we can measure phase changes to infer the spatial shift
between two images. As the same as we do in focus quality measurement, we will
apply the set of filters and the technique of stability analysis to the problem, and the
performance of the algorithm can be improved.

It is worth noting that the generic framework of using information extracted from

1



the set of filters is not limited to any specific application. While in this paper, we
demonstrate its application on focus quality measurement and 2D intensity image
matching, the framework can certainly be extended to any vision algorithm which
makes use of either amplitude or phase information.

2 Related Research

As an alternative way of performing visual computing in spatial domain, the spatial
frequency approach has been favored by many researchers for the applicability of
various signal processing techniques [12] and biological evidence [41 Previous research
on visual computing in the frequency domain has been concentrating on four areas,
namely, motion analysis, stereo matching, texture analysis, and focus measure.

Adelson and Bergen [1] and Heeger [9] modeled motions in 2D image space as
orientations in 3D spatiotemporal space, therefore, introduced 3D oriented filters to
measure image velocities. More recently, Fleet and Jepson [6] modeled the normal
velocity as a function of local phase changes, and then use Gabor filters to measure
changes of phase at every pixel location. To the stereo matching problem, Weng [20],
Sanger [18], Fleet et al. [7], and Langley et al. [15] proposed to use filters to extract
phase information, then compute disparities from them, while Jones and Malik [11]
applied a set of linear spatial filters to images, and use responses from those filters
as matching features. The spatial frequency approach also achieved great success in
texture segmentation [3, 10, 14], and shape recovery from texture [13, 16].

One of the major disadvantages of the spatial frequency approach is the artifact
introduced by windowing, which may cause substantial error if unnoticed. The usual
way to overcome this problem has been to use large windows so that the artifact is
negligible, but in price of severely reduced resolution. Fleet and Jepson [5] provided
an excellent way to analyze the stability of phase information. One of the major
goals of this paper is to generalize their work to stability analysis of both phase and
amplitude information.

Measuring focus quality through spatial frequency analysis has been proposed
in the literature [22, 2, 19, 17]. Few of the reported results have addressed the
stability problem of amplitude information, which is the only information used in
focus quality measurement. We will show that the stability analysis is capable of
eliminating unstable amplitude information, therefore improving the performance of
focus quality measurement.

3 Variable Window Gabor Filters

Limited by the uncertainty principle [8], any filter must compromise between spatial
resolution Ax and spatial frequency resolution Af 1. The Gabor filter, which is a

'In this paper, f always refers to an angular frequency, i.e. the wavelength A =
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complex sinusoid modulated by a Gaussian function, is the one which can achieve
minimal product of spatial uncertainty and frequency uncertainty:

1 2
G(x,f;a ) = (2)

where the spatial extent a decides the tradeoff between the spatial resolution and the
frequency resolution.

If the spatial extent a is constant across different frequency bands, i.e. we compute
the spectrogram[22], the filters for low frequency bands will have much smaller num-
bers of waves than those for high frequency bands. Therefore, the spatial localization
will be effectively reduced at high frequency, while in spectral domain, the spectral
localization in term of octave (logarithmic frequency band) will be effectively reduced
at low frequency. Suppose the spatial extent o vary linearly with the wavelength of
the tuned frequency, i.e.,

= f,~ (2)
f

we then obtain a set of variable window Gabor filters:

G(x, f) = vr2 e-a e-jf (3)

Extending the 1D variable window Gabor filters to 2D, we have the 2D Gabor
filter:

G(x,y, u, v) = g(x,y)ej ( +vy), (4)

where g(x, y) is an elliptical 2D Gaussian function in general, and (u, v) is the 2D
peak frequency of the filter.

The radial frequency of this filter is f = vl+u2?v and orientation 0 = tan(v/u).
Also it is usually more convenient to have the modulating elliptical Gaussian with the
same orientation 0 as the filter. Figure 1 illustrates the peak frequency position, the
spectral extent of one filter in the frequency domain, and the real part of the filter in
the spatial domain. A remaining free parameter is the aspect ratio of the elliptical
Gaussian. Inspired by some biological evidence reported in [4], we choose the aspect
ratio as two-thirds.

As we did for the 1D Gabor filter, we constrain the spatial extent in the 0 direction
of the 2D filter to be proportional to the radial wavelength, we then obtain a set of
2D Gabor filters which are translated, rotated, and dilated or contracted versions of
each other. In the experiments we show below, we used a set of 120 2D filters, which
have 10 different radial frequencies and 12 orientations. The k, in Eq. 3 is set to
7r. The spectral extents of filters are described in Figure 2, assuming the extent of
g(x; a) is from -a to a.

As we will show in experiments, the benefit of using such a set of filters with
different size of spatial support is that when results from different frequency bands
are combined, if the image has strong high frequency components, the final result
will be strongly influenced by results from high frequency bands, and therefore, it is
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Figure 1: Oriented 2D Gabor Filter in Frequency and Spatial Domains
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Figure 2: The Set of 2D Variable Window Gabor Filters
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based more on very local information. On the contrary, if the image contains strong
low frequency components, the final result will be based upon less local information.
We no longer need to tune window size every time when processing new images.

4 Stability of Filtering

Though we obtain an amplitude value and a phase value at every pixel location by
convolving the image with one filter, both of them may be so severely contaminated
by either windowing or noise that it is no longer valid to use them as approximations
of the real amplitude and phase values. Therefore, any algorithm using them without
discretion will potentially result in substantial errors. The goal of this section is to
provide a way to quantify such a bias from real values and, subsequently, reduce errors
caused by those contaminations.

4.1 Window Contamination

The origin of the window contamination is the convolution in the spatial frequency
domain caused by window multiplication in the spatial domain. In other words, we
are extracting amplitude and phase values not just at a single frequency, but at a
weighted sum of a band of frequencies. The behavior of the sum may or may not be
similar to that of a single frequency.

For simplicity, let us first consider the 1D case. For the sum of different frequency
components to behave like a single frequency component, we ask the local behavior
of the sum to satisfy following criteria,

1. The phase should change linearly w.r.t. the position, i.e. the derivative of the
phase w.r.t. the pixel position should be the frequency.

2. The phase should be stable w.r.t. the tuning frequency, i.e. the phase should be
constant when the tuning frequency is shifted slightly.

3. The amplitude should be stable w.r.t. the position, i.e. the derivative of ampli-
tude w.r.t. Uhe pixel position should be zero.

4. The amplitude should be stable w.r.t. the tuning frequency, i.e. the amplitude
should be constant when the tuning frequency is shifted slightly.

Apparently, a complex sinusoid satisfies all the criteria perfectly2. Therefore, for
the sum to approximate a single sinusoid locally, it has to approximately satisfy those
criteria locally. On the other hand, if the sum does satisfy all the constraints, then
in the spatial domain, the bandpassed signal can be well approximated by a sinusoid
locally. Consequently, we regard locally unstable signals resulting bandpass filterings
as those which can not be well approximated by a single sinusoid.

2For criterion 4, the amplitude is constant only when the tuned frequency is approximately equal
to the frequency of the sinusoid.
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Figure 3: Stability Analysis

Then the task left is to find one or more constraints, which are easy to compute, to
indicate to what extent those criteria are satisfied. Let us further simply the problem
by assuming the signal is a sum of two independent sinusoids of frequency fo and fl,
and weighted amplitude ao and a,. Then the sum is:

ad= aoej O° + alej 0 (5)

Let A AO = 01 - €o and Af =f - fo, after some manipulations, the criteria
1 and 3 can be expressed as:

AAf(A + osAO1 (6)
axf A2 +2A cos AO+

I1l I AAfsinA 1(
aO +2A cosA+ 1 (7)

When the tuning frequency is shifted as in Figure 3, it will affect the amplitude
ratio of two components,

a -(,&-a/) 2 ,,2 12

d.A -(f) 2 ,2/2 -__ A(e(Af)(f)U 2 
- 1) f2 8d - aoie-( 4V)1-112 ao =A fO(8

df df df

where a is the spatial extent of the filter.
Using Equation 8 and d(log f) = 1, we can express the criteria 2 and 4 as:

T'I, I =
2= I= I5ATV df
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arfAfA sin A0S
A2 +2AcosA4+1 (9)

a f a A df
u 2 As fAf /A(A + cosAo) (10)

Summing those criteria together, we obtained an overall criterion for the stability
of the signal which is composed of two independent sinusoids:

T 2 = T2 + T2 + T 2 + T2 = (1 + a2 f) 2 (TI + T2). (11)

Apparently, if T2 : 0, the four criteria listed previously are approximated satisfied.
In other words, the local behavior of the sum is similar to that of a single sinusoid
when T2 ; 0.

The rightmost expression in Eq. 11 provides another benefit for the computation
of T, i.e. we don't actually need to compute T2 or T4, which usually requires high
density frequency sampling because they are derivatives with respect to frequency.
In practice, the computations of T, and T3 are straightforward. Note the difference
between the criterion proposed here and those in [5]. The criterion proposed here
is more general in that only when Eq. 3 is satisfied, they are equivalent, and the
criterion in Eq. 11 is for both amplitude and phase information.

Figure 4 illustrates the stability criterion when applied to the sum of a fixed fre-
quency sinusoid and a chirp signal, i.e. the frequency increases linearly with respect
to pixel locations, with the same magnitude (A = 1). The upper two graphs show Af
and A0' in Eq. 11, the lower left graph is the signal itself in spatial domain, and the
lower right graph shows the computed stability criterion T. Obviously, the spikes in
the stability criterion are caused by asynchronous sinusoids, i.e. those sinusoids are
concealing each other because the phase difference is approaching ±7r, and the gradual
increase in the stability criterion is caused by the increasing frequency difference.

As proved in Appendix A, Eq. 11 is valid for an arbitrary signal. Generalizing
Eq. 11 to any signal, and taking the spatial extent into consideration, we obtain the
criterion function T' as in Eq. 12:

T7 2 / 1 aa2
+ -1f + _ a (12)

where k, is the constant in Eq. 3, and fo is the tuning frequency.
Elimination of unstable information can be done by simple thresholding, i.e. if

at any location and any frequency band, T' exceeds a certain threshold, then the
amplitude and phase information in that frequency band is regarded as unstable.
Notice that the threshold should be a constant with respect to different frequency
bands.

7
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Figure 4: Stability Criterion

In case of 2D Gabor filters proposed previously, let us assume the X axis is co-
incident with the radial orientation u of a filter, the four criteria can be expressed
as:

T=V'q -U = A(A + osA) (Au (13)
A2 +2AcosA4 + l  Av (

Aua 2 sin AO AU
T2 =UV = A 2 +2A cosAO+1 AV , (14)

1 AsinAO (Au (15)
T3 =Iva = A2 +2AcosAO+l Av (

u Aua 2(A+cosA ) Au\
T4=-Va = A2 +2AcosAO+1 AV (16)

where V, is the gradient operator in spatial domain, Vu is the gradient operator
in spatial frequency domain, u is the peak tuning frequency, Au and Av are the
frequency difference in X and Y directions, and k2 is the aspect ratio of the filter.
Similarly the overall stability criterion can be expressed as:

IIT'I11 = a2(lIST, 112 + IISTs1 2), (17)
Where the S is the aspect scaling matrix,

S= 0

8



4.2 Noise Contamination

Due to different window sizes of filters, the effects of noise on the amplitude and
phase values are also different. Assuming additive white noise, the noise component
included in filter output can be expressed as:

S+00 fjf)V/ r__ +001
N(fo) = e- n = __ g(f -f ; - )e; '"df, (18)

1- 0 0  a 0 o

where g(f - fo; .) is a Gaussian function with center at fo and extent , n is the
magnitude of noise at every frequency, 0,, is the random phase of noise.

Because we assumed white noise, the expected value of the rightmost integral term
in Eq. 18 is assumed to be a complex number with constant magnitude and random
phase. Therefore, using Eq. 2, we obtain the relative noise level in every frequency
band.

IIN(fo)I = k3fo, (19)

or in the 2D case,
IIN(fo)I = k31IfoiI 2, (20)

where k3 is a constant.

5 Applications

The general framework developed in this paper is applicable to any vision task which
makes use of either amplitude or phase information. We will explain two specific
applications, focus quality measurement and 2D correspondence. The reason we
choose these two applications is as we will see, focus quality measurement makes use
of amplitude information only, and 2D correspondence makes use of phase information
only.

5.1 Focus Quality Measurement

As explained in [22, 17], the key problem in focus quality measurement can be stated
as, given two images which are blurred to different extent, how to measure locally the
difference of blurring at each pixel location. Modeling the blurring as a convolution
with a Gaussian, we have[17],

'' = fV/Iln IIIo(f)112 - In II1i(f)1121, (21)

where a' represents the blurring difference, and IIIo(f)I and II1o(f)I are amplitude
values of two images at frequency f.

We can apply the set of 2D variable window Gabor filters to extract amplitude
information at each frequency band, eliminating unstable amplitude information by

9



thresholding in Eq. 17, then fit all other stable amplitude values and their included
noise level (Eq. 20) into the following linear (w.r.t. o2) equation[21].

o'11f 112 = Iln IIIo(f)112 - In IIiI(f)112I + c, (22)

where the constant c is used to compensate illumination difference between two im-
ages, and instead of the peak tuning frequency, 1fI11 2 can better approximated by the
average of two instantaneous frequencies Ii I(V'0o + Vr,1)112. Ordinary X2 estimation
can be applied to the fitting with the uncertainty of the right side being expressed as
[211,

IIN(f)j + IIN(f)I (23)
11Io(011 PI l l"

The iterative estimation in [22] can be also efficiently implemented as convolutions

in the spatial frequency domain.

I(X) 0 g(X; ') 0 f() = (M(x) 0 f(x)) 0 g(X; ') (24)

where f(x) is a bandpass filter.

5.2 2D Correspondence

The key problem in 2D correspondence is to find the spatial shift between two images
at each pixel location. Because a spatial shift is equivalent to a phase shift in frequency
domain, we can infer the spatial shift from phase difference [18, 7, 15].

An obvious approach similar to that of focus quality measurement is to apply the
set of 2D variable window Gabor filters to extract phase information at each frequency
band, eliminate unstable phase information by thresholding in Eq. 17, then minimize
the following to find disparity r.

((0 1 - 00 - f -r) mod 2r)2  (25)

oo stable (N + NI"AfD,

where N(f) is the noise component in Eq. 20.
The iterative estimation in [7] can be done by simply shifting one image locally

according to previously estimated disparities.

6 Experimental Results

6.1 Elimination of Unstable Information

First we artificially convolved an image with a Gaussian function g(x; a = 1.0), then
convolved the set of filters with original and blurred images, and analyzed the relations
between amplitudes of various frequencies at an arbitrarily chosen pixel location. The
left half of Figure 5 shows the relative error of estimating a (Eq. 22) from a single

10
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Figure 5: Elimination of Unstable Amplitude Information

frequency band without eliminating unstable amplitude information 3 , and the right
half shows the error after thresholding by T' = 1.25 in Eq. 17.

To illustrate the effectiveness of eliminating unstable phase information, we spa-
tially shifted a image by r, and then the phase difference Wp represents the error of
phase with respect to ideal sinusoids.

V=r. + V 2 (01- ) 2) mod 27r, (26)

where 01 and 02 are the two phase values resulting from convolving a filter with the
original and shifted images. Ideally, 'p should be zero at any frequency band. At an
arbitrarily chosen pixel location, the left half of Figure 6 shows ' of every frequency
band without eliminating unstable phase information, and the right half shows ' after
thresholding by T' = 1.25 in Eq. 17.

As illustrated in Figure 5 and Figure 6, the identification of unstable information
is indeed very accurate. Depending on a specific application, the threshold can be
changed to satisfy looser or tighter requirement for the output of a bandpass filter to
resemble a sinusoid.

As illustrated in Figure 5 and Figure 6, there also exists a strong correlation be-
tween instability and amplitude values. This suggests an amplitude thresholding
scheme ([21]), which assumes unstable amplitude and phase information is caused by
low amplitude values. Even though this amplitude thresholding scheme can indeed
works well in some cases, when we compared with the stability thresholding, we found

31n this case c in Eq. 22 is zero.
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Figure 6: Elimination of Unstable Phase Information

that it usually requires images have strong high frequency component because oth-
erwise weak high frequency components axe always below the threshold even though
they are stable with respect to the stability criterion. On the other hand, if we lower
the amplitude threshold, a large number of unstable information will get through.
In the experiments described below, the amplitude threshold is set to 0.06 (refer to
Figure 5 and Figure 6), assuming images ae normalized so that their DC components
have amplitude value of 1.0.

Figure 7 shows two images of two textured surfaces at difference depth. The images
are taken under different lens apertures, which make the difference of focus quality a
function of depth [211. We applied the set of filters to the two images, then eliminated
unstable amplitude information by thresholding the stability criterion, and fitted a
line against Eq. 22 to obtain a' at each pixel location. Figure 8 shows the difference of
focus quality in the rectangular region in Figure 7. As we can see, the two surfaces are
separated obviously, and the depth discontinuity is well located. Figure 9 shows the
computed focus quality difference by amplitude thresholding. The aea with strong
high frequency components are recovered correctly, while in other areas, the results
show instability.

Figure 10 shows two images of a rotating ball. We applied the techniques of fil-
tering and stability analysis to the two images, and use Eq. 25 to find 2D disparities.
Figure 11 shows the 2D correspondence between the two images. Intrinsic to the al-
gorithm itself, subpixel accuracy is achieved without any interpolation. Given sparse
features as those on the ball, the algorithm can automatically avoid unstable informa-

tion obtained in featureless areas. Figure 12 shows the 2D correspondence using the
amplitude threshold. Around the boundary of the ball, where the contrast is lower,

12



Figure 7: Two Images Taken Under different Lens Aperture

Figure 8: Difference of Focus Quality Using Stability Threshold
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Figure 9: Difference of Focus Quality Using Amplitude Threshold

the algorithm generate unstable results.

6.2 Fixed Window vs. Variable Window

The selection of window size for any window operation is a compromise between
resolution and stability. While large windows reduce effects of noise, and make results
more stable, the resolution is reduced at the same time. On the other hand, small
windows have the advantage of preserving locality, i.e. high resolution, they are
potentially unstable. Therefore a proper window size has to be ad hoc to a specific
problem. An implicit rule of choosing a window size is to select a window which is
as small as possible while the error caused by noise and windowing is still within an
acceptable range.

The alternative way of selecting a window size every time when processing new
images, is to adopt the variable window scheme proposed in this paper. Because
window sizes are proportional to wavelengths, this variable window scheme uses large
windows when frequencies are low, small windows when frequencies are high.

Figure 13 and Figure 14 show an example of input images with different contents.
The images in Figure 13 contain a considerable amount of high frequency information,
while the images in Figure 14 contain only low frequency information. The black
lines in the images are the locations where focus quality differences are measured.
Focus quality measurements are done using the fixed window scheme [22] with a
large window (a = 20.0) and a small window (or = 10.0), and the variable window
scheme described in previous sections.

Figure 15 shows focus quality difference of a single scan line between images in
Figure 13. The large window scheme resulted in a large slope around the depth

14
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Figure 10: Two Images of a Ball
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Figure 14: Defocused Image Pair

Nearly Focused Image Pair Defocused Image Pair
Small Fixed Window 0.1218 0.2708
Large Fixed Window 0.1677 0.1947

Variable Window 0.1150 0.1664

Table 1: RMS Errors of Different Window Schemes

discontinuity. The small window scheme displayed more noisy results before and after
the discontinuity even though it located the discontinuity more precisely. Figure 16
showed the results of focus quality difference between images in Figure 14. This
time, the small window scheme generated unstable results, and the large window
scheme produced a blurred, but stable results. In both Figure 15 and Figure 16,
the variable scheme resulted in a meaningful compromise between resolution and
precision. Table 1 shows root mean square errors of all cases. The variable window
scheme performs significantly better than the large window scheme in the nearly
focused image pair, and the small window scheme in the defocused image pair.

7 Conclusion

This paper provide a general framework of visual computing in spatial frequency
domain. We addressed two main problems in spatial frequency analysis, one is the
window size problem, the other is the stability problem associated with windowing.
We compared the variable window scheme with the fixed window scheme, and intro-
duced a more geheral stability criterion. And we showed the effectiveness of these
two tools in applications of focus quality measurement and 2D correspondence.
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A Stability Criteria for An Arbitrary Signal

Let us assume an arbitrary signal i(x), and its Fourier transform

l(f) = +00 i(z)e-jfadx. (27)

Its Gabor transform in any location x0 and any peak frequency fo can be represented
as:

1 +00 2

G(xo, fo) 7 17 Ioo i(x - xo)e-2e-Jfo°dx

- 1'0 I(f)e-Jx oe-(o-1 )2 .2 /2df

= a(xo, fo)eavj(-00)

= Ro(xo, fo) + j'o(:ro, o)

Then, we have
ao R-_ i_- Io-8R

_ - ao -I o (28)
X-o M + +/2

1 aa Ro 2&°- + J0t,
1 9 R 8 X0 + L (29)
az -X P+ 1o2

Similarly,

, k - I0 (30
fo~ f a lo __f (30)

A fo 8+12

foOa _ 0a oh_ (31)
aOfo fo

Let's define G,(xo, fo):

j f+002

G(xo,fo) - v/ 1-0 i(x - xo)ze-&Je-jdx (32)

= f-22 I(f)e-jfxO(fo - f)&(0f) 2G 2 /2df (33)

= R,+jI,
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where the equivalence between Eq. 33 and Eq. 32 can be easily verified by using the
following property of Fourier transform:

F[gh] = F[g] 0 j[h], (34)

where F denotes the Fourier transform operator.
Now, we have,

OG ORo .0IoOxo -Oo + j o

= , J-7o i'(x - xo)e-5e-'dx (35)

i(x -x )( x + jfo)e-2 e- fodx (36)

= j(Gi(xo, fo) - foG(xo, fo)), (37)

where, from step 35 to step 36, we used the partial integration method:

J u'(x)v(x)dx = u(x)v(x) -JI u(x)v'(x)dx

Using the same technique, we have,

9G ORD .- o01

Ofo fo ++I3 o
-J+00 i(f)e-jfxo, 2 (fo -(fo-f)2"/2df

-o' 2 G(xo, fo) (38)

Replacing Eq. 37 and Eq. 38 into Eq. 28 29 30 31, we obtain,

T1 = Oo fo =RR 1 + IA (39)

foc- u2 fo(IoRI - RoI1)
T = O~ or____+__2 (40)T, -- fo =

1 aa Io R - RoI (41)
T3-= a T- - R8 + I1o(41

T4 = fo Oa a2fo(RoR, + IoIj) (42)a a fo =  R -I-,

Therefore, we have,

- 2  ) 2T 2  )- R12 + 12  (43)

;+ T3 -O o) 2yM + YT4 +-2
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