
ADST-TR-WO 032 68

ADVANCED DISTRIBUTED SIMULATION
TECHNOLOGY

AD-A282 824

ModSAF

PROGRAMMER'S REFERENCE

MANUAL

VOL. 4

(Libuoverwatchmove- Libxfile)

Ver 1.0- 20 December 1993

CONTRACT NO. N61339-91-D-oo0l Dl IC
D.O.: 002 ETEf

__ ,DRL SEQUCE NO. A(MS U
94-25157 ___y

US. Army Simulation, Tralning, and I ti Com1man (SlRICOM)
12350 Research Parkway
Orlando, IFL 32826-3276

Preped b3

12131-A Research Parkway
Or a do, TL 32826

f94 8 09 091
ZIG QUALMT Ui8P3(aI3D

ADST-TR-WO 032 68

ADVANCED DISTRIBUTED SIMULATION

TECHNOLOGY

3 ModSAF

PROGRAMMER'S REFERENCE

MANUAL

3 VOL. 4
Accesion For

(Libuoverwatchmove- Libxfle) NTIS CRA&MI OTIC TAB
Unannounced

Ver 1.0 -20 December 1993 Justification

CON CT O. 6139-9-D-~l By_-
CONTACTNO.N6139-9-D-M~l Diat, ibution /

D-0-: 0021 Availability Codes

CDRL SEQUENCE NO. A00 AalIn Iis or

Prepared ibr:

US. Army Simulation, Trainng and Instrmftaton Command (STICOM)
12350 Research Parkway
Orlando, FL 32826-3276

Preparedby-

.1-Ni -

ADSr'ProgramOffice
12151-A Research Parkway

Orlando, FL 32826

ADST-TR-W003268

S
S
I
£
I
I

Libuoverwatchmove

7~

~1
I
I

I
I

S

' Table of Contents

1 Overview..1IS1.1 Examples .. 1

2 Functions... 3

2.1 uowmj~ ... 3
2.2 uowm...cassinit .. 3B2.3 uowm..create.. 3
2.4 uowm..destroy... 4

Char 1: Ovemvew

1 Overview

TEMPLATE: Dwcibe what this library does here.

1.1 Examples

TEMPLATE: Give examples here.

2 Libuoverwatchmove Programmer's Guide

S

Chaptet 2: Functions 3

2 h functwinets describe each function provided by libuoverwatchmove, including the

format and meaning of its agmnsadthmeigofitsreunvls(iay)

TEMPLATE: Adjust alignment of descriptions

TEMPLATE: Correct argument lists and descriptions of these functions.

2.1 uowrnnjnit

void UOUR-nit()

UNiniit initializes libuoverwatchmove. Call this before any other libuoverwatchmove func-
tion.

2.2 uowm..class-jnit

void uowclow-inlit(parnt..ass)
CLAS.m-l parent-.cl.a;

Class of the parent (declared with cleau..dclaz.ass)

vow-claasInit creates a handle for attaching u0overwatchinove class information to vehicles.
The paremtclms will likely be satobj..clas.

2.3 uowm..create

Void UoU..Creat(vehicle.id. para.., po..db, ctdb, quad..data)

WIILPLUWRC-DTA *params;
POJATAASI 'po-Ab;
0135 *ctdb;

P DATA *quaddata;

4 ~Libuoverwatchmove Progrmmier's Guide

Specifies the vehicle ID

*pm..' Spcfe initial parameter values

'ctdb q Saecifya the terrain database clsinomtofoaveceadatchsivhce' -

noin..czate creates teuoverwatchmove ca nomto o eil n tahsi eil'
* block of libclass uer data.

2.4 uowin..estroy

void Uoue.Aeitzoy(vehicle..id)
iat vehicle-id;

'Veicleid'
Specifies the vehicle ID

UOM-40MWro frelm the uoverwiathmove class information for a vehicle. This should be called
WeONe freing the din user data with c3lauujzeuser..data.

I ADST-TR-W003 268

Libupoccpos

I Table of Contents

1 Overview..1II1.1 Task Parameters.. 1
1.2 Parametric Data.. 2

5 2 Functions... 5

2.1 upoccposinit..5
2.2 upoccpos..lasit...........t.................................... 5
2.3 upoccposx.reate ..
2.4 upoccpos.4.stroy ... 6

2.5 upoccpos..Init.tasktate....................................... 6

I3 Algorithms..7
3.1 Cover Algorithm.. 7
3.2 Concealment Algorithm 8

4 Debugging..9

Chapter 1: Overview

1 Overview

Libupoccpos implements a unit-level Preparatory task for Occupy Position. This preparatory

task finds covered and/or concealed positions along the battle position and instructs the subordi-

nates to go toward these positions. This task ends when the subordinates have reached the desired

positions. The task state machine is written using the AAFSM format which is translated to C

using the 'Isn2ch' utility (see section 'Overview' in LibTask Programmer's Manual).

Four parameters are passed to SN_.UPrep0cpyPos: left TRP, right TRP, engagement area TRP,

and battle position. Based on the battle position and the number of subordinates, the number of

vehicles per segment (the battle position is made up of one or more line segments) and the battle

areas (areas where each vehicle searches for cover) are calculated. The subordinates are ordered

by job numbers, and are assigned positions from one end of the battle position to the other end
so no vehicle crossover occurs while they are traveling to their positions. The cover/concealment
searching algorithm uses ctdb utilities which can tend to be expensive, especially is the battle areas
are large. Therefore, the search is divided among several ticks. Once the positions are found, they
are passed to vmove for each vehicle. The state machine then sits and waits until the vehicles are

in their desired position.

1.1 Task Parameters

The SILUPrepOcpPos task has four parameters:

Itypede struct upoccpos.parmetors

Object=D e gag.entarea;
ObjectD -p.right;
ObjectID trp..left;
bjectID batle.posltion;

) UPOccPOS.PARANKTM;

'emgmmat.azea'

Specifie a persistent object which defines the engagement area. The engagement area

Is a point object.

Specifies a persistent object which defines the right bound of the sector of fire for the

unit. This object is a point object.

2 Libupoccpos Programmer's Guide

Specifies a persistent object which defines the left bound of the sector of fire for the

unit. This object is a point object.

'battle.position'
Specifies a persistent object which defines the battle position. The battle position is a
line object.

1.2 Parametric Data

There are eleven parametric data entries for SlUPrepOcpyPos:

min.allowable.vsibility has a value from 0.0 to 1.0 and specifies the minimum visibility
(0.0 being not visible and 1.0 being completely visible) of the engagement area TRP required for a
point to be considered a good cover position

trzeopacity has a value from 0.0 to 1.0 and specifies the degree to which one can see through
tree lines. 0.0 means tree lines are ignored, and 1.0 means that tree lines completely block the path
of vision

front.dlt.percnage specifies how far in front of the battle position to sewrch for cover
positions. The value specified is a percentage of the total battle position length.

back-dist-percentage specifies how far back from the battle position to search for cover po-

sitions. The value specified is a percentage of the total battle position length.

firm.sector-overlap-percntage specifies the degree to which fire sectors overlap

grld.spaclng specifies how carefully the search will be performed. A low value specifies a quick
search (possibly overlooking some good cover positions) while a high value specifies a search that

takes longer but detects more cover positions. This value is in meters and specifies the distance

betwue sample points.

searchs.per.tilck specifies how many sample points for each vehicle will be processed per
tick. If there are four vehicles and two searches per tick, then eight sample points will be processed
per tick.

aaz.buIdlu.width is used to ensure that a concealed point doesn't end up inside a building.

Chapter 1: Overview 3

It should be set to the maximum building width in the area being searched.

hull.cov~rago specifies the percentage of the hull that is protected from direct fire by the
ground. It is a number between 0.0 and 1.0.

ngagemnt..-ra.usize specifies the size of the engagement area. It is expressed in percentage
meters. The front of the engagement area is a certain distance in front of the engagement area
TRP. This distance is a percentage of the distance from the battle position to the engagement area
TRP. en emmt.arsasize specifies this percentage. Anything closer to the battle positior than
the front of the engagement area TRP will be blocked from view by the earth.

wp.o4 specifies the speed (in m/s) at which ground vehicles will move to their positions

77

4 Libupoccpo. Programmer's Guide

SChapter 2 Functions 5

2 Functions

The following sections describe each function provided by libupoccpos, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 uPOccPOSainit

void upoccpos.init()

upoccpou.init initializes libupoccpos. Call this before any other libupoccpos function.

2.2 upoccpo..class-.init

void UPOCqiOe..clauu.iWit (Parent..clasa)
CLLSS.PTR parent..class;

Class of the parent (declared with clauss-declaze-.caasu)

Upoccpoe.clm..lit creates a handle for attaching upoccpco dams information to vehicles.
TMw parmit..class will I&k* be safobj..clas.

2.3 upoccpoe-.create

void uPOoGCVps~zate(vehiCle..id para.. po.Ab * ctdb)
itt= vehicle-id;

UPOC-S.PhANMIC-DATA eparau;
PO-ATARAS *po.Ab;
CM. *Ctdb;

Spedeies the vehicle ID

Ivar' Speciesa Initial parameter Values
*J.Ab Specift the P0 database where the task can be found

6 Libupoccpoe Programmer's Guide

'ctdb' Specifies the terrain database currently in use

upoccpos-czeate creates the upoccpos class information for a vehicle and attaches it vehicle's
block of libclass user data.

2.4 upoccpoosdestroy

void upoccpos..destroy (vehicle..id)
in% vehicle-id;

'vehicle..id'
Specifies the vehicle ID

upoccpos.detzoy frees the upoccpos class information for a vehicle. This should be called
before freeing the clues user data with class-free..user-data.

2.5 up occp ox-nit-.tankk-tate

void Upoccposinit..task..state(task, state)
T~sas s ftask;
Tasbdtate~lass *state;

'ttask Specifies a pointer to the task clas object to be initialized.
'state" Returns the initialized state

Gives a sew SiLUpzepocpypos task that is about to be created, upoccpos..init..task.state
initlalses the mdel size, and state vaiiables.

Chapter 3: Algorithms 7

3 Algorithms

3.1 Cover Algorithm

Instead of finding the cover positions in one tick, the search is distributed among several t; x
until good cover positions are found. Each vehicle is given an area about the battle positil
which to search, which will be referred to as the 'battle area'. Also, a default position along
battle front (which the vehicle will use as its destination point if no cover or concealment is found)
is calculated for each vehicle. For each vehicle, three lines' consisting of equally spaced points are
constructed: one along the left side of the battle area, one along the back, and one along the right
side. During each tick, a few of these points are used as "starting points" or "sample points" in the
search for cover positions. For each sample point, a profile array (3-dimensional) which contains
the elevation of the ground along a vector from the sample point to the engagement are TRP is
geoeated. Any two consecutive entries in this array define the endpoints of a segment along the
profle with a constant slope.

Then, starting with the segment closest to the engagement area TB.P, and progressing to the
last segment (ending at the sample point), the following occurs:

1) The mamm slope of the line from the engagement area TP to the
point of the sepmt closest to the engagement area TIP is kept
trsck of. TIts is the line of sight of the enemy (also knom as
the tangent vector.,)

2) Two line semets are generated, each starting from one end of the
curres profile segment. These line segents are perpendicular to
the giound at the current profile segment and have a length that
is equal to the body height of the vehicle that is searching for
covrw. The line sepmeat closest to the sample point will be
referred to as 'testline 1', and that closest to the engagement
area TP as 'testline 2'.

3) If the tangent vector does not intersect with testline 1 but does
intarsect with testline 2. then there is a hull defilade position
salong that profile seent. The exact point is
calculated by detemining the intersection of the line whose
endpoints are the top ends of the testlines (points A and 3 on
the diagram) with the tangent vector, then projecting onto the
greond.

JRr sad vehicle, the covered positions with the mildest sdope is used as the destination point.

Libupoccpoe Programmer's Guide

L In the following diagram, a hull defilade position is found to be somewhere on segment n+1.

"egmient
teatine 2 tangent vector area TUP

A

I *spent n+1
I sepent n

teutIlae 1

3.2 Concealment Algorithm

COaceale Points aWe only searched for if no cover points are found. ctdbind4roundntersection()
Is used to determine if there is a treeline or building along certain segments of the profile array. If
so, the loctio ks mred as a concealed, position.

Not all Parts of all segmet awe searched for concealment. Only the portions of segments that
aue abov Nhihe in altitude) the tangent line are searched, since intervisibility would fail for any
portion of terrain below the tangent line. Therefore, segments that have the tangent line pass above
then are not checked at all for concealed positions.

The concealed positions that are closest to the vehicles' default locations on the battle position
ane used asthe destination points. Concaled positions are only used if no cover positions are

Chapter 4:- Debugging 9

4 Debugging

When debugging for Prep Occupy Position is enabled for any vehicle(s) (via 'veh X debug
upoccpou on'), three different colors of TRP-style points are put in each vehicle's overlay: yellow,
red, and green.

The yellow points represent the sample points (see the Algorithm

section) for a given vehicle.

The red points represent the cover positions found.

The green points represent the concealed positions found.

ADST-TR-W0032 68

LibURTB

Table of Contents

1 Overview..1
1.1 Task Paramete" .. 1

2 Functions ... 3

2.1 urtb.nt .. 3
2.2 urtbdawsnt ... 3
2.3 uartee..3
2.4 utb-dstroy... 4
2.5 urthjziUtsutate... 4

Catr1: Overie

.1 Overview

Libufth implement& a unit-level task which controls a group (currently only one) of vehicles
returning to a base and landing. The task state machine is written using the AAFSM format which
is traslated to C using the Ifuin2ch' utility (see section 'Overview' in LibTaak Programmer's
Manual).

Liburth depends on libvtacmoff, libv'fiwrte, libvland, libpo, libvtab, libclaas, libctdb, libaccess,
ibreader, and ilbparmgr.

1.1 Task Parameters

When a SILMUIStsk is created or modified, parameters in the parameter block of the task data
stiuctue ane refuenced. The parameters are represented in the task data structure as follows:

typede struct urtb.parsaeters

ObjectID base;
ulut1S padding;
float64 speed;
f1t"- -altitude;

'bse' Specifies the base for the vehicle to return to. This base can be a point object, line
object, or a text object.

&wpeed' Speciesa the speed of the vehicle.

Specihsa the altitude of the vehicle.

LibURTB Programmer's Guide

Fkpe2:Funct~on 3

2 Functions

The following sections describe each function provided by Iiburtb, indluding the format and
umaing of Its arguents, and the meaning of its return values (if any).

2.1 urtbinit

void uztbjnit(

urtb..init Initializes liburtb. Call this before any other liburtb function.

2.2 urtb.clasa..init

void urtb..classaAnit(parent-class)
CLASS.PM parent-.class;

'parmst-.clasa'
Class of the parent (declared with claaa..dwcawe.clasm)

urtb..class-init creates a handle for attaching uftb clam Information to vehicles. The parent..class
will likey be satobi-clas.

2.3 urtb.create

void urtb..create(vehicle..id, parms. po..db. ctdb)
law3 vehicle..id;
M9.3PA3AI!3C.DATA spaza..i;

PL.JThAS epo..db;
CTIS sctib;

6vehiC3leid'
Spedfies the vehicle ED

'paze Spedles initial parameter values

'p..Ab' Sped. thew PO database wher the task can be found

4 LibURTB Propgammer's Guide

'Ctdb' Specifies the terrain database currently in use

uatb.create creates the urtb class information for a vehicle and attaches it vehicle's block of
libclass user data.

2.4 urtb..destroy

void urtb-destroy (vehicle-id)
in% vehicle-id;

'vehicl...id'
Specifies the vehicle ID

urtb~destMo frees the urtb class information for a vehicle. This should be called before freeing
the class user data with class..tr..user-.data.

2.5 urtbjinit.task..tate

void urtbjaittak.state(taak. state)
Tam=cls *tank;
Teafuktaass *state;

'tsk' Specifies a pointer to the task class object to be initialized.

'state' Returns the initialized state

Given a new SULUMT task that is about to be created, urtb..int.task..tate initialime the
mocdel ize, a"d state vatiahiles

ADST-TR-W003 268

I
I
3
3
I
3
I
I

Libutargeter

I

Table of Contents

1 .Ove re....aa... 1
1.1 a Paramet rs Data ... 1

1. F n tios Pa....ameer...15

2 .F untons.. 5

2.1 utaqzgduit ... 5

2.3 utarg..create... 5
2.4 utarg..destroy ... 6
2.5 utarinit..taakstate .. 6

Chapter 1: Overview1

1 Overview

Libutargeter implements a unit level task that gets a list of all capable vehicles in that unit. if
the fife technique Is alternating then the capable vehicles will get paired up before giving vtargeter
the approprat, targeting information. The task state machne is written using the AAFSM format
which is translated to C using the 'f u2ch' utility (see section 'Overview' in LibTask Programmer's
Manual).

During targeting operations, there are two states as described below

'istart' When in this state, the task gets the number of capable vehicles and spawns the vehicle
targeting task libvtargeter. If the fire technique is set to alternating then the vehicles
are paired up before spawning the vehicle targeting task.

When In this state, the task gets the number of capable vehicles and spawns the vehicle
targeting task Iibvtargeter. If the fire technique is set to alternating then the vehicles
are paired up before spawning the vehicle targeting task.

The types of recommandations made by this task during either state can be controlled by the
parametric data for this unit subclass, as described below.

1.1 Parametric Data

Theformat of the parametric data for this unit subclas is as follow:

(SlLUTage~ (f iriu&.paus. -Cinteger ai1111uecoa))

The fiuiuapm. deignates the amount of time after the coordinated vehicle fires before the
pad vehicle can m e This is pased to vtargeter.

1.2 Task Parameters

JjbUtugelar wsu task parameters only when configured for ground. The parameters ared
desculbed by the Mowing Structures.

2 Libutargeter Programmer's Guide

typedef .nu Ytargeter..fire-poruinsion

VTARGKER..VAPONS..HOLD - 1,
YTAMKU..LVZ*PONS..FREE - 2.
VTARGZTU..VKAPOIS..TIGHT a 3,

} VAIUTU.FIRLPERNISSION;

VTAMGZE-U..ITCHIQLSIULTAEOUS a 1.
,TAMKZTU..FILTZCUIQULALTERNATIIG a 2,

typedef atract utargetr-.paraueters

ObjectID vsctr-gt-UIITO R. ABREADrRJ;
ObjectID vsctr..lft bnd (UNITORO...AL-BREADTHJ];
VTAMKQThRLPUKNISSION porsiss ion;
VTAGET3LVIRLTBCHNIQU vtarg-.fir..techniqu.;
VASS M -NODZ vasnod.;
tloact32 range;
float32 f ire.at.pos W2]
Inta2 nu...poinc..s*ts;
VASSUS.FIWTTPE fir*-type;

}UTh3GTRrUARANETUS;

YSctrz.gtMI4d

vsctr..lft.b.A

peamission specifies whether the vehicle cannot fire, can fire at will, or can only fire when fired
Mporn.

vtargflr..tcnique specifies whether the vehicle can fire when it wants, or should wait to
fir after anothe vehicle fire (for alternating fire).

vase-wude specfie the method used to determine targets. The three modes are "Closest to
Self, "Sector Points", and "Closest to Location".

rang specifies the maximum distance that the vehicle can shoot.

tlzeat..pos Is the tazget location.

C hap te 1: Overview
3

am.poiu:..sets is not used.

tire-yp. specifies the method of firing at the enemy. The three types are "Distributed Fire,
"Volley Firell, and "None"l.

4 Libutargeter Programmer's Guide

4

g

3
I
U
U

I

- PS-

Chapter. Functions 5

2 Functions

The folowing sections describe each function provided by libutargeter, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 utarg-init

Told Utazg..init()

atarg~init initialime libutargeter. Call this before any other libutargeter function.

2.2 utarg-.clasu..init

void utazg.c.aa-.izft pazt..class)
CLASSTh parepx..clau;

Cass of the parent (declared with clau...decawe.class)

atexg.clasu-lait crest. a handle for attaching utargeter class; information to vehicles. The
perint~clms Is.. estwed with claus ec a w.

2.3 utarg..create

void ute1arwwczae(vekic~li4 param po-db)

UTAUE L.PRAKY C-JATA eparana;
POJATADSM Opo-db;

Specifies the vehicle ID.
'p~m.'Specifies initial parameter values

'p.db' Specifiesa P0 database where task objects can be located

6 Libutargeter Programmer's Guide

utarg.-cmave creates the utareter class information for a vehicle and attaches it vehicle's block
ofibciam uer data.

U 2.4 utarg-destroy

* void utargdastroy (vehicle id)!iI int vehicl.. d:

'wehi€lo td'

Specie the vehicle ID

utarg.destroy frees the utargeter class information for a vehicle. This should be called before
freing the dads user data with clas.froo.user.data.

I .5 utarg..init.task-state

3 void uta&z.nit .tak..stas.(tak, state)
TaskClass *t af;
Tasaftalass *state;

'tas' Species a pinter to the task clam object to be initialized.I 'Istat.' Return the balfled state

Gives a new SiLUtargetew task that is about to be created, utargjinit..task-state initializes
the model dze, and state varlables.

Ua
I{x

I

U
I
I
I
ig

Libutraveling

*1
I
j
U

I
I
I
CU.

ADST-TR-W003268

w

I
I
I
a
I
I
I

Libutraveling

a
a
a

I

I

I Table of Contents

1 1 Overview..1.
1.1 Parameten .. 1.
1.2 Algarithm... 2

iS2 Functions..5

2.1 atrav.W ..
2.2 utrav-dauu'nit............................... 5
2.3 utrav..cmts .. 5
2.4 utrav-m. ... 6

Mate 1: Overview1

I Overview

The unit traveling lbrary provides a method for tasking a unit of vehicles to move along a route.
The moute is specified via a PointClass, TextClass, or LineClass PO object. If the unit is large
than ase vehicle, the vehicles in the unit will be kept in formation by increasing or decreasing their
command speeds periodically.

This librazy should eventuailly handle arbitrarily sized units in a hierarchical manner. At this
tim, It will try to control all the vehicles in the specified unit directly.

1.1 Parameters

ObjectlD route;
float" speed;

uiats forma-timonr;

ulxto roadomrch;

ujutS conS aza;

'route' The route is a LineClass, Point~las, or TetClass P0. It provides the general r , ,te
that the unit wi fWlOW.

'speed The speed defines the speed of the unit. Uf there is only one vehicle in the unit, it will
trave at eactly this speed. Nf there is more than one, the speed is used to compute
the speed of the individual vehticles to keep them in formation.

This somewhat poouly named parameter delines the maxwimum speed that the vehicles
may tavd. It should be zero if no speed limit is desired, or some number higher than
the speed paraumer. Iff defined, this will be the speed used as the catch-up speed.

A character sting defining a formation name understood by libfozmationdb.

Another poorly named paameter. Either open (0) or closed (1). This is currently only
used for roadmatch spacing. The distances meant by open and closed is defined In the
paraintric data as opem..spaclng and closed-.spacing.

A boalea value that determines whether roads will be used in the route or if formations,

2 Libutraveling Programmer's Guide

will proceed along the sides of the road. If 1, the vehicles will get on the road and travel
in a column in roadmar-h order.

'conform' A boolean value that determines whether the input route will be conformed to the
terrain. In the future, this will be a multi-value parameter that determines whether to
follow valleys or ridgeines or to not conform.

1.2 Algorithm

When utraveling is spawned, its input route object undergoes some initial. massaging. First, if
the route is a single paint, it is turned into a two-point route starting at the unit location. Next,
If the route is to be conformed to the terrain, a routine in libroute is called to change the route.
This currently doesn't work particularly well. Finally (not implemented yet) long sections of route
will be broken into shorter pieces.

All Internal route structures are maintained in the librout. format defined in stdroute.b.
The route is stored In sections composed of cross-country and road segments. If the roadmarch
input parameter is turned on, vehicles will drive in an order defined by libformationdb on any
road sections in the input unit route.

For cross-country sections, libutraveling calls libforoationdb to split the unit route into indi-
vidual vehicle routes. These routes will have vertices offset from the unit route vertices based on
the input formatio parameter.

A routine is then called that takes the list of subordinate vehicles and the individual vehicle
routs, nad determines a subeections of thee routes (somewhat longer than 500 meters). Arrival
times to the end of each subsection ae computed, and appropriate speeds for each vehicle are
determid based am the Input unit speed and the distance each vehicle will need to travel to arrive
at the endpoint of the subsction at the same time as the other vehicles arrive at their endpoints.

Individual vehicle vovo tasks are then spawned, and given appropriate parameters. In a some-
what atomic operation the vehicle routes are turned into LineClass objects, which are used as
input object reerenes. The state of each veove task is then monitord. In the simplest case, when
a avW. tasks report they are in arrived state, the utraveling task deans up and goes to U

Typiclly, the route is somewhat longer than the subroute passed to the individual vmve tasks,
andthe vehicls do not behave at all U expected. Thus, much of utraveling is devoted to handling
silly exception conditions and idiosyncracies of the vwove and movemap libraries.

Chapter 1: Overve 3

One of the first things that needs to be dealt with is the length of routes. Road segments and
teada-ncaformed route sections may cause the massaged vehicle routes to be significantly longer
tka can be stored in a Linocans object. To get around this, utraveling breaks the long unit
route into short sections. This was also done so that uovemap could be given reasonably short
routm. This is important so that when movemap computes a speed at which to travel, it will be
reasmable enough to keep the unit roughly in formation.

When each vehicle gets within 500 meters of the end of its subroute, its vmove goes to arriving
state. When all the vehicles are in this state, utraveling computes a new set of subroutes, new
arrival times, and passes these as parameters to the voves.

Since things always happen to cause the vehicles to get out of sync, utraveling will periodically
(carently every 10 seconds) recompute the arrival times and update the vmoves. This helps keep, the formatioss correct.

V

p

4 Libutraveling Programmer's Guide

Chapter 2: Functions 5

2 Functions

The following sections describe each function provided by libutraveling, including the format
and meaning of its arguments, and the meaning of its return values (if any).

TEMPLATE: Adjust alignment of descriptions

2.1 utrav..nit

void utraw-init (routemap)
BOUTIKAP.PTh routmap;,

'routemp'I
Specifet - _v- map to use for planning around rivers, canopies, etc.

utrav-init Initializes libutraveling. Call this before any other libutraveling function.

2.2 utrav..clasjnit

void utrav..clas-jnit (parent..class)
CLhSS..PM parent-class;

'pareit..class'
Class of the parent (declared with clasu..d~clare-.clasu)

atrav..clas.4nit creates a handle for attaching utraveling class information to vehicles. The
parent..closi wil likely be sefobj -class.

2.3 utrav-create

void utrav-.crat.(vehicl...id, parasm po..db. ctdb, quad-.data)
Int vehicle-id;
UVAYUIGPAAWMrRCDATA .pazafs;

PO-DATASM5 *po..db;
CTOS *ctdb;

6 Libutraveling Programmer's Guide

QUAD.DATA *quad.data;

'vehicleid'
Specifies the vehicle ID

'paraw.' Specifies initial parameter values

'po.db' Specifies the PO database
'ctdb' Pointer to the CTDB terrain database

'quad-data'
pointer to the quadtree feature database

utrav.create creates the utraveling das information for a vehicle and attaches it vehicle's

block of Iibclass user data

2.4 utrav-destroy

void utrav-.detroy(vehiclo.id)
iat vehiclo.jd;

'Ohcle.14'
Specifies the vehicle ID

utrav.Mutr frees the utraveling daiM information for a vehicle. This should be called before

freeing the clan user data with clas.u.free.us.data.

ADST-TR-W0032 68

Libvassess

Table of Contents

I Overview..1I

2 Functions...7

2.1 vanajat ... 7
2.2 van-.clasanit .. 7T
2.3 van-.create.. 7
2.4 vamadestroy... 8
2.5 vaasjnl-taskstate.. 8
2.6 vass4et.rommendation 9
2.7 vass..pt..rommendation-from..public.......................... 10
2.8 vaus..reacommendation.................................... 10

3 Access Keys...13

Chapter 1: Overview

I Overview

Libvassess implements a vehicle level task which identifies the most urgent target and makes
recommendations for weapons to use against that target. The task takes its primary input from
the libipotter task which provides lists of EFF identified vehicles detected by available sensors. The
task state machine is written using the AAFSM format which is translated to C using the If sua2ch'
utility (see section 'Overview' in LibTask Programmer's Manual).

This diagram gives an overall description of how VAssess chooses a new target.

Ispottesd list of enemy vehiclesI

4--

--
I If the type of fire is DISTRIBUTED. then I
I only consider vehicles that are
I *NMT being targeted by someone else. I
I If *ALL* spotted vehicles areI
I being targeted, then consider allI
I Of them.
4.--------------- ------------------------------

4------------------------- --------- ---------

IOnly consider vehicles of the highest I
Ipriority.

.--- 4

4.--4

IChoose the vehicle that is the closest.I
4.--4

The format of the parametric data is as follows:

(SI-VAssess (background [on I off])

2 Libvassess Programmer's Guide

(sensors <name> (name> ...)
(weapons (<vehicle-class-mask> (vehicle-clam.- value)

(<=in range) <max rang.) (name> (munition>)

((mmn range> (max range> (name) (munition)

(looking..tick..period (integer mwoo)
(reevaluating.tick-.period (integer msec)
(recoumendation..persistence-.time (integer matc)
(assessment-.type [air I ground])
(range-.factor <real)
(aspect-.factor (real)
(persistence-factor (real)
(mobility.andfire-factor (real)
(fire-,factor (real)
(max-hits..on-.target (integer)
(target..priorities.

((priority> (vehicle-class-mask) (vehicle-class-value)

i(;~rority> (vehicle-clams-mask) (vehicle-claxs-value)

The background parameter specifies whether the task should automatically be included in the
background task fr-ame of this vehicle. Normally, this will have the value on to indicate it should
be included.

The sensors parameter contains the names of sensors which may be manipulated during the
assessment process. Currently no sensors are manipulated.

The weapons parameter contains the list of data used to provide weapon and munition recom-
mendation agpins threats. (vehicle-class-mask) is a bitwise OR combination of SIMNET object
type mask fields which will be checked for a match against the values encoded in the (vehiLcle-
class-value). (vehicle-clams-value) is a bitwise OR combination of SIMNET object type
value fields which are used to match against the assumed object type of the threat. If the fields
match, the firs weapon name* and munition for which the threat falls within the min and max
rang. will be chosen as the weapon and munition recommendation.

The looking.tick..period parameter specifies how often the task should process input when
no targets are detected.

Chapter 1: Overview 3

The reevaluating-.tick.period parameter specifies how often the task should process input
when a target is currently recommended.

The recommndation-persistence.time parameter specifies the amount of time that a chosen

threat should remain chosen even after is becomes undetected by all available sensors.

The assenent.type specifies the type of algorithm used to determine threat. Currently, the
only two types supported are are air and ground.

The rangefactor parameter specifies a multiplier from 0.0 to 1.0 rating range as a criteria for
threat with respect to other criteria. Currently, range is the only criteria used to classify threat.

The asp.ct-factor specifies a multiplier from 0.0 to 1.0 rating aspect angle as a criteria for
threat with respect to other criteria. Currently, only assessment-type air uses this criteria.

The persiatence.factor parameter specifies a multiplier by which an already chosen threat
will be evaluated. For intance, a factor of 2.0 means that once a target is chosen, other targets
will not be chosen unless they become less than half the distance to the vehicle than the chosen
threat (assuming range is the only criteria).

The nobility.andfire.factor specifies a multiplier from 0.0 to 1.0 rating the appearance
of both a mobility kill and firepower kill for threat with respect to other criteria. Currently only
assessment-type ground uses this criteria.

The tze.factor specifies a multiplier from 0.0 to 1.0 rating the appearance of just a firepower
kill for threat with respect to other criteria. Currently only assessment.type ground uses this
criteria.

The in .hiwt.on.-target specifies the maximum number of shots hit on the target before the
trget will be considered not a threat (or undefeatable).

The targe..prioriti4es parameter contains the prioritized list of vehicle classes. Enemy vehi-
cles will be compared to this list to determine the priority of the enemy vehicle. If an enemy does
not match any class in the list then it will be given the lowest priority. The highest priority is 10
and the lowest is 1.

When a SILVAsess task is created or modified, parameters in the parameter block of the
task data structure are referenced to customize the task's behavior. Since libvassess implements a

4 Libvassess Programmer's Guide

B
vehicle level task, these parameters are typically initialized and modified by unit tasks which are
responsible for directing vehicle level behavior.

The parameters are represented in the task data structure as follows:

typedef struct vassess.parameters
{

Obj ect D uctr..rgt.bzd;
Obj ectID sctr.lft-.bnd;
f1oat64 iax-threat.range;
float64 sax.tbreat. apect;
f1oat64 min.threat.speed;
float64 fire.at-.pos [2);
VASSESS.RDE permission;
VASSESS.FIRLTYPE fIire.-t.ype;

}VASUS..PARAPMES;

act.rg..bad specifies the right sector boundary. Targets within a sector will have priority
over targets outside of the sector.

max.threat-.raui specifies the left sector boundary. Targets within a sector will have priority
over targets outside of the sector.

max-threat-.range specifies the maximum range, in meters, beyond which a potential enemy
will not be considered a threat.

"matx .uhraspect specifies the maximum aspect angle, in radians, above which a potential
enemy will not be considered a threat.

fAI..thrat.sp..d specifies the minimum target velocity, in meters per second, below which a
potential enemy will not be considered a threat.

fir.at-position is the position used when permission is FIRE.AT.POSITIOI.

permission specifies whether permission to fire is currently enabled. This value is supplied
as a parameter which may be propagated as recommandations from this task (see Section 2.6
[vasget'recommendation], page 9) should a potential enemy satisfy the target criterion specified
by the max.threat.range, Sax.threat .aspect and min. heat.speed parameters. permission
can take three values:

Chapter 1: Ovrview 5

* VASSESS-HOLD.FIRE
• VASSESS-FIRE.ATWILL

* VASSESSJFIRE-POSITION

lire.-typ specifies the method of firing at the enemy. f ire.-type can be set to:

" VASSESS.DISTRIBUTED-FIRE

" VASSESS.VOLLEY.FIRE

" VASSESS.NONE

I f ir...tp., is set to VASSESS.DISTRIBUTEDSFIRE then VAssess will try to choose a target
that is not being targeted by someone else. If all spotted enemy vehicles are being targeted by
someome else then the vehicle will target the highest priority enemy vehicle.

If tir...nyp is either VASSESS.VOLLEYFIRE or VASSESS.NONE then VAssess will choose
target that is the highest priority. These two types do not check to see if the spotted enemy

vehicle is being targeted by someone else.

6 Libvassess Programmer's Guide

Cliapter 2: Fuacticuas 7

2 Functions

The following sections describe each function provided by libvassess, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 vasaj!nit

'void vss-.init(data-.path. read~r-ilags. tcc)
char *data..path;
uizt32 reader-.flags;
COORD..TCC..PTR tcc;

'data-path'
Specifies the directory where data files are expected

'reader..flags'

Specifies the Uap to use when data files are read
'tcc' Specifes the local coordinate system

vass-init initiazes libvausess. Call this before any other libvassens function.

2.2 vas..classinit

void vass..clanss.init(parant.class)
CL*SS.JTh pazsnt..class;

'Pamet.claus'
Class of the parent (declared with clauu..declaz...clas.)

wass..clasjnit creates a handle for attaching vassess class information to vehicles. The
par=%t..claau will likely be safobj -class.

2.3 vasu..create

void vasu..czsate(yehicle-.id, parans, ctdb, db, unit-.entry)

* Libvassess Programmer's Guide

mt vehicle.±d;
vAssESS.PARAIIETRIC..DATA eparams;
CTDB *ctdb;
PC-.DATABASE *db;
PO..DB-EITRY *uzit...ntry;

'vehicle..id'
Specifies the vehicle ID

'paraIuI' Specifies initial parameter values

'cdrb' Specifies terrain database information

'01' Specifies the P0 database where the unit can be found
'um1it-eatry'

Specifies the unit representing the vehicle in the P0 database

vase-create creates the vassess class information for a vehicle and attaches it vehicle's block
of libclass user data.

2.4 vats-destroy

void vass..dentroy(vehicls-id, in-migration)
1t2vehiclejid;
132is...igration;

'vehiclaiid'
Specifies the vehicle ED

Specifies that the destroy is due to migration

vasa..destroy frees the vassess class information for a vehicle. This should be called before

freein the class user data with class..froe..user-data.

2.5 vass-init..tauk -state

void vase- W nt.taskstate(task. state)
Tashklass *task;
TanutateClass *state;

Chapter 2: Functions 9

'tak' Specifies a pointer to the task class object to be initialized.

'staltes Returns the initialized state

Given a new SILVAsuss task that is about to be created, vans- init.task-.state initializes

the model size, and state variables.

2.6 vans-.get..recom mend ation

void vasu..get.rcommnndtion(vhicl..id, rec)
int32 vehicl...id;
VASSESS..RECONKNATION *rec;

'vehicle-id'

Specifies the vehicle ID)
trees Specifies a pointer to return the recommendation into.

vaim-get.rconendation returns the current recommendation for the highiest threat. The
recomedto has the following structure:

typede struct vaisseeu..recoinendation,

int32 target;
uin%32 wanition;
char *wweapon;
VASSRSS..ROK permission;

I VASSUS...RCO IfO3;

-target is interpreted as the the vehicle id of the highest threat.

muition Is the recommended munition type to use against the threat.

weapon is the name of the weapon to use against the treat.

permission specifies the rules of engagement against the threat. It can take the following
enumerated values:

'V*SSISS..DLD-.FIRK
This specifies not to shoot.

10 Libvassess Programmer's Guide

'VASSFSS-FIBL-AT.VILL'

This specifies that permission to fire is granted.

The permission is derived from the initial permission as specified in the task's parameters. If
the task parameter for permission is VASSESS..FIRE.AT..WILL, and if an available target satisfies
all constraints specified in the other parameters, the recommandation for fire permission will be
VASSESS-.FIRELAT.VILL. In all other cases, the recommendation will be VASSESS -HOLD-..FIRE.

2.7 vass.4et-recommendationl-rom -..public

void vaau..get.rcoinndationj-ro..public(db, task, rec)
P.,.DATABASE *db;
TaskClass *task;
VASSESS..RECONKEIDATION *rec;

fdbP Specifies the PO database.

'task' Specifies a SiLViAness task which is to be interpreted.
'i-sc' Specifies a pointer to return the recommendation into.

Vaasget..r~coinsndationjfrou~public returns the current recommendation for the high-
est threat. The values returned into i-cc are as in vasu..get.recoseeendation (see Section 2.6
[VassgetVrecommendationj, page 9).

This function works on both locally simulated and remotely simulated vehicles, and may be
used by User interface software to show the world from a vehicle's point of view.

2.8 vass.rese-recom mend ation

void vaau..zeuet..zecomendation(vehicl. id)
int32 vehicle-id;

'vehicle. ±4'
Specifies the vehicle IM

vasu..zaet~xecomndation causes the vassess task to re-analyze the threat situatation im-
mediately on the next tick. This is typically used by a task which is using vassess recommendations

, Chapter 2: Functions 11

but discovers a new situation which should cause a new recommendation to be generated (such as
destruction of previously recommended target).

I

I
I

I

I

12 Libvassess Programmer's Guide

Chapter 3: Access Keys 13

3 Access K eys

In addition to the functions just described, libvassess also provides libaccess keys with which

Many varables can be fetched at once. These keys, and the type of argument they expect are given

van-recommendation
hSS-.RECOMMMIATION *arg

ADST-TR-W003268

LibVATAInt

Table of Contents

I Overview ... 1

1.1 Task Parameters.. 4

2 Functionsu...7

2.1 vataintid .. 7
2.2 vataint..classint.. 7
2.3 vataint..create .. 7
2.4 vatainit.destroy..8
2.5 vataintinit.task..state... 8
2.6 vataint..able..tointercept....................................... 8
2.7 vataint..pt.target.reommendation 9

Chapter 1: Overview

1 0 verview

Libvataint implements a vehicle-level task which controls the movement of a vehicle during an
i:I air-to-air intercept. In its current implementation, libvataint guides the aircraft on a pure-pursuit

course of the enemy. The task state machine is written using the AAFSM format which is translatedg~i to C using the ',uu2ch' utility (see section 'Overview' in LibTask Programmer's Manual).

The states which comprise the intercept task are described below.

This state is entered when the aircraft is on the ground and cannot perform an intercept.
When in this state, the task continuously checks to see if the aircraft has taken off.
Once the aircraft has taken off, the task transitions to the appropriate state to begin
the intercept, based upon the current intercept geometry.

'search..foz...tgt'
This state is entered when the aircraft does not detect the target on its radar. When
in this state, the task steers the aircraft towards the last known enemy target position
and continuously checks to see if it has acquired the target on its radar. Once the

,Ida aircraft acquires the target, the task transitions to the appropriate state to begin or
continue the intercept based upon the current intercept geometry.

S 'aayze .cet '

This state is entered when the target is first detected at the start of an intercept. This
state JS used to simulate the time it takes for a pilot in a real aircraft to assess the
intercept geometry. When in this state, the task steers the aircraft to point its nose
at the target and maintain that course for a predetermined distance (specified in the
task parametric data). After the aircraft has traveled that distance, the task computes
the missiles it will shoot for this intercept, computes the distances at which to shoot
those missiles, selects the first missile, and computes the desired target aspect and lat-
eral separation to achieve an optimal positional advantage over the target. Depending
upon the current intercept geometry, the task then immediately transitions to a state
in which It prepares to take the first missile shot (if the enemy target is within desired
shot r&e), or computes an initial maneuver which will put the aircraft on a course
to achieve the desired target aspect or lateral separation and transitions to the ini-
tialmaneuver state to initiate that maneuver (if the enemy target is outside of desired
shot range). If the enemy target drops off the aircraft's radar, the task transitions to
the searchortgt state in an attempt to reacquire the target.

~'ltila.umaeuvex'

This state Is entered when the enemy target is outside of the aircraft's desired shot
range, and the aircraft therefore has time to make a maneuver in an attempt to achieve

2 LibVATAInt Programmer's Guide

a positional advantage over the enemy target. The initial maneuver is computed based
upon a series of rules which take into account the current intercept geometry's target
aspect, lateral separation, and altitude. When in this state, the task steers the aircraft
in the direction of the computed initial maneuver and continuously checks to see if
the desired target aspect has been achieved (and if so, transitions to collision.course
state), if the enemy target is maneuvering (and if so, transitions to collision.course
state), if the deisired lateral separation has been achieved (and if so, transitions to3u maintain-bogey-reciprocal state), or if the enemy target is getting close to the desired
shot range (and if so, transitions to attack.heading state). If the enemy target drops
off the aircraft's radar, the task transitions to the searchfor.tgt state in an attempt to
reacquire the target.

'maintain-bogey.reciprocal'
This state is entered when the aircraft is performing its initial maneuver and hasa! achieved the desired lateral separation. When in this state, the task steers the aircraft
on a course which is in the direction opposite the direction of travel of the enemyI target (i.e. bogey heading reciprocal) and continuously checks to see if the desired
target aspect has been achieved (and if so, transitions to collision.course state), if
the enemy target is maneuvering (and if so, transitions to collision.course state), or
if the enemy target is getting close to the desired shot range (and if so, transitions
to attackheading state). If the enemy target drops off the aircraft's radar, the task3 transitions to the search.for.tgt state in an attempt to reacquire the target.

'collision-course'

This state is entered whenever the desired target aspect has been achieved or theI enemy target is maneuvering against the aircraft. When in this state, the task steers
the aircraft on a collision course with the enemy target, and continuously checks to
see If the enemy target is getting close to the desired shot range for its next missileI shot (and If so, transitions to attackiieading state). If the enemy target drops off
the aircraft's radar, the task transitions to the search.for.tgt state in an attempt to
reacquire the target.

'attack.hending'

This state I entered when the aircraft is close to its desired shot range for its nextI missile shot. When in this state, the task steers the aircraft on an attack heading
course (Le. a course which is 1/3 the target aspect ahead of pure pursuit of the target)
and continuously checks to see if the enemy target is within the desired shot range and
within the selected missile's launch acceptability region (LAB.) (and if so, transitions
to shoot state). If the enemy target drops off the aircraft's radar, the task transitions
to the searchfor.tgt state in an attempt to reacquire the target.

'beam' This state is entered when the range to the enemy target has reached the range specified
in the beam.range task parameter. The tactic of "turning into the beam" of the enemy
aircraft's radar is used to defeat the enemy aircraft's pulse doppler radar modes, which

U Chapter 1: Overview 3

I
cannot track targets which are "in the beam". When in this state, the task steers3 the aircraft to a course which is 90 degrees from the enemy target's heading for a

predetermined length of time.

3 'uhoot' This state is entered when the aircraft is at the desired range to shoot the currently
selected missile. When in this state, the task requests that a missile be fired by the
vtargeter task (if fire permission is VATAINTFIRE.ATWILL). Regardless of whether
or not a shot is taken, the task then checks to see if the crank task parameter was set
to TRUE (and if so, transitions to the crank state), or if the crank task parameter was
set to FALSE (and if so, steers the aircraft on its current course until it is time for the
next shot, time to bugout, or time to merge).

'crank' This state is entered after the aircraft has shot a missile, if the crank task parameter
was set to TRUE. When in this state, the task steers the aircraft on a course which is 40
degrees off of its attack heading course in the direction away from the enemy target and
continuously checks to see if the enemy target is approaching the edge (< 15 degrees)
of the radar scan volume (and if so, performs an EASY turn towards the enemy target
to keep it safely inside the radar scan volume), if it is time to take another missile shot3 (and if so, transitions to attack-heading state), if it is time to go to the merge (and
if so, transitions to merge state), or if it is time to bugout (and if so, transitions to
bugout state). If the enemy target drops off the aircraft's radar, the task transitions
to the search-for.tgt state in an attempt to reacquire the target.

'bugout' This state is entered after all planned missile shots have been taken and the aircraft isU 12 nm from the enemy target and does not have a radar guided missile in flight. When
in this state, the task steers the aircraft on a course which puts the enemy target 180
degrees behind the aircraft and continuously checks to see if the enemy target is 180
degrees behind the aircraft and the aircraft has created a separation of 6 nm from the
enemy target (and if so, transitions to the END state to end the intercept).

I 'nerge' This state is entered when the range between the aircraft and the enemy target is
less than 12 nm, and either the aircraft has a radar guided missile in flight or the3 diethod task parameter was set to VATAINTJMERGE. When in this state,
the task steers the aircraft on a pure pursuit course and continuously checks to see if
the enemy target is getting close to the desired shot range for the next missile to shoot

(and if so, transitions to shoot state), or if the range to the enemy target is less than
1 nm (and if so, transitions to the END state to end the intercept).I

Libvataint depends on libvtargeter, libvtab, libclass, libctdb, libpo, libhulls, libcom-
I ponents, libaccess, libreader, libstatnmon. libeditor, lHbparmgr, libradar, librdrconst, libtime, libvec-

mat, libentity, libsensors, libsuppli,,%. ibkfs. liblar. and libtask.

I
I

., : '- -

I LibVATAInt Programmer's Guide

1.1 Task Parameters

UWhen a SN.VATAInt task is created or modified, parameters in the parameter block of the task
data structure are referenced. The parameters are represented in the task data structure as follows:

typedet struct vataint.pamaateru

VehicleID targe.tid;

uintl16 paddingl;
float64 target-_bearing; /* radians */
float64 target-range; /* moeters *
VATAIT..FIRPEUISSION fire-permission;
int32 weapon-count;
VATAZITEAPOIS.EIABLED weapons enablod[VATAINTKAZX.EAPONS];
intM2 crank;
VATAIrr.DISEIJGAGF.ETHMOD disengage-method;

intY2 padding2;Ifloa%64 beau.range;

}VATAINT..PhAANTERS;

'targetd'

Specifies the id of the vehicle to intercept.:I 'target..beuring'

Specifies the bearing to the target in radians. This parameter is only set if the targetid
5' is not known.

'target.rang.'
Specifies the range to the target in meters. This parameter is only set if the targetid

is not known.

'fire.pemtssion'
Specifies the fire permission (VATAINT.HOLD.FIRE, VATAINT.FIRE.ATWILL) to
be used during the intercept.

&'vapon.countl'3 Specifies the number of weapons in the weapons-enabled list.

pweapoensnbebltd'
Specifies the weapons which the aircraft is allowed to shoot during the intercept.

'crank' Specifies whether to perform a crank maneuver after each shot taken during the inter-
cept.

'disengagemethod'
Specifies how the aircraft should disengage from the target it is intercepting if it does
not destroy it. This can take the values VATAINTINTERNAL, VATAINT.MERGE,
and VATAINT.BUGOUT. If it is set to VATAINT.NTERNAL, the disengage method

U~
U

Chapter 1: Overview

used will be based upon air-to-air intercept tactics taking into account the range to the
target and whether a radar-guided missile is in flight. If it is set to VATAINT.MERGE,
the aircraft will always go to the merge to disengage. If it is set to VATAINT.BUGOUT,
the aircraft will always bugout (no later than 12 nm from the target) to disengage.

Specifies the range in meters at which the aircraft should turn into the enemy target's

3 radar beam.

I

I

I
U!

U
I

6 LibVATAInt Programmer's Guide

I
3
lI
U
S~
3|
.3g

I
U
I

I

IChapter 2: Functions 7

2 Functions

m The following sections describe each function provided by libvataint, including the format and

5 meaning of its arguments, and the meaning of its return values (if any).

I 2.1 vataint-init

S void vataint-init()

5 vataint..init initialize libvataint. Call this before any other libvataint function.

S 2.2 vataint -class -n it

5 void vataint-.classjinit (parent..class)
CLASS..PTh parent-class;

*'parntclass'
Class of the parent (declared with class..declaz...class)

vataint.lwasinit creates a handle for attaching vataint class information to vehicles. TheI parent-class will likely be safobj..class.

52.3 vtitcet

I void vataint-create(vehicle-.id, paras . po-db. ctdb)
in=S vehicle-id;
VATAINTPAANXCC-DATA *paraus;
PO.DATAMAE *po..db;

CTDD *ctdb;

'vehicle-id'

Specifies the vehicle ID
ft pare..' Specifies initial parameter values

I 'po..db' Specifies the P0 database

a LjbVATAInt Programmer's Guide

'ctdb' Specilles the terrain database currently in use

S vataint-cr~ate creates the vataint class information for a vehicle and attaches it vehicle'sI block of libclass user data.

I 2.4 vataint..destroy

void vataint..destroy(vehicle.id)
in% vhicle.id;

S 'vehicle..id'
Specifies the vehicle ID

Vataint..detroy frees the vataint class information for a vehicle. This iqhould be called beforeS freeing the class user data with class..f r...user.data.

B 2.5 vataintin it.-task -state

3 void vataint.init..task..utate(task * state)
Taak1ass *task;g TaskStat.Class *state;

'task' Specifies a pointer to the task class object to be initialized.I state, Returns the initialized state

Given a new SILVATAInt task that is about to be created, vataint-.init-.task..state initializesI the model size, anid state variables.

2.6 vataint-.able.to-intercept

int32 vataint.able-t.o.intercept(vehicl..id, ctdb)
int32 vehicle-id;
CTDB *ctdb;

Chapter 2: Functions 9

'vehicl.e-id' pS ecpfied the Vehicle ID.

W 'ctdb' The ctdb pointer for terrain querries.

5 Determine if a vehicle is able to intercept. If the air vehicle is not in the air, then it is not able
to intercept yet. This function will also be called by the unit air-to-air intercept task, in order to
see if it needs to command a vehicle to take off before commanding it to intercept.

S 2.7 vataint-et-target.recommendation

void vataint -*t tazgrt-recoumendation(vehcle-id, rec)
int32 vehicle.id;
VTRGETIt.TARGET.RECOMMEDATIO *rec;

'vehicle.id'
Specified the Vehicle ID.

'rec' The current target recomendation.

5 This function returs the current target recomendation that vataint is using.

S stvtituig

Il

I:

.3
B
I,

1~pIJI

ADST-TR-WOO326~

.1
I
B
S
I
S
I

Libvatgrndtrgt

S
0
a
I
0

I
3

............

Table of Contents

1 Overview..1I

1.1 Examples .. 1

2 Functions...3

2.1 vatgtgjnit...3
2.2 vatgtg.classjt... 3
2.3 vmatgtg..create ... 3
2.4 vatgtg..destroy... 4

Chapter 1: Overview

1 O verview

TEMPLATE: Describe what this library does here.

1.1 Examples

TEMPLATE: Give examples here.

2 Libvatgrndtrgt Programmer's Guide

-Chapter I~ Functions 3

2 Functions

The following sections describe each function provided by libvatgrndtrgt, including the format
and meaning of its arguments, and the meaning of its return values (if any).

TEMPLATE: Adjust alignment of descriptions

TEMPLATE: Correct argument lists and descriptions of these functions.

2.1 vatgtg-init

void vatgtgjnit(

Vatgtgjnt initializes libvatgrndtrgt. Call this before any other libvatgrndtrgt function.

2.2 vatgg.class-init

void vatgtg..clasajni: (parent..class)
CLASS-PTh parent-class;

Ima-ent..claua'
Class of the paret (declared with clasu..declaz...clasu)

vatpg..class..init creates a handle for attaching vatgrndtrgt class information to vehicles.
The paret-class will likely be safobj -class.

2.3 vatgtg..create

void v&%gtg..create(vehicl...id, Para=a)
int vohicl...id;
VATGRNDTROT..PARAMETRIC-DATA *Paa;

'vehicle-,id'
Specifies the vehicle ID

4 Libvatgrndtrgt Programmer's Guide

'pare=.' Specifies initial parameter values

vatggcreate creates the vatgrndtrgt class information for a vehicle and attaches it vehicle's
block of libclaas user data.

2.4 vatgtgdestroy

void vatg9t.dsltroy(vehicle.-id)
int vehicle.id;

'vehicle-id'
Specifies the vehicle ID

vatOg.d.roy frees the vatgmdtrgt class information for a vehicle. This should be called
before freeing the class user data with clas-free-user.data.

ADST-TR-W003268

LibVCAP

Table of Contents

1 Overview ... 1

1.1 Task Parameters.. 1

2 Functions...3

2.1 vcap-init..3
2.2 vcap-.casst... 3
2.3 vcap..create .. 3
2.4 vcap..destroy.. 4
2.5 vcapi.nit.task..state ... 4
2.6 vcap..able..to.cap.. 4

Chapter 1: Overview

1 0Overview

Libvcap implements a vehicle-level task which performs a Combat Air Patrol (CAP). It flies
a racetrack pattern looking for targets to intercept. The task state machine is written using the
AAFSM format which is translated to C using the 'lun2ch' utility (see section 'Overview' in LibTask
Programmer's Manual).

Libvca~p depends on libpo, libhulls, libvflwrte, libvtab, Iibclass, libctdb, libaccess, libstatmon,
libeditor, libreader, libparmgr, librdrconst, libvecmat, libentity, Iibcomponents, and libtask.

1.1 Task Parameters

When a SILYCAP task is created or modified, parameters in the parameter block of the task data
structure are referenced. The parameters are described by the following structure:

typedef struct vcap-parameters

ObjectID position;
UjUtiS -.padding

float" orientation;
float64 leugth.of...1gs;
flost" inboun&.leg."up.d;
floatS4 outbound.leg..p..d;
floa%64 altitude;

} CAP..PARAHKTERS;

&posiion'A persistent object which defines the location to perform the CAP. This object can be
a point object or a text objet.

'orientation'
Specifes the orientation of the racetrack pattern. This is used to determine the direc-
tions of the inbound and outbound legs.

'lenctlLot...legs'

Specifies how long each leg of the track should be.

'Inboimd..lg.speed'
Specifies the speed that the aircraft will be moving on the inbound leg of the track.

'outbound..leg..upeed'
Specified the speed that the aircraft will be moving on the outbound leg of the track.

2 LibVCAP Programmer's Guide

,altitude,
Specifies the altitude the aircraft will be flying at.

Chapter 2: Function$ 3

2 Functions

The following sections describe each function provided by libvcap, including the format anid
meaning of its arguments, and the meaning of its return values (if any).

2.1 vcap-init

void vcap.init()

vcap..init initializes libvcap. Call this before any other libvcap function.

2.2 vcap-.clas-nit

void vcap.clasuji(paren:..class)
CLASS-.PTh paretlass;

'Parent-.class'
Class of the parent (declared with class-.declaz...class)

vcap..clasu..init creates a handle for attaching vcap class information to vehicles. The parent .. class
will likely be matobj-class.

2.3 vcap-.create

void vcap.crate(vehicle-id, params. po..db, ctdb)
hat vohicl...id;
YCAP..PAAANMrRIC-.DATA *Par&=m;
PO-.DABhASE *po-.db;
CThS *ctdb;

'vehiclet-d'
Specifies the vehicle ED

'pazauis' Specifies initial parameter values

'PAWb Specifies the PO database where the task can be found

4 LibVCAP Programmer's Guide

'ctdb' Specifies the terrain database currently in use

vcap..creato creates the vcap class information for a vehicle and attaches it vehicle's block of
Ubclaus user data.

2.4 vcap-destroy

void vcap..dstroy(vehicle..id)
int vehicl...id;

'vehicle-id'
Specifies the vehicle ID

vcap-.destroy frees the vcap class information for a vehicle. This should be called before freeing
the class user data with classu:f ee..user..datL.

2.5 vcap -nit.-task.-state

void vcap-init.task-.stateCtask. state)
Taskblans *task;
TasktateC~aus *state;

'task' Specifies a pointer to the task class object to be initialized.

'atate' Returns the initialized state

Given a new SLYCAP task that is about to be created, vcap..init..task-.state initializes the
model size, and state variables.

2.6 vcap-.able-.to-.cap

int32 vcap..able..to-.cap(vehicle..id. ctdb)
int32 vehiclo-id;
CTDD *ctdb;

Chapter 2: Functions

'vehicle.1d'
Specifies the vehicle ID

'ctdb' Specifies the ctdb terrain database to use for terrain lookups

This routine determines if a vehicle is able to perform a CAP. If the air vehicle is not in the air,
then it is not able to perform a CAP yet. This function will also be called by the unit CAP task, in
order to see if it needs to command a vehicle to take off before commanding it to perform a CAP.

ADST-TR-VJ003 268

LibVCollide

I Table of Contents

11 O v erv iew ... 1

2 E x a m p le s .. 3

3 F u n c tio n s .. 5

3.1 vm at.printm at ... 5
3.2 vm at-recastv _ ... 5
3.3 vm at.recast m at 6
3.4 vm at.e t .. 6
3.5 vm at-negate ... 7
3.6 vm at.dot prod .. 8

3.7 vmat.cro.prod ... 8
3.8 vm at-project .. 9
3.9 vm at-project-perp ... 90

3.10 vm at.project-plane .. 11
3.11 vm at_vec.m ag sq .. 11
3.12 vm at.vec.copy ... 12
3.13 vm at.m at.copy ... 12
3.14 vm at.vec.equal ... 13£ 3.15 vmat.mat.equal....................................13
3.16 vm at.vec-add ... 14
3.17 vm at.vecsub ... 15I 3.18 vmatscaLvec-mul .. 16
3.19 vmat.vec.mat_mul .. 16
3.20 vmat.mat.vec-mul .. 17
3.21 vm at.scal-m at-m ul ... 18
3.22 vmat.m tm addm .. 18I3.23 vmat.mat.mat.ad..................19

3.24 vmat.mataaatsub .. 19
3.25 vmat.primary.rotation .. 20
3.26 vm at.rotation .. 21
3.27 vm at.flat.rotation .. 21

3.28 vm at.Angle-rotation 22
3.29 vm at.transpose ... 23
3.30 vm ata.djugate 23
3.31 vmat-inverse 24
3.32 vm at.determ inant 24

1

ii LibVecMat Programmer's Guide

3.33 vmatangle..between-.vec tors 25

Chapter 1: Overview

1 0 verview

LibVCollide provides a task which allows vehicles to recover from collisions and near-collisions.

The task has three states:

waiting In this state, the software waits for a collision to occur or for Ubmovemap to go into
a state where it cannot plan (presumably because it has fallen into the configuration
space boundaries of an obstacle).

delay After detecting the need to resolve a collision, the machine waits in this state for a
random period of time, prior to dealing with the collision. The reason for this is two-
fold: it simulates the delay a human would probably exhibit, and it prevents deadlock
collision reactions between multiple vehicles by making the actions of each unique with
respect to all others (analogous to the random delays between ethernet retransmissions
after collisions).

resolve.colision
In this state, the machine instructs the movement arbitrator to move backward or
forward, left or right, according to the nature of the collision, and the surrounding
terrain features.

The format of the parametric data is as follows:

(SLiVCollide (background [on I off 3)
(min-delay <integer m>)
(max-.delay <integer >)
(backup.distance <real motors>)

)

background specifies whether the task should be automatically created as a background task of
the vehicle when the vehicle is created.

mittdelay and max.delay specify the range of delay times which should be generated for the
random delaying state.

backup.disuance specifies the distance which the vehicle should travel for each attempt to
disengage from the collision.

2 LibVCollde Programmer's Guide

1.1 Examples

The following is an example set of VCoilide parameters, which yields delays between 2 and 5
seconds, and backs up 4 meters from each collision:

(SILVCo1lide
(backgzound on)
(min-dolay 2000)
(max. Aelay 5000)
(backup-distance 4.0))

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libvcollide, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 vcollide-init

void vcollide.inito ()

vcollide.init initializes libvcollide. Call this before any other libvcollide function.

2.2 vcollide -class-nit

void vcollide.claginit (parentclass)
CLASS.PTR parent-class;

'parent.claas'
Class of the paxent (declared with clss.declaz..class)

vcollido.clas.in t creates a handle for attaching vcollide class information to vehicles. The
parent.class wil likely be safobj-class.

2.3 vcollide.create

void vcollide.croato(vehicle.id, paras, db, unit.ntry, ctdb)
mnt Yhiclo.id;
VCOLLIDLPAKRT C.DATA *parans;
PO-DATABMS Odb;
PO.DB..NTRY *unit.entry;
CTD *ct:db;

Specifies the vehicle ED
'pars' Specifies initial parameter values

4 LibVCollide Programmer's Guide

'b' Specifies the PO database
,uni1t.entry,

Specifies the PO entry of the unit which corresponds to this vehicle

'ctdb' Specifies the terrain database

vcolltde.create creates the vcollde class information for a vehicle and attaches it vehicle's

block of Iibclass user data. If the paramters so indicate, this routine will also create a task in the

unit's background frame.

2.4 vcollide..destroy

void vcollido.detroy(vehicle.id, ismigration)
int32 vohicle.id;
int32 in.migration;

'vehiclo.id'
Specifies the vehicle ID

'is.-igation'
Specifies that the destroy is due to migration

vcollide.deltroy frees the vcollide class information for a vehicle. This should be called before

freeing the clas user data with cleuusfreouser.data.

2.5 vcollide -collision

void vcollide.colliion(vehicle.id, vith..hom)
int32 vehicle-id;
nt32 with..whom;

'vehicloeid'

Speciis the vehicle ID
10th-sha?'

Specifies the other party in the collision

vrcollide.collision informs libvcollide that a collision occurred, so that the task may react

to the colliom. CAo as with the terrain should be indicated by a uith.whom value of 0.

Table of Contents

1 Overview..1I

1.1 Examples .. 2

2 Functions...3

2.1 vcollidet..3
2.2 vcollide-class.init... 3
2.3 vcollide..create... 3
2.4 vcollide-destroy .. 4
2.5 vcollide..oflision.. 4

3 I LibVCollide Programnmer's Guide

3!

U

I

I

I

I

Naval Research Laboratory, Contract Number: N00014-92-C-2150
Data Item Number: A001, ModSAF B Software Documentation

LibVecM at

LibVecMat Programmer's Guide

Joshua E. Smith

$Revision: 1.25 S

Copyright G 199 Loral Advanced Distributed Simulation, Inc.

Copyrigh Q 199 Loral Advanced Distributed Simulation, Inc.

Chapter 1: Overview

1 Overview

Jabvecmat is a vector and matrix operation library. Most functions are supported in many

formats, and are named using a regular convention:

3 2D or 3D Name starts with vuat2 or vimat3

Arguments individually or in an array
Next characters are e_ or just-

32 bit or 64 bit floating point
Name ends with 32 or 64

Function or macro
Name is in lowercase or ALL CAPS

For example, the 32 bit, 3D), vector add function which takes its arguments individually is called
vuat3*..vec...46. Most macro versions are not differentiated by bit length, because the compiler

will know based upon the definitions of the variables used.

The mnua entry for each function specifies which versions are provided. The Prototype given
in the manual entry uses generic terms as follows:

scalars8 Either tloat32 is or floa%64 a

vector v One of the folowing:

float32 vi, vy
float32 vi, vy, Vi
float" Vz. VY
tloat64 vi, vy. vz
tloat32 v[23
float32 v[(33
float" V123
float"4 v133

mtatrix a One of the follwing:

float32 SE23 (23
float32 u[33 [3)
float"4 U123 [23
floatG4 a 13] [33

EVery function and macro has been written suchI that the same vector or matrix may be passed

mores than once. For example, the expression,

2 LibVecMat Programmer's Guide

float64 a[3J, b1(33;

,v;t3.croe..prod64(a, b, a);

is perfectly legal. However, the routines which take a combination of vectors and matrices do not
check for a resultant vector being a row of a passed matrix. For example, the expression,

float64 a[3), b[33 [3);

vzat3.vec.. .t_164(a, b, bE]));

will not work as intended.

Note that the obsolete library, libmatrix, was not consistent in its argument passing. Since lib-
vecmat is consistent, you must be very careful when converting software to use libvecmat. Specifi-
cally, the functions which operate on scalars, and those which generate rotation matrices are very
different.

Chapter 2: ExmmPIe 3

2 Examples

Add two vectors, and normalize the result:

tloatG4 vec [33J;

VNAT3LYVEC..ADD(.0, 2.0, 3.0,
10.0. 20.0, 30.0,

mat3,.uit64(vec;, vec);

