| ADST-TR-W003268 E—

) ADVANCED DISTRIBUTED SIMULATION
TECHNOLOGY
{
s AD-A282 824
A W A
ModSAF
PROGRAMMER'S REFERENCE
" MANUAL
VOL.4
(Libuoverwatchmove- Libxfile)
Ver 1.0 - 20 December 1993

CONTRACTNO. N61339-91-D-0001

DO 0021 ELECTE
s AUG 11 1394
RLSEQUENCENO A0O1

25157
\\“\\l\l\\\\\l\\1\“\\\‘\\\\\\\l\\\\\l\t\\\\f\“\
Prepared for:
A o a0y Remearch Pty

. ADST Program Office
12151-A Research Parl y
Orlando, FL 32826

P4 8 09 091

ADST-TR-W003268

ADVANCED DISTRIBUTED SIMULATION

TECHNOLOGY
ModSAF
PROGRAMMER'S REFERENCE
MANUAL
VOL. 4
Accesion For
(Libuoverwatchmove- Libxfile) [[\1is craal g
DTIC TAB
Unannounced 0
Ver 1.0 - 20 December 1993 Justification ﬁ
CONTRACT NO. N61339-91-D.001 gi{fi’r?&'ﬂ on|
D.O.: 0021 Availability Codes
CDRL SEQUENCE NO. A001 Dist Avasilp : 321’ or
Prepared for:
US. Army Simulation, Training, and Instrumentation Command (STRICOM)
12350 Research Parkway
Orlando, FL 32826-3276
Prepared by:
LBRAL.
Systams Company
ADST Program Office

12151-A Research Parkway
Orlando, FL 32826

ADST-TR-W003268

Libuoverwatchmove

o otk A e e Pt s v L S L e L

T

Table of Contents

L O VO VIO W e 1
11 Examples.......ccooooiiiiiii 1
B FUDCtI oM .o 3
21 MOWILAMIto e e 3
22 oW ClasSamit.......cooiii 3
2. OWII TRcv it viitiieiit ittt e e et e, 3
24 UOWILAEStIOY......oovenii i 4
i R R O R R R T R R IERRRIIIII=Y,

Chapter 1: Overview

1 Overview

TEMPLATE: Describe what this library does here.

1.1 Examples

TEMPLATE: Give examples here.

2 Libuoverwatchmove Programmer’s Guide

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libuoverwatchmove, including the
format and meaning of its arguments, and the meaning of its return values (if any).

TEMPLATE: Adjust alignment of descriptions

TEMPLATE: Correct argument lists and descriptions of these functions.

2.1 uowmu.nit
void vowm_init()
uowa_init initializes libuoverwatchmove. Call this before any other libuoverwatchmove func-
tion.
2.2 uowm_class_init

void uowa_class_init(parent_class)
CLASS_PIR pareat_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

uvowm_class_init creates a handle for attaching uoverwatchmove class information to vehicles.
The parent_class will likely be safobj_class.

2.3 uowm.create

void uowm_create(vehicle._id, params, po_dd, ctdd, quad_data)

int vehicle_iq;
UOWM_PARAMETRIC_DATA *params;
PO_DATABASE *po._db;
CcTDS sctdd;

QUAD_DATA squad_dats;

4 Libuoverwatchmove Programmer’s Guide

‘vehicle_id’
Specifies the vehicle ID

‘params’ Specifies initial parameter values
‘po.ab’ Specifies the PO database

‘ctddb, quad_data’
Specify the terrain database

uowm_create creates the uoverwatchmove class information for a vehicle and attaches it vehicle’s
block of libclass user data.

2.4 uowme.destroy

void uowm_destroy(vehicle_id)
int vehicle_id;

‘vshicle_ id’
Specifies the vehicle ID

uowm_destroy frees the uoverwatchmove class information for a vehicle. This should be called
before freeing the class user data with class_free_user_data.

F

ADST-TR-W003268

Libupoccpos

]

' Table of Contents
' 1 OvVerview . ..o, 1
1.1 Task Parameters...................... ..o 1
1.2 ParametricData........................ 2
' 2 Functions ... 5
' 2.1 UPOCCPOSMIt 5
2.2 upoccposclassimit.................oiiiiii 5
2.3 UPOCCPOBLCTOALE\ttt iiir ittt teeeniiiniaiiiaeeeeeennnnnanns 5
' 24 UPOCCPOBAESLIOYooiviiiiiiiii i e 6
2.5 upoccposdnit.taskstate......................oooiiiii, 6
l S8 Algorithms................ 7
3.1 Cover Algorithm.....................oiiiiiiiii 7
. 3.2 Concealment Algorithmcoooiiiiiiiiiiiiiannnnnnn., 8
‘5? 4 Debugging........ooooviniiniiii)

Chapter 1: Overview 1

1 Overview

task finds covered and/or concealed positions along the battle position and instructs the subordi-
nates to go toward these positions. This task ends when the subordinates have reached the desired
positions. The task state machine is written using the AAFSM format which is translated to C
using the ‘fsm2ch’ utility (see section *‘Overview’ in LibTask Programmer’s Manual).

Four parameters are passed to SM_UPrepOcpyPos: left TRP, right TRP, engagement area TRP,
and battle position. Based on the battle position and the number of subordinates, the number of
vehicles per segment (the battle position is made up of one or more line segments) and the battle
areas (areas where each vehicle searches for cover) are calculated. The subordinates are ordered
by job numbers, and are assigned positions from one end of the battle position to the other end
so no vehicle crossover occurs while they are traveling to their positions. The cover/concealment
searching algorithm uses ctdb utilities which can tend to be expensive, especially is the battle areas
are large. Therefore, the search is divided among several ticks. Once the positions are found, they
are passed to vmove for each vehicle. The state machine then sits and waits until the vehicles are
in their desired positions.

W
' Libupoccpos implements a unit-level Preparatory task for Occupy Position. This preparatory

1.1 Task Parameters
The SK_UPrepOcpyPos task has four parameters:

?podof struct upoccpos_parameters

ObjectID engagement_area;

ObjectID trp_right;
ObjectID trp_left;
ObjectlID battle_position;

} UPOCCPOS_PARAMETERS;

‘engagement_area’ .
Specifies a persistent object which defines the engagement area. The engagement area
is a paint object.
‘srp.right’
Specifies a persistent object which defines the right bound of the sector of fire for the
unit. This object is a point object.

Libupoccpos Programmer’s Guide

‘trp.left’
Specifies a persistent object which defines the left bound of the sector of fire for the

unit. This object is a point object.

‘battle_position’
Specifies a persistent object which defines the battle position. The battle position is a
line object.

1.2 Parametric Data
There are eleven parametric data entries for SM_UPrepOcpyPos:

min_allowable_visibility has a value from 0.0 to 1.0 and specifies the minimum visibility
(0.0 being not visible and 1.0 being completely visible) of the engagement area TRP required for a
point to be considered a good cover position

tree_opacity has a value from 0.0 to 1.0 and specifies the degree to which one can see through
tree lines. 0.0 means tree lines are ignored, and 1.0 means that tree lines completely block the path
of vision

front_dist_percentage specifies how far in front of the battle position to search for cover
positions. The value specified is a percentage of the total battle position length.

back_dist_percentage specifies how far back from the battle position to search for cover po-
sitions. The value specified is a percentage of the total battle position length.

fire_sector_overlap_percentage specifies the degree to which fire sectors overlap

grid_spacing specifies how carefully the search will be performed. A low value specifies a quick
search (possibly overlooking some good cover positions) while a high value specifies a search that
takes longer but detects more cover positions. This value is in meters and specifies the distance
between sample points.)

omchu.ﬁc.tick specifies how many sample points for each vehicle will be processed per
tick. If there are four vehicles and two searches per tick, then eight sample points will be processed
per tick.

max_building_width is used to ensure that a concealed point doesn’t end up inside a building.

Chapter 1: Overview 3

It should be set to the maximum building width in the area being searched.

hull_coverage specifies the percentage of the hull that is protected from direct fire by the
ground. It is a number between 0.0 and 1.0.

engagement_area_size specifies the size of the engagement area. It is expressed in percentage
meters. The front of the engagement area is a certain distance in front of the engagement area
TRP. This distance is a percentage of the distance from the battle position to the engagement area
TRP. engagement_area_size specifies this percentage. Anything closer to the battle positior than
the front of the engagement area TRP will be blocked from view by the earth.

speed specifies the speed (in m/s) at which ground vehicles will move to their positions

4 Libupoccpos Programmer’s Guide

!

[
4
¥
El

Chapter 2: Functions 5

2 Functions

The following sections describe each function provided by libupoccpos, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 upoccpos.init
void upoccpos. init()

upoccpos_init initializes libupoccpos. Call this before any other libupoccpos function.

2.2 upoccpos_class_init

void upoccpos.class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

upoccpos.class_init creates a handle for attaching upoccpos class information to vehicles.

" The parent_class will likely be safobj_class.

2.3 upoccpos.create

void upoccpos.create(vehicle_id, params, po_db, ctdd)
int32

vehicle_id:;
UPOCCPOS_PARAMETRIC_DATA *params;
PO_DATABASE spo_db;
CIDB sctddb;
‘vehicle_id’
Specifies the vehicle ID

"&-’ Specifies initial parameter values
‘po.a’ Specifies the PO database where the task can be found

;
fi
|

] Libupoccpos Programmer’s Guide

‘ctdd’ Specifies the terrain database cux;rently in use

upoccpos_create creates the upoccpos class information for a vehicle and attaches it vehicle's
block of libclass user data.

2.4 upoccpos_destroy

void upoccpos.destroy(vehicle. id)
int vehicle_.id;

‘vehicle_id’
Specifies the vehicle ID

upoccpos_destroy frees the upoccpos class information for a vehicle. This should be called
before freeing the class user data with class_free_user_data.

2.5 upoccpos.init_task._state

void upoccpos.init_task_state(task, state)
TaskClass stask;
TaskStateClass *state;

‘task’ Specifies a pointer to the task class object to be initialized.
‘state’ Returns the initialized state

Given a new SH_UPrepOcpyPos task that is about to be created, upoccpos_init_task_state
initializes the model size, and state variables.

Chapter 3: Algorithms 7

8 Algorithms

8.1 Cover Algorithm

Instead of finding the cover positions in one tick, the search is distributed among several ti-¥=.
until good cover positions are found. Each vehicle is given an area about the battle positi:
which to search, which will be referred to as the ’battle area’. Also, a default position along
battle front (which the vehicle will use as its destination point if no cover or concealment is found)
is calculated for each vehicle. For each vehicle, three 'lines’ consisting of equally spaced points are
constructed: one along the left side of the battle area, one along the back, and one along the right
side. During each tick, a few of these points are used as "starting points" or "sample points" in the
search for cover positions. For each sample point, a profile array (3-dimensional) which contains
the elevation of the ground along a vector from the sample point to the engagement area TRP is
generated. Any two consecutive entries in this array define the endpoints of a segment along the
profile with a constant slope.

Then, starting with the segment closest to the engagement area TRP, and progressing to the
last segment (ending at the sample point), the following occurs:

1) The maximm slope of the line from the engagement area TRP to the
point of the segment closest to the engagement area TRP is kept
track of. This is the line of sight of the enemy (also known as
the ’tangent vector.’)

2) Two line segments are generated, each starting from one end of the
current profile segment. These line segments are perpendicular to
the ground at the curreat profile segment and have a length that
is equal to the body height of the vehicle that is searching for
cover. The line segment closest to the sample point will be
referred to as ’testline 1’, and that closest to the engagement
area TRP as ’testline 2°.

3) 1If the tangent vector does not intersect with testline 1 but does
intersect with testline 2, then there is a hull defilade position
sonevhere along that profile segmnent. The exact point is
calculated by determining the intersection of the line whose
endpoints are the top ends of the testlines (points A and B on
the diagram) with the tangent vector, them projecting onto the

ground.

For each vehicle, the covered positions with the mildest slope is used as the destination point.

Libupoccpos Programmer’s Guide

In the following diagram, a hull defilade position is found to be somewhere on segment n+1.

engagement
tesatline 2 tangent vector area TRP
| | |
B | | |
. <= | I
v v
< . - . ———- E
A
-> . L 3] ' l
| ¢ <o Segment n¢i |
| segment n
testline 1

3.2 Concealment Algorithm

Concealed points are only searched for if no cover points are found. ctdb_find_ground.intersection()
is used to determine if there is a treeline or building along certain segments of the profile array. If
80, the location is marked as a concealed position.

Not all parts of all segments are searched for concealment. Only the portions of segments that
are above (higher in altitude) the tangent line are searched, since intervisibility would fail for any
portion of terrain below the tangent line. Therefore, segments that have the tangent line pass above
them are not checked at all for concealed positions.

The concealed positions that are closest to the vehicles’ default locations on the battle position
are used as the destination points. Concealed positions are only used if no cover positions are
found.

o

i
]

Chapter 4: Debugging 9

4 Debugging

When debugging for Prep Occupy Position is enabled for any vehicle(s) (via ‘veh X debug
upoccpos on’), three different colors of TRP-style points are put in each vehicle’s overlay: yellow,
red, and green.

The yellow points represent the sample points (see the Algorithms
section) for a given vehicle.

The red points represent the cover positions found.

The green points represent the concealed positions found.

ADST-TR-W003268

LibURTB

Table of Contents

L O VOV W i e

21 urtbanit. e
22 urtbclassdnit...............oo e
2.3 UrtD CreRte. i e
24 urtbodestroy...........oiiiiiiii e
2.5 urtbinit task state..........ooiiiiiii i,

Chapter 1: Overview 1

1 Overview

Liburtb implements a unit-level task which controls a group (currently only one) of vehicles
returning to a base and landing. The task state machine is written using the AAFSM format which
is translated to C using the ‘fsm2ch’ utility (see section ‘Overview’ in LibTask Programmer’s
Manual).

Liburtb depends on libvtakeoff, libvfiwrte, libvland, libpo, libvtab, libclass, libctdb, libaccess,
libreader, and libparmgr.

v 1.1 Task Parameters

When a SH_URTB task is created or modified, parameters in the parameter block of the task data
structure are referenced. The parameters are represented in the task data structure as follows:

?podd struct urtb_parameters
ObjectID base;
uintié padding;
float64 speed;
floaté4 altitude;
} URTB_PARANETERS;

- ‘base’ Specifies the base for the vehicle to return to. This base can be a point object, line
. object, or a text object.
- ‘speed’ Specifies the speed of the vehicle.
‘ ‘altitude’
Specifies the altitude of the vehicle.

LibURTB Programmer's Guide

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by liburtb, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 urtb.nit
void urtd_init()

urtb_init initializes liburtb. Call this before any other liburtb function.

2.2 urtb.class.init

void urtd_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

urtb_class_init creates a handle for attaching urtb class information to vehicles. The parent_class
will likely be safobj_class.

2.8 urtb.create

void urtd_create(vekicle_id, params, po_db, ctdb)
int32 vehicle_id;
URTB_PARAMETRIC_DATA sparams;

PO_DATABASE spo_db;
CIDB sctdd;
‘vehicle_id’
Specifies the vehicle ID

3 ‘params’ Specifies initial parameter values
L ‘po_db’ Specifies the PO database where the task can be found

-

—

4 LibURTB Programmer's Guide

‘ctdbd’ Specifies the terrain database currently in use

urtb_create creates the urtb class information for a vehicle and attaches it vehicle’s block of
libclass user data.

2.4 urtb._destroy

void urtb_destroy(vehicle_id)
int vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

urtd_destroy frees the urtb class information for a vehicle. This should be called before freeing
the class user dats with class_free_user_data.

2.5 urtb_init_task.state

void urtb_init_task_state(task, state)
TaskClass *task:;
TaskStateClass *state;

‘task’ Specifies a pointer to the task class object to be initialized.
‘state’ Returns the initialized state

Given a new SM_URTB task that is about to be created, urtb_init_task_state initializes the
model sise, and state variables.

dsat g

ADST-TR-W003268

Libutargeter

Table of Contents

L O VO VIO W i

1.1 Parametric Data.........oviiniiiieiit e ee et terrasnaranas
1.2 Task Parameters.ooooiiitti i ie ettt e et eteetaeetaananannn,s

21 wtargdnmit........oooiii e
22 utargclassinit..............ocoiiiiiiiii
23 ULATELTOALE....... ..ottt e aae

24 utargdestrOy............ciiiiiiiiiii et
2.5 utarg.nittaskstate................oooiiiiiiiiiiiiiiii e

Chapter 1: Overview 1

1 Overview

Libutargeter implements a unit level task that gets a list of all capable vehicles in that unit. If
the fire technique is alternating then the capable vehicles will get paired up before giving vtargeter
the appropriate targeting information. The task state machine is written using the AAFSM format
which is translated to C using the ‘¢asm2ch’ utility (see section ‘Overview’ in LibTask Programmer’s
Manual).

During targeting operations, there are two states as described below
‘start’ When in this state, the task gets the number of capable vehicles and spawns the vehicle
targeting task libvtargeter. If the fire technique is set to alternating then the vehicles

are paired up before spawning the vehicle targeting task.

‘monitoring’
When in this state, the task gets the number of capable vehicles and spawns the vehicle
targeting task libvtargeter. If the fire technique is set to alternating then the vehicles
are paired up before spawning the vehicle targeting task.

The types of recommendations made by this task during either state can be controlled by the
parametric data for this unit subclass, as described below.

1.1 Parametric Data

The format of the parametric data for this unit subclass is as follows:

(SN_UTargeter (firing pause <integer milliseconds>))

The firing_pause designates the amount of time after the coordinated vehicle fires before the
paired vehicle can fire. This is passed to vtargeter.

1.2 Task Parameters

LibUtargeter uses task parameters only when configured for ground. The parameters ared
described by the following structures.

A

2 Libutargeter Programmer’s Guide

typedef enum vtargeter_fire_permission

{
VTARGETER_WEAPONS_HOLD = 1,
VTARGETER_VEAPONS_FREE = 2,
VTARGETER_WEAPONS_TIGHT = 3,

} VTARGETER_FIRE_PERMISSION;

3 typedef enum Vtargeter_fire_technique
i, {

VTARGETER_FIRE_TECHNIQUE_SIMULTANEOUS = 1,
VTARGETER_FIRE_TECHNIQUE_ALTERNATING = 2,
} VTARGETER_FIRE_TECHWIQUE;

; typedef struct utargeter_parameters

{
4 ObjectID vsctr_rgt_bnd [UNITORG_MAX_BREADTH] ;
ObjectID vsctr_1ft_bnd [UNITORG_MAX_BREADTH] ;
VTARGETER_FIRE_PERMISSION permission;
“ VTARGETER_FIRE_TECHNIQUE vtarg_fire_technique;

VASSESS_NMODE vass_mode;

: float32 range;

L float32 fire_at_pos(2];
intd2 num_point_sets;
VASSESS_FIRE_TYPE tire_type;

e
*
Z

} UTARGETER_PARAMETERS;
vsctr.rgt.bnd
vsctr_lft_ btad

pexmission specifies whether the vehicle cannot fire, can fire at will, or can only fire when fired
upon.

vtarg_fire_technique specifies whether the vehicle can fire when it wants, or should wait to
fire after another vehicle fires (for alternating fire).

vass_mode specifies the method used to determine targets. The three modes are "Closest to
Self™, “Sector Points", and "Closest to Location".

range specifies the maximum distance that the vehicle can shoot.

fire_at_pos is the target location.

P
ox
e .

Chapter 1: Overview 3

num_point_sets is not used.

fire_type specifies the method of firing at the enemy. The three types are "Distributed Fire",
*Volley Fire", and "None".

4 Libutargeter Programmer’s Guide

Y-Ww i
) 03y

Chapter 2: Functions . 5

32 Functions

The following sections describe each function provided by libutargeter, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 utarg.init
void utarg.init()

utarg_init initializes libutargeter. Call this before any other libutargeter function.

2.2 utarg.class.init

void utarg.class_init(parent_class)
CLASS_PTR parent_class;

‘parent._class’
Class of the parent (declared with class_declare_class)

utarg.class_init creates a handle for attaching utargeter class information to vehicles. The
parent_class is one created with class.declare.class.

2.3 utarg.create

void utarg_create(vehicle_id, params, po_ddb)

int vehicle_ id;
UTARGETER_PARAMETRIC_DATA *params;
PO_DATABASE spo_db;
‘vehicle_i4’
Specifies the vehicle ID

‘params’ Specifies initial parameter values
‘po.dd’ Specifies a PO database where task objects can be located

kibcohNset o M st st e et AR L iibiiteadince e Peiiic: g s
- I~ H I | N R - I I II = | , AT
g

¢ Libutargeter Programmer’s Guide

utarg.create creates the utargeter class information for a vehicle and attaches it vehicle’s block
of libclass user data.

3.4 utarg.destroy

void utarg_destroy(vehicle_id)
int vehicle.id;

‘vehicle. id’
Specifies the vehicle ID

utarg.destroy frees the utargeter class information for a vehicle. This should be called before
freeing the class user data with class_free_user_data.

2.5 utarg.nit_task.state

void utarg._init_task_state(task, state)
TaskClass stask;
TaskStateClass *state;

‘task’ Specifies a pointer to the task class object to be initialized.
‘state’ Returns the initialized state

Given a new SN_Utargeter task that is about to be created, utarg_init_task_state initializes
the model size, and state variables.

Libutraveling

ADST-TR-W003268

Libutraveling

3 U . : | . + . LRy I s R R A
< I. Lo S y L - . i o L . - : TS NS

i» «AI«A:V -

Table of Contents

1 Overview

...

..

2] WAV e e e,
22 utraveclassimit..... ...
B B T 7
24 utrav.destroy

..

Chapter 1: Overview 1

1 Overview

The unit traveling library provides a method for tasking a unit of vehicles to move along a route.
The route is specified via a PointClass, TextClass, or LineClass PO object. If the unit is larger
than one vehicle, the vehicles in the unit will be kept in formation by increasing or decreasing their

command speeds periodically.

This library should eventually handle arbitrarily sized units in a hierarchical manner. At this
time, it will try to control all the vehicles in the specified unit directly.

1.1 Parameters

GbjectID route;
float64 speed;
floaté4 speed_limit;

uints formationl];
uints form_type;
uint8 roadmarch;
uint8 conform;

‘route’ The route is a LineClass, PointClass, or TextClass PO. It provides the general r-te
that the unit will follow.

‘speed’ The speed defines the speed of the unit. If there is only one vehicle in the unit, it will
travel at exactly this speed. If there is more than one, the speed is used to compute
the speed of the individual vehicles to keep them in formation.

‘speed_limit’
This somewhat poorly named parameter defines the maximum speed that the vehicles
may travel. It should be zero if no speed limit is desired, or some number higher than
the speed parameter. If defined, this will be the speed used as the catch-up speed.

‘formation’
A character string defining a formation name understood by 1ibformationdb.

‘form_type’

' Another poorly named parameter. Eitker open (0) or closed (1). This is currently only
used for roadmarch spacing. The distances meant by open and closed is defined in the
parametric data as open_spacing and closed_spacing.

‘roadnarch’
A boolean value that determines whether roads will be used in the route or if formations

Libutraveling Programmer’s Guide

will proceed along the sides of the road. If 1, the vehicles will get on the road and travel
in a column in roadmarch order.

‘conform’ A boolean value that determines whether the input route will be conformed to the
terrain. In the future, this will be a multi-value parameter that determines whether to
follow valleys or ridgelines or to not conform.

1.2 Algorithm

When utraveling is spawned, its input route object undergoes some initial massaging. First, if
the route is a single point, it is turned into a two-point route starting at the unit location. Next,
if the route is to be conformed to the terrain, a routine in 1ibroute is called to change the route.
This currently doesn’t work particularly well. Finally (not implemented yet) long sections of route
will be broken into shorter pieces.

All internal route structures are maintained in the libroute format defined in stdroute.h
The route is stored in sections composed of cross-country and road segments. If the roadmarch
input parameter is turned on, vehicles will drive in an order defined by libformationdd on any
road sections in the input unit route.

For cross-country sections, libutraveling calls 1ibformationdd to split the unit route into indi-
vidual vehicle routes. These routes will have vertices offset from the unit route vertices based on
the input formation parameter.

A routine is then called that takes the list of subordinate vehicles and the individual vehicle
routes, and determines a subsections of these routes (somewhat longer than 500 meters). Arrival
times to the end of each subsection are computed, and appropriate speeds for each vehicle are
determined based om the input unit speed and the distance each vehicle will need to travel to arrive
at the endpaint of the subsection at the same time as the other vehicles arrive at their endpoints.

Individual vehicle vmove tasks are then spawned, and given appropriate parameters. In a some-
what atomic operation, the vehicle routes are turned into LineClass objects, which are used as
input object references. The state of each vmove task is then monitored. In the simplest case, when
all vmove tasks report they are in arrived state, the utraveling task cleans up and goes to END
state.

Typically, the route is somewhat longer than the subroute passed to the individual vmove tasks,
and the vehicles do not behave at all as expected. Thus, much of utraveling is devoted to handling
silly exception conditions and idiosyncracies of the vmove and movemap Libraries.

T

'
.

Chapter 1: Overview 3

One of the first things that needs to be dealt with is the length of routes. Road segments and
ternain-conformed route sections may cause the massaged vehicle routes to be significantly longer
thaa can be stored in a LineClass object. To get around this, utraveling breaks the long unit
route into short sections. This was also done so that movemap could be given reasonably short
routes. This is important so that when movemap computes a speed at which to travel, it will be
reasonable enough to keep the unit roughly in formation.

When each vehicle gets within 500 meters of the end of its subroute, its vmove goes to arriving
state. When all the vehicles are in this state, utraveling computes a new set of subroutes, new
arrival times, and passes these as parameters to the vmoves.

Since things always happen to cause the vehicles to get out of sync, utraveling will periodically
(currently every 10 seconds) recompute the arrival times and update the vmoves. This helps keep
the formations correct.

i
3
L

Libutraveling Programmer’s Guide

Chapter 2: Functions 5

2 Functions

The following sections describe each function provided by libutraveling, including the format
and meaning of its arguments, and the meaning of its return values (if any).

TEMPLATE: Adjust alignment of descriptions

2.1 utrav.init

void utrav_init(routemap)
ROUTEMAP_PTR routemap;

‘routemap’
Specifies © _vs.= map to use for planning around rivers, canopies, etc.

utrav_init initializes libutraveling. Call this before any other libutraveling function.

2.2 utrav.class_init

void utrav_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

utrav.class_init creates a handle for attaching utraveling class information to vehicles. The
parent_class will likely be safobj_class.

2.3 utrav.create

void utrav.create(vehicle_id, params, po.db, ctdb, quad_data)

int vehicle_id;
UTRAVELING_PARAMETRIC_DATA s*params;
PO_DATABASE spo_db;
CIDB sctdb;

6 Libutraveling Programmer’s Guide

QUAD_DATA *quad_data;

| ‘vehicle_id’

; Specifies the vehicle ID

\ ‘params’ Specifies initial parameter values

? ‘po_db’ Specifies the PO database

L ‘ctddb’ Pointer to the CTDB terrain database

‘quad_data’
Pointer to the quadtree feature database

utrav_create creates the utraveling class information for a vehicle and attaches it vehicle’s
block of libclass user data.

!

2.4 utrav.destroy

void utrav_destroy(vehicle_id)
int vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

utrav_destroy frees the utraveling class information for a vehicle. This should be called before
freeing the class user data with class_free_user_data.

Lo -

e ZiroNio g

¢
H

Libvassess

ADST-TR-W003268

Table of Contents

O VO VIO W .. i 1
FUunctions ... 7
2.1 VASBMILo i e e i i i e 7
22 vass.Classimit.............iiiiiiiii i i 7
p B X T ¢ Y 7
24 Vas8 deStIOY..........oiiiiiiiiii i aaaas 8
25 vassnit.taskastate...............iiiiiiiiiiii e 8
2.6 vass_get_recommendation................iuiiiiiiiiiiiiiiiiii i, 9
2.7 vass_get_recommendationfrom_public........................... ... 10
2.8 vass.reset.recommendation..............eviiiiiiiiiiiiiiiiieeiaen, 10

Access Keyso.ooiiiiiiiiiiiiiii e 13

Chapter 1: Overview 1

1 Overview

Libvassess implements a vehicle level task which identifies the most urgent target and makes
recommendations for weapons to use against that target. The task takes its primary input from
the libspotter task which provides lists of IFF identified vehicles detected by available sensors. The
task state machine is written using the AAFSM format which is translated to C using the ‘¢sm2ch’
utility (see section ‘Overview’ in LibTask Programmer’s Manual).

This diagram gives an overall description of how VAssess chooses a new target.

*>—_4
-+

spotted list of enemy vehicles

I

|

|
\/

If the type of fire is DISTRIBUTED, thenl
only consider vehicles that are |
NOT being targeted by someone else. |
If »ALL* spotted vehicles are |
being targeted, then consider all |

]

of them.

R U —— Y

|

|

|
\ W}

Only consider vehicles of the highest
priority.

—_—

$ P

|

|

|
N/

Choose the vehicle that is the closest.

b -
> —_-

The format of the parametric data is as follows:

(SM_VAssess (background [on | off])

2 Libvassess Programmer’s Guide

(sensors <name> <name> ...)
(weapons (<vehicle-class-mask> <vehicle-class-value>
(<min range> <max range> <name> <munition>)
(<min range> <max range> <name> <munition>)
ees)
(<vehicle-class>
(<min range> <max range> <name> <munition>)
(<min range> <max range> <name> <munition>)
.
eed)
(looking_tick_period <integer msec>)
(reevaluating tick_period <integer msec>)
(recommendation_persistence_time <integer msec)
(assessment_type [air | ground])
(range_factor <real>)
(aspect_factor <real>)
(persistence_factor <real>)
(mobility.and_fire_factor <real>)
(fire_factor <real>)
(max_hits_on_target <integer>)
(target_priorities.
((<priority> <vehicle-class-mask> <vehicle-class-value>)

(<priority> <vehicle-class-mask> <vehicle-class-value>)

)

The background parameter specifies whether the task should automatically be included in the
background task frame of this vehicle. Normally, this will have the value on to indicate it should
be included.

The sensors parameter contains the names of sensors which may be manipulated during the
assessment process. Currently no sensors are manipulated.

The weapons parameter contains the list of data used to provide weapon and munition recom-
mendation against threats. <vehicle-class-mask> is a bitwise OR combination of SIMNET object
type mask fields which will be checked for 2 match against the values encoded in the <vehicle-
class-value>. <vehicle-class-value> is a bitwise OR combination of SIMNET object type
value fields which are used to match against the assumed object type of the threat. If the fields
match, the first weapon name and munition for which the threat falls within the min and max
ranges will be chosen as the weapon and munition recommendation.

The looking._tick_period parameter specifies how often the task should process input when
no targets are detected.

Chapter 1: Overview 3

The reevaluating tick.period parameter specifies how often the task should process input
when a target is currently recommended.

The recommendation_persistence.time parameter specifies the amount of time that a chosen
threat should remain chosen even after is becomes undetected by all available sensors.

The assessment_type specifies the type of algorithm used to determine threat. Currently, the
only two types supported are are air and ground.

The range_factor parameter specifies a multiplier from 0.0 to 1.0 rating range as a criteria for
threat with respect to other criteria. Currently, range is the only criteria used to classify threat.

The aspect_factor specifies a multiplier from 0.0 to 1.0 rating aspect angle as a criteria for
threat with respect to other criteria. Currently, only assessment_type air uses this criteria.

The persistence._factor parameter specifies a multiplier by which an already chosen threat
will be evaluated. For inztance, a factor of 2.0 means that once a target is chosen, other targets
will not be chosen unless they become less than half the distance to the vehicle than the chosen
threat (assuming range is the only criteria).

The mobility.and_fire_factor specifies a multiplier from 0.0 to 1.0 rating the appearance
of both a mobility kill and firepower kill for threat with respect to other criteria. Currently only
assessment_type ground uses this criteria.

The 2ire_factor specifies a multiplier from 0.0 to 1.0 rating the appearance of just a firepower
kill for threat with respect to other criteria. Currently only assessment_type ground uses this
criteria.

The max_hits_on_target specifies the maximum number of shots hit on the target before the
target will be considered not a threat (or undefeatable).

The target_priorities parameter contains the prioritized list of vehicle classes. Enemy vehi-
cles will be compared to this list to determine the priority of the enemy vehicle. If an enemy does
not match any class in the list then it will be given the lowest priority. The highest priority is 10
and the lowest is 1.

When a SM_VAssess task is crrated or modified, parameters in the parameter block of the
task data structure are referenced to customize the task’s behavior. Since libvassess implements a

:'.*j‘ B
j
.
!

4 Libvassess Programmer’s Guide

vehicle level task, these parameters are typically initialized and modified by unit tasks which are
responsible for directing vehicle level behavior.

The parameters are represented in the task data structure as follows:

typedef struct vassess_parameters

{
ObjectID sctr_rgt_bnd;
ObjectID sctr_1ft _bnd;
float64 max_threat_range;
float64 max_threat_aspect;
floaté4 min_threat_speed;
float64 fire_at_pos{2];
VASSESS_ROE permission;
VASSESS_FIRE_TYPE fire_type;

} VASSESS_PARAMETERS;

sctr.rgt.bnd specifies the right sector boundary. Targets within a sector will have priority
over targets outside of the sector.

max_threat._range specifies the left sector boundary. Targets within a sector will have priority
over targets outside of the sector.

max_threat_range specifies the maximum range, in meters, beyond which a potential enemy
will not be considered a threat.

max_threat.aspect specifies the maximum aspect angle, in radians, above which a potential
enemy will not be considered a threat.

min_threat_speed specifies the minimum target velocity, in meters per second, below which a
potential enemy will not be considered a threat.

fire_at_position is the position used when permission is FIRE_AT_POSITION.

permission specifies whether permission to fire is currently enabled. This value is supplied
as a parameter which may be propagated as recommandations from this task (see Section 2.6
(vass'get recommendation], page 9) should a potential enemy satisfy the target criterion specified
by the max_threat_range, max_threat_aspect and min_threat_speed parameters. permission
can take three values:

Chapter 1: Overview 5

e VASSESS_HOLD.FIRE
e VASSESSFIRE.AT.WILL
e VASSESS_FIRE_POSITION

fire_type specifies the method of firing at the enemy. fire_type can be set to:

e VASSESS_DISTRIBUTED.FIRE
e VASSESS_.VOLLEY FIRE
e VASSESS.NONE

If tire_type is set to VASSESS.DISTRIBUTED_FIRE then VAssess will try to choose a target
that is not being targeted by someone else. If all spotted enemy vehicles are being targeted by
someone else then the vehicle will target the highest priority enemy vehicle.

If £ire_type is either VASSESS_VOLLEY_FIRE or VASSESS_.NONE then VAssess will choose
a target that is the highest priority. These two types do not check to see if the spotted enemy

vehicle is being targeted by someone else.

Libvassess Programmer’s Guide

= e 3

Chapter 2: Functions 7

2 Functions

The following sections describe each function provided by libvassess, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 vass_init

void vass_.init(data_path, reader.flags, tcc)
char sdata_path;
uint32 reader_flags;
COORD_TCC_PTR tcc;

‘data_path’

Specifies the directory where data files are expected
‘veader.flags’

Specifies the flags to use when data files are read
‘sec’ Specifies the local coordinate system

vass_init initializes libvassess. Call this before any other libvassess function.

2.2 vass_class_init

void vass.class_init(parent_class)
CLASS_PTR parent_class:

‘parent_class’
Class of the parent (declared with class_declare_class)

vass_class.init creates a handle for attaching vassess class information to vehicles. The
parent_class will likely be safobj_class.

2.3 vass_create

void vass_create(vehicle.id, params, ctdb, db, unit_entry)

] Libvassess Programmer’s Guide

int vehicle_id;
VASSESS_PARAMETRIC_DATA #*params;
CTDB sctdb;
PO_DATABASE +«db;
PO_DB_ENTRY sunit_entry;
‘vehicle_id’
Specifies the vehicle ID

‘params’ Specifies initial parameter values |
‘etdd’ Specifies terrain database information
‘dp’ Specifies the PO database where the unit can be found

‘unit_entry’
Specifies the unit representing the vehicle in the PO database

vass_create creates the vassess class information for a vehicle and attaches it vehicle’s block
of libclass user data.

2.4 vass.destroy

void vass_destroy(vehicle.id, is_migration)
int32 vehicle.id;
int32 is_migration;

‘vehicle_id’
Specifies the vehicle ID
‘is.migration’

Specifies that the destroy is due to migration

vass_destroy frees the vassess class information for a vehicle. This should be called before
freeing the class user data with class._free_user_data.

2.5 vass._init_task_state

void vass_init_task_state(task, state)
TaskClass *task;
TaskStateClass sstate;

Chapter 2: Functions 9

‘task’ Specifies a pointer to the task class object to be initialized.
‘state’ Returns the initialized state

Given a new SM_VAssess task that is about to be created, vass_init_task_state initializes
the model size, and state variables.

2.6 vass.get.recommendation

void vass_get_recommendation(vehicle.id, rec)
int32 vehicle_id;
VASSESS_RECOMMENDATION srec;

‘vehicle.id’
Specifies the vehicle ID
‘rec’ Specifies a pointer to return the recommendation into.

vass_get._recommendation returns the current recommendation for the highest threat. The
recommendation has the following structure:

typedef struct vassess.recommendation

int32 target;
uint32 munition;
char *weapon;

VASSESS_ROE permission;
} VASSESS_RECOMMENDATION;

target is interpreted as the the vehicle id of the highest threat.
munition is the recommended munition type to use against the threat.
weapon is the name of the weapon to use against the treat.

permission specifies the rules of engagement against the threat. It can take the following
enumerated values:

‘VASSESS_HOLD_FIRE’
This specifies not to shoot.

10 Libvassess Programmer’s Guide

‘VASSESS_FIRE_AT_WILL
This specifies that permission to fire is granted.

The permission is derived from the initial permission as specified in the task’s parameters. If
the task parameter for permission is VASSESS_FIRE_AT_WILL, and if an available target satisfies
all constraints specified in the other parameters, the recommandation for fire permission will be
VASSESS_FIRE_AT_WILL. In all other cases, the recommendation will be VASSESS_HOLD_FIRE.

2.7 vass_get_recommendation_from_public

void vass_get_recommendation_from_public(db, task, rec)
PO_DATABASE *=db;
TaskClass stask;
VASSESS_RECOMMENDATION *rec;

‘dp’ Specifies the PO database.
‘task’ Specifies a SM_VAssess task which is to be interpreted.
‘vec’ Specifies a pointer to return the recommendation into.

vass.get_recommendation_from_public returns the current recommendation for the high-
est threal. The values returned into rec are as in vass_get.recommendation (see Section 2.6
[vass'get recommendation), page 9).

This function works on both locally simulated and remotely simulated vehicles, and may be
used by user interface software to show the world from a vehicle’s point of view.

2.8 vass.reset_recommendation

void vass_reset_recommendation(vehicle_id)
int32 vehicle_id;

‘vehicle_1id’
Specifies the vehicle ID

vass_reset_recommendation causes the vassess task to re-analyze the threat situatation im-
mediately on the next tick. This is typically used by a task which is using vassess recommendations

Chapter 2: Functions 11

but discovers a new situation which should cause a new recommendation to be generated (such as
destruction of previously recommended target).

12 Libvassess Programmer’s Guide

¢

Chapter 3: Access Keys 13

3 Access Keys

In addition to the functions just described, libvassess also provides libaccess keys with which
many variables can be fetched at once. These keys, and the type of argument they expect are given
below:

vass_recommendation
VASSESS_RECOMMENDATION sarg

N - SERRRRRREA——— e e e - o -

ADST-TR-W003268

3

@
]
:
;

LibVATAInt

Table of Contents

1 O VeIV O W i e
1.1 Task Parameters.ooviniininiii ittt

4 2 UM I OIS oot e, 7
. 2.1 VABRIDEADIE ... eeeenerr et e,
2.2 vataint class dmit..........coiiiiiiiii i e
2.3 VALAIME CPEALEourineeninne it eniee et an et eanean
24 vataintdestroy..........oiiiiiiiii i e
s 2.5 vataint.init_task state............. ottt e aaaan.,
1 2.6 vataint.able_todntercept.................oouiiiiiiiiii il
- 2.7 vataint.get_target.recommendation.....................ooiiieiiia...

Chapter 1: Overview 1

1 Overview

Libvataint implements a vehicle-level task which controls the movement of a vehicle during an
air-to-air intercept. In its current implementation, libvataint guides the aircraft on a pure-pursuit
course of the enemy. The task state machine is written using the AAFSM format which is translated
to C using the ‘fsm2ch’ utility (see section ‘Overview’ in LibTask Programmer’s Manual).

The states which comprise the intercept task are described below.

‘cant.intercept’
This state is entered when the aircraft is on the ground and cannot perform an intercept.
When in this state, the task continuously checks to see if the aircraft has taken off.
Once the aircraft has taken off, the task transitions to the appropriate state to begin
the intercept, based upon the current intercept geometry.

‘search_for_tgt’
This state is entered when the aircraft does not detect the target on its radar. When
in this state, the task steers the aircraft towards the last known enemy target position
and continuously checks to see if it has acquired the target on its radar. Once the
aircraft acquires the target, the task transitions to the appropriate state to begin or
continue the intercept based upon the current intercept geometry.

‘anslyze._geometry’
This state is entered when the target is first detected at the start of an intercept. This
state is used to simulate the time it takes for a pilot in a real aircraft to assess the
intercept geometry. When in this state, the task steers the aircraft to point its nose
at the target and maintain that course for a predetermined distance (specified in the
task parametric data). After the aircraft has traveled that distance, the task computes
the missiles it will shoot for this intercept, computes the distances at which to shoot
those missiles, selects the first missile, and computes the desired target aspect and lat-
eral separation ¢o achieve an optimal positional advantage over the target. Depending
upon the current intercept geometry, the task then immediately transitions to a state
in which it prepares to take the first missile shot (if the enemy target is within desired
shot range), or computes an initial maneuver which will put the aircraft on a course
to achieve the desired target aspect or lateral separation and tramsitions to the ini-
tial.maneuver state to initiate that maneuver (if the enemy target is outside of desired
shot range). If the enemy target drops off the aircraft’s radar, the task transitions to
the search.for.tgt state in an attempt to reacquire the target.

‘initial _maneuver’

This state is entered when the enemy target is outside of the aircraft’s desired shot
range, and the aircraft therefore has time to make a maneuver in an attempt to achieve

St e o

s R o33 st i NS B Kk e Py R i

LibVATAInt Programmer’s Guide

a positional advantage over the enemy target. The initial maneuver is computed based
upon a series of rules which take into account the current intercept geometry’s target
aspect, lateral separation, and altitude. When in this state, the task steers the aircraft
in the direction of the computed initial maneuver and continuously checks to see if
the desired target aspect has been achieved (and if so, transitions to collision.course
state), if the enemy target is maneuvering (and if so, transitions to collision.course
state), if the deisired lateral separation has been achieved (and if so, transitions to
maintain_bogey.reciprocal state), or if the enemy target is getting close to the desired
shot range (and if so, transitions to attack-heading state). If the enemy target drops
off the aircraft’s radar, the task transitions to the search_for_tgt state in an attempt to
reacquire the target.

‘saintain_bogey.reciprocal’

This state is entered when the aircraft is performing its initial maneuver and has
achieved the desired lateral separation. When in this state, the task steers the aircraft
on a course which is in the direction opposite the direction of travel of the enemy
target (i.e. bogey heading reciprocal) and continuously checks to see if the desired
target aspect has been achieved (and if so, transitions to collision_course state), if
the enemy target is maneuvering (and if so, transitions to collision.course state), or
if the enemy target is getting close to the desired shot range (and if so, transitions
to attack.heading state). If the enemy target drops off the aircraft’s radar, the task
transitions to the search for.tgt state in an attempt to reacquire the target.

‘collision_course’

This state is entered whenever the desired target aspect has been achieved or the
enemy target is maneuvering against the aircraft. When in this state, the task steers
the aircraft on a collision course with the enemy target, and continuously checks to
see if the enemy target is getting close to the desired shot range for its next missile
shot (and if so, transitions to attack heading state). If the enemy target drops off
the aircraft’s radar, the task transitions to the search for.tgt state in an attempt to
reacquire the target.

‘attack_heading’

‘hu’

This state is entered when the aircraft is close to its desired shot range for its next
missile shot. When in this state, the task steers the aircraft on an attack heading
course (L.e. a course which is 1/3 the target aspect ahead of pure pursuit of the target)
and continuously checks to see if the enemy target is within the desired shot range and
within the selected missile’s launch acceptability region (LAR) (and if so, transitions
to shoot state). If the enemy target drops off the aircraft’s radar, the task transitions
to the search_for_tgt state in an attempt to reacquire the target.

This state is entered when the range to the enemy target has reached the range specified
in the beam.range task parameter. The tactic of "turning into the beam" of the enemy
aircraft’s radar is used to defeat the enemy aircraft’s pulse doppler radar modes, which

Chapter 1: Overview 3

cannot track targets which are "in the beam". When in this state, the task steers
the aircraft to a course which is 90 degrees from the enemy target’s heading for a
predetermined length of time.

‘shoot’ This state is entered when the aircraft is at the desired range to shoot the currently
selected missile. When in this state, the task requests that a missile be fired by the
vtargeter task (if fire permission is VATAINT_FIRE_AT_WILL). Regardless of whether
or not a shot is taken, the task then checks to see if the crank task parameter was set
to TRUE (and if so, transitions to the crank state), or if the crank task parameter was
set to FALSE (and if so, steers the aircraft on its current course until it is time for the
next shot, time to bugout, or time to merge).

‘crank’ This state is entered after the aircraft has shot a missile, if the crank task parameter
was set to TRUE. When in this state, the task steers the aircraft on a course which is 40
degrees off of its attack heading course in the direction away from the enemy target and
continuously checks to see if the enemy target is approaching the edge (< 15 degrees)
of the radar scan volume (and if so, performs an EASY turn towards the enemy target
to keep it safely inside the radar scan volume), if it is time to take another missile shot
(and if so, transitions to attack-hcading state), if it is time to go to the merge (and
if so, transitions to merge state), or if it is time to bugout (and if so, transitions to
bugout state). If the enemy target drops off the aircraft’s radar, the task transitions
to the searchfor.tgt state in an attempt to reacquire the target.

‘bugout’ This state is entered after all planned missile shots have been taken and the aircraft is
12 nm from the enemy target and does not have a radar guided missile in flight. When
in this state, the task steers the aircraft on a course which puts the enemy target 180
degrees behind the aircraft and continuously checks to see if the enemy target is 180
degrees behind the aircraft and the aircraft has created a separation of 6 nm from the
enemy target (and if so, transitions to the END state to end the intercept).

!

This state is entered when the range between the aircraft and the enemy target is
less than 12 nm, and ecither the aircraft has a radar guided missile in flight or the
disengage.method task parameter was set to VATAINT .MERGE. When in this state,
the task steers the aircraft on a pure pursuit course and continuously checks to see if
the enemy target is getting close to the desired shot range for the next missile to shoot
(and if so, transitions to shoot state), or if the range to the enemy target is less than
1 nm (and if so, transitions to the END state to end the intercept).

Libvataint depends on libvassess, libvtargeter, libvtab, libclass, libetdb, libpo, libhulls, libcom-
ponents, libaccess, libreader, libstatmon. libeditor, libparmgr, libradar, librdrconst, libtime, libvec-
mat, libentity, libsensors, libsupplies. libfes, liblar, and libtask.

‘3
i1
i

.
*
2

.

4 LibVATAInt Programmer’s Guide

1.1 Task Parameters

When a SM_VATAInt task is created or modified, parameters in the parameter block of the task
data structure are referenced. The parameters are represented in the task data structure as follows:

typedef struct vataint_parameters

VehicleID target_id;

uintié paddingi;

float64 target_bearing; /» radians »/
float64 target_range; /* meters =/
VATAINT _FIRE_PERMISSION fire_permission;

int32 weapon_count;
VATAINT_WEAPONS_ENABLED weapons.enabled [VATAINT_MAX_WEAPONS];
int32 crank;
VATAINT_DISENGAGE_METHOD disengage_method;

int32 padding2;

floatt4 beam_range;

} VATAINT_PARAMETERS;

‘target._id’
Specifies the id of the vehicle to intercept.

‘target._bearing’
Specifies the bearing to the target in radians. This parameter is only set if the target.id
is not known.

‘target_range’

Specifies the range to the target in meters. This parameter is only set if the target_id
is not known.

‘Cire_permission’

Specifies the fire permission (VATAINT.HOLD FIRE, VATAINT FIRE_AT.WILL) to
be used during the intercept.

‘weapon.count’
Specifies the number of weapons in the weapons_enabled list.
‘weapons_enabled’
Specifies the weapons which the aircraft is allowed to shoot during the intercept.
‘crank’ Specifies whether to perform a crank maneuver after each shot taken during the inter-
cept.
‘disengage.method’
Specifies how the aircraft should disengage from the target it is intercepting if it does
not destroy it. This can take the values VATAINT.INTERNAL, VATAINT MERGE,
and VATAINT BUGOUT. If it is set to VATAINT INTERNAL, the disengage method

A
\
s
Ali-

Rasas sy

- 2
i R il

P o et Datd e 3 i Ml S e = ? S i A S N ” = * i g S - p N

e

B

BE
e

Chapter 1: Overview 5

used will be based upon air-to-air intercept tactics taking into account the range to the

target and whether a radar-guided missile is in flight. If it is set to VATAINT MERGE,

the aircraft will always go to the merge to disengage. If it is set to VATAINT BUGOUT,

the aircraft will always bugout (no later than 12 nm from the target) to disengage.
‘beam_range’

Specifies the range in meters at which the aircraft should turn into the enemy target’s

radar beam.

LibVATAInt Programmer’s Guide

Chapter 2: Functions 7

2 Functions

The following sections describe each function provided by libvataint, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 vataint.nit
void vataint_init()

vataint_init initializes libvataint. Call this before any other libvataint function.

2.2 vataint._class_init

void vataint_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

vntunt-clul;init creates a handle for attaching vataint class information to vehicles. The
parent_class will likely be safobj_class.

2.3 vataint_create

void vataint_create(vehicle_id, params, po.db, ctdb)

int32 vehicle_id;
VATAINT _PARAMETRIC_DATA *params;
PO_DATABASE *po._db;
CTDB sctdb;
‘vehicle_iq’
Specifies the vehicle ID

‘params’ Specifies initial parameter values
‘po.dp’ Specifies the PO database

d

| .
I‘.
3

'
| '

‘.’

LibVATAInt Programmer’s Guide

‘etdd’ Specifies the terrain database currently in use

vataint_create creates the vataint class information for a vehicle and attaches it vehicle’s
block of libclass user data.

2.4 vataint_.destroy

void vataint_destroy(vehicle_id)
int vehicle.id;

‘vehicle_id’
Specifies the vehicle ID

vataint_destroy frees the vataint class information for a vehicle. This should be called before
freeing the class user data with class_free_user_data.

2.5 vataint_init_task_state

void vataint_init_task_state(task, state)
TaskClass stask;
TaskStateClass *state;

‘task’ Specifies a pointer to the task class object to be initialized.
‘state’ Returns the initialized state

Given a new SM_VATAInt task that is about to be created, vataint_init_task_state initializes
the model size, and state variables.

2.6 vataint_able_to_intercept

int32 vataint_able_to_intercept(vehicle_id, ctdb)
int32 wehicle_id:
CTDB sctdb;

AT
v.

- G " - O

Chapter 2: Functions 9

‘vehicle.id’
Specified the Vehicle ID.
‘etdd’ The ctdb pointer for terrain querries.

Determine if a vehicle is able to intercept. If the air vehicle is not in the air, then it is not able
to intercept yet. This function will also be called by the unit air-to-air intercept task, in order to
see if it needs to command a vehicle to take off before commanding it to intercept.

2.7 vataint_get_target.recommendation

void vataint_get_target._recommendation(vehicle_id, rec)
int32 vehicle_id;
VTARGETER_ TARGET_RECOMMENDATION *rec;

‘vehicle._id’
Specified the Vehicle ID.

i The current target recomendation.

‘rec

This function returs the current target recomendation that vataint is using.

ADST-TR-W003268

L

Libvatgrndtrgt

* Table of Contents

1 Overview
1.1 Examples

..

2 Functions

2.1 wvatgtgdnit... ... e
2.2 vatgtg_class.init
2.3 vatgtgcreate

24 Vatgtg destroy..........ooiiiiiiiiiiiii e 4

...

Chapter 1: Overview

1 Overview

TEMPLATE: Describe what this library does here.

1.1 Examples

TEMPLATE: Give examples here.

Libvatgrndtrgt Programmer’s Guide

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libvatgrndtrgt, including the format
and meaning of its arguments, and the meaning of its return values (if any).

TEMPLATE: Adjust alignment of descriptions

TEMPLATE: Correct argument lists and descriptions of these functions.

2.1 vatgtg-init
void vatgtg.init()

vatgtg.init initializes libvatgrndtrgt. Call this before any other libvatgrndtrgt function.

2.2 vatgtg._class_init

void vatgtg_class_init(parent.class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

vatgtg_class_init creates a handle for attaching vatgrndtrgt class information to vehicles.
The parent_class will likely be safobj_class.

2.3 vatgtg._create

void vatgtg.create(vehicle_id, params)
int vehicle.id;
VATGRNDTRGT_PARAMETRIC_DATA #params;

‘vehicle_id’
Specifies the vehicle ID

3 k‘? ‘

Libvatgrndtrgt Programmer’s Guide

‘params’ Specifies initial parameter values

vatgtg_create creates the vatgrndtrgt class information for a vehicle and attaches it vehicle’s
block of libclass user data.

2.4 vatgtg.destroy

void vatgtg.destroy(vehicle_id)
int wvehicle_id;

‘vehicle_id’
Specifies the vehicle ID

vatgtg_destroy frees the vatgrndtrgt class information for a vehicle. This should be called
before freeing the class user data with class_free_user_data.

ADST-TR-W003268

LibVCAP

Table of Contents

1 O VerVIieW ..o 1
1.1 Task Parameters..............ottt 1
2 FUunctiomSs ... 3
2.1 VEAPAMIt ... i e 3
2.2 veapclassdnit...... ... 3
2.3 VAP LIeAL. .. . e e 3
2.4 VCAPAEBLIOY ...ttt e e 4
2.5 vcap.dnittask.state...........ol 4

26 wvcapabletocap.............iiiii e 4

Chapter 1: Overview 1

1 Overview

Libvcap implements a vehicle-level task which performs a Combat Air Patrol (CAP). It flies
a racetrack pattern looking for targets to intercept. The task state machine is written using the
AAFSM format which is translated to C using the ‘fsm2ch’ utility (see section ‘Overview’ in LibTask
Programmer’s Manual).

Libvcap depends on libpo, libhulls, libvflwrte, libvtab, libclass, libctdb, libaccess, libstatmon,
libeditor, libreader, libparmgr, librdrconst, libvecmat, libentity, libcomponents, and libtask.
1.1 Task Parameters

When a SM_VCAP task is created or modified, parameters in the parameter block of the task data
structure are referenced. The parameters are described by the following structure:

typedef struct vcap_parameters
{

ObjectID position;
uintié -padding
float64 orientation;
floaté4 length_of_legs;
float64 inbound_leg._speed;
float64 outbound_leg_speed;
floaté4 altitude;
} VCAP_PARAMETERS; .
‘position’
A persistent object which defines the location to perform the CAP. This object can be
a point object or a text object.
‘orientation’

Specifies the orientation of the racetrack pattern. This is used to determine the direc-
tions of the inbound and outbound legs.
‘length_of_legs’
Specifies how long each leg of the track should be.
‘inbound_leg_speed’
Specifies the speed that the aircraft will be moving on the inbound leg of the track.
‘outbound.leg.speed’
Specified the speed that the aircraft will be moving on the outbound leg of the track.

2 LibVCAP Programmer’s Guide

‘altitude’
Specifies the altitude the aircraft will be flying at.

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libvcap, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 vcap.nit
void vcap.init()

vcap_init initializes libvcap. Call this before any other libvcap function.

2.2 vcap.class_init

void vcap.class_init(parent_class)
CLASS_PTR parent_class;

‘parent._class’
Class of the parent (declared with class_declare_class)

vcap.class_init creates a handle for attaching vcap class information to vehicles. The parent_class
will likely be safobj_class.

2.3 vcap.create

void vcap.create(vehicle_id, params, po.db, ctdb)

int vehicle_id;
VCAP_PARAMETRIC_DATA *params;
PO_DATABASE *po_db;
CTDB sctdb;
‘vehicle_id’
Specifies the vehicle ID

‘params’ Specifies initial parameter values
‘po.db’ Specifies the PO database where the task can be found

4 LibVCAP Programmer’s Guide

‘ctdd’ Specifies the terrain database currently in use

vcap._create creates the vcap class information for a vehicle and attaches it vehicle’s block of
libclass user data.

2.4 vcap.destroy

void vcap.destroy(vehicle.id)
int vehicle.id;

‘vehicle_id’
Specifies the vehicle ID

vcap_destroy frees the vcap class information for a vehicle. This should be called before freeing
the class user data with class_free_user_data.

2.5 vcap.nit_task_state

void vcap.init_task_state(task, state)
TaskClass *task;
TaskStateClass *state;

‘task’ Specifies a pointer to the task class object to be initialized.
‘atate’ Returns the initialized state

Given a new SM_VCAP task that is about to be created, vcap_init_task_state initializes the
model size, and state variables.

2.6 vcap.able_to.cap

"int32 vcap_able.to_cap(vehicle.id, ctdb)
int32 vehicle.id;
CTDB sctdb;

Chapter 2: Functions

‘vehicle_id’
Specifies the vehicle ID
‘ctdd’ Specifies the ctdb terrain database to use for terrain lookups

This routine determines if a vehicle is able to perform a CAP. If the air vehicle is not in the air,
then it is not able to perform a CAP yet. This function will also be called by the unit CAP task, in
order to see if it needs to command a vehicle to take off before commanding it to perform a CAP.

ADST-TR-W003268

LibVCollide

¥

.' Table of Contents
. 1 O VeI VIOW .o 1
2 Examples ... 3
' 8 Functions 5
. 3.1 vmatprintamat e 5
3 2 VIl OO Ve, ..ot e e S
3.3 VIMAL TeCAS Il . ..t e e e 6
' B4 VIAL Mt ...t e e e 6
3.5 vmatnegate. e e e, 7
36 wvmatdot prod........ ...t 8
' 3.7 vmatLross.prod ..ol 8
3.8 vmat project.t e 9
3.9 VAt PrOJECt PeIPttt e 10
. 3.10 wvmat.project_plane.............. ..., 11
' 3.11 VINAl VeCTNAB Sq ... ooieuenti ettt 11
K VR ER AR) 12
' 313 VIt At COPY ..ottt e, 12
314 wvmatvecequal......, 13
. 3.15 vmatmatequal..............coiiiii e 13
316 wvmatvecadd........... i 14
317 VAt VeC SUD ... e 15
' 3.18 wvmatscalvecamul......... ..., 16
3.9 wvmat.vecamat_mul.......... ... 16
320 vmatamat.vecmul......... ... 17
. 321 wvmatscalematmul......o 18
3.22 vmatmat.matmul................ e e eereieerreenieeeneaeias 18
' 323 vmatamatmat.add.......... ... 19
324 wvmatmatamatsub.......... ..., 19
3.25 wvmat.primary rotation..... i, 20
. 3.26 wvmatrotation, 21
3.27 wvmatfatrotation.... 21
3.28 vmatanglerotation... 22
. 3.29 vmattranspose..........iiiiieciiieciiiiiiiiieae, 23
3.30 vmatadjugate......, 23
’ 331 vmatanverse....... . . e, 24
3.32 vmatdeterminant 24

ii

LibVecMat Programmer’s Guide

3.33 vmat.angle.between_vectors...................................... ... 25

Chapter 1: Overview 1

1 Overview

LibVCollide provides a task which allows vehicles to recover from collisions and near-collisions.
The task has three states:

waiting In this state, the software waits for a collision to occur or for libmovemap to go into
a state where it cannot plan (presumably because it has fallen into the configuration
space boundaries of an obstacle).

delay After detecting the need to resolve a collision, the machine waits in this state for a
random period of time, prior to dealing with the collision. The reason for this is two-
fold: it simulates the delay a human would probably exhibit, and it prevents deadlock
collision reactions between multiple vehicles by making the actions of each unique with
respect to all others (analogous to the random delays between ethernet retransmissions
after collisions).

resolve._collision
In this state, the machine instructs the movement arbitrator to move backward or

forward, left or right, according to the nature of the collision, and the surrounding
terrain features.

The format of the parametric data is as follows:

(SM_VCollide (background [on | off J)
(min_delay <integer ms>)
(max_delay <integer ms>)
(backup_distance <real meters>)

background specifies whether the task should be automatically created as a background task of
the vehicle when the vehicle is created.

min_delay and max_delay specify the range of delay times which should be generated for the
random delaying state.

backup.distance specifies the distance which the vehicle should travel for each attempt to
disengage from the collision.

2 LibVCollide Programmer’s Guide

1.1 Examples

The following is an example set of VCollide parameters, which yields delays between 2 and 5
seconds, and backs up 4 meters from each collision:

(SM_VCollide
(background on)
(min_delay 2000)
(max_delay 5000)
(backup_distance 4.0))

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libvcollide, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 vcollide.init
void vecollide_init()

veollide_init initializes libvcollide. Call this before any other libvcollide function.

2.2 vcollide.class_init

void vcollide.class_init(parent.class)
CLASS_PTR parent_class;

‘parent.class’
Class of the parent (declared with class.declare_class)

vcollide_class_init creates a handle for attaching vcollide class information to vehicles. The
parent_class will likely be safobj_class.

2.3 vcollide.create

void vcollide_create(vehicle_id, params, db, unit_entry, ctdb)

int vehicle_id;
VCOLLIDE_PARAMETRIC_DATA sparams;
PO_DATABASE sdb;
PO_DB_ENTRY sunit_entry;
CTDB sctdb;
‘vehicle_id’
Specifies the vehicle ID

‘params’ Specifies initial parameter values .

LibVCollide Programmer’s Guide

‘db’ Specifies the PO database
‘unit_entry’

Specifies the PO entry of the unit which corresponds to this vehicle
‘etdd’ Specifies the terrain database

veollide_create creates the vcollide class information for a vehicle and attaches it vehicle’s
block of libclass user data. If the paramters so indicate, this routine will also create a task in the
unit’s background frame.

2.4 vcollide_destroy

void vcollide_destroy(vehicle_id, is_migration)
int32 vehicle_id;
int32 is_migration;

‘vehicle_id’
Specifies the vehicle ID
‘is_migration’
Specifies that the destroy is due to migration

vcollide_destroy frees the vcollide class information for a vehicle. This should be called before
freeing the class user data with class_free_user_data.

2.5 vcollide_collision

void vcollide.collision(vehicle_id, with_whom)

int32 vehicle_id;
int32 with_whom;
‘vehicle.id’
Specifies the vehicle ID
‘with_vhomw’

Specifies the other party in the collision

. weollide.collision informs libvcollide that a collision occurred, so that the task may react
to the collision. Collisions with the terrain should be indicated by a with_whom value of 0.

Table of Contents

1 OverviewW ... 1
1.1 Examples.......... oot e 2
2 FUuncCtionS ... 3
2.1 veollidedmitoooovviii i e 3
2.2 veollideclassinitco i, 3
23 wveollide£reate..........o.oovniiiiiii e 3
2.4 veollidedestroyoooviiiiiiiiiiiiiiii i e 4

2.5 VEOlde ColliBIom . ..o oottt e 4

v&w
|

LibVCollide Programmer’s Guide

Naval Research Laboratory, Contract Number: N00014-92-C-2150
Data Item Number: A001, ModSAF B Software Documentation

LibVecM at

LibVecMat Programmer’s Guide

Joshua E. Smith

$Revision: 1.25 $

Copyright © 1993 Loral Advanced Distributed Simulation, Inc.

Copyright © 1993 Loral Advanced Distributed Simulation, Inc.

e

ik

R

H
3

Chapter 1: Overview 1

1 Overview

Libvecmat is a vector and matrix operation library. Most functions are supported in many
formats, and are named using a regular convention:

2D or 3D Name starts with vmat2 or vmat3

Argumeats individually or in an array
Next characters are e_ or just .

32 bit or 64 bit floating point
Name ends with 32 or 64

Function or macro
Name is in lowercase or ALL CAPS

For example, the 32 bit, 3D, vector add function which takes its arguments individually is called
vmat3e._vec.add64. Most macro versions are not differentiated by bit length, because the compiler
will know based upon the definitions of the variables used.

The manual entry for each function specifies which versions are provided. The prototype given
in the manual entry uses generic terms as follows:

scalar s Either f10at32 s or floaté4 s
vector v One of the following:

float32 vz, vy
float32 vx, vy, vz
floaté4 vx, vy
float64 vx, vy, vz
float32 v[2]
float32 v[3)
floaté4 v(2]
float64 v[3]

matrixm One of the following:

float32 =[2][2]
float32 u[3](3]
float64 m[2][2]
float64 m(3][3]

Every function and macro has been written such that the same vector or matrix may be passed
more than once. For example, the expression,

2 LibVecMat Programmer’s Guide

float64 a[3], b[3];

vmat3_cross_prod64(a, b, a);

is perfectly legal. However, the routines which take a combination of vectors and matrices do not
check for a resultant vector being a row of a passed matrix. For example, the expression,

float64 a[3], b[31[3];

vmat3_vec_mat.mul64(a, b, b(1]);
will not work as intended.

Note that the obsolete library, libmatrix, was not consistent in its argument passing. Since lib-
vecmat is consistent, you must be very careful when converting software to use libvecmat. Specifi-
cally, the functions which operate on scalars, and those which generate rotation matrices are very
different.

Chapter 2: Examples

2 Examples

Add two vectors, and normalize the result:

floatt4 vec[3];

VMAT3E_VEC._ADD(1.0, 2.0, 3.0,
10.0, 20.0, 30.0,
vec);

vmat3_unit64(vec, vec);

