TEC-0055

Site Model Based Image Registration and Change Detection - First Annual Report on RADIUS

R. Chellappa Q. ZhengL.S. Davis C.L. LinX. Zhang C. RodriguezA. Rosenfeld

Computer Vision Laboratory Center for Automation Research University of Maryland College Park, MD 20742-3275

June 1994

Approved for public release; distribution is unlimited.

Prepared for: Advanced Research Projects Agency 3701 North Fairfax Drive Arlington, VA 22203-1714

Monitored by: U.S. Army Corps of Engineers Topographic Engineering Center 7701 Telegraph Road Alexandria, Virginia 22310-3864

US Army Corps of Engineers Topographic Engineering Center

DTIC QUALITY INSPECTED 5

JUL 2 9 199

AD-A282 796

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

ية. وين،

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

REPORT DO	OCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
albenna and maintaining the sets hereits. And	COMPAREMENTED AFTER FEATER THE COMPACTION OF I		wiewing instructions, searching existing data sources, rding this burden estimate or any other assect of this information Operations and Reports, 1215 Jefferson ect (0704-0188), Washington, OC 20503
1. AGENCY USE ONLY (Leave blan		3. REPORT TYPE AND First Annual	D DATES COVERED
I. TITLE AND SUBTITLE			5. FUNDING NUMBERS
First Annual Repor	egistration and Change Dete t on RADIUS Project	ction -	DACA76-92-C-0024
R. Chellappa Q. Zheng C. Rodriguez A. Rosenfe		X. Zhang	
7. PERFORMING ORGANIZATION N/	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Computer Vision Laborato Univeristy of Maryland College Park, MD 20742-	ry, Center for Automation I	Research	
9. SPONSORING/MONITORING AGE)	10. SPONSORING / MONITORING
Advanced Research Projec 3701 North Fairfax Drive,	Arlington, VA 22203-1714	4	AGENCY REPORT NUMBER
U.S. Army Topographic E 7701 Telegraph Road, Ale	•		TEC-0055
11. SUPPLEMENTARY NUTES	*		
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public release	e; distribution is unlimited.		
13. ABSTRACT (Maximum 200 word	s)		
aerial image understanding knowledge-based change de We are designing a system through quick look (QL) pr	in support of the RADIUS petection (CD) using site mod that allows the IA to specify ofiles, and to select appropri	program. The emphases els and the domain ex what are to be considiate image understand	pertise of image analysts (IAs). lered as significant changes ing algorithms for detecting
Two algorithms for image	can be attempted, the acquir registration have been develor nt constrained search mecha	oped. When no inform	nation about the camera is
approximate camera model	is available, as in RADIUS	applications, we use a	fast image-to-site model
• •	h first projects the site mode , and then use five control p	-	• •
accurate camera mode. To	enable efficient transfer of US Common Development	technology to the IAs,	we have developed our
14. SUBJECT TERMS	.		15. NUMBER OF PAGES
	g, change detection, image a tion	nalysis,	80 16. PRICE CODE
	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFK	CATION 20. LIMITATION OF ABSTRAC
OF REPORT UNCLASSIFIED	UNCLASSIFIED	OF ABSTRACT UNCLASSIFIE	D UNLIMITED
VSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 294-102

	Accesion For
Contents	NTIS CRA&I DTIC TAB Unannounced
1. Introduction	1
2. Research Areas	By Distribution / 2
2.1. Site Model Supported Monitoring	
2.2. Registration Algorithms	
2.3. Region Delineation	
2.4. Site Model Construction 2.5. Integration of RCDE	
2.5. Integration of RCDE	· · · · · · · · · · · · · · · · · · 6
3. Accomplishments to Date	6
3.1. Site Model Construction	-
3.2. Image-to-Site-Model Registration	
•	
	Board Data
-	lepresentations
-	
3.2.6. Algorithm	
-	
3.2.8. Camera Parameter Calibration	
3.3. Region Delineation	
3.4. Integration into RCDE	
3.5. Monitoring Construction Activities	
3.5.1. Low Level Feature Extraction: .	
3.5.2. Object Representation for Cylin	ders
3.5.3. Primitive Feature Detection	
3.5.4. Perceptual Grouping and Hypot	hesis Generation
3.5.5. Hypothesis Verification	
3.5.6. An Example: Chimney Detection	n
3.6. Detecting and Counting Vehicles	
3.6.1. Edge Detection:	
3.6.2. Vehicle Representation	
3.6.3. Search Scheme	
3.6.4. Hypothesis Generation	
3.6.5. Hypothesis Verification	
3.6.6. Experiments	
3.7. Ground Plane Image-to-Image Registrat	tion

.

2

•

4

		3.7.1.	Relationship between Two Images	58
		3.7.2.	Registration Using Known Camera Parameters	60
		3.7.3.	Registration with Unknown Camera Parameters	60
4.	Ong	oing a	nd Future Work	65
	4.1.	Hierar	chical Model-Based Segmentation	65
	4.2.	Autom	natic Image-to-Site-Model Registration	69
	4.3.	Autom	natic Optimum Image Selection	69
	4.4.	QL Int	terfaces	70
	4.5.	Integra	ation of Collateral Information	70
5.	Oth	er Rel	ated Work	70
	5.1.	Featur	e Extraction in SAR images	70
	5.2.	Buildi	ng Delineation	71
6.	Sun	nmary	and Conclusions	71

List of Figures

1	A block diagram of the image monitoring system
2	Building a site model using RCDE
3	Camera orientation in the world coordinates
4	Registering a new image to the site model
5	Region delineation using a site model
6	Image delineation using an associated map
7	Some functions added to RCDE
8	Ellipse
9	Line grouping
10	Perceptual grouping
11	New construction detection
12	Flowchart for vehicle detection
13	Geometry used to computed reference point
14	Vehicle detection in a parking area
15	Vehicle detection on communication roads
16	Vehicle detection in a training ground
17	Registration of two oblique images (camera parameters are known) 61
18	Block diagram of a general image-to-image registration algorithm
19	Registration of two aerial images (Example-1)
20	Registration of two aerial images (Example-2)

V

List of Tables

ri Filoso

1	Initial Camera Parameters
2	Camera Parameters after Camera Resection
3	Corrections for Camera Parameters after Camera Resection
4	Correspondences from given world coordinates
5	Indexed table for reference points

.

.

÷

PREFACE

This research is sponsored by the Advanced Research Projects Agency (ARPA) and monitored by the U.S. Army Topographic Engineering Center (TEC) under Contract DACA76-92-C-0024, titled "Site Model Based Image Registration and Change Detection - First Annual Report on RADIUS Project". The ARPA Program Manager is Dr. Oscar Firschein, and the TEC Contracting Officer's Representative is Ms. Laurette Williams.

1. Introduction

The process of locating and identifying significant changes or new activities, known as change detection (CD), is one of the most important imagery exploitation tasks [5]. Previous research on CD has emphasized the development of general-purpose methods that can be employed to screen a wide variety of imagery and determine, without access to any sitespecific model information, whether any significant changes or events have occurred between the times of acquisition of the imagery. These methods have been found to be unreliable for two reasons: First, CD techniques based on more or less sophisticated differencing of images (possibly after attempted corrections for viewpoint and illumination differences) are extremely sensitive to errors in registration and in the photometric models (e.g. reflectance, illumination) that are used. Second, too many inconsequential changes occur in any natural environment. Even if general-purpose methods could be developed for screening out all changes due to variations in viewpoint, sensor and illumination, there would still be many differences between the images whose significance could only be determined by an image analyst (IA) using comprehensive site knowledge and the relevant intelligence agenda. Thus the goal of relieving the IA of the burden of screening large subsets of acquired imagery is unlikely to be achieved using such general-purpose methods.

We plan, instead, to develop a model-based vision system for CD, incorporating image understanding (IU) techniques whose primitives are specific to a particular site type. The system can be employed by the IA to use the IU techniques to conduct spatially constrained analyses whose outcomes may be indicative of occurrences of changes that have intelligence significance. The system is site model driven and will be based on three classes of primitives: *object primitives*, which correspond to the specific objects that occur in a particular site model and to the generic object classes supported by the IU system; *spatial primitives*, for the construction of search locales and the specification of constraints on the search for object types within locales; and *temporal primitives*, which can constrain or parameterize the analysis by factors such as time of day, day of week, time of year, etc. The system will assist the IA by highlighting areas on an image where there are relevant activities, new or upgraded facilities.

As reported in [5], IAs have identified two ways in which IU can be useful in CD: the "quick-look" (QL) and "final-look" (FL) modes. In the QL mode, small areas where any change would be considered significant are declared a priori, and when the system is presented with a series of images, only those that satisfy the conditions in the QL profile are marked. In the FL mode, a set of less important areas to be examined for change is specified. These areas are less important, but the IA wants to examine them to ensure complete coverage of the site. As the IA gains experience, both the QL and FL profiles can be modified. The CD system that we plan to build will primarily be guided by QL profiles.

The site models considered in the current phase of RADIUS encode only the spatial relationships between fixed objects of interest in a site, such as buildings, roads, etc. An important issue in training new analysts or reviewing infrequently analyzed sites is the coding of the temporal relationships which describe changes in the site such as movements of vehicles under normal or abnormal circumstances—i.e., a site activity model. The CD system described above will be a valuable step toward the development of a site activity modeling capability.

Generally the first step in a CD task is the registration of an image to an existing site model. Depending on the CD task, using the existing site model and camera parameters, regions of interest in the given image can be delineated. Subsequently, objects such as buildings and vehicles that are characteristically present in the site can be extracted and analyzed for CD purposes. Such object extraction algorithms cannot be purely bottom-up. For example, in extracting buildings [13], heuristics based on the expected shapes of roofs (site-specific information) are very useful for completing any partial roof hypotheses that result from imperfect bottom-up processing. Likewise, shadow analysis is very useful for obtaining height information [6, 7], or allowing the IU system to explain why some building features that are in the field of view cannot be identified in the image. Site models can also be very useful for providing geometric and photometric constraints that reduce matching ambiguities.

In addition to image-to-site-model registration, we are also interested in image-to-image registration where two images acquired from possibly severe off-nadir viewing conditions need to be registered prior to performing change detection. Image-to-image registration is useful for building site models, for developing automatic image-to-site model registration algorithms, and for performing the subtask of transforming a given image to a "favored orientation" [5]. The images to be analyzed as part of the RADIUS-related research program are high-resolution images of complicated sites. In many of the currently used image registration algorithms, tie points need to be manually selected. This can be a laborious task. Automatic registration of the two images is desirable. Given the variability of viewing directions, illumination conditions and resolution, the features used for matching may be poorly localized or occluded. Automatic image-to-image registration is accomplished using appropriate cues from site models and camera models.

It is evident that the IA must perform a crucial role in directing, manipulating and correcting the results of IU algorithms. An important part of our approach is the inclusion of early feedback, by users familiar with the final application, as to the usability of the algorithms developed under this program. These evaluations will provide valuable information with respect to the likely models and levels of interaction to be expected from IAs, the clarity and intuitive understandability of the IU algorithms, and whether the typical IA is able to tailor the responses of the algorithm to his/her needs.

2. Research Areas

2.1. Site Model Supported Monitoring

Our approach to image monitoring is based on the idea of QL profiles. QL profiles are the image exploitation recipes constructed by an IA for a given site; they characterize changes that are significant to the site. The tasks in a QL profile are related to each other both temporally and spatially. For example, if the interest of the IA in a given site concerns military activity, the first task to be performed depends on previous knowledge about the site (if it exists). If the reports from previous analyses indicate that armament was present in a training ground, the QL profile will call for vehicle detection in the training ground first.

If there are still many vehicles in the training ground, the QL profile will report "the exercise continues" and call for a vehicle pattern analysis task. On the other hand, if the first task reports that there are almost no vehicles in the training ground, then the QL profile will trigger vehicle detection on the roads and in the garage area. If many vehicles are found in the garage area, then the report "the training is finished and the armament is back in the camp" is sent. If the vehicles are not in the garage area, the QL profile will trigger pattern analysis on the road, send a report about the heading of the formation, etc. In another situation, if no previous information about troop formation is available or the reports from previous image analyses indicate that the armament was in the garage area, the first task to be called from the QL profile will be vehicle detection in the garage area; based on its results, further analysis of the road and the training ground may be called for.

In a typical site model supported monitoring task, given a new image, we first register the new image to the site model or the old images in the existing site folder. We then delineate the regions of interest according to the task. Next, 2-D templates of the objects to be monitored are formed based on their 3-D structure and information from the site model. Primitive features such as circles, ellipses, rectangles, and parallel lines are extracted, grouped and compared to the templates of the objects. Candidates with sufficient high scores of consistency with the object templates are further verified and reported to the IA. Figure 1 shows a general flowchart of our image monitoring system. For different monitoring tasks, the 2-D object models, primitive features to be extracted, and grouping mechanism are defined differently. For example, for vehicle detection from aerial images, a vehicle can be modeled as a rectangle of a certain size oriented along the road line. For detection of activities such as construction of chimneys, the needed model (for a cylindrical object) is a little more complicated. It should have an ellipse on top of two parallel lines; the minor axis of the ellipse should be parallel to the two supporting lines, which in turn are parallel to the camera viewing direction.

We have developed a preliminary design of an IU system for monitoring aerial images. The system is guided by an underlying site model, and by available knowledge of acquisition and illumination parameters, and performs task-specific image analyses for answering possible queries from an IA. We plan to extend the capabilities of our system by integrating collateral information about the various objects in the site, a user interface, and a more comprehensive set of QL profiles. Extensions to images acquired by synthetic aperture radar are also planned.

2.2. Registration Algorithms

We are investigating two types of registration processes, image-to-site-model registration and image-to-image registration. Depending on the particular CD task, e.g., if building or vehicle related activity is being monitored, we can use the site model and viewing direction of the new image to identify regions in the image that need further analysis. We can subsequently invoke the necessary IU algorithms related to detection of construction activities, vehicle location and counting (and road extraction, if construction of roads is monitored). For tasks such as these, the newly acquired image needs to be registered to the existing site model prior to any CD task.

Figure 1: A block diagram of the image monitoring system.

We have developed an image-to-site-model registration procedure which first transfers the given approximate camera model to RCDE format, then requires the IA to manually adjust the locations of some points whose 3-D coordinates are known, and finally uses the RCDE camera resection function to get an accurate camera model for the newly acquired image. Our final goal in image-to-site-model registration is to make the process totally automatic. Both the selection of control points and the search for their matches in the newly acquired image will be performed automatically.

In addition to image-to-site-model registration, which will be directly useful for CD, we are also developing a general-purpose image-to-image registration algorithm. Such an algorithm will be useful for building site models, orienting an image in a "favored position", and delineating regions of interest. The traditional stereo paradigm [14] for inferring 3-D structure is not applicable to images acquired from severe off-nadir viewing directions. Our goal is to develop a completely automatic registration algorithm using site models and any auxiliary information such as camera parameters. Site models will be useful for registering two severely off-nadir images, as we can predict the contrasts of features in both images, occlusions of features and shadow regions.

2.3. Region Delineation

Region delineation is an important step for outlining the regions to be exploited by IU algorithms and providing collateral information for IU algorithms. Two kinds of region delineation are useful for CD tasks: macro region delineation and micro region delineation. Macro region delineation labels the regions of interest to the IA, hence saving computation by not monitoring irrelevant areas. Two methods for macro region delineation have been developed in our system. When the region object is available from the site model, we directly project the region boundaries onto the image to be monitored and label the region(s) in the image domain. When the region of interest is given on a map or an old image, we use the image-to-image registration to transform the regions of interest into the new image. Both methods use camera model information available from the site model. Micro region delineation further labels regions of occlusion and shadow according to the camera model and local objects. Consider, for example, the problem of identifying the region in an aerial image corresponding to a given parking lot. While estimates of sensor and platform parameters are known, it is not sufficient to simply project the parking lot boundaries onto the image plane using these parameters, since these parameters are subject to errors. Furthermore, determining which parts of the parking lot are visible in the image (since parts of the parking lot can be occluded by other objects in the site) and the illumination conditions in the visible part of the parking lot (parts of which may be in shadow depending on sun angle and site model geometry) are critical to subsequently making a correct decision as to whether there is a significant difference between the numbers of observed and expected vehicles in the parking lot. In fact, the feasibility of performing a CD task depends on the IU system correctly modeling the relationship between a given image and the site model (for example, if we were interested in whether a large number of vehicles are parked near a certain building, it could be important to determine if that part of the parking lot is, in fact, visible in the image). We have working algorithms for macro region delineation and will develop a method for micro region delineation in the second year of the project.

2.4. Site Model Construction

An integral component of site model based registration and change detection is the availability of site models. We have made considerable progress on site model construction using RCDE. We are working on updating a site model on an ongoing basis. The solution to site model construction assumes that several overlapping coverage images are available. We have constructed a site model for model-board-2 images using RCDE. The recently developed site model-to-image registration algorithm (detailed in Section 3.2.) has been used to register model board 2 images to the site model. Using the model supported construction monitoring algorithms that we have developed, as well as others under development, we will be able to form hypotheses about objects in the site. When two or more images confirm the same hypotheses about the underlying object, the initial assertions about the object will be replaced by image-derived assertions. This will be done in an incremental fashion. During the early stages, the errors due to incomplete specification of site models may be handled by allowing more tolerance in the predicted positions of features and their computed attributes. As more images become available, the representation error will decrease.

2.5. Integration of RCDE

Since the RADIUS research team includes several institutions to enable efficient sharing of research results within the community and efficient transfer of technology to IAs, it is required that all developed software be integrated into RCDE. For the RADIUS project, a program is considered as being integrated into RCDE if it is either written in Lucid Common Lisp or is a foreign function executable from RCDE (preferably through an online menu). In the first year of the RADIUS project, we have been one of the RCDE test sites and have gained considerable experience in using RCDE. We have used RCDE to build a site model which includes all the images for model board 2. We have developed a method for delineating regions of interest using RCDE basic functions. We have also transferred some of our algorithms into RCDE and made them selectable from RCDE menus. In addition, the parameters can be specified through the RCDE environment and the results are represented as RCDE objects which can be easily used by RCDE functions. Many of these programs have been ported to the Martin Marietta Group, King of Prussia, PA and tested on real images.

3. Accomplishments to Date

During the first year under the contract, we have made considerable progress on several fronts:

- 1. We have installed RCDE on all of our SPARC-10 systems and built a site model for the model-board-2 images.
- 2. We have added new functions into RCDE.
- 3. We have developed a novel image-to-image registration algorithm that can automatically register two off-nadir images, when no information about the camera is available.

- 4. We have developed a simple image-to-site-model registration mechanism that uses available (approximate) information about camera parameters.
- 5. We have developed image delineation algorithms that outline regions of interest useful for change detection tasks.
- 6. We have developed site-model-supported change detection algorithms and illustrated them for monitoring new construction and detecting and counting vehicles.
- 7. We have integrated algorithms for image-to-site-model registration, image delineation, and monitoring into RCDE. Many of these algorithms have been ported to the Martin Marietta Group, King of Prussia, PA.

More details about the algorithms and experimental results obtained on model board images, as well as real images, are given in the remainder of this report.

3.1. Site Model Construction

A site model is a 3-D mathematical representation of the site [1]. As minimum requirements, it includes: (a) 2-D and 3-D geometric descriptions of site features such as areas, buildings and structures, roads, etc. (b) A set of images associated with the site and their imaging conditions such as camera position, camera orientation, focal length, illuminant direction, etc. (c) Object attributes such as name, type, and status (inactive, under construction, etc.) associated with each feature.

We use the following procedure to build a site model:

- 1. Display two or more input images.
- 2. Create a default world coordinate system.
 - 3. Create default camera models for the input images.
 - 4. Manually locate (at least) four control points for each input image; the 3-D coordinates of these control points in the world coordinate system are assumed known.
 - 5. Input the camera focal length and the location of the principal point (in the image plane) for each input image.
 - 6. Do camera resection [11] to get the correct camera model for each input image.
 - 7. Add objects to the site model interactively, using object templates such as box, cylinder, house, and their compositions, which are provided in RCDE.

Figure 2 shows an example of building a new site model for model board 2. (a) and (b) show two input images (M1 and M2) with control points marked. The 3-D coordinates and image plane indices of these control points are used to get an accurate camera model for each input image. After the new images are registered to the world coordinates, Figure 2(c) and (d) show an example of adding a building object to the site model. When adding a

(b) Input image-2 (M2)

Figure 2: Building a site model using RCDE.

(d) A new object shown in M2

Figure 2: (cont.) Building a site model using RCDE.

(f) Rendering of the site model on M2

Figure 2: (cont.) Building a site model using RCDE.

new object, the 3-D frame of the object is displayed in all the images in the site model, and the images are used as references in adjusting the size and orientation of the 3-D object. Figure 2(e) shows a partial site model superimposed on M1, and (f) shows a rendering of the site model according to the camera model for M2.

3.2. Image-to-Site-Model Registration

In order to use information from a site model, an image has to be registered first to the site model. To register an image to the site model, we first need to understand and unify the camera models. In many image exploitation tasks, the camera parameters are available in terms of camera position and orientation in a world coordinate system, while the camera model used in photogrammetry is represented by the conformal transformation [10] in which camera parameters are represented in a camera-centered coordinate system. Here we present an image-to-site-model registration algorithm. Assuming that approximate camera parameters are available (as in the RADIUS project), a method for computation of initial camera parameters from given imaging conditions is introduced. Next, the existing site model is projected onto the new image using the initial camera model. Finally, control points with known 3-D coordinates are manually adjusted to the correct locations in the new image domain and the RCDE resection operation [11] is employed to refine the camera parameters. Using the image-to-site-model registration algorithm, we have successfully built a site model for all forty images in the model board 2 data set, verified the given control points for model board 2, and refined the camera parameters for each model board image.

In the remainder of this section, first we briefly summarize the conformal transformation used in photogrammetry. Next, we study the camera representations given in our data base. The relationship between the two representations is pointed out, followed by an algorithm for image-to-site-model registration. Experimental results on initial camera parameter estimation, camera parameter refinement, and control point verification are presented at the end of the section.

3.2.1. Conformal Transformations

In conformal transformations, camera-centered coordinates are represented by first shifting the world coordinates by (x_o, y_o, z_o) , then rotating the resulting coordinates around the *x*-axis by ω , followed by a rotation by ϕ around the resulting *y*-axis, and finally, a rotation by κ around the resulting *z*-axis. A positive rotation is defined as a clockwise rotation when viewed from the origin in the direction of the positive axis. Assuming the coordinates of a point in the world coordinate system are (x_w, y_w, z_w) , and the coordinates of the point in the camera centered coordinate system are (x_c, y_c, z_c) , the transform from (x_w, y_w, z_w) to (x_c, y_c, z_c) is given by

$$\begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix} = \mathbf{R}_{\mathbf{z}}(\kappa) \mathbf{R}_{\mathbf{y}}(\phi) \mathbf{R}_{\mathbf{x}}(\omega) \begin{pmatrix} x_w - x_o \\ y_w - y_o \\ z_w - z_o \end{pmatrix}$$

$$= \begin{bmatrix} \cos \kappa & \sin \kappa & 0 \\ -\sin \kappa & \cos \kappa & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & \sin \omega \\ 0 & -\sin \omega & \cos \omega \end{bmatrix} \begin{pmatrix} x_w - x_o \\ y_w - y_o \\ z_w - z_o \end{pmatrix}$$
$$= \mathbf{R} \begin{pmatrix} x_w - x_o \\ y_w - y_o \\ z_w - z_o \end{pmatrix} \tag{1}$$

where

$$\mathbf{R} = \begin{bmatrix} \cos \kappa & \sin \kappa & 0 \\ -\sin \kappa & \cos \kappa & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & \sin \omega \\ 0 & -\sin \omega & \cos \omega \end{bmatrix}$$
$$= \begin{bmatrix} \cos \kappa & \sin \kappa & 0 \\ -\sin \kappa & \cos \kappa & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \sin \omega & -\sin \phi \cos \omega \\ 0 & \cos \omega & \sin \omega \\ \sin \phi & -\cos \phi \sin \omega & \cos \phi \cos \omega \end{bmatrix}$$
$$= \begin{bmatrix} \cos \phi \cos \kappa & \sin \omega \sin \phi \cos \kappa + \cos \omega \sin \kappa & -\cos \omega \sin \phi \cos \kappa + \sin \omega \sin \kappa \\ -\cos \phi \sin \kappa & -\sin \omega \sin \phi \sin \kappa + \cos \omega \cos \kappa & \cos \omega \sin \phi \sin \kappa + \sin \omega \cos \kappa \\ \sin \phi & -\sin \omega \cos \phi & \cos \omega \cos \phi \end{bmatrix}$$
(2)

Note that

$$\mathbf{R}_{x}^{-1}(\cdot) = \mathbf{R}_{x}^{t}(\cdot)$$
$$\mathbf{R}_{y}^{-1}(\cdot) = \mathbf{R}_{y}^{t}(\cdot)$$
$$\mathbf{R}_{z}^{-1}(\cdot) = \mathbf{R}_{z}^{t}(\cdot)$$

We have

$$\mathbf{R}^{-1} = \mathbf{R}_{x}^{-1} \mathbf{R}_{y}^{-1} \mathbf{R}_{z}^{-1}$$
$$= \mathbf{R}_{x}^{t} \mathbf{R}_{y}^{t} \mathbf{R}_{z}^{t}$$
$$= \mathbf{R}^{t}$$

so that

$$\begin{pmatrix} x_w \\ y_w \\ z_w \end{pmatrix} = \mathbf{R}^t \begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix} + \begin{pmatrix} x_o \\ y_o \\ z_o \end{pmatrix}$$
(3)

3.2.2. Camera Specification in Model-Board Data

Although it is simple to represent a camera model in conformal form, the three rotation angles ω , ϕ and κ are not intuitive. Commonly available camera parameters are camera position and camera viewing direction with respect to the world coordinate system. Given the camera viewing direction, i.e. off-nadir angle α and azimuth angle β measured east of north (as shown in Figure 3), alignment of the world coordinates to the camera-centered coordinates can be achieved through the following four operations:

1. Translate the world coordinates by (x_o, y_o, z_o) ;

Figure 3: Camera orientation in the world coordinates.

- 2. Rotate around the resulting z-axis by $\hat{\beta} = N_w \frac{\pi}{2} \beta$ to align the y-axis with the camera azimuth direction (so that the camera is looking at the origin from the resulting positive y-axis), where N_w is the angle from the positive x-axis of the world coordinates to the north direction;
- 3. Rotate around the resulting x-axis by $-\alpha$, where α is the given camera elevation angle;
- 4. Rotate around the resulting z-axis by γ to let the north direction be N_i measured in the image domain; $\gamma = N_c N_i$ where N_c is the (predicted) angle for the north direction after Step 3.

The rotation matrices for steps 2-4 are

$$\mathbf{R}_{2} = \mathbf{R}_{z}(\hat{\beta}) = \begin{bmatrix} \cos \hat{\beta} & \sin \hat{\beta} & 0\\ -\sin \hat{\beta} & \cos \hat{\beta} & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(4)

$$\mathbf{R}_{3} = \mathbf{R}_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$
(5)

$$\mathbf{R}_{4} = \mathbf{R}_{z}(\gamma) = \begin{bmatrix} \cos \gamma & \sin \gamma & 0\\ -\sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(6)

where

$$\hat{\beta} = N_w - \frac{\pi}{2} - \beta$$

$$\gamma = N_c - N_i$$

Thus, the total rotation matrix is

$$\mathbf{R} = \mathbf{R}_{4}\mathbf{R}_{3}\mathbf{R}_{2}$$

$$= \begin{bmatrix} \cos\gamma & \sin\gamma & 0\\ -\sin\gamma & \cos\gamma & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\hat{\beta} & \sin\hat{\beta} & 0\\ -\cos\alpha\sin\hat{\beta} & \cos\alpha\cos\hat{\beta} & -\sin\alpha\\ -\sin\alpha\sin\hat{\beta} & \sin\alpha\cos\hat{\beta} & \cos\alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos\gamma\cos\hat{\beta} - \sin\gamma\cos\alpha\sin\hat{\beta} & \cos\gamma\sin\hat{\beta} + \sin\gamma\cos\alpha\cos\alpha\hat{\beta} & -\sin\gamma\sin\alpha\\ -\sin\gamma\cos\hat{\beta} - \cos\gamma\cos\alpha\sin\hat{\beta} & -\sin\gamma\sin\hat{\beta} + \cos\gamma\cos\alpha\cos\hat{\beta} & -\cos\gamma\sin\alpha\\ -\sin\alpha\sin\hat{\beta} & \sin\alpha\cos\hat{\beta} & \cos\alpha \end{bmatrix}$$
(7)

When the distance from the camera to the stare point, r, is given, the initial camera translation is computed as

$$x_o = x_p + x_{or} \tag{8}$$

$$y_o = y_p + y_{or} \tag{9}$$

$$z_o = z_p + z_{or} \tag{10}$$

where (x_p, y_p, z_p) are the 3-D coordinates of the stare point, and

$$\mathbf{x}_{or} = \mathbf{r} \sin \alpha \cos(N_w - \beta) \tag{11}$$

$$y_{or} = \mathbf{r} \sin \alpha \sin(N_w - \beta) \tag{12}$$

$$z_{or} = \mathbf{r} \cos \alpha \tag{13}$$

3.2.3. Relationship Between the Two Representations

As the values of x_o , y_o , z_o and **R** are independent of the interpretation of how the camera is aligned, by comparing the corresponding terms in (2) and (7) we can convert the camera parameters from one representation to the other. Note that the camera is always above the horizon, so that

$$-\frac{\pi}{2} \leq \omega \leq \frac{\pi}{2}$$
$$-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}$$
$$0 \leq \alpha \leq \frac{\pi}{2}$$

Hence

$$cos \omega \ge 0$$

$$cos \phi \ge 0$$

$$sin \alpha \ge 0$$

The relationship between the camera parameters in the two representations are

$$\omega = \arctan\left(\frac{-\sin\alpha\cos\beta}{\cos\alpha}\right) \tag{14}$$

$$\phi = \arcsin(-\sin\alpha\sin\hat{\beta}) \tag{15}$$

$$\kappa = \arctan\left(\frac{\sin\gamma\cos\hat{\beta} + \cos\gamma\cos\alpha\sin\hat{\beta}}{\cos\gamma\cos\beta - \sin\gamma\cos\alpha\sin\hat{\beta}}\right)$$
(16)

$$\alpha = \arccos(\cos\omega\cos\phi) \tag{17}$$

$$\hat{\beta} = \arctan\left(\frac{-\sin\phi}{-\sin\omega\cos\phi}\right)$$
 (18)

$$\gamma = \arctan\left(\frac{-\sin\omega\sin\kappa + \cos\omega\sin\phi\cos\kappa}{-\sin\omega\cos\kappa - \cos\omega\sin\phi\sin\kappa}\right)$$
(19)

3.2.4. Camera Roll Estimation

Given the viewing direction of the camera, the camera can still rotate around its optical axis, leaving one degree of freedom undetermined. If the north direction is known in world coordinates, we can determine the orientation of the north vector in camera-centered coordinates which are free of camera roll; the angle between the predicted north direction, and the north direction in the image plane is equal to the camera roll angle. Since the camera azimuth angle β is measured east of north, after aligning the y-axis with the camera viewing direction, the angle from the x-axis to the north direction is $\frac{\pi}{2} + \beta$ where β is the azimuth angle of the (given) camera viewing direction. We then rotate the axes around the resulting x-axis by $-\alpha$ to align the z-axis with the camera viewing direction, the angle from the resulting x-axis to the north direction projected onto the x-y plane is

$$N_c = \arctan \frac{\cos \alpha \sin(\frac{\pi}{2} + \beta)}{\cos(\frac{\pi}{2} + \beta)} = \arctan \frac{\cos \alpha \cos \beta}{-\sin \beta}$$
(20)

In our work, we estimate the north direction in an image plane by hand picking two points along "access road 1", (X_1, Y_1) and (X_2, Y_2) , and computing

$$N_{i} = \arctan \frac{Y_{2} - Y_{1}}{X_{2} - X_{1}}$$
(21)

The camera roll angle is then computed as

$$\gamma = N_c - N_i = \arctan \frac{\cos \alpha \, \cos \beta}{-\sin \beta} - N_i \tag{22}$$

3.2.5. Stare Point Estimation

With the camera rotation angles determined, we still need the coordinates of camera center (in the world coordinate system) to register the camera coordinates to the world coordinates. The camera position is usually determined by giving the stare point and the distance between the stare point and the camera center. The stare point information is important for automatical camera model refinement. For model board 2 data the stare points are not available. We estimate the stare point by the difference between the coordinates of a known 3-D point in the approximated camera model and its correct coordinates. First assuming the stare points (x_p, y_p, z_p) is available, we have the transform from the world coordinates (x_w, y_w, z_w) to the camera centered coordinates (x_c, y_c, z_c) as

$$\begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix} = \mathbf{R} \begin{pmatrix} x_w - x_{or} - x_p \\ y_w - y_{or} - y_p \\ z_w - z_{or} - z_p \end{pmatrix}$$
(23)

where (x_{or}, y_{or}, z_{or}) are determined by (11-13). Next consider the case that the stare point is either not available or not correct, assuming it be $(\hat{x}_p, \hat{y}_p, \hat{z}_p)$. The camera transformation becomes

$$\begin{pmatrix} \hat{x}_c \\ \hat{y}_c \\ \hat{z}_c \end{pmatrix} = \mathbf{R} \begin{pmatrix} x_w - x_{or} - \hat{x}_p \\ y_w - y_{or} - \hat{y}_p \\ z_w - z_{or} - \hat{z}_p \end{pmatrix}$$
(24)

Now, pick a point $(\check{x}_w, \check{y}_w, \check{z}_w)$ whose coordinates under transform (24) equal to (x_c, y_c, z_c) under (23) as

$$\begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix} = \mathbf{R} \begin{pmatrix} \check{x}_w - x_{or} - \hat{x}_p \\ \check{y}_w - y_{or} - \hat{y}_p \\ \check{z}_w - z_{or} - \hat{z}_p \end{pmatrix}$$
(25)

By taking the difference between (23) and (25) we get

$$\begin{pmatrix} x_w - x_p - \check{x}_w + \hat{x}_p \\ y_w - y_p - \check{y}_w + \hat{y}_p \\ z_w - z_p - \check{z}_w + \hat{z}_p \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
(26)

or

$$\begin{pmatrix} x_{p} - \hat{x}_{p} \\ y_{p} - \hat{y}_{p} \\ z_{p} - \hat{z}_{p} \end{pmatrix} = \begin{pmatrix} x_{w} - \check{x}_{w} \\ y_{w} - \check{y}_{w} \\ z_{w} - \check{z}_{w} \end{pmatrix}$$
(27)

If we select $(x_w, y_w, z_w) = (0, 0, 0)$ then the adjustment for the initial stare point estimation is $(\check{x}_w, \check{y}_w, \check{z}_w)$. The procedure for adjusting the stare point estimation is as follows

- 1. Project the site model to the new image domain using the given approximated camera model.
- 2. Determine the coordinates of the origin under the approximated camera model $(\check{x}_w, \check{y}_w, \check{z}_w)$.
- 3. The adjustment for the stare point estimation is $(-\check{x}_w, -\check{y}_w, -\check{z}_w)$.

3.2.6. Algorithm

We use the following procedure to register a new image to an existing site model:

- 1. Manually select two points along the north direction and compute N_i using (21).
- 2. Compute the camera roll angle γ using (22).
- 3. Compute the conformal camera parameters using (8-16). Set (x_p, y_p, z_p) to zero if they are unavailable.

- 4. Project the site model to the new image using the parameters obtained from step 3.
- 5. Adjust the estimation of the stare point if the offset in the initial projection is too large.
- 6. Manually adjust (at least) four control points to the correct locations in the image domain and do camera resection to get more accurate conformal camera parameters.
- 7. Compute the camera parameters in the world coordinate system using (18-19) and

$$\beta = N_w - \frac{\pi}{2} - \hat{\beta} \tag{28}$$

$$\mathbf{r} = \frac{z_o}{\cos \alpha} \tag{29}$$

$$x_p = x_o - \mathbf{r} \sin \alpha \cos(N_w - \beta) \qquad (30)$$

$$y_p = y_o - \mathbf{r} \sin \alpha \sin(N_w - \beta) \tag{31}$$

where we have assumed $z_p = 0$.

3.2.7. Experiments

Camera Roll Estimation

For each of the forty model-board-2 images, we manually select two points along the north direction and compute N_i and γ using (21) and (22). The results are listed in Table 1.

Camera Parameter Calibration

Given the camera viewing direction (α, β) , the camera range **r**, and the camera roll angle estimated, we use (11-13) and (14-16) to compute the camera parameters for the conformal representation. The results are listed in Table 1.

We then apply camera resection, based on these initial camera parameters (assume $x_p = y_p = z_p = 0$) and correspondences of five control points, to obtain refined camera parameters $\tilde{x}_o, \tilde{y}_o, \tilde{z}_o, \tilde{\omega}, \tilde{\phi}$ and $\tilde{\kappa}$. We further compute the corresponding refined camera parameters in world coordinates, $\alpha, \beta, \gamma, \mathbf{r}, x_p$ and y_p , using (18-19) and (28-31). Table 2 lists the refined camera parameters for all the model-board-2 images. Table 3 lists the differences between the given and refined camera parameters.

Figure 4 shows an example of registering a new image, M38, shown in (a), to the existing site model. The estimated camera roll angle for M38 is $\gamma = 90.1^{\circ}$. The given camera elevation and azimuth angles are $\alpha = 40^{\circ}$ and $\beta = 90^{\circ}$. The approximate range is $\mathbf{r} = 10850$ feet. From these we compute the initial camera parameters as $x_o = 6974$ feet, $y_o = 0$ feet, $z_o = 8311$ feet, $\omega = 0.0^{\circ}$, $\phi = 40.0^{\circ}$, and $\kappa = 0.1^{\circ}$. In computing x_o , y_o and z_o , we set the unknown parameters x_p , y_p and z_p to zero. Figure 4(b) shows the projection of the existing site model into the new image using the above approximate camera parameters. In many applications an approximate stare point is available. Figure 4(c) shows the projection of the existing site model into the new image domain when an approximate stare point is available.

image	N_i (°)	α (°)	β (°)	r (ft)	γ (°)	x_{or} (ft)	$y_{o\tau}$ (ft)	z_{or} (ft)	ω (°)	φ (°)	κ (°)
M1	226.2	30	340	10850	-158.9	-1855	5097	9396	-28.5	-9.8	-141.5
M2	28.7	45	54	10850	124.1	6206	4509	7672	-30.4	34.9	79.9
M3	1.0	0	34	10850	123.0	0	0	10850	0.0	0.0	89.0
M4	357.9	30	75	10850	-191.0	5240	1404	9396	-8.5	28.9	96.2
M5	357.3	30	255	10850	-10.4	-5240	-1404	9396	8.5	-28.9	96.8
M6	88.6	15	86	10850	87.5	2801	195	10480	-1.1	15.0	1.6
M7	9 <u>?</u> .2	15	333	10850	-30.0	-1274	2502	10480	-13.4	-6.7	-3.8
M8	285.0	45	352	10850	-206.2	-1067	7597	7672	-44.7	-5.6	159.4
M9	269.5	35	180	10850	0.5	0	-6223	8887	35.0	0.0	-179.5
M10	185.4	30	223	10850	-228.3	-3699	-3967	9396	22.9	-19.9	-87.2
M11	206.5	0	100	10850	-16.5	0	0	10850	0.0	0.0	-116.5
M12	356.8	45	317	10850	-319.6	-5232	5611	7672	-36.2	-28.8	73.8
M13	0.1	30	51	10850	144.9	4216	3414	9396	-20.0	22.9	98.0
M14	352.5	40	356	10850	-267.7	-486	6957	8311	-39.9	-2.6	95.4
M15	95.3	30	210	10850	-151.6	-2712	-4698	9396	26.6	-14.5	1.8
M16	287.2	45	29	10850	-159.1	3719	6710	7672	-41.2	20.0	179.5
M17	183.3	25	100	10850	5.8	4515	-796	9833	4.6	24.6	-95.2
M18	354.3	30	10	10850	-252.8	942	5342	9396	-29.6	5.0	98.5
M19	222.5	30	40	10850	-88.4	3487	4155	9396	-23.9	18.7	-124.4
M20	227.8	25	186	10850	-311.2	-479	-4560	9833	24.9	-2.5	-136.7
M21	358.7	30	75	10850	-191.7	5240	1404	9396	-8.5	28.9	95.4
M22	0.3	30	255	10850	-13.4	-5240	-1404	9396	8.5	-28.9	93.8
M23	261.4	45	317	10850	-224.2	-5232	5611	7672	-36.2	-28.8	169.2
M24	176.4	25	80	10850	-5.4	4515	796	9833	-4.6	24.6	-84.4
M25	174.5	30	146	10850	-302.4	3033	- 4497	9396	25.6	16.2	-92.1
M26	84.1	45	9	10850	18.5	1200	7577	7672	-44.6	6.4	12.1
M27	349.2	45	80	10850	-176.3	7555	1332	7672	-9.9	44.1	107.7
M28	113.8	15	15	10850	-8.3	726	2712	10480	-14.5	3.8	-22.8
M29	270.3	35	278	10850	-263.7	-6162	866	8887	-5.6	-34.6	176.6
M30	273.5	25	186	10850	3.1	-479	-4560	9833	24.9	-2.5	177.7
M31	351.1	30	350	10850	-272.6	-942	5342	9396	-29.6	-5.0	96.1
M32	79.5	45	115	10850	-241.2	6953	-3242	7672	22.9	39.9	-4.6
M33	186.0	30	40	10850	-51.9	3487	4155	9396	-23.9	18.7	-87.9
M34	359.1	15	55	10850	-213.2	2300	1610	10480	-8.7	12.2	92.7
M35	88.5	45	300	10850	-66.3	-6644	3836	7672	-26.6	-37.8	-15.6
M36	278.1	30	70	10850	-115.6	5097	1855	9396	-11.2	28.0	177.2
M37	12.4	30	115	10850	-170.4	4916	-2292	9396	13.7	26.9	71.3
M38	89.9	40	90	10850	-269.9	6974	0	8311	0.0	40.0	0.1
M39	269.4	30	165	10850	-16.6	1404	-5240	9396	29.1	7.4	176.5
M40	7.6	40	220	10850	-50.0	-4482	-5342	8311	32.7	-24.4	97.3

Table 1: Initial Camera Parameters

18

•

image	α (°)	β (°)	r (ft)	γ (°)	x_o (ft)	y_o (ft)	z_o (ft)	ω (°)	φ (°)	κ (°)
M1	30.7	-20.8	10321	-162.4	-681	5751	8871	-29.1	-10.4	-144.3
M2	45.8	51.5	10586	123.7	6715	5350	7379	-32.6	34.1	82.5
M3	1.7	-103.0	10361	-15.5	788	177	10356	0.4	-1.7	87.4
M4	31.3	85.6	10208	176.8	6707	608	8719	-2.7	31.2	91.9
M5	29.9	-108.1	10536	-15.1	-3574	-1395	9133	10.1	-28.3	95.5
M6	20.1	94.6	10439	95.6	4219	194	9802	1.7	20.1	0.7
M7	15.9	3.6	10423	2.9	762	3448	10022	-15.9	1.0	-0.6
M8	44.8	-6.7	10384	150.1	74	7977	7368	-44.6	-4.7	154.8
M9	35.1	-177.7	10156	2.3	793	-5614	8306	35.1	-1.3	-179.5
M10	29.2	-144.1	10773	123.8	-2179	-3815	9404	24.3	-16.6	-88.6
M11	6.5	125.7	10764	7.7	1969	143	10694	3.8	5.3	-118.2
M12	45.7	-47.2	10636	32.8	-4762	5833	7431	-34.8	-31.7	69.9
M13	29.2	78.8	10791	168.0	6097	1496	9417	-6.2	28.6	90.8
M14	46.4	-3.2	10486	88.2	744	8505	7233	-46.3	-2.3	90.4
M15	30.7	-155.8	10541	-158.2	-1277	-4577	9067	28.4	-12.1	0.6
M16	47.0	36.3	10706	-154.1	5772	7219	7297	-40.9	25.7	179.2
M17	24.1	121.1	11061	24.2	4782	-1702	10095	13.0	20.5	-99.3
M18	29.0	-27.3	10873	61.6	-1396	5551	9511	-26.2	-12.8	85.9
M19	33.0	33.5	10285	-97.1	4237	5309	8623	-28.5	17.5	-126.1
M20	26.0	-173.0	10307	48.6	484	-4068	9265	25.8	-3.1	-137.8
M21	31.7	92.0	10313	-178.1	6641	727	8774	1.3	31.7	89.5
M22	29.9	-107.2	10646	-16.3	-3561	-694	9225	9.7	-28.5	93.4
M23	45.0	-50.7	10359	125.4	-4844	5352	7327	-32.3	-33.2	166.2
M24	24.6	90.2	10396	2.2	5305	209	9454	0.1	24.6	-88.0
M25	29.0	165.5	10322	78.3	2125	-4583	9027	28.2	7.0	-88.9
M26	45.8	9.2	10705	14.2	2385	8350	7467	-45.4	6.6	7.8
M27	45.1	81.3	10670	-176.9	8585	1762	7529	-8.7	44.5	105.4
M28	15.8	25.1	10856	0.0	1959	3154	10445	-14.4	6.6	-24.3
M29	34.9	-90.8	10768	88.1	-5293	620	8828	0.6	-34.9	179.1
M30	24.4	-164.6	10630	12.7	-266	-3592	9678	23.7	-6.3	178.6
M31	34.3	-11.4	10583	80.2	-382	6755	8742	-33.8	-6.4	89.7
M32	45.0	129.2	10747	129.4	7079	-4306	7592	32.4	33.2	-9.8
M33	33.6	36.9	10818	-57.1	4719	5597	9011	-28.0	19.4	-89.1
M34	15.3	69.4	10985	158.6	3830	1539	10596	-5.5	14.3	89.9
M35	45.6	-69.5	10962	-75.9	-6414	3280	7664	-19.7	-42.1	-14.0
M36	31.8	58.5	10756	-127.6	6077	3260	9146	-17.9	26.7	178.1
M37	31.4	133.7	10347	-154.5	5106	-3041	8835	22.8	22.1	67.3
M38	42.6	93.3	10563	91.9	7977	309	7776	3.0	42.5	-2.6
M39	33.0	159.5	10649	-24.3	3062	-4889	8935	31.3	11.0	173.1
M40	44.7	-105.7	10805	-19.9	-6508	-1440	7679	15.0	-42.6	91.6

Table 2: Camera Parameters after Camera Resection

.

image	δα	δβ	δr	δγ	δx_{or}	δy_{or}	δz _{or}	δω	δφ	δκ	x_p	y _p
M1	0.7	-0.8	-529	-3.5	-14	-164	-525	-0.6	-0.6	-2.8	1187	818
M2	0.8	-2.5	-264	-0.4	-267	216	-293	-2.2	-0.8	2.6	776	625
M3	1.7	-137.0	-489	-138.5	-302	-69	-494	0.4	-1.7	-1.6	1091	246
M4	1.3	10.6	-642	7.8	53	-996	-677	5.8	2.3	-4.3	1414	200
M5	-0.1	-3.1	-314	-4.7	247	-225	-263	1.6	0.6	-1.3	1419	234
M6	5.1	8.6	-411	8.1	779	-484	-678	2.8	5.1	-0.9	63 8	483
M7	0.9	30.6	-427	32.9	1455	353	-458	-2.5	7.7	3.2	581	593
M8	-0.2	1.3	-466	-3.7	217	-331	-304	0.1	0.9	-4.6	924	710
M9	0.1	2.3	-694	1.8	-230	384	-581	0.1	-1.3	6.0	1024	224
M10	-0.8	-7.1	-77	-7.9	615	-289	8	1.4	3.3	-1.4	904	440
M11	6.5	25.7	-86	24.2	995	-715	-156	3.8	5.3	-1.7	974	859
M12	0.7	-4.2	-214	-7.6	-350	-439	-241	1.4	-2.9	-3.9	819	661
M13	-0.8	27.8	-59	23.1	952	-2389	21	13.8	5.7	-7.2	929	471
M14	6.4	0.8	-364	-4.1	67	624	-1078	-6.4	0.3	-5.0	1164	923
M15	0.7	-5.8	-309	-6.6	504	-205	-329	1.8	2.4	-1.2	930	325
M16	2.0	7.3	-144	5.0	921	-398	-375	0.3	5.7	-0.3	1131	907
M17	-0.9	21.1	211	18.4	-647	-1542	262	8.4	-4.1	-4.1	913	635
M18	-1.0	-37.3	23	-45.6	-3356	-659	115	3.4	-17.8	-12.6	1018	867
M19	3.0	-6.5	-565	-8.7	-392	518	-773	-4.6	-1.2	-1.7	1141	635
M20	1.0	1.0	-543	-0.2	-73	80	-568	0.9	-0.6	-1.1	1036	411
M21	1.7	17.0	-537	13.6	175	-1597	-622	9.8	2.8	-5.9	1225	920
M22	-0.1	-2.2	-204	-2.9	164	-167	-171	1.2	0.4	-0.4	1514	877
M23	0.0	-7.7	-491	-10.4	-436	-975	-345	3.9	-4.4	-3.0	824	715
M24	-0.4	10.2	-454	7.6	-191	-811	-379	4.7	0.0	-3.6	981	224
M25	-1.0	19.5	-528	20.7	-1778	-348	-369	2.6	-9.2	3.2	870	261
M26	0.8	0.2	-145	-4.3	25	-5	-205	-0.8	0.2	-4.3	1159	778
M27	0.1	1.3	-180	-0.6	-82	-186	-143	1.2	0.4	-2.3	1112	616
M28	0.8	10.1	6	8.3	528	-34	-35	0.1	2.8	-1.5	705	475
M29	-0.1	-8.8	-82	-8.2	-3	-951	-59	6.2	-0.3	2.5	871	706
M30	-0.6	9.4	-220	9.6	-690	321	-155	-1.2	-3.8	0.9	903	646
M31	4.3	-1.4	-267	-7.2	-238	504	-654	-4.2	-1.4	-6.4	798	908
M32	0.0	14.2	-103	10.6	-1063	-1569	-80	9.5	-6.7	-5.2	1188	505
M33	3.6	-3.1	-32	-5.2	103	633	-385	-4.1	0.7	-1.2	1128	808
M34	0.3	14.4	135	11.8	412	-590	116	3.2	2.1	-2.8	1118	518
M35	0.6	-9.5	112	-9.6	-699	-1095	-8	6.9	-4.3	1.6	928	539
M36	1.8	-11.5	-94	-12.0	-270	1100	-250	-6.7	-1.3	0.9	1250	304
M37	1.4	18.7	-503	1 5.9	-1021	-1424	-561	9.1	-4.8	-4.0	1210	674
M38	2.6	3.3	-287	1.8	164	-409	-535	3.0	2.5	-2.7	839	719
M39	3.0	-5.5	-201	-7.7	622	-187	-461	2.2	3.6	-3.4	1036	537
M40	4.7	34.3	-45	30.1	-2836	3287	-632	-17.7	-18.2	-5.7	810	614

Table 3: Corrections for Camera Parameters after Camera Resection

(b) Initial projection of the site model into the new image

Figure 4: Registering a new image to the site model.

(d) Site model projection after camera resection

Figure 4: (cont.) Registering a new image to the site model.

For each of the cases shown in (b) and (c), we then manually select five control points, adjust them to the correct positions in the new image domain, and do camera resection to get more accurate camera parameters. Figure 4(d) shows the projection of the site model into the new image after camera resection. The refined camera parameters are: $x_o = 7977$ feet, $y_o = 309$ feet, $z_o = 7776$ feet, $\omega = 3.0^\circ$, $\phi = 42.5^\circ$, $\kappa = -2.6^\circ$. Accordingly, we have $\alpha = 42.6^\circ$, $\beta = 93.3^\circ$, $\gamma = 91.9^\circ$, $x_p = 839$, $y_p = 719$, and r = 10563.

The following observations about the given camera parameters can be made from Table 3:

- 1. The initial camera elevation angles are relatively accurate, with a maximum error of 6.4° .
- 2. The errors in the camera azimuth angles are relatively large, but except for image M3, which is viewed from the nadir direction ($\alpha = 1.7^{\circ}$), the errors in camera azimuth angle are within $\pm 38^{\circ}$. The camera azimuth error for M3 is -137.0° .
- 3. It would be useful to know the camera stare point.
- 4. Overall, the initial camera parameters obtained by (11-13) and (14-16) give a good initial set of parameters for camera resection.

Control Point Verification

Using the refined camera parameters obtained above, we further evaluated the control points provided with the model board 2 data. It was found that except for point #265, the east intersection of the curved and straight tracks, and some typographical errors, the 3-D coordinates of the control points are quite accurate. The following errors were found and corrected in our experiments.

- 1. The minus signs of the y coordinates of points #20, #22, and #220 are missing.
- 2. Point #38 is not marked. It should be added next to point #17.
- 3. Point #78 is not given; its mark, on building B9, should be removed.
- 4. The marks for points #231, #234 and #238 are not correct; the control points are located along the junction of the wall and the roof.
- 5. Point #237 is not correct; it should be on the ground just under the apex of the dormer window.

Based on our camera resection results, we found that the correct y value for point #265 should be about 2.9626 inch.¹ We also computed the correspondences (image domain indices) of the control points on each image:

$$X = \frac{f}{\epsilon} \frac{r_{11}(x-x_o) + r_{12}(y-y_o) + r_{13}(z-z_o)}{r_{31}(x-x_o) + r_{32}(y-y_o) + r_{33}(z-z_o)}$$
(32)

$$Y = \frac{f}{\epsilon} \frac{r_{21}(x-x_o) + r_{22}(y-y_o) + r_{23}(z-z_o)}{r_{31}(x-x_o) + r_{32}(y-y_o) + r_{33}(z-z_o)}$$
(33)

¹The y-value for point #265 was not adjusted in computing the correspondences listed in Table 4.

where f is the camera focal length, ϵ is the pixel spacing in image plane, x_o , y_o and z_o are the camera shift parameters obtained from camera resection, and r_{11}, \ldots, r_{33} are computed using either (2) or (7). The results are listed in Table 4. Points which are out of the frame board are printed in Table 4, as dashes, and points which are invisible (blocked by other buildings) are bracketed.

3.3. Region Delineation

Given an image to be exploited, quickly locating the regions of interest according to the tasks in the QL profile, and hence, narrowing the search area and reducing computation and false alarms is an important step in site model supported image monitoring. We have developed two algorithms for quickly delineating regions of interest. When 3-D features for the regions of interest are available from the site model, we can quickly compute the "valid" portion(s) of the regions in the current image domain, and fill the regions of interest with appropriate labels. For regions such as roads and parking lots, we further compute their directions, which are useful for vehicle detection. When the region of interest is available from another image, we use the image-to-image transform equations (60-61) in Section 3.7. to quickly transform the corresponding region to the new image domain. Two examples are presented to illustrate the region delineation step.

In Figure 5 the delineation of regions of interest (roads) from corresponding features stored in the site model is shown: (a) an image to be monitored; (b) regions corresponding to roads in the site model; (c) direction maps for the road region; and (d) shows the image of the region of interest.

In Figure 6 the delineation of the region of interest (a storing garage) from a region map associated with an earlier image is shown: (a) and (b) the earlier image and its region map; (c) the region of the storing garage in the old image; (d) the new image to be exploited; (e) the region of the storing garage in the new image delineated using our algorithm; and (f) shows the image of the region of interest.

3.4. Integration into RCDE

In the past year we have spent a considerable amount of effort on mastering the RCDE. As of the time of preparation of this report, we have made following progress on integration into RCDE:

- 1. We have successfully installed the latest version of RCDE on all our SPARC-10 work stations, including the latest upgrades from SRI.
- 2. Using our recently developed image-to-site-model registration algorithm, we have built a site model for model board 2 which includes all forty images.
- 3. We have added new IU functions into RCDE which can be invoked from augmented menus. Figure 7 shows several new functions that we have added into RCDE:
 - SNF filter,

Table 4: Correspondences from given world coordinates

			-		18. ma				-		_			_									-		_													_						-
7	155	-4.7444	3	1 1	650	381	375	1	ı	142				5	728	713	531	783	150	351)	592	31	17		I	I				962	484	763	ł	79)	710	867)	411	575	808	202	i	i	165)	ž
17	29.5155	70		• •	293	330	316	I	1	265	844 J		3		255	208	254	854	477	(1015	244	1045	(846		I	I	1	1023	(1015	695	101	1162	ı	(442	171	(621	1058	336	758	616	ı	ł	(549	8
	80	22		- 8	1	1	1	1026	ı	1	2451		2	. [273	20	77	750	176	720	216	,	1	,)	1	986	11)	858	109	958	1	8	255	888)	774	199	869	233	1	ı	(1)	2
16	8.7158	-3.2652		154	I	ı	i	435	ı	I	9261		9101		103		278	362	826	1037	233	ı	1	1	ł	1				156				939					473	1120	ı		(1030	312
	5	8.			33	1	- ···		-	 1			Ŧ	1	1	267	8	890		671	266		1	1	-		•	927	8	1002	10	1		 I	8 0	1016	15	244	985	56	1		_	5 3
15	11.3535	-10.0530 0.8464			77	1	ł	I	ı	ı	7.47						169 1	440 8	752 7										~		83 1	1	1				-			036	i			182 4
_		~~~~	+	472				028							2	183	_			_	223		,						_	894		75	 I		258		785 1		877	216 1		_	163	-
14	8.7158	-3.2652 1 8400		116		1		112 10			378 3F	_						369 7:			216 2									145 89				938 1)					497 8:	144 2	•			319 4:
_		22	+					• 							_	153	_		46 5		_			1				_						_	199		1 062	158 3		-				417
12	6.4002	-12.8605 0 9250			r J	1	,	•		1	;	0 040		:			130 3		815 4				,				, ,	•		101 1033	43 1	•	•		18 19		1173 76	101 16	,	,	1	•		121 41
			╀				-																														-		(2					
11	11.3535	-10.0530		1 1 1 1	78 24		, ,	ı ı	•	1	1 4 G KA		Ŧ				183 137	437 899	747 90	~	(129 263)									229 986	84 12	ו ו	1		(80 308)	• •	1126 710	244 249	Ο,	026 65	1		974 5	180 47
			+																			_	_				_		_				, 						_	_	-			-
10	6.7986	-6.4637 0.6930	ś	 56 479		1	1	1	1 1	1	211 101			1	2 242		221 36	324 812	843 128	~	172 183			1			1	, 1		•••	206 49	1	•				074 801	309 162	455 940	1157 146	1			250 401
	_	9 0		474				1			111	_	1 0.0			163	43		138 8	_							,				56					932 1	1 661	167 3	922 4	168 1				102
6	7.1230	-5.5560		- 77		ł	ł	ı	ł	I	0001						232	-	843 1				1	I		ı					228 1	ı	ł				1081 7	325 1	461 9	1156 1	1		_	269
		~ 8 ×	$\frac{1}{2}$	- 12	1			024	1			. §		,	226	ŝ	19	741	167	270	12						1			863	49	94	1	101	198	887	822	148	884	225	ł	1	145	383
8	6.1086	-3.2590		132 4	1	ı	ł	342 1	ı	1	1.							•		-	222 1		1	ł		ł	1	ł		85 8				1002							ī		1095	
	3	<u>ສ</u> ຸ	+	521	27		1	922	900	}	795											588	8	3 1	_		1	8	_			862	_	181				245		300			233	-
7	11.9013	-0.1363	091.1	211			1	522 8		•	0110		RIA									1305 5				J						670 8								_	ı		965 200	- 11
	2		2	382	1			11	1002	<u> </u>	206	0.00	7.65	•	251	41	32	62	10	68	86		1	-		1	1		033	119	61	914	22	82	117	312	325	54	322	02	ţ	:	224	202
9	6.8025	0.0540		- 203		ı	ı	358 9			003 0										271 1			ł					-			541 9								_	ı			88
			$\frac{1}{2}$	225				906	066			_			89		1		_		54									_				163	-		-		847	-				268)
2	0.000	0.000	31	214 2		ł	ι	162 9				ι				367	1	_			272			1										1152 1				431		1	١			(374 2
	0		╉	211				906	100			 I	ł		*			_			57											987	_						851		!		201	-
-	0.0000	0.0000		193 2		1	۱	148 9		•		1		1		1	1				262 5			1								373 9								ī	t		1231 2	- 11
	:- H	3	5			14	45		-		2 5	201				[13	114					_		M21								M28						-		M36	137		M39 1	-1
	"		ľ	< 2	2	~	2	~					2.2	Σ,	ž	2	2	Σ	2	Σ	Σ	Σ	2	2		ξ.	2	∑ ==	Σ	Σ	Σ =	Σ	2	2	Σ	Σ	Σ	Σ	Σ	2	2	2	2	<u> </u>

Table 4: Correspondences from given world coordinates (cont.)

ł

į

⊢	81	$\left \right $	-	20	$\left \right $	2	╞╋	22	23	H	24	$\left \right $	25		26	58		58		8	$\left + \right $	31
	15.0738		15.0074	14.3694	4	17.7123	<u>ញ</u>	17.0713	16.7983	ទួ	28.0565		19.6578	19.	19.1255	21.4034	134	23.2277		23.2277		23.3098
	-11.9847		-11.9847	-4.3103	33	-11.6342	f 2	-5.9860	-3.8242	2	-0.5890		-11.7448	<u>.</u>	-9.6141	-10.8230	230	-9.8979	19	Ę	•	-4.6716
1	0.000		1.7365	1.7365	2	1.0648		1.0517	1.0495	2	6	_	1.7269	5.0	2.0000	1.7437	37	0.0 0	8	1.11	<i>.</i>	≌1
			ł		-	I	1			1	_		I I	I	I	ı	1	1	ı	I	= 	•
	1 1	1	4	105 6	640	1	1	84 744	138 7	208	236 975	؛ 	'	1	ı	I	1	22	979	ł	-	118 893
	17 157		3 154	282 1	120	31 2	249	228 218	304 2	205	435 595		29 318	102	295	64	377	103	439	•		•
	1			1		112 1	17	306 1	1		474 306		102 60	176	40	130	110	163	196	158 1	163 3	339 167
	1		I				14		I	1	470 360	96		174	76	125	144	150	175	154 2	203 3	339 208
	1	'	1	ı		ı		T I	ı	1	1054 954			1	1	ł	ł	1	,	ı	1	1
_	1				1	ł		! 	t	1				1	ŀ	i	1	1	1	ł		1
			I		,	I	 I	1	ŀ	1		-	1	ı	I	ı		ł	I	I		127 20
	1	1013	13 26	1031 2	266	116	23	933 200	942 2	266		6 839	10 33	858	105	773	62	707	56	206	- 06	
	1257 640		_	_		~	_	_	_	909			_	1172	518	1208	453	1200	419	_		~
_										1	_			;	i	ł	ı	1	ţ		_	1293 190
_	1		1	109 4	430	I		104 479	151 4	472	-		1	29	539	26	584	84	595	63 6	623 1	182 625
	29 36	21	1 343		319	30 4	416			386	-		20 454	78	435	43	496		562)	6 6 5		210 536
						• ·				254		_	_	155	304	142	353	(184	392)			
	530 942		924		754		923	570 798	559 7	751	819 67	5 647		631	868	687	898		895	728 8	877 7	718 763
-	678 64	689			_		53		699 1	153		2 615		636	88	691	53		86)	566	64 5	591 131
	1187 597	7 1184		-				-	1026 5	587		_	_	1129	544	1148	499		456)	1126 4	468 10	025 475
	105 330			209 3	_		382	194 372		368	292 577		0 419	130	412	118	451	(152	477)	136 4		219 488
	1				,				•••	383				1	ı	ł	ł		92)			_
	1	1	I	1224 4	440 1	1305 1	167 1	1196 326	1155 3	387	776 202	_	1248 122	1212	193	1180	104	1127	67	1110	82 9	992 214
		1		1	1			1	I		1		•	1	1	I	,	ı	I	I	 I	i I
	I I	1	1	ł	1	ι			I	 I			•	I	I	I	ı	ı	1	ı		1
					1	1			1					1	1	I	ł		I	ı		1
		_			_		737 1	-	-	756	•	_		1176	705	1222	631	1611)	547)		_	_
		5 1211		-	_	1212 64	684		-	693	• •		208 617	1133	631	1179	551		477	1150 4	4 83 9	
_	324 1033	י מ	ı		931	1		•	•••	918	•-	! 	1	1	1	1	ł	_	1027)			-
				215 1	169			153 224	•••	229	•			42	227	ı	1		342)			•••
	i 1	•	ı		936	1		866 940	835 8	892		' ~	1	096 0	1011	1030	1012	(1063_1	954)	1065 9	970 10	008 845
	1	1			ł	ţ	ı			1				1	4	í	i	ı	i	ı		
		_			16			734 50		66				t	I	I	1		1			
	(49 387)	7) 24	1 389					-		135	•	·		62	482	46	529		566		570 1	
										870	• -			378	978	420	1002	(481	9 93)		_	
_	~	2 1175	75 653	1057 6	685 1	1166 64	_	1078 630	1044 6	841	1008 457	7 1176		1145	591	1163	547	_	508)	1150 5	518 10	069 530
					_			•••	••	337				242	378	220	421	-	462)			-
	(266 999)	9) 587	7 1007		_					849	• -	_	8	647	947	674	958	676	926	-	_	
		1	۱		192	882 1	14	924 157	941 2	311	•••	8 843	3 5	869	56	805	28		(69		51 7	788 185
	I		1	1		ı	 I	ו ו	ł	 1	113 590	- -	1	1	ł	i	1	ł	ı	1		1
	1		I			1	 1			1				!	1	1	1	1	i		<u> </u>	
								846 118	852 1	163	594 269	62 6		804	54	749	31	696	38		_	704 169
-	145 532	2 150	0 554	301 5	522	158 5	583	268 557		547	-		0 620	202	610	179	643	193	642	199 6	865 2	299 6!

ł

Table 4: Correspondences from given world coordinates (cont.)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3399 916 - - - 593 908 403 562 3399 916 - - - 593 908 407 898 562 3163 661 - - 1293 947 1231 804 (1138 961) 1174 334 382 532 51 210 418 263 964 338 395 310 346 11231 564 310 416 263 396 31174
36 36 41 47 46 62 62 10.8230 30.0444 4.3461 4.3661 4.3664 4.36664 4.36664 10.8230 30.0444 4.3461 4.3663 4.36664 4.36664 11.1240 0.0000 0.0000 1.0046 1.1563 1.1240 11.11 635 962 106 680 7.3 7.3 9.66 11.11 635 963 103 399 666 8.0511 4.36664 7.3 11.11 613 613 613 613 613 613 61177 6117	(1163 961)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1163 961) 1293 947 1213 968 407 (1163 961) 1293 947 1213 964 338 334 382 532 51 210 416 262 494 338 334 382 532 51 210 416 262 494 338
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1163 961) 593 968 (1163 961) - - - 593 968 (1163 961) - - 1293 947 1231 804 (1163 961) - - - 1293 947 1231 804 (1163 961) - - - 1293 947 1231 804 (1163 961) 1055 758 210 418 262 494 466 738 6433 548 857
36 39 41 47 46 21.4034 38.9064 30.1444 44.3461 42.36 -10.8230 0.0000 0.0000 0.0000 1.0048 1.15 -7 -7 -7 -66 -7.36 $-1.0.722$ 4.7006 46.3461 42.36 -10.8230 4.3656 $-1.0.0722$ $-1.0.0722$ 4.7706 6.65 -1.15 -7 -7 -7 -7 -7 -7 -7 68 377 625 962 108 690 -7 -7 121 117 600 143 396 646 820 743 774 27 116 413 451 49 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	(1163 061) 563 (1163 061) - 1293 947 1231 (1163 061) - 1293 947 1231 (1163 061) - - 1293 947 1231 (1163 061) - - 1293 947 1231 (1163 061) - - 1293 947 1231 (1164 778) 551 210 418 2621 262
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1163 961) -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	399 916 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1163 961) 1 (1163 961) 1 334 382 532 51 466 811 196 738
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1163 961)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1163 961) 334 382 334 382
36 36 39 21.4034 38.90 0.000 0.0000 -10.8230 4.36 36 38.90 -10.8230 36 38.90 36 -10.8230 36 38.90 0.000 -10.8230 36 37.65 5.55 -1117 603 -121 117 603 6.9 1121 117 603 -1226 467 816 (455 1172 353 383 383 679 915 1043 581 581 75 360 1143 1197 88 408 1197 88 408 1197 88 408 1197 88 408 1197 88 408 1197 88 408 1197	396 334 334
36 36 21.4034 -10.8230 0.0000 0.0000 10.8230 0.0000 11.10.8230 11.17 11.11 11.17 11.12 51.11 11.12 51.11 11.12 51.11 11.12 51.11 11.12 51.11 11.12 51.11 11.23 51.11 11.23 51.11 11.20 64.9 11.21 55.6 11.22 55.8 11.23 55.8 11.23 55.8 11.23 55.8 11.23 55.8 11.24 55.8 11.23 55.8 11.24 55.8 11.25 54.5 11.24 54.5 11.25 54.5 11.24 54.5 11.46 537 11.46 537 11.46 537 11.46 537 11.46 537 11.46 537 11.46 537 11.46 54.00 11.46 537 11.47 55.850 11.48 54.00 <td></td>	
21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	
	-
88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3326	
37 37 30.2677 -5.7648 -5.7648 -5.7648 -5.7643 -5.7648 259 678 2293 404 230 240 231 179 240 243 173 243 179 733 179 733 179 733 179 733 179 733 179 733 179 733 179 733 179 733 179 733 1033 336 11033 336 11033 336 11048 214 71 489 1192 719 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396 1075 396	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
34 34 34 -4.4274 -4.4274 - -4.4274 - -1.7224 - -2.4274 - -34274 - -3327 - 3317 - -2.4274 - -3317 - -2.4274 - -3317 - -2.44274 - -3317 - -2.123 - -2.123 - -2.123 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - -2.133 - <td>-</td>	-
33 33 33 27.2603 27.2603 28.2863 1.7644 - 1.16 288 1.16 288 1.16 288 1.12 333 646 933 1.135 599 1.135 599 1.135 594 1.135 594 1.135 594 1.135 593 1.135 594 1.135 596 1.135 596 1.135 596 1.136 544 1.137 556 1.136 546 1.137 556 1.136 546 1.137 556 1.137 556 1.138 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539 1.116 539	
054 054 054 054 056 051 052 053 054 055 054 055 051 052 053 054 055 057 057 057 057 057 057 056 057 053 056 057 057 057 057 057 057 057 057 057 057 057 058 051 051 052 053 054 054 0557 057 057 057 058 058	860) 722 518)
32 32 33,906,4 10,9691 10,9691 10,9691 10,9651 10,9691 10,9651 10,9691 10,965 11 10,9651 11 10,9651 11 10,9651 11 10,965 11 10,965 11 10,55 673 11,55 673 11,55 673 11,55 653 664 93 11,025 451 11,025 451 11,025 451 11,025 453 11,025 451 11,223 277 11,223 274 11,223 274 11,223 274 11,223 274 11,223 274 11,223 274 11,223 274 11,223 274 12,255 948 13,267 648	
, x,	

Table 4: Correspondences from given world coordinates (cont.)

				0	8 2	-	-	_			<u>م</u>		~		_	3	_	0	0		20			6	0	6	-			6	6		2	~	-	6	\$	~	-	_	~		<u>،</u>	7
64	5.5943	24.6626	0.6440	-	1 968	1	ł	36 581	ł	t	1 886		1 1 00	-				8 700	0 180	0 554	3 295	6 731		_	3 693	6 503		ŀ	1	_	4 729		-		_									4 717
	ð	ā 	•	196	168	!	+	128	-	1	291		31	58		866	1036	688	920	530	443	736	292	85	753	786	186	+		879	89	•	328	357	6 2	827	577	883	845	809	1015	1048	426	83
1	778	366	8	ı	ı	ł	I	I	I	ł	ł	I		I	I	1	1	946	i	766)	144	916	I	I	66 6	756)	'ı	I	I	192)	1004)	ı	1	974	ı	ì	225	848	80	ì	I	i	1	793
11	44.9778	37.3366	0.000	1	ı	ı	ı	I	I	ı	I	,		I	ı	1	ı	912	ì	(420	182	976	ſ	I	1216	(1179	, 1	I	ı	(1173	(1221	ı	ł	177	1	ı	342	1143	957	ı	I	ı	1	3
	84	8	2	1	1	1	1	ł	1	ł		•		1	1	1	1	947	1	191	146	917	ı	1	992	763	ı	1	ł	200	996	1	1	978	1	1	227	847	6	ı	1	·		181
76	44.9778	37.3366	0.3773	1	1	I	ł	ł	ł	ł	ı	I		I	ı	1	ı	808	ı	423	180	974	I	ı	1217	1181	ı	ł	t	1172	1222	1	ı	175	ı	1	345	1143	962	ı	I	ł		1043
	132	S	00	١	1	1	1	1	1	1	1	۱		1	124	1	1	949	48	686	125	919	ł	1	1016	777	1	1	1	302	166	ı	935)	876	ı	52	203	861	9 8	I	1	1	952	814)
22	45.5432	32.3703	0.0000	1	1	ı	ı	ı	I	I	I	ł			75	1	t	826	1110	382	271	888	ł	ł	1037	1016	ł	ı	ı	1180	1071	I	134	153	ı	1050	434	1047	963	ı	1	ŀ		926
	132	203	43	1	1	1	1	ı	1	ı	1	1		1	F2 1	1	ł	949	46	685	125	920	1	1	1014	779	1	ı	1	305	686	1	935	878	ł	3	203	860	98	1	1		954	815
11	45.5432	32.3703	0.1343	1	ł	ı	ı	ı	I	ł	ı	I			15	1	ı	824	1111	383	271	887	t	I	1037	1016	ı	ı	ı	1180	1071	I	131	153	ł	1048	435	1047	965	1	ı	1	207	956
	162	998	80	334	921	181	499	520	347	ı	660	847		017	213	837	787	644	336	434	317	687	376	480	631	450	583	190	55	595	649	20	512	553	842	1 03	394	638	417	765	640	525	623	715
73	33.6162	16.5866	0.7009	883	747	1044	1078	1035	1267	1	290	346			624	782	8 0	558	897	521	599	594	519	291	466	517	266	274	343	816	674	1024	365	386	553	763	717	738	820	621	735	966 19	467	691
	39.7476	191	0.7300	480	943	1	1	1	1	ı	ł	1	č		217	977	935	208	110	611	227	812	472	ı	820	624	984	I	1	379	832	ı	832	801	1008	145	309	749	185	ı	732	83	698 1	192
11	39.7	28.3761	0.7	166	1120	1	ł	ı	1	۱	I	I	900	077	720	1121	1146	747	1001	474	361	805	118	ł	688	902	59	ı	1	1002	982	I	340	271	782	917	512	996	8 06	۱	1186	1160	338	8968
	488	136	320	447	997	ł	1	1	1	ı	1	I	0	S į	174	1015	983	847	109	614	195	845	424	I	877	677	966	1	ı	383	871	ı	835	804	ı	135	275	783	178	ı	785	83	877	784
20	41.5	28.5136	0.7320	113	1133	ł	I	ł	ı	I	I	I	100	122	222	1137	1151	749	1039	441	352	810	77	I	895	902	11	ı	I	1055	977	ı	202	231	F	952	510	970	923	ł	1214	1211	295	897
	18.0902	218	35	1	1	1	1	1	1	1	1	. 1		1	73	I	I	1014	34	692	2	971	I	ı	1	861	1	1	I	309	1	1	958	902	ł	15	159	907	78	ł	1	1	985 252	852
8 9	48.0	33.2218	0.7535	1	ı	I	ł	t	ı	I	I	1		ı ;	17	1	i	827	1166	342	243	106	ł	I	ł	1042	1	I	ł	1254	ı	i	69	8	ł	1094	424	1064	1005	I	I	ι	153	116
	50	218	8	,	!	ı	1	1	1	1	1	,		1	72	1	I	1012	33	702	79	967	1	I	I	849)	1	1	1	294	1	1	956	894	1	24	155	910	76	1	ı	1	975	843
<u>65</u>	48.0902	33.2218	0.0000	1	ł	I	ı	I	ı	ł	ı	I		1	20	ı	ı	840	1161	338	247	906	I	ł	I	(1037	, I	ı	1	1257	I	ı	82	66	ı	1103	418	1064	995	1	I	ı j	151	867
-	56	74	0	492)	912	1	1	1	۱	1	972)	. .		(101)	244	15)	888	(48)	(22)	(06)	259	(65)	491	612	764	548	918)	1	ı	398)	190	1	778)	752)	950)	201)	342	111	225)	;	692)	170	816)	729)
56 56	37.5356	26.3974	0.000	(267		1	I	ł	ı	i	(251 6			797						(500						837	_		1	-	833				(752 🖇		541		(862)					860
┝	8	8	7	24	1		758	782				583	3	t		_	1015	835		342	_	840		34	894	'20	456	•	1	752	192	155				_	220	03	498		_	735		850
55	42.3186	10.5488	1.0787	469	ı	ī	858 7	805 7	ı	ı	ı	35		ı			627 1(457 8	~					~		302 7		1	ı			-					827 2			371 6		-		581 8
┝	2	16	2	88		165	651		1	 1	KOR	202	5	2			924 4	758	-	348		_						27	1		722						385						_	800
54	38.90	10.9691	1.1130	554	1	857 9	875 6	_	1	ł	SO R					_	641 9	463 7	_							321 6	_	477				5		-		-	818 2	-		-				590 8
		, in the second se		ĪW	M2	M3	M4	MS	MG	47 1	ď	Mo		MIN		f 12	f13	M14	115	116	117	118	M19	f20	M21	122	123	424	M25	M26	-		M29	M30	M31	432	433	M34	435	M36	M37	M38	M39	M40
	[Ĺ	_	-	-	_	~					2 2	2	2	Z	2	2	2	2	Z	Z	2	2	2	2	2	2	2	~	2	2	~	~	~	2	~	~	~	2	2.	< .	4
-				_								_			-	_	-	-			_	_	-		_		_	<u> </u>				. 21,	_		-					-		-		
----	------------	---------	--------	---------	------------	----------	------------	------------	-----------	----------	---------	---------	---------	---------	------------	-----------	---------	---------	---------	---------	-------	-------	---------	---------	--------------	-----	---------	----------	---------	------------	----------------------	---------	------	---------	-----------	---------	---------	---------	-----	---------	-----	-------------		
88	27.2072	31.5884	0.6510		1154 516	1 1	1	1	ı ı	1	620 933		138 424			_											ł		644 262	1129 591		558 859				_	734 167		~	821 10		966 586		
97	25.6880	28.4460	0.6745		1054 518	1 1	1 1	1	1	1068 37	641 830		212 455		1018 667												1			1047 546		587 795		653 200		-	•		_	782 122		911 574		
96	25.0249	27.1229	-	607 754	1013 518	1	1	1	, 1	1044 82	-			477 564						432 486			303 922		892 179					1012 528		600 767		637 228						766 170		888 568		
95	24.1515	25.2913	8		955 518) 1	1	1	954 40	1014 146	662 729		286 487		925 631														556 383	965 502	580 751					903 459		902 989		743 235		855 562		
94	22.7888	22.4633	37	-				1275 192				-	355 515		843 600									671 310						893 463						•	.,	•	•••	710 335		805 551		
93	22.7888	22.4633	ğ	763 699				_		966 237																				892 476												- 11		
92	32.2561	17.7971	ğ	593 400		1083 710																								715 641												<u>(いい)</u>		
06	30.1898	18.2284	0.6150	645 441		638		_		384	650	892	310		762		567	303	458	381	625	507	597		343	612	298	170		589		585	767	383	461	574	397		526	906 471		722 664 (
89	32.2561	17.7971	1	1	777 863	1084 711	1121 458	1080 479	1222 304	•••	-		479 254	612 263					552 452											716 628								-		960 484	-	713 693		
88	30.1898	18.2284	0.0000	642 451	794 805	1095 638	1136 409)	1098 406)	1159 290)		419 663	_	_	629 318		(853 707)	596 566		~						(275 333)			_			910 199 (452 558)			•••	(681 458)	770 577	••		-•		-	(719 656)		
87	36.0484	20.1998	0.5545	441 370	864 946	1174 840	1207 577 (1146 592 (+	:	243 785	268 942		502 200	891 889	908 848	617 705	941 268		•••		-					147 103			•	317 611				654 357	808 683						754 735		
85	39.6868	33.0488	0.0000	63 604	1276 883	1	1	1	I	1	1	1		137 278	(1246 966)					279 232		1			(1052 607)	i	1			1116 868		_			421 318	~	86 068	1	1			(974 738)		
84	39.6868	33.0488	0.7064	66 592	1262 874 1	1	ו ז	1 1	1	1	1 1	;	111	135 280	979	929	811	23	685	236	8 816	6 583	1	819	1056 618 (1	1		279	1118 854 1		895	1018	55	427 321		899 100	1	1		956	978 747		
	x !	2	Zi	IW	M2	M3	M4	Ms	M6	M7	M8	6W	M10	11M	M12	M13	M14	M15	M16			M19	M20	_		M23	M24	M25			07W	M30	M31	M32	M33	M34	M35	M36	M37	M38	M39	M40		

	6	ò		1	24	1	1	1	1	1	784	ند. ۱	814	965	359	248	153		694	710	300		:	21	ı	1023	1	1	142	325	, ,	101	379	136	830	242	137	1			904
135	12.5749	34.5680	0.6688		1167 5	ł	1	•	1		1133 71		48 8	459 94	1078 3	1303 2	860 1	` ı	9 9 6	338 71	884 30	t	•	1079 2		808 10	1			1267 3:			282 808	_	_				1	ł	030 90
-	~	~									_		6					_														-									
132	14.6612	34.6592	0.6857		1180 110	•	•	1	1	•	064 818	;	48 759	429 915	097 410	307 297	861 204	1		329 675	888 341	1	:	1084 79	1	1	•	1		1262 363		-	645 810 908 429		_	~		1	1	1	RR6 912
_			_			•				•	_	-	-			<u> </u>			196					2						<u></u>				•							
122	37.5356	26.3974	ŝ	_	868	I	i	1	1	i	3 905	ı	2 123	1 251	0 973		1 752		_	1 280	-	483	ı	•		876	ł	1	•	0 725			69 69 69								856
_		<u>8</u>	6	280	66	1	1	1	1	1	206	•	242	324	1030	1063	671	972	519	394	748	259	1	818	854	12	ł	1	925	840	1	244		838	569	925	806	597	1119	1041	395
121	14.6612	34.6592	0.0000		120	I	ı	ł	ı	ł	833	ı	763	912	398	307	204	i	705	670)	338	ı	ł	92	ı	ł	ŀ	ı	135	377	1	(101		133	788	284	128	I	1	ł	903)
-	14.	3	0.0	1	1193	I	1	1	ł	ł	1072	ı	57	430	1104	1308	872	ł	956	(332	893	i	!	1083	1,	;	1	1	288	1260	;	(817	016 016	485	393	1078	547	1	i		(RR2)
0	101	408	225	856	315	161	1	I	67	177	593	ı	676	733	468	356	256	168	542	627	380	1013	I	132	I	716	ł	612	377	352	204		489 489	5	724	323	321	954	82	274	733
120	16.8101	24.5408	1.0225	898	895	1298	1		707	755	888	ł	293	649	844	1026	683	506	862	502	706	685	ı	741	ı	703	i	96	348	978	200	744	202	475	579	886	595	1083	777	551	844
5	030	997	'13	987	303	1	I	1	ı	1	882	1	585	746	569	450	361	I	619	566	467	1	1	255	8	1	ı	ı	203	473	1	200	807 202	118	674	396	135	i	141	1	916
115	21.1030	33.5997	1.0713	586	1174	ł	ı	I	ı		835	ł	77	369	1114	1283	834	ı	844	326	874	I	1	1056	1125	I	ł	I	467	1210	1	649	760 881	583	421	1060	654	ı	1106	ł	750
4	740	459	121	966	306	1	1	1	1	1	913	I	572	743	582	463	375	ı	692	558	478	I	ı	271	77	I	1	I	187	488	1	2001	818 807	5	886	406	117	1	151	1	933
114	21.6740	34.4459	1.0621	551	1202	I	1	ł	!	1	824	1	58	341	1141	1307	849	I	840	309	890	I	t	1086	1152	I	ł	I	483	1231				505	405	1077	662	ı	1138	ł	737
_	184	63	92	1	1	ı	;		1	1	 		1	749	628	1	424	,	758	531	518	1	1	328	135	,	1	1	104	1		1 6	850	32	643	440	33	1	177	ł	1013
113	23.5984	38.5563	1.0592	,	ł	I	ł	ł	ı	I	1	ł	i	214	1265	I	921	!	831	229	967	1	I	1230	1286	1	1	I	239	ł	ł		649 084		-			:	1286	1	60.6
-	1	<u></u>		872	80	161		•	20)	169	615		683	729			256	180	555	619)	376	1014)	. 1	151)	1	730	1	608	357	373	198	062	104	314	718)	328)	318	962)	<u>8</u>	275)	721
108	16.8101	24.5408	Ξi			1295 1	;	1	(718 7		-		-	650 7	-			502 1				(665 10		(740 15		724 7				976 3			713 41		-			0		••	
_				ã	6	12			2	<u>، ۲</u>	6		ਲ 			_	א _. א	š	õ			<u>د</u>	 			~		1	ñ	0	เกิม				2			10			_
107	23.5984	38.5563	0.0000	ı	ł	ı	ı	1	I	I	ł	I	1	745	609	I	424	ł	122	523)	513	I	ł	348	119	i	i	I	83	ł	ı	1 600	99U) 647	26)	637	445	31	i	195)		1000
-	23.	38.	0.(ı	ı	ł	ı.	I	ł	ł	1	I	1	216	1276	I	939	I	824	(234	976	I	I	1228	1279	ł	;	I	545	I	١	1	100 001	(855	322	1157	674	ı	(1276	•	(690
3	689	745	10	881	515	1	1	ł	ı	1	1	1	379	573	755	1	567	ı	729	423	627	945	1023	508	311	1	ł	1	171	657	I	1 2	785	g	524	552	65	i	369	1	983
102	29.4689	36.1745	0.6710		1302	I	ı	ı	I	I	1	ı	32	195	1248	I	884	I	708	254	933	149	19	1155	1187	ł	I	ı	712	1250	I	1	515	746	371	1113	764	1	1287	I	567
	89	45	0	892	525	1	ı	1	1	1	1		384	571	743	1	566	1	737)	418	623	46)	1015	520)	300		ł	ł	158	671)	1		945 783	3 4	520)	555	8	1	380	1	974
101	29.4689	36.1745	<u>ð</u>		1315	1	I	ı	I	ł	1	ı	41	196			896	ı						-	1182	ł	i	ı		(1248 6	I		217						1281		563
	9		_		585 1			,	1	1	,		341			*) 969		649		947	545 ()			1	1		673 (1					_				421 1		947
100	30.7266	34.0511	0.6714		1245 58	1	,	1	1	1	, 1	' I	84 34	_				' 1	672 69	288 39	896 64		28 94	1082 54	1112 30	1	í	1		1184 67			483 9) 806 81						1240 43		6.28 0.
_						<u>.</u>	14	15	16	17	80	6	_		~			M15	M16 6	M17 2		_	M20	_		M23	M24	M25					M3U M3U								Mag 1
	x	2	7	UM	Ž	EM	M4	M5	M6	M7	M8	6W	Σ	MI	Σ	Σ	M14	Σ	Σ	Σ	Σ	Σ	Σ	M21	Σ	Σ	Σ	Σ	Σ	Σ.	Σ:	Σ:	22	2	Ξ	ž	Σ	ž	Σ	Σ	Σ

_	_			_	_			_	_					_			_		_	_	-	_		_	_				_	_	_			_	_	_	-				÷	_	_	
158	16.7983	-3.8242	0.0000	ı	722	205	14	i	1		1	•	245		1									376	ı	i	ł	740	689)	898	250	882	ł	8	433	880)	635	343	845	222	ı		152)	
-	16.		0.0	1	160	305	382	1	1			1	942	1035	1	164	248	269	(555	693	(1028	238	1260	1165	1	I	1	970	(974	365	213	834	1	745	189	(<u>38</u>	1034	357	588	928	1	I	(845	308
157	17.7123	11.6342	0.0000	1	I	249	5 38)	•	;	1	,		m 	~	1		431		934		4 551				1	ı	ı	_	9 680	I		ı	I		445)		-				ı	1		1 569
	17	Ę.		1	1	ě	(115		1				116	1248	1		35		593			(115		1315	1	1	1	1240	1226	•		1	1		(55	_	1155		_	869	۱ 	-	,	
154	8.6065	12.0308	0000		5 284	1	1	ì	4 500			_										(487 217)				1					_	14 597)								-				-
	~	-	-		545	1		۱ 	444				3 1222										_		1	۱ 		418		_	_	_	_	959			(776	_		_		_	1023	19 81
153	10.9738	12.0266	0.7752	_	538 337	1	1	ו ו	10 501		-			606 807	036 713			489 122				483 264	1061 881			1			66 845	198 599		503 576		903 443	••		84 787			φ			76 471	615 412
-					203 5				331 5				-		_							219 4				-	419 9	_	-			484 5			568	_	844 7	-		743 11		-		362 6
152	8.5694	16.9416	0.7526		660 21	•	i	•	437 3.				_				816 1			-	665 7:				•	•	•	-	-	1		364 4			••		702 8	• •	474 4			359 5-		710 30
1	65	308	00	1	273	1	1	ł	500	200	100	185	730	872	771	276	178	67	418	368	748	219	942	962	1	1	264	983	926	591	155	603	371	442	266	574	828	183	586	615	1	704	465	377
151	8.6065	12.0308	0.8000	ŀ	529	I	ł	I	PEP		4/3	1030	1223	604	1067	460	682	489	339	922	753	480	1106	1029	ł	I	982	418	464	134	680	444	935	958	462	288	784	651	476	1211	1	361	1028	616
150	9.2771	0131	1.0086		174	I	1	1					~	869								234	I	ı	i	I	-			•		-	-	615	•	-			-				0 626	
	.6	20	1.	120	740	1	1	1	459		_	_	1192		860		_		343		808			I			938	146	55				_	961	_	_	654			123			1010	-
146	1.3866	15.4392	0.9604	1	591 31	1	1	1 1	205 380			1291 150	1				776 5	1	166 344	~				1	1 1	•	189 314	+	1			222 604		1131 513						1			1185 515	686 258
			-	1					496		200				978 10	_				_			_		1	1	196 11				_		_	439 11	_					1				249 6
145	0.1605	12.0458	0.9530		499 4	I	ī	1	164 4			1294 5	I			383 7		1	141 4		775 8			1	1	1	1234 1		Ì		723			~				_	351 6	ł		161 7	-	619 2
7	016	713	176	ł	133	1	1	1	421		070	176	1	166	800	176	82	I	372	400	819	141	1	1	1	,	304	1	I	530	95	595	433	487	172	544	905	110	558	670		633	497	307
147	4.5016	14.2713	0.6976	ı	576	!	ŀ	I	306	3	100	1183	I	544	1064	481	744	ł	239	1001	724	513	I	J	I	1	1101	1	!	22	759	314	1038	1057	504	227	744	692	413	1316	1	266	1111	660
143	0.1605	12.0458	0.0000	1	62	1	ı	1	497		060	18	r		œ	61	1	ł	424		883		1	I	1	1	211	ł	I	1	25)	-	365	•	20				615	i		-	434	
1	0	12.	0.0	1	518	I	ł	1	177		101	1304	1	I	(1175	394	1	I	138	(1052	778	474	1	1	1	1	1252	;	1	1	(721	(234	1156	1158	471	154	(773	(652	339	I	I	(183	1209	615
142	21.1030	33.5997	0.0000	-	318	ł	ł	1	1		1 4	905	I	592)	742	550	465	361	10	693	559)			I	275			1	I		494	ı	983						132		5 159)		•	488
1	21.	33.	0.0	580	1195	I	I	•	1		:	848	1	6)	371	1125	1283	853	581	837	(330	882	1	'	1054	1118	I	i	1	473	1207	1	999	669	895	(595	412	1061	640	I	(1096	, I	(744	1006
136	9.5818	37.2152	0.6978	1	1	1	1	1	I	I		62 804	1	1		26 285	• •	17 78	1	64 733				1		1					1		+				-	24 187	11 92	1	1			93 320
					י 	-	- 	: 	:			8 1 1262		' 0		2 1126	ہ ہ	4 907	ر م	6 1064	7 301			- 0	-	1	1 1	1	22	6 135	-	80	ן פ				-	4 1124	12 481	9			_	0 1093
		ž	Z,	Ŵ	M2	M3	M4	II M5	MG		ž	8W	6W	MIO	IIW	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	M33	M34	M35	M36	M37	M38	6EM	M40

					-		_					_	_			_	_			_			_		_		-			-			_		_	_				_	-		
217	4.4702	-4.8741	2.0486	1	5 646	124	1	ı	1	1	•									1050 633		•									789 951											12 146	
	Ť	T (~	1	aČ ;	56	1	1	1		1	10	1042	1	ō.	21	22	51	2	Ő	19	1	12		i	1	Õ	97	52	51	28		۲ 	1	31	ğ	8	55	õ	1		912	~
214	32.1439	3528	0.0000	I	ı	737	461	457	36 8	1033)	244)	307	203	1	785	776	591)	717	190	308	641)	25	62	ł	ı	47)	251	139	917)	549	660	13)	151	772)	793	372	622	744)	283	755	ł	238	140
7	32.1		8	I	1	405	434	417	1210	(1289	(209	385	982	1099	348	291	(298	604	448	949	(297	931	710		1	(381	918	917	(766	171	1194	(397	386	(232	683	101	394	(792	564	116	1	488	354
213	22.9810	1870	8	178	849	415	192	173)	941	995	142	347	453)	252	590	546	391	689)	209	475	478	296	313		I	13	543	461	860	379	733	35	172)	574	792	537	453	758	312	463	ı	241	611)
2	22.5	ο	3	1204	265	435	491	(484	9 0 3	976	491	717	(946	1187	298	336	317	(692	610	948	303	1077	926	1	ł	622	860	870	525	266	949	602	<u>8</u>	251	512	984	419	671	796	48	I	702	374
1	310	484	8	1	717	237	4	6	969	1028	48	320	591	366)	478	422)	277)	209	198)	565	384	411)	412	,	ı	1	705)	645	838)	279)	813)	1	147	459	825	624)	360)	962	285)	1	i	207	541
211	17.8310	- -	0.0	ı	226	393	(465	464	732	800	637	903	6 96	(1278	231	(314	(304	574	069)	979	279	(1192	1083	1	1	ł	(886	896	(391	(272	(831	1	724	233	413	966)	(403	601	(916)	ł	ŧ	821	354
0	310	184	E	1	694	237	6	37	970	1	6	357	578	371	507	398	277	690	175	578	391	407	431	;	ı	I	732	652	893	243	828	1	162	462	808	635	35.1	803	268	1	1	227	564
210	17.8310	-1.3	1.80	1	188	392	462	471	111	1	616	903	950	1282	209	307	273	582	200	975	262	1228	1065		ł	I	887	867	381	272	832	1	721	208	388	1013	398	625	938	1	ì	832	361
6	171	131	8	61 6	189	,	1	ł	227	325	394	934	875)	854	275	196	80	266)	489	741	231	ı			1	533	941	874	421	216	396	(109	605	286	426	836	195	428	830	i	438	614	354)
209	9.2771	20.0131	0.0	1199	760	ł	I	ł	472	494	1097	1611	(411	860	676	901	628	(339	954	810	625	ł	I	ì	ı	958	149	242	149	888	365	(936	952	624	340	645	801	473	1226	I	393	1004	(765
5	016	713	8	I	143	1	ı	1	423	520	192	ı	995	896)	164	67)	1	380	408)	814	139	1	:		ł	315	1	I	517)	108)	589)	433	481	172	551	(006	114)	556	675	,	633)	489	298
205	4.5016	14.2713	0.0000	I	590	ı	t	I	315	332	1190	I	553	(1064	489	(746	I	237	966)	726	519	ł	I		I	1115	ı	l	(26	(758	(315	1049	1057	514	236	(738	(693	404	1307	1	(282	1112	657
2	86	063	8	1	427	ł	ı	1	1023	1	1	1	914	I	214	149	20	750	177	764)	168	1	1		1	ł	ţ	1	848	64	986	1	94	198	894)	818	152	881	233	1	I	137)	372
202	6.1086	-3.2	0.0000	ı	148	ì	ı	I	352	ı	ı	1	1017	I	78	275	278	300	867	(1043	229	ı			I	I	ł	I	89	293	563	I	1002	195	(194	1018	370	435	1180	I	I	(1089	311
1	49	1 07	8	i	1	1	ı	I	ı	ı	1	I	903	1	1	154)	21)	892	96)	758	166)		i		ı	I	I	1	961)	36)	1	1	I	191	1029	800)	154)	1001	72)	1	1	ı e	390
20	6.0049	-9.7	0.0	ı	I	ł	I	1	1	1	1	1	1195	1	I	(102	(188	307	(833	1164	(125	, 1			1	ł	1	í	(94	(127	ł	I	t	83	166	(11117	(251	436	(1150	ł	ł	ı į	181
~	40	74	8	20	1009	553	300	289	1	1	110	224	340	105	670	643	471	776	155	402)	543	112	121	1	ţ	1	428	337	946	432	787	I	84	650	867)	461	524	814	209	ı	I	165)	675
163	26.7440	-4.4274	0.0000	1176	170	300	346	334	ı	I	348	579	1054	1239	238	220	259	,89	526	(1016	244	1090	913	1	ł	I	1007	1002	623	132	1089	ı	508	182	(569	1051	343	722	685	I	1	(614	299
~	62	999	8	346	930	759	512	509	349	1	675	833)	221	212	825	796	644	344)	443	313	683	378	473)	644	438	593	180	54)	581	663	199	512	547)	840	410)	391	641	415	771	652)	526	615)	706
162	33.6162	16.5866	21	580	762	1043	1078	1031	1274	ı	299			625		806	569		517				000 (300				276	(355	819	673	1023			563	111)	710	739	811	613	(730	1013	(463	889
I	603	1638	8	1	1	581	313	301	1	1	J	24	306	-	679)	662	478	916	72	382	548)	. 1	;		1	1	420	334	ı	ı	932	1	1	652)	1005	436	536	925)	45	I	ı	27	101
161	27.2603	-10.8638	0.000	i	ł	26	121	108	t	i	ı	557	1227	I	86)		171	817	485		(144	•	i	!	ł	1	1233	1213	I	I	1174	I				~		(730	643	I	I	109	178
0	960	716	ş	80	914	434	200	181	1	I	56	218	432	187	597	559)	396	781	153	463)	481	198	198)	:	1	1			937	366)	830	I	76	575	881)	520	461)	833	202)	;	1	151	628
160	23.3098	-4.6716	0.000	1274	155	286	343	333	ı	I	448	704	1060	1290	203	(217	256	710	582	(1029	235	1158	(1010	!	I	I	(1010	(1007	534	(148	1006	I	589	176	(502	1052	(339	677	(768	ł	ı	694	293
	: 8	34	Z,	IW	M2	M3	M4	M5	M6	M7	M8	6W	M10	IIW	M12	M13	M14	M15	M16	M17	MIR	81M	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	M33	M34	M35	M36	M37	M38	M39	M40
	<u> </u>				-	_							-	_	_		_					-	_	=		_				_	_	_			_	-	_	-		_			_

.

•

.

-	-	_	_		-		-			_			_			_			~							_	_	_									_			_	_	-	
237	20.9319	31.1615	ğΙ		3 350	ı	I	ł	ı	ſ	840				_			56											234	_							-				(1)	-	492
	8	31	õ	637	1123	1	I	I	1	ł	830	I	149	433	1059	121	811	582	825	374	838	I	1	970	1035	585	I	1	468	1140	t	668	20	845	(58	455	(101)	638	1	(102)	(675	(148	8
2	184	998	8	380	953	838	587	582	ı	ı	797	931	169	199	879	855	704	274	496)	275	731)	391	502	718	509	718	8	1	518)	730	81	611	624	902	329	355	685	342	873	697	394	693	728
235	36.0484	20.1998	21			1172	1206	1142	ı	ī	251	269	431	503										£63					(890				340			649	808	842	567		~	410	- 11
	164	63	12	688	344	1	ł	ı	ı	24	750	- 1	595	708	551	432	338	82	607	576	448	1026	1	226	37	879	1	1	301	433	54	856	809	556	204	677	382	226	1	146	115	829	20
234	20.2364	28.9903	2		1033	i	I	,	ı	875	817	ł	185	494	985	1152	753	575	832	411	788	519	ı	896	970	587	ı	1	442	1086	533	664	710	786	549	503	972	645	ı	957	630	770	6 30
	40	16	38	1019	335	1	t	1	ı	1	ı	ı		718	656	1	450	ı	747	514	539	1	۱	353	171	١	1	,	124	1	1	١	994	575	17	624	458	42	,	206	1	1010	241
231	24.6340	38.0176			1319	ł	1	ł	I	1	i	1	1		1256 (I		~		I		~	I	ł			_			~			1286			1088
	951	110	00	1	ı	1	1	1	1	,	1	ı	35)	211	1	i	897	9	720	171	879	1	1	942	707)	1		1	246	951	ı	994	918	1	20	254	815	63	1	,	1	985	778)
230	43.1951	34.5410	0.0000	ł	I	ł	1	ı	ı	ı	1	1	96)	53	1	ı	861	1054	439	239	924	1	i	1113	(1092	1	I	I	1115	1145	I	184	210	ı	1010	394	1088	934	1	1	1	261	966
6	951	410	63	1	1	ı	ı	1	ł		ı	ı	30	212	1	1	898	I	712	175	882	1		932	717	1	1	1	258	939	1	995	924	1	13	256	813	64	ı	1		992	785
229	43.1951	34.5410	0.5663	I	I	ł	ł	1	I	I	1	I	89	51	I	I	854	1	442	237	920	1	ł	1114	1096	I	I	1	1113	1147	I	174	208	ł	1003	399	1088	942	1	I	ı	263	666
2	448	441	8		ر د			157	195)	289	607	C.		:	57.	501)	378	253	504)	524)	473	(162	843	301)	79	650	546)	441	450	455)	226	629	632	583	365)	613)	425)	370	873)	276	389	667	536
227	22.0448	20.9	0.0000	815	53°	117 /	(123	1222	(888	940	669	751	400	670	806	(929	641	626	(744	(555	659	(641	508	(618	682	585	611)	221	500	(854	677	637	659	644	(569	(632	(820	655	(924	722	707	724	14
226	22.0448	20.9441	-	-	-		157	168	193	295	592	970	531	557	583	492	379	245	496	529	476	062	851	288	60	641	556	443	464	442	230	630	639	585	357	617	422	372	867	264	388	675	545
2	22.0	20.9	0.6	820	823	1179	1231	1226	880	940	691	750	391	699	798	927	629	629	749	553	653	654	500	618	686	571	118	209	496	855	677	626	658	635	561	638	820	665	933	727	69	727	
225	.0049	.7407	6930	ì	t	i	1	ĩ	I	1	I	I	898	I	t	144	21	885	87	763	168	I	ı	÷	I	ł	I	I	974	22	ł	I	١	192	1022	804	150	1004	65	ſ	•	9	990 990
2	6.0		0.6	ł	I	1	I	I	t	I	I	1	1188	I	I	66	176	310	837	1163	118	I	I	I	I	ł	1	I	06	126	I	ł	I	74	156	1123	249	445	1159	I	1	1102	183
224	19.7810	-1.0234	_	194	744	305	64	100	961	1	43	•••						683							1	;	671	582	895	280	799	10	171	506			386	789	277	340	ı į	239	591
2	19.	-1.0	1.8	1317	201	406	471	477	775	ł	560	832	942	1248	234	314	277	627	670	964	271	1186	1005	1	I	ł	878	858	432	269	878	646	675	214	426	1010	403	652	893	-	•	787	368
222	28.6772	-1.0188	0427						2 970			368						3 681											5 933				179				1 548			8 608		265	- 14
	28	.	2.(1073	220	420	458	455	107	1	291	205	943	113	310	304	273	836	523	941	283	102	765	1	1	430	891	861	665	212	110	440	463	214	591	1018	401	774	677	301	1	580	37
221	29.4949	.4680	2.0311	1	۱					ł	1 90		-											ı		ł	91 375		1		18 893		1							1			3 754
\vdash		3	2		-					'			1169		125		_	876	-		150			1		1					1	1					241						0 213
220	26.8210	-6.9744	.9669		-		2 264			1								7 810				_				1			5 1029				6 42			_	9 517			1		2 131	- 11
H	3	_					252			1						_		5 807	-				-			۱ ۳			3 615				0 496				1 289			 	-	9 622	-
	H	2	26	IW	M3	M3	M4	M5	M6	M7	MB	6M	M10	IIW	M13	II M13	M14	M15	M16	ίW	M16	SIM	M20	M21	M22	M25	M24	M25	M26	M27	M26	M25	M30	1EM	M32	N35	M34	M35	M36	M37	M38	M39	MAC

F	-	-							_						-		_		_			_	-			=				•••		-	<u>.</u>					-			- 10	
257	18.4662	16.9150	0		711 486	1031 231	1091 67	1098 42	767 335	816 426	776 459	~	497 621	816 590	676 490	816 418	577 294	554 332	782 446	639 580	•			479 198	1 1	698 500	-									699 665	744 362					803 579 701 497
256	13.7511	25.9135	0		1 225	1		1	24	7 123	2 602		3 768			5 295	183	1 152	5 574	-	5 318	1		66		0 754						-							1 993		•••	1 739 3 404
	13	52	0	952	941	1	1	ł	620	647	1012	1	268	656	866	1065	724	431	916	491	735	I	1	785	1	810	I	74	268	1026	406	833	856	740	439	546	913	537	1151	773	499	904 873
255	18.3980	35.0307	0,0000		1223 220	1	ı	ŀ	1	1	2 900		3 666			1	8 295	1	3 713	4 607	5 411	•		100 198	1	•	1	1		57 449		-					87 352	111 10	•	1105 73		2 921 36 446
	-	ຕ	-		12	1		1			952	}	53		1142		878	1	893	314	902	1	-	Ĩ		-	1	1	395	1257	;	729	762	924	552	386	1087	601		Ē		802 1036
254	12.0491	38.0839	0.0000	1	1	1	•	•	•	1	196 880		1	380 1019			934 139	1	1023 756	280 718	953 288	1 1		195 20	1	1	1	1	210 50	1	ı ,						142 235	508 67	•	!		936 958 1101 345
	_		_	1	•	-	•		•	•				Ř		_							, 	11		I	'					_					_		'		' 	
253	11.3680	38.4688	0.0000	1	1 1	1 1	1 1	1 1	1 1	1 1	1223 879		1 1	•	1182 317		941 123	ı ı	1037 762	276 730	960 275	н 1	1 1	1207 1	1 1) 1	1	1 1	190 39	1 1	1 1		-	995 353		326 860	1149 222	498 61	ו י	!	1	950 963 1109 334
			_											,	200		8	1	780	809	183						,						1011	241	69	948	137	43				975 261
252	6.6867	39.8925	0.0000	1		1		1	ï	1	,	1	1		1185 20		967	i	1126 7	266 8		1	1	1	•	1	1	1			1						_	426 4	•	1	1	1048 90 1144 20
251	5.2451	35.2569	0.0000	ł	I	ł	1	I	ł	ı	,		1015	i	167	84	1	1	709	827	154	1	ł	;	I	1010	ı	1	87	209	99	1	917	202	158	958	114	140	I	I	1	887 251
2	5.2	35.2	0.0	1	ł	I	i	I	I	1	I	I	30	I	1046	1316	ι	١	1119	352	893	i	I	ł	1	1045	I	I	18	1310	75	I	1059	928	327	383	1086	406	I	I	I	1081 1059
0	165	327	8	1	1	ł	1	I	ı	I	ł	1	1	I	147	66	ı	ł	707	840	138	t	1	1	1	1001	1	I	ł	194	78	1	914	183	163	116	100	145	I	1	í	883 239
250	4.4465	35.1327	0.0000	1	I	I	1	I	ı	I	ł	I	1	1	1036	1312	I	ł	1132	356	890	ı	I	I	1	1070	ł	1	ł	1309	57	ı	1077	926	313	385	1083	394	I	I	I	1098 1058
5	493	17.2859	8	680	460	205	47	20	322	414	457	857	641	612	474	400	277	324	451	593	390	822	859 (177	1	507	685	596	507	358	365	525	553	479	450	679	349	452	769	178	520	584 486
245	17.7493	17.2	0.0000	1010	719	1043	1104	1113	744	191	802	806	487	816	679	827	583	537	796	635	590	805	692	492	1	718	244	326	383	774	611	733	753	573	479	693	751	596	1010	555	600	819 708
244	36.4857	13.8304	0.0000	228	ı	863	598	593	ł	ł	652	755	138	104	884	872	706	400	403	256	733	238	340	731	527	529	89	1	-		• •	•	490	668	456	331	696	455	669			568 752
2	36.4	13.8	0.0	557	I	951	979	928	1	1	189	247	588	655	746	727	526	964	451	644	557	510	281	367	416	215	375	I	896	579	1128	313	317	512	818	758	687	848	526	678	1092	396 637
243	35.7686	13.7698	0.0000	241	1033	839	576	572	1	I	640	753	157	121	869	854	690	401	403	269	720	256	356	709	505	522	113	I	644			437			460	344	683	458	697			565 743
	35	13	<u>.</u>	578	169	948	977	929	1	1	211	272	589	666	739	725	525	948	464	647	555	526	300	365	415	234	377	1	876	582	Ш	328	333	510	804	759	685	839	544	667	1072	413 636
241	45.9329	35.1289	0.0000	1	1	1	i	I	i	:	ı	I	I	151	ł	ı	3 964	1	0 731		3 930	ł		,	4 786	1	I	I		1 1014			0,	I	1		1 867	9 47	ł	ł		1 1004 2 811
	46	36	0	1	1	•	t)	i	1	1	1	1	5		1	873	1	390	219	938	1	I	1138	1104	1	1		1197	1151	1	127	151	1	1	383	1101	696	1	1	1	201
238	19.8450	28.0938	1.2367	875	346	I	i	1	ł	56	721	1	603	706	543		329					1015					I	I				831	161			682	375	244	1			812 501
2	19.	28.		739	1005	ı	I	I	I	861	821		206	521	958	1126	738	568	833	428	772	548	I	865	940	60	I	I	431	1063	534	672	718	768	539	519	955	640	1	925	620	778 914
	!x	ž	Z.	IW	M2	EM 3	M4	M5	M6	M7	Ma	6W	MIO	IIIM	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	M33	M34	M35	M36	M37	M38	M39 M40

ates (cont.
m given world coordinates
world
given v
from
orrespondences from
Ŭ
Table 4:

	258	80	262	2	26	264	265	2	266	9	3	267	31	310	3	311
H	46.3	372	1.8304	64	17.3	17.3288	27.6470	470	35.0110	110	35.0	35.0460	10.1781	781	10.	10.1781
у.	35.9346	346	-1.5658	358	3.0217	217	3.9064	164	-3.0	873	-2.3	005	16.1	16.1336	16.	16.1336
, iz	0.0000	00	0.00	8	0.0	0.0000	0.0000	8	0.0000	8	0.0000	00	1.1	1.1418	0.7	0.7570
IW	ı	,	,	1	1296	362	995	182	1	,	1	,	1257	788	1254	795
M2	ł	ı	180	293	337	645	392	925	I	ı	I	I	637	252	844	258
M3	I	ſ	ł	I	545	213	592	571	360	839	387	839	ı	1	ı	J
M4	I	1	i	1	615	31	635	329	379	547	407	548	I	I	ł	1
M5	۱	1	ï	I	:	1	620	321	361	543	387	544	ı	ı	ı	1
M6	I	I	218	196	719	817	1062	794	I	1	1309	1022	483	358	488	359
M7	1	ı	١	!	181	886	1135	854	I	1	I	1	527	466	527	463
M8	I	ł	1	1	689	133	384	300	114	254	119	271	1017	293	1021	302
6W	1	!	1	ł	920	450	550	473	280	263	279	286	1164	852	1164	843
M10	1	1	١	i	853	616	835	340	1021	122	1000	124	496	835	(501	838)
M11	ı	1	١	ł	1176	436	1019	193	1	1	ı	ı	945	787	944	785
M12	1	I	78	113	329	466	438	692	339	843	358	845	573	317	577	311
M13	I	1	324	49	434	406	451	657	248	850	270	850	793	205	794	211
M14	887	976	۱	1	367	267	378	497	277	653	288	654	547	101	554	102
M15	1	(195	712	554	616	790	600	976	747	974	731	370	331	(368	335)
M16	387	744	944	200	722	256	554	266	392	170	395	180	923	420	920	425
71M	203	117	1022	839	899	580	855	399	696	254	954	254	673	729	675	726
M18	953	938	249	89	350	377	380	565	279	691	291	692	549	251	553	250
61W	ł	ı	۱	i	1112	518	006	263	1	1	I	ı	997	864	8 6	994
M20	1	I	۱	I	1002	531	712	307	I	l	ı	ł	898	1023	(902	1019)
M21	ł	1	١	t	4	164	23	463	I	I	ł	1	I	I	ı	:
M22	1130	796	١	ı	ł	1	84	264	I	ı	1	ı	١	1	ŀ	t
M23	ı	1	1	1	768	69	483	174	311	28	307	50	918	399	926	405
M24	ı	1	١	1	735	715	717	389	973	159	946	157	278	936	279	930
M25	ł	I	1	1	759	650	738	287	996	39	941	8	337	861	343	859
M26	1211	228	:	ı	376	777	650	799	840	953	842	939	170	523	173	516
M27	1173	1027	1	1	392	289	354	487	112	599	134	604	782	193	781	201
M28	T	1	438	994	768	715	1017	578	1282	663	1274	643	434	489	434	486
M29	119	1029	1	1	734	123	500	160	ł	ı	1	1	894	490	<u>8</u>	190
M30	144	947	1107	129	743	244	502	270	316	121	317	138	926	534	926	531
M31	1	I	224	103	310	453	328	683	207	832	221	834	535	ĝ	640	305
M32	1	I	127	870	420	737	615	689	735	816	738	799	326	486	331	490
M33	368	195	988	894	926	645	918	466	1036	317	1023	319	720	816	716	813
M34	1117	875	402	76	484	349	499	536	366	676	381	676	727	207	727	209
M35	974	31	371	868	593	718	733	663	829	758	829	744	503	504	498	502
M36	ı	1	1286	273	949	397	702	426	486	246	488	267	1200	721	1195	724
M37	I	1	1	1	95	268	246	571	102	857	129	851	ı	ı	i	,
M38	I	1	1	1	594	1006	858	976	ł	I	I	ı	389	566	398	566
M39	193	1020	1185	162	832	297	595	342	420	215	420	232	994	554	1 66	550
M40	1016	813	343	301	438	521	456	ŝ	329	782	343	780	969	393	(694	388)

(b) Road regions delineated using site model

Figure 5: Region delineation using a site model

(d) Image to be monitored

Figure 5: (cont.) Region delineation using a site model

Figure 6: Image delineation using an associated map

(d) Image to be monitored

Figure 6: (cont.) Image delineation using an associated map

(f) Image of the region of interest

Figure 6: (cont.) Image delineation using an associated map

- Load raw formatted image,
- Save image in various formats,
- UM-Canny edge detector,
- Vehicle detection
- 4. We have detected and corrected several minor bugs in the RCDE source code. We have been in contact with the RCDE developers at Martin Marietta, King of Prussia, PA.

3.5. Monitoring Construction Activities

Two site model supported monitoring tasks have been considered in our system. The first is monitoring new construction activities using cylindrical structure as an example. The second is detecting and counting vehicles in a garage area, on roads, and in a training ground. In this section we discuss the subsystem for monitoring construction activities, details of low level features used, the representation of target objects in terms of the low level features, feature extraction scheme, hypothesis generation, and hypothesis verification. An experimental result on monitoring of new cylindrical structure from model board images is presented.

3.5.1. Low Level Feature Extraction:

Edge detection: A Canny edge detector [3] is first used to get an edge map and a gradient direction for each edge pixel. We have found that the edge map is more reliable than region segmentation output, especially when they are used to search for objects in a cluttered image.

Line linking: We apply a line linking program [15] to the edge detector output. In doing this, we first scan the edge map and group the edge pixels according to some predefined templates. We then merge small collinear line fragments into long straight lines.

3.5.2. Object Representation for Cylinders

We use a hierarchically parameterized object model to incorporate knowledge from the site model and the image acquisition conditions into the low level processes. For example, a 3-D model is designed to accommodate prior information about a 3-D cylinder on the ground plane as follows:

- (a) height of the cylinder, $h_{3d} \in (h_{\min}, h_{\max})$
- (b) radius of its cross-section, $r_{3d} \in (r_{\min}, r_{\max})$
- (c) center of its base $(x_w, y_w, 0)$
- (d) center of its apex (x_w, y_w, h_{3d})

In the above object model definition, the constraints on a 3-D cylindrical object become part of the object model and independent of camera pose. (h_{\min}, h_{\max}) is the range of the height of a candidate cylinder, and (r_{\min}, r_{\max}) is the range of the radius of its cross-section. We further model the contour of a cylinder as an ellipse, a pair of parallel lines, and some geometric relations between them. In doing this, we transfer the 3-D object model onto the following 2-D object model, which depends on the camera parameters, and use it as a working template for detecting cylinders.

1. Ellipse:

- (a) center $c = (x_0, y_0) \in \mathbf{A}$, where \mathbf{A} is the area of projection of the set of 3-D points of the forms (x_w, y_w, h_{3d}) on the image plane.
- (b) length of the semi-major axis, $a = r_{3d} \times s_c$.
- (c) length of the semi-minor axis, $b = r_{3d} \times s_c \times \cos \alpha$.
- (d) orientation = γ .
- 2. Pairs of parallel lines:
 - (a) symmetry axis, VL;
 - (b) length, $h_{3d} \times s_c \times \sin \alpha$.
 - (c) separation, $r_{3d} \times s_c$.
 - (d) orientation, $\frac{\pi}{2} + \gamma$.
- 3. Geometric constraint(s).

The center of the ellipse should be close to the symmetry axis of the parallel lines.

 s_c is a scale factor derived from the camera focal length and image resolution.

3.5.3. Primitive Feature Detection

Primitive features are building blocks used to describe the objects. They are useful for locating possible objects. A robust primitive feature extractor is crucial for successful target detection. The following three primitive feature extractors have been implemented for cylindrical object detection.

Circle detection: A circle is of the form

$$(X - x_0)^2 + (Y - y_0)^2 = r^2$$

where (x_0, y_0) is the center of the circle and r is its radius. A traditional approach to circle direction is the generalized Hough transform [2, 12], which requires a huge amount of memory. We have defined a two-stage template matching scheme for circle detection. In the first stage, edge templates are used to determine possible candidate centers. In the second stage, gradient direction templates are used to re-inspect the selected candidate center points. The details are as follows:

Edge template matching: For each r, we form a search space, QA, by quantizing the angular range $[0^{\circ}, 360^{\circ}]$ into $10 \times r$ levels. The radius vector, $V(\psi)$, in the Cartesian coordinate system is

$$V(\psi) = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} r \times \cos \psi \\ r \times \sin \psi \end{pmatrix}, \qquad \psi \in QA;$$
(34)

it is used as the edge template for a circle. We then apply this template to the edge map and obtain candidate centers which have sufficient numbers of supporting pixels around them.

Gradient direction template matching: The gradient direction of a boundary pixel is the direction from the center to the pixel. We apply both the edge and gradient direction templates to each candidate circle, allowing a three pixel wide tolerance band on the edge template to accommodate slightly misplaced pixels. For an edge pixel to be a supporting pixel, the pixel must fall within the tolerance band and have a gradient direction consistent with the gradient template. We accept those candidates whose consistency scores are above the high threshold for a circle. For candidates whose consistency scores fall between the high and low thresholds, we further apply a radius histogram test: if we plot a histogram of intensity as a function of distance from the candidate center, there should be a steep slope around the radius of the circle. The center and the radius of the k^{th} successful candidate are then stored as Cir_k .

Ellipse detection: An ellipse is of the form

$$\frac{(X-x_0)^2}{a^2} + \frac{(Y-y_0)^2}{b^2} = 1$$
(35)

The scheme we use for detection of an ellipse is similar to the scheme used for circle detection. The difference lies in the way we generate edge templates and gradient direction templates. To simplify the discussion, assuming that the major axis of the ellipse is parallel to the x-axis $(\gamma = 0)$, we define the following templates:

Edge templates: The edge pixels for an ellipse satisfy

$$V(\psi) = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \times \cos \psi \\ b \times \sin \psi \end{pmatrix}, \qquad \psi \in QA.$$
(36)

Note that the definition of ψ in (36), shown in Figure 8, is different from the definition of ψ in (34).

Gradient direction template: As shown in Figure 8, for an ellipse, $V(\psi)$ corresponds to point *n* (instead of *m*). The gradient orientation is determined by

$$\tan \theta = \frac{\Delta y}{\Delta x} = \frac{a}{b} \times \tan \psi.$$
(37)

We define the gradient direction template as

$$G(\psi) = \arctan\left(\frac{a}{b} \times \tan\psi\right) \qquad \psi \in QA.$$
 (38)

Figure 8: Ellipse

When the camera roll angle is non-zero ($\gamma \neq 0$), (36) and (38) become

$$V(\psi) = \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} a \times \cos \psi \\ b \times \sin \psi \end{pmatrix} \qquad \psi \in QA,$$
(39)

$$G(\psi) = \arctan\left(\frac{a}{b} \times \tan\psi\right) + \gamma \qquad \psi \in QA.$$
 (40)

Line grouping: For line grouping, we use the constraints from the camera model to check candidate parallel lines. Since the silhouette of a cylinder is always projected along the camera viewing direction, we ignore lines which are oriented far away from the expected direction. As shown in Figure 9, two lines, L_i and L_j , form a parallel line pair, $Para_{i,j}$, if they satisfy the following constraints:

Figure 9: Line grouping

^{1.} parallelism: $|\theta_i - \theta_j| \leq \epsilon_{\theta}$

2. distance: $dist(L_i, L_j) \in (r_{\min}, r_{\max})$

where

$$dist(L_i, L_j) = \frac{1}{2} \left[pl_dist(M_i, L_j) + pl_dist(M_j, L_i) \right]$$

 θ_i is the orientation of the *i*th line, ϵ_{θ} is the angle deviation threshold, and *pl_dist*(M_p, L_q) is the distance from point M_p to line L_q . For each pair of parallel lines, we further compute their axis of symmetry $VL(\theta_{ij}, M_{ij})$, which satisfies

$$\theta_{ij} = \frac{l_i \times \theta_i + l_j \times \theta_j}{l_i + l_j}$$
(41)

$$M_{ij} = \frac{1}{2}(M_i + M_j)$$
 (42)

where $\theta_{i,j}$ is the orientation of the symmetry axis, M_{ij} is a point on the symmetry axis, and l_i is the length of the i^{th} line segment. We then define the overlap between L_i and L_j as

$$Overlap(L_i, L_j) = \frac{l_i + l_j}{2.0 \times l_{i,j}}$$
(43)

where $l_{i,j}$ is the distance between p_1 and p_4 in Figure 9. In our implementation, only line pairs with overlaps greater than 0.5 are retained as valid parallel line pairs.

3.5.4. Perceptual Grouping and Hypothesis Generation

With primitive features extracted, we detect possible locations of the target. For each primary feature (ellipse candidate, C_k), the following constraints are used to search for supporting secondary features (parallel line pairs, $Para_{i,j}$'s):

- 1. $\max(pp_dist(O_k, P_s), pp_dist(O_k, P_e)) \in (\sin \alpha \times s_c \times h_{\min}, \sin \alpha \times s_c \times h_{\max})$?
- 2. $mod(|\theta(\overline{M_{ij}O_k}) (\frac{\pi}{2} + \gamma)|, 2\pi) < \epsilon_{\theta}$?

where $\theta(\overline{M_{ij}O_k})$ is the direction from M_{ij} in (42) to the center of C_k , as shown in Figure 10, and $pp_dist(P_1, P_2)$ is the distance between points P_1 and P_2 . If a grouping passes the tests, we evaluate the quality of the grouping by computing

$$H(C_k, Para_{i,j}) = \sum_{l=1}^{3} w_l \times H_l(C_k, Para_{i,j})$$
(44)

where

$$w_1 = w_2 = w_3 = \frac{1}{3} \tag{45}$$

$$H_1(C_k, Para_{i,j}) = \frac{pl_dist(O_k, VL_{i,j})}{R_k}$$

$$\tag{46}$$

$$H_2(C_k, Para_{i,j}) = \frac{|R_k - dist(L_i, L_j)/2|}{\epsilon_{width}}$$
(47)

$$H_3(C_k, Para_{i,j}) = \frac{\min(pp_dist(O_k, P_e), pp_dist(O_k, P_s))}{\max(pp_dist(O_k, P_e), pp_dist(O_k, P_s))}$$
(48)

If $H(C_k, Para_{i,j})$ is less than a threshold, an hypothesis is formed that there is a cylindrical object located at the corresponding position.

Figure 10: Perceptual grouping

3.5.5. Hypothesis Verification

The hypotheses are then verified by checking for more support from the original edge map, shadow information, and intensity distribution. The following three tests are used in cylindrical object detection.

- 1. Model inversion test: For each candidate cylinder, we fit a model and check its consistency with the original edge map. If the support is above a threshold, we accept it as a valid cylinder. Otherwise, we continue with additional tests.
- 2. Shadow test: Since the illumination direction is available from the site model, we delineate a region where the shadow of the proposed cylinder might appear. If we find a supporting shadow (a homogeneously dark region) bounded by a pair of parallel lines within the region, the hypothesis is accepted.
- 3. Homogeneity test: We can also check the intensity variations within the ellipse and the region bounded by the parallel lines. If these variations are much smaller than the intensity variation in the image, we accept the hypothesis.

Once a hypothesis passes the above tests, the detected cylinder is reported to the IA.

3.5.6. An Example: Chimney Detection

In Figure 11 an example of cylindrical object detection is shown: (a) a new image; (b) the region of interest delineated using the site model; (c) the results of edge detection; (d) the edge map after line linking; (e) cylinders detected in the new image; (f) an earlier image of the same site (the old image has been registered to the coordinates of the new image); (g) the results of cylindrical object detection when the same procedure is applied to the earlier image; and (h) the registration of the cylindrical objects detected in both images.

Figure 11: New construction detection

Figure 11: (cont.) New construction detection

Three cylinders are detected in the new image and two in the earlier image. A report that there is a new cylindrical object (the middle one in (e)) built since the last time the site was investigated is sent to the IA. The location of the new cylindrical object can be highlighted (not shown here).

3.6. Detecting and Counting Vehicles

The subsystem for carrying out another site model supported image monitoring task, detecting and counting vehicles, is reported in this section. In our implementation, vehicles are modeled as 3-D boxes with width, length and height specifications. Figure 12 shows the block diagram of the subsystem for detecting and counting vehicles. As shown in Figure 12, 3-D object model and site information (camera model, illuminant, etc.) are used through out the procedure. Details of the implementation are discussed as follows.

3.6.1. Edge Detection:

The modified Canny edge detector [15] is used for detection of edges and their gradient directions. Let **H** be a mask and define its inner product with an image **U** at location (m, n) as

$$\langle \mathbf{U}, \mathbf{H} \rangle = \sum_{i} \sum_{j} h(i,j) u(i+m,j+n) = u(m,n) \bigotimes h(-m,-n)$$

Two mutually orthogonal masks, H_1 and H_2 , are used in our implementation. Let

$$egin{array}{rcl} g_1(m,n) &=& < {f U}, {f H}_1 > \ g_2(m,n) &=& < {f U}, {f H}_2 > \end{array}$$

then the magnitude and direction of the gradient vector are

$$g(m,n) = \sqrt{g_1^2(m,n) + g_2^2(m,n)}$$

 $heta_g(m,n) = \arctan \frac{g_2(m,n)}{g_1(m,n)}$

3.6.2. Vehicle Representation

A vehicle is modeled as a 3-D box characterized by the following parameters:

- Width: w_{3d} ;
- Length: l_{3d} ;
- Height: h_{3d} ;
- Center: $(x_c, y_c, z_c);$
- Rotation Matrix: a 3×3 matrix describes the orientation of the local coordinate frame.

Figure 12: Flowchart for vehicle detection

With the camera model given, we compute the 2-D projection of the 3-D model. Since the height of a vehicle is normally shorter than its length and width, in addition, images are taken from above, the vertical contour of the vehicle is neglegible and the vehicle can be very well approximated by a 2-D rectangle. In our implementation, we search for rectangles to locate candidate vehicles.

3.6.3. Search Scheme

A modified Generalized Hough transform (GHT) is used to locate possible vehicles (by extracting the centers of candidate rectangles). The basic idea is to vote the possible loci of reference points from the detected edge points.

In our case, the reference point is the center of the rectangle. For each edge point, we also computed its gradient direction. The location of the reference point is represented as a function of the gradient direction. All such locations, indexed by gradient direction, are precomputed to form a table, see Table 5. The relevant geometry used to form the table is showed in Figure 13. The searching algorithm is described as follows.

Gradient direction	Set of radii r^k where
of edge points	$\mathbf{r} = (\mathbf{r}, \alpha)$
ϕ_1	$r_1^1, r_2^1, \ldots, r_{m_1}^1$
φ2	$r_1^2, r_2^2, \ldots, r_{m_2}^2$
<i>\$</i> 3	$r_1^3, r_2^3, \ldots, r_{m_3}^3$
•	•
•	•
•	•
ϕ_{n-1}	$r_1^{n-1}, r_2^{n-1}, \ldots, r_{m_{n-1}}^{n-1}$
ϕ_n	$r_1^n, r_2^n, \ldots, r_{m_n}^n$

 Table 5: Indexed table for reference points

- Step 1 Make a table for the rectangle to be located.
- Step 2 Create an accumulator array of possible reference points, $A(x_{\min} : x_{\max}; y_{\min} : y_{\max})$, and initialize it to zero.
- Step 3 Compute $\phi(x)$ for each edge pixel and vote for possible center of an associated rectangle at

$$x_c = x + r(\phi) \cos[\alpha(\phi)]$$

$$y_c = y + r(\phi) \cos[\alpha(\phi)]$$

Step 4 – A candidate vehicle is formed for each candidate center whose vote is above a threshold.

Figure 13: Geometry used to computed reference point

3.6.4. Hypothesis Generation

For each candidate rectangle obtained, we generate a 3-D vehicle and compute its contours in the image. We then compare the contours with the local edge map. If the match is above a threshold, a hypothesis that there is a vehicle at the corresponding location is formed. In our implementation, a rubber-band rectangle template is used to evaluate the matching. A rubber-band rectangle template is similar to a rectangle template with a tolerance band but guarantees that each pixel on the template can get no more than one vote from the pixels on the edge map along the perpendicular direction. We check not only the overall matching, but also the degree of matching on the boundaries in directions along and perpendicular to the vehicle direction. Therefore, to be qualified as a vehicle, the candidate rectangle has to have (almost) complete boundaries on both parallel sides.

3.6.5. Hypothesis Verification

The image of a 3-D vehicle is different from a 2-D rectangle in that there should be a shadow associated with the detected rectangle. Using the illuminant model available from the site model, we can form a hypothesis about the associated shadow region, which includes constraints on the position, size, intensity, and shape of the shadow region. We then detect a shadow next to the candidate vehicle. If the detected shadow is consistent with the prediction from the illuminant model, the candidate vehicle is confirmed. This hypothesis verification method is still under development. With improvements in image resolution and availability of more accurate vehicle models, we plan to develop a more sophisticated verification mechanism. The vehicle detection results presented in this section are obtained before verification.

3.6.6. Experiments

Vehicle detection in a parking area: In Figure 14, an example of vehicle detection in a parking area is shown: (a) an image to be exploited; (b) the area corresponding to the garage of interest, delineated from the region information in the site model; (c) a zoom-in view of the region of interest; (d) the detected vehicles. For vehicle detection in the parking area, we used information about the garage orientation to constrain the possible vehicle parking direction. In this case, a report of "the garage is about half full" was sent to the IA.

Vehicle detection on roads: In Figure 15, an example of monitoring vehicles on roads specified by the IA (through a QL profile) is shown: (a) an input image, (b) a window to be monitored, (c) the area corresponding to roads of interest. Since vehicles drive along the road direction, the directions of the roads are also generated and used as an additional constraint for vehicle detection. In the algorithm, only candidates whose orientations are approximately along the road direction are considered to be valid vehicles on the roads. Finally, in (d) the detected vehicles are shown.

Vehicle detection on a training ground: In Figure 16, an example of vehicle detection in a training ground is shown: (a) an input image; (b) a window to be monitored; (c) the area corresponding to the training ground which is of intelligent interest; and (d) the detected vehicles. For vehicle detection in a training ground (since vehicles can be oriented in any direction), we have to detect possible vehicles in all directions.

3.7. Ground Plane Image-to-Image Registration

Image-to-image registration is required in the following situations: (1) It is important for setup of an initial site model, especially when no ground control points are available. Imageto-image registration can provide 3-D coordinates of some control points through triangulation. (2) It is critical for automatic registration of new images into an existing site model. From the site model we may have 3-D coordinates of some feature points; to locate the image plane positions of these feature points we need an image-to-image registration algorithm. (3) For generating 2-D region delineations corresponding to arbitrary viewing directions. In [18], Zheng and Chellappa developed an automatic image-to-image registration technique for nadir images. The work was later extended to automatic registration of oblique images [4]. On the RADIUS project, partial knowledge about the cameras is available. We have developed algorithms which use the partially known camera parameters to perform image registration efficiently. Details of the image-to-image registration technique are reported in this section.

Figure 14: Vehicle detection in a parking area

(c) Region of interest

(d) Vehicle detection

Figure 15: Vehicle detection on communication roads

(a) A new image

(b) The window to be monitored

(c) Region of interest

3.7.1. Relationship between Two Images

Assuming we have two sets of camera parameters, a point $(x_w, y_w, z_w)^t$ in the world coordinates is represented in the two camera centered coordinate systems by

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \mathbf{R}_1 \begin{pmatrix} x_w - x_{1o} \\ y_w - y_{1o} \\ z_w - z_{1o} \end{pmatrix} = \begin{pmatrix} r_{11}^1 & r_{12}^1 & r_{13}^1 \\ r_{21}^1 & r_{22}^1 & r_{23}^1 \\ r_{31}^1 & r_{32}^1 & r_{33}^1 \end{pmatrix} \begin{pmatrix} x_w - x_{1o} \\ y_w - y_{1o} \\ z_w - z_{1o} \end{pmatrix}$$
(49)

and

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \mathbf{R}_2 \begin{pmatrix} x_w - x_{2o} \\ y_w - y_{2o} \\ z_w - z_{2o} \end{pmatrix} = \begin{pmatrix} r_{11}^2 & r_{12}^2 & r_{13}^2 \\ r_{21}^2 & r_{22}^2 & r_{23}^2 \\ r_{31}^2 & r_{32}^2 & r_{33}^2 \end{pmatrix} \begin{pmatrix} x_w - x_{2o} \\ y_w - y_{2o} \\ z_w - z_{2o} \end{pmatrix}$$
(50)

respectively. So the transform from $(x_1, y_1, z_1)^t$ to $(x_2, y_2, z_2)^t$ is

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \mathbf{R}_2 \begin{pmatrix} x_w - x_{2o} \\ y_w - y_{2o} \\ z_w - z_{2o} \end{pmatrix}$$

$$= \mathbf{R}_2 \mathbf{R}_1^t \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \mathbf{R}_2 \begin{pmatrix} x_{1o} - x_{2o} \\ y_{1o} - y_{2o} \\ z_{1o} - z_{2o} \end{pmatrix}$$

$$= \mathbf{R}_{21} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} \delta x_o \\ \delta y_o \\ \delta z_o \end{pmatrix}$$

$$(51)$$

where

$$\mathbf{R}_{21} = \mathbf{R}_2 \mathbf{R}_1^t \tag{52}$$

$$=\begin{pmatrix} r_{11}^{2} & r_{12}^{2} & r_{13}^{2} \\ r_{21}^{2} & r_{22}^{2} & r_{23}^{2} \\ r_{31}^{2} & r_{32}^{2} & r_{33}^{2} \end{pmatrix} \begin{pmatrix} r_{11}^{1} & r_{21}^{1} & r_{31}^{1} \\ r_{12}^{1} & r_{22}^{1} & r_{32}^{1} \\ r_{13}^{1} & r_{23}^{1} & r_{33}^{1} \end{pmatrix}$$
(53)

$$=\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
(54)

$$\begin{pmatrix} \delta x_o \\ \delta y_o \\ \delta z_o \end{pmatrix} = \mathbf{R}_2 \begin{pmatrix} x_{1o} - x_{2o} \\ y_{1o} - y_{2o} \\ z_{1o} - z_{2o} \end{pmatrix}$$
(55)

Note that for points on the ground plane we have $z_w = D$, a constant, so that

$$\begin{pmatrix} x_w \\ y_w \\ D \end{pmatrix} = \mathbf{R}_1^t \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_{1o} \\ y_{1o} \\ z_{1o} \end{pmatrix}$$

$$D = r_{13}^1 x_1 + r_{23}^1 y_1 + r_{33}^1 z_1 + z_{1o}$$
(56)

$$\frac{D-z_{1o}}{z_1}=r_{13}^1\frac{x_1}{z_1}+r_{23}^1\frac{y_1}{z_1}+r_{33}^1$$

Assume f_1 and f_2 are the focal lengths of camera-1 and camera-2, ϵ_1 and ϵ_2 are the pixel spacings for image-1 and image-2, and $(X_1, Y_1)^t$ and $(X_2, Y_2)^t$ are the image plane coordinates for image-1 and image-2, respectively; then using central projection we have

 $\frac{D - z_{1o}}{z_1} = r_{13}^1 \frac{\epsilon_1}{f_1} X_1 + r_{23}^1 \frac{\epsilon_1}{f_1} Y_1 + r_{33}^1$ $\frac{f_1}{\epsilon_1 z_1} (D - z_{1o}) = r_{13}^1 X_1 + r_{23}^1 Y_1 + r_{33}^1 \frac{f_1}{\epsilon_1}$ (57)

07

$$\frac{\epsilon_2}{f_2} X_2 = \frac{x_2}{z_2}
= \frac{r_{11}x_1 + r_{12}y_1 + r_{13}z_1 + \delta x_o}{r_{31}x_1 + r_{32}y_1 + r_{33}z_1 + \delta z_o}
= \frac{r_{11}\frac{\epsilon_1}{f_1} X_1 + r_{12}\frac{\epsilon_1}{f_1} Y_1 + r_{13} + \frac{\delta x_o}{z_1}}{r_{31}\frac{\epsilon_1}{f_1} X_1 + r_{32}\frac{\epsilon_1}{f_1} Y_1 + r_{33} + \frac{\delta x_o}{z_1}}
f_2 r_{11}X_1 + r_{12}Y_1 + \frac{f_1}{\epsilon_1}r_{13} + \frac{\delta x_o}{D - z_1} (r_{13}^1 X_1 + r_{13}^2 Y_1 + r_{13}^3 \frac{f_1}{f_1})$$
(50)

$$X_{2} = \frac{f_{2}}{\epsilon_{2}} \cdot \frac{r_{11}X_{1} + r_{12}Y_{1} + \frac{f_{1}}{\epsilon_{1}}r_{13} + \frac{\delta x_{o}}{D - z_{1o}}(r_{13}^{1}X_{1} + r_{23}^{1}Y_{1} + r_{33}^{1}\frac{f_{1}}{\epsilon_{1}})}{r_{31}X_{1} + r_{32}Y_{1} + \frac{f_{1}}{\epsilon_{1}}r_{33} + \frac{\delta z_{o}}{D - z_{1o}}(r_{13}^{1}X_{1} + r_{23}^{1}Y_{1} + r_{33}^{1}\frac{f_{1}}{\epsilon_{1}})}$$
(58)

Similarly,

$$Y_{2} = \frac{f_{2}}{\epsilon_{2}} \cdot \frac{r_{21}X_{1} + r_{22}Y_{1} + \frac{f_{1}}{\epsilon_{1}}r_{23} + \frac{\delta_{y_{0}}}{D - z_{1o}}(r_{13}^{1}X_{1} + r_{23}^{1}Y_{1} + r_{33}^{1}\frac{f_{1}}{\epsilon_{1}})}{r_{31}X_{1} + r_{32}Y_{1} + \frac{f_{1}}{\epsilon_{1}}r_{33} + \frac{\delta_{z_{0}}}{D - z_{1o}}(r_{13}^{1}X_{1} + r_{23}^{1}Y_{1} + r_{33}^{1}\frac{f_{1}}{\epsilon_{1}})}$$
(59)

So the ground plane transform from a pixel (X_1, Y_1) in image-1 to image-2 is given by

$$X_2 = \frac{A X_1 + B Y_1 + C}{E X_1 + F Y_1 + G}$$
(60)

$$Y_2 = \frac{H X_1 + I Y_1 + J}{E X_1 + F Y_1 + G}$$
(61)

where A, B, C, E, F, G, H, I and J are constants:

$$A = \frac{f_2}{\epsilon_2} \left(r_{11} + \frac{\delta x_o}{D - z_{1o}} r_{13}^1 \right)$$
(62)

$$B = \frac{f_2}{\epsilon_2} \left(r_{12} + \frac{\delta x_o}{D - z_{1o}} r_{23}^1 \right)$$
(63)

$$C = \frac{f_2 f_1}{\epsilon_2 \epsilon_1} \left(r_{13} + \frac{\delta x_o}{D - z_{1o}} r_{33}^1 \right)$$
(64)

$$E = r_{31} + \frac{\delta z_o}{D - z_{1o}} r_{13}^1 \tag{65}$$

$$F = r_{32} + \frac{\delta z_o}{D - z_{1o}} r_{23}^1 \tag{66}$$

$$G = \frac{f_1}{\epsilon_1} \left(r_{33} + \frac{\delta z_o}{D - z_{1o}} r_{33}^1 \right)$$
(67)

$$H = \frac{f_2}{\epsilon_2} \left(r_{21} + \frac{\delta y_o}{D - z_{1o}} r_{13}^1 \right)$$
(68)

$$I = \frac{f_2}{\epsilon_2} \left(r_{22} + \frac{\delta y_o}{D - z_{1o}} r_{23}^1 \right)$$
(69)

$$J = \frac{f_2 f_1}{\epsilon_2 \epsilon_1} \left(r_{23} + \frac{\delta y_o}{D - z_{1o}} r_{33}^1 \right)$$
(70)

3.7.2. Registration Using Known Camera Parameters

When the camera parameters are available, we can register the ground planes of any two images using (60-70). In Figure 17, the registration of two oblique images of different resolution is shown: (a) a high resolution model board image, M1, with Ground Space Distance (GSD) equal to 15 inch, $\alpha = 30.7^{\circ}$, $\beta = 339.2^{\circ}$, and $\gamma = 197.6^{\circ}$; (b) a low resolution model board image, M40, with GSD=26 inch, $\alpha = 44.7^{\circ}$, $\beta = 254.8^{\circ}$, and $\gamma = 340.4^{\circ}$; (c) the registration of M40 to M1; and (d) the registration of M1 to M40.

3.7.3. Registration with Unknown Camera Parameters

When no information about the camera is available, we still can register two oblique images by automatically matching (at least) four corresponding points and solving for the transform parameters in (60-61). For the principal point of image-1 we have $(X_1, Y_1) = (0,0)$; its corresponding location in the coordinates of image-2 is $(X_2, Y_2) = (\frac{C}{G}, \frac{J}{G})$. As long as the two cameras are well above the ground, the principal point of image-1 must be a well-defined point (finite) in the coordinates of image-2. Hence $G \neq 0$. The ground plane transformation of image-1 to image-2 can be determined in terms of eight parameters a_i , $i = 1, \ldots, 8$ as

$$X_2 = \frac{a_3 X_1 + a_5 Y_1 + a_1}{-a_7 X_1 - a_8 Y_1 + 1}$$
(71)

$$Y_2 = \frac{a_4 X_1 + a_6 Y_1 + a_2}{-a_7 X_1 - a_8 Y_1 + 1}$$
(72)

where

$$a_{1} = \frac{C}{G} = \frac{f_{2}}{\epsilon_{2}} \frac{\left(r_{13} + \frac{\delta x_{o}}{D - z_{1o}} r_{13}^{1}\right)}{\left(r_{33} + \frac{\delta z_{o}}{D - z_{1o}} r_{13}^{1}\right)}$$

$$a_{2} = \frac{J}{G} = \frac{f_{2}}{\epsilon_{2}} \frac{\left(r_{23} + \frac{\delta y_{o}}{D - z_{1o}} r_{13}^{1}\right)}{\left(r_{33} + \frac{\delta z_{o}}{D - z_{1o}} r_{13}^{1}\right)}$$

$$a_{3} = \frac{A}{G} = \frac{f_{2}\epsilon_{1}}{f_{1}\epsilon_{2}} \frac{\left(r_{11} + \frac{\delta x_{o}}{D - z_{1o}} r_{13}^{1}\right)}{\left(r_{33} + \frac{\delta z_{o}}{D - z_{1o}} r_{13}^{1}\right)}$$

(b) Input image-2 (M40)

(d) M1 registered to M40

$$a_{4} = \frac{H}{G} = \frac{f_{2}\epsilon_{1}}{f_{1}\epsilon_{2}} \frac{\left(r_{21} + \frac{\delta y_{0}}{D - z_{10}}r_{13}^{1}\right)}{\left(r_{33} + \frac{\delta z_{0}}{D - z_{10}}r_{33}^{1}\right)}$$

$$a_{5} = \frac{B}{G} = \frac{f_{2}\epsilon_{1}}{f_{1}\epsilon_{2}} \frac{\left(r_{12} + \frac{\delta x_{0}}{D - z_{10}}r_{13}^{1}\right)}{\left(r_{33} + \frac{\delta z_{0}}{D - z_{10}}r_{13}^{1}\right)}$$

$$a_{6} = \frac{I}{G} = \frac{f_{2}\epsilon_{1}}{f_{1}\epsilon_{2}} \frac{\left(r_{22} + \frac{\delta y_{0}}{D - z_{10}}r_{13}^{1}\right)}{\left(r_{33} + \frac{\delta z_{0}}{D - z_{10}}r_{13}^{1}\right)}$$

$$a_{7} = -\frac{E}{G} = -\frac{\epsilon_{1}}{f_{1}} \frac{r_{31} + \frac{\delta z_{0}}{D - z_{10}}r_{13}^{1}}{\left(r_{33} + \frac{\delta z_{0}}{D - z_{10}}r_{13}^{1}\right)}$$

$$a_{8} = -\frac{F}{G} = -\frac{\epsilon_{1}}{f_{1}} \frac{r_{32} + \frac{\delta z_{0}}{D - z_{10}}r_{13}^{1}}{\left(r_{33} + \frac{\delta z_{0}}{D - z_{10}}r_{13}^{1}\right)}$$

When camera parameters are not available, the eight parameters are obtained by solving the linear equations

$$a_1 + X_{1i}a_3 + Y_{1i}a_5 + X_{1i}X_{2i}a_7 + Y_{1i}X_{2i}a_8 = X_{2i}$$
(73)

$$a_2 + X_{1i}a_4 + Y_{1i}a_6 + X_{1i}Y_{2i}a_7 + Y_{1i}Y_{2i}a_8 = Y_{2i}$$
⁽⁷⁴⁾

for i = 1, ..., N, where N is the number of matched points.

Overview of the registration algorithm: Figure 18 illustrates the image registration algorithm. Given two images, we first use an illuminant direction estimator [17, 18] to get an initial estimate of the camera orientation change. A small number of feature points are then located using a Gabor wavelet model for detecting local curvature discontinuities [9]. The feature points extracted from different frames are matched using area correlation. Three match verification tests are used to exclude false matches. After the initial matching is achieved, a multiresolution transform-and-correct matching is implemented to obtain high accuracy registration. At each resolution, image-2 is first transformed to the coordinates of image-1 using the estimated matching parameters and then match refinement is performed on the feature points extracted in image-1.

Feature point detection: For feature point extraction we use a Gabor wavelet decomposition and the local scale interaction based algorithm reported in [9]. The basic wavelet function used in the decomposition is of the form

$$\Phi(X, Y, \vartheta) = e^{-(X'^2 + Y'^2) + i\pi X'}$$

$$X' = X \cos \vartheta + Y \sin \vartheta$$

$$Y' = -X \sin \vartheta + Y \cos \vartheta$$
(75)

where ϑ is the preferred spatial orientation. In our experiments ϑ is discretized into four orientations. The feature points are extracted as the local maxima of the energy measure

 $I(X,Y) = \max_{\vartheta} \{ ||W_{j_1}(X,Y,\vartheta) - \gamma W_{j_2}(X,Y,\vartheta)|| \}$ (76)

where

$$W_j(X,Y,\vartheta) = \mathbf{f} \bigotimes \Phi(2^{-\frac{1}{2}}X,2^{-\frac{1}{2}}Y,\vartheta), \ j = \{j_1,j_2\}.$$

Here j_1 and j_2 are two dilation parameters, and $\gamma = 2^{(j_1-j_2)}$ is a normalizing factor. In implementing the above algorithm, we further require the energy measure for a feature point to be the maximum in a neighborhood with radius equal to 10 and above a threshold.

Match verification: In our algorithm, the initial matching is implemented on 2-D rotation compensated images. Since no further knowledge about the camera parameters is used in the initial matching, false matches due to perspective deformation and similarities between similar objects are inevitable. Automatic exclusion of these false matches is a key to success in image registration. We have used three tests to exclude less reliable matches.

1. Distance test: The translation between the rotation-compensated images should not be larger than a certain fraction of the image size. A \cdots 'id matching pair, (X_r, Y_r) and (X_l, Y_l) , should satisfy

$$\begin{cases} d_x = |X_r - X_l| \leq \lambda L_x \\ d_y = |Y_r - Y_l| \leq \lambda L_y \\ |X_r - X_l| + |Y_r - Y_l| \leq \kappa \max\{L_x, L_y\} \end{cases}$$
(77)

For example, $\lambda = \frac{1}{2}$ and $\kappa = \frac{3}{2}\lambda$. L_x and L_y are image size along x and y directions respectively.

2. Variation test: The translations used in the correct matches should support each other, i.e.

$$|d_i - \overline{d}| \le \mu \sigma \tag{78}$$

where d_i is the distance between the *i*th matching pair, \overline{d} and σ are the mean and standard deviation of the distances for all the matched feature pairs, and μ is a threshold, for example $\mu = \sqrt{3}$ for the uniform distribution.

3. Outlier exclusion: The matched feature pairs should satisfy the image transform model. Candidate matching pairs with large residual errors should be excluded. This test also helps to exclude matches on building roofs, etc.

Experimental results: In Figures 19 and 20, the registration of two aerial images is shown: (a) the image taken by the first camera; (b) the image taken by the second camera; (c) the registration of (b) to (a); and (d) the difference between (a) and (c).

4. Ongoing and Future Work

4.1. Hierarchical Model-Based Segmentation

We are developing a general model-based procedure for image segmentation based on a hierarchical connected component analysis. This method will be useful for detection and

(a) Image-1

(b) Image-2

(c) Registration of (b) to (a)

(d) Difference between (a) and (c)

Figure 19: Registration of two aerial images (Example-1)

- (c) Registration of (b) to (a)
- (d) Difference between (a) and (c)

Figure 20: Registration of two aerial images (Example-2)

counting as well as for change detection based on comparing the components of the segmentation algorithm. This multi-level segmentation is used as a search space for various complex objects. The hierarchical connected component analysis procedure consists of a multi-stage, region-growing type of segmentation. The initial stage is the result of an initial segmentation of the image into connected components. In our implementation, two adjacent pixels are considered to be connected if the difference in their gray level values is less than a threshold ε . Each successive stage merges adjacent components (or regions) of the previous stage. The selection of the regions to be merged is based on local analysis of region properties. Currently, only average boundary contrast is used. The new stage represents a coarser segmentation of the image. A complete hierarchy is built, i.e., the merging process ends when there are no more regions to merge.

.

The hierarchy is used as a search space for diverse objects. Currently, a model for an object of interest is interactively created. The model includes various distinctive elements of the object and geometric and topological relations among them. The search process tests for the presence of these elements at several levels of the hierarchy. It is expected that intact or nearly intact elements of the object appear at coarser levels, thus allowing us to find the object using minimal search.

The general paradigm for extracting candidate objects from an image is the following:

Locale specification: A locale in the image is selected to start the process of finding object candidates. A locale is defined with respect to known objects or it can correspond to the whole image. The set of basic connected components that lie within a locale is called the basis B_0 .

Segmentation: As previously mentioned, the segmentation is a simple gray-level connected components algorithm. The result is a labeled image, in which each connected component is assigned a unique value. These connected components will be referred to as basic components. A characteristic of this set is that any boundary between any two components has an average contrast greater than the threshold ε .

Next, a region adjacency graph (RAG) is constructed from the basic component set. This RAG will be referred to as RAG(0). The parameter 0 indicates that it is the initial RAG of the hierarchy, which is computed next. Several properties of each region are computed; they include area, perimeter, boundary average intensity contrast, etc. In parallel, a list of boundaries is computed from RAG(0), and it is sorted in increasing order of the boundaries' average intensity contrast.

Hierarchy of segments: Starting from RAG(0), the hierarchy consists of the sequence of adjacency graphs RAG(0), RAG(1),..., RAG(i),..., RAG(n). Each RAG(i) is formed by merging the regions whose common boundary has minimum average contrast (CONT(i)) in RAG(i - 1). Therefore, any boundary in RAG(i) has average contrast greater than CONT(i). The minimum contrast boundaries at each stage are located through the precomputed boundary list. This list is updated after merging regions (i.e., after creating RAG(i)), since new edges are created, some become redundant and the ones with contrast equal to CONT(i) disappear. A unique symbolic representation is maintained for each region at each level of the hierarchy. Let $r_{i,j}$ be the j^{th} region (in some arbitrary order) in RAG(i). Each region $r_{i,j}$ in RAG(i) has two kinds of link: (1) a link to each of the regions $\{p_{k,i} \mid k < i \text{ and } p_{k,i} \text{ is a}$ component of $r_{i,j}\}$ and (2) a link to region $t_{m,n}$, where m > i and $r_{i,j}$ is a component of $t_{m,n}$. For all j, the first link of $r_{0,j}$ is NULL; if some $r_{i,j}$ is not a component of any region, its second link is NULL.

The hierarchy can be viewed abstractly as a tree, where each node in the tree is a region (a basic component or a multiple basic component region). The lowest level corresponds to the basic components. Given that there are n basic components obtained from a segmentation using threshold ε , there will be at most 2n nodes in the tree.

Search: The hierarchy is the basis for extracting information during the search process. The search elements are regions (2D structures). The search procedure initially looks for a basis (a level in the hierarchy) that includes at least a seed. A seed is a region that satisfies necessary conditions, specified by the model. A seed is preferably chosen high in the hierarchy since it is desired that complete objects be found as early in the search as possible (top-down approach).

Next, search looks for combinations of regions that satisfy the conditions expressed by the model. It is guided by predefined search heuristics. The purpose of the heuristic search is to systematically order the search space in order to attain a complete, yet efficient, search. The final output is a list of object candidates.

4.2. Automatic Image-to-Site-Model Registration

3

Currently, image-to-site-model registration requires that the IA manually select and adjust several control points whose 3-D coordinates in the world coordinate system are known. On the RADIUS project, it is assumed that approximate camera parameters are available. We are developing two automatic image-to-site-model registration algorithms. When approximate 3-D coordinates of the camera stare point are available, we will use an image-to-image registration algorithm to automatically search for the image domain locations of control points whose 3-D coordinates are available from the site model and perform camera resection to get an accurate camera model for the newly acquired image. When the camera stare point is unknown, even with given approximate camera orientation information, the displacement between the new image and the projected world coordinates can be quite large. We will first perform automatic feature detection to select a small set of feature points and then do image-to-image registration based on these feature points. We will do another image-toimage registration to get the image domain locations of a set of control points whose 3-D world coordinates are known. Camera resection can then be performed and an accurate camera model for the new image can be obtained.

4.3. Automatic Optimum Image Selection

Given a change monitoring task in a specific region, several images are usually available. How to automatically select the best images for the given monitoring task based on the scene, illuminant and imaging conditions is an interesting research topic. We plan to develop an automatic site analysis algorithm which will analyze visibility, detectability, and unambiguity, and will generate invariance measures for each feature object. These measurements will also be useful for automatic control point selection and model supported optimization. We also plan to develop a shadow detection and correction algorithm.

2

4.4. QL Interfaces

Based on our progress in using RCDE in connection with vehicle detection and construction monitoring, we are working with members of TASC team and with some RADIUS users to develop more sophisticated QL profiles. This will include more sophisticated model based object detection algorithms and user friendly menu and query driven image exploitation recipes.

4.5. Integration of Collateral Information

An advantage of model supported image analysis is that collateral information can be used to improve efficiency and accuracy. The more collateral information is used, the easier the monitoring tasks become. Currently, collateral information such as a region map is manually generated for the site model. We plan to develop a semiautomatic region map generation algorithm. The following scenarios will be considered: (1) When collateral information is available on an ordinary map, we will use an automatic curve tracing algorithm to transfer the region curves from the map to the site model. (2) When images taken from different types of sensor are available, we will derive regions from composition of segmentation results using images taken from an appropriate sensor. For example, SAR images are good for segmentation of water, concrete structures, and vegetation. (3) Region information can also be derived from an associated digital terrain map, when it is available. We will integrate the database management facility provided by the THREAD project into our system. We also plan to integrate an image synthesis capability into our system. We will also investigate the incorporation of temporal information into the monitoring algorithm.

5. Other Related Work

5.1. Feature Extraction in SAR images

The RADIUS project will benefit by progress in high resolution SAR imagery analysis tasks such as region segmentation and target detection. Recently, we have developed a constant false alarm rate (CFAR) point target detection algorithm for high resolution SAR imagery [16]. Traditional CFAR detection algorithms produce many false targets when applied to single-look, high-resolution, fully polarimetric SAR images, due to the presence of speckle. We have developed a two-stage CFAR detector followed by conditional dilation for detecting point targets in polarimetric SAR images. In the first stage possible targets are detected, and false targets due to the speckle are removed by using global statistical parameters. In the second stage, the local statistical parameters are used to detect targets in regions adjacent to targets detected in the first stage. Conditional dilation is then performed to recover target pixels lost in second stage CFAR detection. The performance of a CFAR detector is degraded if an incorrect statistical model is adopted and the data are correlated. A goodness-of-fit test is performed to choose the appropriate distribution, and the effects of decorrelation of the data are considered. Good experimental results were obtained when our method was applied to single-look, high-resolution, fully polarimetric SAR images acquired from Dr. Les Novak of MIT Lincoln Laboratory. We have also developed a CFAR detector for non-Gaussian clutter distributions such as the K, Weibull and lognormal distributions. This algorithm has been tested on single look, single polarization SAR images.

5.2. Building Delineation

3

Building detection is of interest in site model construction and change monitoring. Recently, we have developed an energy function based approach for detection of rectangular shapes in an image. Our building detection algorithm is based on line grouping [8]. The proposed edge-based approach involves extracting straight lines from an edge map of the image. Then a Markov-random field (MRF) is built on these lines, i.e., a suitable neighborhood and an energy function are specified based on the relative orientations and spatial locations of the lines. This energy function can be construed as a measure of the conditional probability of observing the lines given the rectangular shapes (the positions and number of which are unknown) in the image. Minimizing the energy function is equivalent to selecting maximum likelihood estimates of the rectangular shapes in the image from the observed lines. Simulated examples are presented to demonstrate the robustness of the proposed method. This approach, supplemented with some qualitative information about shadows and gradients, has been used to detect rectangular buildings in real aerial images. Due to the poor quality of the real images, only partial shapes are extracted in some cases. A modified deformable contour ("snakes") based approach is then used for completion of the partial shapes.

6. Summary and Conclusions

At the end of the first year of the RADIUS project, we have made considerable progress on mastering RCDE, developed some prototypes of QL profiles for imagery monitoring, and transferred some of our results to Martin Marietta. Based on our experience during the first year, we have made research plans for two up-coming years of the RADIUS project.

References

- [1] ARPA, RADIUS Testbed System Operations Concept, July 1993.
- [2] D. H. Ballard, "Generalizing the Hough transform to detect arbitrary shapes," *Pattern Recognition*, Vol. 13, pp. 111-122, 1981.
- [3] J. F. Canny, "A computational approach to edge detection," IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-8, pp. 679–698, Nov. 1986.

- [4] R. Chellappa, Q. Zheng, L. Davis, D. DeMenthon, and A. Rosenfeld, "Site-modelbased change detection and image registration," in *Proc. DARPA Image Understanding* Workshop (Washington, DC), pp. 205-216, Apr. 1993.
- [5] D. Climenson, "Model-Supported Exploitation Concepts." RADIUS Project Office, Oct. 1992.

:

- [6] J. D.M. McKeown, "Toward automatic cartographic feature extraction," in Mapping and Spatial Modeling for Navigation (L. Pau and L. Kanal, eds.), pp. 149–180, Berlin: Springer-Verlag, 1990.
- [7] A. Huertas and R. Nevatia, "Detecting buildings in aerial images," Comput. Vision, Graphics, Image Processing, Vol. 41, pp. 131-152, 1988.
- [8] S. Krishnamachari and R. Chellappa, "An energy minimization approach to building detection in aerial images," in Proc. of IEEE Conf. Acoust., Speech, and Signal Proc. (Adelaide, Australia), 1994.
- [9] B. S. Manjunath, R. Chellappa, and C. Malsburg, "A feature based approach to face recognition," in Proc. IEEE Conf. Comput. Vision Pattern Recognition (Champaign, Illinois), pp. 373-378, 1992.
- [10] B. Methley, Computational Models in Surveying and Photogrammetry, Glasgow and London: Blackie, 1986.
- [11] J. Mundy, R. Welty, L. Quam, T. Strat, W. Bremner, M. Horwedel, D. Hackett, and A. Hoogs, "The RADIUS Common Development Environment," in Proc. DARPA Image Understanding Workshop (San Diego, CA), pp. 215-226, Jan. 1992.
- [12] S. D. Shapiro, "Feature space transforms for curve detection," Pattern Recognition, Vol. 10, pp. 129–143, 1978.
- [13] V. Venkateswar and R. Chellappa, "A hierarchical approach to detection of buildings in aerial images," Tech. Rep. CAR-TR-567, Center for Automation Research, University of Maryland, College Park, Aug. 1991.
- [14] V. Venkateswar and R. Chellappa, "Hierarchical stereo matching using feature groupings," Tech. Rep. CAR-TR-556, Center for Automation Research, University of Maryland, College Park, May 1991.
- [15] V. Venkateswar and R. Chellappa, "Extraction of straight lines in aerial images," IEEE Trans. Pattern Anal. Machine Intell., Vol. 16, pp. 1111-1116, Nov. 1992.
- [16] Y. Wang, R. Chellappa, and Q. Zheng, "Detection of point targets in high resolution SAR images," in Proc. of IEEE Conf. Acoust., Speech, and Signal Proc. (Adelaide, Australia), 1994.
- [17] Q. Zheng and R. Chellappa, "Estimation of illuminant direction, albedo and shape from shading," *IEEE Trans. Pattern Anal. Machine Intell.*, Vol. PAMI-13, pp. 680-702, 1991.

[18] Q. Zheng and R. Chellappa, "A computational vision approach to image registration," IEEE Trans. Image Processing, Vol. 3, pp. 311-326, July 1993.

*

*

73