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Abstract

In this paper we study underactuated manipulator systems, which are composed of both active

and passive joints. The study of underactuated systems is interestir "for a variety of applications

including space robots, hyperredundant robots, and mobile robots. When one or more joints in

a normal manipulator system fail, control techniques for the resulting underactuated system can

make use of dynamic coupling within the system for position control. In this paper, we define

a performance measure for the motion of these underactuated manipulator systems. We call this

performance measure actuability. Actuability is a measure of the ability of the actuators in a robot

manipulator to cause acceleration of the end-effector. Based on this concept, we develop sensitivity

analysis of the system's performance with respect to geometric and dynamics parameters of the

robot. This investigation is significant for the design and control of an underactuated robot system.
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1 Introduction

Researchers have recently begun studying robotic manipulators with more joints than actuators.

These devices, which are commonly referred to as 'underactuated manipulators' [1] [2], are
interesting because they allow us to investigate several important kinds of manipulation. For space
robotics scenarios where failed actuators cannot easily be repaired, we are interested in knowing
how well we can control the arm with the remaining actuators. It is also conceivable that a space
manipulator should be be designed with less actuators than joints if it were determined that such a
configuration retained most of the usefulness of a fully actuated manipulator, while weighing less
and using less power. In addition to potentially helping with fault tolerance, weight-reduction, and
energy efficiency in space robots, the study of underactuated manipulation can help us to better
understand and possibly recreate natural motion. When a person walks, a monkey swings through

trees, or a child rides a swing, there are often 'joints' which are not actuated during part or all of
the motion [3] [1]. The late movie star Bruce Lee, through his precise control of the placement of
the tips of a pair of 3-link numbchucks, as well as his ability to control impact force at these tips,
presents an example of the potential effectiveness of such hybrid passive/active mechanisms. For
hyper-redundant robot systems, such as snake-robots, it is certainly desirable for some of the joints
to be passive if it can be determined that the robot is still fully controllable.

One of the most basic questions in the study of any manipulator is simply "How effective
are the joint-actuators in causing motion at the end-effector?" For a fully-actuated manipulator,

such questions are generally answered by investigating the dynamic manipulability ellipsoid of the
manipulator [4]. Dynamic manipulability is a useful measure of both the relative magnitude of
the manipulator's ability to cause acceleration in a certain configuration, and also of the degree of
dependence that the magnitude of the achievable acceleration has on the direction of that accelera-
tion. In the case of the underactuated manipulator, however, the concept of dynamic manipulability
needs to be developed further to be a useful measure in answering the same fundamental question.

In this paper, we develop a measure that is actually an indication of the arbitrariness of the
actuators' ability to cause acceleration at the end-effector in an underactuated robot system. We
call the measure the actuability of a manipulator in a given configuration. Based on this concept,
the robot's geometric parameters and dynamic properties can be optimally determined in the sense

of maximizing actuability. The robot's control-input profile can be optimally planned to avoid
potential singularities. Moreover, the maximum payload capacity and the effect of payload on
system performance can be easily understood using actuability.



2 Actuability

There are two common forms of manipulability measures for manipulators: kinematic manip-
ulability, and dynamic manipulability [4]. Kinematic manipulability is a characterization of a

manipulator which is based on the singular-value decomposition of the manipulator's Jacobian
matrix, defined in (3). Dynamic manipulability is similar to kinematic manipulability, but takes

the inertial matrix of the manipulator into account as well.

The derivation of the actuability measure is initially similar to that of dynamic manipulability.
This is because a purely kinematics-based measure is of far less interest than a dynamics-based one

for underactuated manipulators. An underactuated manipulator cannot be directly controlled in

the position or the velocity domains, because the unactuated joints must be controlled through the
dynamic coupling effects that operate between links of the manipulator. Coupling forces between

the actuated and unactuated joints of an underactuated manipulator are of two main types: those
which can be produced by actuators, and those which cannot. For a characterization of actuability,

then, we begin with the basic dynamic equation of a manipulator.

2.1 Dynamics Based on the Jacobian

Through a Newton-Euler or a Lagrangian derivation, we can determine the basic equation for the

dynamics of a serial manipulator to be

,r = M(q)4 + h(q, 4) + G(q), (1)

where M(q) is the inertial matrix of the manipulator, h(q, 4) represents the Coriolis and centrifugal

forces, and G(q) is the gravitational force acting on the manipulator.
If the manipulator is partitioned into an actuated part with n. actuated joints and an unactuated

part with n, unactuated joints, we can partition (1) as follows:

-r,= = Maa Map] i +[h, + rG (2)

where the inertial matrix of the actuated part Maa is an n. x n, submatrix of M, the inertial matrix

of the unactuated part Mpp is an np x np submatrix of M, and the coupling matrices Mp and

Mpa are n,, x np and np x na submatrices of M, respectively. Note that this expression describes

any robot configuration with mixed passive and active joints in a series mechanism. Because we
partition the matrices so that the equations representing the active joints are in the top rows while the

equations representing the passive joints are in the bottom rows, the matrix M is not a conventional

inertial matrix of a serial-chain manipulator. Therefore, this expression will be valid for general
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underactuated systems. For the special case of 'lower-actuated' configurations, where all passive

joints are located near the base of the mechanism, the matrix M is a conventional inertial matrix.

Also note that Ma and Mvp are always square matrices, but Mp, and Mp are normally not square.

In equations (1) and (2), the values of the nonlinear velocity-related matrix h(q, 4) and the

gravitational force matrix G(q) are determined by geometric configuration and joint velocities

(q, 4) only. In our analysis, we will be more concerned with the effects of the joint torques r on
the acceleration of the joints 4 than the effects of gravitational and nonlinear forces. While we can

directly control the actuator torques in the active joints, we cannot directly affect the gravitational,

Coriolis, and centrifugal forces in the system. Thus, we subtract the gravitational and nonlinear

forces from 7, resulting in a linear relationship in terms of 'virtual torque'.

The relationship between end-effector velocity and actuator velocity is given by the Jacobian

J = [J. Jp] such that
- Oqj (3)

Note that J., which describes the relationship between end-effector velocity and the velocity of the

active joints, is a (d, x n.) matrix and 1p, the relationship between the end-effector velocity and

the joint velocity of the unactuated joints, is a (d,,, x np) matrix, where d is the number degrees of

freedom of the workspace or the number of manipulation variables. In this case, as in the case of

M, J is not a conventional Jacobian matrix due to its reorganization for the purpose of partitioning

it into active and passive parts.

The Jacobian allows us to write

X = J(q)4 (4)

=fC = J(q)4 + a,(q,4) (5)

where a, = J(q)q can be interpreted as the virtual acceleration caused by the nonlinear relationship

between the two coordinate systems for q and r. Following the derivation by Yoshikawa [4],

a, = JJ+a, + (I - JJ+)a, (6)

= JM-'MJ+a + (I - JJ+)a,,

we obtain from (1) and (5) the relationship:

i,- (I - JJ+)a, = JM-'[T - h(q,4)- g(q) + MJ+a,]. (7)

where the torques due to the Coriolis force, centrifugal force, and gravitational force, and (MJ+a,),

which arejoint-generable torques due to the nonlinear-relationship between the coordinate systems

of q and v, are subtracted from the actuator torque r. In addition, all the accelerations which are
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not producible by joint motion, (I - J+J)a,, are subtracted from the Cartesian acceleration term
i'. Note that if the actuator is not in a kinematically singular configuration, then I - J+J = 0.

We define the virtual torque as

f = r - h(q,4)- g(q) + MJ +a ,. (8)

This is the physical joint-torque without Coriolis, gravitational, or centrifugal forces, and with the

nonlinear torques due to the mapping from Cartesian space to joints space added-in. Next, we

define the virtual acceleration
v =i (I - JJ+)a,, (9)

which is physical acceleration of the end-effector minus any acceleration in directions which cannot

be affected by joint torques (due to kinematic singularities). We can now rewrite (7) as

- (JM-). (10)

For fully-actuated manipulators, the dynamic manipulability measure is based-on this equation.
In these systems, we generally analyze the manipulator performance in terms of the 'dynamic
manipulability ellipsoid', which is the possible range of acceleration such that

v(J+)TMT(MJ+)- < 1. (11)

2.2 Actuability Matrix

The dynamic manipulability measure shows how well each joint can generate motion (in terms of
acceleration) at the end-effector. In the case of underactuated manipulators, however, not all of the
joints are actively controllable. Therefore we need a measure to evaluate how well active joints
can generate end-effector motion, or how strong the dynamic coupling is from active joint motion
to end-effector motion. To this end, we derive a new concept, actuability, for characterization of

underactuated manipulator systems.
We first decompose (10) as

F 4aa Oai
[.Ja Opa Op fp I (12)

I OP. ]P (13)

If na > np, we can calculate 0 using the formula,

M, = MpM j Mp' + MpMpaka,.MapM' J (14)

aa =M. - gapg pp ,  (15)
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or if nP > na,

M.,'MpMp,' M+aM M07~'Mpa P (16)

M,= - MM..'Map. (17)

We can then write

v = [Jaqaa + JpqSa JOap + Jbpp] [1 (18)

= (JaO0 a + JOp)fa + (JqOap + Jr~pp)fp (19)

= Afa + B.fp (20)

In (19), the term (Jaa + Jp ',,a = A,,0 represents the part of virtual acceleration which
the actuators can produce, and the other term (J:aa + J~pp)+f = B., p represents the part of the

virtual acceleration which is due entirely to apparent forces in the unactuated joints.
We are only interested in Afa, because it is this term which describes the ability of actuator

torques to induce acceleration in the manipulator. We want to determine the arbitrariness of

the acceleration which can be achieved through actuation. Just like gravitational, Coriolis, and

centrifugal forces which were discounted in "virtualizing" the torque, the forces B,, f, which are

functions only of joint position and velocity (q, 4), are non-controllable and thus not interesting

for an actuability measure. The matrix A,, = (J4oa + J~pa), on the other hand, directly relates
virtual torque and virtual acceleration. We call A,, the actuability matrix in this paper. We can

investigate the actuability matrix in the same way that the matrix JM - ' is used for analyzing the
dynamic manipulability of fully actuated manipulators. This actuability matrix can also be written

in a more general form as,

A,, = J (M-'diag[k(l), k(2), ... ,k(na + np)]) (21)

where k(i) is 1 if the ith joint is actuated and 0 if the ith joint is unactuated.

2.3 Actuability Ellipsoid

We want to develop a measure of how well acceleration in the end-effector can be generated given

the allowable input torque on the active joints. For this purpose, we use a unit torque I II I < 1. The

set of end-effector accelerations this set of torques can produce is an ellipsoid in d,-dimensional

space given by
v (+ 1, E R(J). (22)
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This ellipsoid is called the actuability ellipsoid.
Let the singular-value decomposition of the actuability matrix, A,,, be

AU = UUEUV. V (23)

where u = [diag(.,. .. ,d,) 101, o.u, > au2 > ... > oad, and the orthonormal matrix

Uu = [u ... , ud. The principal axes of the actuability ellipsoid are

O'ulUul O'u2Uu2, .. . , Oud. Uudw.

The actuability ellipsoid can be interpreted in the same way as the dynamic manipulability
ellipsoid. If the ellipsoid for a given configuration is of a generally large size, that means that
the actuators should be able to produce a large acceleration of the end-effector. The greatest
acceleration of the end-effector can be produced in the direction of the major axis of the actuability
ellipsoid, and the least acceleration can be produced along the minor axis. If the size of one of
the axes of the actuability ellipsoid goes to zero, then the actuability matrix is singular, and the
manipulator cannot cause acceleration of the end-effector in an arbitrary direction.

2.4 Scalar Measures of Actuability

To use the actuability ellipsoid for real-time control, or to perform off-line optimization of ma-
nipulator kinematic-redundancy for following end-effector trajectories, we would like to have
characterizations of actuability in a scalar form. One such useful measure is the volume of the
ellipsoid. If the value of this scalar measure ever falls to zero, then we are at a singular configuration
with respect to actuability. The volume of the actuability ellipsoid can be shown to be proportional
to the quantity V/det[A ]A,, or V/det[A,,A1] if A has more rows than columns. Matrix A has more
rows than columns whenever n. < d.' Figure 3 shows two such manipulator configurations. In
these cases, the manipulability measure w., is proportional to the length of the line segment that
is a one-dimensional version (because of the single actuator) of the manipulability ellipsoid. The
length of this line segment should never be directly compared to a higher-dimensional measure
such as the area of a 2-D actuability ellipse.

Another useful measure is a quantity related to the shape of the actuability ellipsoid. If the ratio
of the lengths of the shortest and greatest axes of the manipulability ellipsoid is low, then we know

'Note that the conditions for the use of the second expression, /d-et[A, A.], already imply that the manipulator
is always 'singular' with respect to workspace dimensionality, and thus this measure is proportional to a lower-
dimensional version of the manipulability ellipsoid. If this quantity goes to zero, we have an even stronger kind of
singularity.
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that the ability of the actuators to cause acceleration of the end-effector is highly dependent upon

the direction of the desired acceleration. We also know that the error-sensitivity of the end-effector

acceleration is highly dependent upon this ratio. In fact, it can be shown that

I < II_Lu 1 (24)

where A-T, is the error in actuator torque and AV is the resulting error in end-effector acceleration.

Therefore, we have the following scalar actuability measures:

J det[ATA,, if n, > dw

WU, = Idet[Au]I if n. = d, (25)

1 det[A,,A] if n, < dw

Wu2 = audj/uI. (26)

For the purpose of maximum actuability, we would like w,,l to be as great as possible, and for

the purpose of limiting error sensitivity, we would like W,2 to be as close to one as possible. One

approach for controlling a redundant underactuated manipulator might be to check these quantities

periodically, and once wu, or wu2 drops below a certain threshold, to use the offending quantity as

part of a redundant control algorithm which attempts to return the quantity to a safe value while

maintaining the desired trajectory as closely as possible. Note that as W2 -+ 0, we know that

wu, --+ 0 (see figures 1 and 2), so in extreme cases we need only optimize for one actuability

measure at a time.

7



2 0.35
2 aocuabIo

1.t 2 ac ...... 0.3 3 ack m .
actalm4 actualon

1.6 4 a "

S 1. 0.25

S 1.2 0.2

0. 0.15

0.6 0.1 P

0.4 
0.05

0.2

0 5 10 15 20 25 30 0 5 10 15 20 25 30
End-Effect, 0 oaition End-Eflector Pmuton

Figure 1: Actuability index comparison: w,,, (left) and w,2 (rigiht) of upper-actuated manipulators

3 Simulation Study

3.1 Actuability Index

Here are some results from simulations of a simple four-link planar manipulator with the following

geometric and dynamic specifications:

link 1 lC I m

1 1.0 0.5 0.3 1.0

2 1.0 0.5 0.3 1.0

3 1.0 0.5 0.3 1.0

4 1.0 0.5 0.3 1.0

For observing the evolution of the actuability ellipsoid over a trajectory, we investigate a

trajectory generated by constraining the joints to have the same angle, q, = q2= q3 = q4 where qi

is the angle of the ith joint from the base, and varying this angle from 0.0 to 1.55 radians.

Figures I and 2 show the values of the actuability ellipsoid along the demonstration trajectory

for manipulators with different numbers of actuators, and for manipulators that are upper-actuated,
where actuators are in the joints nearest the end-effector, and lower-actuated, where actuators are in

the joints nearest the base. Later figures diagram in more detail the evolution of the ellipsoids. Note

that the 1-actuator plots of the first plots in Figures I and 2 show afundamentally different quantity

than the 2-, 3-, and 4-actuatorplots. The 1-actuator plots show w,,I relating to the length of the 1 -D

actuability ellipsoid, while the other plots show w,, relating to the area of the 2-D ellipsoid. This

is why in the first plot of Figure 1, the I-actuator plot does not register the kinematic singularity

that the other plots show for 'end-effector position 0', the straight-manipulator configuration.
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Figure 2: Actuability index comparison: w ,, (left) and w,2 (right) of lower-actuated manipulators

The actuability-index figures show that, in general, tip acceleration is more easily generated by
upper-actuated manipulators (w , up to 1.0) than by lower-actuated manipulators (w , up to 0.2).
This is not surprising when it is considered that the effect of all torques in the actuators are equally
weighted in the current actuability indices, and that actuators near the base must cause acceleration

of the entire arm to achieve acceleration at the end-effector, while actuators near the effector must

only accelerate a small portion of the manipulator to achieve acceleration at the tip. It should prove
true, however, that this ability of upper-actuated manipulators to cause acceleration at the tip is

most useful locally, but less useful for coarse motion from one tip-location to another across the
workspace. This would be a good subject for a more formal investigation.

We can see in the first plot of Figure 2 that index w, for the lower-actuated manipulators was

zero at the singularity, rose to a maximum around end-effector position 6, and then fell again. The
low value of the manipulability index in the lower-actuated manipulators when the arm is curled

is in contrast to the behavior of the index for the upper-actuated manipulator. This suggests that

the actuators at the base of the manipulator are applying effective torques on the arm around the

end-effector rather then applying force at the end-effector.

Figures 3, 5, and 6 show the actuability ellipsoid at the end-effector of lower- and upper-actuated

manipulators with 1, 2, and 3 actuated joints.

3.2 Actuabifity Elfipsoid

The first plot of Figure 3 shows the actuability of a manipulator with a single actuator in the
joint nearest the end-effector. The plot makes intuitive sense in that the ellipsoid is always 1-
dimensional, of almost constant length, and is almost perpendicular to the long axis of the last
link. A torque in the actuator will produce a motion in the last link, and a less-significant motion
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(due to greater rotational inertia) in the rest of the arm as a whole. Any deviation in direction of
end-effector acceleration from the perpendicular to the long axis of the last link will be due to the
smaller acceleration of the rest of the arm.

Contrast this to the second plot of Figure 3, showing a manipulator with a single actuator in
the joint at the base. We see that the alignment of the I -D actuability ellipsoid is generally close
to the major axis of the last link rather than perpendicular to it. We can see from Figure 2 that the
actuability measure w, varies between 0.0 and 0.2 for the lower-actuated manipulator as opposed

to the upper-actuated manipulator where w,,, varies between 1.6 and 1.8 along the same trajectory
(see Figure 1). The ability of an actuator at the base to generate acceleration at the tip of the
robot is hindered by the large amount of manipulator mass that it has to move to cause motion in

the end-effector. In addition, actuator torques cannot be directly transmitted to the end-effector
because of the unactuated revolute joints between the end-effector and the actuator. Actuator force
can be most effectively transmitted to the end-effector along the major axes of the links, because
the passive joints do not transmit torques. Thus the actuability ellipse is generally aligned with the
major axis of the last link. When the arm is curled at each joint, the link axes are not aligned, and it
is difficult to transmit force along the links to the tip. Thus, at the more curled arm-configurations,
the index w,,, approaches zero.

The upper-actuated manipulator is much like a child on a swing (see Figure 4), if we consider

the connection between the chain and the supporting bar as one unactuated joint (joint 1), and the
child's knee as an actuated joint (joint 2). We can consider the child's feet as the 'end-effector'.
The child may easily accelerate her feet in Cartesian space by generating torques at the knees.
In addition, through the coupling between the knee-joint (joint 2) and joint 1, she may swing
without begin pushed by anyone. The actuable acceleration of the feet is at any given time almost

Figure 3: Actuability ellipsoids of manipulators with I actuator: left picture is upper-actuated,

right is lower-actuated
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perpendicular to the shins (link 2) and is fairly uniform at any given time. This matches our
observations of Figure 3, and our conclusion that upper-actuation seems fairly effective in terms of

actuability.

If the connection between the supporting bar and the swing is itself a rigid bar (instead of
a chain), we can imagine trying to accelerate the child's feet by applying a torque at joint 1.

Obviously, a torque at the child's knee is much more effective in accelerating her feet than the same

torque at joint 1, due to the long lever-arm and the fact that we need to accelerate the child's entire

body to accelerate her feet using joint 1. This is the basic reason that actuability is much smaller

for lower-actuated manipulators. Note, however, that the scale of the motion that can be caused by

joint 1 is much greater than the scale of the motion that can be caused by joint 2.
Figures 5 and 6 show the actuability ellipsoids for two- and three-actuator manipulators. Similar

observations may be made about these manipulators and the single-actuator manipulators. Note

that actuability of the upper-actuated manipulators is generally much greater than that of the lower-

actuated manipulators. Moreover, the plots show that the major axis of the actuability ellipsoid of

the lower-actuated manipulators is generally parallel to the major axis of the last link, while the

major axis of the upper-actuated manipulator's actuability ellipsoid is generally perpendicular to

the last link.
Adding another joint actuator to a lower-actuated manipulator generally improves actuability

in all configurations. Adding another joint actuator to an upper-actuated manipulator generally

improves actuability in the straighter configurations.

In design of an underactuated manipulator, as in most manipulators, it is probably a good idea

to have stronger actuators in the joints nearer the base. For this reason, it might be a good idea

to weigh the joint torques in the actuability index such that the torques of lower-actuators can be

greater than torques at the upper actuators.
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Figure 4: Child on a swing is much like a upper-actuated manipulator

Figure 5: Actuability ellipsoids of manipulators with 2 actuators: left picture is is upper-actuated,

right is lower-actuated

Figure 6: Actuability ellipsoids of manipulators with 3 actuators: left picture is is upper-actuated,

right is lower-actuated
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4 Sensitivity Analysis

Underactuated manipulators are generally difficult to control through model-based schemes, be-

cause the results are highly sensitive to modelling error. The difficulty lies in the fact that these

schemes rely on manipulator models for both the dynamic feedforward term and the kinematic
mapping from Cartesian space to joint space. The kinematic mapping here is related to dynamics,

and any error in the dynamic parameters will cause error in joint control commands. For this reasor

it is important to be able to determine the sensitivity of the behavior of a given manipulator with

respect to functions such as modelling error or end-effector loading. It is still interesting to know

this in cases where more robust control techniques are used, such as those in [2] and [1]. When,

for example, the manipulator picks-up an object with a slightly different mass than expected, if the
dynamics of the arm therefore vary significantly from what we are expecting, the arm will be very

difficult to control until it drops the load.
Actuability represents a manipulator's ability to produce end-effector acceleration. Because

this is a measure of dexterity in a dynamic sense, the sensitivity of a manipulator's actuability

with respect to a given function of its parameters is a measure of the degree to which the local

performance of the manipulator depends on that particular function. In designing an underactuated

manipulator for configuration and geometric parameters, we may want to investigate the sensitivity

of actuability with respect to the geometric parameters of the manipulator, and to the location of

actuators in the mechanism. In motion planning for the robot, we may want to see the sensitivity of

actuability to the manipulator's trajectory and use the sensitivity measure as a performance index

for maximizing actuability. In controlling the robot, we may want to analyze the sensitivity of the

robot motion with respect to the payload at the tip.
We define the sensitivity of a manipulator's actuability at a given configuration with the

expressions
S WI8I (27)

s= f o
and

an OWw /Wu (28)
2 f/f f

where f is a function with respect to which we would like to measure sensitivity of actuability

index wl. For simplicity, we only discuss the sensitivity of w, 1 , although we can study sensitivity

of wu2 in exactly the same way. Equation (27) is a measure of absolute sensitivity, while (28) is a

relative measure. One measure may be better than the other for a given purpose, and other similar

measures could be equally useful.
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Figure 8: Sensitivities sI and S2 to link masses for lower-actuated manipulator with 3 actuators

4.1 Sensitivity to Link Masses

Figures 7 through 10 are examples of sensitivity analysis with respect to errors in the manipulator

model. Such analysis can be performed with respect to a number of relevant model parameters,

such as the location of the center of gravity for a given link, the length of a link, or the inertia of
a link. In this case, we choose to analyze the effect of modeling error in the link-mass parameters.
The figures show the indices of equations (27) and (28) where the functions f are the values of the

masses of each link.

In the plots of Figure 7, we see that for the lower-actuated manipulator with two actuators,
the sensitivity is much greater for the masses of the unactuated links than for the actuated links.

The same is true for the manipulator with three actuators, as is shown in Figure 8. Note that the
sensitivity of the actuability at the singularity point (end-effector position zero) is always zero,

because the actuability is zero at this point.

The sensitivity plots of the upper-actuated manipulators (Figures 9 and 10) are more compli-
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Figure 9: Sensitivities s I and S2 to link masses for upper-actuated manipulator with 2 actuators
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Figure 11: Sensitivities s, and S2 to load mass for lower-actuated manipulator with 2 actuators

cated. Figure 9 shows wild fluctuations in relative sensitivity near the singularity point, but this is

due to the fact that the absolute value of actuability in this region is very low (see Figure 1). As the

arm becomes more curled, the relati,"1 sensitivity of the actuability decreases greatly. Figure 10

shows that the absolute sensitivity of the actuability of the upper-actuated manipulator with three

actuators to link masses is almost the same as for the manipulator with two actuators, but the
relative sensitivity is much lower due to the fact that the value of actuability index w,, is generally
much greater (see Figure 1). In both cases, the sensitivity of the actuability index to mass m4 is

much greater than the sensitivity to the other masses. This is due to the fact that the major axis

of the actuability ellipsoid of these manipulators is generally perpendicular to the major axis of
the last link (Figures 5 and 6), indicating that the greatest source of end-effector acceleration for

these manipulators is the actuator at the last joint accelerating the last link. The actuability of the

end-effector is thus closely related to the ability of the actuator in the last joint to cause acceleration
in the last link, and is thus sensitive to the link's mass and the distance between the last joint and
the last link's center of gravity.

4.2 Sensitivity to Loading

If the manipulator is used to pick-up and transport loads, it is useful to see how the amount of
load at the end-effector affects the sensitivity of the manipulator's actuability to errors in the load-

estimate. Figures 11 through 13 show these effects for upper- and lower-actuated manipulators
with 2 actuators.

These plots show that for every case investigated, the sensitivity of actuability to absolute
error in the end-effector load estimate is worse for lower payloads. This is not at all surprising:
we expect a change in end-effector load of 1 kilogram to have more effect on actuability of a

16



0.07 1

0.06 MbO25  0.9?"MI-O.O0---

0.8 ,Mb0.75 -

0.04 0.6

z 0.0 0.5..
0.03 0.4

0.02 0.3 r

0.01 
02

0 5 10 15 20 25 30 0 5 10 15 20 25 30
End Efecr Poiion End Effector Polton

Figure 12: Sensitivities s1 and S2 to load mass for lower-actuated manipulator with 3 actuators
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Figure 13: Sensitivities s I and 82 to load mass for upper-actuated manipulator with 2 actuators

40 kilogram arm if it has a loading of zero kilograms than if it is already carrying a 10 kilogram

payload. We also see from the plots that actuability is generally more sensitive to a percentage error

in load magnitude when the mass of the load being carried is greater. In other words, a 10 percent

change in end-effector load causes relatively more change in performance if the load is currently

40 kilograms than if the load is currently 1 kilogram. The relative sensitivities of end-effector

loading were very consistent across the range of manipulators that were simulated.

4.3 Sensitivity to Kinematic Parameters

In Figures 14 and 15, we see the effects of varying the length of one link of a manipulator, without

changing the location of the center of mass of the link. The plots shown are for upper- and lower-

actuated four link manipulators with three actuators each.

The plots show the sensitivity of the manipulator's actuability to variations in the length of
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link 1, 11, over a range of values of l and various arm positions where all the joints have the same

angle. Figure 14 shows the sensitivity measures sI and 82 for the lower-actuated manipulator, and

Figure 15 shows the same measures for the upper-actuated manipulator. We see from Figure 14

that when 11 is near 0.5, the lower-actuated manipulator is more sensitive to errors in 11 while it

is in curled configurations. When 11 is between 0.75 and 1.5, the manipulator is mere sensitive to

errors in 11 while it is in straighter configurations.

Figure 15 shows sensitivity data from an upper-actuated manipulator. For this manipulator, we

see that that when 11 = 0.5 there is an acute sensitivity to l in straighter configurations. However,

when 11 is greater than 0.75, sensitivity is much lower over the entire range of configurations.

This agrees with the fact that the longer we make l in the lower-actuated manipulator, the more

end-effector motion is due to the actuated part of the manipulator, which is generally less sensitive

to modelling error than the unactuated part.
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5 Conclusion

In this work, the authors have developed an index for the ability of an underactuated manipulator
to generate motion at its end-effector. This index, called actuability, is a useful tool for design of

underactuated manipulators, optimization of manipulator configurations, and for real-time control.

The usefulness of actuability for analyzing an underactuated manipulator resembles that of the

manipulability measure for conventional manipulators. We have investigated actuability analysis

through actuability ellipsoids and scalar indices of actuability, and have demonstrated analysis of

the sensitivity of manipulator models to parameter errors and end-effector loading. The simulation

results and concepts presented here are valuable for understanding the dynamic coupling of such

an underactuated system, as well as the effect of various parameters on the performance of the

system.
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