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Abstract

Autonomous outdoor navigation has broad application in mining, construction, planetary exploration, and military
reconnaissance. To date, most of the work tested on actual robots has centered on local navigation tasks such as
avoiding obstacles or following roads. Global navigation has been limited to simple wandering, path tracking,
straight-line goal seeking bebaviors, or executing a sequence of scripted local behaviors. The problem of global
navigation in nutdoor environments has been addressed in the literature, but it is generally assumed that the world
exhibits coarse topological structure, most of which is known, and that sensors and position estimation systems
provide highly-accurate data. These assumptions break down for real robots in highly unstructured and unknown
environments. With every image, the sensors provide new information about the world that can impact the robot’s
path to the goal. Some of the information is real, some arises from noise, and some arises from aliasing due to robot
position error. Replanning may be needed for every image, and it may be nontrivial due to the unstructured nature of
the environment. To address these problems, we have developed a complete system that integrates local and global
navigation. This system is capable of finding a goal given no a priori map of the environment. It is robust to noise,
vehicle position error, and is able to replan in real-time. We describe the system and present the results of experiments
performed using a real robot.



1.0 Introduction

Autonomous outdoor navigators have a number of uses, including planetary exploration, construction site work, min-
ing, military reconnaissance, and hazardous waste remediation. These tasks require a mobile robot to move between
points in its environment in order to transport cargo, deploy sensors, or rendezvous with other vehicles or equipment.
The problem is complicated in environments that are unstructured and unknown. In such cases, the robot can be
equipped with one or more sensors to measure the structure of its environment, locate itself within the environment,
and check for hazards. By sweeping the terrain for obstacles, recording its progress through the environment, and
building a map of sensed areas, the navigator can find the goal position if a path exists, even if it has no prior knowl-
edge of the environment.

A number of systems have been developed to address this scenario in part. We limit our discussion to those systems
tested on a real robot in outdoor terrain. Outdoor robots operating in expansive, unstructured environments pose new
problems, since the optimal global routes can be complicated enough that simple replanning approaches are not
feasible for real-time operation. The bulk of the work in outdoor navigation has centered on local navigation, that is,
avoiding obstacles [11{2)(3]1{71{14](171(20](27](28]{31] or following roads [4][S][8]{15](25]. The global navigation
capabilities of these systems have been limited to tracking a pre-planned trajectory, wandering, maintaining a
constant heading, or following a specific type of terrain feature. Other systems with global navigation components
typically operate by planning a global route based on initial map information and then replanning as needed when the
sensors discover ah obstruction [9]1{10}{21].

These approaches are insufficient if there is no initial map of the environment or if the environment does not exhibit
coarse, global structure (e.g., a small network of routes or channels). It is possible to replan a new global trajectory
from scratch for each new piece of sensor data, but in cluttered environments the sensors can detect new information
almost continuously, thus precluding real-time operation. Furthermore, sensor noise and vehicle position error can
lead to phantom obstacle detection and obstacle aliasing respectively, flooding the global navigator with more, and
sometimes erroneous, data.

We have developed a complete navigation system that solves these problems. The system is capable of driving an
outdoor mobile robot from an initial position to a goal position. The mobile robot is equipped with a range sensor for
detecting obstacles and a position estimation system for determining the robot’s location in the world. It may have a
prior map of the environment or no map at all. The robot is the Navigational Laboratory Il (NAVLAB II) shown in
Figure 1. The NAVLAB Il is a Highly Mobile Multi-Wheeled Vehicle (HMMWYV) modified for computer control of
the steering function. The NAVLAB II is equipped with an Environmental Institute of Michigan (ERIM) scanning
laser rangefinder for measuring the shape of the terrain in front of the vehicle. Three on-board Sun Microsystems
SPARC II computers process sensor data, plan obstacle avoidance maneuvers, and calculate global paths to the goal.

Figure 2 shows the results of an actual run on the vehicle. The dimensions of the area are 500 x 500 meters. The robot
began at the position labelled S and moved to the goal location at G. Initially, the robot assumed the world to be
devoid of obstacles and moved toward the goal. Twice a second, the perception system reported the locations of
obstacles detected by the sensor. Each time, the vehicle steered to miss the obstacles and replanned an optimal global
trajectory to the goal. The vehicle was able to drive at approximately 2 meters per second. The vehicle’s trajectory is
shown in black, the detected obstacles in dark grey, and a high-cost buffer around the obstacles in light grey.




Figure 1: NAVLAB Hl Vehicle Testbed

This paper describes the software system for goal acquisition in unknown environments. First, the global navigator is
described, followed by the local obstacle avoider and the steering integration system. Second, experimental results
from actual vehicle runs are described. Finally, conclusions and future work are described.
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Figure 2: Example of an Actual Run

2.0 The Navigation System

2.1 System Overview

Figure 3 shows a high-level description of the navigation system, which consists of the global navigator called D*,
local navigator called SMARTY, and steering arbiter called the Distributed Architecture for Mobile Navigation
(DAMN). The global navigator maintains a coarse-resolution map of the environment, consisting of a Cartesian lat-
tice of grid cells. Each grid cell is labelled untraversable, high-cost, or traversable, depending on whether the cell is
known to contain at least one obstacle, is near to an obstacle, or is free of obstacles respectively. For purposes of our
tests, all cells in the map were initialized to traversable. The global navigator initially plans a trajectory to the goal
and sends steering recommendations to the steering arbiter to move the vehicle toward the goal. As it drives, the local
navigator sweeps the terrain in front of the vehicle for obstacles. The ERIM laser rangefinder is used to measure the
shape of the terrain, and the local navigator analyzes the terrain maps to find sloped patches and range discontinuities
likely to correspond to obstacles. The local navigator sends steering recommendations to the arbiter to move the vehi-
cle around these detected obstacles. Additionally, the local navigator sends detected untraversable and traversable
cells to the global navigator for processing. The global navigator compares these cells against its map, and if a dis-
crepancy exists (i.e., a traversable cell is now untraversable or vice versa), it plans a new and optimal trajectory to the
goal. The key advantage of the global navigator is that it can efficiently plan optimal global paths and is able to gen-




erate a new path for every batch of cells in a fraction of a second. The global navigator updates its map and sends new
steering recommendations to the steering arbiter.

The steering recommendations sent to the arbiter from the two navigators consist of evaluations for each of a fixed set
of constant-curvature arcs (i.e., corresponding to a set of fixed steering angles). The global navigator rates steering
directions highly that drive toward the goal, and the local navigator rates directions highly that avoid obstacles. The
arbiter combines these recommendations to produce a single steering direction which is sent to the vehicle controller.

The rest of this section details the global navigator (D*), the local navigator (SMARTY), the steering arbiter
(DAMN), and the interfaces between them.

Figure 3: Navigation System Diagram
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2.2 The D* Algorithm for Optimal Replanning

2.2.1 Overview

If a robot is equipped with a complete map of its environment, it is able to plan its entire route to the goal before it
begins moving. A vast amount of literature has addressed the path-finding problem in known environments (see
Latombe [18] for a good survey). In many cases, however, this scenario is unrealistic. Often the robot has only a par-
tial map or no map at all. In these cases, the robot uses its sensors to discover the environment as it moves and modi-
fies its plans accordingly. One approach to path planning in this scenario is to generate a “globaP’ path using the
known information and then circumvent obstacles on the main route detected by the sensors [10], generating a new
global plan if the route is totally obstructed. Another approach is to move directly toward the goal, skirting the perim-
eter of any obstructions until the point on the obstacle nearest the goal is found, and then to proceed directly toward
the goal again [19]. A third approach is to direct the robot to wander around the environment until it finds the goal,
penalizing forays onto terrain previously traversed, so that new areas are explored [24]. A fourth approach is to use
map information to estimate the cost to the goal for each location in the environment and efficiently update these
costs with backtracking costs as the robot moves through the environment [16).

While these approaches are complete, they are also suboptimal in the sense that they do not generate the lowest cost
path, given the sensor information as it is acquired and assuming all known a priori information is correct. It is




possible to generate optimal behavior by using A* [22] to compute an optimal path from the known map information,
moving the robot along the path until either it reaches the goal or its sensors detect a discrepancy between the map
and the environment, updating the map, and then replanning a new optimal path from the robot’s current location (o
the goal. Although this brute-force, replanning approach is optimal, it can be grossly inefficient, particularly in
expansive environments where the goal is far away and little map information exists.

The D* algorithm (or Dynamic A*) is functionally equivalent to the brute-force replanner (i.e., sound, complete, and
optimal), but it is far more efficient. For large environments requiring a million map cells to represent, experimental
results indicate that it is over 200 times faster than A* in replanning, thus enabling real-time operation. See Stentz
[29] for a detailed description of the algorithm and the experimental resuits.

D* uses a Cartesian grid of eight-connected cells to represent the map. The connections, or arcs, are labelled with
positive scalar values indicating the cost of moving between the two cells. Each cell (also called a “state™) includes an
estimate of the path cost to the goal, and a backpointer to one of its neighbors indicating the direction to the goal.

Like A*, D* maintains an OPEN list of states to expand. Initially, the goal state is placed on the OPEN list with an
initial cost of zero. The state with the minimum path cost on the OPEN list is repeatedly expanded, propagating path
cost calculations to its neighbors, until the optimal cost is computed to all cells in the map. The vehicle then begins to
move, following the backpointers toward the goal. While driving, the vehicle scans the terrain with its sensor. If it
detects an obstacle where one is not expected, then all optimal paths containing this arc are no longer valid. D*
updates the arc cost with a prohibitively large value denoting an obstacle, places the adjoining state on the OPEN list,
then repeatedly expands states on the OPEN list to propagate the path cost increase along the invalid paths. The
OPEN list states that transmit the cost increase are called RAISE states. As the RAISE states fan out, they come in
contact with neighbor states that are able to lower their path costs. These LOWER states are placed on the OPEN list.
Through repeated state expansion, the LOWER states reduce path costs and redirect backpointers to compute new
optimal paths to the invalidated states.

Conversely, if the vehicle’s sensor detects the absence of an cbstacle where one is expected, then a new optimal path
may exist from the vehicle to the goal (i.e., through the “missing” obstacle). D* updates the arc cost with a small
value denoting empty space, places the adjoining state on the OPEN list as a LOWER state, then repeatedly expands
states to compute new optimal paths wherever possible. In either case, D* determines how far the cost propagation
must proceed until a new optimal path is computed to the vehicle or it is decided that the old one is still optimal. Once
this determination has been made, the vehicle is free to continue moving optimally to the goal, scanning the terrain
for obstacles.

Figure 4 and Figure 5 illustrate this process in simulation. Figure 4 shows a 50 x 50 cell environment after the initial
cost calculation to all cells in the space. The optimal path to any cell can be determined by tracing the backpointers to
the goal. The light grey obstacle represents a known obstacle (i.e., one that is stored in the map), while the dark grey
obstacle represents an unknown obstacle. Note that the backpointers pass through the dark grey obstacle since it is
unknownp The robot, equipped with a 5-cell radial field-of-view sensor, starts at the center of the left wall and
proceeds toward the goal. Initially, it deflects around the known obstacle, but heads toward the unknown obstacle. As
its sensor detects the obstacle, the cost increases fan out from the obstacle via RAISE states until they reach the
LOWER states around the bottom of the light grey obstacle. These LOWER states redirect the backpointers to guide
the vehicle around the bottom and to the goal. Figure 5 illustrates the final map configuration, after the vehicle has
reached the goal. Note that optimal paths have been computed to some but not all of the cells in the environment. This
effect illustrates the efficiency of D*. It limits the cost propagations to the vicinity of the obstruction, while still
ensuring that the robot’s path is optimal.

Figure 6 shows a 450 x 450 cell simulated environment cluttered with grey obstacles. The black curve shows the
optimal path to the goal, assuring all of the obstacles are known a priori, before the vehicle begins its traverse. This
path is known as omniscient optimal. Figure 7 shows planning in the same environment where none of the obstacles
are stored in the map a priori. This map is known as optimistic, since the vehicle assumes no obstacles exist unless
they are detected by its 15-cell radial sensor. This trajectory is nearly two times longer than omniscient optimal;
however, it is still optimal given the initial map and the sensor information as it was acquired.
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Figure 4: Bacipointers after Initial Propagation
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Figure 6: Planning with a Complete Map

Figure 7: Planning with an Optimistic Map
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2.2.2 Cell Expansion from SMARTY Data

A number of modifications were made to D* to adapt it to an actual robot system. The system diagram is shown in
Figure 8. As the vehicle drives toward the goal, its laser rangefinder scans the terrain in front of the vehicie. The
SMARTY local navigator processes this sensor data to find obstacles and sends the (x,y) locations of detected obsta-
cles (untraversable cells) to D* at regular intervals, using the TCX {6] message passing system. Additionally,
SMARTY sends (x,y) locations of cells known to be devoid of obstacles (traversable cells). Since the D* map is used
to represent a global area, its grid cells are of coarser resolution than SMARTY's (i.e., 1 meter versus 0.4 meter). D*
keeps track of the locations of obstacles within each of its grid cells, adding or deleting obstacles as needed based on
the data from SMARTY. If an obstacle is added to a previously empty map cell or all of the obstacles are deleted from
a previously obstructed cell, then this constitutes a significant event within D* since a traversable cell becomes an
untraversable cell or an untraversable cell becomes a traversable cell respectively.

Figure 8: D* Overview
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Since D* does not explicitly model the shape of the robot (i.e., it is assumed to be a point), the new untraversable
cells are expanded by half the width of the robot to approximate a configuration space (C-space) obstacle. All map
cells within a 2-meter radius are classified as untraversable. Note that the longer dimension (i.e., length) of the robot
is not used in the expansion. The length must be modelled to detect possible bumper collisions when driving forward
or backward; however, D* is not intended to perform local obstacle avoidance. Instead, it is concerned with detecting
channels between obstacles that are wide enough to admit the robot if it can get properly oriented. While this heuristic
breaks down in very cluttered environments, for inost environments it works quite well and eliminates the need for a
three-dimensional C-space.

The C-space expansion provides some buffering to keep the robot away from obstacles. We found that additional
buffering in the form of a high-cost field leads to better performance. The idea is to penalize the robot cost-wise for
passing too close to an obstacle, causing the robot to approach obstacles only when open space is unavailable. For
example, an area cluttered with trees may be navigable, but a route around the trees would be less risky and therefore
preferable. For each true untraversable cell (i.e., those containing obstacles from SMARTY, not those created from
the C-space expansion), all traversable cells within a radius of 8 meters are classified as high-cost. Tae cost of
traversing a high-cost cell is five times that of a traversable cell. Therefore, if a channel between two obstacles
requires the robot to drive through 10 high-cost cells, it would choose a longer, alternate route passing through up to
50 traversable cells.
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When an untraversable cell is changed to traversable, all of the corresponding untraversable and high-cost cells
created during the C-space expansion are changed to traversable. Every time a cell changes classification (i.e., among
traversable, untraversable, and high-cost), it is placed on the OPEN list for future consideration. The cost changes are
propagated as needed to produce steering recommendations for the DAMN arbiter.

2.2.3 Steering Arc Evaluation for DAMN

Every 500 msec, D* sends steering recommendations to DAMN. D* first checks the vehicle position and then com-
putes the endpoints of a static set of 51 steering arcs, linearly distributed in arc curvature from -0.125 meter! to
+0.125 meter'!. The points are computed to be at constant distance L from the current vehicle position along the arcs.
L is currently fixed at 10 meters for a speed of about 2 m/sec. D* converts the points to absolute locations in its inter-
nal map. It then expands states on its OPEN list until it has computed an optimal path to every point in the list. The
cost of the optimal path from each point to the goal is converted to a vote between -1 and +1, where +1 is a strong rec-
ommendation and -1 is a veto, and is sent to the arbiter. If a point happens to fall in an untraversable cell, a cell
unreachable from the goal, or a cell not in D*'s map, it is assigned a vote of -1. Otherwise, if ¢;p,,; and ¢y, are the
minimum and maximum values of the costs in the current list of points, the vote v for an arc is derived from the cost
¢ of the corresponding point in the following way:

V= (Crnax ~ €) / (Cmax = Conin)

This simple formula ensures that arcs going through obstacles are inhibited and that the preferred direction goes
through the point of minimum cost. The vote for ¢, is set to 0 instead of -1 because a high cost means that the arc is
less desirable but should not be inhibited.

Because D* does generate enough information to inhibits arcs going through obstacles, one could be tempted to
 eliminate the obstacle avoidance behavior from SMARTY and to use D* as the sole source of driving commands.
Although it is quite possible to configure the system to run in this mode, the result would be poor performance for at
least three reasons. First, D*’s map is lower resolution than the map used internally by SMARTY (1 meter vs. 0.4
meter in the current implementation). As a result, D* cannot control fine motion of the vehicle. Second, SMARTY
typically generates commands faster than D* can update its map and propagate costs, thus ensuring lower latency.
Third, SMARTY evaluates the distances between the arcs and all the obstacle cells in the map whereas D* evaluates
only the cost of a single point on the arc. In addition to these practical considerations, it is generally ill-advised to mix
local reflexive behavior such as obstacle avoidance and global bebaviors such as path planning in a single module.

It should be noted that the steering recommendations produced by D* lead to relatively smooth trajectories, even
though the optimal trajectories can be very discontinuous. D* assumes the robot is omnidirectional and does not
penalize abrupt heading changes. The test vehicle, the NAVLAB I, is car-like and has a minimum turning radius.
Whereas in cluttered environments these kinematic constraints must be modelled, for fairly open environments, the
omnidirectional assumption works. Since the vehicle is unable to “turn on a dime”, it chooses the tightest steering arc
in the desired direction of travel, thus “smoothing” the global trajectory.

Finally, we note that the interface between D* and DAMN is actually implemented as a separate module connected
through TCX. The module generates steering requests to D* every 500 msec and converts costs to votes and passes
them to DAMN. We chose the distributed approach because it isolates D* cleanly from the details of the driving
system and because the additional computation and scheduling time would slow down D*’s main expansion loop.
Because the query points sent to D* are expressed with respect to the vehicle, they do not change once L is fixed. We
use this property to reduce the message traffic by first sending an initialization message to D* which contains the list
of all the points with respect to the vehicle. After initialization, the interface simply sends the current vehicle position
to D* which converts the points to its coordinate system according to this position. In this approach, a request from
the interface module consists of a short message of three numbers: x, y, and heading of the vehicle.
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2.3 The SMARTY System for Local Navigation

2.3.1 Overview

SMARTY is a system for controlling a vehicle based on input from a range sensor. Figure 9 shows SMARTY s basic
organization. The range data processing component takes a stream of range pixels as input and outputs untraversable
locations with respect to the vehicle position at the time the data was acquired. The local map manager receives the
lists of untraversable cells as soon as they are detected by the range processing section and maintains their location
with respect to current vehicle position. The local map manager sends the entire list of untraversable cells to the steer-
ing arc evaluation module at regular intervals. The arc evaluator computes safety scores for a fixed set of arcs based
on the relative positions of untraversable cells with respect to the current vehicle position and sends them to the
DAMN steering arbiter. These three parts are implemented as a single Unix process in which the range data is pro-
cessed continuously as fast as it as acquired and the arc evaluator is activated at regular time intervals. Like D*,
SMARTY communicates with external modules through the TCX messaging system. We briefly describe the three
SMARTY components in the next paragraphs and conclude this section with a detailed description of the interface
between D* and SMARTY.

Figure 9: SMARTY Overview
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2.3.2 Range Data Processing

The range image processing module takes a single image as input and outputs a list of regions which are untravers-
able (see Figure 10). The initial stage of image filtering resolves the ambiguity due to the maximum range of the scan-
ner, and removes outliers due to effects such as mixed pixels and reflections from specular surfaces. (See Hebert [12]
for a complete description of these effects.) After image filtering, the (x,y,2) location of every pixel in the range image
is computed in a coordinate system relative to the current vehicle position. The coordinate system is defined so that
the z axis is vertical with respect to the ground plane. The transformation takes into account the orientation of the
vehicle read from an inertial navigation system. The points are then mapped into a discrete grid on the (x,y) plane.
Each cell of the grid contains the list of the (x,y,z) coordinates of the points which fall within the bounds of the cell in
x and y. The size of a cell in the current system is 20 cm in both x and y. The terrain classification as traversable or
untraversable is first performed in every cell individually. The criteria used for the classification are:

« the height variation of the terrain within the cell,
« the orientation of the vector normal to the patch of terrain contained in the cell,
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+» and the presence of a discontinuity of elevation in the cell.

To avoid frequent erroneous classification, the first two criteria are evaluated only if the number of points in the cell is
large enough. In practice, a minimum of five points per cell is used.

The processing is performed scanline by scanline instead of processing the entire range image and sending the
appropriate map cells at completion, as described in Hebert [11]. In scanline- or pixel-based processing, each pixel is
converted to Cartesian coordinates and the state of the corresponding cell in the map is updated. A cell is reported as
untraversable as soon as a component of its state exceeds some threshold, e.g., the slope becomes too high, and the
number of points in the cell becomes high enough to have confidence in the status of the cell. This approach has
several advantages over the traditional image-based approaches. First, it guarantees that an obstacle is reported to the
system as soon as it is detected in the range image instead of waiting for the entire image to be processed, thus
reducing the latency. Second, the scanline approach permits a simple scheduling algorithm for synchronizing range
image processing with other tasks: The system simply executes a given task, e.g., sending steering evaluations to the
planner, after processing a scanline if enough time has elapsed since the last time the task was executed.

Figure 11 shows a typical example of scanline processing of range images. Figure 11(a) is a video image of the scene
which consists of a corridor limited by impassable rocks and trees. Figure 11(b) shows a 64 x 256 range image of the
same scene. Points near the sensor are dark, and those farther away are light. Superimposed on the range image are
the locations of two scanlines. Figure 11(c) shows an overhead view of the pixels from each of the scanlines marked
in Figure 11(b). To produce this display, the pixels from the range image are converted to Cartesian coordinates and
projected on the ground plane. The impassable regions are displayed as black dots and are found mostly on the right
side of the vehicle, corresponding to the “wall” visible on the right of Figure 11(a). The order of the scanlines in
Figure 11(c) reflects the order in which the data is processed: first the bottom scanline (closest point) and then the top
(farthest point).

Run-time parameters can be set to accommodate the maximum anticipated vehicle speed. For a maximum speed of 3
m/sec, only the upper two-thirds of the range image is processed at a rate of 200 msec/image. A list of impassable
cells is sent to the local map manager every 100 msec. In this configuration, the minimum detection range for a 30 cm
object is 10 meters, although the system can detect larger objects up to 40 meters from the sensor. The maximum
detection range, together with sensor latency, 0.5 sec/image, are the main limitations of the system.

Figure 10: Range image Processing
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Figure 11: Scanline-Based Processing from a Range image

() ) | *
- AN
= M
12 -‘f
7
2 g
a7
32 .
27 . \, -
= /o
17 .
12 o
7
2 B

2.3.3 Local Map Management

The local map is an array of cells with a simpler structure than the grid used in the range data processing component.
Local map cells contain only a binary flag indicating whether the cell is traversable; if it is not, the cell also contains
the coordinates of a 3-D point inside the obstacle. The positions of the untraversable cells in the local map are
updated at regular intervals, currently 100 msec, according to vehicle motion. Figure 12 shows an overhead view of
the local traversability map constructed from a sequence of images from the area shown in Figure 11(a). In this exam-
ple, the cells are 40 cm x 40 cm. The untraversable cells are shown as small squares; the vehicle is indicated by the
rectangle at the bottom of the display.

Figure 12: A Local Map
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2.3.4 Steering Arc Evaluation for DAMN

The data in the local map is used for generating admissible steering commands. We give bere only a brief description
of the approach and refer the reader to Keirsey [13] and Langer (17] for a detailed description of the planning archi-
tecture. Each steering arc is evaluated by computing the distance between every untraversable cell in the local map

and the arc. An arc receives a vote of -1 if it intersects an untraversable cell; if not, it receives a vote varying mono-
tonically between -1 and +1 with the distance to the nearest untraversable cell. After the vote for each individual arc
is computed, the entire array of votes is sent to an arbiter module [13] which generates an actual steering command

that is sent to the vehicle.

Figure 13 shows an example of arc evaluation for the local map in Figure 12. The distribution of votes ranges from a
minimum turning radius of -8 meters to a maximum of +8 meters. The curve shows the maximum votes are for
moderate right turns of the vehicle and are close to -1 for left and right tums.

Figure 13: Distribution of Votes for the Map of Figure 12
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23.5 Cell Transmission to D*

The system described so far is one of our conventional autonomous driving systems [17]. In order to use SMARTY in
conjunction with the D* module, we added a direct link between D* and SMARTY (sce Figure 3), because D* needs
to update its internal map based on the information extracted from the range images. In theory, SMARTY should send
lists of traversable and untraversable cells found in the current batch of range pixels to D* as soon as new data is
available. In practice, however, this causes D* to receive data faster than it can process it, due to the overhead in
sending and receiving messages.

In order to avoid this problem, the lists of traversable and untraversable cells are buffered instead of being sent to D*
as soon as they are computed. In addition, the position of the vehicle at the time the data used for computing the
current cells was acquired is also buffered. The vehicle position is sent to D* along with the lists of cells. The position
information is necessary to enable D* to convert the vehicle-centered cell locations to cells locations in its internal
global map. After a new line of range data is processed, SMARTY flushes the buffer if either of two conditions is
met:

« Enough time has elapsed since the last message to D*. The time interval between messages is 500 msec. This

value is set empirically for the hardware configuration currently used.

« The position of the vehicle at the time the most recent sensor data was acquired is different from the position of

the vehicle at the time the data in the buffer was acquired.

The first condition ensures that messages are not generated at a frequency too high for D* to process them. The
second condition is necessary because the messages sent to D* include a single vehicle position so that they cannot
accommodate lists of cells acquired from two different vehicle positions. This message protocol provides a good
compromise between the need to send up-to-date information to D* and the need to limit the number of messages to
D*,
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24 The DAMN System for Steering Arbitration

Our navigation systems includes specialized modules such as obstacle detection (SMARTY) and path planning (D*).

Each of the modules has its own view of the best action for the vehicle to take at every step. We use the DAMN archi-
tecture for combining recommendations from different modules and for issuing actual driving commands to the vehi-
cle controller [17]{23][26].

The DAMN architecture consists of an arbiter which receives steering recommendation from outside modules and
combines them into a single driving command. The recommendations are in the form of votes between -1 and +1 for
a pre-defined set of arcs. A vote of -1 means that the extemnal module has determined that the arc should not be
driven, e.g., because of an obstacle blocking the path, and +1 means that the path is highly recommended. First, the
arbiter combines the votes from all the external modules into a single distribution of votes for the list of arcs. For each
arc, DAMN multiplies the votes from each module by its module weight and then sums these weighted votes to
produce a single, composite vote. Second, the arbiter chooses the arc with the highest composite vote and sends it to
the vehicle controller.

In practice, each module is a separate Unix process which communicates with the arbiter through the TCX
communication system. Because they may have very different cycle times, the modules operate asynchronously. The
arbiter sends commands to the controller at regular intervals, currently 100 msec, and updates the list of combined
votes whenever new votes are received from the other modules.

Because the DAMN arbiter does not need to know the semantics of the modules from which it combines votes, it is
very general and has been used in a number of systems with different configurations of modules [30]. We concentrate
here on the configuration of our navigation system as illustrated in Figure 3. The arbiter receives votes from two
modules, D* and SMARTY. The global navigator, D*, sends votes based on its global map and the goal location. The
local navigator, SMARTY, sends votes based on the data extracted from range images. The former generates driving
recommendations based on global path constraints while the latter generates recommendations based on a detailed
description of the local terrain. Module weights of 0.9 and 0.1 were used for SMARTY and D* respectively. This
selection has the effect of favoring obstacle avoidance over goal acquisition, since it is more important to miss
obstacles than to stay on course to the goal.

The current version of DAMN allows for forward motion, but it does not evaluate steering directions for reverse
driving. Of course, this is not a problem for on-road navigation systems or for systems which use sufficient a priori
knowledge of the environment. In our case, however, it is entirely possible that the only way for the vehicle to reach
the goal is to drive in reverse out of a cul-de-sac. This capability was not yet added to DAMN at the time of this
writing so that reverse driving had to be simulated by manually driving the vehicle out of occasional cul-de-sacs. We
clearly indicate such occurrences in the examples given in the next section.

3.0 Experimental Resuits

Two of the trial runs that illustrate different aspects of the system are examined in this section. The system was run at
a local test site called the Slag Heap, located about ten minutes from campus. The Slag Heap consists of a large open
area of flat terrain bounded by a berm on one side and a large plateau on the other. The obstacles consist of sparse
mounds of slag in the interior of the flat area and small trees, bushes, rocks, and debris around its edges. An access
road skirts the perimeter of the area. An aerial view of the test site is shown in Figure 14. The dimensions of this area
are approximately 800 x 1000 meters.
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Figure 14: Aerial View of Slag Heap Test Site

3.1 Goal Acquisition with Backtracking

For both trials, an optimistic map was used (i.c., all cells are traversable). S1 and G1 mark the start and goal locations
for the first trial. S1 was located in the open area, and G1 was located on the access road behind the large plateau.
These points were chosen so that backtracking would be required to circumnavigate the plateau. Data from the trial at
a number of points is shown in Figure 15 through Figure 20. Each of these figures consists of four parts: (a) the vehi-
cle’s trajectory superimposed on D*’s map; (b) the ERIM laser rangefinder image at a selected point along the trajec-
tory; (c) SMARTY’s local obstacle map at this same point; and (d) the votes from SMARTY, D*, and DAMN at this
same point.

In Figure 15(a), the vehicle’s trajectory is depicted by the black curve. The small rectangle near the end of the curve
is the “selected point” from which the data for subfigures (b), (c), and (d) was taken. The C-space obstacles are shown
in dark grey and the high-cost buffer cells in light grey. In Figure 15(b), grey scales encode the range values for the
laser rangefinder, with dark grey values near the sensor and light grey values farther away. In Figure 15(c), the large
rectangle shows the vehicle’s position, and the small squares show the positions of untraversable cells around the
vehicle. In Figure 15(d), the steering votes for each module are shown, ranging from -1 to +1.



Figwye 18: Driving into the Cul-de-sac
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Figure 15 shows the first portion of the trial. The vehicle began pointing away from the goal, so it immediately turned
around and headed directly toward it. The vehicle encountered a large obstruction, initially turned to the left, then
looped around the obstacle to the right and drove into a cul-de-sac. At the selected point, SMARTY voted to tumn right
to avoid the boundary of the-cul-de-sac, and D* voted in a similar fashion in order to loop back and explore the other
side of the cul-de-sac.
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Figure 16: Discovering the Cui-de-sac
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Figure 16 shows the vehicle driving side-to-side discovering the bounds of the cul-de-sac with its sensor. It appears
that, at the selected point, D* preferred to venture into the high-cost buffer rather than backtrack out of the cul-de-sac;
it was overruled by SMARTY’s votes to avoid the cluttered area aitogether. Since D* considers the cost to the goal
only from the ends of the steering arcs, it relies on SMARTY to steer clear of obstacles coincident with, or near to, the
arcs themselves.




Figure 17: Exiting the Cul-de-sac
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Once the vehicle discovered that the “route” was obstructed, it backtracked out of the cul-de-sac as shown in Figure
17. After exiting, the vehicle looped back in an attempt to drive through perceived gaps in the surrounding berm.
Note that at the selected point, D* voted to turn right and head back toward a gap.




Figure 18: Looping Back Toward the “Gap”
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After looping back, the vehicle closed the first gap with data from the laser rangefinder, and SMARTY deflected the
vehicle away from the second due to other obstacles in the vicinity (see Figure 18).
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Figure 19: Driving Through and Around the Vegetated Area
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In Figure 19, the vehicle moved into an area densely populated with small trees before driving out to the left. In these
types of areas, the vehicle was driven predominantly by SMARTY, since obstacle avoidance takes precedence over
the goal seeking behavior. After emerging from the area, D* guided the vehicle around the perimeter of the vegetation
and into another small cul-de-sac. As was the case with the first cul-de-sac, the limited field of view of the ERIM
sensor precluded the possibility of detecting the cul-de-sac before entry and avoiding it altogether.

This time the cul-de-sac was too small for the vehicle to escape without driving in reverse. Since the NAVLAB Il is
currently unable to do this automatically, the vehicle was manually driven in reverse until the vehicle exited the cul-
de-sac. Note that, at the selected point, SMARTY detected obstacles in all directions and consequently voted against
all steering arcs. D* favored backing out, but since such a move was not possible autonomously, it voted for the next
best options: either a hard left or hard right tum.
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Figure 20: Finding the Access Road that Leads to the Goal
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After backing out, the vehicle was placed under autonomous coatrol once again (see Figure 20). It drove around the
perimeter of the large plateau, found an entry point to the road behind the plateau, and then drove along the access
road until it reached the goal.

The total path length for the trial was 1410 meters. At six points during the trial, we manually intervened to steer the
vehicle. Half of these interventions were to drive the vehicle in reverse, and the other half were steering deflections to
avoid water or mud that was too difficult to detect with a laser rangefinder. D* sent steering recommendations to the
DAMN arbiter every 500 msec. A total of 2952 sets of steering recommendations were sent. Since each set consists
of 51 steering arcs, a total of 150,552 global paths to the goal were computed during the trial. SMARTY sent 6119
messages to D* containing a total of 1,851,381 terrain cell classifications. The radius of C-space expansion was 2
meters, and the radius of each high-cost buffer was 8 meters. A high-cost cell was five times more expensive to
traverse than a traversable cell.

The number of cell classifications was large since each terrain cell is likely to be seen more than once, and each
occurrence is transmitted to D*. It is also important to note that the classification for a many terrain cells changed
repeatedly from one sensor reading to the next. This effect was due in part to sensor noise and in part to the fact that
the classification of a given cell improves in accuracy as the vehicle draws nearer and the sensor gets a better view.




Note that the high-cost buffer was essential to complete the boundaries of the cul-de-sacs, plateau, and roads. Without
it, the vehicle would need to loop around many more times for more sensor data in the first cul-de-sac before D*
became convinced the route was obstructed.

3.2 Using Map Data from Prior Trials

In Figure 14, S2 and G2 mark the start and goal locations, respectively, for the second trial. The start was chosen to be
at the entrance to the Slag Heap on the access road, and the goal was at the opposite end of the flat, open area. The
objective of this trial was not to illustrate a difficult path to the goal; instead, it was to illustrate the effects of multiple
runs over the same area. In Figure 21, the vehicle drove down the access road and across the open area to the goal. At
the goal point, the vehicle was taken out of automatic control and driven manually to another portion of the access
road (see Figure 22). During the manually-driven segment, the software continued to run; thus, the map was updated
with obstacles detected by the sensors.

Figure 21: Driving the Initial Path to the Goal
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Figure 22: Manually Driving to a New Start Point
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The vehicle was placed under automatic control again, and it drove down a segment of the access road until it found

an entry point into the open area. It then proceeded to drive across the open area to the goal, avoiding a number of
obstacles along the way (see Figure 23).

The vehicle was driven manually once again to a new start point (see Figure 24) and placed back under automatic
control. It then drove to the goal for a third time (see Figure 25). Note that, in its third path to the goal, the vehicle
used map data that was constructed during the previous traverses. As shown in the figure, the vehicle positioned itself
to pass between two obstacles before its sensor was close enough to spot them.




Figure 24: Driving Manually to a Third Start Point
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Figure 25: Driving to the Goal Using Prior Map Data
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The length of the vehicle’s path for this trial was 1664 meters, including both automatically and manually driven
segments. D* sent a total of 3168 sets of steering recommendations to DAMN; thus, a total of 161,568 global paths
were computed. SMARTY sent 6581 messages to D* with a total of 1,601,161 cell classifications.

4.0 Conclusions

4.1 Summary

This paper describes a complete navigation system for goal acquisition in unknown environments. The system uses
all available prior map data to plan a route to the goal and then begins to follow that route, using its laser rangefinder




to examine the terrain in front of the vehicle for obstacles. If a discrepancy is discovered between the sensor data and
the map, the map is updated and a new, optimal path is planned to the goal. Because of the efficiency of D*, this new
path can be generated in a fraction of a second. Both the global navigator (D*) and the local navigator (SMARTY)
send steering recommendations to the steering arbiter (DAMN). Because obstacle avoidance takes precedence over
goal acquisition, the votes from SMARTY are weighted more heavily than those from D*. Thus, in areas dense with
obstacles, the vehicle is driven primarily by SMARTY, while in open areas, it is primarily driven by D*. It was found
that the high-cost buffers around obstacles were essential to fill in gaps between obstacles and preclude repeated sens-
ing of the same area. It was also discovered that the two-dimensional approximation of the vehicle’s three-dimen-
sional configuration space did not seriously impair performance.

To our knowledge, this system is the first to demonstrate efficient goal acquisition and obstacle avoidance on a real
robot vehicle operating in an unstructured, outdoor environment.

4.2 Future Work

In the near-term, a number of improvements will be made to minimize unnecessary processing and increase overall
system speed. An enormous number of terrain cell classifications are transmitted from SMARTY to D*. Some of
these classifications are erroneous due 10 noise or less-than-ideal viewing conditions. Noise filtering and verification
of the classifications across sensor images would increase confidence in the data and reduce communications traffic.
Currently, the cell classifications received by D* are processed sequentially to create the C-space expansions and
high-cost buffers. This approach is highly inefficient given typical clustering of obstacles, and the additional compu-
tational burden resulted in D* sending less-than-optimal steering recommendations in cluttered areas in order to meet
timing deadlines. Processing the obstacles in batch mode using the grassfire transform for expansion should greatly
reduce this overhead. Furthermore, we will develop a more systematic approach to the scheduling of the interactions
between SMARTY and the other modules, D* and arbiter. Currently, the frequency at which SMARTY sends infor-
mation to the other modules is detennined empirically for a typical vehicle speed. We will develop an algorithm that
relates all the system parameters, such as sensor field of view or vehicle speed, to the communication frequency. This
last improvement will involve first moving the modules to a real-time operating system in order to guarantee repeat-
able performance.

In the far-term, we will extend D* so that it dynamically allocates new map storage as needed rather than requiring
the map to be pre-allocated to a fixed size. Furthermore, we will add the capability in D* to reason about vehicle
maneuvers (coupled forward-backward motion) in order to handle very cluttered areas that require such complicated
motion. We will include a mechanism for speed control in SMARTY in addition to the existing mechanism for
steering contrel. Speed control involves reasoning about the distribution of map cells with respect to the vehicle and
issuing recommendations for speed settings such that the vehicle slows down in cluttered environments. The speed
recommendations may be encoded very much like the steering recommendations: a set of votes for speed values
between ( and a pre-set maximum speed. Additionally, we will improve the performance of SMARTY in terms of
speed and maximum range in order to support higher vehicle speed. This will be achieved mostly by using better
sensors such as single-line laser scanners or passive stereo,
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