ADST-TR-W003268

ADVANCED DISTRIBUTED SIMULATION

TECHNOLOGY @
AD-A282 773
A AL

ModSAF
\ DTIC
PROGRAMMER S REFERENCE ELECT E
MANUAL AUG 0 31994
VOL.1

F

(LibArtyEdit - LibHulls)

Ver 1.0 - 20 December 1993

CONTRACT NO. N61339-91-D-0001
D.O.: 0021

CDRL SEQUENCE NO. A001

This document kas been appro vod
| :ohc.u and sclq is

Prepared for:
U.S. Army Simulation, Training, and Instrumentation Command (STRICOM)

12350 Research Parkway
Orlando, FL 32826-3276

~ Prepared by:
LORAL.
: Systems Company

94 12151-A Research Parkway B30 O7A000% 550 PROTED B

uhnmmtmn'iuMImmmz/m' T =
94 8 0. 086

= T

ADST-TR-W003268

ADVANCED DISTRIBUTED SIMULATION
TECHNOLOGY

ModSAF
PROGRAMMER'S REFERENCE

MANUAL
VOL.1
(LibArtyEdit - LibHulls)

Ver 1.0 - 20 December 1993

CONTRACT NO. N61339-91-D-0001
D.O.: 0021

CDRL SEQUENCE NO. A001

Prepared for:
U.S. Army Simulation, Training, and Instrumentation Command (STRICOM)
12350 Research Parkway
Orlando, FL 32826-3276)
Accesion For \ J
NTIS CRA&I 28 |
DI JAB » :
Prepared by: Ui.asii0u. .ced i ’
by: Justiicztion
Dist: imutior: | ‘
ADST Program Office AV;J(._:",T‘\ e :
12151-A Research Parkway , —— o ey
Orlando, FL 32826) Avali 9 Lot ._
Dist Spal ;
Al ;
L L

Form

REPORT DOCUMENTATION PAGE OMB No. 0704-0168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

; wmmuaw.mdmpumwmmmeobdbndhmmnndeomnnnmqudhgmiswaonmor:gw\uupﬁd
iy collection of information, including suggestions for reducing this burden, 1o Washingion Headquarters Services, Directorate for information Operations and Reports, 1215
Jeflerson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
12/20/93

4. TITLE AND SUBTITLE §. FUNDING NUMBERS

ModSAF Programmer's Reference Manual
C N61339-91-D-0001, Delivery
Order (0021), ModSAF (CDRL
A001)

6. AUTHOR(S)

Dr. Andy Ceranowicz, Joshua Smith, Anthony Courtenache, et. al

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANZATION

koDrg!r Sgshems Cglfl;lpany REPORT NUMBER

rogram ce TR-

12151-A Research Parkway ADST-TR-W003268

Orlando, FL 32826

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING

Sizglstgaktion Tr;ixl;i and Instrumentation Command (STRICOM) ORGANIZATION REPORT

1 esearch Parkwa

Orlando, FL 32826-32 ADST-TR-W003268

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. ISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 worde)

This document provides in-deglth information on all libraries within the ModSAF application. Each section is devided into an
overview of the library, and a functional description.

14. SUBJECT TERMS 1. NUMBER OF PAGES
Modular Semi-Automated Forces, DIS, ADST, BDS-D Approx 1500
[~ 16. PRICE CODE
17. SECURITY CLASSIFICATION 17, SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 20. LASITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 208 (Rev. 2-89)
Prescrbed by ANSI 8K 23018

208102

I — — -_— AT R TR Wiaatow | T W—

LibArtyEdit

ADST-TR-W003268

Chapter 1: Overview 1

1 Overview

The artillery editor allows the user to drop arbitrary artillery rounds on the DIS battlefield.
The editor supports two modes of operation:

Set up then Fire
In this mode, the user selects the Mode Set Up Mission, then sets the location, round
types, quantities, etc. When everything is set, the user selects the Mode Fire Mission
which sends the selected detonations. The Mode then automatically returns to Set Up
Mission. '

Point to shoot
In this mode, the user selects the Mode Fire When Location Is Set, then sets every-
thing except the location. When the round types, quantities, etc. are as desired, the
user selects Location then clicks on the map. The mission will be fired when the user
releases the mouse button. A separate mission will fire for each click.

The artillery editor is not reinitialized when it is raised, so that the default values for each
mission will be whatever values were used in the previous mission.

LibArtyEdit Programmer’s Guide

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libartyedit, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 artyedit.init
void artyedit_init()

artyedit_init initializes libartyedit. Call the before any other libartyedit function.

2.2 artyedit_init_gui

int32 artyedit_init_gui(data_path, reader_flags, gui,
tactmap, tcc, map_erase_gc, sensitive,
refresh_event, db, ctdb, valve, sim_addr,
event_id, exercise, protocol)

char *data_path;
uint32 reader_flags;
SGUI_PTR gui;
TACTMAP_PTR tactmap;
COORD_TCC_PTR tce;

GC map_erase_gc;

SNSTVE_WINDOW_PTR sensitive;
CALLBACK_EVENT_PTR refresh_event;

PO_DATABASE sdb;
CTDB sctdd;
PV_VALVE_PTR valve;
SimulationAddress *sim_addr;
int32 sevent_id;
int32 exercise;
int32 protocol;
‘data_path’
Specifies source dirrctory for data files
‘reader_flags’
Specifies data file reading flags
‘gui’ Specifies the GUl

‘tactmap’ Specifies the tactical map

4 LibArtyEdit Programmer’s Guide

‘tec’ Specifies the coordinate system

‘map_erase_gc’
Specifies the GC used to erase on the map

‘sensitive’
Specifies the sensitive window

‘refresh_event’
Specifies the event invoked when the map is refreshed

‘db’ Specifies the PO database
‘ctdd’ Specifies the terrain database

‘valve’ Specifies the packet valve for transmission of detonations

‘sim_addr’
Specifies the simulation address /

‘event_id’
Specifies, by referenence, the gloabl application event ID which is used, then incre-
mented for each outgoing detonation

‘exercise’
Specifies the exercise on which PDUs should be sent

‘protocol’
Specifies the protocol to use (SIMNET, DIS 1.0, DIS 2.0, etc.)

artyedit_init_gui create the artillery tool. The data_path and reader_flags are used to
read the editor definition file, and are as in reader_read. A non-zero return value indicates a
libreader error occured.

ADST-TR-W003268

LibAssign

Table of Contents

1 OVerVIeW . 1
2 Usage ... 3
2.1 Building Libassign .o 3
2.2 Linking with Libassign ..o oo 3
B FUDCEIOIS oo 5
Bl assiGRANIt 3
B2 assignAnit@HE . 5
B asslgnsel il o G
B0 assignoset taskframe oo 6
B0 assignamakesssigmment oo N

Chapter | Overview

1 Overview

LibAssign implements the mission assienment editor, Correnthy this editor can only he nsed 1.
assign a single unit a single wission. however, in the future it will manage execition matrices, oo

some other complex assignment paradiem,

Chapter 2 Usage

2 Usage

The software library "libassign.a’ should he built and installed in the directory
-/common/1ib/ . You will also need the header file -1ibassign.h’ which should be installed in the

directory */common/include/libinc/ . H these files are not installed. you need 1o do a ‘make’ in
the libassign source directory, [IF these files are already built. vou can skip the section on building

libassign.

2.1 Building Libassign

The libassign sonrce files are found in the directory */common/libsrc/libassign’. “RCS’ format
versions of the files can he fonnd in */nfs/common_src/libsrc/libassign’.

If the directory "common/libsrc/libasaign’ does uot exist on your machine. vou should use
the "genbuild” command to update the common directory hierarchy.

To build and install the library. do the following:

cd common/libsrc/libassign
co RCS/*,v
make install

This should compile the library -1ibassign.a’ and install it and the header file “1ibassign.h’
in the standard directories. If any errors occur during compilation. vou may need to adjust the
source code or ‘Makefile® for the platform on which vou are compiling. libassign should compile

without errors on the following platforms:

e Mips
o SGI Indigo

e Sun Sparc

2.2 Linking with Libassign

Libassign can be linked into aa application program with the following link time flags: -1d
(source .o files] -L/common/lib -lassign [other libraries] . If your compiler does not sup-

1 LibAssign Programmer’s Guide

port =L svutax. you can use the archive explicitly: -1d [source .o files]

/common/lib/libassign.a’.

Libassign depends directly on the following libravies: libsafgui. libtactmap. libcoordinates, lib-

sensitive. libeallback. libpo. libeditor. and libreader.

— ~——— P T ag— ———

Chapter 3: Fuuctions

3 Functions

The following sections describe cach Dinction provided by fibassign. including the format and

meaning of its arguments, and the meaning of s return values (il any).

3.1 assigndnit
void assign_init()

assign_init initializes libassign. Call the hefore any ol her Bibassign fanetion.

3.2 assign.init_gui

EDT_EDITOR_PTR assign_init_gui(data_path, reader_flags, dialog_parent,
gui, tactmap, tcc, map_erase_gc,
sensitive, refresh_event, db,
exit_fcn, exit_arg, reinit_fcn)

char sdata_path;
uint32 reader_flags;
Widget dialog._parent;
SGUI_PTR gui:
TACTMAP_PTR tactmap;
COORD_TCC_PTR tec;

GC map_erase_gc;
SNSTVE_WINDOW_PTR sensitive;
CALLBACK_EVENT_PTR refresh_event;
PO_DATABASE sdb;
ASSIGN_EXIT_FUNCTION exit_fcn;
ADDRESS exit_arg;

ASSIGN_REINIT_FUNCTION reinit_fcn;

‘data_path’

Specifies the divecton oo g files are expected
‘reader_flags’

Specifies flags 1o e o .0 ., reader_read when reading data files
‘dialog_parent’

Specifies top-level 1. “ o stondd parent popup dialogs

‘gui’ Specifies the SAL .1]

G LibAssign Progranuner’s Guide

‘tactmap Specifies the tactical map
tee’ Specifies the map coordinate svstem
‘map_erase_gc’

Specifies the GC which can erase things from the tactical map
‘sensitive’

Specifies the sensitive window for the tactical map
‘refresh_event’

Specifies the event which fires when the map is refreshed
*db’ Specilies the persistent object database
‘exit_fen, exit_arg’

Specify a function to call when the assignment is completed
‘reinit_fen’

Specily a function to call 1o reinitialize a task frame prior 1o assignment (pass taskedit_reinit.

assign_init_gui create the mission assignment editor. The data file ("delobj.rdr’) is read

cither from =" or the specified data path, depending upon the reader_flags. The reader_flags
are as in reader_read. .\ NULL return value indicates an error occured.

The exit_fcn should be declared as [ollows:

void exit_fcn(exit_arg, status)
ADDRESS exit_arg;
EDT_EXIT_STATUS status;

3.3 assign_set_unit

void assign_set_unit(editor, unit_id)
EDT_EDITOR_PTR editor;
ObjectID *unit_id;

‘editor’ Specifies the assignment editor

unit_id” Specifies the unit for default assignment

assign_set_unit initializes the unit field of the running assignment editor to the passed value,

3.4 assign._set_taskframe

P T — P M e amma o e

Chapter i

Functions

void assign_set_taskframe(editor, taskframe_id)

EDT_EDITOR_PTR editor;

ObjectID staskframe_id;
‘editor” Specilies the assignment editor
‘taskframe_id’

Specifies the taskframe for default assigniment

assign._set_taskframe initializes the tagskframe field of the running assigniment editor to the

passed value,

3.5 assign_.make_assignment

void assign_make_assignment(gui, unit, frame, assigner, instruction)

SGUI_PTR gui;
ObjectID *unit;
ObjectID *frame;
ObjectID *assigner;

TaskInstallationInstruction instruction;

"gui’ Specifies the GUI
unit’ Specilies the unit to execute the mission
‘frame’ Specifies a frame of the mission 10 execute (automatically finds first frame)
‘assigner’
Specifies the unit respousible for making the assignment (pass NULL to indicate the
user)
‘instruction’

Specifies how to start the mission

assign_make_assignment does an assignment. as though the user had selected a unit and frame

from the assignment editor.

ADST-TR-W003268
Libbalgun
I
l
#

Table of Contents

1 O VerVIeW ..o e 1

2 Algorithms. ... 7

2.1 Gun Tick Processing..............oiiiiiiiiiiiiii i, 7

2.2 bgundoader_tick..... ...t e 7

2.3 bgun.tracker_tick 8

2.3.1 bgunfirertick..................... 10

2.4 Firing Event Processing...............coviiiiiiiiiiiiiiiiniinniennnn.. 11

2.4.1 bgun_shoot_to hit location.......................coeaeee. 11

2.4.2 bgun.shoot.tohit.vehicle..................ooooiiia, 12

2.4.3 bgun.shoot_intermediate...............................lL. 12

24.4 shoot.atpoimting................coiiiiiiiiiiiiiiiiiie, 13

3 Examples. ... 15
4 Functions ... 17
4.1 DEURLMIt.......ooii e 17

4.2 bgun.classdmit.............ooiiiiiiiii s 17

43 bgun_tick....... ... e 18

4.4 bgun_component_availability......................oooiiiiiiiLL 18

4.5 bgun_damage

Chapter 1: Overview 1

1 Overview

Libbalgun implements an instance of the gun class of components. It provides a low-fidelity
model of generic ballistic gun behavior which is suitable for ModSAF tank main guns and machine
guns. libbalgun guns support burst shooting, multiple types of munitions, and table driven hit
probabilities. Also, the capability to hit un-intended targets is supported.

The parameters of a generic ballistic gun are specified in the configuration file for the vehicle
containing such a gun as follows:

(SM_BallisticGun (physdb_name <name of gun>)
(sensor_name <name of tracking sensor>)
(hit_obscuring_vehicles <true | false>)
(rates <min-elevation-rate> <max-elevation-rate>)
(magazine.size <n>)

(loading_block <n>)
(load_time <integer milliseconds>)
(track._time <integer milliseconds>)
(munition <munition-table>
<munition-table>
eed))

The <name of gun> must match the name of a gun as specified in the libphysdb database.
The <name of tracking sensor> must match the name of some sensor component of the vehicle.
hit_obscuring_vehicles indicates whether this gun can accidentally hit vehicles that obscure an
intended target. The rates for elevation are in degrees per second. magazine_size indicates how
many rounds of a munition may be simultaneously loaded in the gun. The time to load up to
loading_block rounds is specified by load_time.

A munition-table is of the form:

(<munition object type> (round_velocity <real meters/sec>)
(rate <integer> burst rate shells/sec>)
(mass <real kg>)
(min_range <real meters>)
(max_range <real meters>)
(hit_table <hit-table-filename>)
(tracktime_table <tracktime-table>))

<munition object type> indicates the ‘librdrconst’ object type that will be sent in the Fire
and Impact PDUs. rate indicates the maximum sustainable burst rate in rounds per minute. A
value of -1 means the gun can be fired as fast as it has rounds available. A rate of -1 should not

2 Libbalgun Programmer’s Guide

be used if the gun has a magazine size larger than 1 (this would imply that the entire magazine
could be shot at once. min_range and max.range should be considered as minimum and maximum

effective ranges.
A tracktime_table is of the form:

(<real moving_firer_factor> <real moving.target_factor>
(<real range meters> <first_med msecs> <sub_med msecs> <sub_fixed msecs>)
(<real range meters> <first_med msecs> <sub_med msecs> <sub_fixed msecs>)

The tracktime table defines how long the target will be tracked before firing. The moving
factors are used to modify the tracktime for these conditions. The first_med describes the lognormal
distribution for the first shot by a firer at a specific target. The sub.med and sub_fixed are for
subsequent shots at a target. The median and fixed values are not interpolated for range. The
values are also not range-limited. Finally, if either moving factor is -1, then the tracktime will be
0. The actual calculation of the tracktime is described below.

So a simple table could be: (1.0 1.0 (0.0 3000 0 0))

This table says that a) moving firer and target have no effect on tracktime; b) the first shot’s
tracktime will have a median of 3000 msecs, regardless of range; c) the subsequent shots’ tracktimes
will be 0.

The hit-table-filename has a table, derived directly from AMSAA approved weapon delivery
accuracy data, with the following form:

(

(<range> <time of flight>
<horizontal fixed bias> <vertical fixed bias>
<horizontal variable bias> <vertical variable bias>
<horizontal random error> <vertical random error>
<horizontal stationary/moving add-on dispersion>
<vertical stationary/moving add-on dispersion>
<horizontal stationary/moving subtractive dispersion>
<vertical stationary/moving subtractive dispersion>
<horizontal moving/stationary add-on dispersion>
<vertical moving/stationary add-on dispersion>
<horizontal moving/stationary subtractive dispersion>
<vertical moving/stationary subtractive dispersion>)
(<range> <time of flight> ...)

cee)

Chapter 1: Overview

range is the distance between the shooter and the target. (real in meters)
time of flight is the time of flight for the specific range. (real in seconds)

horizontal fixed bias and vertical fixed bias are fixed discrepancies between the desired
aim-point and the actual hit point. (real in mils)

horizontal variable bias and vertical variable bias are occasional discrepancies between
the desired aim-point and the actual hit point. (std deviation, real in mils)

horizontal random error and vertical random error are the random error factors. (std de-
viation, real in mils)

horizontal stationary/moving add-on dispersionand vertical stationary/moving add-
on dispersion are add-on dispersion when the shooter is stationary and the target is moving. (std
deviation, real in mils)

horizontal stationary/moving subtractive dispersionand vertical stationary/moving
subtractive dispersion are subtractive dispersion when the shooter is stationary and the target
is moving. (std deviation, real in mils)

horizontal moving/stationary add-on dispersion and vertical moving/stationary add-
on dispersion are add-on dispersion when the shooter is moving and the target is stationary. (std
deviation, real in mils)

horizontal moving/stationary subtractive dispersionand vertical moving/stationary
subtractive dispersion are subtractive dispersion when the shooter is moving and the target is
stationary. (std deviation, real in mils)

The algorithm to calculate missed distance is described below:

1. Look up the hit table entry for a given range.

2. Calculate the overall bias (1.
a. Extract the fixed bias (} 1. il the variable bias standard deviation (V.STD.DEV) from
the entry.
b. The variable bias (V) i~ «« '+ toul by drawing a normal random number from the variable

4 Libbalgun Programmer’s Guide

bias distribution with zero mean, and standard deviation deviation is VSTD_DEV. V =
rnd _normal_distribution(0.0, V.STD_DEV)

c. The overall bias is calculated by addingFand V.B=F+ V
3. Calculate the overall error (E).

a. Extract the random error standard deviation (R STD_DEV), the add-on dispersion standard
deviation (A_STD_DEV) and the subtractive dispersion standard deviation (SSTD_DEV).

b. Calculate overall random error standard deviation (ESTD_DEV) by adding the variances
of the random error and add-on dispersion. Then subtract the variance of the subtractive
dispersion and take the square root of the result. ESTD.DEV = sqrt(RSTD.DEV-2 «
ASTD.DEV-2 - SSTD.DEV-2)

c. The overall error is calculated by drawing a normal random number from the overall
random error distribution with zero mean, and standard deviation is ESTD_DEV. E =
rnd_normal._distribution(0.0, ESTD_DEV)

4. Calculate the missed distance.

a. Given the overall bias (B) and overall error (E), the miss distance in mils (M_MILS) can be
calculated as MAMILS =B+ E

b. Given the range (R), the missed distance in meters (M_.METERS) can be calculated as
MMETERS = R*tan(MIL.TO_RAD(M_MILS))

>>>>>>> ../acu/libbalgun.texinfo Libbalgun supports up to 4 instantiations per vehicle (i.e., a
vehicle can have up to 4 generic ballistic guns). This number can be easily changed by recompilation.

The libbalgun library defines a common set of functions (and the semantics of those functions)
which are invoked on instances of the guns class (such as those instantiated by libbalgun or libm-
launcher). It is possible to modify the ballistic gun model by changing an exisiting guns interface
function or by adding a completely new function.

To modify an existing libbalgun interface function would require the following actions:

1. If the change occurs only in the function body, a change to the function code in the libbalgun
library if all that is needed. If the change occurs to the function’s argument list, change
the function code in the libbalgun library and the guns interface structure definition found
in libguns.h. Also to maintain the common guns interface, change the code for the modified
function in any other gun specific component library (such as libmlauncher).

2. Recompile ModSAF.

To add an additional libbalgun function to the current model would require the following actions:

Chapter 1: Overview 5

1. Write the function as part of the libbalgun library. The function is written in the code that
manages the libbalgun class information attached to each vehicle (bgun_class.c).

2. Add the function and its declaration to any of the other gun specific component libraries. This
maintains the common guns interface.

3. In the libguns source code that handles libguns initialization processing, include a func-
tion_number, function entry identifying the new function for the cmpnt_define_instance
function and every other gun instance library (such as libmlauncher).

4. In libguns.h, add an entry to identify the new macro arnd associate it with a function code
number. This new addition means that the number of guns interface functions must be incre-
mented by one. The guns interface structure definition that appears in libguns.h must include
a structure to define the new function’s argument list.

5. Recompile ModSAF.

To replace this ballistic gun model with a completely different one would require the following
actions:

1. Decide on the get functions and set functions that would be required in the new model. Try to
map these needed functions to the existing guns interface. A function can map if its argument
list can remain the same. Functions that can not map must be added to the guns interface,

2. For those functions that can map to the existing guns interface but whose code body you want
to change, edit the code for the function in the libbalgun source file that contains the code to
manage the libbalgun class information (bgun_class.c).

3. For those functions that can’t map to the existing guns interface, add an additional function
to the guns interface. The addition procedure was described above.

4. Recompile ModSAF.

If an interface function is no longer needed, it is possible but not required, to remove it. Deletion
of an interface function is only allowed when that functiop is not needed in any of the specific
component libraries,

The deletion process requires these steps:

1. Delete the function code from each specific component library.

2. In the generic component library, remove the "function.number, function" entry identifying
the excess function in the "cmpnt.define_instance" function call. This function call is found in
the library’s initialization code segment. In the library’s public header file, remove the entry
for the excess macro and its associatiated function code number. Decrease the number of
interface functions by one. Delete the structure that defines the excess function’s argument

6 Libbalgun Programmer's Guide

list in the interface structure definition.
3. Recompile ModSAF.

Chapter 2: Algorithms 7

2 Algorithms

The following sections describe the tick and firing event processing algorithms used by libbalgun.

2.1 Gun Tick Processing
When a gun is ticked via bgun_tick(vehicle_id, ctdb) the following processing occurs:

1. Retrieve the name of the sensor used by this gun.
2. Calculate dT, the time period between the last tick and this tick.

3. If the gun’s state is BALGUN_STATE_DESTROYED then exit, otherwise do the ballistic gun simu-
lation by invoking three independent state machines: Loader, Tracker, and Firer. Loader, im-
plemented via the bgun_loader_tick function, does loading or unloading operations on quan-
tities of requested munition. Tracker, implemented via the bgun_tracker_tick function, does
tracking operations on requested targets or locations. Firer, invoked via the bgun_tirer_tick
function, does shooting operations on requested targets or locations. These functions which
are each passed the argument list, (vehicle_id, user_data_handle, gun, dT), are described
below.

2.2 bgun_loader_tick

The processing for bgun.loader_tick (which is determined by the gun’s loading state) is as
follows:

o If theloadingstate is BALGUN_LOADING_STATE_IDLE, then exit if the requested transfer quantity
is 0. Otherwise call libsupplies via the function supp_get_amount to see how many rounds are
currently in storage. A requested transfer quantity greater than 0 implies an intended load
and a requested transfer quantity less than 0 implies an intended unload. For an intended
load, clip the request if necessary, down to the amount available in storage or the amount that
there is enough room for in the breach. If the requested transfer quantity gets clipped down
to zero then exit, otherwise change the loading state to BALGUN_LOADING_STATE_LOADING. For
an intended unload, if there aren’t enough rounds in the breach for the requested transfer
quantity to get unloaded, change the request to reflect the amount currently loaded. If the
change sets the requested transfer quantity to zero then exit, otherwise set the loading state
to BALGUN.LOADING_STATE_.UNLOADING. Set the loader time to the load time specified in the
configuration file.

8 Libbalgun Programmer’s Guide

o If the loading state is BALGUN_LOADING_STATE_LOADING, then reduce the loading time by the
input dT, the time between ticks. If the loader time is still greater than zero, not enough
time has elapsed between ticks to load a round, so exit. Otherwise simulate the loading of one
round by increasing the loaded quantity by one and reducing the requested transfer quantity
by one. Invoke libsupplies to decrement the munition amount in the storage area by one
round. If the requested transfer quantity has dropped down to zero, set the loading state to
BALGUN_LOADING_STATE_IDLE, otherwise reset the loader time back to the load time of the
configuration file.

e If the loading state is BALGUN_LOADING_STATE_UNLOADING, then reduce the loader time by the
input dT, the time between ticks. If the loader time is still greater than zero, not enough
time has elapsed between ticks to unload a round, so exit. Otherwise simulate the unloading
of one round by decreasing the loaded quantity by one and increasing the requested transfer
quantity by one. Invoke libsupplies to increment the munition amount in the storage area by
one round. If the requested transfer quantity has increased to zero, set the loading state to
BALGUN_LOADING_STATE_IDLE. otherwise reset the loader time back to the load time of the
configuration file.

e If the loading state is not one of those named above, print an error message and set the loading
state to BALGUN_LOADING_STATE_IDLE.

2.3 bgun_tracker_tick
The processing for bgun_tracker_tick is as follows:

1. Get the physical limits (the elevation up limit and down limit) and the turret name for this
gun. '

2. The gun’s physical elevation needs to be updated based on the projected elevation and rate
of the previous tick plus dT (the time between ticks). Since the projected elevation and rate
of the previous tick are recorded in the last vehicle appearance packet, retrieve them via a
libentity call. The new physical elevation is the sum of the retrieved elevation plus the change
in elevation this tick. That change is calculated by multiplying the retrieved elevation rate
by dT. Test whether the new clevation needs to be clipped to keep the gun elevation within
limits. If clipping is needed. determine the elevation direction (up or down) and then clip to
the appropriate limit. This handles the case when a long time between times could permit a
gun to go completely past a stopping point. Clipping causes a discontinuity in elevation and
requires a resetting of the retrieven] olevation rate to zero. Call libentity to pass it the new
elevation.

3. Set the new elevation rate bl o the retrieved clevation rate. Clip the rate, if necessary, to
keep the rate within the linnt~ <pevitied in the configuration file. Call libentity to pass it the

Chapter 2: Algorithms 9

new elevation rate.

If the tracking mode is BALGUN_TRACKING_MODE_MANUAL, the gun will use the elevation that the
user asks for rather than a requested tracking elevation. Therefore, set the gun’s turret_request
field to FALSE and set turret_at_desired to FALSE.

If the tracking mode is BALGUN_TRACKING_MODE_TARGET, retrieve the location of the requested
tracking target via a call to libentity. Use the same code as that used for
BALGUN_TRACKING_MODE_LOCATION to calculate a tracking azimuth and tracking elevation.

If the tracking mode is BALGUN_TRACKING_MODE_LOCATION or
BALGUN_TRACKING_MODE_LOCATION, a requested azimuth and a requested elevation must be
calculated. First, retrieve the location and azimuth of the gun’s vehicle via calls to libentity.
Using the position data, calculate a vector between the simulated vehicle and the requested
tracking location. Using the vehicle’s azimuth, calculate the position to shoot at in hull coor-
dinates. The desired elevation and desired azimuth can then be determined using an asin, an
atan2, and a sqrt. The azimuth calculation is an atan2. The elevation calculation is done by
first calculating the 3D range (which can be used later as input to the Fire PDU), and using
an asin on the Z linear elevation in vehicle hull coordinates with respect to this 3D range. Note
that a less useful way of calculating this elevation is with an atan2 on Z with respect to the
distance in the XY plane, but this doesn’t give the more useful 3D range as a side-effect. Since
the gun is in a tracking mode, it is necessary to note whether the turret mai-.tains the requested
tracking azimuth. When it doesn’t, turret_at_desired is set to FALSE. This setting will be
used in the tests that determine the gun’s tracking status. When the turret is not at the gun’s
requested azimuth, set the gun’s turret_request field to TRUE and invoke a turret component
macro to call a libgenturret function that simulates the moving of the turret to the requested
azimuth. If the turret is at the gun’s requested azimuth, then set the gun’s turret_request field
to FALSE to indicate that this tracked gun is pointing at the proper location and does not
need to request that the turret rotate.

If the gun’s tracking mode is not one of the valid modes (BALGUN_TRACKING_MODE_MANUAL,

BALGUN_TRACKING..MODE_MANUAL, or BALGUN_TRACKING_MODE_MANUAL) print an error message,
and set the mode to BALGUN_TRACKING._MODE_MANUAL.

8. Adjust the requested elevation to make sure it does not exceed the gun’s up or down limits.

9. Calculate dE (the change in distance to reach the requested elevation). If the gun is already

10.

11.

close enough to the requested elevation (within 1.5 degrees) and the elevation rate is very slow
(less than or equal to 1.5 degrees/sec) consider the gun to be at the requested elevation and
set the elevation rate to 0 degrees/second.

When the gun arrives at the requested elevation, set the gun’s at_desired field to TRUE and
call libentity to update the gun elevation and elevation rate in the vehicle appearance packet.

If the gun has not yet arrived at the requested elevation, set a new elevation rate and set the
gun’s at_desired field to FALSE. This FALSE setting will be used in tests that determine the
gun’s tracking status. The new elevation rate is an adjustment that takes into account the size

e

10 Libbalgun Programmer’s Guide

of the dE (elevation change) and the how often this tracker code ticks.

12. The tracking phase begins when a target js defined, and the gun and turret are first pointed
at the desired location. This event is synonomous with the vehicle commander giving the
command "Gunner". The sense, detect, recognize, and identify steps have already taken
place. The coarse lay of the gun has not yet taken place. The length of the tracking phase is
defined by bgun_get_tracktime, which considers the firer's and target’s velocities, the range to
the target, and whether this is the firer’s first shot at this target.

13. The tracktime table for the loaded munition contains factors for moving firer and moving
target. The factors for the stationary condition are 1. The overall factor F is the product
of the firer and target factors. The tracktime table also contains median and fixed times
versus range. A median M defines a lognormal distribution, where the logs of the values are
normally distributed with a standard deviation of 0.5, and the median of the actual values
is M. The tracktime for the firer’s first shot at a target and the firer’s subsequent shots at a
target are given by: first tracktime = (F * lognormal(m=ffire_median)) sub. tracktimes = (
F * lognormal(m=sfire_median)) + sfire_fixed

14. After the tracking period has elapsed, the gun considered "tracked" (indicated by its tracking
field set at TRUE). If the gun is loaded, the gun can be fired.

15. Any successive ticks while the tracking field is set at TRUE, will test whether a loss of tracking
occurs because the gun and turret are not still where they are supposed to be.

2.3.1 bgun_firer_tick
The processing for bgun_firer_tick is as follows:

1. If this gun does not have a fire request (either an at-target or an at-location request), exit.

2. If the gun has ammunition loaded and its loading state is idle (rather than loading or unload-
ing), then continue. Otherwise, set the fire requests to FALSE and exit.

3. If the gun can not fire because of pending firing going on from a previous burst, exit.

4. If the loaded quantity is less then the firing request quantity, clip the firing request quantity
down to the loaded quantity.

5. Get munition specifics, such as the loaded munition type, from the gun’s munition table.

6. If the request is a fire at-target request, reset the requests to FALSE. If this gun is tracked
and its tracking mode is BALGUN_TRACKING_MODE_TARGET, compare the requested firing tar-
get to the requested tracking target. If the two targets are different invoke the function
shoot_at_pointing to calculate the location the gun is pointing at (this function is described
later). If the two targets are the same, then test for visibility to the target location via a call to
bgun_target_intersection. This function will invoke the SENSORS _.GET_TARGET_VISIBILITY

Chapter 2: Algorithms 11

macro to determine if it would be possible for the gun to hit th: target. When there isn’t vis-
ibility, this function will return an intermediate vehicle or location to which there is visibility.
If there is visibility, shoot the target via the function bgun_shoot_to_hit_vehicle; otherwise
shoot the intermediate vehicle or location via the function bgun_shoot_intermediate.

7. If the request is a fire at-location request, reset the requests to FALSE. If this gun is tracked
and its tracking mode is BALGUN_TRACKING_MODE_LOCATION, compare the requested firing lo-
cation to the requested tracking location. If the two locations are different invoke the function
shoot_at._pointing to calculate the location the gun is pointing at (this function is described
later). If the two targets are the same, then test for visibility to the target location via a call to
bgun_location_intersect. This function will invoke the SENSORS_GET_LOCATION_VISIBILITY
macro to determine if it would be possible for the gun to hit a 3.0 X 3.0 meter cube at the
target location. When there isn’t visibility, this function will set an intermediate vehicle or
location to which there is visibility. If there is visibility, shoot the location via the function
bgun_shoot_to_hit_location; otherwise shoot the intermediate vehicle or location via the
function bgun_shoot_intermediate.

8. Subtract the fired quantity from the loaded quantity.

9. Increment the next shot time by the time necessary to handle this request. This is determined
by the rate in the munition table.

2.4 Firing Event Processing

The following functions handle the firing event processing of libbalgun.

2.4.1 bgun_shoot_to_hit_location
The function:

bgun_shoot_to_hit_location(vehicle_id,user_data_handle,
location, gun, mun_table)

does the following:

1. Gets the location of the shooting vehicle plus the burst specifics (location).
2. Calculates the range and time of burst.
3. Calls the function send_ballistic.fire to build and send a Fire PDU.

12 Libbalgun Programmer’s Guide

4. Schedules an Impact PDU via a deferred function call of send_ballistic_impact. The Impact
packet will be sent in accordance with the calculated burst time.

2.4.2 bgun_shoot_to_hit_vehicle
The function:

bgun.shoot-to_hit-vehiclo(vohiclo_id. user_data_handle,
target_id, gun, mun_table)

does the following:

Gets the location of the shooting vehicle plus the burst specifics (location).

Performs the range and time of burst calculations.

Calls the function send_ballistic_fire to build and send a Fire PDU.

Computes either a hit or miss based on the gun’s hit probability tables.

If the shot is determined to be a hit, schedules an Impact PDU via a deferred function call of
send_ballistic_impact. The Impact packet will be sent in accordance with the calculated
burst time.

6. If theshot is determined to be a miss, computes a miss position as being between 3 and 8 meters
directly short of the target and then schedules an Impact PDU via a deferred function call of
send_ballistic_impact. The Impact packet will be sent in accordance with the calculated
burst time.

A

2.4.3 bgun_shoot_intermediate
The function:

bgun_shoot_intermediate(vehicle.id, user_data_handle, gun,
int_location, int_vehicle, mun_table)

does the following:

1. Gets the location of the shooting vehicle.
2. Updates the gun’s derived quantities (vector and range) to accommodate the different location.

Chapter 2: Algorithms 13

3. Calls bgun_shoot_to_hit_location if this is a shot to the ground (or building) or if the
configuration file has the hit_obscuring_vehicles parameter set to FALSE.

4. Calls bgun_shoot_to_hit_vehicle if this is a shot to an intermediate vehicle.

2.4.4 shoot_at_pointing

Libbalgun makes use of the function shoot_at_pointing when the gun wants to shoot but is
not pointing where it should be. To haundle this fall through case, an alternate location is calculated

and shot at with the following steps:

1. Calculate a location that the gun is pointing at that is no further away from the gun than the
loaded munition’s maximum range will permit.
2. Test visibility to that point.

3. If the gun has visibility to that maximum range point, place the round on the ground at that lo-
cation via a call to bgun_shoot_to_hit_location, otherwise place the round at somewhere or

something in between the gun and the max range location via a call to bgun_shoot_intermediate.

14

Libbalgun Programmer’s Guide

Chapter 3: Examples 15

3 Examples

To get the component number of a gun with a particular name (such as “main-gun"):

int32 gun;

if ((gun = cmpnt_locate(vehicle_id, name)) ==
CMPNT_NOT_FOUND)
printf("Vehicle %d does not seem to have a gun called \"¥s\".\n",
vehicle_id,
name) ;

To then give a command to that gun (the macro is defined by libguns; it assembles a GUNS_INTERFACE
structure, and calls cmpnt_invoke):

it (gun != CMPNT_NOT_FOUND)
GUNS_SET.ELEVATION(vehicle_id, gun, elevation);

16

Libbalgun Programmer’s Guide

Chapter 4: Functions 17

4 Functions

The following sections describe each function provided by libbalgun, including the format and
meaning of its arguments, and the meaning of its return values (if any).

4.1 bgun.nit

void bgun.init(packet_valve, event_id, sim_addr, protocol,
data_path, flags)

PV_VALVE_PTR packet_valve;
int32 *event_id;
SimulationAddress =*sim_addr;
int32 protocol;

| char *data_path;
uint32 flags;

i ‘packet_valve’

Specifies the packet valve used to send fire and impact pdus

‘event_id’
Specifies a pointer to a static host event counter

‘sim_addr’
Specifies simulation address for outgoing event DIS IDs

‘protocol’
Specifies protocol in use (0 for SIMNET, DIS_PROTOCOL_VERSION_* for DIS)

‘flags’ libreader flags to pass to reader_read() (see section ‘reader_read’ in LibReader
Programmer’s Manual) when hit table files are read

bgun_init initializes libbalgun. Call this before any other libbalgun function.

4.2 bgun_class_init

void bgun.class.init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

18 Libbalgun Programmer’s Guide

bgun_class_init creates a handle for attaching balgun class information to vehicles. The
* parent_class will likely be safobj_class.

4.3 bgun_tick

void bgun_tick(vehicle_id, ctdb)
int vehicle_id;

+ CTDB =*ctdb;
‘vehicle_id’
Specifies the vehicle ID
‘ctddb’ Specifies the terrain database

bgun_tick ticks the guns for a vehicle. ctdb is required in order to access terrain information
for shooting misses.

4.4 bgun_component_availability

void bgun_component_availability(vehicle.id, component, is_available)
int32 vehicle_id;
int32 component;
int32 is_available;

‘vehicle_id’

Specifies the vehicle ID
‘component’

Specifies a component which has changed availability
‘is_available’

Specifies whether the component is available or not

bgun_component_availability informs a vehicle’s balguns about a change in status for com-
ponents. If a component that a balgun s using, (such as the turret that the gun is attached to)
becomes unavailable, the gun become unavailable.

4.5 bgun_damage

Chapter 4: Functions 19

void bgun_damage(vehicle_id, damage)
int32 vehicle_id;
int32 damage;

‘vehicle_id’
Specifies the vehicle ID

‘damage’ Specifies whether the gun is damaged. When the function is invoked with damage
set to TRUE, the gun state will be set to BALGUN_STATE_DESTROYED and libentity
will be invoked to set the gun elevation value to -0.3. When the function is in-
voked with damage set to FALSE, a destroyed gun will have its the gun state reset
to BALGUN_STATE_HEALTHY and libentity will be invoked to reset the elevation value to
0.0.

bgun_damage informs a vehicle’s balguns about whether they should be damaged or not. This
is used to model external damage assessment.

LibC20bj

ADST-TR-W003268

Table of Contents

1 O Ve VIO W oo e 1

2 B UN b OIS . oo 3
2.1 €20bJamit. ...

Chapter 1: Overview

1 Overview

Libc2obj provides the class superstructure in which all command-and-control sub-classes reside.
Examples of these sub-classes include: unit, graphics, task, task frame, and unitorg. They can be
thought of as the pieces that make up the c20bj class.

Various libraries define classes of objects which are instantiated. Most notably: LibPO creates
line graphics, units, task frames, etc. Often the same object is represented in two ways, once at a
low software layer, and again in a higher layer. For example:

Object Type Low-Layer Representation High-Layer Representation

TS T T Y Y e Y L L T Y PR P L L T T T T T TR - — - - - - -

route (line graphic) 1libpo persistent object 1libc2obj object

For each class of object, there is a senior layer (libc2obj) responsible for management of that
class. This will generally not be the layer which instantiates the objects (libpo). Hence for persistent
object classes:

High layer libc2obj

Mid layers
libunits, libgraphics, libtaskframe,...

Low layer libpo

Instances of the c2obj class are attached as user data to Persistent Objects of various classes
such as the line class, the point class, and the unit class (e.g. see section ‘Unit Class’ in LibPO
Programmer’s Guide).

Libc2obj registers a

new_object_event_handler (seesection ‘new_object_event_handler’ in LibPO Programmer’'s Guide)
and an object_gone_event_handler (see section ‘object_gone_event_handler’ in LibPO Program-

mer’s Guide) in the PO database to cause the creation and destruction of c2obj instances when

new PO objects are received or old PO objects are destroyed. For example, when a user at a

SAFstation creates a new unit, the resulting new_object_event_handler instructs LibPO to build an

instance of the unit class in the PO database. When a user deletes an existing point graphic from

the SAFSstation, the resulting object.gone_event_handler instructs libpo to remove the instance of

the point class in the PO database.

Adding a sub-class requires making the following changes to this library:

e e T P — " e

LibC20bj Programmer’s Guide

1. Modify c2obj._init to initialize the sub-class.

. Modify c2obj._create to create the sub-class at the appropriate point (after those sub-classes

in lower layers, and before those in higher layers).

. Modify c20obj_destroy to also destroy the new sub-class.

T — e e e e e e

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libc2obj, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 c2obj.init

void c2obj_init(db)
PO_DATABASE #*db;

c2obj_init initializes libc2obj. Call this before any other libc2obj function. Note that this
function will call the *_class_init routines for all c2obj subclasses. Hence, you should call their
primary init routines before c2obj_init.

LibCallback

ADST-TR-W003268

r—'—————““—tm—

Table of Contents

1 O VerVIeW .o 1
2 Examples ... 5
3 FUunCtionS ..o 9
3.1 callbackdefineevent......... ..o 9
3.2 callbackregisterhandler.................. 9
3.3 callbackfire.event.............cooiiiiiiiii e 10
3.4 callback.unregisterhandler...................l 10
3.5 callback.destroy.event.............c.ooiiiiiiiiiiii i 11

Chapter 1: Overview 1

1 Overview

Information can be classified into two categories: state and events. State information is present
at all times, and describes things like the location of a vehicle, or the name of the mission being
executed. State information can be easily controlled and made available to all software modules
using the ModSAF data hiding/sharing techniques (see the ModSAF methodology documentation
in the ModSAF Programmer’s Guide for more on this subject). Events are one time occurrences in
the simulation, such as the explosion of an artillery shell. Often, it is convenient to treat a change
of state as an event, such as when a vehicles runs out of fuel (the value of the fuel state variable
changed to zero).

Sharing event information is problematic. The most common method used in real time sim-
ulation, is strict function chaining: when event 'X’ happens, function 'Y’ will be called. To add
another consequence to event 'X’ requires that function 'Y’ be changed. This causes interoperability
problems, and may make layering of software impossible.

An alternative method of event handling is through the use of "callback" functions. A software
module which is interested in an event, requests that the software module generating that event
call a function when the event happens. If the software can only register one callback function,
however, this solution is little better than hard coding responses to events. What is needed is a
way for an arbitrary number of software modules to register event handlers, such that all of them
may be called.

X windows provides callback functionality using an extremely flexible (and consequently, very
computationally expensive) method. Events are identified by name (a character string), and are
uniquely tied to an object (e.g., pressing a button on the screen generates an event, pressing a
different button generates a different event); software modules can register callback routines by
specifying the object involved and the name of the event. No distinction is made between private
and public events. No facility exists for registering object-independent callback functions (a software
module must re-register the callback function with every object to make it apply to all of them).

Libcallback implements a similar functionality with a simple, real time technique. A software
module registers an event with libcallback, giving the types and order of arguments (libcallback
will need this information later); note that no name is given. Libcallback returns a handle to
the software module, which the module may either make public, or keep private. Other software
modules may register callback routines which are associated with this event handle, along with a
constant which it requests be passed as the last argument (this allows the receiver to define one
callback function to be used with a variety of similar events). When the event occurs, the software
generating the event passes libcallback the event handle and arguments; libcallback then calls all

2 LibCallback Programmer's Guide

registered callback routines (the order of calling is not guaranteed, and cannot be depended upon).

A software module may create a unique event for each object crcated (as in X windows), or it
may create one event for an entire class of objects (such as the PO database object_changed event).
Unlike X, the number and type of arguments are defined on a per-event basis (X has a standard
set of three arguments which are passed to every callback routine).

The use of libcallback for distribution of events is not always appropriate. In general, libcallback
should be only be used to distribute event information from low layer service providers (such as
libpo or libvtab) to high layer independent object classes (such as libdfdam and libtactmap). The
use of libcallback for distribution of eveuts within an object is strongly discouraged; direct function
invocation should be used instead. The problem here is that a renegade programmer can use
libcallback to violate normal layering constraints. Consider the following examples:

Example 1: Proper use of libcallback

Indirect fire appears on the network in the form of a DIS PDU. A low layer service provider (such
as libpktvalve) receives this PDU and must distribute the indirect fire event to all interested high
layer object classes. One of these classes is the local vehicle simulation (which evaluates damage
from indirect fire). Another is the map display system (which draws indirect fire on the map). One
or both of these classes may appear in the simulation, depending upon how the program is linked
(as a SAFSIM, SAFSTATION, or POCKET SAF).

Libcallback provides a useful service in this case. The generator of the event is in a low layer,
~ and is not part of either receiver class (vehicle simulation, or map display). The receiving classes
are in high layers, are completely independent, and may or may not appear in the same executable
system.

Example 2: Improper user of libcallback

The physical simulation of a vehicle (e.g.. libtracked) determines that the vehicle has run out of
fuel. Running out of gas may trigger several responses within the vehicle. There are three options
for sharing the out-of-gas event:

1. The class which inherits libtrached 1o g.. safobj class) may poll a public state variable within

the libtracked class to deternne if the event has occurred.
2. Libtracked may provide a ~c:r...» o its superior class, in the form of a callback function passed
in at initialization, and calls«! +# ¢ the vehicle runs out of fuel. The superior class would then

call appropriate functions 1 .«.i *he atficted subsystems.

Chapter 1: Overview 3

3. Libtracked can define an event via libcallback, and all other subsystems of the vehicle which
respond to running out of fuel can register handlers for this event.

The first option is undesirable because it is both inefficient and requires making public state
which could otherwise be kept private. Hence, the only decision is between the second and third
options. Consider the following attributes:

Layering

In option 2, the libtracked layer provides a service to the safobj class (telling it the
vehicle just ran out of fuel). Each other subsystem also provides services to the safobj
(responding appropriately to running out of fuel). Hence, layering is ensured.

In option 3, libtracked provides a service to all subsystems. Since some subsystems
can be in higher layers than libtracked, and others in lower layers, layering cannot be
guaranteed. Put another way, option 3 guarantees, that given enough time, someone
WILL violate layering.

Specification

Clarity

In option 2, each service (the out-of-gas notification, and each out-of-gas reaction) is
specified. That a callback is provided by libtracked is specified in its initialization
routine; the other subsystem reaction functions are each specified as available public
function calls.

In option 3, only the existence of the event is specified. The subsystems which respond
to this event can only be discovered by an examination of the software.

In option 2, safobj will contain a function which calls all the subsystems which respond
to running out of fuel. The order will be explicit, and interactions between subsystems
will be predictable.

In option 3, the order in which subsystems react to running out of fuel cannot be
predicted, and the interactions between subsystems can only be found through experi-
mentation or detailed analysis.

Given these considerations, it is clear that libcallback is less desirable than using an explicit
callback within libtracked. The problem can be summarized succinctly: libtracked is in too high a
layer for libcallback to be useful.

4 LibCallback Programmer’s Guide

Chapter 2: Examples

2 Examples

The following program demonstrates the use of libcallback functions. This program appears as
‘test.c’ in the libcallback source directory, and can be compiled with the command ‘make test’.

/* Include these header files in any file using libcallback functions =/
#include <libcallback.h>
#include <stdext.h> /+common/include/globals/

~
*

This test program demonstrates a callback relationship between
three libraries: (1) A network interface library which is detecting
direct- and indirect-fire events; (2) A simulation library which
queues these events for vehicle processing; (3) A display library
which draws effects on a map.

The network library defines the event, and puts the handle in a
public variable. The other libraries know where to find the handle
and the format of the event from the documentation of the network
library; they attach their handlers.

Note that while the simulation uses two different handlers, the
display routine uses only one handler and discriminates via the user
data. The latter is 0K only if the events have the same number/types
of arguments (in this case DOUBLE, PTR).

LR BE BE B BE BN BE BN B BN BE B A

%*
~

/‘tt‘“‘*‘*““*“*““‘t.#“““*“*“‘““‘.“““*‘*‘.“.t.“‘/
/* Network Library s/

CALLBACK_EVENT._PTR df_event_handle;
CALLBACK_EVENT_PTR if_event_handle;

void network_init()

{ 4
df_event_handle = callback_define_event(A_DOUBLE, A_PTR
if_event_handle = callback.define_event(A_DOUBLE, A_PTR

]
~
-s we

}

void network_detect_df(when, data)
float64 when;
char- *data;

{
}

void network_detect_if(when, data)
float64 when;

callback_fire_event(df_event_handle, when, data);

LibCallback Programmer’s Guide

char =*data;
{

callback_fire_event(if_event_handle, when, data);
}
/#*##“###ttt‘..##t‘t“‘l‘t‘t#‘lll‘.l#““.‘.‘.t‘#‘t.“‘.".“..t/
/* Simulation Library »/

/* #include network public header »/

void distribute_df(when, data, ignored)
float64 when;
char *data;
ADDRESS ignored;

/* allocate buffers and queue for vehicle processing... #/
printf("Simulation: df at %f <¥s>\n", when, data);
}

void distribute_if(when, data, ignored)
float64 when;
char =data;
ADDRESS ignored;

{
/+ allocate buffers and queue for vehicle processing... */
printf(“Simulation: if at %f <Y%s>\n", when, data);
}
void simulation_init()
{
callback_register_handler(df_event._handle, distribute_df,
0/*Ignored+/);
callback_register_handler(if_event.handle, distribute_if,
0/*Ignored+/);
}

/““‘..“.“‘.*“##t#‘*#*‘#“‘t*“.“*‘““*“.““#‘.‘.‘*‘**.“/
/* Display Library */

/* #include network public header */

#define DF_TYPE 1
#define IF_TYPE 2

void display.df_or_if(when, data, what)
float64 when;
char =data;
ADDRESS what;

{

Chapter 2: Examples

switch((int32)what)
{
case DF_TYPE:
printf("Display: df at %f <%s>\n", when, data);
break;
case IF_TYPE:
printf("Display: i? at %f <%s>\n", when, data);
break;

}
void display_init()
{

callback_register_handler(df_event.handle, display.df_or.if,
DF_TYPE) ;
callback_register_handler(if_event_handle, display._df_ or.if,
IF_TYPE):
}

void display_no.if()
{

callback_unregister_handler(if_event_handle, display._df_or_if,

IF_TYPE); ~
}
void display_if_too_much()
{
int32 i;
for(§=0;i<10;i++)
callback_register_handler(if_event_handle, display.df_or.if,
IF_TYPE);
}
'/*#*.t*#**‘##‘t#“*#t#t#".“.“.."Qt"#"t"t‘t#tttt#t‘ttt##t*t#‘ttt*t/
main()
{

/* Initialize the libraries. Note that the library which defines
* the event must be initialized first.

*/

network_init();

simulation_init();

display_init();

/* Trigger some events e/
network_detect_df(1.0, ‘Bang");
network_detect_if(2.0, "Boom");
network_detect_df(3.J3, 'Pov");

/* Disable the display
display_no_if();

/* Trigger some events
network_detect_df(4.0,
network_detect_if(5.0,
network_detect_df (6.0,

of indirect fire =/

s/
uBansu) :
"Boom") :
"POH") :

/* Add a whole bunch of callbacks */

display_if_too_much();

/% Trigger some events
network_detect_df(4.0,
network_detect_if(5.0,
network_detect_df(6.0,

*/
uaansu) :
"BOOE") H
"pOV") :

/% Disable the if display again */

display_no_if();

/* Trigger some events
netvork_detect_df (7.0,
netvork_detect_if(8.0,
netvork_detect_df(9.0,

/* Clean up and exit =/
callback_destroy._avent(
callback_destroy_event(

*/
“Bang") :
"Boom") ;
"POV") :

df_event_handle);
if_event_handle);

LibCallback Programmer’s Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libcallback, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 callback._define_event

CALLBACK_EVENT.PTR callback_define_event(arg_type0, arg._typei, ...,
A_END)

int32 arg.typeO, arg._typel, ...,

‘arg._types’
Specifies the types of the arguments passed when the event fires. Chosen from the
set: AINT, A DOUBLE, A_PTR, ASHORT, A.CHAR, A FLOAT (defined in com-

mon/include/global/stdext.h).
‘A_END’ Constant which should always be passed as the last argument.

callback.define_event creates an event and returns a handle which can be used to register han-
dlers, fire the event, or destroy the event. The arguments specify the types of up to four arguments
which will be passed when the event fires. (e.g., callback.define_event(AINT, AINT, A DOUBLE,
A_END)).

3.2 callback_register_handler

void callback_register_handler(event_handle, handler.function, user_data)
CALLBACK_EVENT_PTR event_handle;
CALLBACK_HANDLER handler_function;
ADDRESS user_data;

‘event_handle’
Identifies the event.

‘handler_function’
Specifies the function to be called when the event occurs.

‘user_data’
Specifies a constant which will be passed to the handler function as the last argument.

10 LibCallback Programmer’s Guide

callback.register_handler notes that a function is to be called when an event occurs. The
event_handle identifies the event (created with callback define_event), the handler_function specifies
the address of the function which is to be called. The handler function should expect the argu-
ment types specified when the event was created (via callback_define_event), as well as a trailing
argument which is the constant value passed here as user data.

3.3 callback_fire_event

void callback_fire_event(event_handle, arg, arg...)
CALLBACK_EVENT_PTR event handle;

‘event_handle’
Identifies the event.

[3

args’ Specifies up to four arguments to pass to the handlers.

callback fire_event invokes all the handlers defined for the event in no particular order (if order
is important, libcallback is probably not the right solution, see Chapter 1 [Overview], page 1). The
types of the arguments are assumed to be those passed to callback_define.event (see Section 3.1
[callback define’event!, page 9).

3.4 callback_unregister_handler

void callback_unregister_handler(event_handle, handler_function, user_data)
CALLBACK_EVENT.PTR event_handle;
CALLBACK_HANDLER handler_function;
ADDRESS user_data;

‘event_handle’
Identifies the event.

‘handler_function, user_data’
Specifies the function/user.data pair which should no longer be called when the event
occurs.

If a handler for the event_handle passed can be found which matches the
handler function/user_data passed, callback_unregister_handler will removed it the list of functions
called when the event is fired.

Chapter 3: Functions 1

3.5 callback._destroy_event

void callback.destroy_event(event. handle)
CALLBACK_EVENT_PTR event_handle;

‘event_handle’
Identifies the event.

callback.destroy_event frees the memory associated with the passed event_handle. Referencing
this handle after after a call to this function will probably make the program crash (i.e., don’t do
it).

ADST-TR-W003268

LibClass

Table of Contents

1

2

3

O VeI VIO W L 1
Examples ... 3
FUunctions ... 9
3.1 classdeclare class...........oooiiiiiiiiii i 9
3.2 classreserveuser.data.......... ...l e 9
3.3 classallocouseradata............coooiiiiii 10
3.4 classfreecuser.data..........c.oooniiiiiiiii 10
35 classssetiuseradata. e 10
36 «classgetuserdata..............ooiiiiiiiii i 11
3.7 classsetglobaldata..................cooiiii i 11
3.8 class.getglobaldata........................ 12
3.9 class sShow. e 12
3.0 CLASS DEBUG. ..ottt et e, 13
3.11 classgetdebug.............coiiiiiiiiiiiii 13
3.12 classdebug.byname.................oiii 13
3.13 classsshowmames................oooiiiiiniitiiie i 14

Chapter 1: Overview 1

1 Overview

An object is defined: "An area in computer memory that serves as a basic structural unit of
analysis" (Baron). A class defines the organization of data in that memory, and the functions which
operate on a group of objects which use the same organization. Typically a library will define a
single class, and will provide functions to create, destroy, or operate on objects in that class.

Often the same object is represented in two ways, once at a low software layer, and again in a
higher layer. For example:

Object Type Low-Layer Representation High-Layer Representation
Simulated Entity LibVTab vehicle LibSAFObj object
Route LibP0 persistent object LibC20bj object

Various libraries define classes of objects which are instantiated. Most notably:

e libpo creates graphics, units, task frames,etc.
e libvtab creates vehicles

e Xt creates widgets

Different high-layer classes need to attach different user data to these objects. For example,
when a route is created in libpo, the user interface software makes a bunch of widgets and stuff
which it wants to attach as user data to the object; simultaneously, the simulation software wants
to compile the route into its internal format, and attach that as user data. This leads to an
incompatibility which will prevent linking the workstation and simulation software together. What
is needed is a way to declare at run time the number of pieces of user data which will be attached
to each class of object.

Low layer classes generally allow the attachment of one piece of user data to each object (this
is true of libpo, libvtab, and Xt). Libclass provides a sort of user data multiplexer service to allow
each class (each library) within an application to attach its own kind of user data to each object.

As shown in the figure below, a single slot is also provided for a global’ piece of user data to be
attached to each block. This slot is accessed through functions rather than the sub-class slots.

2 LibClass Programmer’s Guide
Low Layer
Object
leeen. |
leven. |
I { LibClass User Data Block
|User | ==-c-ssccccccccccccaas
|Data----- >| Global Slot |
looee. | | Debug Info |
| I | eeeeccrccccccccccccea-
------- | SubClass User Data |

Libclass also provides functions to aid in debugging. It manages run time modifiable flags which
enable or disable debugging for each class, on both a global and a per-instance basis. Furthermore,
it manages 'show’ routines for each class, to aid in debugging.

Chapter 2: Examples

2 Examples

The program ‘test.c’ in the libclass source directory demonstrates the mechanics of using
libclass. It can be compiled with the command ‘make test’. The following example provides a
bigger picture of how libclass is to be used in the ModSAF application.

For each class of object, there is a senior layer responsible for management of that class. This
will generally not be the layer which instantiates the objects. Hence for persistent object classes:

High layer libc2obj
Mid layers
libunits, libgraphics, libtaskframe, ...

Low layer libpo

High layer libsafobj
Mid layers

libeollision, libcomponents, libentity, ...
Low layer libvtab

In each case, the low layer creates the objects (provides an object creation service), while the
high layer is responsible for managing all the other libraries which need to attach user data (and
hence expand upon the object). The low-layer representation of the object class does not define
~ many functions. In the case of persistent objects, the kernel does have a lot of state; in the case
of safobj’s, there is next to none. In both cases, there is more than one layer between the high
and low layers which contributes state. Furthermore, these libraries differ depending upon how
the program is linked (STATION, SIM, POCKET). STATION means that the application has
no simulation capabilities, SIM means that the application has no user interface capabilities, and
POCKET means that the application has both user interface and simulation capabilities.

At initialization, libclass will provides unique handles by which classes may be referenced. For
example, libsafobj will do the following:
static CLASS_PTR safobj_class;
safobj.init(...)
{

safobj_class = class_declare.class();

4 LibClass Programmer’s Guide

Each client library that needs to attach user data to a class thus declared will do so in its
initialization routine (the senior layer will pass it the handle just allocated). In the hypothetical
examples that follow, it is assumed that a vehicle of the safobj class has a “driver" sub-layer

(subclass).

static int32 driver_user_data_handle;

driver_init(safobj_class, ...)
CLASS_PTR safobj._class:

driver_user_data_handle =
class_reserve_user_data(safobj._class, "driver", driver_printer);

When an object of that class is instantiated. the most senior layer asks libclass to allocate space
for all the sub-layer’s user data. Each sub-layer allocates its own user data in its instantiation
routine, and asks libclass to store a pointer to it.

safobj_create(...)

{
VTAB_USER_DATA_TYPE user_data;
/* libvtadb provides a kernel object (referenced via the
* vehicle id), with a user_data slot which is filled in here.
»/
/* Ask libclass to allocate space for all the pointers =/
user_data =
(VTAB_USER_DATA_TYPE)class_alloc.user.data(safobj.class);
/* Store a pointer to this space with libvtab for later
* retrieval.
*/
vtab_set_vehicle(vehicle_id, user_data);
driver_create(vehicle_1d, ...);
3
driver.create(vehicle.:1, ...)

int32 vehicle._id;

— — — wgw"——f—_ﬂ—- _—

—

Chapter 2: Examples

-t

/* Allocate space to store our unique state variables.
* Note that DRIVER_VARS is a private structure to

* libdriver.

*/

DRIVER_VARS *driver = ALLOCATE_.DRIVER_VARS();

class_set_user_data(vtab_get_vehicle(vehicle.id),

driver_user._data_handle,
driver):

Thereafter, routines which need to access their class variables will get them from libclass:

void driver_do_something(vehicle_id, ...)
int32 vehicle.id;

{
DRIVER._VARS #driver = (DRIVER_VARS *)
class_get_user_data(vtab_get._vehicle(vehicle_id),
driver_user_data_handle);
if (!driver) /+ Passive error detection =/
return;
... operate on driver ...
}

Note that both get routines are macros, so the code here is really just doing array references.
Furthermore, the mess of code making up the first three lines of the function will be the same for

every functions, and hence can be encoded in a macro. An actual function should look more like
this:

void driver_do_something(vehicle_id, ...)
int32 vehicle_id;

{
GET_VARS(vehicle_id, driver);
if (ldriver) /= Passive error detection =/
return;
... operate on driver ...
}

6 LibClass Programmer’s Guide

Since all the pointers to all the state structures are now stored in a generic array (allocated by
lirclass, and pointed to by the user data elements of the various kernel classes), debugging is a
problem. dbx is not able to cast variables for printing, so examining the state of a vehicle would
not be possible (except by looking at the raw numbers in memory, and matching them to structure
members by hand). The solution to this problem is the debugging information which was passed
to libclass at initialization time. Specifically, this includes:

e A string which identifies the name of the module ("driver", "gunner", ...)
e A pointer to a function which takes a pointer to the local data structure, and will print its
contents:

static void driver_print(driver)
DRIVER_VARS #»driver;

{
printf("State: %d (%s)\n", driver->state,
state_string(driver->state));
printf("Leader: %d\n", driver->leadveh);
}

With this information, libclass provides the class_show service. This function can be called
from an application (such as from a tty commaad parser), or from ‘dbx":

(dbx) print class_show(vtab_get_vehicle(1054), “driver")

State: 1 (Idle)

Leader: 52

0

(dbx) print class_show(vtab.get_vehicle(1054), "driver entity")

State: 1 (Idle)
Leader: 52

Vehicle ID: 54
Location: < 0.0 0.0 0.0 >

)
(dbx) print class_show(vtab_get_vehicle(1054), "all")
...prints all safobj information...

Chapter 2: Examples 7

Finally, libclass also provides run time debugging support. Rather than putting conditionally
compiled printf’s into a library, an author should use the macro CLASS_DEBUG, as follows:

#define DRIVER_DEBUG(vehicle_id, format) \
CLASS_DEBUG(vtab_get_vehicle(vehicle_id), driver_user_data_handle, \

format) ;
void driver_do_something(vehicle_id, ...)
int32 vehicle_id;
{
DRIVER_DEBUG(vehicle_id,
("Vehicle %d: Driver doing something\n", vehicle_id));
}

LibClass Programmer’s Guide

Chapter 3: Functions

3 Functions

The following sections describe cach function provided by libclass, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 class_declare.class
CLASS_PTR class_declare_class()

class_declare_class declares an object class. Each object class can have an arbitrary number
of slots for pointers to sub-class data. The class handle returned by this function is referred to by
each sub-class when reserving a spot for its data.

3.2 class_reserve_user_data

int32 class_reserve_user_data(parent_class, name, printer)
CLASS_PTR parent_class;
char *name;
CLASS_PRINTER printer;

‘parent_class’
Identifies the class.
‘name’ An ASCII string naming the sub-class.

‘printer’ Specifies a function which can print the user data. This function should take one
argument, namely the user data.

class_reserve_user_data notes a potential sub-class of the parent_class (some instances
of the parent class may not have this as a sub-class). The parent_class was declared with
class_declare_class (see Section 3.1 «lass'declare’class), page 9). Note that name and printer
are used only for debugging purpe -~

It is safe, although short-sightesi. to pass 0 for the printer.

10 LibClass Programmer’s Guide

3.3 class_alloc_user_data

CLASS_USER_DATA_TYPE class_alloc_user_data(class)
CLASS_PTR class;

‘class’ Identifies the class.

class_alloc_user.data allocates a block of memory which will hold pointers to the various
sub-class data structures of the passed class. Store the return value of this as the user_data of the
libpo entry, libvtab vehicle, Xt widget, or whatever. The passed class is the id of the class declared
with class_declare_class (see Section 3.1 [class'declare’class], page 9).

3.4 class._free_user_data

void class_free_user_data(user_data)
CLASS_USER_DATA_TYPE user_data;

‘user_data’
Identifies the user data to be freed.

class_free_user_data frees the block of memory created with class_alloc_user_data, as
well as private data structures (like the debugging flags).

Never reference passed the user_data again after calling this function.

3.5 class_set_user_data

void class_set_user_data(parent_user._data, handle, user.data)
CLASS_USER_DATA_TYPE parent_user.data;
int32 handle;
CLASS_USER_DATA_TYPE user_data;

‘parent_user_data’
Pointer to a block of libclass user data.

‘handle’ Specifies which sub-class user data slot to use.

Chapter 3: Functions 1n

‘user_data’
Specifies the user data to be stored in that slot.

class_set_user_data sets the slot for a particular subclass of the passed user data memory
block. The parent_user_data is a block created with class_alloc_user_data
(see Section 3.3 [class alloc'user data), page 10), and the handle is the one created for this subclass
with class_reserve_user_data (see Section 3.2 [class reserve user'data}, page 9).

3.8 class.get_user_data

CLASS_USER_DATA_TYPE class_get_user.data(parent_user_data, handle)
CLASS_USER_DATA_TYPE parent_user_data;
int32 handle;

‘parent_user_data’
Pointer to a block of libclass user data.

‘bandle’ Specifies which sub-class user data siot to get.

class_get_user._data gets the data stored in a particular slot of the passed block of user_data
memory. The parent_user_data is a block created with class_alloc_user_data (see Section 3.3
[class"alloc user'data], page 10), and the handle is the one created for this subclass with class_reserve_user.
(see Section 3.2 [class'reserve user'data], page 9). If no user data was stored in this slot with
class_set_user.data (see Section 3.5 [class’set user'data), page 10), a NULL pointer will be re-
turned.

3.7 class_set_global_data

void class_set_global_data(parent_user_data, user_data)
CLASS_USER_DATA_TYPE parent_user_data;
CLASS_USER_DATA_TYPE user_data;

‘parent_user_data’
Pointer to a block of libclass user data.

‘user_data’
Specifies the user data to be stored in the global slot.

P e N A T —————— -

12 LibClass Programmer’s Guide

class_set_global_data sets the global slot of the passed user data memory block. This is
analogous to class_set_user_data, except that only one global slot is provided.

3.8 class_get_global_data

CLASS_USER_DATA_TYPE class_get_global_data(parent_user_data)
CLASS_USER_DATA_TYPE parent_user_data;

‘parent_user._data’
Pointer to a block of libclass user data.

class_get._global._data gets the global slot of the passed user data memory block. This is
analogous to class_get_user.data, except that only one global slot is provided.

3.9 class.show

void class_show(user_data, fields)
CLASS_USER_DATA_TYPE user_data;
char *fields;

‘user_data’
Pointer to a block of libclass user data.

‘fields’ Selects which fialds to show.

class_show is a debugging print routine. It prints the named fields within the body of data
pointed to by user_data. Multiple fields can be given, separated by a space, comma, or other
delimiter. Also, one of the following may be given as the only field:

what Shows names of slots which have non-NULL values.

all Shows all fields.

This function can be called from ‘dbx’ to examine variables, as shown in the example (see
Chapter 2 [Examples], page 3).

g— —— P — P —

Chapter 3: Functions 13

3.10 CLASS. DEBUG

void CLASS_DEBUG(user_data, handle, (format_string, arg, args...))
CLASS_USER_DATA_TYPE user_data;
int32 handle;

‘user_data’
Pointer to a block of libclass user data.

‘handle’ Specifies which sub-class user data slot to test.

CLASS_DEBUG is a macro which calls printf with the passed format/args on if the debugging
is on for that slot on that class in this block. Will also print if debugging is on for that slot/class
globally. See the example (see Chapter 2 [Examples], page 3) for example usage.

3.11 class_get_debug

int32 class_get_debug(user_data, handle)
CLASS_USER_DATA_TYPE user_data;
int32 handle;

‘user_data’
Pointer to a block of libclass user data.

‘handle’ Specifies which sub-class user data slot o test.

class_get_debug determines if debugging output is appropriate for the particular handle of
the particular instance (or if it is set globally). Returns 1 if debugging is on, 0 if off. CLASS_DEBUG
is implemented using this function. An application may call this when enabling debugging triggers
more than just a printf (such as turning on extra error checks).

3.12 class_.debug._byname

void class_debug._byname(user_data, fields, bit)
CLASS_USER_DATA_TYPE user_data;
char sfields;
int32 bit;

14 LibClass Programmer’s Guide

‘user_data’
Pointer to a block of libclass user data.

‘fields’ Selects which fields to enable/disable debugging.
‘bit’ 1 enables debugging; 0 disables.

class_debug_byname sets debugging flags associated with classes listed in fields either on (bit
== 1), or off (bit == 0). If a parent_user_data is passed, debugging is set for that object only.
If a NULL pointer is passed as the parent_user_data, debugging is set globally. The special value
all can be passed as the field, to set all debugging field for the object.

Note that the sequence class_debug_byname(NULL, "all", 1) enables all debugging for all
objects.

3.13 class.show._names
void class_show_names()

class_show_names prints the named fields within the slots of all valid classes.

LibCmdLine

Table of Contents

1 Overview ... 1
2 Examples ... 3
3 Functions.................... 9
3.1 cmd_process.options.... 9
3.2 cmdaggregate............ ... e 9
3.3 cmd_process aggregate Oplions..............coooevt tiiiiiiiiiii.... 10
34 cmd.gripe... ... 11
4 Options Structures.... 13
41 Mame.o e 14
4.2 help.....oooo 14
4.3 dependentOption.............. ...l 15
4 YD . 15
45 OPIOM. ..ottt 16
4.6 antioption.......... i 16
4.7 defaulto 16
4.8 value...... ... 17

Chapter 1: Overview

1 Overview

Libcmdline provides a flexible command line processor with the following features:

e Command line arguments are specified succinctly in the code, in a way which makes it easy to
add new ones.

e Each argument has accompanying information so libcmdline can print help, summarize selected
values, and do error checking.

e Each user can modify the default options used with each application program via an envi-
ronment variable. The name of this variable is derived from the name of the executable by
capitalizing it and appending ARGS. Hence, default arguments to an executable named phan-
tom could be stored in the environment variable PHANTOMARGS. This allows the creation
of one executable which can use symbolic links to yield different names and default behavior
(safstation, safsim, logger, etc.).

e Hence, arguments can be specified in three places: in the code, in an environment variable,
and on the command line (in increasing order of precedence).

e Each command line argument can be a switch, the mere presence of which indicates a value,
or it can be followed by one or more values (integers, floating point numbers, strings, or any
combination).

e Arguments can be interdependent, so for example, the user may only be allowed to specify an
exercise ID if running with the network; or specify a starting X if a starting Y is also specified
(and vice-versa).

e Multiple dependencies can be either conjunctively or disjunctively combined, so for example,
the interdependent X and Y can also be dependent upon a Z and upon there not being a
starting grid specified, and the Z can be dependent upon there being an X or a starting grid
specified.

e Unrecognized arguments are given back to the caller, so they can be passed to other command
line processors (such as XtInitialize). These unrecognized arguments can be given either on
the command line or in the user environment variable (so for example, STATIONARGS can
be "-g 800x500", which might not be recognized by libcmdline, but instead would be passed
on to Xt).

e Arguments can be abbreviated by ending them with a ’.’. For example, if the application
expects -exercise 1, the user can type -e. 1 to achieve the same result. The reason for the
explicit .’ is that some arguments are not intended to be recognized (such as the -g option
just described).

The interface to libcmdline is through an array of CMD_OPTION structures, although an applica-
tion will generally instead use a structure of various parallel structures, and speci® values with

aggregate initialization (see Chapter 2 [Examples], page 3).

LibCmdLine Programmer’s Guide

Chapter 2: Examples 3

2 Examples

The following code segment gives examples of all libcmdline features. This code serves as
a hypothetical example; it does not represent actual ModSAF code. See Chapter 4 [Options
Structures), page 13, for more information.

#include “"libcmdline.h"
#include <stdext.h> /+*common/include/globals/

struct

{
CMD_TOGGLE_OPTION safsim;
CMD_TOGGLE_OPTION safstation;
CMD_STRING_OPTION terrain;
CMD_TOGGLE_OPTION network;
CMD_INTEGER_OPTION exercise;
CMD_BOOLEAN_OPTION synch;
CMD_INTEGER_OPTION mcache;
CMD_STRING_OPTION startmap;
CMD_INTEGER_OPTION scalenum;
CMD_INTEGER_OPTION scaledenom;
CMD_FLOAT_OPTION rndseed;
CMD_INTEGER_QGPTION xloc;
CMD_INTEGER_OPTION yloc;

} options = {

{
"SAFSIM" , "Selects whether to run SAF simulation processes" ,
NULL ,
CMD_TOGGLE , gim" , "nosim" , TRUE ,
},
{
“"SAFSTATION" , "Selects whether to run SAF workstation processes" ,
NULL ,
CMD_TOGGLE , “station" , "nostation" , TRUE ,
},
{
"Terrain Database Name" , "Specifies terrain database” ,
"stationlsim" ,
CMD_STRING , “terrain" , "nowhere" , "knox-0311" ,
},
{
"Network" , "Selects whether to use network" ,
NULL ,
CMD_TOGGLE , "network" , "nonet" , TRUE ,
},
{

"Exercise ID" , "Specifies simulation exercise id" ,
“network" ,

LibCmdLine Programmer’s Guide

CMD_INTEGER , ‘“exercise" , NULL , 1,
)
{
"Synchronous" , "Run X windovs in synchronous mode for debugging" ,
"station" ,
CMD_BOOLEAN , "synch" , "asynch" , FALSE ,
},
{
“Map Cache" , "Specifies number of map screens to cache" ,
'station" ,
CMD_INTEGER , “mcache" , “"nomcache" , 2,
} .
{
"Map Starting Grid"” , "Specifies initial lccation of map" ,
“station" ,
CMD_STRING , “startmap" , "center" , NULL ,
)
{
"Map Starting Scale” , "Specifies initial map scale # : #" ,
"station" ,
CMD_INTEGER , ‘“scale" , NULL , 1,
},
{
/* Map Starting Scale takes tvo arguments */
NULL , NULL , NULL , CMD_INTEGER , NULL , NULL , 200000 ,
Y,
{
"Random Number Seed” , "Seed value for random number generator" ,
ngim" .
CMD_FLOAT , “rand" , NULL , 0.0,
},
{
"X* , "Starting X location" ,
"y&station” ,
CMD_INTEGER , "x" , NULL , o,
},
{
"y , "Starting Y location” ,
“"x&station" ,
CMD_INTEGER , "y" , NULL , o,
},

};

main(argc, argv)
int argc;
char =argv(];
{
int32 leftover_argc:
char **leftover_argv;

Jt

Chapter 2: Examples

cmd_process_options(arge, argv, /* args to main() */
tleftover_argc, kleftover_argv, /* unrecognized =/
(CMD_OPTION #*)&options, /* options array */
sizeof(options), /* size of options array */
TRUE /* Verbose mode */
);

/+ Pass remaining args to X windows »/
XtInitialize(XtInitialize(argv[0], "Saf", NULL, O,
tleftover_argc, leftover_argv);

cmd_gripe(leftover_argc, leftover.argv);

/+ Example usage... */
printf("Reading /saf/terrain/%s\n", options.terrain.value);

It is also possible to describe command line options in multiple arrays by aggeregating them and
then processing the resulting structure. This is useful for keeping command line options associated
with modules. For example, one module could may control the application processes:

#include "libcmdline.h"
#include <stdext.h> /*common/include/globals/

struct

{
CMD_TOGGLE_OPTION safsim;
CMD_TOGGLE_OPTION safstation;
} process_options = {

"SAFSIM" , "Selects whether to run SAF simulation processes" ,

NULL ,
CMD_TOGGLE , "sim" , "nosim" , TRUE ,
} .,
{
"SAFSTATION" , "Selects whether to run SAF workstation processes" ,
NULL ,
CMD_TOGGLE , “station" , "nostation" , TRUE ,
},

};

void process_init (options, sizeof_options, map)
CMD_OPTION *#options;
uint32 *sizeof_options;
CMD_TYPES #*#**map;

cmd_aggregate (options, sizeof_options,
(CMD_OPTION *)g&process_options,

LibCmdLine Programmer’s Guide

sizeof (process_options),

map);
}
void process_simul ()
{
printf (“Simulation process is %s\n",
process_options.safsim.value ? "On" : "0ff");
printf ("Workstation process is %s\n",
process_options.safstation.value ? "On" : “0ff");
}

Another module may control the network:

#include "libcmdline.h"
#include <stdext.h> /#*common/include/globals/

struct
{
CMD_TOGGLE_OPTION network;
CMD_INTEGER_OPTION exercise;
} network_options = {

"Network" , "Selects whether to use network" ,

NULL ,
CMD_TOGGLE , “network" , “nonet" , TRUE ,
},
{
"Exercise ID" , "Specifies simulation exercise id" ,
“"network" ,
X CMD_INTEGER , "exercise" , NULL , 1,

}:

void network._init (options, sizeof_options, map)
CMD_OPTION *=options;
uint32 *gizeof _options;
CMD_TYPES *»smap;

{
cmd_aggregate (options, sizeof_options,

(CMD_OPTION *)&network.options,
sizeof (network_options),
map) ;

}

void network_simul ()

{

printf ("Network is %s\n",

Chapter 2: Examples 7

network_options.network.value ? "On" : "0Off");
if (network_options.network.value)
printf ("Exercise ID is %d\n", network_options.exercise.value);

The options from these two modules may be combined as follows:

#include "libcmdline.h"
$include <stdext.h> /#common/include/globals/

extern void process_init ();
extern void process_simul ();
extern void network_init ();
extern void network_simul ();

main(argec, argv)
int arge;
char #*argv[];

int32 leftover_argc;
char sxleftover_argv;
CMD_OPTION *options;
uint32 sizeof_options;
CMD_TYPES *#*map;

sizeof_options = 0;

process_init (&options, &sizeof_options, &map);
network._init (&options, &sizeof_options, &map);

cmd_process_aggregate_options(argc, argv, /+ args to main() #*/
tleftover_argc, &leftover_argv, /* unrecognized */
options, /* options array #*/
sizeof_options, /* size of options array =/
map, /* option value map %/
TRUE /* Verbose mode */
);

process_simul ();
network_simul ();
}

LibCmdLine Programmer's Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libcmdline, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 cmd_process_options

void cmd_process_options(argc, argv, leftover_argec, leftover_argv,
options, sizeof_options, verbose)

int arge;

char sargv(];

int32 *leftover_argc;
char ssleftover_argv(];
CMD_OPTION =*options;

uint32 sizeof_options;
int32 verbose;

‘argc, argv’
Arguments to main

‘leftover_argc, leftover_argv’
Returns unmatched arguments for processing by other command line parsers (such as
Xtlnitialize)

‘options’ Specifies array of known options, returns values of those options

‘sizeof_options’
Specifies the size of the options array (in bytes)

‘verbose’ Specifies whether to print values of options

cmd_process_options processes command line options, providing a value for each (either a
system default, an environment default. or a command line switch value). The options which are
not recognized are passed back in leftover_argc/v.

3.2 cmd._aggregate

int32 cmd_aggregate(aggregate, sizeof_aggregate, piece, sizeof_piece, map)
CMD_OPTION *xaggregate;
uint32 *sizeof_aggregate;
CMD_OPTION =*piecas:

— R WA W W e — T T T T S — ———

10 LibCmdLine Programmer’s Guide

uint32 sizeof_piece;
CMD_TYPES ***map;

‘aggregate’
Pointer to a variable containing a pointer to the aggregate options array. The user
simply needs to declare the variable. cmd_aggregate will fill it in properly.
‘sizeof_aggregate’
A pointer to a variable containing the size of the aggregate options array. The user
should set the value of the variable to zero (0) before the first call to cmd_aggregate.
‘piece’ An options array to be adcded to the aggregate array.
‘sizeof_piece’
The size of piece.

‘map’ A pointer to a variable contairing a pointer to a map array. The user simply needs to
declare the variable. cmd_aggregate will fill it in properly.

cmd_aggregate adds a command line options array (piece) to a dynamically allocated command
line options array (aggregate).
3.3 cmd_process_aggregate_options

void cmd_proceu_aggregato_options(argc, argv, leftover_argc,
leftover_argv, options,
sizeof_options, map, verbose)

int argce;

char sargv[];

int32 *leftover_argc;
char *sxleftover_argvl];
CMD_OPTION *options;

uint32 sizeof_options;
CMD_TYPES #**map;

int32 verbose;

‘argc, argv’
Arguments to main.

‘leftover_argc, leftover_argv’
Returns unmatched arguments for processing by other command line parsers (such as

XtInitialize).
‘options’ Specifies aggregated array of known options. Constructed in calls to cmd_aggregate.

‘sizeof_options’
Specifies the size of the options array (in bytes). Determined in calls to cmd_aggregate.

Chapter 3: Functions n

‘map’ Contains a mapping the aggregate options array and each of the pieces.

‘verbose’ Specifies whether to print values of options

cmd_process_aggregate_options processes command line options contained and an aggregate
options array. The value for each option (cither a system default, an environment default, or a
command line switch value) is copied into the option arrays that make up the aggregate array. The
options which are not recognized are passed back in leftover_argc/v.

3.4 cmd_gripe

-

void cmd_gripe(leftover_argc, leftover_argv)
int32 leftover_argc;
char *leftover_argvi];

‘leftover_argc’
Specifies the number of unrecognized options

‘leftover.argv’
Specifies list of unrecognized options

cmd_gripe print a message listing unrecognized arguments.

12 LibCmdLine Programmer’s Guide
|

Chapter 4: Options Structures 13

4 Options Structures

Libcmdline uses six structures to represent command line options. The first (CMD_OPTION) is a
generic structure in which default values are specified and resulting values are returned using the

following union:

union cmd_types

{
int32 boolean;
int32 toggle;
int32 integer;
char =*string;
float32 floating;
};

The remaining five structures are identical to this master structure, except that rather than
using a union, the default and resulting value fields are of a single simple type. This allows these
values to be specified using aggregate initializers in C, for example:

CMD_TOGGLE_OPTION safsim =

{
"SAFSIM" , "Selects whether to run SAF simulation processes" ,
NULL ,
CMD_TOGGLE , “gim" , "nosim" , TRUE ,

};

This type of initialization is not possible in C when the structure contains unions.
The CMD_OPTION structure is defined as follows:

typedef struct cmd_option
{

/* Descriptive name of thing controlled with option */
char *name;

/* Description of purpose of this option */
char *help;

/* If non-NULL, specifies an option which must be selected (if the
* name is that of an option, the value associated with that option
* must be non-zero; if the name is that of an anti_option, the
* value must be zero) for this option to be allowed.

*/

14 LibCmdLine Programmer’s Guide

char sdependent_option;

/+ CMD_BOOLEAN, CMD_FLOAT, etc. */
int32 type;

/+ Command line option (preceded with - on command line) */
char soption;

/* Version of the option which indicates 0. May specify NULL to
* indicate no such option when type == INTEGER, STRING, or FLOAT;
* must give a value wvhen type == BOOLEAN or TOGGLE.

*/

char *anti_option;

/* Default value (Note the mis-spelling because default is reserved) =/
union cmd_types default;

/* Resulting value (don’'t bother to initialize) #/

union cmd_types value;
} CMD_OPTION;

Each field is described in the following sections.

4.1 name
The name of the option is used for two purposes:

e When processing the command line with the Verbose flag set to TRUE, the name is used in
printing the value.

e If the name is not specified (NULL). the option is treated as a continuation of the previous
option. In this way, a single option can take more than one value.

4.2 help
The help string specified for «. b ption is a description of what the option controls. Help
is used when one of the flags ji..--esl < lip, -h. or -?7. Help strings should kept short to avoid

wrapping at the end of the screen

Chapter 4: Options Structures 13

4.3 dependent_option

dependent_option(s) are those which must be specified along with the current option. More than
one option can be listed here, tied together with the others using the characters ‘&’ or ‘|’, meaning.
respectively, that all or at least one of the dependent options must be given. (Don’t use any spaces
in this string.)

Refering to a boolean or toggle option in the list of dependencies indicates that the value of
that option must be TRUE. Referring to any other kind of option indicates that the value of that
option must be different than the default value. Finally, referring to an anti-option, indicates that
that option must have a zero (or NULL) value. Note that depending on an option with more than
one value (see Section 4.1 [name], page 14), will perform these tests on the first value, but not on
any continuations.

Dependencies are not checked until after all command line arguments have been processed, so
options may be interdependent (-a depends on -b, and -b depends on -a).

4.4 type

The type of an option determines how its value is determined, printed, and stored. The following
types are defined:

" CMD_BOOLEAN
A True (1) or False (0) value. Simply listing the option on the command line is sufficient
to specify a True value. Similarly, listing the anti-option specifies a False value.

CMD_.TOGGLE
An On (1) or Off (0) value. The only difference between TOGGLE and BOOLEAN is in the
way the value is printed.

CMD_INTEGER

An integer value.
CMD_STRING

A character string.

CMD_FLOAT
A floating point number (in a format recognized by scanf(3)).

For each type, there is a variant of the CMD_OPTION structure. They are as follows:

16 LibCmdLine Programmer’s Guide

CMD_BOOLEAN
CMDBOOLEAN_OPTION

CMD_TOGGLE
CMD.TOGGLE.OPTION

CMD_IXNTEGER
CMDINTEGER_OPTION

CMD_STRING
CMDSTRING.OPTION

CMD_FLUAT
CMD_FLOAT.OPTION

4.5 option

The option string is the sequence of characters which are specified on the command line with
a ‘=’ to select this option. This should be NULL when the option is a continuation of a previous
option (see Section 4.1 [name}, page 14).

4.6 anti_option

The antioption string is a sequence of characters which can be specified on the command line
with a ‘~’, toindicate a 0 or NULL value. Note that selecting the anti-option nullifies all continuations
of the option as well.

For boolean and toggle options, it is mandatory to specify an anti-option (otherwise environ-
mental defaults could not be overridden on the command line). For other types of options, NULL
may be specified to indicate its absence.

4.7 default

The default value (misspelled default because of conflicts with the C language) is the value
which is used unless overridden by the evironment variable or on the command line.

Chapter 4: Options Structures 17

4.8 value

The value ultimately selected for each option is placed here. This is a write-only field in libcmd-
line, any initial value will be overwritten by cmd_process_options().

ADST-TR-W003268
LibCollision

Table of Contents

1 O VeI VIeW .. 1
2 Functioms 3
2.1 ol mit . o 3
2.2 collclassadmit.o oo 3
2.3 collcreate . . o 4
2.4 colldestroy.o 5
2.5 collprocess pdus..........coouiuriiiiiiiiiiii i 5
2.6 collticko 6
2.7 collgetcurrentiiiiiiiiiiiii 6
28 colldgnore..... 7

3 Access Keys ...oooooiiiiiiiiiiiiii 9

T T 2 W G " T T "

Chapter 1: Overview I

1 Overview

Libcollision provides a 3D physical model of collision detection. It can detect collisions with
other network entities (platforms, missiles, and structures), as well as treelines, buildings, and the
ground. This library is also responsible for generating and processing collision PDUs. The library
uses a parametrically controlled timing heuristic to filter out redundant collisions (such as when
both parties in the collision send one another collision PDUs).

This library handles both the simple detection of intersections with nearby features used for slow
moving ground vehicles, as well as the more complex detection of collisions needed by a fast moving
vehicle which may jump a considerable distance between ticks. For example, a missile traveling at
Mach 1, ticking at 2 Hz will jump about 165 meters each tick. Hence, a ray must be run from the
old position to the new position to determine if any features were intersected along the way.

The parameters used by a vehicle (or missile) for collision detection are specified in its configu-
ration file as follows:

(SM_Collision (check {trees} {buildings} {ground}
{platforms} {missiles})
(announce {trees} {buildings} {ground}
{platforms} {missiles})
(duration <integer milliseconds>)
(feature_mass <real kg>)
(fidelity [highllow])

The first parameter, check, lists those things for which collision detection is required. This
affects performance in two ways:

o Each tick, libcollision checks for collisions with those things listed. Each additional item has
some added cost.

o When a collision PDU is received, the collision is only reported to the parent object (see
Section 2.2 [coll'class’init], page 3) if the colliding entity matches one of the types listed. For
example, if a tank is configured to not check for collisions with buildings, then a collision
emminating from a network entity of domain Structure will not be passed on.

The announce parameter lists those collision which should be announced on the network (via a
collision PDU) when a collision is detected locally. For example, a missile would list platforms in
its check list, but not in its announce list, since the missile will be sending an impact PDU instead
of a collision PDU.

]

2 LibCollision Programmer's Guide

The duration value is used in a simple heuristic which avoids redundant collision detection.
When a collision is detected, the time of that collision is noted. Each similar collision (with the same
entity or terrain feature) which occurs within the specified duration after the original collision is
then ignored. This gives the dynamics software a chance to back the vehicle out of the collision,
and protects from redundant damage assessment when both parties in a collision detect it and issue
collision PDUs.

The feature_mass parameter specifies the mass which will be passed up to the parent object
when the software detects a collision with a terrain feature. This is intended to simplify encoding
of damage models.

Finally, the fidelity parameter (which has a value of high or low) is used to determine the
accuracy (and hence computational expense) of the algorithms used in collision detection. The
differences are primarily with respect to the point of intersection.

In the high fidelity model, the point of intersection will be accurately determined, using the
parallelepipeds described in libphysdb (width, length, height). For example, a collision with a
building will be detected exactly as the front edge of the vehicle touches the building.

In contrast, the low fidelity model detects collisions with terrain features using a bounding cube
which is aligned with the compass axes, and is as large as the vehicle’s largest dimension. Collisions
with other vehicles are detected using a simple spherical model of vehicles.

Note that the low fidelity model does run the ray intersection test described above, so it may
be used for crude missile simulations.

_——

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libcollision, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 coll_init

void coll_init(packet_valve, event_id, exercise_id, sim_addr, protocol)

PV_VALVE_PTR packet._valve;

int32 *event.id;

uint8 exercise_id;

SimulationAddress *sim_addr;

int32 protocol;
‘packet_valve’

Specifies the packet valve used to send/receive collision PDUs
‘event_id’

Specifies a pointer to a static host event counter
‘exercise.id’

Specifies the exercise on which to broadcast collision PDUs
‘sim_addr’

Specifies simulation address for outgoing event DIS IDs

‘protocol’
Specifies protocol in use (0 for SIMNET, DIS_PROTGCOL_VERSION.* for DIS)

coll_init initializes libcollision. Call this before calling any other libcollision functions. The
packet_valve is created with a call to pv_create_valve.

2.2 coll_class_init

void coll_class_init(parent_class, callback)
CLASS_PTR parent_class;
COLL_CALLBACK callback;

‘parent_class’
Specifies the parent class (probably safobj.class)

4 LibCollision Programmer’s Guide

‘callback’
Specifies the function to call when collisions occur

coll_class_init creates a handle (index) for attaching collision class information to vehicles.
The parent_class is one created with class_declare_class. The callback function should be

declared:

void callback(vehicle_id, position, coll_type,
other_id, other_mass, other_velocity)

int32 vehicle_id;

float64 position(3];

uint32 coll_type;

int32 other_id;

float64 other_mass;

float64 other_velocity(3];

This is called when a collision occurs, after the collision is announced on the network (provided
the type of collision is listed in the announce parameter list). The position sent is the point of
collision. The coll_type code is one of the following:

COLL_TREES
Indicates crossing a treeline or canopy edge.

COLL_BUILDINGS
Indicates crossing a building or other structure. If the other structure is represented
on the network, the vehicle ID of that structure will be provided.

COLL_GROUND
Indicates a collision with the ground.

COLL_PLATFORMS
Indicates intersecting a platform (vehicle, DI, etc.).

COLL_MISSILES
Indicates intersecting a missile (an entity on the network with a munition type).

If the collided entity exists in the vehicle table, its ID is given in the other_id field. For
collisions with terrain features, the other_mass will be that specified in the feature_mass field of
the parametric data, and the other_velocity will be zero.

2.3 coll_create

void coll_create(vehicle_id, parms)

Chapter 2: Functions 5
int32 vehicle_id;

COLLISION_PARAMETRIC_DATA +¢parms;

‘vehicle_id’
Specifies the vehicle ID

[

parms’ Specifies initial parameters

coll_create creates the collision class information for a vehicle and attaches it to the vehicle’s
libclass user data.

2.4 coll.destroy

void coll_destroy(vehicle.id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

coll_destroy frees the collision class information for a vehicle.

2.5 coll_process_pdus

void coll_process_pdus(vehicle_id)
int32 vehicle_id;

‘vehicle.id’
Specifies the vehicle ID

coll_process_pdus proces~e~ anuv «oilision PDUs received and enqueued since the last call to
this function. This may invohe '/ aithack function passed to coll_class_init if a received
collision is not one which was .1.: w!v etected] locally. This should be called early in a vehicle’s
tick, preferably before updating i+ .1:: « « vin order to ensure minimal visual latency), and before

calling coll_tick.

6 LibCollision Programmer’s Guide

2.6 coll_tick

void coll_tick(vehicle_id, ctdb)
int32 vehicle_id;
CTDB *ctdb;

‘vehicle_id’
Specifies the vehicle ID
‘ctdbd’ Specifies the terrain database

coll_tick ticks the collision sub-class. During the tick, if a collision is detected, a packet may
be sent and the callback function passed to coll_class_init may be invoked.

2.7 coll_get_current

void coll_get_current(vehicle_id, current)
int32 vehicle._id;
COLL_CURRENT #*current;

‘vehicle_id’
Specifies the vehicle ID

‘current’ Returns current collision information

coll_get._current returns a read-only list of vehicles which have been collided with recently.
The user data attached to each vehicle in the list specifies the simulation clock value at the time
of collision. It is safe to iterate over the list of vehicles, provided that iteration does not span more
than one tick (i.e., the collision subclass will also be iterating over this list). This function also
gives information about the most recent terrain collision. The COLL_CURRENT structure is defined
as follows:

typedef struct coll_current

{
/* A list of recent vehicle collisions =/
VTAB_LIST list;

/* A description of the most recent terrain collision */
struct
{

uint32 coll_type; /+ COLL_TREES, etc. */

uint32 simulation.clock;

Chapter 2: Functions 7

float64 location[3];
float64 mass;
} most._recent_terrain;
} COLL_CURRENT;

2.8 coll.ignore

void coll._ignore(vehicle_id, operation, other.id)
int32 vehicle_id;
COLL_IGNORE_OP operation;
int32 other._id;

‘vehicle_id’

Specifies the vehicle ID
‘operation’

Specifies whether to add or remove the other vehicle from the ignore list
‘other.id’

Specifies vehicle to ignore

coll_ignore adds or removes a vehicle to the list of vehicles which should be ignored in collision

detection. This can be used, for example, to avoid detecting collisions between platforms and their
missiles; or aircraft and carriers.

operation has one of the values:
COLL_ADD Ignore collisions with other_id.

COLL_REMOVE
Do not ignore collisions with other_id.

LibCollision Programmer’s Guide

Chapter 3: Access Keys

3 Access Keys

In addition to the functions just described, libcollision also provides libaccess keys with which
many variables can be fetched at once. These keys, and the type of argument they expect are given
below:

coll_current
COLL_CURRENT *arg

LibComponents

ADST-TR-W003268

Table of Contents

1

2

3

O VeI VIO W . i e e e 1
Examples ... 5
Functions e 7
31 cmpntamit.. ... e 7
3.2 cmpntdefineclass.... ...t 7
3.3 cmpntdefinedinstance...............c.coiiiiiiiiiiiiiiiiiii i 7
3.4 cmpntelassdnit....ol e 2
3.5 cmpntereate. i 9
36 CmPRtAestroy.........cviiiniiiiiiiiiii i et 10
3.7 cmpntavailable.......... ..o e 10
3.8 cmpntldocate...........ciiiiiiiiiiii it e 10
39 cmpntgetinfo.............ooiiiiii e 11
3.10 cmpntadnvoKe........oouiiiii ittt 11
3.11 cmpntldocatebymodel.................cooiiii e 12

3.12 cmpnt.get_capabilities.................cooiiiiiiiiiiii 13

Chapter 1: Overview 1

1 Overview

Libcomponents is an architectural library which provides a level of abstraction away from specific
component interfaces. For example, although a vehicle may have one of several sensor models, the
interfaces to these models are all basically identical. Libcomponents allows an application to give
commands to its "sensor" without knowing which sensor model is being used. Through the use
of libparmgr, libcomponents also provides a facility to change, add, or delete a ccmponent model
after a vehicle has already been created.

The layering of the software looks something like this:

---------------------------- specific layer ---=c-~c-=ccccsccccao—e
TrackedHull FWAHull BallisticGun
WheeledHull RWAHull RocketLauncher Radar
DIHull MissileHull GenericTurret Missilelauncher Visual
----------------------------- generic layer ---- ——--

Hull Turret Gun Sensor
-------------------------- architectural layer --

Components

The software layering diagram shown above has been currently implemented via the ModSAF
library structure shown below.

-~ specific component libraries -
libtracked
libwheeled
librwa
libfwa libbalgun libradar
libmissile libgenturret libmlauncher libvisual
-—- generic component libraries -----e--cccccccccccccoo
libhulls libturrets libguns libsensors

------ se-sesecsce=c--ce----- architectural library ----==--cc-cccccccec-

2 LibComponents Programmer’s Guide

libcomponents

- T D S T s D R D P R T e Y D P D YD D G AP S D R G R WD e D R A A W S O -

The parametric data of libcomponents identifies each component being used with a name and a
model number. Optionally, some components also list what capabilities that component provides
to the vehicle when the component is operational. For example, a T72M component entry might
look like this:

(SM_Components (hull SM_TrackedHull SAFCapabilityMobility)
(turret SM_GenericTurret)
(machine-gun [SM_BallisticGun | 0] SAFCapabilityFirepower)
(main~-gun [SM_BallisticGun | 1] SAFCapabilityFirepower)
(visual SM_Visual))

The specific parameters used by each component are listed separately

(SM_TrackedHull (max_speed ...) ...)

(SM_GenericTurret (max_slew ...) ...)

([SM_BallisticGun | 0] (round_types munition_USSR_30mm) ...)

([SM_BallisticGun | 1] (round_types munition_USSR_125HEAT
munition_USSR_125SABOT) ...)

(SM_Visual (max_detectable ...) ...)

The T72M whose component entry was displayed above will require one libhull, one libturret,
and one libvisual instantiation. It will require two libgun instantiations: one for the machine
gun and one for the main gun. The specific component library instantiations will be instances of
the generic component library class. This component class relationship for the libraries currently
implemented is shown below.

Instantiations of Belong to generic Have a command

of the library: component class: interface defined in:
libtracked hull libhulls

libwheeled hull libhulls

librwa hull libhulls

libfwa hull libhulls

libmissile hull 1libhulls
libgenturret turret libturrets
libbalgun gun libguns
libmlauncher gun libguns

libvisual sensor libsensors

Chapter 1: Overview 3

libradar sensor libsensors

An application issues commands to a specific component library through its generic component
library. For example, an application will interfare to libtracked or libfwa through libhulls so that a
tank’s movement control commands (which are performed by libtracked) and an airplane’s move-
ment control commands (which are performed by libfwa) are both issued via the interface defined
by libhulls. Similarly, an application will interface to libvisual or libradar through libsensors.

The generic component libraries define the common set of functions that operate in the specific
component libraries. Each generic component library (such as libhulls, libsensors, libturret, and
libguns) directs libcomponents to define a component class for itself and tells libcomponents the
number of its defined functions. This information enables libcomponents to define a structure that
accommodates all the components of an object, plus it allows the object’s user data to be allocated
enough space to hola the address of each function defined in the generic component library.

The interface to a generic component library is defined in it’s public header file (such as lib-
turret.h, libguns.h, libsensors.h, and libhulls.h.). These interfaces allow an application to control
(set) or learn about (get) such things as component movement, shooting, and sensing. The ap-
plication gives a command to an objects’s component by passing a macro defined in the generic
component library. This macro identifies the function which needs to be called. For example, the
macro, HULLS SET _DIRECTION_SPEED, will result in the invocation of the specific component
function named, hulls_set_direction_speed.

When a function is to be called, the vehicle id, component number, and function pointer index
need to be passed to libcomponents so that the appropriate subclass data can be accessed. The
requested function needs an argument list to handle needed input (such as a direction or speed)
and/or returned output (such as a state or setting). The interface structure defined in the generic
component library defines the argument list which is passed on to a specific component library.

Libcomponents takes care of the following:

o Creating the components listed;

e Associating names of instantiations with user-data handles, for those libraries which support
multiple instantiations;

e Dispatching calls defined by the generic layer, but executed by the specific layer; and,
e Creating or deleting components at run time.

Creating/deleting instantiations also impacts the tasks which use those instantiations. For
example, a task which looks for targets wants to use all available sensors. Hence, libcomponents

4 LibComponents Programmer’s Guide

must be able to propagate the information of what is available to the tasks at run time. This is
handled as follows: component is deleted/added, libcomponents calls a callback routine in libsafob j,
libsafobj calls functions in impacted tasks. This facility is also available to handle damage/repair
of components (libcomponent provides a function which the component-instance sub-class will call
when it is damaged/repaired).

o

Chapter 2: Examples

2 Examples

To initialize libhulls, a generic component class:
cmpnt_define_class(SM_classHull, HULLS_NUM_FUNCTIONS);
To initialize libtracked, an instance of the hull class:

tracked_user_data_handle =
class_reserve_user.data(parent_class, 'tracked", tracked_print);

/+* Tell libcomponents we are available. */

cmpnt.define_instance(SM_TrackedHull, 1, &tracked_user._data_handle,
tracked_create, tracked._destroy,
HULLS_SET_DIRECTION_SPEED_FCN, set._dir_speed,
HULLS_SET_VELOCITY.GEAR_FCN, set_vel_gear,
HULLS_SET_VELOCITY_DIRECTION_FCN, set_vel_dir,
HULLS_SET_VELOCITY_ORIENTATION_FCN, set_vel_ori,
HULLS_SET_POSITION_DIRECTIUN_FCN, set_pos._dir,
HUI. _S_SET_GOAL_CORRIDOR_FCN, set_goal_corr,
HULLS_SET_TARGET_ID_FCN, set_target_id,
HULLS_SET_TARGET_POSITION_FCN, set_target_position,
HULLS_GET_ETA_FCN, get_eta);

To get the component number of my hull:

extern int32 my_hull;

if ((my_hull = cmpnt_locate(vehicle_id, reader_get.symbol("hull"))) ==
CMPNT_NOT_FOUND)
printf("Vehicle %d does not seem to have a hull\n", vehicle_id);

To then give a command to that hull (the macro is defined by libhulls; it assembles a HULLS_INTERFACE
structure, and calls cmpnt_invoke):

if (my_hull != CMPNT_NOT_FOUND)
HULLS_SET_DIRECTION_SPEED(vehicle_id, hull, dirvec, speed, 0.0, 0.0);

———©———ESSSSS

LibComponents Programmer’s Guide

Chapter 3: Functions

83 Functions

The following sections describe each function provided by libcomponents, including the format
and meaning of its arguments, and the meaning of its return values (if any).

3.1 cmpnt.nit
void cmpnt.init()

cmpnt_init initializes libcomponents. Call this before calling any other libcomponents func-
tions.

3.2 cmpnt_define_class

void cmpnt_define_class(saf_model.class, num_functions)
uint32 saf_model._class;
int32 num_functions;

‘saf_model_class’
Specifies the class being defined

‘num_functions’
Specifies the number of functions provided by that members of the class

cmpnt_define_class defines a class of component. The purpose of a class is to specify the func-
tions provided by components of this class. The saf_model_class is one defined in p_safmodels.h.

3.3 cmpnt_define_instance

void cmpnt_define_instance(saf_model, num_handles, handles,
create, destroy,
function_number, function,
function_number, function,
cee)

uint32 saf_model;

8 LibComponents Programmer’s Guide

int32 num_handles;
int32 handles[];
CMPNT_CREATE create;
CMPNT_DESTROY destroy;

int32 function_number;
CMPNT_FUNCTION function;

‘saf_model’
Specifies the model number of the instance (implies a class)

‘num_handles’
Specifies the number of user data handles provided by the instance (will be > 1 if the
instance is multiply instantiable per vehicle)

‘handles’ Specifies a list of user data handles
‘create’ Specifies the function to call to create an instantiation
‘destroy’ Specifies the function to call to destroy an instantiation

‘function.number’
Specifies a function code number defined for the class

‘function’
Specifies a function to call when given that function_number

cmpnt.define_instance defines an instance of a component class. The instance has a SAF
Model number (which implies a class) and a list of functions. The instance also informs libcompo-
nents of how many times it may appear per vehicle, and the handles used for each appearance.

The create and destroy functions should be of the form:

void create(vehicle_id, user_data_handle, params)
int32 wvehicle_id;
int32 user_data_handle;
ADDRESS params;

void destroy(vehicle_id, user_data_handle)
int32 vehicle._id;
int32 user_data_handle;

Each function should be of the form:

void function(vehicle_id, user_data_handle, parameters)
int32 vehicle_id;
int32 user_data_handle;
<CLASS>_INTERFACE parameters;

Chapter 3: Functions 9

3.4 cmpnt_class.init

void cmpnt_class_init(parent_class, availability_fcn)
CLASS_PTR parent_class;
CMPNT_AVAILABILITY availability_fcn;

‘parent._class’
Class of the parent (declared with class_declare_class)

‘availability_fcn’
Specifies the function to call when component availability changes

cmpnt_class.init creates a handle for attaching components class information to vehicles. The
parent_class is one created with class.declare_class.

The availability_fcn should be of the form:

void availability(vehicle_id, component_number, is_available)
int32 vehicle_id;
int32 component_number;
int32 is_available;

Note that this function is not called at vehicle creation (when, technically, components first
become available).

3.5 cmpnt_create

void cmpnt_create(vehicle_id, parms, name_symbol)

int32 vehicle_id;

COMPONENTS_PARAMETRIC_DATA eparms;

char sname_symbol;
‘vehicle_id’

Specifies the vehicle ID
‘parms’ Specifies the initial parameter values

‘name_symbol’
Specifies the name of the vehicle being created (such as "vehicle.US_M1").

cmpnt_create creates the components class information for a vehicle and attaches it to the

10 LibComponents Programmer’s Guide

vehicle’s libclass user data. It also creates the components listed in its parametric data. The
name_symbol should be a libreader symbol.

3.6 cmpnt_destroy

void cmpnt_destroy(vehicle_id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

cmpnt.destroy frees the components class information for a vehicle. It also frees any component
instantiations.

3.7 cmpnt_available

void cmpnt_available(vehicle_id, saf_model, is_available)
int32 vehicle_id;
uint32 saf_model;
int32 is_available;

‘vehicle_id’
Specifies the vehicle ID

‘saf_model’
Specifies the model going on/off line

‘is_available’
Specifies whether new availability

cmpnt_available informs libcomponents that the component is/isn’t available. Libcomponents
passes this information on to its parent (such as safobj) which tells users of that component it is
available, or not to use it. Components which have been marked as unavailabile will not be able to

be located via cmpnt_locate.

3.8 cmpntlocate

" " A ammas = e T —— — ..

Chapter 3: Functions 11

int32 cmpnt_locate(vehicle_id, specific_name)
int32 vehicle.id;
char *specific_name;

‘vehicle_id’
Specifies the vehicle ID
‘specific_name’
Specifies the name of the desired component

cmpnt_locate finds the component number of a specific component name (the name should
be a libreader symbol). This number is then used in calls to cmpnt_invoke. The return value
CMPNT_NOT_FOUND is returned when no instance of the passed name can be found. Components
which have been marked as unavailabile by cmpnt.available will not be able to be located and
will return CMPNT_NOT_FOUND.

3.9 cmpnt._get.info

void cmpnt_get_info(vehicle_id, component.number, specific_name, saf_model)
int32 vehicle.id;
int32 component_number;
char =**specific_name;
uint32 #*saf_model;

‘vehicle_id’
Specifies the vehicle ID

‘component_number’
Specifies the component
‘specific_name’
Returns the name of the component
‘saf_model’
Returns the model number of the component (from ‘p_safmodels.h’).

cmpnt_get_info gets the name and SAF model number of the specified component.

3.10 cmpnt.invoke

void cmpnt_invoke(function_number, vehicle._id,

12 LibComponents Programmer’s Guide

component_number, interface_block)
int32 function_number;
int32 vehicle_id;
int32 component_number;
ADDRESS interface_block;

‘function_number’
Specifies the function to call

‘vehicle_id’
Specifies the vehicle ID

‘component_number’
Specifies the component to invoke upon

‘interface_block’
Specifies a pointer to a block of parameters

cmpnt_invoke calls the specified function for the specified component. The interface_block
is defined by the component class header file. Note that the class header file generally provides
macros which prepare the parameters and invoke this function.

3.11 cmpntlocate.bymodel

void cmpnt_locate.bymodel(vehicle_id, saf_model, list_size, list)
int32 vehicle._id;
uint32 saf_model;
int32 »list_size;
int32 1list[];

‘vehicle_id’
Specifies the vehicle ID

‘saf_model’
Specifies the class and instance part of the SAF model, for instance, SM_Visual

‘list_size’
Specifies the size of the passed 1ist array
Returns the number of components found

cmpnt_locate_bymodel finds all components with the specified saf_model class & instance.
The size of the passed list should be passed in #*1ist_size. The number of components found is
returned in *list_size.

Chapter 3: Functions 13

3.12 cmpnt._get_capabilities

uint32 cmpnt_get_capabilities(vehicle_id)
int32 vehicle.id;

‘vehicle_id’
Specifies the vehicle ID .

cmpnt_get_capabilities finds all the capabilities enabled on a vehicle as determined by having
available components with those capabilities, as specified in the components parametric data.

ADST-TR-W003268

LibCoordinates

Table of Contents

1 O VeI VIO W o 1

2 Examples ... 3

8 FUunctions i e 5
3.1 CoOrdanit ... i 5
3.2 coorddefine teC.t i 5
3.3 coord_estimate_tcc............. e e e e, 6
3.4 coord.tccgeerotation............oiiiiiiiiii 7
3.5 COOTAaCOMVEIL ...ttt ettt et ee et ee e eaeaaeneenaarannn. 7
R T T 1o B3 o o 9
3.7 coord_generategrid................ciiiiiiiiiiii e 9
3.8 coord.describedatums............... ...t 11
3.9 coordformatlatlon.......... ... 11
3.10 coord.fixed_point.degrees................cccoiiiiiiiiiiiii i, 11
3.11 coord floating point.degreesc.coiiiiiiiiiiiiiiiiieen, 12
3.12 coord_parse.fixed_point_degrees..................ooiiiiiiiiiinniien. 12
3.13 cOOrd_cOuNt_UtM _ZOMEeS.........ccvverneiennanrereeinreeernnanennenns 12
3.14 coordJookupdatum.byme....................oiiiiiiiie.. 13
3.15 coordlookup_zoneletter...............c.coiiiiiiiiiiiiiiiiniiiiann. 13
3.16 COORD.LATLONG.TOGRID.ZONE.........cceiviviirvnnnnnnnn. 13
3.17 COORD.WEST.LONG.OF.GRID.ZONE................cun....... 14
3.18 COORD.EASTLONGOFGRIDZONE...............c..vnnnn.... 14

Chapter 1: Overview 1

1 Overview

There are many coordinate systems used to describe locations on the earth. Libcoordinates
provide a facility to translate between any of the following coordinate systems:

COORD_CHARACTER_STRING
Pretty-printed version of one of the other coordinate systems. You can only convert to

(not from) this system.

COORD_GCC
Geocentric coordinates. This is a right-handed 3D cartesian system, with Z through the
north pole and X through the prime meridian at the equator. It assumes the WGS84
ellipsoid model of the earth. This is the coordinate system used in DIS.

COORD_TCC
Topocentric coordinates. This is a right-handed 3D cartesian system, centered around
a given point, with Z going up, positive X east, and positive Y north. The system
can either be derived from UTM data (as SIMNET terrain databases have been; often
called the flat-earth approach) or from GCC data (often called the curved-earth drop-off
approach).

COORD_LATLON
Geodetic coordinates. This is the latitude and longitude system used by the air force,
navy, and meteorologists. Note that altitude is not measured from sea level, but rather
from the reference ellipsoid. Latitude and longitude can be with reference to the map-
ping datum used at that location, or with reference to the WGS84 ellipsoid.

COORD_UTM_NE
Universal Transverse Mercator projection coordinates. In this system the earth is
sliced into 6 degree wide sections (called zones), and the terrain in each is flattened
out. A location on a slice is identified with a northing which indicates distance from the
equator in meters, and an easting which indicates distance from the center of the zone.
Note that when converting from UTM to Geodetic (which is the first step in getting
to GCC), the altitude is not changed. This is not entirely correct, since the UTM
system increases the altitude at the edges of a zone, and decreases it in the middle.
The algorithms to do this altitude adjustment have not been built into libcoordinates.

COORD_UTM_GRID
MilGrid coordinates. This is a shorthand notation expressing a UTM northing and
easting in terms of a map sheet, and an offset into that map sheet.

An added complication to these systems is the fact that different parts of the earth are mapped
using different assumptions about the earth’s size. First, there is the assumption about the shape

2 LibCoordinates Programmer’s Guide

of the earth, which is called the spheriod model. There are 13 different models currently in use.
Second, there is the assumption of the location of the center of the earth, which together with a
spheroid is called the datum (there are 40 of these). The data file ‘coordinates.rdr’ specifies
Molodenskiy parameters for each datum, which allows the software to translate point mapped with
each datum to the corresponding point given the current earth model (WGS84). The file also
specifies which datums are used in what parts of the world. Finally, the file gives the map sheet
code letters used by the MilGrid system in different places.

This data file is not complete — it only covers a small portion of the earth. The instructions for
adding descriptions of new areas to this file are contained in a header at the top of the file. Two
shell scripts (‘rect’ and ‘bounds’) are maintained within this library to assist in generation of the
data file.

Chapter 2: Examples

2 Examples

To define the TCC for Ft. Knox:

#include <libctdb.h> /* For datum definition =/

COORD_TCC_PTR knox = coord_define_tcc(COORD_UTM_NE,
4155000, 545000, 16, °’S’,
DATUM_CONUSNAD27,
75000, 50000);

To get the MilGrid designation of the southwest corner of that database:

char buf[20];
int32 ret;
float64 z;

it (ret = coord_convert(COORD_TCC,
knox, 0.0, 0.0, 185.0,
COORD_UTM_GRID,
COORD_DEFAULT_ZONE, 8, buf, &z))
printf£("%s\n", convert_error(ret));

To get the GCC coordinate of the southwest corner of that database:

int32 ret;
float64 x, y, 2z;

it (ret = coord_convert(COORD_TCC,
knox, 0.0, 0.0, 185.0,
CCORD_GCC,
&x, &y, &2))
printf("%s\n", convert.error(ret));

LibCoordinates Programmer’s Guide

1)

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libcoordinates, including the format
and meaning of its arguments, and the meaning of its return values (if any).

3.1 coord._init

int32 coord_init(directory, flags)
char =directory;
uint32 flags;

‘directory’
Specifies the directory where the constants file is expected

‘flags’ Specifies reader options (see section ‘reader_read’ in LibReader Programmer’s Manual)

coord_init initializes libcoordinates, causing it to read its data file (coordinates.rdr) either from
‘.” or the specified director. The reader._flags are as in reader_read. The return value is zero if
the read succeeds, or one of the libreader return values (READER_READ_ERROR READER_FILE_NOT_FOUND)
if it fails.

3.2 coord_define_tcc

COORD_TCC_PTR coord_define_tcc(source.systen,
origin_northing, origin._easting,
origin_zone_number, origin_zone_letter,
mapping_datunm,
database_width, database_height)
COORD_SYSTEM source_system;

float64 origin_northing;
float64 origin_easting;
int32 origin_zone_number;
int32 origin_zone_letter;
int32 mapping_datum;
int32 database_width;
int32 database_height;
‘source_system’

Specifies the underlying system of the topocentric coordinate system

6 LibCoordinates Programmer’s Guide

‘origin_northing’
Specifies the northing of the southwest corner of the TCC

‘origin_easting’
Specifies the easting of the southwest corner of the TCC

‘origin_zone_number’
Specifies the zone number of the southwest corner of the TCC

‘origin_zone_letter’
Specifies the zone letter of the southwest corner of the TCC

‘mapping._datum’
Specifies the datum in which the TCC data is mapped (only used if source_systenm is

UTM_KE)

‘database_width’
Specifies the east-west size of the TCC system (in meters)

‘database_height’
Specifies the south-north size of the TCC system (in meters)

coord_define_tcc defines a "topocentric" coordinate system (centered around a given location,
at which Z is up, X is east, and Y is north). The source.system must be either COORD_GCC or
COORD_UTM_NE. GCC derived TCC systems curve "down" in their Z values as distance increases
from the center point. UTM derived TCC systems are completely flat. It is significantly cheaper
to convert TCC coordinates to or from the system from which it was derived than to or from the
other system. Use the returned pointer in calls to coord_convert.

3.3 coord_estimate_tcc

COORD.TCC_PTR coord_estimate_tcc(source_system,
latitude_hun_sec, longitude.hun_sec,
origin_utm_grid,
database_width, database_height)
COORD_SYSTEM source.system;

int32 latitude_hun_sec;

int32 longitude_hun_sec;

char sorigin_utm_grid;

int32 database_width;

int32 database_height;
‘source._system’

Specifies the underlying system of the topocentric coordinate system

Chapter 3: Functions

‘latitude_hun_sec’
Specifies the latitude of the southwest corner of the TCC in hundredths of seconds

‘longitude_hun_sec’
Specifies the longitude of the southwest corner of the TCC in hundredths of seconds

‘origin_utm_grid’
Specifies the UTM grid specification of the southwest corner of the TCC

‘database_width’
Specifies the east-west size of the TCC system (in meters)

‘database_height’
Specifies the south-north size of the TCC system (in meters)

coord_estimate_tcc makes a reasonably accurate guess at the TCC parameters, based upon
commonly known information.

3.4 coord_tcc_gcc_rotation

int32 coord_tcc_gcc_rotation(tcec, matrix)
COORD_TCC_PTR tcc;
float64 matrix(3][3];

‘tec’ Specifies the TCC
‘matrix’ Returns the TCC to GCC rotation matrix

coord_tcc_gcc_rotation fills in the passed 3x3 TCC to GCC rotation matrix based upon the
GCC-derived tcc (the GCC to TCC matrix is the transpose of the returned matrix). The return
value, if non-zero indicates that an error occured. Passing a UTM_NE-derived TCC will yield an
error (the correct rotation from UTM to GCC is dependent upon the UTM location).

3.5 coord._convert

int32 coord_convert(from_system, values..., to_system, values...)
COORD_SYSTEM from_system;
values...;
COORD_SYSTEM to.system;
values...;

8 LibCoordinates Programmer’s Guide

‘from_system’
Specifies the system to convert from

‘to.system’
Specifies the system to convert to

coord_convert takes two sets of arguments — from_system and to.system. Each system has
a unique code and a series of values:

COORD_CHARACTER_STRING

string
COORD_GCC

Xyz
COORD_TCC

tceptrxyz

COORD_LATLON
latitude longitude z local.datum

COORD_UTM_NE
zone northing easting z

COORD_UTM_GRID
zone resolution string z

The types of these arguments are shown in the following table:

var from_type to_type units example

x float64 float64 * meters 5000.0

y float64 float64 * meters 5000.0

z float64 float64 * meters 283.0

zone int32 int32 =» 38 or COORD_DEFAULT.ZONE
northing float64 float64 * meters 500000.0 (+N -S)
easting float64 float64 * meters §00000.0

resolution int32 int32 digits 3 --> ES450550
latitude float64 float64 * degrees 39.0 (+N -S)

longitude float64 float64 * degrees 42.0 (+E -W)
local_datum int32 TRUE/FALSE

tce_ptr COORD.TCC_PTR

string char =»

Note: UTM_GRID resolution is ignored for from_system
Explicit zone in UTM_GRID string overrides passed zone
local_datum=FALSE implies to use WGS84, as with GPS

Chapter 3: Functions

Non-zero return values indicate the following errors:

COORD_SYNTAX
Character string not of correct format

COORD_TOO_LONG

Too many milgrid digits passed
COORD_ZONE_UNKNOWN

Milgrid in unrecognized U TM zone

COORD_GRID_UNKNOWN
Milgrid grid not recognized in UTM zone

COORD_BAD_TCC
Passed TCC pointer invalid

COORD_SYSTEM_UNKNOWN
Either to_system or fromsystem is not recognized

3.6 coord._error

char *coord_error{code)
int32 code;

‘code’

coord_error returns a string describing the error code returned by coord_convaert.

3.7 coord_generate._grid

void coord_generate_grid(tcc, min_x, max_x, min.y, max_y,
spacing, digits, label_mask,
max_thin_segments, max_thick._segments, max_labels,
n.thin_segments, thin_segments,
n.thick_segments, thick_segments,
n.labels, labels)
COORD_TCC_PTR tee;

int32 min_x, max_x, min.y, max.y;
int32 spacing;

int32 digits;

uint32 label _=zask;

int32 zax_thin_segments;

10 LibCoordinates Programmer’s Guide

int32 max_thick_segments;
int32 max_labels;

int32 *n_thin_segments;
float32 thin_segments(];
int32 *n_thick_segments;
float32 thick_segments[];
int32 *n_labels;

COORD_GRID_LABEL labels[];

‘tee’ Specifies the TCC of the grid

‘min_x, max_x, min_y, max_y’
Specify the boundaries of the grid in TCC coordinates

‘spacing’ Specifies the grid line spacing (typically multiples of 10)
‘digits’ Specifies the number of digits with which to label grid lines

‘label_mask’
Specifies th- sides to label

‘max_thin_segments, max_thick_segments, max_labels’
Specifies the sizes of the three passed arrays

‘n_thin_segments, n_thick_segments, n_labels’
Returns the number of returned data items in each array

‘¢hin_segments’
Returns a flat list of n_thin_segments X/Y->X/Y line segments

‘thick_segments’
Returns a flat list of n_thick_segments X/Y->X/Y line segments

‘labels’ Returns a list of labels

coord_generate_grid takes bounding points in TCC coordinates and generates two lists of line
segments (thin and thick) which form a grid with the specified spacing, and a list of text strings
which can be used to label the grid. Note that up to 4 * max_thin_segments may be stored in the
thin_segments array.

label_mask indicates which sides to label with an inclusive OR of the following masks:

COORD.LABEL_LEFT
COORD_LABEL.RIGHT
COORD.LABEL.TOP
COORD.LABEL.BOTTOM

The special mask COORD_LABEL_ALL is the OR of all of these.

Chapter 3: Functions 11

Labels are specifies with the following structure:

typedef struct
{

/% The location of the label in TCC coordinates =/

int32 x, y;
/* Null-terminated label string */
char txt[COORD_MAX_GRID_LABEL_TXT];

} COORD.GRID_LABEL;

3.8 coord.describe_datums
void coord_descridbe_datums()

coord_describe_datums prints descriptions of all known datums (from table read in
coord_init).

3.9 coord_format_latlon

char *coord_format_latlon(latitude, longitude)
float64 latitude;
float64 longitude;

‘latitude’
Specifies the latitude

‘longitude’
Specifies the longitude

coord_format_latlon returns a pointer to a character buffer which has the passed lat/long
represented as ASCII text. The buffer is static, so only one invocation per argument list is allowed.

3.10 coord_fixed_point_degrees

int32 coord_fixed_point_degrees(degrees)
float64 degrees;

S . SEEEER L NN mammk ammmman _ommenmn

12 LibCoordinates Programmer’s Guide

‘degrees’ Specifies an angle in degrees

coord_fixed_point_degrees returns an integer which is the passed number of degrees in a
DDMMSSHH format.

3.11 coord floating_point_degrees

float64 coord_floating_point_degrees(ddmmsshh)
int32 ddmmsshh;

‘ddmmsshh’
Specifies the encoded number

coord_floating_point_degrees decodes DDMMSSHH format into simple degrees.

3.12 coord._parse_fixed_point_degrees

int32 coord_parse_fixed_point_degrees(string)
char sstring;

‘string’ Specifies a string in DDMMSSHH format

coord_parse_fixed_point_degrees parses character string to generate DDMMSSHH format
fixed point integer.

3.13 coord._count_.utm_zones

void coord_count_utm_zones(tcc._ptr, n.zones, base._zone)
COORD_TCC_PTR tcc_ptr;
int32 *n_ZONes ;
int32 sbase_zone;

‘tcc.ptr’ Specifies the TCC

‘n_zones’ Returns the number of zones

Chapter 3: Functions 13

‘base_zone’
Returns the number of the lowest zone

coord_count_utm_zones returns the number of utm zones covered by the database TCC, and
the number of the lowest zone.

3.14 coord. Jookup._datum _by.ne

int32 coord_lookup_datum_by_ne(zone, northing, easting)
int32 zone;
float64 northing;
float64 easting;

‘zone’ Specifies the zone
‘northing’ i
Specifies the northing

‘easting’ Specifies the easting

coord_lookup_datum_by_ne returns the DMA suggested mapping datum for a particular loca-
tion.

3.15 coord._lookup._zone_letter

char coord_lookup.zone.letter(zone, northing)
int32 zone;
floaté4 northing;

‘zone’ Specifies the zone
Specifies the northing

Given a zone & a northing, coord_lookup.zone_letter looks up the correct letter designation.

3.16 COORD_LATLONG.TO_GRID.ZONE

14 LibCoordinates Programmer’s Guide

int32 COORD_LATLONG.TO_GRID.ZONE(latitude, longitude)
float64 latitude;
float64 longitude;

‘latitude’
Specifies the latitude

‘longitude’
Specifies the longitude
Given a latitude & longitude, the macro COORD_LATLONG.TO_GRID_ZONE determines the UTM

zone number in which that coordinates resides. With the exception of a couple of anomalies, the
world is broken up into 6 degree wide slices.

3.17 COORD_WEST_LONG_OF_.GRID_ZONE

float64 COORD_WEST_LONG_OF.GRID_ZONE(zone)
int32 zone;

‘zone’ Specifies the zone

Given a grid zone (in the range 1 through 60), the macro COORD_WEST._LONG_OF_GRID_ZONE
returns the longitude of the western edge of that zone at the equator.

8.18 COORD_EAST.LONG . OF.GRID_ZONE

float64 COORD_EAST.LONG_OF.GRID_ZONE(zone)
int32 zone;

‘zone’ Specifies the zone

Given a grid zone (in the range 1 through G0), the macro COORD_EAST_LONG_OF_GRID_ZONE
returns the longitude of the eastern «ige of that zone at the equator.

ADST-TR-W003268

LibCreate

Table of Contents

1 O VerVIeW ..o 1
2 Algorithms......... .. 3
2.1 Load Leveling Creation.....................ciiiiiiiiii . 3
2.2 MIGIation ..ot e 4
2.3 Fault Tolerant Takeover.................coiiiiiiiiiiiiiiiiiiaiaanenn.. 5
2.4 Defeating Load Leveling Creation.............................cooaia. 5
3 Examoples ... 7
4 Functions ... 9
T S 1 1Y | 9
4.2 crchange exercise.............coiiiiiiiiiieiiii i 10
43 erdebugging...... ... 10
44 crmewoobject. 10

4.5 cradestroy Objecto. it e 11

Chapter 1: Overview 1

1 Overview

Libcreate provides the following services for simulated ModSAF entities:

o distributed creation of simulated entities with load balancing between computers of the same
simulatorType (such as simulator LL.SAFSIM, a type that indicates the computer’s ability
to simulate entities)

e application directed handoff of simulated entities from one simulator to another

o fault-tolerant takeover of simulated ModSAF entities belonging to a simulator of a similar
simulatorType when that simulator crashes or exits

The algorithms used to provide these services are provided in the next chapter.

Libcreate works by attaching object_changed and simulator_gone handlers (see section ‘Events
and Event Handlers’ in LibPO Programmer’s Manual) in the PO database, as well as through two
interface functions to deal with new and deleted objects.

When a PO entry indicates that a unit object that has not yet been simulated and that entry’s
"shouldBeSimulated’ field is set at TRUE, then libcreate simulates the unit via the following
procedure.

1. Make a call to libsafobj, telling it to go ahead and instantiate the corresponding object as a
local vehicle. The unit_name of the entry (such as US_F14D) matches to a .rdr file (such as
US_F14D _params.rdr) so that the appropriate configuration files are read. Libsafobj returns a
vehicle_.id when the object has been instantiated.

2. Set the simulated entity to have needed data (such as exercise number, location, forcelD,
marking, and appearance). This data is passed to libentity from libcreate and the Unit PO
(ibPO). Next, build a rotation matrix corresponding to the direction the user wanted the unit
to face, and set the simulated entity to point that way.

3. Initialize the hull component of the safobj by having the hull point in the desired direction
and by assigning an initial speed of zero.

4. Make the appropriated changes to the PO to reflect that this object has been simulated.
(The "simulated" field will be set to TRUE, and the "shouldBeSimulated" field will be set to
FALSE.)

5. Make a call to libentity to activate the new entity, that is, have it start broadcasting packets.

6. Finally, set the association between the safobj and the c20bj by mapping the safobj’s vehicle_id
with the c2obj’s unit PO.

LibCreate Programmer’s Guide

Chapter 2: Algorithms 3

2 Algorithms

The following sections describe the algorithmic implmentations of the load-leveling creation,
migration, and fault-tolerant takeover services of libcreate. Each algorithm depends on the fact
that every ModSAF simulated entity has a corresponding Unit Class Persistent Object (PO) cor-
responding to that simulated entity. The Unit Class objects provide the shared state variables
between simulators that are used to arbitrate who will simulate an entity at what time. Since
the persistent Unit Class objects will in the steady state be consistent across all simulators, the
decision of what simulator will simulate what entity will be consistent across all simulators. Since
the persistent Unit Class objects can survive a simulator crashing, the simulated entities derived
from those persistent Unit Class objects can survive a simulator crashing.

Through out each algorithm description, it is important to note that although local inconsisten-
cies concerning a PO object can occur temporarily between simulators, over time each simulator
will have consistent information about each object in the database.

The following fields in the Unit Class object are relevant to the creation process:

shouldBe. l1ated
= if a Unit *":2ss object should be simulated as a simulation entity

simulateu
TRUE if a Unit Class object is simulated as a simulation entity. This field is never true
if shouldBeSimulated is TRUE.

simulator
SimulationAddress of the simulator which currently is or most recently has simulated
an entity corresponding to this object

simulationlD
VehiclelD of the simulated entity corresponding to this object

2.1 Load Leveling Creation

Given an object A in which shouldBeSimulated == TRUE and simulated == FALSE, there are
three cases:

1. If simulator is not NULL, then change the object to have simulator == B, where B is the
simulator registering the least simulation load in it’s periodic simulatorPresentPDU. Increase

##—

4 LibCreate Programmer’s Guide

your local notion of that simulator’s load based on what increased load you would incur for
that vehicle.

2. If simulator is you, wait for a small amount of time and then perform the maybe_create
procedure.

3. If simulator is not you, ignore the creation which has been selected for another simulator.

When the maybe_create procedure is executed. if you are still the selected simulator for that
object, and the object still wants to be simulated. simulate the entity and set shouldBeSimulated
= FALSE, simulatedsTRUE, and simulationID to the id of the newly simulated entity.

If, through missed PO packets. two or more simulators decide to simulate entities corresponding
to the same object, all but one of the simulators will end up destroying the entities through the
process of migration, described below.

2.2 Migration

Given an object A in which Simulated == TRUE and SimulationID is a local vehicleand simulator
is not me, this indicates a request for me to relcase my vehicle to the other simulator. To do this,
deactivate the vehicle with a deactivateReason of vehicleHandoff.

Given an object A in which Simulated == TRUE and SimulationID is a remote vehicle and
simulator is me, this indicates a request for me to take over a vehicle from another simulator. To
do this, create a local vehicle immediately, rcusing the simulationlD. Activate this vehicle (i.e.,
broadcast vehicle appearance packets) upon a short delay or receipt of a deactivatePDU for that
vehicle with a deactivateReason of vehicleHandoff, which ever occurs first.

Note that where load-leveling creation does load-leveling at the time that simulated vehicles are
created, migration can be used to do load- leveling after creation.

Also note that it is not safe for a program to exit soon after performing a migration of it's
units. This is because it is po~sible 1o <tart a migration to a simulator that has crashed. The
source simulator performing the nigration may be the only simulator to hear about the simulator
crashing after beginning the mizration. and in that case, the source simulator is the only simulator
who will know to change the nugration destination via the Fault Tolerant Takeover process.

Chapter 2: Algorithms 5

2.3 Fault Tolerant Takeover

Given a simulator S which has timed out of the database, query for all objects U in which
gimulator == S and simulated == TRUE. For each of those objects, set simulated == FALSE and
shouldBeSimulated == TRUE. Perform the choose operation as in (see Section 2.1 [Load Leveling
Creation], page 3), and this case reduces to Load Leveling Creation.

2.4 Defeating Load Leveling Creation

Not all simulated vehicles want to be load-leveled across different simulators. For instance, some
applications may want all the vehicles in a platoon to be on one simulator. This can be accomplished
via creation conventions when creating unit hierarchies (task organizations). If a simulator (or user
interface) wants a unit and all it’s subordinates simulated on the same simulator, it should mark
just the unit with shouldBeSimulated == TRUE. If it wants any subordinates to be potentially
created on other simulators, those should be marked as shouldBeSimulated == TRUE. When a
simulator goes to choose a simulator for an object where shouldBeSimulated == TRUE, it should
scan the entire PO database for any subordinates where shouldBeSimulated == FALSE. All those
units should be changed to have the same simulator simulate them, and the subordinates should
be modified to have shouldBeSimulated == TRUE once the destination simulator is chosen.

LibCreate Programmer’s Guide

Chapter 3: Examples

3 Examples

The following code fragments demonstrate usage of all libcreate functions:

/* 1. Acquire a simulation exercise.
2. Acquire a simulation address, sim_addr.
3. Determine the number of vehicles this simulator can

simulate, and take the inverse of that number to calculate

a loading factor.
4, Determine the type of simulator you are, typically a

* simulator_LL_SAFSIM (for load-leveling SAFsim).
* 5, Determine the simulation protocol version being used.
* 6, Create an active open PO database, po._db.
* 7. Create a packetvalve, valve, and set it up to process PO
* packets.
*/
cr_init(po.db, valve, protocol,

exercise, sim_addr, simulator_type, loading);

%* % % % »

/*

* Turn on creation debugging.
»/

cr_debugging (TRUE) ;

/*

* Change all (past, present, and future) my created vehicles to
* a new exercise.

*/

cr.change_exercise(new_ex);

LibCreate Programmer’s Guide

Chapter 4: Functions

4 Functions

The following sections describe each function provided by libcreate, including the format and
meaning of its arguments, and the meaning of its return values (if any). The algorithms for
load-leveling creation, migration, and fault-tolerant takeover are described in (see Chapter 2 [Al-

gorithms], page 3).

4.1 cr_nit

void cr.init(db, sim_exercise_id, sim_address, sim_type,

loading_factor)
PO_DATABASE edb;
PV_VALVE_PTR packet_valve;
int32 sim_protocol_version;
uint8 sim_exercise_id;

SimulationAddress sim_address;
SimulatorType sim_type;
float32 loading_factor;

db an open active PO database

packet_valve
the 1ibpktvalve valve being used for reading and writing PDUs.

sim_protocol _version
the version of the SimulationProtocol being used for this exercise.

sim_exercise_id
the exercise to simulate entities on. This should match the exercise being listened to
for SimulationProtocol packets in the packet valve.

sim_address
simulation address being used by this computer, and it must match the address used
when db was opened.

sim_type the type of simulator that can he chosen to simulate entities

loading_factor
the weight that one vehicle has on the simulation as a fraction of full load

cr_init initializes libcreate. c.1anu-iug 1t to listen for new and changed UnitClass objects in the
PO database and to respond to the~e ahjects with local creation and deletion of entities.

10 LibCreate Programmer’s Guide

4.2 cr.change_exercise

void cr._change_exercise(sim_exercise_id)
uint8 sim_exercise_id;

‘sim_exercise_id’
Specifies a new exercise id.

cr.change_exercise causes all locally created entities to change to a new exercise and forces
all newly created entities to be created in the specified exercise.

4.3 cr.debugging

void cr.dcbugging(flag)
int32 flag;

‘flag’ Specifies whether or not debugging statements should be printed. Has either TRUE or
FALSE value.

cr.debugging turns debugging print statements either on or off, according to the £1ag. When
debugging is on, indications of the creation process are printed to stdout.

4.4 cr.new._object

void cr_new_object(ddb, entry)
PO_DATABASE *db;
PO_DB_ENTRY #entry;

‘db’ A Persistent Object database.
‘entry’ A new Persistent Object entry that just arrived in the database.

cr_nevw_object should be called for every new PO entry. If the entry is of type
objectClassUnit and it should be simulated as a simulation object, this function will cause the

appropriate entity to be created.

Chapter 4: Functions 11

4.5 cr.destroy_object

void cr_destroy.object(db,entry)
PO_DATABASE =*db;
PO_DB_ENTRY =entry;

‘db’ A Persistent Object database.
‘entry’ A new Persistent Object entry that is about to be deleted from the PO database.

cr_destroy_object should be called for every PO entry which is about to be deleted. If the
entry is of type objectClassUnit and it is being simulated, this function will cause the appropriate
entity to be deactivated and destroyed.

LibCTDB

ADST-TR-W003268

Table of Contents

1 Why Libetdb? ... 1
1.1 Smaller storage requirements........................ooiiiiiiiiiieaa... 1
12 Moreefficient disk cache...............co.ooi 3

1.2.1 Elevationcache...............cooiiiiiiiiiii i, 3

1.2.2 Featurecache........ i, 4

13 Newalgorithms.....................oooiiiiiii e 4
1.3.1 Eliminationof search............................ 4

1.3.2 Efficient implementations.........................ccoivveinn... 6

1.3.3 Judicious approximation..................ooiiiiiiiiieaia... 7

14 Optimized for RISC processors.cooveuell 7
1.5 Improved intervisibility modell 7
1.6 More thorough documentation......................ccceiiiiiiiiinnnn... 8
2 Examples ... 9
2.0.1 Elevation Lookup................oiiiiiiiiiiiiiii e 9

2.0.2 Visibility Testingcoooiiiiiiiiiiiiinia.... 10

8 Functions ..., 15
3.1 ctdbapparentshape.......................o..cciiiiiiiii 15
3.2 ctdbapparentsize..............c..ciiiiiiiiiiiiiic e 16
3.3 ctdbcontourdmage...............oiiiiiiiiiii e 17
34 ctdbcontouroute 18
3.5 ctdbcontoursegments.................ciiiiiiiiiiiiiiiiiaaeaen.. 19
3.6 ctdbJfind_ground.intersection........................oiiiiiiaL. 20
3.7 ctdb.get.treelinesegmentooiiiiiiiiiiiiiii, 21
3.8 ctdbfind.highground..............ooiiiiiiiiiiiiiii e 21
3.9 ctdbhypsobitmap.........cooiiiiiiiii i 22
3.10 ctdb.hypsodmageooiiiiiiiii e 23
3.11 ctdbJookup.elevation..............ccceiiiiiiiiiiiiiiiiiiiiiiiia. 24
3.12 ctdbJookupfeatureinfoccoeiiiiiiiiiiiiiiiin... 24
3.13 ctdbJookup_max._elevation.................ccviiiiiiiiienniiiiinnn., 25
3.14 ctdbJookupsoil 26

3.15 ctdb.place.vehicle., 26
3.16 ctdbpoint.on.databasecciiiiiiiiiiiiiiiian.... 27
3.17 ctdbpointongound ..., 27
3.18 ctdb.get_buildings e tetteteeteieiteissecncntsenttetannranns 28
3.19 ctdbpoint_thru.paiat =, 29

ii LibCTDB User Manual and Report

3.20 ctdb.point_to_point...........c.oiiiiiii s 30
321 ctdbprintdescription................iiii 31
3.22 ctdboprintstats. e 32
3.23 ctdb.profile_vector. e 32
3.24 ctdb.ptopraster........ ..ot e 32
325 ctdbread e 34
326 ctdbrereadl 35
3.27 ctdb.vehicleblockage....................coi 35
4 Porting Guide.................. 37
4.1 Platform specific optimizationooooiil, 37

Chapter 1: Why Libctdb? 1

1 Why Libetdb?

The Compact Terrain Database library, libctdb, is used by an application to access elevation,
soil type, and feature data of a SIMNET database. Terrain databases are compiled from $1000
source (or other source formats) into libctdb format. Applications use libctdb to load this database
into memory, and then use libctdb functions to access the data therein.

Libetddb functions include:

¢ Reading the database into memory or cache

e Maintaining useful information about the database, such as its size, minimum and maximum
elevation, and UTM zone, northing and easting (its location on the planet)

¢ Point elevation lookup

o Elevation lookup along a line segment (find high ground, find terrain profile, etc.)

e Soil type lookup

e Vehicle placement (rotation matrix generation)

¢ Intervisibility calculation (including terrain and vehicle blockage)

o Radar clutter calculation

e Generating graphic representation of the terrain such as contour maps and hypsometric maps,
in real time

The CTDB header format includes a flag which indicates whether the database was generated
assuming grid squares break along diagonals running from NW to SE or along diagonals running
from SW to NE. The library’s public funtions take note of this flag at invocation and apply different
internal algorithms accordingly see Chapter 6 [Algorithms), page 57.

Libctdb provides several advantages over other terrain access libraries used in the past. Some
of the highlights are detailed in the following sections.

1.1 Smaller storage requirements

The libctdb terrain database file format uses several compression methods to minimize storage
requirements. The resulting files are one-sixth to one-twentieth the size of files used by previous
terrain database libraries. In addition to reducing hardware cost associated with storing these
databases, this compression allows more of the database to be stored in main memory (improving
performance by reducing disk access).

2 LibCTDB User Manual and Report

The largest savings is derived by exploiting the regular nature of terrain database modeling.
Most elevation data is obtained from the Defense Mapping Agency (DMA). DMA data is a regular
sampling of elevations. The sampling interval is specified as “Level 17 (90 meter spacing) or “Level
2" (30 meter spacing). SIMNET databases are built from this data as follows:

1. The DMA data is down-sampled to 125 meter spacing. This is done using linear interpolation.
We refer to a point in this 125 meter grid as a post.

2. Each square in the grid is broken in* . two triangles via a line running northwest to southeast:

and each triangle is assigned a soil type.
3. The grid is broken into patches 500 meters on a side:

[QR P waa -

.
I
+
|
+ e e
|
.
|
+

=== =@
+
+
+

Each post, therefore, has an elevation and two soil types (by convention, the soil types of the
two triangles to its southeast). The libctdb format encodes the information regarding each post
(elevation, two soil, and some flags) into a 32 bit item. Hence, to store a grid the size of the Ft.
Knox database (50 km x 75 km) requires 400 posts x 600 posts x 4 bytes per post = just under 1
MB. The posts are stored in such a way that the post for a particular X,Y location can be found
with a few arithmetic operations.

In addition to this regular grid of elevations, some areas of the terrain are modeled more precisely
using microterrain. Microterrain is a collection of squares and triangles which cover a portion of
a patch. Libctdb uses an original algorithm to store these microterrain polygons in a compact
fashion.

Chapter 1: Why Libctdb? 3

On the surface of the terrain are “buildings" (which is loosely defined to include pipelines and
other opaque non-penetrable structures), trees (individual trees, tree lines, and tree canopies), and
linear features (roads and rivers). For each patch, the microterrain and surface features (each
encoded in a compact fashion) are stored together.

Adding features to the Ft. Knox database brings the total storage requirement up to 4.5 MB.
By contrast, other database formats typically require around 30 MB to store Ft. Knox. The large
SAKI database (360 km x 290 km) requires about 30 M™ 1n libctdb format, over 600 MB in other
formats. The greater compression is achieved because the SAKI database is mostly desert, and
hence relatively free of features. '

1.2 More efficient disk cache

Although libctdb terrain databases are relatively small, they may still require more memory
than an application can afford to give up. The solution to this problem is the use of a disk cache.
Libctdb uses two caches, one for the elevation grid, and another for the patch features.

When an application loads a libctdb database, it specifies the maximum memory which can
be used to store the database. This memory is split up between the two caches, such that the
probability of a hit is the same for each. This will typically result in more memory allocated for
the feature cache, since databases will usually require more storage for features than for elevations.

1.2.1 Elevation cache

The elevation data is stored using a technique called tiling, in which the large rectangular grid
is broken into equally sized sub-rectangles. Each sub-rectangle (called a page) is a square, with 32
posts on a side (4 km). The 32 x 32 posts require 4 Kb of storage. Since the posts are grouped into
geographically close areas, and applications will typically be accessing geographically close areas,
cache consistency (the probability a needed page is in the cache) will be high for most applications.

The elevation cache is a direct mapped, fixed size cache. That is, when the application needs
a page of elevation data which is not currently in the cache, it is loaded into the cache location
page_number MODULUS cache_size. The page numbers are assigned in east to west (minor), south
to north (major) order. Such a caching scheme, runs the risk of thrashing (consistently missing)
when two different pages which happen to occupy the same cache location are needed simulta-
neously. For example, if the database is 20 pages wide, and the cache size is 20 pages, running
visibility rays due north will cause frequent cache misses. To avoid this problem, the caching code

4 LibCTDB User Manual and Report

monitors cache performance, and when thrashing is detected, the cache size is lowered by one
(within reason).

1.2.2 Feature cache

Feature data presents a different problem. Some patches have ver, few features, others have
very many. The quantity of feature data in a patch is referred to as feature density. Measured in
4 byte words, Ft. Knox has feature densities ranging from 1 to 739 for a patch group of 4 adjacent
patches (grouping patches into sets of four is a technique used to reduce overhead). Hence, using
a single cache in which each entry can hold any patch (the technique used for the elevation cache)
will result is a great deal of internal fragmentation (wasted space). Instead, during compilation,
each patch group is assigned to one of 16 caches. Each cache has about the same number of entries,
but the size of each entry varies by cache to minimize fragmentation.

1.3 New algorithms

New algorithms have been developed to improve performance of libctdb functions. The key
improvements have been the elimination of unnecessary search, the use of more efficient methods
for several key routines, and the judicious use of approximation.

1.3.1 Elimination of search

Finding an elevation on the regular grid does not require any search, except in the case where
microterrain is present.

In addition to elevation and soil information, each post in the regular grid has boolean flags
which indicate the presence of microterrain, buildings, trees, or other features. By checking these
flags, libctdb can avoid searching for features it will not find. In the case of NW_SE diagonalization,
the flags indicate the presence of features in the square to the southeast, and the case of SW.NE
diagonalization, the flags refer to features in the square to the northeast of the post.

Furthermore, each feature is marked with a bit mask, identifying which posts it crosses within
its patch. In the following example, each post within the patch is identified by the hexadecimal
digits ‘0’ through ‘F’. A road is drawn with the symbol ‘8’

Chapter 1: Why Libctdb? 5

For NW_SE diagonalization:

C-D-E-F-+
| | ©000 =0
89 AB«
| s8s|l 1100 = C
45687 ¢+
| es8 | 0110 =6
01823 +
| @ | 0010 =2
todedaded

For SW_NE diagonalization:

ool
| | 0000 =0
CDEF +
| seel 1100 = C
8 9 ASB +
| ss¢ | 0110 =6
45867 ¢
| & | 0010 = 2
0-1-2-3-+

Notice that the post mask for a feature turns out to be the same regardless of the diagonalization
of the underlying grid. The road covers the triangles associated with posts 1, 5, 6, A, and B.
Hence it would be marked with the flags 0x0C62. Twenty-five bits are reserved for this mask to
accommodate future database requirements. A function finding the soil type of a point southeast of
post 6 and northwest of post 3, could eliminate all roads which do not have bit 6 set. In other words,
the domain of feature searches can be limited to very likely candidates with only one arithmetic
operation per feature.

Another critical algorithm which has been coded to minimize search is the intervisibility algo-
rithm. Using a technique borrowed from computer graphics called digitalization, rasterization, or
scan conversion, the triangle edges which cross a line of sight ray can be predicted almost exactly.
In the following example, the line of sight ray is show on the left as a series of *.’, the posts deter-
mined to be involved are shown in the middle as ‘s’, and the edges tested are shown on the right.
(Interior posts removed for clarity.)

6 LibCTDB User Manual and Report

+* e et e ++ 8+ + 4+ 8+ 0100 = 4
. I\

+ . + ¢ 8 o ¢+ 8- 0100 = 4
. (AY

I | + 88 + 8-8- <+ 0110 = 6
. INIA

+ . + + 8 + + 8- + 0010 = 2
. I\

T *e s e +r et e

Sight Line Posts Edges

As the posts are determined by the rasterization algorithm, a mask can be assembled which
encodes which triangles line of sight crosses (in the previous example it would be ‘0x4462'). This
mask can be compared against the masks associated with features such as trees, buildings, and
microterrain, to reduce the search domain. Also the feature flags associated with the posts traversed
are used to eliminate entire classes of features which could not possibly have interfered with visibility
on the patch being tested.

1.3.2 Efficient implementations

Many often-invoked routines have been written using a mathematical construct known as para-
metric equations, in which coordinates of a line are described by simultaneous equations of a
common parameter, rather than one in terms of the other. A line segment would be defined,

z=f(t), y=g(t), 0St<1

rather than,

y=f(2), Xmin £z < Xmes: Ymin S ¥ £ Ymes-

Not only is it less expensive to solve for ¢ than for z and y in most cases, but in the case of
intersecting finite line segments, the point of intersection can usually be determined to be out of
bounds (¢t < 0, or ¢ > 1) before it is actually computed (¢ will typically be computed via a division,
hence the range of t can be determined by comparing the magnitude of the numerator versus that
of the denominator).

In addition to line/line intersection tests, parametric equations are also used to improve perfor-
mance of linear interpolation and point/line proximity tests.

Chapter 1: Why Libctdb? 7

1.3.3 Judicious approximation

In some cases, reasonably accurate approximations are used rather than computing the exact

answer. The most notable example of this is the use of single precision square root, £sqrt(), rather
than the float64 precision version, sqrt(). Also, the vehicle placement code uses an approximation
to guarantee the rotation matrix generated is orthonormal, avoiding a square root and an expensive

matrix operation.

1.4 Optimized for RISC processors

The libctdb functions have been exteasively profiled and tuned to yield maximum performance

on RISC platforms. The types of optimizations which help RISC platforms are foreign to many
programmers, and hence are rarely performed. They include:

Avoiding conversions between diflerent numeric formats (integer, single precision floating point,
and float64 precision floating point).

The use of float64 precision floating paint rather than single precision for temporary variables
to avoid type conversions during evaluation.

Using many local variables, rather than small, fixed size arrays to make maximum use of CPU
registers.

Using multiplication, rather than division, wherever possible.

Judicious use of static global variables to reduce parameter passing overhead in function invo-
cations.

Use of array syntax (a[i]), rather than pointer syntax (s(a+i)), in cases where the latter
would prevent certain optimizations by the compiler.

Useof if ... else if ... else if chainsrather than switch case statements when the num-
ber of choices is small.

Performance tests were used to confirm choices of syntax in all cases.

1.5 Improved irtervisibility model

In addition to execution sf ~~d improvements, the fidelity of the intervisibility model has been

significantly improved. The new model incorporates:

8 LibCTDB User Manual and Report

e Light transmittance model used for modeling cumulative effect of intervening trees, with tree
opacity a caller specified parameter.

o Use of both target width and height (relative to the viewer) for determination of visible area
(older models used height only).

e Accurate model of building sizes and locations (older models used only compass aligned bound-
ing box).

e Determination of visibility as an analog value in the range 0 to 1, rather than a digital Visi-
ble/Partial /Blocked resulit.

e Accurate model of vehicle-blocking-vehicle visibility, incorporating width and height (relative
to the viewer) of intervening vehicles.

e Reasonably fast, extremely high fidelity rasterization model available, which can determine
exactly what parts of a vehicle are visible.

1.6 More thorough documentation

In addition to this document, libctdb is documented via extensive in-line comments, and a
documented header file.

Chapter 2: Examples 9

2 Examples

The following programs demonstrate the use of selected libctdb functions. The programs were
intentionally kept brief for clarity. In general, a program should declare a variable of type ‘CTDB’
to hold header information, call ctdb_read(...) to initialize this structure, and then call other

libctdb functions with a pointer to this variable as their first argument.

2.0.1 Elevation Lookup

The following program reads a libctdb format database, prints information in the database
header, and finds the elevation at the center of the dutabase.

Il*

& % % & &8

/s

*

File: dbcenter.c

Compiled as follows:

cc -0 dbcenter dbcenter.c -I/common/include/lidbinc -L/common/1idb \
=1ctdd ~-1a

Include this header in ull files referemcing libctdb functions,
constants, or data structures.

*/
#include Qibctdb.h>

main(arge, argv)

int32 argc;
char sargv(];

CTDB ctdb; /+ Allocate storage on the stack for the database
¢ header. MNost of the memory used by libctdd
¢ will be allocated dynamically when the database
* is read.
s/

float64 mid_x, aid.y, mid_z;

if (argc != 2)
{

printf("Usage: %s <file-name>\n", argvl0]);
exit(0);
3

/* Read the database. Allow the library no more than iMB of

10 LibCTDB User Manual and Report

* gtorage. Note that if an error occurs, libctdd will call
s oxit(1).

s/

ctdb_read(&ctdb, argv[1], 1<<20);

/s Print a description of the database.
s/
ctdb_print_description(&ctdd);

/¢ Find the midpoint of the database.

s/

mid_x = (ctdb.max_ x + ctdb.min x) / 2.0;
mid_y = (ctdb.max_y ¢ ctdb.min y) / 2.0;

/+ Find the elevation at that point.

s/
mid_z = ctdb_lookup_elevation(kctddb, mid_x, mid_y);

/* Print the result.
s/
printf(“"Center of database: <if if %f>\n",
mid_x, mid_y, mid_z);

2.0.2 Visibility Testing

The following program reads a libctdb format database, and determines visibility between two
user specified points. Libcoord is used to translate the user specified coordinates from UTM to
X,Y. Libreader is used to read the libcoord database.

Note that information in the CTDB data structure can be used to initialize libcoord.

/s

s File: ckvis.c

.

¢ Compiled as follows:

.

®» cc -0 ckvis ckvis.c -I/common/include/libinc -L/common/1idb \
* ~lctddb ~lcoord ~lreader -1l -lm

s/

/* Include this header in all files referencing libctdb functioms,
& constants, or data structures.

s/

#include <libctdb.h>

Chapter 2: Examples

/+ Other header files */
8include <libreader.h>
sinclude <libcoord.h>

/* Typical values s/

sdefine EYE_HEIGHT 2.0

8define TARGET_HEIGHT 2.0

sdefine TARGET_WIDTH 4.0

fdefine TREE_OPACITY 0.5 /¢ Must be between 0.0 and 1.0 s/

main(argc, argv)
int32 argc;
char sargv(l;

CTDB ctdb; /+ Allocate storage on the stack for the database
s header. MNost of the memory used by libctdd
s will be allocated dynamically when the database
* is read.
s/

DATA_UNION utm_file;

int32 re:;

float64 eye_x, eye_y, eye_Z:

floaté4 targ._x, targ.y, targ.z;

float64 vis;

it (argec != 4)
{

printf("Usage: ¥s <file-name> <eye UTM> <target UTM>\n",
argv(0]);
oxit(0);
}

/+ Read the database. Allow the library no more than iMB of
* gtorage. Note that if an error occurs, libctddb will call
s exit(1).

s/
ctdb_read(&ctddb, argvl1]), 1¢<20);

/¢ Initialize libcoord.
./
if (reader_read_file("/satf/config/utm.lisp”, gutm_file) != 0)
{
printf (“Error reading libcoord database\n");
oxit(0);
}
coord_set_milgrid_tadle(uta_file.array);
simnet_origin_northing = ctdd.origin_northing;
simnet_origin_easting ctddb.origin_easting;
simnet_origin_zone © ctddb.origin_zone_number;
simnet_origin_zone_letter = ctdb.origin_zone_letter;

11

12

LibCTDB User Manual and Report

simnet_datum = ctdb.datum;

/* Convert user supplied coordinates.

s/

ret = convert_coordinates(COORD_SYSTEM_UTMGRID,
COORD_DEFAULT_ZONE, O, argv[1],
COORD_SYSTEM_SIMNET,
Reye_x, Reye_ y);

iz (rer.

{ .

printf ("Error converting UTM %s: %s\n",

argv(i], convert_error(ret));
exit(0);
3

ret = convert_coordinates(COORD_SYSTEM_UTMGRID,
COORD_DEFAULT_ZONE, O, argv(2],
COORD_SYSTEM_SIMNET,
ttarg. x, ktarg.y):;
if (ret)
{
printf("Error converting UTM ¥s: ¥s\n",
argv[2], convert_error(ret));
oxit(0);
}

/+ Find the elevation at each point.

./
eye_z = ctdb_lookup_elevation(&ctdd, eye_x, eye._y);
targ.z = ctdb_lookup_elevation(&ctdb, targ.x, targ.y);

/* Compute visibility using typical values.
s/
vis = ctdb_point_to_point(kctdd,
eye_x, eye_y, eye_z,
targ.x, targ.y, targ.z,
targ. z+TARGET_HEIGHT,
TARGET_VIDTH,
TREE_OPACITY,
0.0, /+* Compute even if
& barely visible.
s/
0 /+ No vehicles in the
* way.
s/
' H

/* Print the result.
s/
print2("%5.2¢%X\n", 100.0 * vis);

Chapter 2: Examples

13

14

LibCTDB User Manual and Report

Chapter 3: Functions 15

3 Functions

The following sections describe each function provided by libctdb, including the format and
meaning of its arguments, and the meaning of its return values (if any). Descriptions of how each
function performs its task can be found in the algorithms section. See Chapter 6 [Algorithms],

page 57.

3.1 ctdb.apparentshape

void ctdb_apparent_shape(x0, yoO, z0, x1, yi, 21,
rotation, length, width, height,
app_loc, zh, x_min, x_max, z_min, z_max,
proj, dist, object_correction,

raster)
float64 x0, yO0, 20;
float64 x1, yi, 213
float64 rotation[3] [(3];
float64 length, width, height;
float64 app._loc[3];
float64 *zh;
float64 *x_min;
float64 *X_max;
float64 *Z_min;
float64 *Z_max;
float64 proj(31(3];
float64 *dist;
float64 sobject_correction;
uint32 raster[32];

‘x0, yo, z0’

Specifies the location of the viewer

‘1, y1, 21’
Specifies the location of the target

‘rotation’
Specifies the 3x3 rotation matrix of the target

‘length’ Specifies the length of the target (its Y dimension)
‘width’ Specifies the width of the target (its X dimension)
‘height’ Specifies the height of the target (its Z dimension)
‘app.loc’ Returns the apparent location of the target
‘zh’ Returns the z-value at the top in the target

16 LibCTDB User Manual and Report

‘x_min, x_max, z_min, z_max’
Returns the extents of the target (in viewer coordinates)

‘proj’ Returns an orientation matrix for the target’s projection coordinate system. In this
coordinate system, Y runs down the line of sight, Z runns perpendicular to Y and the
world XY plane, and X runs perpendicular to Y and Z.

‘dist’ Returns the distance to the origin of the target’s coordinate system

‘object_correction’
Returns the ratio: distance to the nearest point on the target divided by the distance

to the target

‘raster’ Returns a rasterized outline of the target

ctdb_apparent.shape is similar to ctdb.apparent_size, except that, in addition to returning the
"size" of the distant object, it returns the raster giving a bitmap of the outline of the vehicle as
seen from the eye point. In addition, it returns the apparent leftmost, rightmost, top and bottom
of the object in "projection" coordinates. This is the frame of reference for the raster.

The value of object_correction returned is used by the caller to pass to subsequent calls to
ctdb_ptop_raster. This value is a ratio, the distance from the viewpoint to the nearest vertex of
the target divided by the distance to the target.

The value of zh returned is the z-coordinate of the highest vertex of the target as as seen from
the viewer’s perspective, expressed in world coordinates.

See Section 3.2 [ctdb’apparent size], page 16.

3.2 ctdb_apparent_size

void ctdb_apparent_size(z0, y0, 20, xi, yi, 21,
rotation, length, width, height,
app.loc, app_width, app_height)

float64 x0, yO, 20;

float64 xi, y1, 2zI1;

float64 rotation(3] (3] ;
float64 length, wvidth, height;
float64 app.loc(3):

floaté4 *app_width;

float64 *app_height;

‘x0, yo0, 20’

Chapter 3: Functions 17

Specifies the location of the viewer

‘x1, yi, z1’
Specifies the location of the target

‘rotation’
Specifies the 3x3 rotation matrix of the target

‘length’ Specifies the length of the target (its Y dimension)
‘width’ Specifies the width of the target (its X dimension)
‘height’ Specifies the height of the target (its Z dimension)
‘app_loc’ Returns the apparent location of the target

‘app.width, app_height’
Returns the apparent dimensions of the target

ctdb_apparent_size finds the apparent size of the perpendicular parallelepiped described by
length, width, height, given the eye point x0,y0,20, the target location x1,ylz1 and target ro-
tation. The apparent width and height of the object are returned, as well as a location corrected
to be at the bottom center of the apparent location.

This function is provided to allow extremely accurate intervisibility tests. Ideally this should be
run for the target, as well as for each potentially blocking vehicle. For applications needing a more
coarse measure of visibility, it is probably not necessary to use this function.

See Section 3.1 [ctdb’apparent shape], page 15.

3.3 ctdb_contour_image

void ctdb_contour_image(ctdb,

low_x, low_y, width, height,
scale_mpp,
dirt_pixel, contour_pixel,
img)

CTDB sctdb;

int32 low_ x;

int32 low.y;

int32 width;

int32 height;

float64 scale_mpp;

int32 dirt_pixel;

int32 contour_pixel;

char img(;

18 LibCTDB User Manual and Report

‘etdd’ Pointer to initialized CTDB structure.

‘low_x, low_y, width, height’
Specifies screen extents, in meters.

‘scale_mpp’
Specifies screen scale in meters per pixel.

‘dirt_pixel, contour_pixel’
Specifies pixel values to use for background and contours, respectively.

‘img’ Returns Z-pixmap format image of terrain contours.

ctdb_contour.image generates a Z-pixmap format image of the contours of the terrain bound by
low.x,low_y to low_x+width low_y+height, using dirt_pixel as a background, and contour_pixel as
the foreground. The size of the image is computed from scale.mpp (meters per pixel). This routine
may be faster than ctdb.contoursegments for extremely large terrain areas, although its use at
application side is much more complicated.

See Section 3.5 [ctdb’contour segments), page 19.

3.4 ctdb_contour_route

void ctdb_contour_route(ctdb, x0, yo, x1, yi,
max_deviation, direction,
sin_significant_slope, n_route, route)
CTDB sctdb;
float64 x0, yO;
float64 x1, yi1;

float64 max_deviation;

int32 direction;

float64 sin_significant_slope;
int32 sn_route;

ROUTE_POINT route(];

‘ctdb’ Pointer to initialized CTDB structure.
‘z0, yO’ Specifies start of route.
‘x1, y1’ Specifies end of route.

‘max_deviation’
Specifies the maximum deviation from the original route

‘direction’
Specifies whether valleys or crests are desired

Chapter 3: Functions

‘sin_significant_slope’

19

Specifies the sin of the minimum slope angle which should be considered significant

‘n_route’ Specifies size of route array. Returns number of points in route.

‘route’ Returns the contoured route.

ctdb_contour_route generates a route between points x0,y0 and x1,y1 which follows the
contour of the terrain. The route either attempts to stay high (direction==CTDB_CREST) or low
(direction=sCTDB_VALLEY), but will not deviate more than max_deviation from the original
route. The route is returned in route[] and the length of the route is returned in n_route. Upon
invokation, n_route should contain the maximum number of points which will fit in route. When

the routine returns, route[0] will be at x0,y0, and route[(*n_route)-1] will be at x1,y1.

See Section 3.23 [ctdb profile vector], page 32.

3.5 ctdb_contour_segments

void ctdb_contour_segments(ctdb,
interval,
x_low, y_low, x_high, y_high,
drav_fcn)
CTDB *ctdb;
float64 interval;
int32 x_low, y.low, x_high, y_high;
void (sdraw_fcn)(/* int32 seg_cnt;
float64 segs[CTDB_MAX_CONTOUR_PTS];
float64 elevs[CTDB_MAX_CONTOUR_PTS/4]
*/);

‘etdb’ Pointer to initialized CTDB structure.
‘interval’

Specifies distance between contour lines, in meters.
‘x.low, y.low, x_high, y_high’

Specifies screen extents, in meters.

‘draw_fcn’
Called periodically to draw a group of line segments.

ctdb_contour_segments calls the passed draw_fcn for each contour line segment in the area bound
by xlow,ylow to x_high,y_high at the specified interval. seg.cnt is the number of elements in the

See Section 3.3 [ctdb contour’image], page 17.

3.6 ctdb_find_ground_.intersection

int32 ctdb_find_ground_intersection(ctdb, x0, y0, z0, x1, yi, zi,

pt.ret, tests,
n_veh,
veh, ignore0, ignorei, hit_veh)

CTDB *ctdb;

float64 x0, yo0, 20;

float64 x1, y1, zi;

float64 pt_ret[3];

uint32 tests;

int32 n_veh;

CTDB_VEHICLE_LOCATION veh[];

int32 ignore0, ignorei;

int32 shit_veh;

‘ctdd’ Pointer to initialized CTDB structure.

‘x0, yo, 20’
Specifies the start of a 3D line

‘x1, y1, 20’
Specifies the end of a 3D line

‘pt_ret’ Returns the first intersection of 3D line with ground polygon
‘tests’ Specifies the intersection tests to be performed

‘n_veh’ Specifies the number of vehicles in the veh[] array.

‘veh’ Specifies locations of other vehicles which may block visibility.

‘ignore0, ignoret’
Specifies 0, 1, or 2 vehicles in the veh[] array which should not be checked.

‘hit_veh’ Returns the first vehicle which blocked the ray.

ctdb_find_ground.intersection locates the point at which the ray from <x0 y0 z0> to <x1 yl
z1> crosses through the terrain grid, a microterrain polygon, a building, or a tree line (including
those which surround canopies). The point of intersection (+/- 1 meter along the ray when testing
ground polygons) is returned in pt.ret. If no such intersection can be found, the routine returns 0,

20 LibCTDB User Manual and Report
segs[] array (x0, y0, x1, y1, in meters). seg.cnt/4 is the the number of elements in the elevs[] array
(one elevation for each line segment in the segs{] array).

E otherwise one of the following constants:

Chapter 3: Functions 21

CTDB_HIT_GROUND
Indicates a ground polygon was intersected.

CTDB_HIT_BUILDING
Indicates the ray passed under the roofline of a building.

CTDB_HIT_TREELINE
Indicates the ray passed through a treeline, or under the edge of a tree canopy.

CTDB_HIT_VEHICLE
Indicates the ray crossed a vehicle in the veh array.

CTDB_HIT_WATER
Indicates the ray crossed a linear feature which isn’t a road.

The endpoints are clipped to database boundarie If the return value is CTDB_HIT_VEHICLE,
the index of that vehicle in the veh array is returned in shit_veh. Note that individual trees are
not modeled accurately enough for tests of them to be meaningful.

The tests parameter should be an inclusive OR of the same constants which are returned
(CTDB_HIT_GROUND, etc.). Depending upon which of these bits are set, the various types of features
will be tested for intersection with the ray.

3.7 ctdb.get_treeline_segment

void ctdb_get_treeline_segment(ctddb, ptO, pti)
CTDB *ctddb;
float64 pto[2];
float64 pti[2];

‘ctdbd’ Pointer to initialized CTDB structure.
‘pt0, pt1’ Return the endpoints of the intersected treeline segment.

ctdb_get_treeline_segment() must be called *after* a call to ctdb.find_ground_intersection(). If
a treeline was intersected in the call to ctdb.find_ground.intersection(), then the endpoints of that
segment of the treeline (in meters from the lower left coner of the database) are returned in pt0[]
and ptl). If there was no treeline intersection in the last call to ctdb.find_ground.intersection(),
zeros are returned in ptO[] and pt17].

3.8 ctdb_find_high_ground

LibCTDB User Manual and Peport

float64 ctdb_find_high_ground(ctdb, x0, yO, xi, y1, xy_at_high)
CTDB sctdb;
float64 x0, yO;
float64 x1, yi;
float64 *xy_at_high;

‘ctdb’ Pointer to initialized CTDB structure.
‘x0, yO' Specifies the start of the search line

‘x1, y1' Specifies the end of the search line

‘xy.at_high’
Returns the X and Y coordinates of the high point (applications may pass NULL. if

they are not interested in this value).

ctdbfind_high.ground returns the elevation of the highest point between x0,y0 and x1,yl. If
non-NULL, xy.at_high will be filled in with the x and y values of this point. Hence, to get the 3D
point, usage would be: vec[Z] = ctdb_find_high_ground(ctdbx0,y0,x1,y1,vec); The ray from x0,y0
to x1,yl is clipped to terrain boundaries, if the ray does not cross the terrain, the returned elevation
will be 0.0, and the returned point will by x0,y0.

3.9 ctdb_hypso.bitmap

void ctdb_hypso_bitmap(ctddb, low_x, low_.y, width, height,
scale_mpp, min_z, max_z, bitmap)

CTDB *ctdb;

int32 low_x;

int32 low_y:;

int32 width;

int32 height;

float64 scale_mpp;

float64 min_z;

float64 max_z;

char bitmap(];

‘ctdb’ Pointer to initialized CTDB structure.

‘low_x, low_y, width, height’
Specifies screen extents, in meters.

‘scale_mpp’
Specifies screen scale in meters per pixel.

‘min_z, max_Zz’

Chapter 3: Functions 23

Specifies the minimum and maximum altitudes which should be represented (ctdb-
>minz and ctdb->max_z are good candidates).
‘bitmap’ Returns an XY-bitmap format image of the hypsometric map.

ctdb.hypso.bitmap generates an XY-bitmap format hypsometric image of the terrain bound by
lowx,Jow_y to lowx+width,Jow_y+height, using dithering. Points off the terrain database are set
to 0. The size of the image is computed from scalenpp (meters per pixel). min.z and max.z are
passed in by the caller. points at or below min_z use an empty dither, and points at or above max_z
use a solid dither. Points in between use dither patterns with density proportional to elevation.
The returned bitmap is suitable for a call to XPutImage() or XCreatePixmapFromBitmapData().

NOTE: This function is conditionally compiled only if the the CFLAGS has -DHYPSO. This
avoids a dependency on libdither if libctdb is not being used for hypsometric map drawing.

3.10 ctdb_hypso.image

void ctdb_hypso_image(ctdb, low_x, low._y, width, height,

scale_mpp,
ncells, cmap, off_terrain_pixel,
img, min_z, max_z)

CTDB #ctdb;

int32 low. x;

int32 low._y;

int32 width;

int32 height;

float64 scale_mpp;

int32 ncells;

int32 cmap(d;

int32 off_terrain_pixel

char ing(;

float64 w*min_z;

float64 *max_z;

‘ctdb’ Pointer to initialized CTDB structure.
‘low.x, low_y, width, height’
Specifies screen extents, in meters.

‘scale_mpp’
Specifies screen scale in meters per pixel.

‘ncells’ Specifies the number of cells available in the color map.

cmap’ Specifies pixel values for elevation ranges.

24 LibCTDB User Manual and Report

‘off_terrain_pixel’
Specifies pixel value for points off the terrain database.
‘img’ Returns a Z-pixmap format image of the hypsometric map.

‘min_z, max_z’
Returns the minimum and maximum altitudes in the area (useful for assigning colors

to the colormap).

ctdb_hypso_image generates a Z-pixmap format hypsometric image of the terrain bound by
lowx,Jow.y to low.x+width,low.y+height, using the pixel values specified in the cmap[0..ncells-
1] array. Points off the terrain database are set to the off_terrain_pixel value. The size of the
image is computed from scale.mpp (meters per pixel). *min_z and *max_z return the elevations
corresponding to cmap[0] and cmap|ncells-1], respectively. It is expected that the caller can use
this information to change the color map appropriately.

NOTE: This function is conditionally compiled only if the the CFLAGS has -DHYPSO. This
avoids a dependency on libdither if libctdb is not being used for hypsometric map drawing.

3.11 ctdb.lookup_elevation

float64 ctdb_lookup_elevation(ctdb, x, y)

CIDB =#ctdb;

float64 x;

float64 y;
‘ctdb’ Pointer to initialized CTDB structure.
‘x, ¥y’ Specifies a point on the database.

ctdb lookup_elevation finds the elevation at the specified point on the terrain database based
upon the elevation grid and microterrain. x and y are in meters. The point is tested to make sure
it is not off the terrain database (it is not necessary for the application to make this check), and
0.0 is returned in that case.

See Section 3.13 [ctdb’lookup 'max’elevation)], page 25.

3.12 ctdblookup_feature_info

Chapter 3: Functions 25

int32 ctdb_lookup_feature_info(ctdd, x, y,
soil_ret, width_ret, direction_ret)
CTDB sctdb;
float64 x;
float64 y;
int32 #soil_ret;
float64 *width_ret;
float64 direction_ret[2];

‘ctdd’ Pointer to initialized CTDB structure.
‘x, ¥’ Specifies a point on the database.
‘soil_ret’

Returns the soil type of the feature

‘width_ret’
Returns the width of the feature

‘direction_ret’
Returns the direction of the feature

ctdblookup.feature.info takes a point and looks to see if there is a linear feature under it. If
so it returns 1 and fills in the the type, width, and direction variables passed to it. Otherwise it
returns 0 and type, width, and direction are undefined.

3.13 ctdb.lookup_max_elevation

float64 ctdb_lookup_max_elevation(ctddb, x, y, check_canopies)
CTDB *ctdb;
float64 x;
float64 vy;
int32 check_canopies;

‘ctdd’ Pointer to initialized CTDB structure.
‘x, ¥’ Specifies a point on the database.

‘check_canopies’
Indicates whether the altitude returned should clear tree canopies.

ctdbJookup_max_elevation finds the elevation at the specified point on the terrain database
based upon the elevation grid, microterrain, buildings, and if check_canopies is ‘TRUE’, tree canopies.
x and y are in meters. The point is tested to make sure it is not off the terrain database (it is not
necessary for the application to make this check), and 0.0 is returned in that case.

26 LibCTDB User Manual and Report

3.14 ctdb.dookupsoil

int32 ctdb_lookup_soil(ctdbd, x, y)

CTDB sctdb;

float64 x;

float64 y;
‘ctdb’ Pointer to initialized CTDB structure.
‘x, ¥’ Specifies a point on the database.

ctdb_lookup.soil finds the soil type at the specified point on the terrain database based upon
the elevation grid and microterrain. x and y are in meters. The point is tested to make sure it is
not off the terrain database (it is not necessary for the application to make this check), and 0 is

returned in that case.

3.15 ctdb_place_vehicle

void ctdb_place_vehicle(ctddb, x, y, length, width, dx, dy,
z, rotation, soil)
CTDB xctdb;
float64 x;
float64¢ y;
float64 length;
float64 width;
float64 dx;
float64 dy;
float64 *z;
float64 rotation3;
int32 »80il;

‘ctdd’ Pointer to initialized CTDB structure.
‘x, ¥’ Specifies a point on the database.

‘length, width’
Specifies the length (Y dimension) and width (X dimension) of the vehicle.

‘dx, dy’ Specifies the direction of the vehicle as a cosine/sine pair. north = <0 1>, south = <0
-1>, east = <1 0>, west = <1 0>

‘2’ Returns the elevation at the point.

‘rotation’
Returns a 3x3 rotation matrix for the vehicle.

Chapter 3: Functions 27

‘so0il’ Returns the soil type at the point.

ctdb_place_vehicle finds the elevation, hull-to-world rotation matrix, and soil type for a vehicle
siting at the specified point, facing the specified direction. x, y, length, and width are in meters.
<dx dy> is assumed to be a unit vector pointing in the direction of the vehicle. The elevation is
returned in *z, the rotation matrix is filled in, and the soil type is returned in *soil. The point is
tested to make sure it is not off the terrain database (it is not necessary for the application to make
this check); points off the database have an elevation of 0.0, a flat rotation matrix pointing in the

specified direction, and a soil type of 0.

3.16 ctdb_point_.on_database

int32 ctdb_point_on._database(ctdb, x, y)

CTDB *ctdb;

float64 x;

float64 y;
‘ctdd’ Pointer to initialized CTDB structure.
‘x, ¥ Specifies the point to check.

ctdb_point_on_database returns 1 if the point is on the database, 0 if it is not. All libctdb
functions make this check internally.

3.17 ctdb_point_on_ground

int32 ctdb_point_on_ground(ctdb, x, y, radius, soil_ret)
CTDB =ctdb;
float64 x:
float64 y;
float64 radius;
int32 =so0il_ret;

‘ctdd’ Pointer to initialized CTDB structure.
‘x, ¥’ Specifies the center of the circle.
‘radius’ Specifies the radius of the circle.

‘soil_ret’
Returns the soil type at the center of the circle.

28 LibCTDB User Manual and Report

ctdb.point_on_ground returns 1 if the circle centered at the passed location, with the specified
radius is completely ground (no trees or buildings cross the circle). The soil type at the passed
point is also returned so the caller can check for undesired soil types. This function is used for
initializing vehicles in reasonable locations.

See Section 3.15 [ctdb’place’vehicle], page 26.

3.18 ctdb_get_buildings

int32 ctdb_get_buildings(ctdb, x, y, radius, max_count, buildings)

CTDB xctddb;
float64 x;

float64 y;:

float64 radius;
int32 max_count;

CTDB_FEATURE_OUTLINE buildings(];

‘ctdd’ Pointer to initialized CTDB structure.
‘x, y’ Specifies the center of the circle.
‘radius’ Specifies the radius of the circle.
‘max_count’
Specifies the maximum number of buildings to count
‘buildings’
If non-NULL, returns list of building outlines

ctdb_get_buildings returns the number of buildings within the specified radius of the passed
point. If any corner of a building is within the radius, the building will be included (note that
if the circle falls completely within a building, that building will not be detected). If non-NULL,
buildings will be filled with the list of buildings (where max_count specifies the number which
will fit in the passed array). The max_count parameter can also be used when buildings is NULL
to indicate the maximum number to count. For example, if the question being asked is "are there
more than 10 buildings in this area?", then the number 11 may be passed in, so that the search
can be stopped as soon as possible.

The buildings are returned using the following structure:

typedef struct ctdb_feature_outline

{
int32 n_verts;

Chapter 3: Functions 29

float64 verts[10][3]);
} CTDB_FEATURE_QOUTLINE:;

n_verts returns the number of vertices in the outline of the building, and verts returns the 3D
coordinate of each vertex (following the roofline of the building).

3.19 ctdb_point_thru_point

float64 ctdb_point_thru_point(ctdb, x0, y0, 20, x1, y1, zl, zh,
width, tree_opacity,
minimum_visibility, range,

n_veh,

veh, ignore0, ignore1)
CTDB *ctdb;
float64 x0, yo, 20;
float64 x1, y1, z1, zh;
float64 width;
float64 tree_opacity;
float64 minimum_visibility;
float64 range;
int32 n_veh;
CTDB_VEHICLE_LOCATION veh[];
int32 ignore0, ignorel;

‘ctdd’ Pointer to initialized CTDB structure.

‘x0, yo, 20’
Specifies the eye point.

‘x1, y1, 21, zh’
Specifies the target location, and the bottom and top of the target.

‘width’ Specifies target width.

‘tree_opacity’
Specifies reduction of visibility resulting from trees.

‘minimum_visibility’
Specifies a threshold below which 0 may be returned.

‘range’ Specifies the range of the radar sensitive to clutter.
‘n_veh’ Specifies the number of vehicles in the veh[] array.
‘veh’ Specifies locations of other vehicles which may block visibility.

‘ignore0, ignorel’
Specifies 0, 1, or 2 vehicles in the veh{] array which should not be checked.

30 LibCTDB User Manual and Report

ctdb_point_thru_point is a special version of intervisibility for use with radar. Within the passed
range, objects behind the target block visibility to the same extent as objects in front of it.

See Section 3.20 [ctdb’point to’point], page 30.
See Section 3.24 [ctdb'ptopraster], page 32.

See Section 3.27 [ctdb vehicle'blockage], page 35.
See Section 3.2 [ctdb’apparentsize], page 16.

3.20 ctdb_point_to_point

float64 ctdb_point_to_point(ctdb, x0, yO, z0, x1, y1, 21, zh,
width, tree_opacity,
minimum_visibility, n_veh,
veh, ignore0, ignorei)

CTDB sctdb;
float64 x0, y0, 20;
float64 xi, yi, zl1, zh;
float64 width;
float64 tree_opacity;
float64 minimum_visibility;
int32 n_veh;
CTDB_VEHICLE_LOCATION veh(1:
int32 ignore0, ignorei;
‘ctdd’ Pointer to initialized CTDB structure.
‘x0, yo0, z0’

Specifies the eye point.

‘x1, y1, z1, zh’
Specifies the target location, and the bottom and top of the target.

‘width’ Specifies target width.

‘tree_opacity’
Specifies reduction of visibility resulting from trees.

‘minimum_visibility’
Specifies a threshold below which 0 may be returned.

‘n_veh’ Specifies the number of vehicles in the veh[] array.
‘veh’ Specifies locations of other vehicles which may block visibility.

‘ignore0, ignorel’
Specifies 0, 1, or 2 vehicles in the veh[] array which should not be checked.

Chapter 3: Functions 31

ctdb_point_to_point performs an intervisibility check starting at the point x0,y0 and proceeding
to the point x1,y1. z0 is the eye point of the viewer and zI and zh are the bottom and top of the
target. width is the width of the target, and is used when comparing against individual trees and
buildings, otherwise a zero-width target is assumed. All these values are in meters. tree_opacity
encapsuiates the effect trees have on the visual system being modeled. An opacity of 0 indicates trees
have no effect; 1 indicates trees completely block visibility. The effect of multiple trees is combined
using a simple light transmittance model. The visible target area (adjusted for tree opacity) is
returned as a floating point number in the range 0.0 to 1.0 (0.0 for complete blockage, 1.0 for
complete visibility). Since visibility can only get smaller as more features are tested, knowing the
minimum visibility interesting to the application can greatly enhance the speed of calculation. Even
very small values (such as 0.05) can greatly increase speed. If the visibility measure drops below
this visibility, 0.0 will be returned. The ray from x0,y0 to x1,yl is clipped to terrain boundaries,
visibility is 1.0 in areas off the terrain database.

The last set of parameters are only examined if n_veh is non-zero; hence they need not be
passed unless vehicle blocking vehicle intervisibility calculations are required. If n.veh is non-zero,
ctdb_point_to_point first calls ctdb_vehicle_blockage with the arguments specified (see Section 3.27
[ctdb’vehicle'blockage], page 35, for an explanation of these arguments). Note that since a target
could be partially blocked by terrain and partially blocked by vehicles, two separate calls (one to
ctdb_point_to_point with n_veh=0, and one to ctdb_vehicle_blockage) will not necessarily yield the
same result as one call to ctdb_point.to_point with n_veh>0.

See Section 3.19 [ctdb’point thru’point), page 29.
See Section 3.27 [ctdb'vehicle'blockage], page 35.
See Section 3.24 [ctdb'ptopraster], page 32.
See Section 3.2 [ctdb apparent size], page 16.

3.21 ctdb_print_description

void ctdb_print_description(ctdb)
CTDB =ctdb;

‘etdd’ Pointer to initialized C TDB structure.

ctdb_print_description prints a description of the passed ctdb database including min/max in-
formation and memory usage statistics.

32 LibCTDB User Manual and Report

5.22 ctdb_print_stats

void ctdb_print_stats(ctdb)
CTDB *ctdb;

‘ctdd’ Pointer to initialized CTDB structure.

ctdb_print_stats prints cache performance statistics.

3.23 ctdb_profile_vector

int32 ctdb_profile_vector(ctdb, x0, yO, x1, yi, n_prof, prof)
CTDB *ctdb;
float64 x0, yO;
float64 x1, yi;
int32 *n_prof;
float64 prof{](3];

‘ctdb’ Pointer to initialized CTDB structure.

‘x0, yO’ Specifies start of vector.

‘x1, y1° Specifies end of vector.

‘n_prof’ Specifies size of prof array. Returns number of point in profile.

‘prof’ Returns exact 3D profile of vector, conforming to each grid or microterrain edge.

ctdb_profile_vector generates a sequence of 3D points along the specified ray from x0,y0 to x1,y1
which exactly follow the contour of the terrain. The points are returned in prof[] and the number
of points is returned in n_prof. Upon invocation, n_prof should contain the maximum number of
points which will fit in proff]. If more profile points are necessary than will fit in proff], the function
returns 0, otherwise it returns 1. ctdb_profile_vector clips the specified ray to terrain database
boundaries, hence the points x0,y0 and x1,y1 will not necessarily be the first and last points in the
prof[] array (although they usually will be).

3.24 ctdb_ptop.raster

float64 ctdb_ptop._raster(ctddb, x0, yo, 20, x1, yi, z1, zh,
width, ftype, object_correction, tree_opacity,
minimum_visibility, grid,

Chapter 3: Functions

x_min, x_max, z_.min, z_max, actual_visible_area,

n_veh, veh, ignore0, ignorel)

CTDB sctdb;

float64 x0, yO, 20;

float64 x1, y1, z1, zh;

float64 width;

int32 ftype;

float64 object_correction;

float64 tree_opacity;

float64 minimum_visibility;

CTDB_RASTER grid;

float64 *x_min;

float64 *X_max;

float64 *z_min;

float64 *Z_max;

float64 sactual_visible_area;

int32 n_veh;

CTDB_VEHICLE_LOCATION veh[];

int32 ignore0, ignoret;
‘etdd’ Pointer to initialized CTDB structure.

‘x0, yo0, 20’
Specifies the eye point.

‘x1, y1, 21, 20’
Specifies the target location, and the bottom and top of the target.

‘width’ Specifies target width.
‘ftype’ If viewing a feature, specifies the type of feature being viewed.

~ ‘object_correction’
Specifies target scale factor (see below).
‘tree_opacity’
Specifies reduction of visibility resulting from trees.

‘minimum_visibility’
Specifies a threshold below which 0 may be returned.

‘grid’ Specifies the exact profile of the target.

‘x_min, x_max, z_min, z_max’
Specifies the size of the target in various dimensions.

‘actual_visible_area’
Returns actual visible area.

‘n_veh’ Specifies the number of vehicles in the veh[] array.
‘veh’ Specifies locations of other vehicles which may block visibility.

‘ignore0, ignorel’
Specifies 0, 1, or 2 vehicles in the veh[] array which should not be checked.

33

34 LibCTDB User Manual and Report

ctdb_ptop.raster is the same as ctdb_point_to_point except that it takes an additional argument,
CTDB_RASTER grid, a pre-computed raster supplied by the client. It also requires the frame
of reference (x.min, x_-max, z.min, z.max) in "projection" coordinates of the raster. These are
adjusted according to the result of the intervis computation and passed back to the caller to

reticulate the object.

Object correction must be supplied by the caller and is computed by a call to
ctdb_apparent_shape. This value is used as a scale factor to “pull back"” the shape of the target
along parametric lines to the eye point to enable intervis calculations in two steps for terrain features

as targets.

See Section 3.20 [ctdb’point’to’point], page 30.
See Section 3.19 [ctdb’point thru’point], page 29.
See Section 3.27 [ctdb vehicle blockage], page 35.
See Section 3.2 [ctdb'apparent’size], page 16.

See Section 3.1 [ctdb'apparent’shape], page 15.

3.25 ctdb.read

void ctdb_read(fname, ctdb, memory_limit)
char s*fname;
CTDB =ctdb;
int32 memory_limit;

‘fname’ File name of database. Can be any valid unix path in the style of open(2).
‘ctdd’ Pointer to uninitialized ‘CTDB’ type variable.

‘memory_limit’
Maximum amount of memory which should be used, in bytes.

ctdb_read loads the ctdb format terrain database from the named file, and puts the resulting
information into the user-supplied CTDB structure. This structure will be needed for calls to

almost all libctdb functions.

If the database needs less than the allowed amount of memory, only the amount needed will
be allocated. If the database is larger than this amount, a cache will be used, sized to fit within
this limit. Note that the special value ‘0’ may be used to indicate an unlimited amount of memory
(usually a bad idea, since the libctdb cache will typically perform much better than virtual memory
would).

Chapter 3: Functions 35

It is assumed that loading databases occurs during the initialization phase of a program, and
hence if an error is detected, libctdb will invoke exit(1).

3.26 ctdb._reread

void ctdb_reread(fname, ctdb, memory_limit)
char *fname;
CTDB =ctdb;
int32 memory_limit;

‘fname’ File name of database. Can be any valid unix path in the style of open(2).
‘etdbd’ Pointer to initialized ‘CTDB’ type variable.
‘memory_limit’

Maximum amount of memory which should be used, in bytes.

ctdb_read loads the ctdb format terrain database from the named file, and puts the resulting
information into the user-supplied CTDB structure, as in ctdb_read. However, it is assumed that
the passed CTDB structure already contains a database, and that the memory used by the original
database must be either reused or freed.

See Section 3.25 [ctdb'read], page 34.

3.27 ctdb_vehicle_blockage

float64 ctdb_vehicle_blockage(ctdb, x0, yO, z0, xi, yi, zl, zh,
wvidth, n_veh, veh, ignore0, ignorel)

CTDB *ctdd;

float64 x0, yo0, 20;
float64 x1, y1, zl, zh;
float64 width;

int32 n_veh;
CTDB_VEHICLE_LOCATION veh(d;

int32 ignore0, ignorel;

‘etdd’ Pointer to initialized CTDB structure.

‘x0, yo0, 20’
Specifies the eye point.

36 LibCTDB User Manual and Report

‘x1, yi, z1, zh’
Specifies the target location, and the bottom and top of the target.

‘width’ Specifies target width.
‘n_veh’ Specifies the number of vehicles in the veh[] array.
‘veh’ Specifies locations of other vehicles which may block visibility.

‘ignore0, ignoret’
Specifies 0, 1, or 2 vehicles in the veh[] array which should not be checked.

ctdb_vehicle_blockage performs a visibility check from the eye point to the target point, com-
paring against the vehicles passed in the veh(] array. The locations and width are as in
ctdb_point_to_point. n_veh is the size of the veh[] array. Vehicles in the veh[] array are only checked
if the 'used’ field is set. The height and width are assumed to be projected onto the viewing plane
of the observer. Two vehicles can be eliminated from the search by setting ignore0 and ignorel
to their indices in the veh[] array. To avoid eliminating vehicles, pass CTDB_DONT_IGNORE for
ignore0 and ignorel. As in ctdb_point.to_point, the return value s in the range 0.0 for full blockage,
to 1.0 for full visibility.

See Section 3.2 [ctdb’apparentsize], page 16.
See Section 3.20 [ctdb’point’to’point], page 30.

Chapter 4: Porting Guide 37

4 Porting Guide

The libctdb library has been compiled on the following platforms:

e Mips
e Apollo
e Hewlett-Packard

The code is written to be extremely portable, but on other platforms some modification may be
necessary. The most likely problem is the lack of the single precision square root function fsqrt().
The first definitions in the header file ‘1ibctdb.h’ allow correction of this problem:

#ifdef apollo
#define fsqrt sqrt
Sondif

This can be extended to correct similar problems on other machines.

Another potential problem is the dependency on the common library ‘1ibdither’. This library is
only used if the hypsometric map generating functions ctdb_hypso_image or ctdb_hypso_bitmap
will be used on the target platform. If these functions will be used, the preprocessor symbol HYPSO
must be defined. This can be achieved in the ‘Makefile’ with the line:

EXTRA_CFLAGS = -DHYPSO

Omitting the HYPSO definition will cause the hypsometric mapping functions to be omitted from
the ‘1ibctdb.a’ archive, and hence the common include file ‘1ibdither.h’ will not be needed.

4.1 Platform specific optimization

The libctdb source code has been written in a manner which works best when compiled with an
optimizing compiler. For almost all compilers, optimization is enabled with the compiler flag ‘-0".
This should be one of the arguments passed to ‘cc’ when this library is compiled.

Other heuristics have been applied as well (see Section 1.4 [Optimized for RISC], page 7). In
general, these conventions will nc: have a significant impact on non-RISC architectures. If porting

38 LibCTDB User Manual and Report

to a new platform on which performance is a primary concern, the use of a profiler is highly
encouraged. ‘test.c’ in the libctdb library is good test program for use with a profiler. The
mechanics of profiling differ from platform to platform, but the following rules should generally

apply:

e Always profile an optimized executable. The execution profile of non-optimized code is gener-
ally nothing at all like the profile of optimized code.

o Do not change the calling sequences of functions to be different for a particular platform. This
inhibits portability and reuse of code.

e Never make a change to the code without testing to see if it actually improved performance.
The ‘test’ program can be used to confirm average execution times for most functions.

o If a change is specific to a particular platform, it should be coded using ‘#ifdef’ syntax. For
example, if a target platform performs significantly better using unsigned short rather than
int for iteration variables, an appropriate coding would be:

/* Optimization */

#ifdef my.machine

#define ITERATOR_TYPE uint32 short
#else

#define ITERATOR_TYPE int

#endif

{
ITERATOR_TYPE i;

}
This allows future porters to easily decide whether this optimization improves performance on
their target platform.

[

ADST-TR-W003268

LibDelObj

Table of Contents

1 O VeI VIO W 1
2 U SA @ ..ottt e 3
2.1 Building Libdelobj...................oooi 3
2.2 Linking with Libdelobj........................ooo 3
3 FUNCtIOMS ..o i 5
3.1 delobjamit. . ..ooei e 5

3.2 delobjamit gui........ccoooiiii e 5

Chapter 1: Overview 1

1 Overview

LibDelObj provides a simple object deletion editor for the GUI. The user can select objects to
delete (which are marked with big red X’s), then can delete them by clicking "Done". The library
takes care of some of the complexities of deleting object, such as removing text associated with
deleted objects.

LibDelObj Programmer’s Guide

Chapter 2: Usage 3

2 Usage

The software library ‘libdelobj.a’ should be built and installed in the directory
‘/common/1ib/’. You will also need the header file ‘1ibdelobj.h’ which should be installed in the
directory ‘/common/include/libinc/’. If these files are not installed, you need to do a ‘make’ in
the libdelobj source directory. If these files are already built, you can skip the section on building
libdelobj.

2.1 Building Libdelobj

The libdelobj source files are found in the directory ‘/common/1ibsrc/1ibdelobj’. ‘RCS’ format
versions of the files can be found in */nfs/common_src/libsrc/libdelodj’.

If the directory ‘common/libsrc/libdelobj’ does not exist on your machine, you should use
the ‘genbuild’ command to update the common directory hierarchy.

To build and install the library, do the following:

cd common/libsrc/libdelodj
co RCS/*,v
make install

This should compile the library ‘1ibdelobj.a’ and install it and the header file ‘1ibdelobj.h’
in the standard directories. If any errors occur during compilation, you may need to adjust the
source code or ‘Makefile’ for the platform on which you are compiling. libdelobj should compile
without errors on the following platforms:

e Mips

e SGI Indigo
e Sun Sparc

2.2 Linking with Libdelob)

Libdelobj can be linked into an application program with the following link time flags: ‘14
[source .o files] -L/common/11b -1delodj [other libraries]’. !f your compiler does not sup-

4 LibDelObj Programmer’s Guide

port ‘~L’ syntax, you can use the archive explicitly: ‘1d [source .o files]
/common/1ib/libdelobj.a’.

Libdelobj depends directly on the following libraries: libsafgui, libtactmap, libcoordinates, lib-
sensitive, libcallback, libpo, libeditor, and libreader.

Chapter 3: Functions 5

3 Functions

The following sections describe each function provided by libdelobj, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 delobj-init
void delobj_init()

delobj_init initializes libdelobj. Call the before any other libdelobj function.

3.2 delobjdnit_gui

int32 delobj_init_gui(data_path, reader_flags,
gui, tactmap, tcc, map_erase_gc,
sensitive, refresh_event, db)

char xdata_path;
uint32 reader_flags;
SGUI_PTR gui;
TACTMAP_PTR tactmap;
COORD_TCC_PTR tec;

GC map_erase_gc;

SNSTVE_WINDOW_PTR sensitive;
CALLBACK_EVENT_PTR refresh_event;
PO_DATABASE *db;

‘data_path’
Specifies the directory where data files are expected

‘reader_flags’
Specifies flags to be passed to reader_read when reading data files

gui’ Specifies the SAF GUI
‘tactmap’ Specifies the tactical map
‘tec’ Specifies the map coordinate system

[

‘map_erase_gc’
Specifies the GC which can erase things from the tactical map

‘sensitive’
Specifies the sensitive window for the tactical map

6 LibDelObj Programmer’s Guide

‘refresh_event’
Specifies the event which fires when the map is refreshed

‘db’ Specifies the persistent object database

delobj.init_gui create the object deletion tool. The data file (‘delobj.rdr’) is read either
from ‘.’ or the specified data path, depending upon the reader_flags. The reader_flags are as
in reader_read. The return value is zero if the read succeeds, or one of the libreader return values:
READER_READ_ERROR, READER_FILE_NOT_FOUND.

ADST-TR-W003268

LibDetonation

Table of Contents

1

2

O VeI VIO W L e 1
FUNCtIOMS .. e s 5
P2 S (- 5 1 1 3R 5
2.2 detclassdmit......coviiiiiiiii i i 5
2.3 et Tt .. oot e e aaa, 6
2.4 detadestroy .. cooiiintiiit i, 6
25 detiadd.target............ooiiiiiiiiiii 7
26 detdeletetarget.......... ... 7
2.7 detclear distottt e e i 7
2.8 dettiCK.ot e i eaeeas 8

e T T T W G — T —_— |

Chapter 1;: Overview 1

1 Overview

Libdetonation provides a model of proximity detonation. It can detect detonations due to
proximity with other network entities (platforms, missiles, and structures). Proximity detonation
due to the ground, buildings, and other terrain features is not yet supported. This library will
generate impact PDUs, if told to do so for a given vehicle.

This library determines that a detonation should occur if the distance to the target, as measured
along the secant between positions of the ticked vehicle (usually a missile) during consecutive ticks
achieves a local minimum (and is less than the detonation_radius parameter specified for the
model instance.) In performing this calculation, the position of the target is projected forward or
backward in time ("Anti-RVA") to find the point on its trajectory closest to the point where the
local minimum occurred. This estimated location is passed back via the registered DET_CALLBACK
function. If the local minimum has been passed and the distance to the target is greater than
detonation_radius, then a near-miss is declared.

There are two models used for selecting potential target entities: low-fidelity and high-fidelity.
When low-fidelity detonation is used, a list of potential targets must be supplied by the simulation.
These are the ONLY vehicles which will trigger detonation. When high-fidelity is used, libdetonate
builds a suitable list of nearby vehicles to check. This is considerably more expensive.

In addition to proximity detonations which are within the detonation radius specified by the
parametric data, libdetonation also informs clients of near-misses with vehicles on the list of deto-
nation candidates.

The parameters used by a vehicle (missile) for detonation detection are specified in its configu-
ration file as follows:

(SM_Detonation (check {trees} {buildings} {ground}
{plattorms)} {missiles)})
(detonation._radius <real meters>)
(fidelity [highllow])

The first parameter, check, lists those things for which detonation detection is required. This
affects performance when high-fidelity detonation is enabled.

The detonation_radius parameter specifies the maximum proximity which will trigger a det-
onation for this vehicle (missile.)

2 LibDetonation Programmer’s Guide

Finally, the fidelity parameter (which has a value of high or low) is used to determine
the method for selecting potential targets. It also affects the expense of the algorithms used in
determining if detonation should occur.

In the high fidelity model, entire classes of entities are checked for proximity, while in the low
fidelity model, a list of vehicles (targets) must be built using the function det_add_target().

det_tick ticks the detonation sub-class. During the tick, if a detonation is detected, a packet
can be sent and the callback function (if any) registered with det_class_init will be invoked. The
detonation tick input includes the vehicle id of the missile and a pointer to the terrain database
on which the missile is simulated. The detonation tick processing of a missile includes the follow
steps:

1. Set the libdetonation variable, old_pos, to the location the missile was at last tick (detonation-
>last_pos). This will be referred to as old position.

2. Get libentity information(ent_position, ent_velocity, entstationary) and store it as new_pos,
velocity, and stationary. Set the detonation->last_pos field to new_pos (the newly retrieved
ent_position).

3. Call the function ent_get_physdb(vehicle_id) to get the missile’s physical data, which in-
cludes the missile dimensions. Find an upper bound size by using the maximum of length,
width, and height. This upper bound is needed when calculating the range to pass to the
position based vehicle table.

4. If the missile is stationary it is not necessary to check for detonations with terrain so omit
DET_BUILDINGS, DET_GROUND, and DET.TREES from the missile’s detect checklist. If
the detect checklist indicates DET _ PLATFORMS, DET_MISSILES, or DET BUILDINGS add
the relevant types (VTAB_.VEHICLE, VTAB_MISSILE, VTAB_.STRUCTURE) to the missile’s
list of types-to-check.

5. If the missile’s detect checklist still contains some types and high fidelity processing is indicated
for this missile, create a binary tree vtab structure named "to_check" to pass to libpdtab so a
list of potential target vehicles within a specified range can be generated.

6. Call the function pbt_get_vehicles(cx, cy, range, to_check) to get the to_check list (a list
of vehicles that are within range). The missile locus (cx, cy) was determined by interpolating a
location midway between the old and new positions. The range was determined by the distance
between the old and new positions, the upper bound size, and the >error threshold between
actual locations and locations used by libpbtab (the position-based vehicle table).

7. Remove the vehicle id of this missile from the to.check list.

8. If the count of vehicles in the list is zero, then remove the types DET_PLATFORMS and
DET _MISSILES from the types-to-check list. This means there is no need to check the vehicle
table at all.

Chapter 1: Overview 3

9. If there are no types left in the types-to-check list, exit.

10. If this missile is not stationary, then perform whichever type of fidelity processing is indicated
for this missile (either high fidelity or low fidelity processing). The processing for these fidelity
types differs in the choice of possible targets. Basically, the processing consists of checking
whether the distance squared to each vehicle in the list of potential targets has achieved a
local minimun and whether this local minimum has occurred at a distance which is less than
the minimum detonation radius. Then of these distances, pick the minimum. A more detailed
description of the detonation detection algorithm is presented below.

The detonation detection software performs the following actions:

1. For each possible target, determine if it is a candidate for detenotation. A target is a candidate
for detonation when the missile’s closest point to target has just been passed. This is calculated
by comparing the missile’s current distance to target with the missile’s old position distance
to target.

2. For a candidate, calculate its potential "hit_point". A "hit_point" is computed to be the point
on the line segment from old.pos to new_pos which is closest to the current location of the
target, veh[vcount].location. It is not decided whether the target was hit yet. Find the point
on the projected path of the target that is closest to the computed "hit_point" to determine if
it is within the detonation radius. To do this, project the position of the target vehicle using
its current velocity (“anti-RVA") and find the point on its trajectory ("projected_pos") that
is closest to "hit_point.” If this "projected_pos" is within range, classify this detonation as a
hit. If this "projected_pos" is outside the detonation radius, classify this detonation as a near
miss.

The three functions that can be called to handle the different "hit" classifications are: vehi-
cle.detonation._detected, vehicle_near_miss.detected, and terrain.detonation_detected.

The vehicle_detonation_detected function does the following:

1. Determine the detection type of the hit object (either DET _ PLATFORMS, DET _MISSILES,
or DET_BUILDINGS).

2. Invoke the detonation callback function registered with det_class_init. A callback function
is used to inform another safobj sub-class library (such as libmissile) of the detonation. That
library might need to modify private data (for example, saving the missile’s detonation position
and the target id) and/or perform an action (for example, send an impact PDU onto the
simulation network).

The vehicle_near_miss_detected function does the following:

LibDetonation Programmer’s Guide

1. When DEBUG_DETONATION is ON, print a message saying that the object passed close to

this target and print the distance squared between the missile and target.

Invoke the callback function registered with det_class_init. Since the detonation library
really only figures out if the missile got within a given radius of the target, libmissile needs to
decide if it was legitimate for the the missile to be aware of this condition. For example, "Does
the missile have an active radar?" or "If the missile depends on reflected radar emissions from
the launching aircraft, is the aircraft still alive and the radar still locked on?"

The terrain_detonation_detected function does the following:

1. When DEBUG.DETONATION is ON, print a message saying that the object detected a

detonation with either trees, building, or ground. Also print the impact location.

2. Invoke the callback function registered with det_class_init with the other id field set at 0.

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libdetonation, including the format
and meaning of its arguments, and the meaning of its return values (if any).

2.1 detdnit

void det_init()

det_init initializes libdetonation. Call this before calling any other libdetonation functions.

2.2 det_class_init

void det_class_init(parent_class, callback)
CLASS_PTR parent_class;
DET_CALLBACK callback;

‘parent_class’
Specifies the parent class

‘callback’
Specifies the function to call when detonations occur

det_class_init creates a handle for attaching detonation class information to vehicles. The
parent_class is one created with class_declare_class. The callback function should be de-

clared:

void callback(vehicle_id, position, det_type, other_id, target_position)
int32 vehicle_id;
float64 position[3];
uint32 det_type:
int32 other_id;
float64 target_postion[3];

This is called when a detonation occurs. The position sent is the point of detonation and
target_postion is the estimated position of the target at that time. The det_type code is one of
the following:

6 LibDetonation Programmer’s Guide

DET_TREES
Indicates proximity to a treeline or canopy edge.

DET_BUILDINGS
Indicates proximity to a building or other structure. If the other structure is represented

on the network, the vehicle ID of that structure will be provided.

DET_GROUND
Indicates a detonation due to proximity to the ground.

DET_PLATFORMS
Indicates proximity to a platform (vehicle, DI, etc.).

DET_MISSILES
Indicates proximity to a missile (an entity on the network with a munition type).

DET_NEAR_MISS
Indicates a near-miss of a target on the detonation list

If the collided entity exists in the vehicle table, its ID is given in the other_id field. For
detonations with terrain features, the other_id will be zero.

2.3 det.create

void det_create(vehicle_id, parms)
int32 vehicle_id;
DETONATION_PARAMETRIC_DATA sparms;

‘vehicle_id’
Specifies the vehicle ID

‘parms’ Specifies initial parameters

det_create creates the detonation class information for a vehicle and attaches it to the vehicle’s
libclass user data.

2.4 det_destroy

void det_destroy(vehicle_id)
int32 vehicle_id;

Chapter 2: Functions

‘vehicle_id’
Specifies the vehicle ID

det_destroy frees the detonation class information for a vehicle.

2.5 det_add_target

void det_add_target(vehicle_id, target_id)
int32 vehicle_id;
int32 target_id;

‘vehicle_id’
Specifies the vehicle ID
‘target_id’
Specifies the vtab ID of the target to be added

det_add_target adds a target to the list of detonation candidates for a missile.

2.6 det_delete_target

void det_delete_target(vehicle_id, target_id)
int32 vehicle_id;
int32 target_id;

‘vehicle_id’
Specifies the vehicle ID
‘target_id’
Specifies the vtab ID of the target to be deleted

det_delete_target deletes a target from the list of detonation candidates for a missile.

2.7 det_clearist

void det_clear_list(vehicle_id)
int32 vehicle_id;

8 LibDetonation Programmer’s Guide

‘vehicle_id’
Specifies the vehicle ID

def._clear_list clears the list of detonation candidates for a missile.

2.8 det_tick

void det_tick(vehicle_id, ctdb)
int32 vehicle_id;

CTDB *ctdb;
‘vehicle_id’
Specifies the vehicle ID
‘ctdb’ Specifies the terrain database

det_tick ticks the detonation sub-class. During the tick, if a detonation is detected, a »acket
may be sent and the callback function passed to det_class_init may be invoked.

"

LibDI

ADST-TR-W003268

Table of Contents

L O VO VIO W o e 1
2 Examples ... 5
3 FUNCEIOMS oot e e 7
31 IS Mt . .. e e s 7
3.2 AiSing Class Amit. .. oo ottt 7
3.3 disin ik ..o e 7
3.4 disinfcolliSion. ... oovoi it 8

3.5 disinf.damage..............co i e 9

Chapter 1: Overview 1

1 Overview

Libdi implements an instance of the hull class of components. It provides a low-fidelity model
of DI vehicle dynamics. Capabilities are modeled only to the second order (maximum velocity,
maximum acceleration), and they depend upon the soil type. Unlike previous models, the param-
eters for each soil type are specified in a data file, so the software does not need to be modified to
accommodate new types of terrain.

The parameters of a DI vehicle are specified in its configuration file as follows:

(DI (soils (<integer soil type> (max_speeds <float forward KPH>
<float reverse KPH>)
(max_accel <float mps2>)
(max_decel <float mps2>)
(max_turn <float dps>)
(max_climb <float degrees>)
(dust_speeds <float smallKPH>
<float mediumKPH>
<float largeKPH>))
(<integer soil type> (max_speeds <float KPH>
<float reverse KPH>)
(max_accel <float mps2>)
(max_decel <float mps2>)
(max_turn <float dps>)
(max_climb <float degrees>)
(dust_speeds <float smallKPH>
<float mediumKPH>
<float largeKPH>))
eed)
(fuel_usage (<float speedi> <float speed2> ...)
(<float ratei> <float rate2> ...))

The parameters specified for soil type 0 (or the first soil type, if no 0 type is provided) are used
as a default when on a soil type not in the list.

To indicate that the vehicle should not kick up any dust on a kind of soil, specify a speed which
is higher than the maximum the vehicle can travel across that soil.

The fuel_usage table consists of a list of speeds in kilometers per hour, with a list of corresponding
consumption rates in liters per hour. If an older vehicle parameter file is used, with a scalar
fuel_usage figure, it will ignore it and use the internal default corresponding to 8 kilometers per
liter. The minimum table size is one speed/rate pair.

2 LibDI Programmer’s Guide

Applications interface to the DI model primarily through the libhulls interface. The most
efficient interface for controlling vehicle motion is HULLS _SET_DIRECTION_SPEED. All interfaces use
only two dimensions of the provided parameters. Also, when a direction vector is given it is not
necessary to make that vector a unit vector. Libdi will do the normalization only if it is necessary
(for example, if the vehicle is already pointing the right way, no normalization is needed).

Libdi supports only one instantiation per vehicle (i.e., a vehicle may not have more than one DI
hull).

The libhulls library defines a common set of functions (and the semantics of those functions)
which are invoked on instances of the hulls class (such as those instantiated by libtracked or libfwa).
It is possible to modify the DI model by changing an exisiting hulls interface function or by adding
a completely new function.

To modify an existing libdi interface function would require the following actions:

1. If the change occurs only in the function body, only change the function code in the libdi
library. If the change occurs to the function’s argument list, change the function code in
both the libdi library and the hulls interface structure definition found in libhulls.h. Also to
maintain the common hulls interface, change the code for the modified function in any other
hull specific component libraries (such as libfwa or libmissile).

2. Recompile ModSAF.
To add an additional libdi function to the current model would require the following actions:

1. Write the function as part of the libdi library. The function is written in the code which
manages the libdi class information attached to each vehicle (diclass.c).

2. Add the function and its declaration to any of the other hull specific component libraries. This
maintains the common hulls interface.

3. In thelibdi source code that handles libhull initialization processing, include a function_number,
function entry identifying the new function for the cmpnt_define_instance function and ev-
ery other hull instance library (libfwa, libmissile, etc.).

4. In libhulls.h, add an entry to identify the new macro and associate it with a function code
number. This new addition means that the number of hulls functions must be incremented by
one. The hulls interface structure definition that appears in libhulls.h must include a structure
to define the new function's argument list.

5. Recompile ModSAF.

Chapter 1: Overview 3

To replace this DI model with a completely different one would require the following actions:

1. Decide on the get functions and set functions that would be required in the new model. Try to
map these needed functions to the existing hulls interface. A function can map if its argument
list can remain the same. Functions that can not map must be added to the hulls interface.

2. For those functions that can map to the existing hulls interface but whose code body you
want to change, edit the code for the function in the libdi source file that contains the code to
manage the libdi class information (diclass.c).

3. For those functions that can’t map to the existing hulls interface, add an additional function
to the hulls interface. The addition procedure was described above.

4. Recompile ModSAF.

LibDI Programmer’s Guide

Chapter 2: Examples

2 Examples

To get the component number of my hull:

extern int32 my_hull;
it ((my.hull = cmpnt_locate(vehicle_id, reader_get_symbol("hull"))) ==

CMPNT_NOT_FOUND)
printf("Vehicle %d does not seem to have a hull\n", vehicle_id);

To then give a command to that hull:

if (my_hull != CMPNT_NOT.FOUND)
HULLS_SET_DIRECTION.SPEED(vehicle_id, hull, dirvec, speed, 0.0, 0.0);

6 LibDI Programmer’s Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libdi, including the format and mean-
ing of its arguments, and the meaning of its return values (if any).

3.1 disinfdnit
void disinf_init()

disinf_init initializes libdi. Call this before calling any other libdi functions.

3.2 disinf_classinit

void disinf_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class).

disinf_class_init creates a handle for attaching DI class information to vehicles. The par-
ent_class is one created with class.declare_class.

3.3 disinf_tick

void disinf_tick(vehicle_id, ctdb)
int32 vehicle_id;

CTDB =ctdb;
‘vehicle_id’
Specifies the vehicle 11)
‘ctdd’ Specifies the terrain database the vehicle is operating on.

disinf_tick ticks the DI hull dvnamics model.

8 LibDI Programmer’s Guide

3.4 disinf.collision

void disinf_collision(vehicle_id, position, coll_type,
other_id, other_mass, other_velocity)

int32 vehicle_id;
float64 position(3];
uint32 coll_type:

int32 other.id;

float64 other_mass;
float64 other_velocity(3];

‘vehicle_id’
Specifies the vehicle ID
‘position’
Specifies the position of impact in world coordinates

‘coll_type’
Specifies the type of collision

‘other_id’
Specifies the vehicle ID of the other party (or 0 if terrain)

‘other_mass’
Specifies the mass of the other party

‘other_velocity’
Specifies the velocity of the other party

disinf_collision tells the DI hull dynamics model that a collision occured. The coll_type
should be one of the libcollision constants:

COLL_TREES
Indicates crossing a treeline or canopy edge.

COLL_BUILDINGS
Indicates crossing a building or other structure. If the other structure is represented

on the network, the vehicle ID of that structure should be provided.

COLL_GROUND .
Should not be checked for ground vehicles.

COLL_PLATFORMS
Indicates intersecting a platform (vehicle, DI, etc.).

COLL_MISSILES
Indicates intersecting a missile (an entity on the network with a munition type.

Chapter 3: Functions

3.5 disinf_.damage

void disinf_damage(vehicle_id, damage)
int32 vehicle_id;
int32 damage;

‘vehicle_id’
Specifies the vehicle ID

‘damage’ Specifies whether the DI dynamics should simulate being damaged

disinf_damage tells the DI hull dynamics model that it is damaged (or not) depending on the
boolean value of the damage flag.

———— —— ——m— — -—— —-—— —— —— — —-—— —— E—"T T ——

LibDISConst

ADST-TR-W003268

Table of Contents

1 OVerVieW ... 1
1.1 Examples... ... 2
2 Functions ... 3
2.1 discomstamit. 3
2.2 disconstprint............. e 3
2.3 disconst.guisesimnet_todis...................o, 3
2.4 disconst_guise_dis_to.simnet................. ..., 4
2.5 disconst_appearancesimnetto.dis.....................o 4
2.6 disconst.appearance_dis-tosimnet, 5
2.7 disconst_capabilitiessimnet_todis.............. ... 5

2.8 disconst_capabilities_dis_tosimnet 5

—i O

— mT— ———

Chapter 1: Overview 1

1 Overview

LibDISConst performs conversions between SIMNET and DIS constants for object type (guise)
specification, appearance modifiers, and capabilities. The object type translations are specified in
a data file (‘disconst.rdr’). The appearance and capabilities translations are hard-coded (speci-
fication of these translations via a data file would be very difficult, since SIMNET and DIS are not
very similar in the way they specify these items).

Internally, the translations are stored in two formats:

e The SIMNET to DIS translations are stored in a libOTMatch format database (see section
‘Overview’ in LibOTMatch Programmer’s Manual).

e The DIS to SIMNET translations are stored in a n-ary tree, each node of which contains an
array of sub-trees which are selected by the value of a field of the DIS entity type. Since all of
the fields except country are within the range 0-255 (and most are less than 20), this selection
is done using a direct map (no searching). Country codes are mapped down to a few small
integers using a second-level map, to allow a direct map scheme to be used within the search
tree for countries as well.

The source data for the translations comes from the data file ‘disconst.rdr’. It contains the
following sections:

Traversal Instructions
Although all DIS entities are described using the same taxonomy (Kind, Domais,
Country, Category, Sub-category, Specific, Extra), not all entity kinds use all
the fields. Also, different entity kinds traverse the fields in different orders (for plat-
forms, Domain selects the meaning of Category; for munitions, Category selects the
meaning of Domain). Thus, the first thing specified in the data file is a default order of
traversal, and special traversals for selected kinds. The traversal instructions take the
general form:
(

(<DIS Kind for which instructions apply>
DISKind <field> <field> <field> ...)

: .o
The first traversal instruction is the default.
Country Codes

For compactness, and to allow both DIS 1.0 and DIS 2.0 object specifications within the
same data file, the countries are stored internally using a lookup table. The translations

2 LibDISConst Programmer’s Guide

refer to the countries by name. This name is used as the key into a lookup table. The
lookup table takes the general form:

(
("<country name>" <DIS 1.0 code number> <DIS 2.0 code number>)

: .
All countries referenced in the next section must appear in this lookup table.
Translations
Next come the SIMNET to DIS translations (the software deduces the DIS to SIMNET
translations from this list at startup). The translation table takes the general form:

(

(<SIMNET Object Type> (<Kind> <Domain> “"<Country>"
<Category> <Sub-category> <Specific>
<Extra>))

)
All the fields except Country are small integers (Kind and platform Domain macros are
supplied at the top of the file). Country should be a string which matches one of the
countries in the Counry Code table, above.
Order is significant in two cases:
1. If more than one SIMNET object type corresponds to a single DIS entity type,
the first one listed will determine the resulting DIS->SIMNET translation.
2. If a DIS entity type which is not in the tatle is translated to a SIMNET object
type, it will default to the first object encountered which matches the most fields
earliest in the traversal order (analogous to the libOTMatch defaulting scheme).

Thus, more common object types should be listed earlier in the data file.

The data file is complete as of the initial writing of this document. There are many defined SIM-
NET object types for which no obvious DIS equivalent exists (including almost all the structures).
These problem translations are noted in the data file with comments.

To print the translation table in a format similar to the DIS standard, make test, then run
test 1. The test program can also peform conversions from the command line (run test with no
arguments for usage instructions).

1.1 Examples

The test program ‘test.c’ gives examples of how to initialize libDISConst, and perform object
type conversions.

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libDISConst, including the format
and meaning of its arguments, and the meaning of its return values (if any).

2.1 disconst-init

int32 disconst_init(data_path, reader_flags, dis_version)
char =*data_path;
uint32 reader_flags;
int32 dis_version;

‘data_path’
Specifies directory where data file is expected

‘reader_flags’
Specifies libreader format file reading flags

‘dis_version’
Specifies version of DIS in use
disconst_init initializes libdisconst, causing it to read its data file (‘disconst.rdr’) from the

passed directory (or ‘.’) using the specified reader_flags. The return value is 0 for success, or
one of the libreader reader_read return values.

2.2 disconst_print
void disconst_print()

disconst_print prints the DIS->SIMNET translation tree in a manner similar to the DIS
specification.

2.3 disconst.guise_simnet_to_dis

void disconst_guise_simnet_to_dis(simnet, dis, warhead)
ObjectType sgimnet;

4 LibDISConst Programmer’s Guide

DIS_ENTITY_TYPE #*dis;
DIS_WARHEAD_TYPE *warhead;

‘simnec’ Specifies SIMNET object type
‘dis’ Returns DIS entity type
‘warhead’ Returns DIS warhead type

disconst_guise_simnet_to.dis converts a SIMNET guise to its DIS equivalent. If the warhead
is not desired, pass NULL.

2.4 disconst_guise_dis-to_simnet

void disconst_guise_dis_to_simnet(dis, warhead, simnet)
DIS_ENTITY_TYPE =*dis;
DIS_WARHEAD_TYPE *warhead;
ObjectType *gimnet;

‘dis’ Specifies DIS entity type
‘warhead’ Specifies DIS warhead (or NULL)
‘simnet’ Returns SIMNET object type

disconst_guise_dis_to_simnet converts a DIS guise to its SIMNET equivalent. If the war-
head is not relevant, pass NULL for warhead.

2.5 disconst_appearance.simnet_to._dis

void disconst_appearance_simnet_to_dis(dis_type, simnet, dis)
DIS_ENTITY_TYPE *dis_type;
uint32 *gimnet;
DIS_ENTITY_APPEARANCE »dis;

‘dis_type’

Specifies DIS entity type
‘simnet’ Specifies SIMNET appearance bits
‘dis’ Returns DIS appearance bits

disconst_appearance_simnet_to_dis converts a SIMNET appearance to its DIS equivalent.

Chapter 2: Functions

2.6 disconst_appearance_dis.tosimnet

void disconst_appearance_dis_to_simnet(dis_type, dis, simnet)

DIS_ENTITY_TYPE +dis_type;
DIS_ENTITY_APPEARANCE #*dis;
uint32 *gimnet;
‘dis_type’
Specifies DIS entity type
‘dis’ Specifies DIS appearance bits

‘simnet’ Returns SIMNET appearance bits

disconst_appearance_dis_to_simnet converts a DIS appearance to its SIMNET equivalent.

2.7 disconst_capabilities_simnet_to_dis

void disconst_capabilities_simnet_to_dis(simnet, dis)
VehicleCapabilities sgimnet;
DIS_ENTITY_CAPABILITIES »dis;

‘simnet’ Specifies SIMNET capabilities
‘dis’ Returns DIS capabilities

disconst_capabilities_simnet_to_dis converts a SIMNET capabilities record to its DIS
equivalent.

2.8 disconst_capabilities_dis_.to_simnet

void disconst_capabilities_dis_to_simnet(dis, simnet)
DIS_ENTITY_CAPABILITIES *dis;
VehicleCapabilities *gimnet;

‘dis’ Specifies DIS capabilities
‘simnet’ Returns SIMNET capabilities

disconst_capabilities_dis_to_simnet converts a DIS capabilities record to its SIMNET
equivalent.

ADST-TR-W003268

LibDither

Table of Contents

1 O VeIV W e e e 1
2 Examples ... 3
B FUNC I OIS oottt 7
T B (19,7 0 ¢ 1113 o > SO 7
3.2 ditherbitmaps..........o.oiiiiiiiiiii e 7
b T SIS 197 O +) SO 7

34 ditheraCopPY.....oooiiii e 8

Chapter 1: Overview

1 Overview

Libdither uses a fairly standard method for generating shading dithers.

A program using libdither will first make a dither-generating matrix using the function dither_matrix().
The function generates a NxN dither matrix where N is a power of 2. The algorithm is based on the
Judice, Jarvice, Ninke recurrence relation detailed in Foley, vanDam, et. al. (II edition, p. 571).
The dither matrix can be used to generate dither bitmaps. For example, the 2x2 dither matrix:

0 2
3 1
can be used to generate the following bitmaps:

00 10 10 11 11
00 00 01 01 11

These bitmaps can be generated explicitly, or they can be generated on an as-needed basis, and
copied or OR’d into other bitmaps.

Macros are provided to correctly declare the matrix (DITHER_MATRIX) and bitmap
(DITHER_BITMAPS) data structures, as well as a macro which computes the number of unique
bitmaps which can be generated from a dither matrix of a given size (DITHER_COUNT).

LibDither Programmer’s Guide

—t. . sesss. _JSusslh. csssmtly = ssesse @ cmstils 0 Mesetn 0 el _smecssm

Chapter 2: Examples 3

2 Examples

The following example program (called ‘xtest.c’ in the libdither source directory) fills the root
window with a number of 4x4 rectangles. Each rectangle is stippled with a dither corresponding
to its distance from the center of the screen. A 16x16 dither pattern is used.

Depending upon whether #define DO_RECTS is present, the program will either use
dither_bitmaps() to generate stipples for a GC, or it will use dither_or() to generate one large
bitmap. The second version runs about 15 times as fast, due to the reduction X traffic.

/*
#define DO_RECTS
*/

#ifndef DO_RECTS
#define DO_BITMAP
#endif

#include "libdither.h"

#include <X11/X1ib.h>
#include <X11/Xutil.h>
#include <stdio.h>
#include <math.h>

#define SIZE 16

#ifdef DO_RECTS

main()

{
Display =dpy;
int32 screen;
Window root;
GC gc;
int32 i, x, y;
int32 w, h, Hw, Hh;
float64 d;
DITHER_MATRIX(mat,SIZE);
DITHER_BITMAPS(bits,SIZE);
Pixmap pix[DITHER_COUNT(SIZE)];

/* Make the dither generating matrix =/
dither_matrix(SIZE, mat);

/* Make DITHER_COUNT(SIZE) bitmaps from the matrix »/
dither_bitmaps(SIZE, mat, bits);

LibDither Programmer’s Guide

/+ Open the display device s/
dpy = XOpenDisplay(NULL);
i1 (idpy)

exit (2);

/+ Find the screen and root window */
screen = DefaultScreen(dpy):
root = RootWindow(dpy, screen);

/+ Generate DITHER_COUNT(SIZE) pixmaps from the bitmaps */
for(i=0;i<DITHER_COUNT(SIZE);i++)
pix[i] = XCreateBitmapFromData(dpy, root, bits[i], SIZE, SIZE);

/* Create a GC for filling in the rectangles s/
gc = XCreateGC(dpy, root, O, NULL);
XSetForeground(dpy, gc, BlackPixel(dpy, screen));
XSetBackground(dpy, gc., WhitePixel(dpy, screen));
XSetFillStyle(dpy, gc, FillOpaqueStippled);

/+* Find the size of the screen s/
v = DisplayWidth(dpy,screen);

h = DisplayHeight(dpy,screen);

Hw = w/2;

Hh = h/2;

/* Find the distance that the furthest rectangle will fall from the
* center.
»/

d = sqrt(HusHw + HheHh);

/* Fill in a bunch of 4x4 rectangles, stippled according to their
* distance from the center of the screen.
*/

for (y=0;y<h;y+=4)
for (x=0;x<w;x+=4)

{
i = (DITHER_COUNT(SIZE)-1) »
sqrt((Hu-x)e(Hu-2) + (Hh-y)»(Hh-y))/d4;
XSetStipple(dpy, ge, pix(il);
XFillRectangle(dpy, root, gc, x, v, 4, 4);
}
/* Close the display ¢/
XCloseDisplay(dpy):
}
#endif
$ifdef DO_BITMAP
main()
{
XImage *image;

Chapter 2: Examples

Display =dpy;

int32 screen;

Window root;

GC gc:

int32 i, x, y;

int32 v, h, Hw, Hh;
float64 d;
DITHER_MATRIX(mat,SIZE);
char sbitmap;

/* Make the dither generating matrix =/
dither_matrix(SIZE, mat);

/* Open the display device */
dpy = XOpenDisplay(NULL);
it (idpy)

exit (2);

/* Find the screen and root window */
screen = DefaultScreen(dpy);
root = RootWindow(dpy, screen);

/* Find the size of the screen *’
v = DisplayWidth(dpy,screen);
h = DisplayHeight(dpy,screen);

/* Allocate a bitmap big enough to cover the whole screen »/
bitmap = (char *)malloc(h * ((u+7)/8));
bzero(bitmap, h * ((w+7)/8));

/* Create an XYBitmap format XImage */
image = XCreatelmage(dpy, NULL, i, XYBitmap, O, bitmap,
v, h, 8, (w+7)/8);

/* Find the distance that the furthest rectangle will fall from the
* center.
*/
Hv = w/2;
Hh = h/2;
d = sqrt(HwsHv + Hh*Hh);

/* Fill in a bunch of 4x4 rectangles, stippled according to their
* distance from the center of the screen.
*/
for (y=0;y<h;y+=4)
for (x=0;x<w;x+=4)
{
i = (DITHER_COUNT(SIZE)-1) =
sqrt((Hv-x)*(Hw-x) + (Hh-y)*(Hh-y))/d;
dither_or(SIZE, i, mat, bitmap, w, h, x, y, 4, 4);

LibDither Programmer’s Guide

}

/* Create a GC for copying the image #/

gc = XCreateGC(dpy, root, O, NULL);
XSetForeground(dpy, gc, BlackPixel(dpy, screen));
XSetBackground(dpy, gc, WhitePixel(dpy, screen));

/* Copy the bitmap to the screen */
XPutImage(dpy, root, gc, image, 0, 0, 0, 0, w, h);

/* Close the display */
XCloseDisplay(dpy);

}

$ondif

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libdither, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 dither_matrix

void dither_matrix(size, mat)
int32 size;
DITHER_MATRIX(mat, size);

‘size’ Specifies the size of the dither matrix

<

mat’ Returns the dither-generating matrix

dither_matrix creates a dither matrix which can then be passed to dither generating functions.

3.2 dither_bitmaps

void dither_bitmaps(size, mat, bits)
int32 size;
DITHER_MATRIX(mat, size);
DITHER_BITMAPS(bits, size);

‘size’ Specifies the size of the dither matrix
‘mat’ Specifies the dither generating matrix
‘bits’ Returns the bitmaps

dither_bitmaps creates DITHER_COUNT(size) bitmaps from the dither generating matrix (cre-
ated with dither_matrixz()). bits[i] 0<=i<DITHER_COUNT(size), is the ith bitmap, and can be
passed to X-windows functions such as XPutImage(), or XCreatePixmapFromBitmapData().

3.3 dither.or

void dither_or(size, which_dither, mat, bitmap, bitmap_width,

8 LibDither Programmer’s Guide

bitmap_height, x0, yO, area_width, area_height)

int32 size;

int32 which_dither;

DITRER_MATRIX(mat, size);

char *bitmap;

int32 bitmap_width;

int32 bitmap_height;

int32 x0, yoO;

int32 area_width, area_ height;
‘size’ Specifies the size of the dither

‘which_dither’
Specifies which dither to generate

‘mat’ Specifies the dither-generating matrix
‘bitmap’ Returns the bitmap

‘bitmap_width, bitmap_height’
Specifies the size of the bitmap

‘x0, y0° Specifies the starting location within the bitmap

‘area_width, area_height’
Specifies the area to dither within the bitmap

dither.or OR’s in an area_width x area_height section of the which_ditherth dither gen-
erated from the matrix mat. The upper left corner of the dither is at x0, yO of the bitmap.

See (undefined) [dither'copy), page (undefined).

3.4 dither_copy

void dither_copy(size, which_dither, mat, bitmap, bitmap_width,
bitmap_height, x0, yO, area_width, area_height)

int32 size;

int32 which_dither;
DITHER_MATRIX(mat, size);

char *bitmap;

int32 bitmap_width;

int32 bitmap_height;

int32 x0, yoO;

int32 area_width, area_height;

‘size’ Specifies the size of the dither

Chapter 3: Functions

‘which_dither’
Specifies which dither to generate
‘mat’ Specifies the dither-generating matrix

‘bitmap’ Returns the bitmap

‘bitmap_width, bitmap_height’
Specifies the size of the bitmap

‘x0, yO' Specifies the starting location within the bitmap

‘area_width, area_height’
Specifies the area to dither within the bitmap

dither_copy works just like dither_or, except that zero bits in the dither are set to zero in
the bitmap. Hence, dither_copy runs only about half the speed of dither_or.

See (undefined) [dither'or], page (undefined).

ADST-TR-W003268

LibDr

Table of Contents

L O VeI VI CW i e 1
2 Examoples ... 3
3 FUNCEIOMNS oo 5
3.1 drAfirstoorderdinear.dr..ot e e, 5
3.2 drsecond_orderdinear dr...... ...t s 6
3.3 drfirsteorderangulardr......... 7
3.4 dr.unpackangular_velocity.....................iiiiiiia 8
3.5 dr.checklocation_thresholds...................cciiiiiviniiinnnnnnnn.. 8
3.6 drcheckoorientation_thresholdcccooiieuinin... 9
3.7 drquattransform.......... ... 10

Chapter 1: Overview 1

1 Overview

Because of limitations in network bandwidth, the DIS world uses the concept of dead reckoning
(DR) to lessen the network traffic of DIS entities. The theory is that if the (DR) algorithm used
by a particular entity is known, the position (and orientation if the algorithm specifies it) of a
remote entity can be approximated until the next actual update is received. On the sender’s side,
the sender calculates the actual state of the entity and then compares it against the approximated
state that the world assumes as truth. If the two states deviate by more than a specified set of
thresholds, the sender must send out a packet updating its state for the rest of the players.

Libdr provides a set of generic routines which can be combined to do various types of dead
reckoning algorithms. It assumes a cartesian coordinate system, such as GCC or SIMNET’s Level
Metric, but is independent of units; the parameters — position, velocity, time, etc — must be specified
consistently, but the user may choose the units. In other words, if position is specified in meters, and
time in seconds, the velocity must be specified in meters/second. It can not be kilometers/second
or meters/millisecond. Position, velocity, and acceleration must be also be specified with respect
to the same coordinate system (WORLD vs BODY).

In addition to the dead reckoning routines, libdr also provides a set of routines to do positional
and rotational threshold checking. These routines can be used in conjunction with the dead reck-
oning routines to determine whether or not a entity has exceeded its thresholds, requiring that a
packet be sent out to update its position in the world.

All linear dead reckoning routines are supported for both float32 and float64 vectors. Angular
dead reckoning routines using 3 x 3 matrices for rotation are supported for both float32 and float64
matrices. Angular dead reckoning routines using quaternions for rotation are currently supported
for float64 quaternions only. Threshold routines for rotational checking are supported for both
float64 and float32 matrices. Threshold routines for rotational checking using quaternions and
positional checking are supported for float64 only. Elapsed.time and position are always represented
using float64’s. In addition, the angular dead reckoning routines support both WORLD_to.BODY
and BODY_to.WORLD matrices as well as quaternions. The naming convention for these functions
is:

32 bit or 64 bit floating point
Name contains 32 or 64 at or near end

body or world
Name ending in body or world indicates that rotations are specified as body_to.world
or world_to_body respectively.

matrix or quat

2 LibDr Programmer's Guide

Name contains matrix or quat at or near end indicates that rotations are specified
using a 3 x 3 matrix or quaternion respectively.

For example, the 64 bit, first order angular dead reckoning function using world.to_body matrices
is dr_first_order_angular_dr_matrix64_world.

The Functions Chapter specifies the versions which are currently supported. The prototype
types described in that section use generic terms as follows:

scalar s Either float32 s or float64 s

vector v Either float32 v[3] or floaté4 v[3]

matrixm Either float32 m[3] [3] or float64 m[3] [3]

quat q quaternion which contains 2 parts, a scalar, referred to as gscalar and a vector,
referred to as qvector

rotationr
Either matrix or quat

Chapter 2: Examples

2 Examples

The program ‘dr_test’, found in ‘dr_test.c’ in the libdr source directory, demonstrates some
possible uses for libdr. It can be compiled with the command ‘make dr_test’. Due to the nature of
the test cases, they do not determine their own success or failure. Their output must be analyzed
by the tester with the help of a scientific calculator.

The first order and second order linear dead reckoning routines can be easily combined to form
the following algorithms, defined in the DIS 2.0 Standard. The 3 letter naming conventions can be

interpreted as:

F/R :
P/V :
W/B :

FPW :

RPW :

RVW

FVu

FPB

FVB

..

Fixed Rotation or 1st Order Rotation
1st Order Position or 2nd Order Position (Velocity)
World or Body Coordinates

Fixed Rotation, First Order Position, World Coordinates
Defined as Algorithm 2 in the DIS 2.0 Standard
(DR algorithm used in SIMNET)

First Order Rotation, First Order Position, World Coordinates
Defined as Algorithm 3 in the DIS 2.0 Standard

First Order Rotation, Second Order Position, World Coordinates
Defined as Algorithm 4 in the DIS 2.0 Standard

Fixed Rotation, Second Order Position, World Coordinates
Defined as Algorithm S in the DIS 2.0 Standard

Fixed Rotation, First Order Position, Body Coordinates
Defined as Algorithm 6 in the DIS 2.0 Standard

Fixed Rotation, Second Order Position, Body Coordinates
Defined as Algorithm 9 in the DIS 2.0 Standard

The following code fragment illustrates how the routines can be combined to execute the RPW
algorithm. The ‘RPW’ is specified in the DIS 2.0 standard as DR algorithm 3. For this algorithm,
first order linear positional dead reckoning as well as first order rotational dead reckoning is ap-
plied. Initial velocity is specified in \WORLD Coordinates. Example is for float64’s using an initial
BODY_to.WORLD orientation matrix.

LibDr Programmer’s Guide

/*
* Given elapsed_time, initial_position, and velocity, a
* current_position position is calculated and returned in

* ‘current_position’

*/

float64 elapsed_time; /* time from vhen initial_position wvas
accurate until now »/

float64 initial_position[3]; /+ position before DR applied »/

float64 velocity[3]; /* linear velocity, WORLD coords s/

float64 current_position(3]; /* position after DR applied ./

dr_first_order_linear_dr64 (elapsed_time, initial_position, velocity,
current_position);

/*
* The angular velocity vector only changes when a new packet arrives.

* To save compute cycles, the omega and axis of rotation that is

* extracted from the vector should be cached.

*®

* Given an angular velocity vector, omega (the magnitude) and axis of

* rotation are determined and returmed in ‘omega’ and ‘axis’.

*/
float64 angular_velocity[3]; /= angular velocity, WORLD coords =/
float64 omega; /* unpacked angular velocity s/
float64 axis[3]; /* azis of rotation s/

dr_unpack_angular_velocity64 (angular_velocity, &omega, axis);

/*
* Given an initial BODY_to_WORLD matrix, elapsed_time, omega, and
* axis of rotation, a current BODY_TO_WORLD matrix is calculated
* and returned in ‘current_body_to_world’.

*/

float64 initial_body_to_world[3][3]; /+ BODY_to_WORLD matrix before DR =/
float64 current_body_to_world[3]([3]; /+ BODY_to_WORLD matrix after DR */

dr_first_order_angular_dr_matrix64_body (elapsed_time, omega, axis,
initial_body_to_world,
current_body_to_world);

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libdr, including the format, meaning
of its arguments, and meaning of its return values (if any).

3.1 dr.first.order.linear.dr

void dr_first_order_linear_dr (elapsed_time, initial_positionm,
initial_velocity, current_position)

float64 elapsed_time;
vector initial_position({3];
v ar initial_velocity(3];
r current_position[3];
‘elapsed_time’
Time elapsed between initial_position and current_position
‘initial_position’

Position to dead reckon from.

‘initial velocity’
Velocity to apply to initial_position to calculate current_position.

‘current_position’
New position after dead reckoning; return value.

Available formats:

e dr_first_order_linear_dr64
e dr_first_order_linear_dr32

dr_first_order_linear_dr64 performs first order linear dead reckoning using the equation:
P=p.0+ (v.0s=t)

0
v.0 : initial_velocity

P : current_position p-0 : initial_position
t : elapsed_time

T T T T

6 LibDr Programmer’s Guide

3.2 drsecond.order_linear._dr

void dr_second_order_linear_dr (elapsed_time, initial_position,
initial_velocity, initial_acceleration,
current_position, current_velocity)
floaté4 elapsed_time;

vector initial_position[3];

vector initial_velocity(3];

vector initial_acceleration(3];

vector current_position(3];

vector current_velocity([3];
‘elapsed_time’

Time elapsed between initial_position/velocity and current_position/velocity

‘initial_position’

Position to dead reckon from.

‘initial velocity’
Velocity to apply to initial_position to calculate

‘initial_acceleration’
Velocity to apply to initial_position to calculate current_position and current_velocity

‘current_position’
New position after dead reckoning; return value.

‘current_velocity’
New velocity after dead reckoning; return value.

Available formats:

e dr_second_order_linear_dr64
s dr_second_order_linear_dr32

dr_second_order_linear_dr64 performs second order linear dead reckoning using the equa-
tion:

P=po0+ (v.O = t) + (0.5+%a_0%(t"2))
vsev 0+ al

P ¢ current_position P.0 : initial_position
v : current_velocity v.0 : initial_velocity
-0 : initial_acceleration

a
t : elapsed_time

Chapter 3: Functions 7

3.3 dr.first_order_angular_dr

void dr_first_order_angular_dr (elapsed_time, omega, axis,
initial_rotation, current_rotation)
float64 elapsed_time;
scalar omega;
vector axis;
rotation initial_rotation;
rotation current_rotation;

‘elapsed_time’

Time elapsed between initial_rotation and current_rotation
‘omega’ Magnitude of angular velocity.
[3

axis’ Axis of rotation of angular velocity

‘initial_rotation’
Rotation to dead reckon from

‘current_rotation’
New rotation after rotational dead reckoning; return value.

Available formats:

o dr_first_order_angular_dr_matrix64_body
e dr_first_order_angular_dr_matrix32_body
e dr_first_order_angular_dr_matrix64_world
e dr_first_order_angular_dr_matrix32_world
e dr_first_order_angular_dr_quat64_world

dr_first_order_angular_dr performs first order angular dead reckoning using either cosine
matrices or quaternions. The change in rotation for a given time frame is represented by the
following quaternion:

h_angle : half_angle of rotation

L : omega

t : elapsed_time

axis : axis of rotation

quat : intermediate quaternion for change in rotation (gqscalar, qvector)

s_angle : sin (h_angle)

h_angle = 0.5%wt
qscalar = cos (h_angle)
qvector[0] = s_angle * axis([0]

8 LibDr Programmer's Guide

qvector(1] = s_angle * axis[1]
qvector[2] = s_angle * axis(2]

If the input rotation is a quaternion, the initial_quaternion is concatenated with the newly
calculated quaternion to return a quaternion representing the dead reckoned rotation. If the input

rotation is a2 matrix, the newly calculated quaternion is first converted to a direction cosine matrix.
Two matrices are then concatenated to return a matrix representing the dead reckoned rotation.

3.4 dr_unpack_angular_velocity

extern void dr_unpack._angular_velocity (angular_velocty, omega, axis)

vector angular_velocity;

scalar *omega;

vector axis;
‘angular_velocity’

Angular velocity vector in Body Coordinates.
‘omega’ Pointer to Magnitude of angular velocity; return value.

‘axis’ Axis of rotation of angular velocity; return value.

Available formats:

e dr_unpack_angular_velocity64
e dr_unpack_angular_velocity32

dr_unpack_angular_velocity takes an angular velocity vector and extracts its magniitude,
omega, and its axis of rotation, axis. This action need only be done whenever the angular velocity
changes, not each time one performs angular dead reckoning. Therefore, it is suggested that this
routine be called only when necessary and the values for omega and axis be cached for efficiency.
For remote entity rotational dead reckoning, this would need to be called for a particular entity
whenever a new packet arrived for it.

3.5 dr._check.Jocation_.thresholds

int32 dr_check_location_thresholds (thresh_sq, current_position
dr_position)
scalar thresh_sq:

Chapter 3: Functions 9

vector current_position;
vector dr_position;

‘thresh_sq;’
Square of the position threshold. Must be in units consistent with those used for

position.

‘current_position’
Actual position of the local entity

‘dr_position’
Dead reckoned position of the local entity since the last packet was sent

dr_check_location_thresholds compares the current_position with that of dr_position. If
‘current’ deviates from ‘dr’ by more than the specified threshold, it returns TRUE (1) indicating
that the threshold has been exceeded and therefore, a packet should be sent. Otherwise, it returns
FALSE (0). The algorithm actually requires the square of the threshold. Therefore, for efficiency,
the routine takes the threshold squared as a parameter rather than just the threshold value and
assumes the user can cache the squared value instead of recomputing it every time.

3.6 dr_check.orientation_threshold

int32 dr_check_orientation_threshold (thresh, current_rotation,
dr_rotation)

scalar thresh;
rotation current_rotation;
rotation dr_rotation;

‘thresh’ For efficieny purposes, thresh has different representations depending on whether or
not quaternions or matrices are used. Given a rotational threshold in radians, thresh
should be one of the following:

thresh = cos (0.5 * rotation threshold)
thresh = 2 = cos (rotation threshold) + 1

for quaternions
for matrices

‘current_rotation’
Rotation representing the actual orientation of the entity

‘dr_rotation’
Rotation representing the dead reckoned approximation of the orientation of the entity.

Available formats:

10 LibDr Programmer’s Guide

e dr._check_orientation_threshold_matrix64
e dr_check_orientation_threshold_matrix32

e dr_check_orientation_threshold.quat

dr_check_orientation_threshold compares the current_rotation with that of the dr_rotation.
If ‘current’ deviates from ‘dr’ by more than the specified threshold, it returns TRUE (1) indicating
that the threshold has been exceeded and therefore, a packet should be sent. Otherwise, it returns
FALSE (0). As with dr_check_location_thresholds, the algorithms utilize the threshold infor-
mation in a manner which can be precalculated and stored for future use. Details of the format
are indicated above under ‘thresh’.

3.7 dr_quat_transform

void dr_quat_transform (src, rotation, dest)
vector src;
quat rot;
vector dest;

‘src’ Initial vector that is to be transformed.
‘rot’ Quaternion which represents the rotation by which the vector is to be rotated.
‘dest’ Resulting vector after transformation has been applied; return value.

dr_quat_transform rotates a vector by the rotation specified in the quaternion. Ultimately,
this belongs in a quaternion equivalent of libvecmat.

ADST-TR-W003268

Libechelondb

Table of Contents

1 Overview

1.1 Examples

2 Functions
2.1 echdb.init

..

2.2 echdb_expand

Chapter 1: Overview 1

1 Overview

Libechelondb provides a database of named standard military echelon organizations (also re-
ferred to as Units), which can be used as templates or parts of templates for unit creation. Libech-
elondb uses a database format which is accessed using libotmatch (see section ‘Overview’ in Li-
bOTMatch Programmer’s Manual). A GUI for unit creation can access this library to allow the
initialization of a unit to expand into the initialization of an entirely instantiated unit hierarchy.
Given a unit to be created, libechelondb only supplies the information used to create the unit and
its subordinates. It does not actually create the unit persistent object or its subordinate persistent
objects.

The types of information stored in the echelon database are as follows:

The collection of subunits in a unit
The subunits can be recursive references to other libechelondb units. For example, a
platoon can contain several vehicles, while a company can contain several command
vehicles and several platoons.

The way vehicle designations are generated for each vehicle or unit
For example, a company might be designated as "A ", the first platoon in that company
might be designated as "Al ", and the second vehicle in the first platoon might be
designated "A12".

The order of promotion between units
This ordering can also be used to identify unique members in a formation of units.
This information is stored implicitly in the data file by the ordering of the subunits.

The echelon database is stored in the data file ‘echelondb.rdr’. The format of this data file is
as follows:

(

(<unit identifier> (<subunit identifieri>
<subunit identifier2>
<subunit identifierd
)

<more unit definitions>

<unit identifier> is the object type representing the unit.

A <subunit identifier> has the following format:

2 Libechelondb Programmer’s Guide

([leafitree] [<vehicle identifier> | <unit identifier>] <marking pattern>)

leaf means that this is a terminal node in a unit hierarchy. tree means that this subunit should
be reexpanded into other subunits by means of a recursive query into the database. A unit identifier
could be specified as a leaf node, which would imply a unit hierarchy containing a command unit
which does not have vehicles in it. This could be used to support the representation of aggregate
simulation, or provide empty units for later task organization.

The <vehicle identifier> or <unit identifier> specifies the object type of the unit at this
level in the hierarchy. Vehicle object tvpes indicate physical vehicles within the unit hierarchy,
while unit object types indicate conceptional aggregate units (with or without vehicles subordinate
to them).

The <marking pattern> is a three character string used to generate markings for a particular
unijt in the hierarchy. In such a string. the character ? indicates to inherit the character at this
position from the superior unit. Thus. a vehicle with a marking pattern of “?7?4" will receive a
marking of "A24" when present in a platoon labeled "A2 ",

An example of a data file which supports platoons, companies and battalions of M1 tanks is as
follows:

(

(unit_US_M1_Platoon ((leaf vehicle_US_M1 "??71")
(leaf vehicle_US_M1 "7?72%)
(leaf vehicle_US_Mi "??3")
(leaf vehicle_US_M1 "7?74%)))

(unit_US_M1_Company ((leaf vehicle_US_M1 "?66")
(leaf vehicle_US_Mi “765")
(tree unit_US_M1_Platoon “"71 ")
(tree unit_US_M1_Platoon "72 ")
(tree unit_US_M1_Platoon "?3 ")))

(unit_US_M1i_BattalionHQ ((leaf vehicle_US_M1 "HQ1")
(leaf vehicle_US_M1 "HQ2")))

(unit_US_Mi_Batallion ((tree unit_US_M1_BattalionHQ "H ")
(tree unit_US_Mi_Company "1 ")
(tree unit_US_M1_Company "2 ")
(tree unit_US_M1_Company "3 ")))

The algorithm used within libes Lelondb for queries is as follows. Queries are initiated by a call

Chapter 1: Overview 3

to echdb_expand, passing in an array of the ECHDB_DATA structure to be filled out. The format of
the ECHDB_DATA data structure, which will be filled out by calls to echdb_expand, is as follows:

typedef struct echdb._data

{
ObjectType type;
int32 superior;
int32 promotion_index;
char designation(4];

} ECHDB_DATA;
type is the vehicle or unit object type of the unit.

superior is the array index of the unit which is superior to this unit. The topmost unit, which
will be the zeroth element of the array, will have a superior of -1.

promotion_index is a small integer representing the order of promotion for all the units directly
subordinate to the superior of this unit. All units directly subordinate to a particular superior unit
will have a unique promotion._index.

designationis a NULL terminated 3-character string which represents the designation or "bumper-
number” of the unit.

Queries into the database by echdb_expand use otm_query (see section ‘otm_query’ in LibOT-
Match Programmer’s Manual) to access the data for a particular unit. First, the input unit is used
to fill out the zeroth ECHDB_DATA element. Then, if a unit is found via a direct otm_query match,
the data returned by otm_query is used to fill out other ECHDB_DATA elements. Recursive queries
are performed to expand any elements marked as tree nodes.

1.1 Examples

The test program ‘test.c’ demonstrates initialization of libphysdb and all the libraries it de-
pends on. The output of a sample run is as follows:

crimson-> test unit_US_Mi_Company "A "

Expansion of unit_US_M1i_Company yields 18 subunits:
0: unit_US_Mi_Company, marking "A ", index O, superior is -1
1: vehicle_US_M1, marking "A66", index O, superior is 0
2: vehicle US_M1i, marking "A65", index i, superior is 0

OCO~NOOH W

10:
i1
12:
13:
14:
186:
16:
17:

unit_US_M1i_Platoon,
unit_US_M1_Platoon,
unit_US_Mi_Platoon,
vehicle_US_M1,
vehicle_US_M1,
vehicle US_M1,
vehicle _US_M1,
vehicle _US_M1,
vehicle_US_Mi,
vehicle_US_M1,
vehicle _US_M1,
vehicle _US_M1,
vehicle _US_M1,
vehicle _US_M1,
vehicle _US_M1,

marking
marking
marking
marking
marking
marking
marking
marking
marking
marking
marking
warking
marking
marking
marking

"A1 " ,
"A2 [} .
"As " R
IIA11" »
IIA12II .
'IA13II .
IIA14II R
Ilulll ,
||A22“ R
IIA23II »
IIA24" R
IIA31|I .
IIA32II R
"A33",
IIAS4II R

Libechelondb Programmer’s Guide

index 2, superior is
index 3, superior is
index 4, superior is
index 0, superior is
index 1, superior is
index 2, superior is
index 3, superior is
index O, superior is
index 1, superior is
index 2, superior is
index 3, superior is
index 0, superior is
index 1, superior is
index 2, superior is
index 3, superior is

NN NLbdbWWWWO OO

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libechelondb, including the format
and meaning of its arguments, and the meaning of its return values (if any).

2.1 echdb.nit

int32 echdb_init(directory, flags)
char =*directory;
uint32 flags;

‘directory’
Specifies the directory where the echdb file is expected

‘flags’ Specifies reader options (see section ‘reader.read’ in LibReader Programmer’s Manual)

echdb_init initializes libechdb, causing it to read its data file ‘echdb.rdr’ from the specified
directory. The flags are as in reader_read. The return value is zero if the read succeeds, or
one of the libreader return values: READER_READ_ERROR READER_FILE_NOT.FOUND.

Note that the 1ibreader function reader_init, the 1ibrdrconst function rdc_init, and the
libotmatch function otm_init must be called before this function.

2.2 echdb_expand

int32 echdb_expand(input, input_designation, output_length, output)
ObjectType input;
char input_designation[];
int32 output_length;
ECHDB_DATA output(]:

‘input’ Specifies the unit to look up in the database

‘input_designation’
Specifies the ASCII character designation string for the top level unit. Designations
for lower level units will be derived from this string.

‘output._length’
Specifies the maximum number of outputs to fill out.

6 Libechelondb Programmer’s Guide

‘output’ Specifies an array of ECHDB_DATA records to fill out the results of the query.

echdb_expand looks up the supplied input in the echelon database and fills out the units in the
output structure. A maximum of output_length units will be filled out. echdb_expand returns
the number of entries in output that have been filled out by the call. input is always returned as
the zeroth element of output. If input is not found in the echelon database, 1 will therefore be

returned.

ADST-TR-W003268

LibEditor

Table of Contents

1 O VeI VIO W i e 1
1.1 Name Definitioncoooviiniiii e 1
1.2 Structure Definitionot 1
1.3 Editor Definition.cooiitiii i ittt 4

1.3.1 ALTITUDE i e 4
1.3.2 ANGLE ... e e ettt 4
1.3.3 CHOOSE ONEo i i 5
134 CHOOSESOME o i 6
1.3.5 DAL E ..ottt et ettt et s 7
1.36 DRAW _AREA e 7
1.3.7 DISTANCE ... it eaeens 7
1.3.8 FUEL ...oiiiiiiii ittt et i ittt e etaaeranaaanasananns 8
B X T N §) P S 8
1.3.00 LINE. ...ttt ettt ere e eeranaeasensananans 8
1.3.11 MUNITIONS ... i ettt i i eneaeas 9
1.3.12 OBJECT ... i et e et a e eeas 9
1.3.13 OVERLAY ... i ettt ieaeeaaans 9
1.3.14 OVERLAY DISPLAY .. .o ittt iareeens 10
1.3.18 PLACE ... e et 10
1.3.16 SCALE ... oot e ittt aareeaenas 10
I 75 & A 0) | o (I 11
1318 SPEED ..ottt it iietearierienernaeaans 11
1.3.19 STEALTH.... ..o ittt i eaenes 12
1.3.20 STRINGiiiiiiii it i trie i aeraeeaaans 12
b I 353 T ¥ 1. § O R 12
1322 TOGGLE......coi i ittt ciieeaeens 13
1.3.23 VECTOR..... oottt e iiie e e enns 13
1324 VEHICLE ...ttt ittt i eeaeeaaans 13
1.4 Initialization Rules...............ccoiiiiiiiiiiiii it 14
1.5 Rendering Information.................ociiiiiiiiiiiiiiii 14

2 USABe ..ottt 17
2.1 Building Libeditor............. ..o 17
2.2 Linking with Libeditor............... ... 17

LibEditor Programmer’s Guide

| RS R AT} (V. T 19
Bl et . e e 19
3.2 edtset _sensitiveClass.............ooiiiiiiiiiiii e 19
3.3 edtofferdefaultobject...............ccooo 20
B4 @b lTOALe. ...ttt e 20
3.5 edtcreatedefaults_editor................. ... 23
3.6 edtcreateprofilemenu................... 23
3.7 edtdoad . ..o e 23
38 edtload_readeroouiiiiiiii e 24
3.9 edtsetfieldottt e e 24
3.10 edtapply-offset. ... 25
LT 0 T L33 77 - F AR 25
312 @At QUeTY ..ttt 26
T T, LTS ¢ 1 - T 26
3.14 edt getreferences.............cooiiiniiiiiiiiiii e 26
315 edtformatcoiirniiiii e e 27
3.16 edtopvddefaults............ooooiiiiiiii 29
3.17 edtcolorachoiCe. ... iiiiii e i e 29
3.18 edteditor emply.....coooiiiiiiiiiii i i e 30

) DRVZ- 13 1 P 31
4.1 edtdefaultscallback.................ooiiiiiiiiiiii i 31

X Resource Definitions.................cooiiiiiiiiiiiiiiiiiinnn. 33

Defining New Typesccccoiiiiiiiiiiiiiiiiiiiiiiiiieaieens 35

Chapter 1: Overview

1 Overview

Libeditor provides a facility to build flexible data-driven editors with a minimum of effort. The
library is an integral part of the ModSAF user interface architecture.

The programming paradigm used is as follows:

e The application defines a data structure which is to be edited. This data structure is fixed-size,
although it may contain one variable length field (such as the way a protocol PDU cannot be
larger than the ethernet packet, but it may contain a variable amount of valid information).

o The application defines a data file which expresses five things about the data which is edited:
e The name of the editor
e The memory layout of fields in the structure
e The abstract type of those fields which may be edited
e The way to initialize each field
e The fields which impact the way an item is rendered
e The application passes this information to libeditor at startup, at which time a user interface
is constructed. Optionally, the application may also pass functions which are called to display
the item being edited, and to process the edited item when the editor is exited.
e The application starts the editor when needed.

The following sections describe the five main sections of an editor definition file.

1.1 Name Definition

The first thing which must be specified for an editor is its name. This should be a short
description of what the editor does. For example:

(name "Text Editor")

1.2 Structure Definition

The structure is defined by listing each member of the structure by name, and then specifying
its data type, and optionally its length. Padding is specified by using the reserved label padding
and specifying how many bits (must be a multiple of 8).

2 LibEditor Programmer’s Guide

For example, the structure:

struct foo
{
int16 bar;
int16 _paddingi;
uint32 baz[3];
};

Would be defined with the expression:

(struct (bar int16)
(padding 16)
(baz uint32 3)
)

The data types which are recognized are as follows:

int8 uint8 int16 uint16 int32 uint32 float32 float64
PointDescription MunitionQuantity ObjectIDType

When the editor is created, the software compares the size of the structure specified by this data
file to the size passed in, to help identify inconsistencies (usually padding problems).

Note that C compilers pad structures for efficient access to data over the bus. In general, the
. following rules should be assumed:

e The byte offset to a primitive type which is n bytes long will be a multiple of n. For example,
the structure:

struct
{
int8 bar;
inti16 baz;
} foo;

has a byte of implicit padding between bar and baz so that baz may start on a 2 byte offset
into the structure.

e The byte offset to a structure within a structure must conform to the strictest alignment
requirements of the sub-structure’s members. For example, the structure:

struct

{
int8 bar;

Chapter 1: Overview

struct

{
int16 baz;

int32 bax;
} viz;
} foo;

has 3 bytes of implict padding between bar and the sub-structure biz, and 2 bytes of implicit
padding between baz and bax.

e The total size of a structure must be a multiple of its member’s strictest alignment requirement.
This is to ensure structures can be placed into arrays. For example, the structure:

struct

{
int32 bar;
int16 baz;
} foo;

has 2 bytes of implicit padding after baz, so that the entire structure is a multiple of 4 bytes
(the requirement of bar).

o Bitfields generally require 4 byte alignment.

These rules are enforced to varying degrees on different hardware platforms. To ensure porta-
bility, always declare padding explicitly:

struct

{
int8 bar;
uint8 _padil;
uint16 _pad2;
int32 baz;

} foo;

The alignment requirements of libeditor’s basic types are as follows:

int8
uint8
int16
uinti6
int32
uint32
float32
float64

QO & b NN e e

4 LibEdi“or Programmer’s Guide

PointDescription
4

MunitionQuantity
4

ObjectIDType
2

1.3 Editor Definition

An editor is defined by a series of editables. Each editable has a name, a type, a storage
location (which is a reference back to a name listed in the struct part of the data file), and other
configuration data. For example, the editor definition for a text object editor might look like this:

(editor ("Location" PLACE location)
("Color" CHOOSE_ONE color HIDE EDT_OVERLAY_COLORS)
("Overlay" OVERLAY overlay)
("Text" STRING text 5 length)
)

There are currently 16 different types of editables, which are described in the following sections.

Note that in the usage syntax used below, [] indicates an optional field, | indicates a choice
between two or more values, and {} indicates a list of values.

1.3.1 ALTITUDE

Usage
(<name> ALTITUDE <storage>)

Internal Representation
Meters.

Description
An altitude. The user can specify distance in meters, kilometers, feet, miles, or nautical

miles.

1.3.2 ANGLE

Y T e —

_—

Chapter 1: Overview 5

Usage
(<name> ANGLE <storage> [<ccw bound> <cw bound>])
Internal Representation
Zero refers to North, and the value increases in a counter-clockwise direction. The
units are either:
e BAMs, if stored in an nteger type
e Radians, if stored in a floating point type
Description
An angle. User has choice of specifying in degrees, mils, or compass units. If specified,
the counter-clockwise bound (<ccw bound>) and clockwise bound (<cw bound>), which
should be an integer in degrees. arc represented on the display but not enforced.

1.3.3 CHOOSE_ ONE

Usage
(<name> CHOOSE_ONE <storage> SHOW|HIDE
-){ (<choice name> <choice value> [<color name>]) }

Internal Representation
Integer or floating point value of current choice.

Description
A choice of one item from a list of choices. The editable can be configured such that
all choices are presented (SHOW), or with only the current choice shown (HIDE). If a
color name is given, that color will be used for the background color of the choice (this
is used in the pre-defined macro EDT_OVERLAY_COLORS for a list of standard overlay
colors).

Note that it is possible to use CHOOSE_ONE to specify a choice from a number of libreader
symbols, 2s opposed to integer or floating-point values. To do this, the structure definition in the
program would be specified as:

struct foo

{

char *symbol;

and the structure definition in '} «shtitor definition file would be specified as:

6 LibEditor Programmer’s Guide

(struct
(symbol uint32)
)

Then, strings may be specified for <choice value>, (as well as in initialization section of the
editor definition file), as follows:

(editor

(;éymbol" CHOOSE_ONE aymbol HIDE
("Labelil" ‘"symbol-valuel")
("Label2" '"symbol-value2")

The CHOOSE_ONE editable type also will correctly handle the case where the target structure
type is an array of characters, and the value is a string:

(struct

&;émbol uint8 30)

)
(initial

(symbol CONSTANT "symbol-valuei')

1.3.4 CHOOSE_SOME

Usage

(<name> CHOOSE_SOME <value storage> <length storage> SHOW|HIDE
{ (<choice name> <choice value> [<color name>]) }

)
Internal Representation
Array of integer or floating point values which were selected, and the number of elements
of that array which are used.

Chapter 1: Overview

Description
A choice of several items from a list of choices. The editable can be configured such

that all choices are presented (SHOW), or with only the current choice shown (HIDE). If
a color name is given, that color will be used for the background color of the choice.
The values of all the selected values are placed in successive position in the <value
storage> array. The number of items chosen is placed in the <length storage>.

Note that CHOOSE_SOME can be used to choose values from a number of libreader symbols, as in
CHOOSE_ONE (see Section 1.3.3 [CHOOSE ONE], page 5).

1.3.5 DATE

Usage
(<name> DATE <storage>)

Internal Representation
Seconds since 1970 ("unix" time).

Description
A date. The user specifies the month, day, and year.

1.3.6 DRAW_AREA

Usage
(<name> DRAW_AREA <storage>)

Internal Representation
An X widget

Description
A drawing area widget is returned in the storage area.

1.3.7 DISTANCE

Usage
(<name> DISTANCE <storage>)

Internal Representation
Meters.

8 LibEditor Programmer’s Guide

Description
A distance. The user can specify distance in meters, kilometers, feet, miles, or nautical

miles. It can also be specified by dragging on the map.

1.3.8 FUEL

Usage
(<name> FUEL <storage> [<requisite>])
Internal Representation
Liters.

Description
A quantity of fuel. The user can specify liters, gallons, or pounds. If a requisite is

specified, the Fuel display will only appear if that structure member has a value.

1.3.9 LABEL

Usage
(<name> LABEL <storage>)
Internal Representation
A NULL-terminated string,.
Description
An output-only string. This provides a facility for editors to provide descriptive text
to the user.

1.3.10 LINE

Usage
(<name> LINE <value storage> <length storage>)

Internal Representation
Array of PointDescriptions.

Description
A multi-segment line. The user clicks out a line on the map, and can edit it in a variety
of ways. The points are placed in successive slots of the <value storage> array (which
must be declared type PointDescription). The number of points is placed in the
<length storage>.

Chapter 1: Overview

1.3.11 MUNITIONS

Usage
(<name> MUNITIONS <storage> [<requisite>])

Internal Representation
Array of MunitionQuantitiess.

Description
A list of munitions. The user may change the value associated with each munition,
but not the type. A U is entered for unlimited supplies. When a U is entered, the
internal representation becomes the negative of the current value. The last current value
becomes the amount of the munition, but the negative sig: ies it is never decremented.
The munitions are placed in successive slots of the <st. . age> array (which must be
declared type MunitionQuantity). Unused slots use the invalid munition code 0. If a
requisite is specified, the Munition display will only appear if that structure member
has a value.

1.3.12 OBJECT

Usage
(<name> OBJECT <storage> [ONESHOTINOCANCEL] [POINTSTYLE <style>]
{objectClass...})
Internal Representation
ObjectID.
" Description
A persistent object. The user may select any object on the map which is in one
of the specified classes. If no object is chosen, the value 0/0/0 will be stored. If
ONESHOT is specified, the value will be set back to 0/0/0 immediately after the render
function is called (this allows an editor to pick many objects, which the application
then keeps track of). If either ONESHOT or NOCANCEL is specified, no Cancel Choice
button will be provided. If POINTSTYLE is specified, then the next value should be the
type of point which is created by the system in response to a user map click (provided
objectClassPoint appears in the list of classes. The <storage> must be an array of
three int16s.

1.3.13 OVERLAY

Usage

10 LibEditor Programmer’s Guide

(<name> OVERLAY <storage>)

Internal Representation
ObjectID.

Description
An overlay. The user may sclect an existing overlay, or create a new one. Attributes
of the overlay may also be edited. If no overlays exist when the editor comes up, one
is created. The <storage> must be an array of three inti16s.

1.3.14 OVERLAY DISPLAY

Usage
(<name> OVERLAY_DISPLAY <value storage> <length storage> SHOW|HIDE)
Internal Representation
Array of ObjectIDs of overlays that are selected, and the number of elements of that
array which are used.
Description
A choice of several overlays sclected from a list of overlays. The editable can be config-
ured such that all choices are presented (SHOW), or with only the current choice shown
(HIDE). The objectIDs of all the selected overlays are placed in successive positions in
the <value storage> array. The <value storage> array must be declared as an array
of ObjectIDs. The number of items chosen is placed in <length storage>.

1.3.15 PLACE

Usage
(<name> PLACE <storage>)

Internal Representation
Two-dimensional TCC location (either two integer, or two floating point numbers).

Description
A place. The user may 1\ pe a location in X/Y, Latitude/Longitude, or UTM coordi-
nates, or may select a location on the map. The <storage> must be an array of at
least two eiements.

1.3.16 SCALE

Chapter 1: Overview 11

Usage
(<name> SCALE <storage> [SHOW|HIDE] [<min label> <max label>
[<min val> <max val> [<units>]]])

Internal Representation
Number.

Description
A number. The editable can be configured such that the current value is shown numer-
ically and graphically (SHOW), or only graphically (HIDE). The user can adjust the value
by moving an indicator, or (if SHOW) by typing a value (much like the ANGLE widget).
The minimum and maximum ends of the scale are labeled with the <min label> and
<max label> strings, if specified. The scale defaults to a range of 0.0 to 1.0, un-
less a different <min val> and <max val> are specified (these should be floating point
numbers). Finally, for scales configured to SHOW their value, if a string is specified for
<units> (such as "%" or "deg/sec"), this will be displayed to the right of the value.

1.3.17 SORT

Usage

(<name> SORT <value storage> <length storage> [<omit storage>]
{ (<choice name> <choice value>) }

)

Internal Representation
Array of integer or floating point values in sorted order, the number of elements of that
array which are used, and (optionally) the index of the first element which is to be
omitted.

Description
A sorted list. The user is presented with a list o- -hoi: 2s and may move them up or
down relative to one another. If an <omit storage. - provided, an omit line will be
presented which may be exploited by the user to indicate that some choices are to be
omitted (whatever that might mean to an application).

1.3.18 SPEED

Usage
(<name> SPEED <storage>)

Internal Representation
Meters/Second.

12 LibEditor Programmer’s Guide

Description
A speed. The user may specify a value in meters/second, km/hour, feet/second,

miles/hour, knots or mach.

1.3.19 STEALTH

Usage
(<name> STEALTH <storage>)

Internal Representation
Vehicle ID.

Description
A stealth or stealth preview. The user may select a stealth from the map. If no object

is chosen, the value 0 will be stored. The <storage> must be an int32.

1.3.20 STRING

Usage
(<name> STRING <value storage> <lines> [<length storage>])

Internal Representation
A NULL-terminated string.

Description
A string. The user may type up to the number of characters which will fit in the passed
<value storage> (which must be an array), leaving at least one element for NULL
termination. The <1ines> attribute indicates how many lines should be presented for
text entry (multi-line text windows are scrollable). If specified, the <1ength storage>
will be filled with the length of the string, including the NULL terminator.

1.3.21 TIME

Usage
(<name> TIME <storage>)

Internal Representation
Seconds.

Chapter 1: Overview 13

Description
An absolute or relative time. The user may specify a time with up to second resolution.

It is up to the application to decide whether to treat this time as a relative or absolute
quantity.

1.3.22 TOGGLE

Usage
(<name> TOGGLE <storage>)
Internal Representation
0or-1

Description
A True or False value. The user is given a toggle button which can be set on or off.

1.3.23 VECTOR

Usage
(<name> VECTOR <storage>)
Internal Representation

Two two-dimensional TCC locations (either four integers, or four floating point num-
bers).

Description
A map click-and-drag. The user clicks on the map for the first location and drags out
to the second location. This is provided to facilitate building tools which use such
gestures as their input.

1.3.24 VEHICLE

Usage
(<name> VEHICLE <storage>)

Internal Representation
Vehicle ID. If storage is an array of three int16s, the full 48 VehicleID will be stored,

otherwise the 32 bit hashed id will be used.

14 LibEditor Programmer’s Guide

Description
A vehicle. The user may select a vehicle from the map. If no object is chosen, the value

0 will be stored. The <storage> must be an int32.

1.4 Initialization Rules

Each field in the struct part of the editor must be initialized. For example:

(initial (foo CONSTANT 0)
(bar FORCE "You must provide a bar")

(baz REFERENCE bar)
)

The initialization method must be specified as one of the following:

CONSTANT (<storage> CONSTANT {<values>})
A constant value.

FUNCTION (<storage> FUNCTION <function>)
The system initializes the value by calling a function. The function names currently
recognized are:
current_date
Gets the current date. Only may be used with DATE editable.

current_time
Gets the current time. Only may be used with TIME editable.

FORCE (<storage> FORCE <help message>)
Forces the user to provide a value. The help message is displayed at the bottom of the
screen in a distracting manner.

REFERENCE

(<storage> REFERENCE <storage>)
References another storage location. If that storage location is initialized with FORCE,

the value will be copied after the user has give the referent value.

1.5 Rendering Information

The last part of an editor definition is the render list. It specifies the names of storage locations
which, when changed, should cause the object to be redrawn (the application provides a drawing
function to libeditor at create time). For example:

Chapter 1: Overview 15

(render foo bar)

In addition, the application may use the following reserved words in the render list:

APPLY

REVERT

EXPOSE

NOINIT

Indicates that an 'Apply’ button should be provided which the user can click on to
trigger a redraw.

Indicates that an 'Revert’ bution should be provided which the user can click on to
revert to initial values. and trigger a redraw.

Indicates that the application neecds to redraw when the map is refreshed or exposed
(this would be true of anything which drew directly on the map widget).

Indicates that the editor should only be initialized once. Thereafter, the editor will
resume with exactly the configuration it was left with when last exited. This is useful
for editors which always operate on a single set of data.

16

LibEditor Programmer’s Guide

Chapter 2: Usage 17

2 Usage

The software library ‘libeditor.a’ should be built and installed in the directory
‘/common/1ib/’. You will also need the header file ‘1ibeditor.h’ which should be installed in the
directory ‘/common/include/libinc/’. If these files are not installed, you need to do a ‘make’ in
the libeditor source directory. If these files are already built, you can skip the section on building

libeditor.

2.1 Building Libeditor

The libeditor source files are found in the directory ‘/common/libsrc/libeditor’. ‘RCS’ format
versions of the files can be found in ‘/nfs/common_src/libsrc/libediter’.

If the directory ‘common/libsrc/libeditor’ does not exist on your machine, you should use
the ‘genbuild’ command to update the common directory hierarchy.

To build and install the library, do the following:

cd common/libsrc/libeditor
co RCS/»,v
make install

This should compile the library ‘libeditor.a’ and install it and the header file ‘1ibeditor.h’
in the standard directories. If any errors occur during compilation, you may need to adjust the
source code or ‘Makefile’ for the platform on which you are compiling. libeditor should compile
without errors on the following platforms:

e Mips
o SGI Indigo
e Sun Sparc

2.2 Linking with Libeditor

Libeditor can be linked into an application program with the following link time flags: ‘1d
[source .o files] -L/common/1ib -leditor [many other ModSAF libraries]’. If your compiler
does not support ‘~L’ syntax, you can use the archive explicitly: ‘1d [source .o files] /common/lib/libedi

18 LibEditor Programmer’s Guide

Libeditor depends on libcallback, libcoordinates, libpo, libquad, libreader, libsafgui, libsensitive,
and libtactmap.

2.3 Examples

The test program, ‘test.c’, and its data file, ‘test.rdr’, give a complete example of how to
define editors. See those files for example usage.

Chapter 3: Functions 19

3 Functions

The following sections describe each function provided by libeditor, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 edt_init

void edt_init(directory, reader_flags)
char =*directory;
uint32 reader_.flags;

‘directory’
Specifies directory where configuration file can be found

‘reader_flags’
Specifies reader options (see section ‘reader.read’ in LibReader Programmer’s Manual)

edt_init initializes libeditor, causing it to read its data file (‘editor.rdr’) from the passed
directory. The return value is zero if the read succeeds, or one of the libreader return values
(READER_READ_ERROR, READER_FILE_NOT_FOUND) if it fails.

3.2 edtset_sensitive_class

void edt.set_sensitive_class(gui, type, class)

SGUI.PTR gui;
EDT_SENSITIVE_TYPE type;
SNSTVE_CLASS *class;

‘gui’ Specifies the GUI

‘type’ Specifies which sensitive class is being specified

‘class’ Specifies the class which reprasents that type for this GUI

edt_set_sensitive_class sets the class structure used by all editors to interact with a class
of senstitive objects. This class should be initialized by the caller with SNSTVE_INIT_CLASS (see
section ‘Class Definition’ in LibSensitive Programmer’s Manual).

20 LibEditor Programmer’s Guide

Since many dit. _.ent libraries define objects which editors are interested in, and since most of
those libraries will themselves depend on libeditor, it makes the most sense to have this information
set globally, from the top-down. In cases where no sensitive class information has been given for a
particular class, the editors will merely not support map interaction with those objects.

The type should be one of the following:

Terrain Classes
EDT_ROADS

Persistent object classes
(Note that user_data should point to ALLOCd ObjectID structure.)
EDT_POINT, EDT_LINE. EDT_SECTOR, EDT_TEXT, EDT_UNIT, EDT_TASK, EDT_TASKFRAME

Simulation classes
(Note that user_data should be vehicle ID)
EDT_VEHICLE, EDT_STEALTH

3.3 edt offer_default_ob ject

void edt.offer_default_object(gui, obj.id)
SGUI_PTR gui;
ObjectID *obj._id;

gui’ Specifies the GUI
" ‘obj_id’ Specifies the object ID

edt_offer_default_object offers a default object to the next editor which is resumed. This
object will be accepted if the editor is forcing the selection of an object, and the offered object is
of a type acceptable for the O0BJECT editable.

3.4 edt_create

EDT_EDITOR_PTR edt_create(definition, sizeof_structure,
render_fcn, render_arg,
ex1t_fcn, exit_arg, leave_mode,
gul, tactmap, tcc, map_erase._gc,
sensitive, refresh_event, db)

READER_UNION *definition;

Chapter 3: Functions 2

uint32 sizeof_structure;
EDT_RENDER_FUNCTION render._fcn;
ADDRESS render_arg;
EDT_EXIT.FUNCTION wexit_fcn;

ADDRESS exit_arg;

int32 leave_mode;
SGUI_PTR gui;

TACTMAP_PTR tactmap;
COORD_TCC_PTR tcc;

GC map_erase_gc;

SNSTVE_WINDOW_PTR sensitive;
CALLBACK_EVENT_PTR refresh_event;
PO_DATABASE *db;

‘definition’
Specifies the definition of the editor in libreader format

‘sizeof_structure’
Specifies the size of the data structure which is edited

‘render_fcn, render_arg’
Specifies a function (and argument) which is called to render the data being edited
(may be NULL)

‘exit.fcn, exit_arg’
Specifies a function (and argument) which is called when the editor is exited (mnay be
NULL)

‘leave_mode’
Specifies whether the current SGUI mode whould be exited when the editor is exited

‘gui’ Specifies the GUI
‘tactmap’ Specifies the tactical map
‘tec’ Specifies the mapping coordinate system
‘map_erase.gc’
Specifies the GC used to erase things from the map (provided by libtactmap)
‘sensitive’
Specifies the sensitive window

‘refresh_event’
Specifies the event which fires when the map is refreshed

‘dp’ Specifies the PO database

edt_create creates an editor. The design of the editor is specified in the passed definition. The
software ensures at create time that the data described in the definition file correlates with the
intended structure by comparing the sizes. The editor will load up with the initial values specified

22 LibEditor Programmer’s Guide

in the data file, but will remain unmanaged until started by edt_state. The leave_mode flag
indicates whether the editor should exit the passed mode when the user clicks 'done’ or "abort’.

The render function should be declared as follows:

void render(editor, transient, old_data, new_data, arg)
EDT_EDITOR_PTR editor;

int32 transient;
ADDRESS old_data;
ADDRESS new_data;
ADDRESS arg;

The transient flag indicates whether the rendering is the result of a transient operation (such
as draging the mouse). Libeditor guarantees that after a transient operation is finished, render will
be called once more with the transiaent flag set to FALSE..

The old_data and new_data are old and new versions of the data being editing. The old version
should be used to erase the existing rendition, and the new version should be used to draw.

The arg is whatever was passed to edt_create as the render.arg.
The exit function should be declared as follows:

void exit_function(editor, data, arg, status)
EDT_EDITOR_PTR editor;
ADDRESS data;
ADDRESS arg;
EDT_EXIT_STATUS status;

The data is the final version of the data which was edited. If the user clicked *Abort’, this will
be the same as the initial version.

The arg is whatever was passed to edt_create as the exit_arg.
The status is one of the following:

EDT_DONE The user clicked 'Done’ or the user clicked on the arrow icon and no forced choices were
outstanding.

EDT_ABORT
The user clicked 'Abort’ or the user clicked on the arrow icon and forced choices were

Chapter 3: Functions 23

outstanding.

3.5 edt_create_defaults_editor

EDT_EDITOR_PTR edt_create_defaults_editor(gui, exit_fcn, exit_arg)

SGUI_PTR gui;

EDT_EXIT_FUNCTION exit_fcn;

ADDRESS exit_arg;
‘gui’ Specifies the GUI

‘exit.fecn, exit_arg’
Specifies the function to call at exit

edt_create_defaults_editor creates the libeditor user preferences (defaults) editor. This
editor allows customization of default units for many editable types.

3.6 edt.create_profile_menu

void edt_create_profile_menu(gui, dialog_parent, dir)
SGUI_PTR gui;
Widget dialog._parent;
char dir(];

‘gui’ Specifies the GUI
‘dialog._parent’

Specifies the widget which should parent libxfile dialogs
‘dir’ Specifies the directory where profiles are stored

edt_create_profile_menu create the user profile menu, which allows the user to save/load the
contents of the user preferences (defaults) editor.

3.7 edt_load

void edt_load(editor, data, size)
EDT_EDITOR_PTR editor;

24 LibEditor Programmer’s Guide

ADDRESS data;
uint32 size;

‘editor’ Specifies the editor
‘data’ Specifies the data

‘size’ Specifies the size of the data

edt_load loads the passed data into the editor. If you pass NULL for the data, it reloads the
editor with the initial values.

3.8 edt.load._reader

void edt_load_reader(editor, count, data)
EDT_EDITOR_PTR editor;
int32 count;
READER_UNION =data;

‘editor’ Specifies the editor

‘count’ Specifies the number of initialization parameters (typically
read_data.array[0].integer - 2)

‘data’ Specifies the initialization parameters (typically &read_data.array[2])

edt_load_reader loads the passed libreader format data into the editor for subsequent initial-
ization. This initialization overrides the initialization parameters originally given the editor. Fields
which are not specified retain their original initialization methods and values.

3.9 edtset_field

void edt_set_field(editor, member_offset, addr, size)
EDT_EDITOR_PTR editor;

uint32 member_offset;
ADDRESS addr;
uint32 size;

‘editor’ Specifies the editor

‘member_offset’
Specifies the byte-offset of the field which is to be changed

Chapter 3: Functions 25

‘addr’ Specifies the address of the new value

‘size’ Specifies the size of the new value

edt_set_field !nitializes a single field of a running editor. as though the user had specified
that field. The format of the provided value must the be same as the storage format of that field

in the edited data structure.

3.10 edt_apply-offset

void edt_apply_offset(editor, member_offset, index, dx, dy)
ED1_EDITOR_PTR editor;

uint32 member_offset;
int32 index;
int32 dx, dy:

‘editor’ Specifies the editor

‘member_offset’
Specifies the byte-offset of the field which is to be changed

‘index’ If changing a line, specifies the index of the point to be changed

‘dx, dy’ Specifies the amount of change (in pixels)

edt_apply_offset incorporates the user’s initial drag into the currently edited graphic, as
though the drag had occurred in the context of the editor. The member_offset identifies which
member of the structure the offset should be applied to (if not a PLACE or LINE editable, nothing
will happen). The index field specifies (for LINEs only) which vertex should be offset; -1 indicates

movement of the whole object.

3.11 edt_state

void edt_state(editor, mode, state)
EDT_EDITOR_PTR editor;
SGUI_MODE_PTR mode;
SGUI_MODE_STATE state;

‘editor’ Specifies the editor

‘mode’ Specifies the mode a~vociated with the state (used for display of help messages)

——

26 LibEditor Programmer’s Guide

‘state’ Specifies the new state

edt_state sets the state of an editor to one of the libSAFGUI states (ACTIVE, SUSPENDED.
RESUMED, INACTIVE).

See section ‘sgui.add_mode’ in LibSAFGUI Programmer’s Manual.

3.12 edt_query

int32 edt._query(editor, value)
EST_EDITOR_PTR editor;
ADDRESS value;

‘editor’ Specifies the editor
‘value’ Returns the editor values

edt_query gets the current values of the object being edited. The return value is 1 if any forced
choices are still unresolved, 0 otherwise. This may be called when the editor is inactive.

3.13 edt_name

char »edt_name(editor)
EDT_EDITOR_PTR editor;

‘editor’ Specifies the editor

edt_name returns the name of the editor.

3.14 edt_get._references

void edt_get_references(editor, data, refcount, references)
EDT_EDITOR_PTR editor;
ADDRESS data;
uint8 srefcount;
ObjectID references(];

Chapter 3: Functions 27

‘editor’ Specifies the editor
‘data’ Specifies the data which contains the references

‘refcount’
Returns the number of ObjectID references made by the editor

‘references’
Returns the ObjectID value for each reference made in the passed data

~ edt_get_references finds all the ObjectID’s referenced in the passed data structure and copies
them into the passed array. This can be used to fill in the references list in a2 Task Class object.

3.15 edt_format

uint32 edt_format(gui, output, format, args...)
ADDRESS gui;
char output(];
char format(];
args...

‘gui’ Specifies the GUI (declared as an ADDRESS so libraries needn’t specifically depend
upon libSAFGUT)

‘output’ Returns the formatted string

‘format’ Specifies the output format

‘args...’ Specifies format arguments

edt_format is like sprintf, in that it generates a formatted output based upon a format string,
and a set of arguments. Whereas sprintf uses % to specify output tokens, edt_format uses #.
Values are output in a manner appropriate given the user’s GUI preferences (UTMs vs Lat/Long,
for example). The return value is the length of the formatted string. The recognized tokens are as
follows:

Altitude
Token ¢h
Argument float64
Units Meters
Example 28000 feet"
Angle

Token E 1Y

28

Distance

Fuel

Location

Object

Speed

Vehicle

Argument
Units

Example

Type
Argument
Units

Example

Type
Argument
Units
Example

Type
Argument
Units
Example

Type
Argument
Example

Type
Argument

Units
Example

Type
Argument
Example

float64
Radians
"35 degrees"

#d

float64
Meters
150 feet"

*f

float64
Liters
#2000 1bs"

#1

COORD_TCC_PTR float64 float64

Meters (X, Y)

"16SES45005500"

#o

PO_DATABASE * ObjectID #
“Task Frame ‘Fly On Route’"

s
float64

Meters/Second

“mach 1.1"

#v
VehiclelD =
“A11 (15)"

LibEditor Programmer’s Guide

Also, the following tokens are provided to avoid the need to use both edt_format and sprintf:

Float

Chapter 3: Functions 29

Token G
Argument float64

Same as g

Integer
Token #D
Argument int32
Same as Yd
String

Token #S
Argument char *

Same as Ys

3.16 edt_pvd._defaults

void edt_pvd._defaults(gui, result)
SGUI_PTR gui;
EDT_PVD_DEFAULTS *result;

¢

gui’ Specifies the GUI
‘result’ Returns the settings

edt_pvd.defaults returns user preferences (defaults) editor choices related to PVD operation.

3.17 edt_color_choice

void edt.color_choice(editor, pretty_name, value, color)
EDT_EDITOR_PTR editor;

char spretty_name;
int32 value;
Pixel color;

‘editor’ Specifies the editor

‘pretty_name’
Specifies a libreader symbol, which identifies the editable

‘value’ Specifies the value associated with the choice to be colored

30 LibEditor Programmer’s Guide

‘color’ Specifies the desired color.

edt._color_choice sets the foreground color of a button in a CHOOSE_ONE or CHOOSE_SOME
editable. The pretty_name should be a librcader symbol which corresponds to the name of the
editable in the editor section of the definition file (see Section 1.3 [Editor Definition], page 4).

3.18 edt_editor_empty

int32 edt_editor_empty(editor)
EDT_EDITOR_PTR editor;

‘editor’ Specifies the editor

edt_editor_empty returns TRUE it the editor has no editables.

Chapter 4: Events 31

4 Events

The following sections describe each event provided by libeditor.

4.1 edt_defaults_callback
CALLBACK_EVENT_PTR edt_defaults_callback;

The edt_defaults_callback event fires in response to the user changing the settings of the
defaults editor.

The handler should be prototyped as follows:

void handler(gui)
SGUI_PTR gui;

See Section 3.16 [edt'pvd'defaults), page 29.

32

LibEditor Programmer’s Guide

Chapter 5: X Resource Definitions 33

5 X Resource Definitions

Many attributes of the fields which make up an editor are specified via the X resource database.
These can be overridden for individual fields in individual editors, to customize the interface beyond
its default appearance.

In general, a resource override should be formatted as follows:

* .SAFGUI.».Editor.*. Editor Name.*.Field Name.*.[Component Name]. Attribute: Value

For example, to change the label on the ob ject button for the unit field in the mission assignment
editor:

.SAFGUI..Editor.*.Mission Assignment.*.Unit.*.0ObjectButton. labelString: \
Select Unit from Map

To change the help string associated with this editable:

% .SAFGUI.*.Editor.*.Mission Assignment.*.Unit.*.Help: \
Select a unit from the map (valid choices are hot).

As these examples show, the component name of the field is only needed when the resource
would otherwise be ambiguous (it is needed for the first example because both the ObjectButton
and the Cancel Choice members have a 1abelString attribute).

LibEditor Programmer’s Guide

Chapter 6: Defining New Types 35

6 Defining New Types

One design goal of libEditor is that the user is never confronted with raw data types (such as
"a number"). It is much better if the input is requested in a way specifically designed for the
parameter being specified (such as "a spced"). It seems likely that as the program expands, we
will find continue to find more types of quantities that can be edited. This chapter give step by
step instructions for adding a new type.

Note that it if you choose to use a built-in Motif widget class (such as xmToggleButtonWid-
getClass), you must call the function edt_focus_fix on the created widget. This is to correct a
problem with Motif focus management (clicking in a widget which already has the focus pushes the
focus into an adjacent widget). Custom widgets (such as the edt_dateWidgetClass) do not need
this function called on them at create time, because they explicitly prevent the problem in their
implementation using a construct like:

if (!_XmFocusIsHere((Widget)w))
XmProcessTraversal ((Widget)w, XmTRAVERSE_CURRENT);

in their focus-accepting methods.

The procedure described is relatively simple, since it does not require map input, a unique input
widget (it is assembled from text & toggles), or any special map display methods. To create a
widget with these features, first follow the instructions below, then find another editable (such as
PLACE or ANGLE) to use as an example for the other features.

1. Name the type. Choose a name which is short and descriptive.

2. Add the necessary types and prototypes to ‘1ibedt_local.h’. Each widget type has its own
section in this file, add the new one just before the comment:

/* ADD NEW TYPES HERE s/
3. Define any necessary enumerated types and prototype the create and set_value functions.
4. If the editable supports different units, add them to the EDT_DEFAULTS data structure.

5. Add the name of the new type to the EDT_.CLASS enumerated type (put it in alphabetical
order).

6. If the editable will support anv special configuration parameters (display options, etc.), create
a EDT_<class>_CONFIG structure to hold them, just prior to the comment:

/* ADD NEW CONFIGS HERE e/
Then add that to the config t:iember of the EDT_EDITABLE structure.

36

10.

11.

12

13.

14,

15.

16.

17.
18.

LibEditor Programmer’s Guide

Update the file ‘editor.rdr’ to include the new units. Be sure to add the new field to the
struct, editor, initial and render lists.
Update the functions save_profile and load_profile in ‘edt_profile.c’ to include the
new units.
Next, add co”e to ‘edt_init.c’ to recognize and create the new type. Find the comment:

/* ADD NEW SYMBOLS HERE =/

and add a variable to the list (in alphabetical order) for the new type. Add the initialization
for that type, just below. Finally, add the new type to the if-else-if chain a little farther

down.
If the editable requires a certain type of storage (must be an integer, for example), add a check
for that before the comment:

/* ADD NEW CHECKS HERE =»/
If the editable supports special configuration, add the necessary parsing before the comment:
/* ADD NEW CONFIG PARSING HERE =/

Add a case to the switch in the function create_widget to create the new widget type. Put
it in alphabetical order.

Next, add code to ‘edt_state.c’ to initialize the new type. Find the comment:

/* ADD NEW INITIALIZATION HERE #/
and add a case to the switch to initialize the new type. Note that at this point the values have
already been converted into every necessary format, so just use the one which is appropriate
for the new editable.
Create a file in which to define the new widget ‘edt_<type>.c’. This is fairly easy if you start
with a similar widget definition file as a prototype, and use case-insenstive string replace to
customize it.
Add necessary resources for this new widget to ‘editor.xrdb’. This should include a help
string, and probably some layout information (again, find a similar widget and copy it).
Add a description of the new editable type to the Editor Definition section of
‘libeditor.texinfo’.
Add the new file to the ‘Makefile’.

Test the new editable by adding it to the test editor defined in ‘test.rdr’ and ‘test.c’.

LibEntity

ADST-TR-W003268

Table of Contents

1

2

3

O VeI VIO W oo e 1

Examopleso 3

FUNCEI OIS it e 5
B 3 T Y A 5 1 1 2 P 5
3.2 entset_minimum pbt_error............coiiiiiiiiiiniiiieenniinnnnn.s. 5
3.3 entget.minimum._pbterror..................iiiiiiiiiiiiiii e 6
3.4 entsetbattlescheme.................... i, 6
3.5 emtclass imit e 7
F.6 entCTeate i e e et 7
R I R 19 {3 8
3.8 emttick. ... e 8
3.9 entpacketreceived iiiiii 9
3.10 entsetexerciseddttt e 9
311 emtactivate... ...t s 10
3.12 entdeactivate......... ...t 10
313 entactive...... ... e, 11
3.14 entclearthreshstats............o, 11
3.15 ent_print_threshstatscooiiiiiiiiiiineiinnnnnn... 11
3.16 ent.convertldocationtodis..............oiiiiiiiiiii 11
3.17 ent.convert_velocity_to.disoiiiiiiiii i, 12
3.18 ent_convertlocationfrom.dis...................ooiiiiiiiiiiii..L, 12
3.19 entconvert_velocityfrom.dis......................cooiiiiiiiaal. 13
3.20 entformatldocation................oiiiiiiiiiiiiiii s, 14
3.21 entset.vehicleclass........................o i, 14
3.22 entsetforceddooiiiiiiiii e 14
323 entset guiBes.......... ...l 15
3.24 entsetamarking.............. ... 15
3.25 entset poBition.................ooiiiiiiii 16
3.26 entset.rOtation.................oviiiiiiiiii e 16
3.27 entsetorientation............ ..ottt e 17
3.28 entset appeaAranCe..............ccuuiiieiiniiiiieeiiiiii .. 17
3.29 entset.appearance.bits................ciiiiiiiiiiiiiiiii 18
3.30 ent.unset.appearance.bits................c.ciiiiiiiiiiiiiiiiine, 18
3.31 entsetcapabilities....................coeiiiiiiiii 19
3.32 entset.enginespeed....................ciiiiiiiiiiiiiiie 19

ii LibEntity Programmer’s Guide

333 entsetovelocity 20

3.34 entsetarticovalue.... ... 20

3.35 entset Artic rate........ ... it e 21

3.36 ent.get.exercisedd............. ... 21

3.37 entget_vehicleclass.......................l 21

3.38 entgetdorcedd 22

339 ent get gUIiSeS............iiiiiiiii 22
340 ent.get gUiSe............... il 23

3.41 ent.getmarking..................ii 23
342 ent.get position.................ooiiii 24
343 entgetrotation i 24
3.44 entgetoorientation.............. ...l 24
3.45 entgetdirection..................i 25

3.46 ent get APPeATADCE.........uvuiurniiinnrrntaierrtniiiieaaenaaannns. 26
3.47 ent.get_capabilities................. ... 26
3.48 entgetenginespeed ...l 27
3.49 entgetovelocity...........ooooiiiiiiiii 27
3.50 entgetspeedsquared.................coiiiiiiiiiiiiiiiiiiiii e 27
351 entgetspeed..........c..iiiiiiiiiiiii i e 28
3.52 entgetstationary................iiiiiiiiiii 28
3.53 entgetarticeuler.................. i 29
3.54 ent.getarticeulerrate...................oiiiiiiiiiiiiii i 29
3.55 entgetarticpivot........ i 30
3.56 ent_get.artic_position............... .. ool 31
3.57 entgetarticrotation.................ciiiiiiii i 31
3.58 ent_get.turretarticulation..................... ...l 32
3.59 entgetrotationsp.............oiiiiiiiiiiiiiii e 32
360 entgetvelocity Sp........coovuiiiiiiiiiii e 33
3.61 entgetphysdb............c.. 33
3.62 entgetaltitudeagl.....................oiiiiiii 34
363 entgetdis guises................ccoiiiiiiiiiiiiii i 34
364 entgetdisdocation..................iiiiiiiiiiiiii i 34
3.65 entgetdis_velocity........... ... 35
3.66 entgetdisorientationiiiiiiiiiiiiiiiiiiii 35
3.67 entget.disappearance.................ciiiiiiiiiiiiiiiii, 36
3.68 entget.discapabilities....................ccooiiiiiiiiiii 36

4 Access KeysB ... e 37

Chapter 1: Overview 1

1 Overview

Libentity provides a uniform interface to all network entities represented within SAF. Entity is
a sub-class of each vehicle.

In addition to the bookkeeping functions to create, destroy, activate, etc., libentity provides a
collection of get and set functions for each of the entity state variables. This functions act as a lazy
evaluation buffer, which prevents conversions to or from network representation until absolutely
necessary, and then saves those converted values until they once again become out of date.

Note that libentity currently only supports getting DIS style data from an entity. In the future,
libentity may be modified to accept the setting of DIS style data for local vehicles, causing SIMNET
style data to be derived from the DIS data.

The entity sub-class of the vehicle is also responsible for maintaining that vehicle’s location in
the position-based table. For local vehicles, this update occurs whenever the position is changed.
For remotes, this update occurs either (1) when a packet is received which modifies the remote
vehicle’s position, or (2) when the RVA’d position of the vehicle exceeds a tolerable error threshold
from the position represented in the table.

Lazy evaluation of remote vehicle RVA is implemented to guarantee the following:

o Each remote vehicle is RVA’d no more often than once every full loop through the scheduler.

o Remotes are not RVA’d unless get_position is explicitly called, or RVA is necessary to update
the position-based vehicle table.

The parameters for an entity are used primarily for network interactions. They are as follows:

(SM_Entity (length_threshold <real percent>)
(width_threshold <real percent>)
(height_threshold <real percent>)
(rotation_threshold <real degrees>)
(turret_threshold <real azimuth degrees>)
(gun_threshold <real elevation degrees>)
(vehicle_class <int class>)
(guises <int primary guise> ;; What this thing really is
<int secondary guise> ;; A similary tbing with an
i: opposite country code
(send_dis_deactivate <true | false>)
)

2 LibEntity Programmer’s Guide

The thresholds are used for dead reckoning, to indicate when a packet should be transmitted.
They are typically 10% and 3 degrees. The vehicle_class should be either vehicleClassSimple
or vehicleClassTank, depending upon whether the vehicle has a turret. Two guises must be pro-
vided - the primary guise, which should be accurate; and the secondary guise which should be a simi-
lar vehicle with a different country code (used in relative battle scheme battles). send_dis_deactivate
is a boolean value indicating whether or not the entity should send a DIS_DEACTIVATE_REQUEST
pdu when the entity deactivates (under DIS). This will typcially be true for all vehicles except
missiles, since missile impacts provide an implicit deactivate under DIS.

Chapter 2: Examples

2 Examples

To set an entity’s position:

#include <libentity.h>

floaté4 pos;

ent_set_position(vehicle.id, pos);
To get an entity’s position:

#include <libentity.h>

float64 pos;
ent_get_position(vehicle.id, pos);

To get an entity’s position and velocity via libaccess:

#include <libaccess.h>

#include <libentity.h> /* To get key prototype */
#include <stdext.h> /+ To get A_END */

float64 pos[3];
float64 vel[3];

access_get(vehicle_id,
ent_position, pos,
ent_velocity, vel,
A_END);

LibEntity Programmer’s Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libentity, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 ent.nit

void ent_init(packet_valve, tcc, protocol, use_atlas_variations)
PV_VALVE_PTR packet_valve;
COORD_TCC_PTR tcc;
int32 protocol;
int32 use_atlas_variations;

‘packet_valve’
Specifies the packet_valve to usc when sending packets.

‘tec’ Specifies the terrain coordinate system

‘protocol’
Specifies protocol in use (0 for SIMNET, DIS_PROTOCOL_VERSION_=* for DIS)

‘use_atlas_variations’
Specifies whether to use the Atlas Elektronik protocol variations when communicating
with a DIS protocol. This impacts conversions of locations and velocities.

ent_init initializes libentity. Call this before calling any other libentity functions. The
packet_valve is created with a call to pv_create_valve.

3.2 entset_minimum_pbt_error

void ent.set_minimum_pbt_error(error_threshold)
float64 error_threshold;

‘error._threshold’
Specifies the maximum error allowed between a vehicle’s actual location and that used

in the position-based table.

ent_set_minimum_pbt_error reduces the allowable error (in meters) in the position-based table.
Only those remote vehicles which exceed this error will be RVA’d and updated in the position based

6 LibEntity Programmer’s Guide

table. Calls which pass larger values than the current threshold are ignored. Until this error value
is set, no RVA will be done on behalf of the position-based table (RVA will be done, however, for
those vehicles which have their position queried).

3.3 ent_get_minimum_pbt_error

float64 ent_get_minimum_pbt_error()

ent_get_minimum_pbt_error returns the current error threshold being maintained by libentity
for the position-based table.

See (undefined) [ent'set’'minimum’pbt'error}, page (undefined).

3.4 ent_set_battle_scheme

void ent_set_battle_scheme(battle_schema)
uint8 battle_scheme;

‘battle_scheme’
Specifies the new battle scheme (battleSchemeRelative or battleSchemeAbsolute).

ent_set_battle_scheme sets the battle scheme used to generate vehicle guises for local vehicles.
The PARAMETRIC_DATA used by an entity specifies two guises which are used to describe the vehicle,
one which actually represents the vehicle, and a similar one on the other side. For example, a
T72-M tank might be defined with the guises:
(guises vehicle_USSR.T72M vehicle_US_M1)

OI‘.

(guises vehicle_USSR_T72M vehicle_Germany_LE02)

The relationship cf this data to what goes out on the network is a function of both the global
battle scheme and the force of the given vehicle. The rules are as follows:

o For relative battle scheme, if the force is:

Chapter 3: Functions 7

distinguished, other
The guises are used just as they appear in the PARAMETRIC_DATA.

observer A US or German object type is selected for both guises.
target A USSR object type is selected for both guises.
o For absolute battle scheme, if the force is:

distinguished, other
The first guise listed in the PARAMETRIC_DATA is used for both guises.

observer A US or German object type is selected for the distinguished guise, and a USSR
object type is selected for the other.

target A USSR object type is selected for the distinguished guise, and a US or German
object type is selected for the other.

3.5 ent.class_init

void ent_class_init(parent._class)
CLASS_PTR parent_class;

‘parent_class’
Specifies the parent class of entity (probably safobj.class).

ent_class_init creates a handle for attaching Entity class information to vehicles. The
parent_class is one created with class_declare.class.

3.6 ent_create

void ent_create(vehicle_id, parms, deactivate.fcn)

int32 vehicle_id;

ENTITY_PARAMETRIC_DATA *parms;

void (*deactivate_fcn) (/* int32 vehicle_id */);
‘vehicle_id’

Specifies the vehicle_id of the vehicle to be created.
‘parms’ Specifies parametric data for the entity.

‘deactivate.fcn’
Specifies the function to call if the remote vehicle is deactivated.

8 LibEntity Programmer’s Guide

ent_create creates the Entity class information for a vehicle and attaches it to the vehicle’s
libclass user data. All vehicle start inactive. Local vehicles become active (start broadcasting
appearance packets) when ent_activate is called. Remote vehicles become active when their first
appearance packet is received. The argument ‘parms’ is only necessary for local vehicles. You may
pass NULL for this argument for remotes.

The deactivatefcn is called when remote vehicles receive a deactivate request packet. It is up
to the creator of the instance to act on the deactivate.

Libentity keeps a five minute history of vehicles which it has deactivated (for whatever reason).
When ent_create is called with a vehicle_id which corresponds to a vehicle in this history, the
new vehicle is automatically initialized with the values from the previous incarnation. The position
is RVA’d forward to where the vehicle would be at the current time, had it not ceased to exist. This
functionality is provided to simplify simulation handoff. In other cases, the caller would normally
set all the fields of the entity appearance to override these default values.

This can be called for Any vehicle.

3.7 ent_destroy

void ent_destroy(vehicle_id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID.

ent_destroy frees the Entity class information for a vehicle. For local active vehicles, a deac-
tivate will automatically be sent.

This can be called for Any vehicle.

3.8 ent_tick

void ent_tick(vehicle_id)
int32 vehicle.id;

Chapter 3: Functions 9

‘vehicle.id’
Specifies the vehicle ID.

ent_tick for remotes, manages timeouts and RVA. For locals, sends current appearance of
vehicle on network if warranted by RVA thresholding. This should be called no more often than
once per 67ms.

This can be called for Any vehicle.

3.9 ent_packet_received

void ent_packet_received(vehicle_id, packet)
int32 vehicle_id;
PV_PACKET *packet;

‘vehicle_id’
Specifies the vehicle ID.

‘packet’ Pointer to the packet received.

ent_packet_received calls this function when a new appearance packet or a deactivate packet
is received off the network. The packet must be allocated using pv_buffer_allocate.

Receipt of an appearance packet will cause the update of the position-based table component
of the vehicle.

This can be called for Remote vehicles only.

3.10 ent_set_exercise._id

void ent_set_exercise_id(vehicle_id, exercise_id)
int32 vehicle_id;
uint8 exercise_id;

‘vehicle_id’
Specifies the vehicle ID.

10 LibEntity Programmer’s Guide

‘exercise_id’
Specifies the exercise ID.

ent_set_exercise_id sets the exercise_id field of the entity. This may be called more than
once (to change exercises, for example).

This can be called for Local vehicles only.

3.11 ent_activate

void ent_activate(vehicle_id)
int32 vehicle_id;

‘vehicle.id’
Specifies the vehicle ID.

ent_activate allows appearance packets to be sent on the network for this vehicle.

This can be called for Local vehicles only.

3.12 ent_deactivate

void ent_deactivate(vehicle_id, reason)
int32 vehicle_id;
DeactivateReason reason;

‘vehicle_id’
Specifies the vehicle ID.

ent._deactivate prohibits transmission of appearance packets for this vehicle. It will send a
deactivate packet if the vehicle is not already inactive. The sent deactivate packet will be marked
with the supplied DeactivateReason.

This can be called for Local vehicles only.

Chapter 3: Functions 11

3.13 ent_active

int32 ent_active(vehicle.id)
int32 vehicle_id;

‘vehicle.id’
Specifies the vehicle ID.

ent_active returns whether the vehicle is currently active (see (undefined) [ent’activate], page (un-
defined)).

This can be called for Any vehicle.

3.14 ent_clear_thresh_stats
void ent_clear_thresh_stats()
ent_clear_thresh_stats resets all thresholding statistics to zero.

See (undefined) [ent print’thresh’stats], page (undefined).

3.15 ent_print_thresh_stats
void ent_print_thresh_stats()

ent_print_thresh_stats prints RVA thresholding statistics.

3.16 ent.convert.location_to._dis

void ent_convert_location_to_dis(vehicle_id, internal_location, dis_location)
int32 vehicle_id;
float64 *internal_location;
float64 *dis_location;

12 LibEntity Programmer’s Guide

‘vehicle_id’
Specifies the vehicle ID (or 0 if none available)

‘internal_location’
Specifies a location in the internal format (TCC)

‘dis_location’
Returns the same location in the DIS format (GCC or Atlas, depending upon how

libentity was initialized)

ent_convert_location_to_dis converts the passed location from internal to the DIS format.
This is provided as a convenience so libraries do not all have to hold on to the TCC.

3.17 ent_convert_velocity_to_dis

void ent_convert_velocity_to._dis(vehicle.id, internal_velocity,
internal_location, dis_velocity)

int32 vehicle_id;
float64 sinternal_velocity;
float64 sinternal_location;

float32 *dis_velocity;

‘vehicle_id’
Specifies the vehicle ID

‘internal_velocity’
Specifies a velocity in the internal format (TCC)

‘internal_location’
Specifies a location in the internal format (TCC) (pass a NULL pointer if none is

known)

‘dis_velocity’
Returns the same velocity in the DIS format (GCC or Atlas, depending upon how

libentity was initialized)

ent_convert.velocity.to_dis converts the passed velocity from internal to the DIS format.
This is provided as a convenience so libraries do not all have to hold on the transformation matrices.
NOTE: the dis_velocity is returned as float32 #, since that is how it is stored in DIS packets.

3.18 ent_convert_location_from_dis

Chapter 3: Functions 13

void ent_convert_location_from_dis(vehicle_id,
dis_location, internal_location)

int32 vehicle_id;

float64 *dis_location;

float64 sinternal_location;
‘vehicle_id’

Specifies the vehicle ID (or 0 if none available)

‘dis_location’
Specifies a location in the DIS format (GCC or Atlas, depending upon how libentity

was initialized)
‘internal_location’
Returns the same location in the internal format (TCC)

ent.convert.location_from_dis converts the passed location from DIS to the internal format.
This is provided as a convenience so libraries do not all have to hold on to the TCC.

3.19 ent._convert_velocity_from _dis

void ent_convert_velocity.from.dis(vehicle_id, dis_velocity,
internal_velocity, internal_location)

int32 vehicle_id;
float32 »dis_velocity;
float64 =internal_velocity;
float64 sinternal_location;
‘vehicle_id’
Specifies the vehicle ID
‘dis_velocity’
Specifies a velocity in the DIS format (GCC or Atlas, depending upon how libentity
was initialized)
‘internal_velocity’
Returns the same velocity in the internal format (TCC)
‘internal_location’
Specifies a location in the internal format (TCC) (pass a NULL pointer if none known)

ent_convert_velocity_from_dis couverts the passed velocity from DIS to the internal format.
This is provided as a convenience ~os libraries do not all have to hold on the transformation matrices.
NOTE: the dis_velocity is pia~~esi 45 £10at32 o, since thal is how it is stored in DIS packets.

14 LibEntity Programmer’s Guide

3.20 ent_format.ocation

char sent_format_location(vehicle.id, x, y)
int32 vehicle.id;
float64 x, y;

‘vehicle_id’
Specifies the vehicle ID.

‘x, ¥’ Specifies the location

ent_format_location converts the passed location to a character string suitable for transmis-
sion in a radio message. Currently this will be as a UTM string, but in the future the output

format may become a parameter of the entity.

3.21 ent_set_vehicle_class

void ent.set_vehicle_class(vehicle_id, vehicle_class)
int32 vehicle_id;
VehicleClass vehicle_class;

‘vehicle_id’
Specifies the vehicle ID.

‘vehicle_class’
Specifies the new class (Static, Simple, Tank).

ent_set_vehicle_class is used to set the vehicleclass attribute of vehicle appearance. This
attribute is not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.22 ent_set_force.d

void ent_set_force_id(vehicle_id, force.id)
int32 vehicle.id;
ForceID force.id;

Chapter 3: Functions 15

‘vehicle_id’
Specifies the vehicle ID.

‘force._id’
Specifies the new force (distinguished, other, observer, target).

ent_set_force_id is used to set the force_id attribvte of vehicle appearance. This attribute is
not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.23 ent_set_guises

void ent_set_guises(vehicle_id, guises)
int32 vehicle_id;
VehicleGuises *guises;

‘vehicle_id’
Specifies the vehicle ID.

‘guises’ Specifies the new guises.

ent_set_guises is used to set the guises attribute of vehicle appearance. This attribute is not
translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.24 entset_marking

void ent_set_marking(vehicle_id, marking)
int32 vehicle_id;
VehicleMarking *marking;

‘vehicle._id’
Specifies the vehicle ID.

‘marking’ Specifies the new marking.

16 LibEntity Programmer’s Guide

ent_set_marking is used to set the marking attribute of vehicle appearance. This attribute is
not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.25 ent_set_position

void ent_set_position(vehicle_id, position)
int32 vehicle.id;
float64 position([3];

‘vehicle_id’
Specifies the vehicle ID.

‘position’
Specifies the new position.

ent_set_position is used to set the position attribute of vehicle appearance. This attribute is
not translated to network representations until absolutely necessary.

This function also updates the position-based table component of the local vehicle.

This can be called for Local vehicles only.

3.26 ent_set_rotation

void ent_set_rotation(vehicle_id, rotation)
int32 vehicle_id;
float64 rotation[3][3]:

‘vehicle_id’
Specifies the vehicle ID.

‘rotation’
Specifies the new rotation.

ent_set_rotation is used to set the rotation attribute of vehicle appearance. This attribute is
not translated to network representations until absolutely necessary.

Chapter 3: Functions 17

This can be called for Local vehicles only.

3.27 ent_set_orientation

void ent_set_orientation(vehicle_id, rotation, heading, pitch, roll)
int32 vehicle.id;
float64 rotation[3][3];
float64 heading, pitch, roll;

‘vehicle._id’
Specifies the vehicle ID.

‘rotation’
Specifies the new rotation.

‘heading’
‘pitch’
‘roll’ Specifies the new orientation.

ent_set_orientation is used to set rotation and orientation attributes of vehicle appearance.
This attribute is not translated to network representations until absolutely necessary.

It is assumed that the passed orientation angles and rotation matrix are equivalent. Note that
although the rotation could be computed from the angles, or vice-versa, it is assumed that the caller
has a good chance of knowing some sin, cos, atan, etc. which we would rather not recompute.

This can be called for Local vehicles only.

3.28 ent_set_appearance

void ent_set_appearance(vehicle.id, appearance)
int32 wvehicle_id;
uint32 appearance;

‘vehicle_id’
Specifies the vehicle ID.

‘appearance’
Specifies the new appearance bits.

18 LibEntity Programmer’'s Guide

ent_set_appearance is used to set appearance attribute of vehicle appearance. This attribute
is not translated to network representations until absolutely necessary.

This function performs x = y

This can be called for Local vehicles only.

3.29 ent_set_appearance_bits

void ent.set.appearance.bits(vehicle_id, appearance)
int32 vehicle_id;
uint32 appearance;

‘vehicle.id’
Specifies the vehicle ID.

‘appearance’
Specifies the bits to set.

ent_set_appearance_bits is used to sct some bits in the appearance attribute of vehicle ap-
pearance. This attribute i. not translated to network representations until absolutely necessary.

This function performs x =y

This can be called for Local vehicles only.

3.30 ent_unset_appearance_bits

void ent.unset_appearance_bits(vehicle_id, appearance)
int32 vehicle.id;
uint32 appearance;

‘vehicle.id’
Specifies the vehicle [1)

‘appearance’
Specifies the bits to « le-ar.

Chapter 3: Functions 19

ent_unset_appearance_bits is used to unset some bits of the appearance attribute of vehicle
appearance. This attribute is not translated to network representations until absolutely necessary.

This function performs x &= “y

This can be called for Local vehicles only.

3.31 ent_set_capabilities

void ent_set_capabilities(vehicle_id, capabilities)
int32 vehicle_id;
VehicleCapabilities *capabilities;

‘vehicle_id’

Specifies the vehicle ID.
‘capabilities’

Specifies the new capabilities.

ent_set_capabilities is used to set the capabilities attribute of vehicle appearance. This
attribute is not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.32 ent_set_engine_speed

void ent_set_engine_speed(vehicle_id, speed)
int32 vehicle.id;
uint16 speed;

‘vehicle_id’
Specifies the vehicle ID.

‘speed’ Specifies the new engine speed.

ent_set_engine_speed is used to set the enginespeed attribute of vehicle appearance. This
attribute is not translated to network representations until absolutely necessary.

20 LibEntity Programmer’s Guide

This can be called for Local vehicles only.

3.33 ent_set_velocity

void ent_set_velocity(vehicle_id, velocity)
int32 vehicle.id;
float64 velocity[3];

‘vehicle_id’
Specifies the vehicle ID.

‘velocity’
Specifies the new velocity.

ent_set_velocity is used to set the velocity attribute of vehicle appearance. This attribute is
not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.34 ent_set_artic_value

void ent_set_artic_value(vehicle_id, artic_name, value)
int32 vehicle_id;
char *xartic_name;
float64 value;

‘vehicle_id’
Specifies the vehicle ID.

‘artic_name’
Specifies the name of the articulation (a libreader symbol)

‘value’ Specifies the new value of the articulation

ent_set_artic_value is used to set the value of an articulation named name. The value is
interpreted depending on the type of articulation being set. For instance, in the case of a turret
(such as one called "primary-turret"), the value is interpreted as azimuth radians, with 0 being
along the vehicle’s X axis and rotating counterclockwise.

This can be called for Local vehicles only.

Chapter 3: Functions 21

3.35 ent_set_artic_rate

void ent_set_artic_rate(vehicle_id, artic_name, value)
int32 vehicle_id;
char *artic_name;
float64 value;

‘vehicle_id’
Specifies the vehicle ID.

‘artic_name’
Specifies the name of the articulation (a libreader symbol)

‘value’ Specifies the new value of the articulation rate

ent.set_artic_rate is used to set the change value of an articulation named name. The value
is interpreted depending on the type of articulation being set. For instance, in the case of a turret
(such as one called "primary-turret"), the value is interpreted as azimuth radians per second,
with 0 being along the vehicle’s X axis and rotating counterclockwise.

This can be called for Local vehicles only.

3.36 ent_get_exercise.id

uint8 ent_get_exercise_id(vehicle_id)
int32 vehicle_id;

‘vehicle.id’
Specifies the vehicle ID.

ent_get_exercise_id is used to get the exercise ID of a vehicle.

This can be called for Any vehicle.

3.37 ent_get_vehicle_class

VehicleClass ent_get_vehicle_class(vehicle_id)
int32 vehicle_id;

22 LibEntity Programmer’s Guide

‘vehicle_id’
Specifies the vehicle ID.

ent_get_vehicle_class is used to get the vehicleclass attribute of vehicle appearance. When
translations from network representation to internal representation are necessary, these will be done
upon invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.38 ent_get_force_id

ForceID ent_get_force_id(vehicle_id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID.

ent_get_force.id is used to get the force_id attribute of vehicle appearance. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.39 ent_get_guises

void ent_get_guises(vehicle_id, guises)
int32 vehicle.id;
VehicleGuises =*guises;

‘vehicle_id’
Specifies the vehicle ID.

‘guises’ Returns the guises

ent_get_guises is used to get the guises attribute of vehicle appearance. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

Chapter 3: Functions 23

This can be called for Any vehicle.

3.40 ent_get_guise

ObjectType ent_get_guise(vehicle_id, viewing_force)
int32 wvehicle.id;
ForcelID viewing_force;

‘vehicle_id’
Specifies the vehicle ID.

‘viewing_force’
Specifies the force of the viewer.

ent_get_guise is used to get the guisc attribute of vehicle appearance. When translations from
network representation to internal representation are necessary, these will be done upon invocation

of the get function, and saved for future calls.

Unlike ent_get_guises (see (undefined) [ent get guises], page (undefined)), this function gets
the appropriate guise relative to the passed viewing_force.

This can be called for Any vehicle.

3.41 ent_get_marking

void ent_get_marking(vehicle.id, marking)
int32 vehicle_id;
VehicleMarking *marking;

‘vehicle_id’
Specifies the vehicle ID.

‘marking’ Returns the marking.
ent_get_marking is used to got the marking attribute of vehicle appearance. When translations

from network representation to internal representation are necessary, these will be done upon
invocation of the get function. and <avesd for future calls.

This can be called for Any vetules.

24 | ‘ LibEntity Programmer’s Guide

3.42 ent_get_position

void ent_get_position(vehicle_id, position)
int32 vehicle.id;
float64 position[3];

‘vehicle_id’
Specifies the vehicle ID.

‘position’
Returns the position.

ent_get_positionis used to get the position attribute of vehicle appearance. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.43 ent_get_rotation

void ent_get_rotation(vehicle_id, rotation)
int32 wvehicle.id;
float64 rotation[3][3];

‘vehicle_id’
Specifies the vehicle ID.

‘rotation’
Returns the rotation.

ent_get_rotation is used to get the rotation attribute of vehicle appearance. When transla-
tions from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.44 ent_get_orientation

Chapter 3: Functions 25

void ent.get_orientation(vehicle_id, heading, pitch, roll)
int32 vehicle_id;
float64 *heading;
float64 *pitch;
float64 *roll;

‘vehicle_id’
Specifies the vehicle ID.

‘heading’ Returns the heading (0 == East, increasing counter-clockwise).
‘pitch’ Returns the pitch (0 == Level, increasing up).

‘roll’ Returns the roll (0 == Level, increasing counter-clockwise).

ent_get_orientation is use . to get the orientation attribute of a vehicle. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

If the vehicle orientation was set with ent_set_orientation, this is computationally inexpen-
sive. If, however the orientation was set with ent_set_rotation, many transcendental operations
are required. Either way, the returned data will be valid.

Pass a NULL pointer for any unwanted values.

This can be called for Any vehicle.

3.45 ent_get_direction

void ent_get.direction(vehicle_id, direction)
int32 vehicle_id;
float64 direction[3];

‘vehicle_id’

Specifies the vehicle ID.
‘direction’

Returns the direction.

ent_get_direction is used to get the direction attribute of vehicle appearance. When transla-
tions from network representation to internal representation are necessary, these will be done upeca
invocation of the get function, and saved for future calls.

26 LibEntity Programmer’s Guide

Note that direction is derived from rotation, but will be cheaper to compute than rotation under
DIS.

This can be called for Any vehicle.

3.46 ent_get_appearance

uint32 ent_get_appearance(vehicle_id)

int32 vehicle_id;
' ‘vehicle_id’
' Specifies the vehicle ID.
ent_get_appearance is used to get the appearance attribute of vehicle appearance. When
translations from network representation to internal representation are necessary, these will be
l done upon invocation of the get function, and saved for future calls.
’ This can be called for Any vehicle.
3.47 ent.get_capabilities
void ent_get_capabilities(vehicle_id, capabilities)
int32 vehicle_id;
VehicleCapabilities *capabilities;
‘vehicle.id’
Specifies the vehicle ID.
‘capabilities’
Returns the capabilities.
ent_get_capabilities is used to get the capabilities attribute of vehicle appearance. When
translations from network representation to internal representation are necessary, these will be done

upon invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

Chapter 3: Functions 27

3.48 ent_get_engine_speed

uint16 ent_get_engine_speed(vehicle_id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID.

ent_get._engine_speed is used to get the enginespeed attribute of vehicle appearance. When
translations from network representation to internal representation are necessary, these will be done
upon invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.49 ent.get_velocity

void ent_get_velocity(vehicle_id, velocity)
int32 vehicle_id;
float64 velocity([3];

‘vehicle_id’
Specifies the vehicle ID.

‘velocity’
Returns the velocity.

ent_get_velocity is used to get the velocity attribute of vehicle appearance. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.50 ent.get_speed._squared

float64 ent_get_speed_squared(vehicle_id)
int32 vehicle.id;

28 LibEntity Programmer’s Guide

‘vehicle_id’
Specifies the vehicle ID.

ent_get_speed_squared is used to get the speed.squared attribute of vehicle appearance. When
translations from network representation to internal representation are necessary, these will be done
upon invocation of the get function. and saved for future calls.

Note that speed_squared is derived from velocity, but since the value will be cached within
libentity, it is better to call this function than to call ent_get_velocity and compute speed squared

manually.

This can be called for Any vehicle.

3.51 ent_get_speed

float64 ent_get._speed(vehicle_id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID.

ent_get_speed is used to get the speed attribute of vehicle appearance. When translations from
network representation to internal representation are necessary, these will be done upon invocation
of the get function, and saved for future calls.

Note that speed is derived from speed _squared, but since the value will be cached within libentity,
it is better to call this function than to call ent_get_velocity or ent_get_speed_squared and compute
speed manually.

This can be called for Any vehicle.

3.52 ent.get.stationary

int32 ent_get_stationary{vehicle.id)
int32 vehicle_id;

Chapter 3: Functions 29

‘vehicle.id’
Specifies the vehicle ID.

ent_get_stationary is used to get the stationary attribute of vehicle appearance. When trans-
lations from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calis.

This can be called for Any vehicle.

3.53 ent_get._artic_euler

void ent.get_artic_euler(vehicle_id, artic_name, yaw, pitch, roll)
int32 vehicle_id;
char sartic_name;
float64 »yaw;
float64 *pitch;
float64 »roll;

‘vehicle_id’

Specifies the vehicle ID.
‘artic_name’

Specifies the name of the articulation (a libreader symbol)
‘yaw’ Returns the yaw value (in radians) of the articulation
‘pitch’ Returns the pitch value (in radians) of the articulation
‘roll’ Returns the roll value (in radians) of the articulation

ent_get_artic_euler is used to get the euler angles for an articulation named artic_name.
Any of the pointers for yaw, pitch, or roll can be NULL, in which case that component of the
articulation value will not be returned.

This can be called for Any vehicle.

3.54 ent_get_artic_euler_rate

void ent_get_artic_euler_rate(vehicle_id, artic_name,
yaw_rate, pitch_rate, roll_rate)

int32 vehicle_id;

30 LibEntity Programmer’s Guide

char =artic_name;
float64 *yaw_rate;

float64 *pitch_rate;
float64 *roll_rate;

‘vehicle_id’
Specifies the vehicle ID.
‘artic_name’
Specifies the name of the articulation (a libreader symbol)

‘yaw_rate’
Returns the yaw rate (in radians per second) of the articulation

‘pitch_rate’
Returns the pitch rate (in radians per second) of the articulation

‘roll_rate’
Returns the roll rate (in radians per second) of the articulation

ent_get_artic_euler_rate is used to get the euler rates for an articulation named artic_name.
Any of the pointers for yaw_rate, pitch_rate, or roll_rate can be NULL, in which case that
component of the articulation rate will not be returned.

This can be called for Any vehicle.

3.55 ent_get_artic_pivot

void ent_get_artic_pivot(vehicle_id, artic_name, position)
int32 vehicle_id;
char =artic_name;
float64 position[3];

‘vehicle_id’
Specifies the vehicle ID.

‘artic_name’
Specifies the name of the articulation (a libreader symbol)
‘position’
Returns the position of the pivot point (in vehicle coordinates) of the articulation.

ent_get_artic_pivot is used to get the pivot point for an articulation named artic_name.
For example, the pivot point for a gun is the base of the gun, and the pivot point for a turret is

Chapter 3: Functions 31

the location of the axis of rotation.

This can be called for Any vehicle.

3.56 ent_get_artic_position

void ent_get_artic_position(vehicle_id, artic_name, position)
int32 vehicle.id;
char sartic_name;
float64 position[3];

‘vehicle_id’
Specifies the vehicle ID.
‘artic_name’
Specifies the name of the articulation (a libreader symbol)

‘position’
Returns the position of the end point (in vehicle coordinates) of the articulation.

ent_get_artic_position is used to get the position for an articulation named artic_name.
For example, the position for a gun is the tip of the gun. The position for a turret is the location
of the axis of rotation since a turret doesn’t usually have a unique length.

This can be called for Any vehicle.

3.57 ent_get_artic_rotation

void ent_get_artic_rotation(vehicle_id, artic_name, rotation)
int32 vehicle. id;
char sartic_name;
float64 rotation[3][3];

‘vehicle_id’

Specifies the vehicle ID.
‘artic_name’

Specifies the name of the articulation (a libreader symbol)
‘rotation’

Returns the rotation matrix for the articulation.

32 LibEntity Programmer’s Guide

ent_get_artic_rotationis used to get the rotation matrix for an articulation named artic_name.
This rotation matrix can be used to transform a position in articulation coordinates into vehicle co-
ordinates. Note that to do the transformation completely, you will have to consider the articulation
position (see (undefined) [ent’'get artic position], page (undefined)).

This can be called for Any vehicle.

3.58 ent_get_turret_articulation

void ent_get.turret_articulation(vehicle._id, articulation)
int32 vehicle_id;
DIS_ARTICULATION_PARAMETER *articulation;

‘vehicle.id’
Specifies the vehicle ID.

‘articulation’
Returns the DIS representation of the turret’s orientation

ent_get_turret_articulation is used to get the DIS representation of a turret’s orientation.

This can be called for Any vehicle.

3.59 ent_get_rotation_sp

void ent_get_rotation_sp(vehicle_id, rotation)
int32 vehicle._id;
float32 rotation[3]1[3];

‘vehicle_id’
Specifies the vehicle ID.

‘rotation’
Returns the rotation (in single precision).

ent_get_rotation.sp is used to get the rotation attribute of vehicle appearance (single preci-
sion version needed to build appearance packets). When translations from network representation
to internal representation are necessary, these will be done upon invocation of the get function, and
saved for future calis.

Chapter 3: Functions 33

This can be called for Any vehicle.

3.60 ent_get_velocity.sp

void ent_get_velocity_sp(vehicle_id, velocity)
int32 vehicle_id;
float32 velocity[3];

‘vehicle_id’
Specifies the vehicle ID.

‘velocity’
Returns the velocity (in single precision).

ent_get_velocity.sp is used to get the velocity attribute of vehicle appearance (single precision
version needed to build appearance packets). “When translations from network representation to
internal representation are necessary. these will be done upon invocation of the get function, and
saved for future calls.

This can be called for Any vehicle.

3.61 ent_get_physdb

PHYSDB_DATA *ent_get.physdb(vehicle_id)
int32 vehicle.id;

‘vehicle_id’ ,
Specifies the vehicle ID.

ent_get_physdb looks up the ohject type of the vehicle in the physdb database (see section
‘physdb_key’ in LibPhysDB Programimer’s Manual). The returned data is a pointer to the physical
information typical of an object with that ohject type (such as its dimensions). Because of the lazy
evaluation and cacheing, calling this function will yield better performance that calling otm_query
explicitly (see section ‘otm_query™ 1n 1ihO I'\latch Programmer’s Manual).

This can be called for Any veluele.

34 LibEntity Programmer’s Guide

3.62 ent_get_altitude_agl

float64 ent_get_altitude_agl(vehicle_id, ctdb)
int32 vehicle_id;
CTDB *ctdb;

‘vehicle_id’
Specifies the vehicle ID.

‘ctdd’ Pointer to the CTDB terrain database structure.
ent_get_altitude_agl is used to get the altitude AGL (Above Ground Level) of a vehicle.

Note that altitude_agl is derived from position, but since the value will be cached within libentity.
it is better to call this function than to call ent.get_position and compute altitude AGL manually.

This can be called for Any vehicie.

3.63 ent_get_dis.guises

void ent_get_dis_guises(vehicle.id, regular, alternate)
int32 vehicle_id;
DIS_ENTITY_TYPE *regular;
DIS_ENTITY_TYPE *alternate:

‘vehicle_id’
Specifies the vehicle ID.

‘regular’ Pointer to the regular DIS guise for the vehicle.

‘alternate’
Pointer to the alternate DIS guise for the vehicle.

ent_get_dis_guises is used to get the normal and alternate DIS guises of a vehicle.

e

This can be called for Any vehicle.

3.64 ent_get_dis_location

Chapter 3: Functions 35

void ent_get.dis_location(vehicle_id, location)
int32 vehicle_id;
float64 *location;

‘vehicle_id’
Specifies the vehicle ID.

‘location’
Pointer to the DIS location for the vehicle.

ent_get_dis_location is used to get the DIS location (in a Z-down GCC coordinate system)
of a vehicle.

This can be called for Any vehicle.

3.65 ent_get_dis_velocity

void ent_get_dis_velocity(vehicle_id, velocity)
int32 vehicle_id;
float32 *velocity;

‘vehicle_id’
Specifies the vehicle ID.

‘velocity’
Pointer to the DIS velocity for the vehicle.

ent_get_dis_velocity is used to get the DIS velocity (in a Z-down GCC coordinate system)
of a vehicle,

This can be called for Any vehicle.

3.66 ent._get_dis_orientation

void ent_get_dis_orientation(vehicle_id, orientation)
int32 vehicle_id;
DIS_EULER_ANGLE *orientation;

36 LibEntity Programmer’s Guide

‘vehicle_id’
Specifies the vehicle ID.
‘orientation’
Pointer to the DIS velocity for the vehicle.

ent_get_dis_orientation is used to get the DIS orientation of a vehicle.

This can be called for Any vehicle.

3.67 ent_get_dis_.appearance

DIS_ENTITY_APPEARANCE ent_get_dis_appearance(vehicle_id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID.

ent_get_dis_appearance is used to get the DIS appearance bits of a vehicle.

This can be called for Any vehicle.

3.68 ent._get_dis_capabilities

void ent_get._dis_capabilities(vehicle_id, capabilities)
int32 vehicle_id;
DIS_ENTITY_CAPABILITIES *capabilities;

‘vehicle_id’
Specifies the vehicle ID.

‘capabilities’
Pointer to the DIS capabilities for the vehicle.

ent_get._dis_capabilities is used to get the DIS capabilities bits of a vehicle.

This can be called for Any vehicle.

T I W T S T Ty T I W Y O W DO SO WSS O wees O woamr e

Chapter 4: Access Keys

4 Access Keys

37

In addition to the get functions just described, libentity also provides libaccess keys with which
many variables can be fetched at once. These keys, and the type of argument they expect are given

below:

ent_exercise_id
uint8 *arg

ent_vehicle_class
VehicleClass *arg

ent_force.id
ForcelD »arg

ent.guises VehicleGuises »arg

ent.marking
VehicleMarking *arg

ent_position
float64 arg[3]

ent.rotation
float64 arg[3]1[3]

ent_direction
float64 arg[3]

ent.appearance
uint32 =arg

ent_capabilities

VehicleCapabilities *arg

ent.engine_speed
uinti6 *arg

ent.velocity
float64 arg(3]

ent_speed_squared
float64 *arg

entspeed float64 sarg

ent_stationary
int32 *arg

ent_rotation.sp
float32 arg[3] [3]

1
\
1

_— — - Py WAy U N BT T N U T O W G T T Ty .

38

ent_velocity_sp
float32 arg[3]

ent_physdb
PHYSDB_DATA #*arg

ent_dis_location
DIS_WORLD_COORDINATES sarg

ent_dis_velocity
DIS_VECTOR *arg

ent_dis_orientation

DIS_EULER_ANGLE *arg
ent_dis.appearance

DIS_ENTITY_APPEARANCE sarg
ent_dis_capabilities

DIS_ENTITY_.CAPABILITIES sarg

LibEntity Programmer’s Guide

ADST-TR-W003268
Libeoorder

Table of Contents

1 O VeI VIO W it e e 1
2 FUN I OIS o e e 3
2.] @M ... e e 3
2.2 e0mOLlaSS Mt . ..ottt e e 3

P -0V T T o ¢ Y SO 3
2.4 eono.destroy
2.5 eonocreate.task
2.6 eono.delete_task

Chapter 1: Overview 1

1 Overview

Libeonorder inplements an enabling task which checks an associated task authorization object.
If the authorized bit is set, libeonorder’s predicate function returns TRUE, otherwise it returns
FALSE. The GUI code is responsible for setting the authorization bit. When the predicate function
is invoked, it first checks to see if the task authorization object exists as a reference in the task’s
state object. If the authorization object does not yet exist, it is created.

Libeonorder Programmer’s Guide

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libeonorder, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 eono.nit
void eono_init()

eono._init initializes libeonorder. Call this before any other libeonorder function.

2.2 eono_class_init

void eono_class_init(parent_class)
CLASS_PTR parent.class;

‘parent._class’
Class of the parent (declared with class_declare_class)

eono.class_init creates a handle for attaching eonorder class information to vehicles. The
parent_class will likely be safobj_class.

2.3 eono._create

void eono_create(vehicle_id, params, po.db)
int vehicle_id;
EONORDER_PARAMETRIC_DATA *params;
PO_DATABASE #*po_db;

‘vehicle_id’
Specifies the vehicle ID

‘params’ Specifies initial parameter values
‘po.db’ Specifies the PO DATABASE used for the exercise

4 Libeonorder Programmer’s Guide

eono_create creates the eonorder class information for a vehicle and attaches it vehicle’s block
of libclass user data.

2.4 eono.destroy

void eono_destroy(vehicle_id)
int vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

eono.destroy frees the eonorder class information for a vehicle. This should be called before
freeing the class user data with class_free_user_data.

2.5 eono.create_task

PO_DB_ENTRY *eono_create_task(po.db)
PO_DATABASE *po_db;

‘po.db’ Specifies the PO DATABASE for the exercise

eono_delete_task creates an enabling class with model SM_EOnOrder. When the task is cre-
ated, no state references are created.

2.6 eono._delete_task

int32 eono_delete.task(po.db, eonorder_task)
PO_DATABASE *po.db;
PO_DB_ENTRY #*eonorder_task;

‘vehicle_id’
Specifies the vehicle ID

‘eonorder_task’
Specifies the enabling ta~k to be destroyed

2]
g)

Chapter 2: Functions

eono_delete_task destroys the specified on-order enabling task, along with its’ referenced
authorization object (if any).

ADST-TR-W003268

Libetcm

Table of Contents

L O Ve VIO W .o 1
1.1 Task Parameters.ot e 2
1.2 Task Parameters....... ...t i, 2
2 Functions ... e 3
2.1 et . 3
2.2 etemoclass it 3
2.3 el LTt 3
2.4 etemdestIoy .. .ooiuti e 4
2.5 etemdnittaskostate......... ... 4

Chapter 1: Overview 1

1 Overview

Libetcm implements an enabling task which detects when a unit is about to cross a control
measure. The criteria which libetcm uses to detect this are context-dependent and include the
previous taskframe, i.e. what the unit is currently doing, as well as the taskframe containing the
enabling task, i.e. what the unit would do if libetcm’s predicate returned a non-zero value. This
contextual "matrix," as well as the simulation state of the unit, are used by the predicate function
registered by libetcm with libtask. The contextual information is known to the task manager and
is passed in the argument list to the predicate function of the enabling task when it is called:

PO.DB_ENTRY *current_opaque_task_frame;
PO_DB_ENTRY *next_task_frame;

In addition, the following information is passed to the predicate function when it is called in
case the current executing task frame does not provide enough context for the predicate function
to make its decision, e.g. the current frame is a transparent override:

int32 number_of_executing_tasks;
PO_DB_ENTRY *executing._tasks([];

This library is also responsible for setting the shared parameters of the appropriate task in the
task frame pointed to by PO_DB_ENTRY *next_task_frame.

For example, suppose a unit is following a route and is about to cross a phase line, where
the unit has been ordered to launch an assault. The control measure enabling task is responsible
for calculating how far away from the phase line the unit must begin to prepare for the assault.
Libetcm’s predicate function returns a non-zero value when the unit reaches this location. This
library is also responsible for setting the shared parameters of the prepare-to-assault task in its
own frame so that the prepare-to-assault task will be able to prepare for the assault. This may
invovle slowing the unit down, keeping to the projected path along its current route, and halting
at the desired location in preparation for the assault.

The task state machine is written using the AAFSM format which is translated to C using the
‘fsm2ch’ utility (see section ‘Overview’ in LibTask Programmer’s Manual).

Libetcm depends on libuflwrte, libpo, libclass, libctdb, libaccess, libreader, and libparmgr.

2 Libetcm Programmer’s Guide

1.1 Task Parameters
The format of the parametric data is as follows:

(SM_ETCM (waypt_error <distance meters>)

The waypt_error parameter specifies the distance from a vertex of a control measure at which
a vehicle will perceive that it has crossed the control measure.

1.2 Task Parameters

In enabling tasks for control measures. the parameter block of the task data structure is empty.

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libetcm, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 etcm._nit
void etcm_init()

etcm_init initializes libetcm. Call this before any other libetcm function.

2.2 etcm_class_init

void etcm_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

etcm_class_init creates a handle for attaching etcm class information to vehicles. The parent_class
will likely be safobj_class.

2.3 etcm._create

void etcm_create(vehicle_id, params, po.db, ctdb)
int vehicle_id;
ETCM_PARAMETRIC_DATA *params;
PO_DATABASE *po_db;
CTDB *ctdb;

‘vehicle_id’
Specifies the vehicle ID

‘params’ Specifies initial parameter values
‘po_db’ Specifies the PO database where the task can be found

Libetcm Programmer’s Guide

‘ctdb’ Specifies the terrain database currently in use

etcm_create creates the etcm class information for a vehicle and attaches it vehicle’s block of

libclass user data.

2.4 etcm_destroy

void etcm_destroy(vehicle_id)
int vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

etcm_destroy frees the etcm class information for a vehicle. This should be called before freeing
the class user data with class_free_user_data.

2.5 etcm_init_task_state

void etcm_init_task_state(task, state)
TaskClass *task;
TaskStateClass *state;

‘task’ Specifies a pointer to the task class object to be initialized.
‘state’ Returns the initialized state

Given a new SM_ETCM task that is about to be created, etcm_init_task_state initializes the
model size, and state variables.

ADST-TR-W003268

LibExecmat

Table of Contents

1

2

O VO VIO W ..o e 1
FUunCtI@NS oo 3
2.1 exeCmatamit. 3
2.2 execmatdmit.gui......... i 3
2.3 execmat Set UMt e 4
2.4 eXECMAl CrOALe. . ..o e e 4

— e

Chapter 1: Overview 1

1 Overview

Libexecmat creates the execution matrix editor for units and subordinate units. The execution
matrix is used to create and assign missions. A mission is made up of a series of task frames
separated by control measures (a control measure can be NULL). Reaching a control measure
advances the mission to the next task frame. The control measure is referred to as an ETCM
(Enabling Task Control Measure) because reaching this control measure enables the mission to
advance to the next task frame. A task frame can be made "On Order". A mission will stay in its
current task frame if the next task frame is "On Order". Authorizing an "On Order" advances the
mission to the authorized task frame.

Each displayed task frame is really made up of two task frames - the Preparatory task frame
and the Actual task frame. Only the Actual task frame is displayed in the execution matrix. The
task frame editor MUST return the two task frames linked together by the previousMissionFrame
field. Each task frame has a primary task which is used to determine whether the task frame is
finished. (If the primary task is done, the task frame is done.)

In addition to the ETCM enabling task, there is another enabling task called the In-Phase
enabling task. The In-Phase enabling task determines whether the unit’s peer units are in the
same phase as it is. This is done by seeing if the peer units have completed their preparatory task
frames for the same phase.

In each of the prep and actual task frames, there is a postfix logic stack which determines the
conditions that must be met before this taskframe is executed. The logic stack algorithm for the
preparatory task frame is:

Primary task of previous frame is done OR
ETCM of phase is crossed OR
On Order of task frame has been given (if applicable)

If any of these conditions is met, the preparatory task frame is executed.

The logic stack algorithm for the actual task frame is:

Primary task of prepatory task is done AND
Other peer units are in-phase AND
On Order of actual task frame has been given (if applicable)

2 LibExecmat Programmer’s Guide

If all of these conditions are met. the actual task frame is executed. Note that there is no
guarantee that the ETCM of the phase has been reached. This is done because there might be
some user error where the ETCM could necver be reached and the mission still needs to advance.

When the user clicks the "Done" button on the execution matrix editor, the task frames are
linked into a mission for each unit. The mission is linked backwards using the previousMissionFrame
field in the task frame. If the unit has not already been assigned a mission, this mission is assigned
to the unit. Although the mission code is general enough to support a tree structure, the current
missions are flat.

The execution matrix editor is not controlled by libeditor. so it has to keep track of its own
state when it becomes active, suspendend, ctc.

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libexecmat, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 execmat_init
void execmat_init()

execmat_init initializes libexecmat. Call this function before calling any other libexecmat
functions.

2.2 execmat_nit_gui

EXECMAT.GUI_PTR execmat_init_gui(data_path, reader_flags,
gui, tactmap, tcc, map_erase_gc,
sensitive, refresh_event, db, exit_fcn,exit_arg)

char =data_path;
int32 reader_flags;
SGUI_PTR gui;
TACTMAP_PTR tactmap;
COORD_TCC_PTR tce;

GC map_erase._gc;

SNSTVE_WINDOW_PTR sensitive;
CALLBACK_EVENT_PTR refresh_event;

PO_DATABASE *db;
ASSIGN_EXIT_FUNCTION exit_fcn;
ADDRESS exit_arg;
‘data_path’
Specifies the directory where data files are expected
‘reader_flags’
Specifies flags to be passed to reader_read when reading data files
‘gui’ Specifies the SAF GUI
‘tactmap’ Specifies the tactical map
‘tec’ Specifies the map coordinate system
‘map.erase_gc’

Specifies the GC which can erase things from the tactical map

4 LibExecmat Programmer’s Guide

‘dp’ Specifies the persistent object database

‘exit_fcn, exit_arg’
Specifies a function to call when the assignment is completed

execmat_init_gui creates the execution matrix editor. The execution matrix editor consists
of up to 6 phases of tasks for UNITORG MAX_BREADTH units.

2.3 execmat.set_unit

void execmat_set_unit(emgui, unit_id, tasking_type)
EXECMAT_GUI_PTR emgui;
ObjectID *unit_id;
EXECMAT_TASKING_TYPE tasking_type;

é

emgui’ Specifies EXECMAT_GUI_PTR data structure
‘unit_id’ Specifies the unit id.

‘tasking_type’
Specifies SUBORDINATE_TASKING or UNIT_.TASKING

execmat_set_unit fills in the emgui data structure units with either the unit.id passed in
or subordinate units of the unit.id passed in depending on the tasking.type. If the units (or
subordinate units) are currently executing a mission, their po task frames are retrieved and filled
into the emgui data structure as well as the pushbutton widgets of the matrix user interface. The
names of the units are retrieved from the unit po and filled in the label widgets of the matrix user

interface.

2.4 execmat_create

void execmat_state(gui, mode, state)
EXECMAT.GUI_PTR gui;
SGUI_MODE_PTR mode;
SGUI_MODE_STATE state;

‘gui’ Specifies the SAF GUI
‘mode’ Specifies the mode to use
‘state’ Specifies the new state

Chapter 2: Functions 5

execmat_state sets the state of the execution matrix editor. This is equivalent in functionality
to edtstate(), but is needed because the execution matrix editor is not controlled by libeditor.

ADST-TR-W003268

LibFCS

Table of Contents

1 O VeI VICW e

2.1 Building Libfes..........
2.2 Linking with Libfes......... ...

8 FUNCEIOIIS oo e 5

k5 B £ 3 |
3.2 fesclass anit.. ... e s
K 3o B 1T 3 - - S
34 fesdestroyot e
35 fesdoad.o
3.6 fesquantities............... i
3.7 fesreadycouiiii
38 fe8 . .. i s
3.9 fesfireattarget it
3.10 fesfireatdocation.............ooiiiiiiiiii e

Chapter 1: Overview

1 Overview

libfcs profides a fire-control system abstraction for SAF vehicles which have a large number of
libguns components (see section ‘Overview’ in LibGUNS Programmer’s Manual), such as aircraft.
libfcs provides an interface where weapon launcher commands can be specified in terms of the
munition which will be fired; libfcs uses selection algorithms to determine which launcher is most
suitable to direct the 1ibguns commands for a given munition. In the future, libfcs can be expanded
to support selection algorithms which can perform such tasks as launching missiles in the proper
order from an aircraft with multiple missile launcher stations in order to keep the aircraft as
balanced as possible, or to avoid a launched missile from colliding with an un-launched missile.

The parameters of the fire control system are specified in the configuration file for the vehicle
containing a libfcs fire control system as follows:

(SM_FireControl (components <namei> <name2> ...)

)

The name of each component being controlled by the fire control system is specified. Each name
must be a gun component of the vehicle.

LibFCS Programmer’s Guide

Chapter 2: Usage 3

2 Usage

The software library ‘libfcs.a’ should be built and installed in the directory
‘/common/1ib/’. You will also need the header file ‘1ibfcs.h’ which should be installed in the
directory ‘/common/include/libinc/’. If these files are not installed, you need to do a ‘make’ in
the libfcs source directory. If these files are already built, you can skip the section on building
libfcs.

2.1 Building Libfcs

The libfcs source files are found in the directory ‘/common/libsrc/libfcs’. ‘RCS’ format ver-
sions of the files can be found in ‘/nfs/common_src/libsrc/libfcs’.

If the directory ‘common/libsrc/libfcs’ does not exist on your machine, you should use the
‘genbuild’ command to update the common directory hierarchy.

To build and install the library, do the following:

cd common/libsrc/libfcs
co RCS/=,v
make install

This should compile the library ‘1ibfcs.a’ and install it and the header file ‘1ibfcs.h’ in the
standard directories. If any errors occur during compilation, you may need to adjust the source
code or ‘Makefile’ for the platform on which you are compiling. libfcs should compile without
errors on the following platforms:

e Mips
¢ SGI Indigo
e Sun Sparc

2.2 Linking with Libfcs

Libfcs can be linked into an application program with the following link time flags: ‘1d [source
.0 files] -L/common/1ib -1fcs’. If your compiler does not support ‘~-L’ syntax, you can use the
archive explicitly: ‘1d [source .o files] /common/l1ib/libfcs.a’.

4 LibFCS Programmer’s Guide
Libfcs depends on libaccess libcomponents libreader libguns libparmgr libvtab and libclass.

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libfcs, including the format and mean-
ing of its arguments, and the mcaning of its return values (if any).

3.1 fes_init
void fes_init()

fcs_init initializes libfcs. Call this before any other libfcs functions.

3.2 fes_class_init

void fcs_class_init(parent.class)
CLASS_PTR parent_class;

‘parent_class’
Specifies the parent class of entity (probably safobj.class).

fcs_class_init creates a handle for attaching FCS class information to vehicles. The parent_class
- is one created with class_declare_class.

3.3 fcs_create

void fcs_create(vehicle._id, parms)
int32 vehicle_id;
FCS_PARAMETRIC_DATA eparms;

‘vehicle_id’
Specifies the vehicled of the vehicle to be created.

‘parms’ Specifies parametric data for the fire control system.

fcs_create creates the F('S (.-« :nformation for a vehicle and atttaches it to the vehicle’s
libclass user data.

6 LibFCS Programmer’s Guide

3.4 fcs_destroy

void fcs_destroy(vehicle_id)
int32 vehicle.id;

‘vehicle_id’
Specifies the vehicle_id of the vehicle to be created.

fcs_destroy frees the FCS class information for a vehicl

3.5 fcs load

void fcs_load(vehicle_id, munition, store, quantity)
int32 vehicle_id;
uint32 munition;
int32 store;
int32 quantity;

‘vehicle_id’
Specifies the vehicle ID
‘unition’
Specifies the type of munition to load

‘store’ Specifies from what store to load the munition from

‘quantity’
Specifies the quantity of munitions to load into the gun

fcs_load starts the loading procedure for a quantity number of munitions from the supplied
store for an apropriate gun component. fcs_load will dynamically determine the appropriate
component to direct the GUNS_SET_LOAD_MUNITION command
(see section ‘GUNS_SET.LOAD MUNITION’ in LibGUNS Programmer’s Manual) from the list of
possible components specified as parametric data to 1ibfcs.

3.6 fcs_quantities

void fcs_quantities(vehicle.id, munition, current_limit, absolute_limit)
int32 vehicle_id;
uint32 munition;

Chapter 3: Functions

int32 =current_limit;
int32 *absolute_limit;

‘vehicle_id’
Specifies the vehicle ID
‘munition’
Specifies the type of munition to load

‘current_limit’
Specifies the current limit on this munition type

‘absolute_limit’
Specifies the absolute limit on this munition type

fcs_quantities returns (by reference) the current and absolute maxima of the number of
rounds that the FCS can fire of the specified munition type on the given vehicle. These quantities
are related to but not necessarily equal to supplies available and should be interpreted as how many

rounds the FCS can fire given unlimited supplies. These may be based on limitations of the actual
weapons or implementations of the code modeling the weapons.

3.7 fcs.ready

void fcs_ready(vehicle_id, munition, ready, missile_id)
int32 vehicle._id;
uint32 munition;
int32 =»ready;
int32 +*missile_id;

‘vehicle_id’

Specifies the vehicle ID
‘munition’

Specifies the munition to check

‘ready’ Returns whether a gun containing the specified muniticn is ready for firing

‘14’ Returns vehicle ID of a ready missile

fcs_ready returns (by reference) whether an appropriate gun component is ready to fire the
requested munition. For missile launchers, the vehicle ID of the ready missile is returned (by
reference) as well. A gun is generally not ready if it is not loaded or is in the proc~-= of loading or

unloading munitions.

8 LibFCS Programmer’s Guide

fcs_ready will dynamically determine the appropriate component to direct the
GUNS_GET_READY_TO_FIRE command (see section ‘GUNS_GET_READY_TO.FIRE’ in LibGUNS
Programmer’s Manual) from the list of possible components specified as parametric data to 1ibfcs.

3.8 fcs_fire

void fcs_fire(vehicle_id, munition, quantity)
int32 vehicle_id;
uint32 munition;
int32 quantity;

‘vehicle_id’
Specifies the vehicle ID
‘manition’
Specifies the munition
‘quantity’
Specifies quantity of loaded munition to shoot

fcs_fire attempts to launch a weapon of the specified munition from one of the possible guns
in the fire control system. The weapon is fired in whatever direction it is currently pointing.

fcs_tire will dynamically determine the appropriate component to direct the GUNS_SET_FIRE
command (see section ‘GUNS_SET_FIRE’ in LibGUNS Programmer’s Manual) from the list of
possible components specified as parametric data to 1i%#-s.

3.9 fcs_fire_at_target

void fcs_fire at_target(vehicle_id, target.id, munition, quantity)
int32 vehicle.id;
int32 target.id;
uint32 munition;
int32 quantity;

‘vehicle_id’

Specifies the vehicle ID
‘target._id’

Specifies the target to fire at

Chapter 3: Functions 9

‘munition’
Specifies the munition
‘quantity’
Specifies quantity of loaded munition to shoot

fcs_fire_at_target attempts to launch a weapon of the specified munition from one of the
possible guns in the fire control system. The weapon is fired with the intent to hit the target, if
possible. If the weapon is a guided munition (such as a missile), there may be other actions required
during the flight of the munition to ensure that it will hit the target.

fcs_tire_at_target will dynamically determine the appropriate component to direct the GUNS_SET_FIRE.
command (see section ‘GUNS SET FIRE_.AT_.TARGET"’ in LibGUNS Programmer’s Manual) from
the list of possible components specified as parametric data to libfcs. ¢

3.10 fcs_fire_at_location

void fcs_fire_at_location(vehicle_id, location, munition, quantity)
int32 vehicle.id;
float64 location[3];
uint32 munition;
int32 quantity;

‘vehicle_id’
Specifies the vehicle ID

‘location’ .
Specifies the location to fire at

‘munition’
Specifies the munition

‘quantity’
Specifies quantity of loaded munition to shoot

fcs_fire_at_location attempts to launch a weapon of the specified munition from one of the
possible guns in the fire control system. The weapon is fired with the intent to hit the location,
if possible. If the weapon is a guided munition (such as a missile), there may be other actions
required during the flight of the munition to ensure that it will hit the location.

fcs_fire_at_location will dynamically determine the appropriate component to direct the
GUNS_SET_FIRE_AT_LOCATION command (see section ‘GUNS_SET_FIRE_AT_LOCATION’ in Lib-

— g —— —-———— —— —— —— — L] — 7 — ey W 7

10 LibFCS Programmer’s Guide

GUNS Programmer’s Manual) from the list of possible components specified as parametric data to
libfcs.

——— —— —-—— — —— —_—— -—— —— —— P — e N A

LibFormationDB

ADST-TR-W003268

Table of Contents

1 Overview 1
1.1 Algorithms.................................. T 1
1.2 FileFormat........ ... i i 2
1.3 Data Structures............oovuiiiiniiiie et iia et 5
1.4 Examples............oooiiiiiiii 6
2 Functions ... 7
2.1 formdbdnit.... e 7
2.2 formdboexpand........ 7
2.3 formdbcreateroutesl 8
2.4 formdb.generate_roadmarchorder.................................... 10
2.5 formdb.occupy.area..................iiiiiiiiiii e 11

2.6 formdb.herringbone......................co 11

Chapter 1: Overview 1

1 Overview

LibFormationDB provides a database of named standard military formations which can be
used for initial placement of units as well as for station keeping of units during niovement. Lib-
FormationDB uses a database encoded in libreader format (see section ‘Overview’ in LibReader
Programmer’s Manual) d to represent the placement of units in a formation. Note that in this
context, the term ‘units’ can refer to individual vehicles or to unit aggregates (such as sections,
platoons, companies, etc.).

LibFormationDB provides two primary interface routines for accessing formation information.
formdb_expand can be used to apply a formation and spacing to units for a given location and
direction. Position information (where a unit should be to be in station) is returned, as well as
desired scan-sectors for each unit. The routine can take current positions of the units into account
in order to assign formations which minimize vehicle movement (such as reversing a formation or
using an alternate assignment of units to formation stations). formdb_create_routes can be used
to apply a specified formation and spacing to units which should be following a supplied route.
Routes are generated for each unit which are similar to the input route and have the property that
if each unit follows each route, the units will appear to be keeping station, at least at the route
vertices. Note that this routine is not suitable for roadmarch, since roadpoints for followers would
not be preserved.

1.1 Algorithms

To be placed in a formation, units are laid out one at a time in lines called rays. A given
formation may contain one or more rays in which to place units. Any ray (except the first one
specified) will refer to a previously specified ray to indicate a reference starting position for that
ray. The first ray in a formation refers to no other ray.

Each ray in a formation is given a unit one at a time in ray-breadth order. If a ray exceeds
some specified maximum number of units, that ray is skipped from receiving more units. The
formation laydown algorithm uses data in the formation database file to decide the order by which
units are assigned the formation, thus allowing the explicit positioning of specific units such as a
unit-leader. Additional information about the placement algorithm is contained in the description
of the LibFormationDB file format (see Section 1.2 [File Format], page 2).

The algorithm used to minimize vehicle movement in the assignment of vehicles to a formation
template for formdb_expand is to assign vehicles in all formation orderings and to choose the one

2 LibFormationDB Programmer’s Guide

which minimizes crossings. Among those assignments with the same number of crossings, the one
containing the minimum sum of of distances to be travelled by every unit is chosen.

The algorithm used to generate follower routes in formdb_create_routes is to use formdb_expand
at the begining of the route to identify the starting position of each unit. formdb_expand is used
at every waypoint which is at least the specified sampling distance apart. At those waypoints,
the direction chosen is the mean of the incoming and outgoing directions. The formation ordering
remains constant over an entire route. Route segments are inferred as straight line connections
between formation expanded waypoints.

1.2 File Format

Formation information is stored in the formation database ‘formdb.rdr’ as follows:

(
(<formation_name>
(<ray-specifieri>
<ray-specifier2>
(<placement-number1> <placement-number2> <placement-number3)> ...)
<other placement lists>
)

)

<formation_name> specifies the name of the formation.
<ray-specifier> specifies the incremental placement of vehicles along a ray as follows:
(<reference> <compass_offset> <Z_offset> <spacing_factor> <max>)

<reference> is the index of the ray that this ray keys off. The indices of the rays are zero-based.
The first ray on which a vehicle will be placed will have a reference of -1.

<compass_offset> indicates the direction to place subsequent units from previous units already
placed in a ray. For the first unit in a ray, the <compass_offset> specifies the offset from the first
unit in the referenced ray. The <compass_offset> for the first vehicle in the first ray is not used.
The values of <compass_offset> are specified by the following macro names, which are defined in
‘formdb.rdr’:

Chapter 1: Overview 3

e FORMDB_FRONT

o FORMDB_BACK

o FORMDB_RIGHT

e FORMDB_LEFT

e FORMDB_FRONT_RIGHT
e FORMDB_FRONT_LEFT

o FORMDB_BACK_RIGHT

o FORMDB_BACK_LEFT

The interpretation of the <compass_offsaet> directions are as in the following table:

- - D D s o D . T R R TP D T D G G G YR D G S R D R W S D D S G A 35 e e

I
|-
FORMDB_LEFT | FORMDB_RIGHT

|-
I
|
|-
(previously placed

unit)

FORMDB_BACK_LEFT | FORMDB_BACK | FORMDB_BACK_RIGHT

<Z_offset> specifies whether or not the placement along the ray includes a Z component, for
3-dimensional formations. This is only useful for air-formations. The values for <Z_offset> can be:

o FORMDB_LEVEL
o FORMDB_UP
e FORMDB_DOWN

<spacing_factor> specifies a positive real mulrtiplicative factor to use when applying a for-
mation spacing to vehicles along a ray. Vehicles placed on a diagonal ray will have an additional
implied multiplicative factor equal to the sqrt(2). This implies that a formation with a uniform

4 LibFormationDB Programmer’'s Guide

spacing factor for all rays will result in all units being placed on a virtual grid. For uniform spacing,
the <spacing_factor> will typically be equal to 1.0.

<max> specifies the integer maximum number of vehicles to be placed on a ray. A value of -1
means an infinite number of vehicles may be placed on this ray.

<placement-numberN> specifies the assignment order in which units are placed into a formation.
A unit's “job” (also referred to in ModSAF as its promotion index) is used to index this list to
decide when that unit should be placed with respect to other units in the formation. For example,
the ordering (2 3 1 4) specifies that the unit with a job of 1 should be placed second, the unit with
the job of 2 should be placed third, the unit with the job of 3 should be placed first, and so on.
This allows precise ordering of vehicle< in the formation to produce tactically correct assignments.
By convention, job 1 refers to a upit leader, such as a platoon leader, 2 refers to the leader’s
“wingman”, 3 refers to the unit's second-in-command, such as a platoon sergeant, and 4 refers
to the “wingman” of the second-in-command. Units with job numbers greater than the length of
the list will be placed after all other units in job number order. Negative indices can be used to
represent the placement of vehicles in last-to-first order. For example, the ordering (-1 -2 -3 -4)
indicates that the unit with a job of 1 will be placed last.

Note that in ModSAF, “jobs”, as reported in the taskOrgIndex and functionalOrgIndex fields
of a UnitClass Persistent Object, are indexed starting at zero, as opposed to the “jobs” referred
to in the libFormationDB data file, which are indexed starting at one (in order to match typical
Platoon training manuals). Hence, the assignment for the unit 1 specified in ‘formdb.rdr’ may refer
to a ModSAF entity containing a functionalOrgIndex of value O in its corresponding UnitClass
Persistent Object.

See section ‘Unit Class’ in LibPO Programmer’s Manual.

Multiple placement lists may be specified in order to allow formation orderings that minimize
crossing of vehicles or distance travelled.

As an example of complete formation specification, the following could be used to specify an
echelon-right formation.

;s Echelon formations are like column with a slant
HH 2 2 1 1

HH 1 1 2 2

HH 4 3 3 4

HH 3 4 4 3

o

Chapter 1: Overview

[.
(echelon-right
((-1 FORMDB_RIGHT_BACK FORMDB_LEVEL 1.0 -1))
(;; Wingman in front
(2143)
(21349
:: Leader in front
(1234
(1243

;; Reverse formations
(3412)
(4312
(4321
(3421)

1.3 Data Structures

Formation queries utilize the following data structure to encode unit information for both input
and output:

typedef struct formdb_data
{
/* Inputs =/
int32 job;
float64 current_position[3];

/* Outputs »/
float64 desired_position([3];
float64 scan_ccw;
float64 scan_cw;
} FORMDB_DATA;

The input fields of FORMDB_DATA are job and current_position, and they are used as input to
the formationdb query routines. The remaining fields are output fields set by the query function,
as follows:

desired_position is the location that this unit should should be at in order to be in formation.

scan_ccw and scan_cw define algorithmically generated scan sectors for the unit, represented
as counter-clockwise and clockwise radians in vehicle coordinates. Zero is out the front of the

6 LibFormationDB Programmer’s Guide

vehicle and increases positively counter-clockwise. The scan limits are interpreted the same way
as the slew limits are interpreted in libPhysDB (see section ‘physdb_nearest_angle’ in LibPhysDB
Programmer’s Manual). The scan sectors generated for vehicles in a formation are typical for that
vehicles in that formation.

Routes for station keeping are represented via the ROUTE_POINTS data structure in ‘stdroute.h’

Output routes generated by the formdb_create_routes routine will have point_id which ref-
erence the indices of the input route. Also, because of input route sampling, some input route point
indices may never be referenced by a generated output route.

1.4 Examples

The test programs ‘ftest.c’ and ‘rtest.c’ demonstrate the use of LibFormationDB to generate
the initial placement of units and the generation of station-keeping routes, respectively.

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libFormationDB, including the format
and meaning of its arguments, and the meaning of its return values (if any).

2.1 formdb._init

int32 formdb_init(directory, flags, ctdb)
char =directory;
uint32 flags;

CTDB #*ctdb;
‘directory’
Specifies the directory where the formdb file is expected
‘flags’ Specifies reader options (see section ‘reader_read’ in LibReader Programmer’s Manual)
‘etdb’ Specifies a CTDB terrain database to use for checking formations against water obsta-
cles.

formdb_init initializes libformdb, causing it to read its data file ‘formdb.rdr’ from the specified
directory. The flags are as in reader_read. The return value is zero if the read succeeds, or
one of the libreader return values: READER_READ_ERROR READER_FILE_NOT_FOUND.

Note that the 1ibreader function reader_init must be called before this function.

2.2 formdb_expand

int32 formdb_expand(formation_name, spacing, direction, location,
optimize, n_units, unit_data, assignment_key)

char *formation_name;
float64 spacing;
float64 direction;
float64 location(3];
int32 optimize;

int32 n_units;

FORMDB_DATA unit_data[];
int32 *assignment_key;

8 LibFormationDB Programmer’s Guide

‘formation name’
Specifies the name of the formation. This should be a libreader symbol.

‘spacing’ Specifies a desired spacing between units, in meters

‘direction’
Specifies the desired direction of the units in the formation, in radians. 0 is interpreted
as north, and directions increase positively counter-clockwise.

‘location’
Specifies the desired location of the center of mass of the formation. If it is equal to
(0.0, 0.0, 0.0], then the center of mass will remain unchanged.

‘optimize’
Specifies whether to allow reordering of the desired formation to minimize unit crossing
and unit movement.

‘n_units’ Specifies the number of units in the unit_data array.

‘unit_data’
Specifies and returns data for the units. Desired vehicle placement and scan sector
information will be returned in this data.

‘assignment_key’
If optimize is TRUE, an index for the optimal assignment chosen for the formation will
returned here. If optimize is FALSE, the assignment specified by assignment_key will
be used. assignment_key can be NULL, in which case the first assignment specified in
the ‘formdb.rdr’ database will be used if optimize is FALSE.

formdb_expand calculates desired positions, station-keeping information and scan sector infor-
mation for the units represented in the passed in unit_data to be in the specified formation,
spacing and direction. Note that the input fields of the the unit_data must be filled out prior
to this call.

assignment_key can be used to record an initial optimal assignment and to reuse that assign-
ment in later calls to formdb_expand.

A return value of O means that the routine succeeded. A return value of -1 indicates failure.
The only source of failure is an unrecognized formation name. In the case of failure, each unit’s
desired_position will be equal to its current_position, and nominal values will be supplied for
scan sectors.

2.3 formdb._create_routes

Chapter 2: Functions 9

int32 formdb_create_routes(formation_name, spacing, n_units, unit_data,
input_route, sampling_distance,
output_routes, input_following.unit,
assignment_key)

char sformation_name;
float64 spacing;
int32 n_units;

FORMDB_DATA unit_data[];
ROUTE_POINTS *input_route;

float64 sampling_distance;
ROUTE_POINTS output_routes(]:
int32 *input_following_unit;
int32 assignment_key;

‘formation name’
Specifies the name of the formation. This should be a libreader symbol.
‘spacing’ Specifies a desired spacing between units, in meters
‘n_units’ Specifies the number of units in the unit_data array.
‘unit_data’
Specifies job and current location data for the units. The return fields scan_ccw and
scancw will be set.
‘input.route’
Specifies the intput route as an ROUTE_POINTS structure (see ‘stdroute.h’)
‘sampling._distance’
Specifies the minimum distance between points in the input route that will be used to
create waypoints for the output routes.
‘output._routes’
Returns the routes that all the units in the unit_data should follow to stay in forma-
tion. On input, this should be an array of uninitialized ROUTE_POINTS. On output,
this array will contain data with each ROUTE_POINTS structure containing an initial-
ized allocated array of ROUTE_POINT. This memory must be deallocated when no longer
needed via STDDEALLOC(output._route[il.points).
‘input_following_unit’
Returns the index into the unit_data array of the unit which, due to the assignment
of units in a formation. could follow the input route and remain in formation. If no
such unit exists, =1 will be returned.
‘assignment_key’

Specifies the desired job pemition relationships (or to choose an optimal relationship, if
-1)

formdb_create_routes applii~ the specificd formation and spacing to the units in unit_data

10 LibFormationDB Programmer’s Guide

and the input_route and generates output_routes for every unit. The output routes will be
similar to the input.route except for:

1. route-point displacements to accouut for station-keeping offsets,

2. fewer points to smooth out input points that are too close together for followers to check-point
against. Input points that are closer to each other than sampling._distance will be ignored
in the generation of the output routes.

Every ROUTE_POINT in an output route will have a point_id referring to one of the original
point_id indices in the input_route. Note that this routine is not suitable for generating road
following routes, since waypoints for followers are not preserved.

Formations with an even spread and an odd number of units may contain a unit which could fol-

low the input route, as opposed to the generated output route. This is reported in input_following_unit.

Formations with an even number of vehicles typicaily generate output routes which straddle the
input route and will have a input_following_unit of -1.

A return value >= 0 means that the routine succeeded, and indicates the assignment order which
was chosen (see Section 2.2 [formdb’expand], page 7). A return value of -1 indicates failure. The
only sources of failure are an unrecognized formation name or an input route that is contains less
than two waypoints. In the case of failure, the output routes will be identical to the input routes,
and nominal values will be supplied for scan sectors.

Note that data allocated within the output_routes array must be freed when no longer in use.

2.4 formdb_generate roadmarch_order

void formdb_generate_roadmarch_order(n._units, unit_data, order_array)

int32 n_units;
FORMDB_DATA unit_data[];
int32 order_array[];

‘n_units’ Specifies the number of units in the unit_data array.

‘unit_data’
Specifies job and current location data for the units. The return fields of scan_ccw and
scancw will be filled out.

‘order_array’
Returns the order of march. Each element of this array is an index into the unit_data

Chapter 2: Functions 1
array.
Given unit_data, formdb_generate_roadmarch_order return the order on which the units

should follow one another on the road. This is currently defined as the preferred column order.
The order of march is defined by the order of indices returned in order_array.

2.5 formdb_occupy._area

void formdb.occupy.area(radius, location, n.units, unit.data, directions)

float64 radius;
float64 location[3];
int32 n.units;
FORMDB_DATA unit_data[];
float64 directions([];

‘radius’ Specifies the desired radius of the area

‘location’
Specifies the desired location of the center of mass of the formation. If it is equal to

[0.0, 0.0, 0.0], then the center of mass will remain unchanged.
‘n.units’ Specifies the number of units in the unit_data array.

‘unit_data’
Specifies and returns data for the units. Desired vehicle placement and scan sector

information will be returned in this data.

‘directions’
Returns the directions that each unit should face.

formdb_occupy._area returns desired positions for the units to be on a circle of a given radius
at a location to provide for all around security.

2.6 formdb_herringbone

void formdb_herringbone(spacing, direction, location, n_units, unit_data)
float64 spacing;

float64 direction;
float64 location[3];
int32 n.units;

FORMDB_DATA unit_data[];

12 LibFormationDB Programmer’s Guide

‘spacing’ Specifies a desired spacing between units, in meters

‘direction’
Specifies the desired direction of the units in the formation, in radians. 0 is interpreted
as north, and directions increase positively counter-clockwise.

‘location’

Specifies the desired location of the center of mass of the formation. If it is equal to
[0.0, 0.0, 0.0], then the center of mass will remain unchanged.

‘n_units’ Specifies the number of units in the unit_data array.

‘unit_data’
Specifies and returns data for the units. Desired vehicle placement and scan sector

information will be returned in this data.

formdb_herringbone returns desired positions for the vehicles to get off of the road from column
formation. For simplicity, this is currently modeled just as a staggered column. Because there is
no road information in formdb, there is no guarantee that this actually gets the units off the road.

ADST-TR-W003268

LibFwa

Table of Contents

1 O VeI VICW .o
2 Examples. ...

8 FUunCtionS ..o 7

3.1 fwadimit. ... e
3.2 fwacclassdnit......... L
3.3 fwaltick .o
3.4 fwa collisSion. e
35 fwadamage........... ... i

Chapter 1: Overview \

1 Overview

Libfwa implements an instance of the hull class of components. It provides a low-fidelity model
of fwa vehicle dynamics. Capabilities are modeled only to the second order (maximum velocity,
maximum acceleration).

The parameters of a fwa vehicle are specified in its configuration file as follows:

(fwa (c_drag_super <float >)
(c_drag_sub <float >)
(vehicle_mass <float> kg)
(thrust.min <float> N)
(thrust_max <float> N)
(lift_min <float> N)
(1ift_max <float> N)
(side_min <float> N)
(side_max <float> N)
(induced_drag_factor <float>)
(takeoff_alt <float m>)
(speed._tau <float sec>)
(fpa_tau <float sec>)
(track_tau <float sec>)
(roll_tau <float sec>)
(aca_tau <float sec>)
(fuel_usage <float kg/m>)
(airplane_drag_index <float >)
(takeoff_speed <float mps2>)
(thrust_map <char(32] filename)
(hard_turn_rate <float portion of current maximum>)
(standard_turn_rate <float degrees/second>)
(easy_turn_rate <float degrees/second>)
(hard_climb_rate <float portion of current maximum>)
(standard_climb_rate <float portion of current maximum>)
(easy_climb_rate <float portion of current maximum>)
(fuel_usage ;; All values floats, list in increasing order

(<percent> <percent> o)
(<altitude> <liter/sec> <liter/sec> o)
(<altitude> <liter/sec> <liter/sec> ee)
(... ee))

Applications interface to the fwa mdel primarily through the libhulls interface. The most
common interface for controlling \+hicle motion in the air is HULLS_SET_FLY_LEVEL. Libfwa will
do the normalization only if it i~ 1.ex e~<ary « for example, if the vehicle is already pointing the right
way, no normalization is needed .

2 LibFwa Programmer’s Guide

Libfwa supports only one instantiation per vehicle (i.e., a vehicle may not have more than one

fwa hull).
The following equations describe the dynamics of the fixed wing hull.

air_density = initial_air.density * exp(-Z/HR)
initial_air_density = .0249

HR = 34,602.5 -~ .146042

Z is the altitude of the vehicle

thrust = (mass » gravity * sin(flight_path_angle) +
mass * speed_rate_goal + drag)/cos(angle_of_attack)
track_force = mass * (speed)~2 * cos(flight_path_angle) =*
track.rate_goal
flight_path_angle_force = mass * speed *
flight_path_angle_rate_goal +
mass * gravity * cos(flight_path_angle)
roll_angle = arctan(track_force/flight_path_angle_force)

normal force = sqrt(flight_path_angle_force~2 + track_force"~2)
Coef_lift = 21,522.3
lift_goal = normal_force / (1.0 + (2.0 * thrust)/
air_density * Coef_lift * speed~2)
angle_of_attack = 2 * lift_goal /
(air.density * speed~2 * Coef_lift)
lift = (air_density * speed~2 * Coef_lift * angle_of_attack)/2

coef_sub_or_super : coef_drag_subsonic when speed < speed of sound
: coef_drag_supersonic otherwise
coef_drag : drag coef of weapons + drag coef of airplane
drag = air_density * speed”2 * coef_sub_or_super * coef_drag +
lift = angle_of_attack;

speed_rate = (thrust * cos(angle_of_attack) - drag) / mass » gravity
* sin(flight_path_angle);
flight_path_angle_rate = (lift + thrust * sin(angle_of_attack) +
cos(roll_angle) + side * sin(roll_angle))/speed
track_rate = (1ift + thrust + sin(angle_of_attack)) * sin(roll._angle)
/ mass * speed * cos(flight_path_angle)

Applications interface to the fixed wing aircraft (fwa) model primarily through the libhulls
interface. The libhulls library defines a common set of functions (and the semantics of those
functions) which are invoked on instances of the hulls class (such as those instantiated by libtracked,
libfwa, or libmissile).

Chapter 1: Overview

It is possible to modify the iwa model by changing an exisiting hulls interface function or by
adding a completely new function. To modify an existing hulls interface function requires the
following actions:

1. If the change occurs only in the function body, a change to the function code in ihe libfwa
library is all that is needed. If the change occurs to the function’s argument list, change the
function code in the libfwa library and change the hulls interface structure definition found
in libhulls.h. Also to maintain the common hulls interface, change the code for the modified
function in any other hull specific component library (such as libtracked and libmissile).

2. Recompile ModSAF.
To add an additional libfwa function to the current model requires the following actions:

1. Write the function as part of the libfwa library. The function is written in the code which
manages the libfwa class information attached to each vehicle (fwa_class.c).

2. Add the function and its declaration to any of the other hull specific component libraries. This
maintains the common hulls interface.

3. In thelibfwa source code that handles libhull initialization processing, include a function_number,
function entry identifying the new function for the cmpnt_define_instance function and ev-
ery other hull instance library (libtracked, libmissile, etc)

4. In libhulls.h, add an entry to identify the new macro and associate it with a function code
number. This new addition means that the number of hulls functions must be incremented by
one. The hulls interface structure definition that appears in libhulls.h must include a structure
to define the new function’s argument list.

5. Recompile ModSAF.
To replace this fwa model with a completely different one requires the following actions:

1. Decide on the get functions and set functions that would be required in the new model. Try to
map these needed functions to the existing hulis interface. A function can map if its argument
list can remain the same. Functions that can not map must be added to the hulls interface.

2. For those functions that can map to the existing hulls interface but whose code body you want
to change, edit the code for the function in the libfwa source file that contains the code to
manage the libfwa class information (such as fwa_class.c).

3. For those functions that can’t map to the existing hulls interface, add an additicnal function
to the hulls interface. The addition procedure was described above.

4. Recompile ModSAF.

4 LibFwa Programmer’s Guide

If an interface function is no longer needed, it is possible but not required, to remove it. Deletion
of an interface function is only allowed when that function is not needed in any of the specific

component libraries,
The deletion process requires these steps:

1. Delete the function code from each specific component library.

2. In the generic component library, remove the "function_number, function” entry identifying
the excess function in the "cmpnt.define_instance" function call. This function call is found in
the library’s initialization code segment. In the library’s public header file, remove the entry
for the excess macro and its associatiated function code number. Decrease the number of
interface functions by one. Delete the structure that defines the excess function’s argument
list in the interface structure definition.

3. Recompile ModSAF.

Chapter 2: Examples

2 Examples

To get the component number of my hull:

extern int32 my_hull;

if ((my_hull = cmpnt_locate(vehicle_id, reader_get_symbol("hull"))) ==
CMPNT_NOT_FOUND)

printf(“"Vehicle %d does not seem to have a hull\n", vehicle.id);
To then give a command to that hull:

if (my_hull != CMPNT_NOT_FOUND)
HULLS_SET_DIRECTION_SPEED(vehicle_id, hull, dirvec, speed, 0.0, 0.0);

LibFwa Programmer’s Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libfwa, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 fwa_init
void fwa_init()

fwa_init initializes libfwa. Call this before calling any other libfwa functions.

3.2 fwa_class_nit

void fwa_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class).

fwa_class_init creates a handle for attaching fwa class information to vehicles. The par-
ent_class is one created with class_declare_class.

3.3 fwa_tick

void fwa_tick(vehicle_id, ctdb)
int32 vehicle_id;
CTDB =ctdb;

‘vehicle_id’
Specifies the vehicle ID
‘ctdd’ Specifies the terrain database

fwa_tick ticks the fwa hull dynamics model.

' 8 LibFwa Programmer’s Guide

3.4 fwa_collision

void fwa_collision(vehicle_id, position, coll_type,
other_id, other_mass, other_velocity)
int32 vehicle._id;
float64 position[3];
uint32 coll_type;
int32 other.id;
float64 other_mass;
float64 other.velocity([3];

‘vehicle_id’
Specifies the vehicle ID
‘position’
Specifies the position of impact in world coordinates
‘coll_type’
Specifies the type of collision these values are defined in the library 1libcollision.
‘other.id’
Specifies the vehicle ID of the other party (or 0 if terrain)
‘other_mass’
Specifies the mass of the other party

‘other_velocity’
Specifies the velocity of the other party

fwa_collision tells the fwa hull dynamics model that a collision occured. The coll.type should
be one of the libcollision constants:

COLL_TREES
Indicates crossing a treeline or canopy edge.
COLL_BUILDINGS
Indicates crossing a building or other structure. If the other structure is represented
on the network, the vehicle ID of that structure should be provided.
COLL_GROUND
Should not be checked for ground vehicles.
COLL_PLATFORMS
Indicates intersecting a platform (vehicle, DI, etc.).
COLL_MISSILES
Indicates intersecting a missile (an entity on the network with a munition type.

fwa_collision sets the vehicles appearance to smoking and flaming. If the collision is with the

p— — —-— —— L 4 - — T W W W ——— _——— -——— —— — —

Chapter 3: Functions 9

ground, the vehicles appearance is also set to destroyed.

3.5 fwa_damage

void fwa_damage(vehicle_id, damage)
int32 vehicle_id;
int32 damage;

‘vehicle_id’
Specifies the vehicle ID

‘damage’ Specifies whether the fwa dynamics should simulate being damaged

fva_damage tells the fwa hull dynamics model that it is damaged (or not) depending on the
boolean value of the damage flag.

Libgenradio

ADST-TR-W003268

Table of Contents

1

2

OVerVIeW 1
L1 Examples...... ..o 1
Functions................ 3
21 graddmit... ... 3
22 gradclassdmit............ ... 3
23 gradcreate...............o.iiiiiii e 4
24 graddestroy i 4
25 gradsendotext........ ... 4
2.6 gradsubscribe...... ... 5
2.7 gradtick........ 5

Chapter 1: Overview 1

1 Overview

LibGenRadio provides rudimentary radio communications to ModSAF entities. It allows trans-
mission of ASCII strings using the radio protocols of SIMNET and DIS, including issuance of
transmitter and signal PDU’s.

Initially, functionality is limited to vehicles sending brief messages, which are then received and
displayed by the GUI.

1.1 Examples
/* currently in main.c */ grad.init(data_dir, READER_OVERRIDE, valve, 0);
[* currently in so-nit.c */ grad_class_init(safobj_class);
/* currently in solocal.c */ grad._create(vehicle_id, (GENRADIO_.PARAMETRIC_DATA *)parms);
/* currently done from tasks */ grad_send_text(vehicle_id, *Standing by");

/* currently done from soJlocal.c */ grad_destroy(vehicle.id);

LibGenRadio Programmer’s Guide

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libgenradio, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 grad.nit

void grad_init(data_dir, flags, valve, protocol)

char *data_dir;

uint32 flags;

PV_VALVE_PTR valve;

int32 protocol;
‘data_dir’

Path to data files.
‘flags’ Flags to pass to libreader.

‘valve’ Libpktvalve handle to use for network access.
‘protocol’

Protocol version in effect for this run of ModSAF.

grad_init initializes LibGenRadio. Call this before any other libgenradio function.

2.2 grad_class_init

void grad_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class)

grad_class_init creates a handle for attaching genradio class information to vehicles. The
parent_class will likely be safobj_class.

4 LibGenRadio Programmer’s Guide

2.3 grad_create

void grad_create(vehicle_id, params)
int vehicle_id;
GENRADIO_PARAMETRIC_DATA *params;

‘vehicle_id’
Specifies the vehicle ID

‘params’ Specifies initial parameter values

grad_create creates the genradio class information for a vehicle and attaches it vehicle’s block
of libclass user data.

There are currently no parametric data.

2.4 grad_destroy

void grad_destroy(vehicle_id)
int vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

grad_destroy frees the genradio class information for a vehicle. This should be called before
freeing the class user data with class_free_user_data.

2.5 grad._send_text

void grad_send_text(vehicle_id, string)
int32 vehicle_id;
char sstring;

‘vehicle_id’
Specifies the vehicle

‘string’ Points to the text to be sent over the radio.

Chapter 2: Functions 5

grad_send_text initiates transmission of the specified text over the vehicle’s radio. The length
of the string sent is truncated to GRAD_MAX_MSG_LEN, which is defined in libgenradio.h. An internal
copy of the text is maintained, so the memory indicated by string may safely be altered or
deallocated any time after this function returns.

2.6 grad_subscribe

void grad_subscribe(vehicle_id, message_queue)
int32 vehicle_id;
QUEUE_QUEUE message_queus;

‘vehicle_id’
Identifies the vehicle containing the radio

‘ctdd’ Specifies the queue for incoming messages

grad_subscribe requests that incoming messages be enqueued on the passed queue. The mes-
sages are placed in the queue using a GRAD_MESSAGE structure:

typedef struct grad_message
{

uint32 time_received;
int32 sender_id;
char text[];

} GRAD_MESSAGE;

Only ModSAF generated ASCII text messages will be enqueued.

Libgenradio will take care of the deallocation of the queue when the vehicle is destroyed; however,
it is the responsibility of the caller to flush any messages remaining on the queue.
2.7 grad_tick

void grad_tick(vehicle_id, ctdd)
int32 vehicle_id;
CTDB =ctdb;

‘vehicle_id’
Identifies the vehicle containing the radio to be ticked.

‘ctdb’ Specifies the terrain database

grad_tick checks radio state and issues PDU’s as required.

LibGenRadio Programmer’s Guide

ApST-TR-W003268
LibGenturret
|
|
l
|
I
|
|
l

Table of Contents

1

2

3

O VeIV OW L
Examples ...

FUN Gt O S o 7

3.1 genericturretdnit... ...
3.2 genericturret_classdinit..................c.oo
3.3 genericturret ticki i e
3.4 generic_turret.damage..............c.oiiiiiiiiiii i

Chapter 1: Overview 1

1 Overview

Libgenturret implements an instance of the turret class of components. It provides a low-fidelity
model of generic turret dynamics and capabilities. Turrets that can not support 360 degree slewing
(as reported in libphysdb) are supported. Turrets can be described as having either a continuous
range of slew rates or set discrete rates.

The parameters of a generic turret are specified in the configuration file for the vehicle containing
such a turret as follows

(generic-turret (physdb-name <name>)
(rates continuous <min-slew deg/sec> <max-slew deg/sec>))
OR
(generic-turret (phsydb-name <name>)
(rates discrete <ratel slew deg/sec>

<rate2 slev deg/sec>
<rate3 slew deg/sec>
;; rates must be monotonically increasing
eed))

The <name> must match the name of the turret as specified in the libphysdb database. The
rates are in degrees per second. For continuously slewable turrets, the minimum slew rate is the
slowest the turret can slew without stopping, and will frequently be 0. For discretely slewable
turrets, the rates are the various speeds the turret can slew.

Applications interface to the generic turret model primary through the libturrets interface. The
most efficient interface for controlling turret azimuth is TURRETS _SET_AZIMUTH.

Libgenturret supports up to 4 instantiations per vehicle (i.e., a vehicle can have up to 4 generic
turrets).

The libturrets library defines a common set of functions (and the semantics of those functions)
which are invoked on instances of the turrets class (such as those instantiated by libgenturret).

It is possible to modify the generic turret model by changing an exisiting turret interface function
or by adding a completely new interface function. The process of modification of an existing
libgenturret function is fairly simple when the change occurs only in the function body. In that
case, the programmer would only need to change the function code in the libgenturret library. The
process of modification of an existing libgenturret function is more complicated when the change
occurs to the function’s argument list. In that case, the programmer would need to change both

libturrets.h. Currently libgenturret is the only turret specific component, but if there were more,
the programmer would also need to change the code for the modified function in those libraries
to maintain the common turrets interface. When all these changes have been made to the source
code, ModSAF would need to be recompiled.

To add an additional interface function to the current model, 2 programmer would need to
perform the following actions:

1. Write the function as part of the libgenturret library. The function is written in the code that
manages the libgenturret class information attached to each vehicle (gtur_class.c).

2. Currently libgenturret is the only turret specific component, but if there were others, the
programmer would need to add the function and its declaration to their libraries to maintain
the common turrets interface.

3. In the libturrets source code that handles libturrets initialization processing, include a func-
tion_number, function entry identifying the new function for the cmpnt_define_instance
function.

4. In libturrets.h, add an entry to identify the new macro and associate it with a function code
number. Increment the number of turret interface functions by one. Include a structure to
define the new function’s argument list in the turrets interface structure definition.

5. Recompile ModSAF.

To replace this genturret model with a completely different one would require the following
actions:

1. Decide on the interface functions that would be required in the new model. Try to map these
needed functions to the existing turrets interface. A function can map if its argument list can
remain the same. Functions that can not map must be added to the turrets interface.

2. For those functions that can map to the existing turrets interface but whose code body you
want to change, edit the code for the function in the libgenturrets source file that contains the
code to manage the libgenturret class information (gtur_class.c).

3. For those functions that can’t map to the existing turrets interface, add an additional function
to the turrets interface. The addition procedure was described above.

4. Recompile ModSAF.

Since libgenturret is the only specific turret library, it would be safe, but not required, to
remove any model functions that are no longer needed. This deletion of functions would be more

2 LibGenturret Programmer’s Guide
the function code in the libgenturret library and the turrets interface structure definition found in
l problemetic if there were multiple turret models. In that case it would be necessary to check

Chapter 1: Overview

that the function was not needed in one of the other specific component libraries. To remove an
unnecessary libgenturret function from the current model, a programmer would need to perform
the following actions:

1. Delete (or comment out) the function code from the libgenturret library (see gtur_class.c). If
there were other specific turret component libraries, the function would be deleted from those

libraries as well.
2. In the libturrets initialization code. remove the "function_number, function" entry identifying
the excess function in the "cmpnt.definednstance” function call.

3. Inlibturrets.h, remove the entry that identifies the excess macro and its associatiated function
code number. Delete the number of turret interface functions by one. Delete the structure

that defines the excess function’s argument list.
4. Recompile ModSAF.

LibGenturret Programmer’s Guide

Chapter 2: Examples 5

2 Examples

To get the component number of a turret with a particular name (such as "primary-turret"):

int32 turret;

if ((turret = cmpnt_locate(vehicle_id, name)) ==
CMPNT_NOT_FOUND)
printf("Vehicle %d does not seem to have a turret called \"¥s\".\n",
vehicle_id,
name) ;

To then give a command to that turret (the macro is defined by libturrets; it assembles a
TURRETS_INTERFACE structure, and calls cmpnt_invoke):

if (turret != CMPNT_NOT_FOUND)
TURRETS_SET_AZIMUTH(vehicle_id, turret, azimuth);

LibGenturret Programmer’s Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libgenturret, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 generic_turret_init
void generic_turret_init()

generic_turret_init initializes libgenturret. Call this before calling any other libgenturret
functions.

3.2 generic_turret_class_init

void generic_turret_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Class of the parent (declared with class_declare_class).

generic_turret_class_init creates a handle for attaching generic_turret class information to
vehicles. The parent_class is one created with class_declare_class.

3.3 generic_turret_tick

void generic_turret_tick(vehicle_id)
int32 vehicle_id;

‘vehicle_id’
Specifies the vehicle ID

generic_turret_tick ticks the generic turret dynamics model.

8 LibGenturret Programmer’s Guide

3.4 generic_turret_damage

void generic_turret_damage(vehicle_id, damage)
int32 vehicle_id;
int32 damage;

‘vehicle_id’
Specifies the vehicle ID

‘damage’ Specifies whether the generic turret should simulate being damaged

generic_turret_damage tells the generic turret model that it is damaged (or not) depending
on the boolean value of the damage flag.

ADST-TR-W003268

LibGraphics

Table of Contents

1 OVerVIieW ... 1
2 UsaBe 3
2.1 Building Libgraphics........................ 3
2.2 Linking with Libgraphics. 3
8 Functions.................. .. 5
3.1 grphdmit ... 5
3.2 grphcreateeditors....... 5
3.3 grph.register_association 6
34 grphedittext. 6
3.5 grphclassdnit........... .. T
3.6 grphecreate...... 7
3.7 grphadestroy 7
3.8 grphchanged 8

39 grphoverlaychanged...................... ... 8

Chapter 1: Overview)

1 Overview

LibGraphics implements a C2 subclass for the display and editing of persistent objects. It
handles the display of points, lines, text, and taskframes, and the editing of points, lines, and text.
Fach class of object has a corresponding sensitive class, which is used when the graphic is displayed.
LibGraphics also allows other libraries to register their own sensitive classes which are used when
the displaying text associated with objects of other classes (such as Units).

LibGraphics Programmer’s Guide

Chapter 2: Usage

2 Usage

The software library ‘1libgraphics.a’ should be built and installed in the directory
‘/common/1ib/’. You will also need the header file ‘1ibgraphics.h’ which should be installed in
the directory ‘/common/include/libinc/’. If these files are not installed, you need to do a ‘make’
in the libgraphics source directory. If these files are already built, you can skip the section on

building libgraphics.

2.1 Building Libgraphics

The libgraphics source files are found in the directory ‘/common/libsrc/libgraphics’. ‘RCS’
format versions of the files can be found in ‘/nfs/common_src/libsrc/libgraphics’.

If the directory ‘common/libsrc/libgraphics’ does not exist on your machine, you should use
the ‘genbuild’ command to update the common directory hierarchy.

To build and install the library, do the following:

cd common/libsrc/libgraphics
co RCS/+,v
make install

This should compile the library ‘1libgraphics.a’ and install it and the header file
‘libgraphics.h’in the standard directories. If any errors occur during compilation, you may need
to adjust the source code or ‘Makefile’ for the platform on which you are compiling. libgraphics
should compile without errors on the following platforms:

L Mips

¢ SGI Indigo
e Sun Sparc

2.2 Linking with Libgraphics

Libgraphics can be linked into an application program with the following link time flags: ‘ld
(source .o files] -L/common/1ib -lgraphics [other libraries]’. If your compiler does not

]

4 LibGraphics Programmer’s Guide

support ‘-L’ syntax, you can use the archive explicitly: ‘1d [source .o files]
/common/1ib/libgraphics.a’.

Libgraphics depends directly on the following libraries: libselect, libprivilege, libsafgui, lib-
tactmap, libcoordinates, libsensitive, libeditor, libreader, libclass, and libpo.

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libgraphics, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 grph.nit
void grph_init()

grph_init initializes libgraphics. Call this function before calling any other libgraphics func-
tions.

3.2 grph_create_editors

int32 grph_create_editors(data_path, reader_flags,
gui, tactmap, tcc, map_erase._gc,
sensitive, refresh_event, db, select)

char *data_path;
int32 reader_flags;
SGUI_PTR gui;
TACTMAP_PTR tactmap;
COORD_TCC_PTR tce;

GC map_erase_gc;

SNSTVE_WINDOW_PTR sensitive;
CALLBACK_EVENT_PTR refresh_event;
PO_DATABASE *db;
SELECT_TOOL_PTR select;

‘data_path’
Specifies the directory wheir data files are expected

‘reader_flags’
Specifies flags to be passed to reader_read when reading data files

‘gui’ Specifies the SAF GUI
‘tactmap’ Specifies the tactical map
‘tec’ Specifies the map coordinate system

‘map_erase_gc’
Specifies the GC which can erase things from the tactical map

6 LibGraphics Programmer’s Guide

‘sensitive’
Specifies the sensitive window for the tactical map

‘refresh_event'’
Specifies the event which fires when the map is refreshed

‘db’ Specifies the persistent object database

‘select’ Specifies the select tool

grph_create_editors creates the graphics editors. The data file (‘graphics.rdr’) is read
either from ‘.’ or the specified data path, depending upon the reader_flags. The reader_flags
are as in reader_read. The return value is zero if the read succeeds, or one of the libreader return
values: READER_READ_ERROR, READER_FILE_NOT_FOUND.

3.3 grph.register_association

void grph_register_association(gui, po_class, snstve_class)

SGUI_PTR gui;
PersistentObjectClass po_class;
SNSTVE_CLASS *snstve_class;
‘gui’ Specifies the SAF GUI
‘po.class’

Specifies the persistent object class (objectClassUnit, etc.)

‘anstve_class’
Specifies the sensitive class

gTrPh.register_association tells the graphics editors the sensitive class which should be used
when displaying text associated with objects of the specified PO class. This should be called after
all graphics editors have been created.

3.4 grph_edit_text

void grph_edit_text(gui, id)
SGUI_PTR gui;
ObjectID =id;

‘gui’ Specifies the GUI

Chapter 3: Functions

‘id’ Specifies the ID of the text to edit

grph_edit_text starts up the text editor for the passed text object. This function is provided
to allow editing of the text associated with an object. Note that the caller is responsible for making
sure the GUl is in a state where the text editor can be started (i.e., another 0BJECT_MODE editor is

not running).

3.5 grph_class_init

void grph_class_init(parent_class)
CLASS_PTR parent_class;

‘parent_class’
Specifies the parent class (probably c2obj._class)

grph_class_init creates a handle for attaching graphics class information to entries. The
parent_class is one created with class_declare_class.

3.6 grph_create

void grph_create(entry)
PO_DB_ENTRY *entry;

¢

entry’ Specifies the graphic entry

grph.create creates the graphics class information for a entry and attaches it to the entry’s
libclass user data. This function simply returns if no graphics editors have been created (running
without a GUI), or the entry is not of a class for which libgraphics is responsible.

3.7 grph_destroy

void grph_destroy(entry)
PO_DB_ENTRY *entry;

‘entry’ Specifies the graphic entry

8 LibGraphics Programmer’s Guide

grph_destroy frees the graphics class information for a entry.

3.8 grph_changed

void grph_changed(entry)
PO_DB_ENTRY =entry;

?

‘entry Specifies the graphic entry

gcph_changed updates displayed graphic in response to a libpo obj ect_changed event.

3.9 grph_overlay_changed

void grph_overlay_changed(entry)
PO_DB_ENTRY #*entry;

‘entry’ Specifies the graphic entry

grph_overlay_changed updates displayed graphic in response to a libpo object.changed event
for the graphic’s overlay.

ADST-TR-W003268

LibGuns

Table of Contents

1 O VTV W i 1

3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

2 Examples ..o 5
8 Functionsoooooiiiiiiii 7
31 GUBSAMIL ...ttt e 7
3.2 GUNS.GETMAGAZINESIZE. ...t 7
3.3 GUNSSET.LOADMUNITION ..ottt 7

GUNSSET.UNLOADMUNITION ..., 8
GUNS_GET_LOADEDMUNITION ... &
GUNSSET LAUNCHERPOSITION ..., 9
GUNS.GET.-LAUNCHER.POSITION...............ocooiiiiiii, 9
GUNSSET.ELEVATION..... ... i 10

Chapter 1: Overview 1

1 Overview

Guns is a SAF components class. The purpose of a components class is to define a common
set of functions which are invoked on instances of that class, and the semantics of those functions.
Other than defining these functional semantics, components classes don’t actually *do* anything.

Access to gun functions is achieved through macros defined by libguns. These macros invoke
‘cmpnt_invoke’ with a code number which identifies the function to run. Libcomponents then runs
this function for the particular gun mode via a jump table.

The table below shows how the gun component relationships have been currently implemented
via the ModSAF library structure.

specific libraries generic library architectural library
libbalgun libguns libcomponents
libmlauncher libguns libcomponents

As mentijoned above, libguns requires the services of libcomponents, an architectural library
which provides a level of abstraction away from the specific gun component interfaces. When the
ModSAF application gets set up to run, the libguns initialization process directs libcomponents
to define a gun component class. This information enables libcomponents to define a structure
to accommodate all of the gun instantiations a simulated object is allowed to have. The libguns
initialization process also tells libcomponents the number of its defined gun interface functions.
This enables a simulated object’s user data to be allocated enough space to hold the address of
each of the interface functions defined in libguns.

The parametric data of libcomponents identifies each component that needs to be modeled when
a vehicle is simulated. For example, a component entry for a T72 tank might look like this: (see
the file named USSR.T72M_params.rdr)

(SM_Components (hull SM_TrackedHull)
(turret SM_GenericTurret)
(machine-gun [SM_BallisticGun | 0])
(main-gun [SM_BallisticGun | 1])
(visual SM_Visual))

A T72M simulated vehicle (which belongs to the safobj class) will have component sub-class data
which tells the ModSAF software to maintain a structure that includes one libbalgun instantiation
for the machine gun and one libbalgun instantiation for the main gun.

2 LibGuns Programmer’s Guide

Since an application will interface to libbalgun or libmlauncher through libguns, a tank’s main
gun shooting control commands (which are performed by libbalgun) and an airplane’s missile
launcher commands (which are performed by libmlauncher) are both issued via the interface defined
by libguns. A command to load ammunition is therefore the same whether the object is loading a
main gun, machine gun, or missile launcher. What is different is the type or ammunition to load and
that is passed as input to the gun function. Similarly, an application can obtain information about
the state of any of its guns though the libguns interface. The table below shows the relationship
between the specific and generic library for the guns component.

Instantiations of Belong to generic Have a command

of the library: component class: interface defined in:
libbalgun guns libguns
libmlauncher guns libguns

The interface to libguns is defined in its public header file (libguns.h). This interface lets an
application set gun controls or get gun information without knowing which specific gun model is
being used. Applications interface to the ballistic gun model or missile launcher model primarily
through the macros defined in libguns. These macros map to functions which are invoked on
instances of the guns sub-class (such as the libmlauncher component instantiated for an airplane
or the libbalgun component instantiated for a tank).

One interface for controlling a gun is the macro GUNS_SET_UNLOAD_MUNITION which maps to a
function which starts the procedure of transfering a given number of loaded munitions to a storage
bin. A possible definition for this macro is shown below.

#define GUNS_SET_UNLOAD_MUNITION(_vid, _cnum, _store, _quantity)

{

GUNS_INTERFACE _gif;

-gif.u.set_unload_munition.store = _store;

-gif.u.set_unload _munition.quantity = _quantity;

capnt_invoke (GUNS_SET_UNLOAD_MUNITION_FCN, _vid, _cnum, (ADDRESS)&_gif);
}

The GUNS_INTERFACE structure defined in libguns.h is the structure which is passed to any gun
function. This structure is a union of structures that each define an argument list for a gun interface
function. An abbreviated example that assumes there are only two gun functions is shown below.
Typically there will be many interface functions and therefore more structure definitions in the
unijon. The macros hide this structure from the users of these functions.

typedef struct guns_interface

——— -— —-— TSy W U W T U U T OBl T U e T T

Chapter 1: Overview 3
{
union
{

struct guns_set_unload_munition

int32 store;
int32 quantity;
} set_unload_munition;
struct guns_get_loaded_munition
{
uint32 munition;
int32 quantity;
} get_loaded_munition;
} u;
} GUNS_INTERFACE;

Issuing a command to an objects’s gun component is done by invoking one of the macros defined
in libguns. These macros identify the specific component function which needs to be called. For
example, invoking the GUNS_SET_UNLOAD_MUNITION macro will result in the calling of the specific
component function named set_.unload_munition. In the public header file of each generic library,
macros are associated with a function code number so that a call to the libcomponents library
(via the cmpnt.invoke function) will dispatch a call to the appropriate function. The specific
component functions are defined and installed by the specific libraries (libbalgun and libmlauncher).
In this case, both libraries install a function with the same name, "set_unload_munition" (there
is no name conflict because each function is declared static). It is the specific function (either
libbalgun’s set_unload.munition or liblmauncher’s set_unload_munition) which is called when the
macro is invoked.

Invoking the macro results in two actions: (1) setting up of the interface structure and (2)
passing of necessary information to libcomponent. The macro passes the vehicle id, component
number, and function pointer index to libcomponent so that the appropriate library (libbalgun or
libmlauncher) data can be accessed. The requested function can require input (such as a storage
bin to unload the munition into and a quantity to transfer into the storage bin) and/or output
(such as a setting) . Therefore, libcomponents must also be passed the address of the interface
structure that holds this data.

4 LibGuns Programmer’s Guide

e |

Chapter 2: Examples 5

' 2 Examples
To initialize libbalgun. an instance of the gun class which provides for up to BGUN_MAX_GUNS
guns per entity:
int32 i;
char buf[256];
for (i = 0; i < BGUN_MAX_GUNS; i++)
{
(void) sprintf(buf, “gun¥d", i);
bgun_user_data_handle(i] =
class_reserve_user_data(parent_class, buf, bgun_print);
}
/* Tell libcomponents we are available. #*/
<mpnt_define_instance(SM_BallisticGun, BGUN_MAX_GUNS,
bgun_user_data_handle,
bgun_create, bgun_destroy,
GUNS_GET_MAGAZINE_SIZE_FCN, get.magazine_size,
GUNS _SET_LOAD_MUNITION_FCN, set_load_munitionm,
GUNS_SFT, YLOAD.MUNITION_FCN, set_unload_munition,
GUNS_G* . . 'ADED_MUNITION_FCN, get_loaded_munition,
GUNS_SLT '.AUNCHER_POSITION_FCN,set_launcher_position,
GUNS_GET_LAUNCHER_POSITION_FCN,get_launcher_position,
GUNS_SET_ELEVATION_FCN, set_elevation,
GUNS_SET.TARGET_FCN, set_target,
GUNS_SET_LOCATION_FCN, set_locationm,
GUNS_GET_TARGET_IS_TRACKED_FCN,get_target_is_tracked,
GUNS_GET_LOCATION_IS_TRACKED_FCN,
get_location_is_tracked,
GUNS_GET_READY_TO_FIRE_FCN, get_ready_to_fire,
GUNS_GET_MUNITION_READY_FCN, get_munition_ready,
GUNS_SET_FIRE_FCN, set_fire,
GUNS_SET_FIRE_AT_TARGET_FCN, set_fire_at_target,
GUNS_SET_FIRE_AT_LOCATION_FCN, set_fire_at_location,
GUNS_GET_ALLOWED_MUNITIONS_FCN, get_allowed_munitions);

To get the component number of a gun with a particular name (such as "main-gun"):

int32 gun;

if ((gun = cmpnt_locate(vehicle_id, name)) ==
CMPNT _NOT_FOUND)
printf("Vehicle %d does not seem to have a gun called \"}s\".\n",
vehicle_id,
name) ;

6 LibGuns Programmer’s Guide

To then give a command to that gun (the macro is defined by libguns; it assembles a GUNS_INTERFACE
structure, and calls cmpnt_invoke):

if (gun != CMPNT_NOT_FOUND)
GUNS_SET_ELEVATION(vehicle_id, gun, elevation);

Chapter 3: Functions 7

3 Functions

The following sections describe each function provided by libguns, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 guns_init
void guns_init();

guns_init initializes libguns. Call this function after cmpnt_init, and before any specific gun
init functions.

3.2 GUNS_.GETMAGAZINESIZE

void GUNS_GET_MAGAZINE_SIZE(_vid, _cnum, _quantity)
int32 _vid;
int32 _cnum;
int32 *_quantity;

‘vid’ Specifies the vehicle ID

¢ ?

-cnum Specifies the gun component number

‘_quantity’
Returns the maximum magazine size of munitions loadable

GUNS_GET_MAGAZINE_SIZE returns (by reference) the maximum magazine of munitions that can
be simultaneously loaded into the gun.

3.3 GUNSSET.LOAD_MUNITION

void GUNS_SET_LOAD_MUNITION(_vid, _cnum, _munition, _store, _quantity)
int32 _vid;
int32 _cnum;
int32 _store;
uint32 _munition;
int32 _quantity;

8 LibGuns Programmer’s Guide
‘_vid’ Specifies the vehicle ID

‘_cnum’ Specifies the gun component number

‘_munition’

Specifies the type of munition to load
‘_store’ Specifies from what store to load the munition from

‘_quantity’
Specifies the quantity of munitions to load into the gun

GUNS_SET_LOAD_MUNITION starts the loading procedure of a number of munitions from the
supplied store. Illegal requests to load too many munitions will be clipped to legal amounts.

3.4 GUNSSET.UNLOADMUNITION

void GUNS_SET_UNLOAD_MUNITION(_vid, _cnum, _store, _quantity)
int32 _vid;
int32 _cnum;
int32 _store;
int32 _quantity;

‘vid’ Specifies the vehicle ID

¢]

_cnum Specifies the gun component number

‘_store’ Specifies into what store to unload the munition into
‘.quantity’
Specifies the quantity of munitions to unload from the gun

GUNS_SET_UNLOAD_MUNITION starts the unloading procedure of a number of already loaded mu-
nitions into the supplied store. Illegal requests to unload too many munitions will be clipped to
legal amounts.

3.5 GUNS.GET.LOADEDMUNITION

void GUNS_GET_LOADED_MUNITION(_vid, .cnum, _munition, _quantity)
int32 _vid;
int32 _caum;
uint32 *_munition;
int32 *_quantity;

Chapter 3: Functions

‘vid’ Specifies the vehicle ID

3

-cnun’ Specifies the gun component number

‘_munition’
Returns the loaded munition

‘_quantity’
Returns the loaded quantity

GUNS_GET_LOADED_MUNITION returns (by reference) the quantity and munition loaded in the
gun.

3.6 GUNSSET_LAUNCHER_POSITION

void GUNS_SET_LAUNCHER_POSITION(_vid, _cnum, _active)
int32 _vid;
int32 _cnum;
int32 _active;

‘vid’ Specifies the vehicle ID
‘ .cnum’ Specifies the gun component number

‘_active’ Specifies whether to set the launcher active or not

GUNS_SET_LAUNCHER_POSITION starts process of putting gun in active or inactive position based
on the boolean value of active. For things like a TOW missile launcher or a LOSAT mast launcher,
this may take some time and/or result in appearance modifiers changing in the entity. A gun must
made active before it is ready to fire.

3.7 GUNS_.GET_ LAUNCHER_POSITION

void GUNS_GET_LAUNCHER_POSITION(_vid, _cnum, _active)
int32 _vid;
int32 _cnum;
int32 =*_active;

‘vid’ Specifies the vehicle ID
¢ caum’ Specifies the gun component number

10 LibGuns Programmer’s Guide

‘_active’ Returns current state of gun position

GUNS_GET_LAUNCHER_POSITION retrieves state of gun launcher. This returns TRUE if the gun has
only one position or if the gun is in the firing position.

3.8 GUNSSET_ELEVATION

void GUNS_SET_ELEVATION(_vid, _cnum, _el)
int32 _vid;
int32 _cnum;
int32 _el;

‘_vid’ Specifies the vehicle ID

-cnunm’ Specifies the gun component number

‘.el’ Specifies the desired elevation

Certain guns (such as a tank main gun) can be elevated. For those guns, GUNS_SET_ELEVATION
will select a desired elevation for that gun. If the gun does not support elevation, this will not do
anything. If the requested elevation is not possible, the requested elevation will be clipped to a
legal value.

Setting the elevation of the gun automatically takes the gun out of the target tracking mode
(see Section 3.9 [GUNS'SET 'TARGET], page 10) or location tracking mode (see Section 3.10
[GUNS'SET'LOCATION], page 11).

3.9 GUNSSET.TARGET

void GUNS_SET_TARGET(_vid, _cnum, _targetid)
int32 _vid;
int32 _cnum;
int32 _targetid

‘_vid’ Specifies the vehicle 1)
‘ _cnum’ Specifies the gun component number

‘_targetid’
Specifies the id of the target to track

Chapter 3: Functions 11

GUNS_SET_TARGET puts the gun in an automatic mode where the gun will attempt, through
use of the gun’s turret component, to track on the targetid. Note that if the gun’s turret is not
slewable, this may not do anything.

Setting the elevation of the gun (see Section 3.8 [GUNS'SET'ELEVATION], page 10) automat-
ically takes the gun out of this target tracking mode.

3.10 GUNS SET.LOCATION

void GUNS_SET_LOCATION(_vid, _cnum, _location)
int32 .vid;
int32 _cnum;
float64 _location{3];

‘vid’ Specifies the vehicle ID

¢ ’

.cnum Specifies the gun component number

‘.location’
Specifies the location to track

GUNS_SET_LOCATION puts the gun in an automatic mode where the gun will attempt, through
use of the gun’s turret component, to track on the location. Note that if the gun’s turret is not
slewable, this may not do anything.

3.11 GUNS_GET.TARGETJAS_.TRACKED

void GUNS_GET_TARGET.IS_TRACKED(_vid, .cnum, _targetid, _result)
int32 _vid;
int32 _coum;
int32 _targetid;
int32 =»_result;

‘_vid’ Specifies the vehicle ID

~cnunm’ Specifies the gun component number

‘_targetid’
Specifies the id of the target to track

‘.result’ Returns whether the target is tracked

12 LibGuns Programmer’s Guide

GUNS_GET.TARGET_IS_TRACKED returns (by reference) whether the vehicle _targetid is success-
fully tracked by the gun.

3.12 GUNS_GET_LOCATION.IS_.TRACKED

void GUNS_GET_LOCATION_IS_TRACKED(_vid, _cnum, _location, _result)
int32 _vid;
int32 _cnum;
int32 _location;
int32 =*_result;

‘vid’ Specifies the vehicle ID

‘.cnum’ Specifies the gun component number

‘_locat
specifies the location to track

‘¢ _result’ Returns whether the location is tracked

GUNS_GET_LOCATION_IS_TRACKED returns (by reference) whether the position _location is suc-
cessfully tracked by the gun.

3.13 GUNS.GET_READY_.TO_FIRE

void GUNS_GET_READY_TO_FIRE(_vid, _cnum, _ready, .id)
int32 _vid;
int32 _cnum;
int32 =*_ready;
int32 =*_id;

‘_vid’ Specifies the vehicle ID
‘ _cnum’ Specifies the gun component number
‘_ready’ Returns whether the gun is ready for firing

‘_id’ Returns vehicle ID of ready missile

GUNS_GET_READY_TO_FIRE returns (by reference) whether the gun is ready to fire. For missile
launchers, the vehicle ID of the ready missile is returned (by reference) as well. The gun is generally
not ready if it is not loaded or is in the process of loading or unloading munitions.

Chapter 3: Functions 13

3.14 GUNSSET_FIRE

void GUNS_SET_FIRE(_vid, _cnum, _quantity)
int32 _vid;
int32 _cnum;
int32 _quantity;

‘vid’ Specifies the vehicle ID

] ’

-cnum Specifies the gun component number

‘.quantity’
Specifies quantity of loaded munition to shoot

GUNS_SET_FIRE launches a weapon. The weapon is fired in whatever direction it is currently
pointing. If the weapon is not loaded, this will do nothing. If _quantity specifies an amount

grezter than that currently loaded by the gun, the amount will be clipped down to the loaded
amount.

3.15 GUNSSET.FIREAT_TARGET

void GUNS_SET.FIRE_AT_TARGET(_vid, _cnum, _quantity, _targetid)
int32 _vid;
int32 _cnum;
int32 _quantity;
int32 _targetid;

‘vid’ Specifies the vehicle ID

3]

-cnum Specifies the gun component number

‘_quantity’

Specifies quantity of loaded munition to shoot
‘_targetid’

Specifies the target to fire at

GUNS_SET_FIRE_AT_TARGET launches a weapon at _targetid. If the weapon is not tracked on
the target, this will most likely miss the target. If the weapon is not loaded, this will do nothing.
If _quantity specifies an amount greater than that currently loaded by the gun, the amount will
be clipped down to the loaded amount.

14 LibGuns Programmer’s Guide

3.16 GUNSSET _FIRE_AT_LOCATION

void GUNS_SET_FIRE_AT_LOCATION(_vid, _cnum, _quantity, .location)
int32 _vid;
int32 _cnum;
int32 _quantity;
float64 _location[3];

‘_vid’ Specifies the vehicle ID
‘_cnum’ Specifies the gun component number

‘_quantity’
Specifies quantity of loaded munition to shoot

‘.location’
Specifies the location to fire at

GUNS_SET_FIRE_AT_LOCATION launches a weapon at _location. If the weapon is not tracked
on the location, this will most likely miss the location. If the weapon is not loaded, this will do
nothing. If _quantity specifies an amount greater than that currently loaded by the gun, the
amount will be clipped down to the loaded amount.

3.17 GUNS_.GET_ ALLOWED _MUNITIONS

void GUNS_GET.ALLOWED_MUNITIONS(_vid, _cnum, _num, _munitioms,

-cur, _abs)
int32 -vid;
int32 ~cnum;
int32 *_num;

GUNS_MUNITIONS _munitions;
GUNS_QUANTITIES _cur;
GUNS_QUANTITIES _abs;

‘_vid’ Specifies the vehicle ID
‘ _cnum’ Specifies the gun component number
‘_num’ Returns the length of the list (<= GUNS.MAX_MUNITIONS)

‘_munitions’
Returns the list of allowed munitions
¢ _cur’ Returns the list of current limits on munition quantities;

‘.abs’ Returns the list of absolute limits on munition quantities;

Chapter 3: Functions 15

GUNS_GET_ALLOWED_MUNITIONS returns (by reference) a list of munitions which can be loaded
in the gun. The data is returned in a GUNS_MUNITIONS data structure which is declared as follows:

typedef uint32 GUNS_MUNITIONS[GUNS_MAX_MUNITIONS];

In addition, two lists of quantities are returned (by reference.) One, is the list of quantities of
munitions which the gun currently can fire, one is the list of maximum quantities of munitions the
gun can fire. Both of these are based on internal limitations of the gun implementation and may
not be equal to the supplies of the munitions available to the vehicle.

The lists of quantities are returned in a GUNS_QUANTITIES data structure which is declared as

follows:

typedef int32 GUNS_QUANTITIES[GUNS_MAX_MUNITIONS];

The current value of GUNS_MAX_MUNITIONS is 4.

LibHM

ADST-TR-W003268

Table of Contents

1 O VervieW 1
1.1 Examples..... ..o 1
2 Functions 3
2.1 hmdnit.. ... 3
22 hmget_thrustimap ... 3
23 hmothrust.... ... e 3
2.4 MM o POWeTo e 4
25 hmairdensity....... ...t e 4
2.6 hmairdensityrat sq................iiiiiiiiiiiii e, 5
2.7 hmomachovelocity.........oooiiiiiii 5

2.8 hmuovelocityimach. ... 5

Chapter 1: Overview 1

1 Overview

LibHM provides utility functions for managing Height/Mach (HM) diagrams. The library con-
tains an editor ‘hmedit’, which can be used to generate a thrust map, which is a generalization
about engine capabilities which can be derived from an HM diagram.

The library contains the tool make.uu, which takes a new .map file, and uuencodes it so it can
be stored and used by rcs. .uu versions of the .map file are converted by the makefile back to the

.map format.

The library provides functions for reading these thrust maps, and accessing the information
therein. It also provides utility functions for computing air density and true mach number.

1.1 Examples
The following code fragments from a version of libFWA, demonstrate usage:

/* Read the thrust map */
fwa->thrust_map = hm_get_thrust_map(params->thrust_map);

current_thrust_max = hm_thrust(fwa->thrust_map,
fwa->position[Z],
fva->speed.actual);

2 LibHM Programmer’s Guide

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libhm, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 hmdnit

void hm_init(data_directory)
char »data.directory;

‘data_directory’
Specifies the directory where thrust maps are expected

hm_init initializes libhm. The passed data directory will be used when reading thrust maps, if
the named files cannot be found in *.".

2.2 hm _get_thrust_map

HM_THRUST_MAP.PTR hm_get_thrust_map(file_name)
char *file_name;

‘file_name’
Specifies the file in which the thrust map is stored

hm_get._thrust._map returns the thrust map stored in the name file. Note that the data is
cached so that future references to the same file will return the same pointer. A NULL return value

indicates an error occured.

2.3 hm_thrust

float64 hm_thrust(thrust_map, altitude, velocity)
HM_THRUST_MAP_PTR thrus:_sap;
float64 alzitude;
float64 velocity,

4 LibHM Programmer’s Guide
‘thrust_map’
Specifies the thrust map (created by hm_get_thrust_map)
‘altitude’
Specifies current altitude (meters)
‘velocity’

Specifies current speed (meters/second)

hm_thrust looks up the maximum thrust available (in Newtons) given the passed altitude and
velocity.

2.4 hm_power

float64 hm_power(thrust_map, altitude, velocity, mass, drag)
HM_THRUST_MAP_PTR thrust_map;

float64 altitude;
float64 velocity;
float64 mass;
float64 drag;
‘thrust_map’
Specifies the thrust map (created by hm_get_thrust_map)
‘altitude’

Specifies current altitude (meters)

‘velocity’
Specifies current speed (meters/second)

3 b

mass Specifies current vehicle mass (kilograms)

‘drag’ Specifies current drag (newtons)

hm_power looks up the available power, given the altitude and velocity (which are used to
determine thrust), and mass and drag.

2.5 hm _air_density

float64 hm_air_density(altitude)
float64 altitude;

Chapter 2: Functions

‘altitude’
Specifies an altitude (meters)

hm_air_density computes the air density at a passed altitude.

2.6 hm _air_density_rat_sq

float64 hm_air_density_rat_sq(altitude)
float64 altitude;

‘altitude’
Specifies an altitude (meters)

hm_air_density_rat.sq returns the square of the ratio of air density at an altitude to air
density at sea level (needed in some equations). Equivalent to
square(hm_air_density(altitude)/hm_air_density(0.0)), but much cheaper to compute.

2.7 hm_mach_velocity

float64 hm_mach_velocity(mach, altitude)
float64 mach;
float64 altitude;

‘mach’ Specifies a mach number

‘altitude’
Specifies an altitude (meters)

hm_mach_velocity computes the velocity (meters/second) which corresponds to the passed
mach number for the given altitude.

2.8 hm_velocity.mach

float64 hm_velocity_mach(velocity, altitude)
float64 velocity;
float64 altitude;

6 LibHM Programmer’s Guide

‘velocity’

Specifies a velocity (meters/second)
‘altitude’

Specifies an altitude (meters)

hm_velocity_mach computes the mach number which corresponds to the passed velocity for
the given altitude.

ADST-TR-W003268

LibHulls

— —— - s Wy WNUT WeR U(UF WEE W IS WEN T O WaE I WEr s Ty e

Table of Contents

1

2

3

O VO VIO W .ot 1
Examples ... 5
FUuncCtions ..o 7
B RUBISmIt o s 7
3.2 HULLSSET EXTERNALCONTROL...............o it 7
3.3 HULLSSET . DIRECTIONSPEED. ... i 8
3.4 HULLSSET.VELOCITY. GEAR. ... i, 9
3.5 HULLSSET._VELOCITYDIRECTION ..., 10
36 HULLSSET_VELOCITY ORIENTATIONccooiiin.... 11
3.7 HULLSSET_POSITIONDIRECTION ... 11
38 HULLSSET . GOALCORRIDOR ... 12
39 HULLSSET.TARGETID. ..., 13
3.10 HULLSSET_TARGET POSITION ..ottt i, 13
3.11 HULLS. GET ETA ... i e 14
3.12 HULLS.GET . TAKEOFF ALT ... i, 14
3.13 HULLS SET TAKEOFF oot 15
3.14 HULLSSET . LANDEDoiiiiiit i, 15
3.15 HULLS SET FLY LEVELttt 15
3.16 HULLS.GET.TURN_PERFORMANCE............ccccvvivian. 16
3.17 HULLS.GET.CLIMB_PERFORMANCE.............ccoovvviiinn.. 17
3.18 HULLSGET. FUELNEEDEDc.oiiiiiiiiiiiiiiinnnn. 18
3.19 HULLS GETMAX RANGEcoiiiii i 18
320 HULLS GET LIMITS i, 19

Chapter 1: Overview 1

1 Overview

Hulls is a SAF components class. The purpose of a components class is to define a common
set of functions which are invoked on instances of that class, and the semantics of those functions.
Other than defining these functional semantics. components classes don’t actually do anything.

Access to hull functions is achieved through macros defined by libhulls. These macros invoke
cmpnt_invoke with a code number which identifies the function to run. Libcomponents then runs
this function for the particular hull mode via a jump table.

The table below shows how the hulls component relationships have been currently implemented
via the ModSAF library structure.

specific libraries gonoric library architectural library

libtracked libhulls libcomponents
libfwa libhulls libcomponents
libmissile 1libhulls libcomponents
librwa libhulls libcomponents
libwheeled lidhulls libcomponents

As mentioned above, libhulls requires the services of libcomponents, an architectural library
which provides a level of abstraction away from the specific hulls component interfaces. When the
ModSAF application gets set up to run, the libhulls initialization process directs libcomponents
to define a hull component class. This information enables libcomponents to define a structure
to accommodate all of the hull instantiations a simulated object is allowed to have. The libhulls
initialization process also tells libcomponents the number of its defined hull interface functions.
This enables a simulated object’s user data to be allocated enough space to hold the address of
each of the hull interface functions defined in libhulls.

The parametric data of libcomponents identifies each component that needs to be modeled when
a vehicle is simulated. For example. a component entry for a T72 tank might look like this: (see
the file named USSR.T72M _params.rdr)

(SM_Components (hull SM_TrackedHull)
(turret SM_GenericTurret)
(machine-gun [SM_BallisticGun | 0])
(main-gun fSM_BallisticGun | 1])
(visual SM_Visual))

—y — -—— S — T WA U Yl U T eEn _p— ——— —-—— — — ——

2 LibHulls Programmer’s Guide

A T72M simulated vehicle (which belongs to the safobj class) will have coniponent sub-class data
that tells the ModSAF software to maintain a structure that includes one L tracked instantiation.

Since an application will interface to libtracked, libfwa, librwa, libwheeled, or libmissile through
libhulls, a tank’s movement control commands (which are performed by libtracked) and an airplane’s
movement commands (which are performed by libfwa) are both issued via the interface defined by
libhulls. A command to change the controls is therefore the same whether the hulls component
belongs to a tank or an airplane. What is different are the actual values used to set the controls and
those values are passed as input to the function. Similarly, an application can obtain information
about the state of its hull though the libhulls interface. The table below shows the relationship
between the specific and generic library for the hulls component.

Instantiations of Belong to generic Have a command

of the library: component class: interface defined in:
libtracked . hulls libhulls

libfwa hulls libhulls

libmissile hulls libhulls

librwa hulls libhulls

libwheeled hulls 1ibhulls

The interface to libhulls is defined in its public header file (libhulls.h). This interface lets an
application set hull controls or get hull information without knowing which specific hull model is
being used. Applications interface to the tracked, fwa, or missile model primarily through the
macros defined in libhulls. These macros map to functions which are invoked on instances of the
hulls sub-class (such as the libtracked component instantiated for a tank, the libfwa component
instantiated for an airplane, or the libmissile component instantiated for a missile).

The libhulls interface is defined in libhulls.h, the public header file for libhulls. One interface
for controlling vehicle motion is the RULLS_SET_DIRECTION_SPEED macro which maps to a function
that sets a desired direction of travel and a speed. Each macro is associated with a function code
number so that a call to the libcomponents library (via the cmpnt.invoke function) will dispatch
a call to the appropriate library (such as libfwa, libmissile, or libtracked). The definition for this
macro might appear as shown below.

#define HULLS_SET._DIRECTION_SPEED(Hvid, Hcnum, Hdir, Hsp, Hmtr, Hma)
{
HULLS_INTERFACE _hif;
-hif.u.set_direction_speed.direction = Hdir;
-hif.u.set_direction_speed.speed = Hsp;
-hif.u.set_direction_speed.max_turn._rate = Hmtr;
-hif.u.set_direction_speed.max_accel = Hma;

Chapter 1: Overview 3

cmpnt_invoke (HULLS_SET_DIRECTION_SPEED_FCN, Hvid, Hcnum, (ADDRESS)2_hif);

The HULLS_INTERFACE structure defined in libhulls.h is the structure that is passed to any hull
function. This structure is a union of structures that each define an argument list for a hull function.
An abbreviated example that assumes there are only two hull functions is shown below. Typically
there will be many functions and therefore more strucure definitions in the union. The macros hide
this structure from the users of these functions.

typedef struct hulls_interface
{

union

{

struct hulls_set_direction_speed

{
float64 *direction;
float64 speed;
float64 max_turn_rate;
float64 max_accel;

} set_direction_speed;

struct hulls_set_velocity_gear

{
float64 *velocity;
int32 gear;
float64 max_turn_rate;
float64 max_accel;

} set_velocity_gear;

}ou;
} HULLS_INTERFACE;

Issuing a command to an objects’s hulls component is done by invoking one of the macros
defined in libhulls. These macros identify the specific component function which needs to be called.
For example, invoking the HULLS_SET_DIRECTION.SPEED macro will result in the calling of the
setdirection_speed specific component function. In the public header file of each generic library,
macros are associated with a function code number so that a call to the libcomponents library (via
the cmpnt_invoke function) will dispatch a call to the appropriate function. The specific component
functions are defined and installed by the specific libraries (libtracked, libfwa and libmissile). In
this case, all three libraries install a function with the same name, "set_direction_speed" (there
is no name conflict because each function is declared static). It is the specific function (either
libfwa’s set_direction_speed, libtracked’s set_direction_speed, or libmissile’s set_direction_speed) that
is called when the macro is invoked.

Invoking the macro results in two actions: (1) setting up of the interface structure and (2) passing
of necessary information to libcomponent. The macro passes the vehicle id, component number,

4 LibHulls Programmer’s Guide

and function pointer index to libcomponent so that the appropriate library (such as libtracked,
libfwa, or libmissile) data can be accessed. The requested function can require input (¢ -h as a
direction and speed) and/or output (such as a setting) . Therefore, libcomponents must also be
passed the address of the interface structure that holds this data.

In the code segement:
cmpnt_invoke (HULLS_SET_DIRECTION_SPEED_FCN, Hvid, Hcnum, (ADDRESS)&_hif);
HULLS_SET_DIRECTION_SPEED_FCN serves as the function pointer index, Hvid provides the ve-

hicle id, Hcnum provides the component number, and &_hif provides the address for the function’s
argument lists.

Chapter 2: Examples 3

2 Examples

To initialize libtracked, an instance of the hull class:

tracked_user_data_handle =
class_reserve_user_data(parent_class, "tracked", tracked_print);

/* Tell libcomponents we are available. */

cmpnt_define_instance(SM.TrackedHull, 1, ktracked_user_data_handle,
tracked_create, tracked.destroy,
HULLS_SET_DIRECTION_SPEED_FCN, set_dir_speed,
HULLS_SET_VELOCITY_GEAR_FCN, set_vel_gear,
HULLS _SET_VELOCITY_DIRECTION_FCN, set_vel_dir,
HULLS_SET.VELOCITY_ORIENTATION_FCN, set_vel_ori,
HULLS_SET_POSITION_DIRECTION_FCN, set_pos_dir,
HULLS_SET_GOAL_CORRIDOR_FCN, set_goal_corr,
HULLS_SET_TARGET._ID_FCN, set_target_id,
HULLS_SET_TARGET.POSITION_FCN, set_target_position,
HULLS_GET_ETA_FCN, get_eta,
HULLS_GET_TAKEOFF_ALT_FCN, get_takeoff_alt,
HULLS_SET_TAKEOFF_FCN, set_takeoff,
HULLS_SET_LANDED.FCN, set_landed,
HULLS_SET_FLY_LEVEL_FCN,set_fly_level,
HULLS_GET._TURN_PERFORMANCE_FCHN, get_turn_performance,
HULLS _GET.CLIMB_PERFORMANCE_FCN, get_climb_performance,
HULLS_GET_FUEL_NEEDED_FCN, get_fuel_needed,
HULLS_GET_MAX.RANGE_FCN, get_max_range,
HULLS-SET.EXTERIAL-COHTRDL-FCN. set_external_control,
HULLS_GET_LIMITS_FCN, get_limits);

To get the component number of my hull:

extern int32 my_hull;

if ((my_hull = cmpnt_locate(vehicle._id, reader.get_symbol("hull"))) ==
CMPNT_NOT_FOUND)
printf("Vehicle Xd does not seem to have a hull\n", vehicle_id);

To then give a command to that hull (the macro is defined by libhulls; it assembles a HULLS_INTERFACE
structure, and calls cmpnt._invoke):

if (my_bull != CMPNT_NOT_FOUND)
HULLS_SET.DIRECTION-SPEED(vchiclo-id, hull, dirvec, speed, 0.0, 0.0):

LibHulls Programmer’s Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libhulls, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 hulls_init
void hulls_init();

hulls_init initializes libhulls. Call this function after cmpnt_init, and before any specific hull
init functions.

3.2 HULLS SET.EXTERNAL_CONTROL

HULLS_SET_EXTERNAL_CONTROL(vehicle_id, component_number, velocity,
direction, position, roll_angle, max_turn_rates,
max_accel)

int32 vehicle_id;

int32 component_number;
float64 velocity[3];
float64 direction(3];
float64 position[3];
float64 roll_angle;
float64 max_turn_rates[3];
float64 max_accel;

‘vehicle_id’
Specifies the vehicle ID

‘component_number’
Specifies the hull component number

‘velocity’
Specifies desired velocity (meters per second)

‘direction’

Specifies desired direction
‘position’

Specifies desired position

8 LibHulls Programmer’s Guide

‘max_turn._rate’
Specifies the maximum desired turn rate (radians per second)

‘max_accel’
Specifies the maximum desired acceleration (meters per second squared)

HULLS_SET_EXTERNAL_CONTROL is a macro which sets a desired direction of travel and movement
velocity, as well as an expected pesition. A negative speed indicates backward movement is desired.
It is assumed that the hull should face down the Y component of the direction. Some hulls may not
support backward movement, in which case they will reverse the desired direction. The maximum
turn rate (in radians per second) and maximum acceleration (in meters per second per second) will
default to maximum if specified as zero.

The direction vector need not be a unit vector (specific component models may often be able to
avoid normalizing this vector at all, saving a square root).

3.3 HULLS SET DIRECTION_SPEED

HULLS_SET_DIRECTION_SPEED(vehicle_id, component.number,
direction, speed, max_turn_rate, max.accel)
int32 vehicle.id;
int32 component_number;
float64 direction(3];
float64 speed;
float64 max_turn_rate;
float64 max_accel;

‘vehicle_id’
Specifies the vehicle ID

‘component_number’

Specifies the hull component number
‘direction’

Specifies desired direction
‘speed’ Specifies desired speed (meters per second)

‘max._turn_rate’
Specifies the maximum desired turn rate (radians per second)

‘max_accel’
Specifies the maximum desired acceleration (meters per second squared)

HULLS_SET_DIRECTION_SPEED is a macro which sets a desired direction of travel and a speed.

Chapter 3: Functions 9

A negative speed indicates backward movement is desired. It is assumed that the hull should face
down the Y component of the direction. Some hulls may not support backward movement, in which
case they will reverse the desired direction. The maximum turn rate (in radians per second) and
maximum acceleration (in meters per second per second) will default to maximum if specified as
zero.

The direction vector need not be a unit vector (specific component models may often be able to
avoid normalizing this vector at all, saving a square root).

3.4 HULLS SET_VELOCITY_GEAR

HULLS_SET_VELOCITY_GEAR(vehicle_id, component_number,
velocity, gear, max_turn.rate, max_accel)
int32 vehicle.id;
int32 component_number;
float64 velocity[3];
int32 gear;
float64 max_turn_rate;
float64 max_accel;

‘vehicle_id’
Specifies the vehicle ID
‘component_number’
Specifies the hull component number
‘velocity’
Specifies the desired velocity (meters per second)

‘gear’

Specifies the desired gear
‘max_turn_rate’

Specifies the maximum desired turn rate (radians per second)
‘max.accel’

Specifies the maximum desired acceleration (meters per second squared)

HULLS_SET.VELOCITY_GEAR is a macro which sets a desired velocity, and a direction of movement
(forward /backward). It is assumed that the hull should face down the Y component of the direction.
Some hulls may not support backward movement, in which case they will reverse the desired velocity.
The maximum turn rate (in radians per second) and maximum acceleration (in meters per second
per second) will default to maximum if specified as zero.

The gear should be one of:

10 LibHulls Programmer’s Guide

HULLS_GEAR_FORWARD
Forward movement

HULLS_GEAR_REVERSE
Backward movement

3.5 HULLS SET_VELOCITY DIRECTION

HULLS_SET.VELOCITY_DIRECTION(vehicle_id, component_number,
velocity, direction, roll_angle,
max_turn.rates, max.accel)

int32 vehicle_id;

int32 component_number;
float64 velocity[3];
float64 direction[3];
float64 roll_angle;
float64 max_turn._rates[3];
float64 max_accel;

‘vehicle_id’
Specifies the vehicle ID
‘component_number’
Specifies the hull component number
‘velocity’
Specifies the desired velocity (meters per second)
‘direction’
Specifies the desired direction

‘roll_angle’
Specifies the desired roll angle (radians)

‘max.turn_rates’
Specifies maximum desired turn rates (yaw, pitch, roll) in radians per second

‘max_accel’
Specifies the maximum desired acceleration (in meters per second square)

HULLS_SET_VELOCITY_DIRECTION is a macro which sets a desired hull direction and movement
velocity. Some hull models require that the direction and velocity vectors be colinear; these models
will strive to achieve the velocity, and will select forward or backward movement, depending on the
dot product of the two vectors. Some hull models also may ignore the roll_ angle. The maximum
turn rates are in the order yaw, pitch, roll. The maximum turn rates (in radians per second) and

Chapter 3: Functions 11

maximum acceleration (in meters per second per second) will default to maximum if specified as
zero (or a NULL pointer).

3.6 HULLSSET_VELOCITY_ORIENTATION

HULLS_SET_VELOCITY_ORI"NTATION(vehicle_.id, component_number,
velocity, orientation,
max_turn_rates, max.accel)

int32 vehicle._id;

int32 component_number;
float64 velocity[3];
float64 orientation(3];
float64 max_turn_rates(3];
float64 max_accel;

‘vehicle_id’

Specifies the vehicle ID
‘component_number’

Specifies the hull component number
‘velocity’

Specifies the desired velocity
‘orientation’

Specifies the desired orientation (yaw, pitch, roll) in radians
‘max_turn.rates’

Specifies maximum desired turn rates (yaw, pitch, roll) in radians per second
‘max_accel’

Specifies the maximum desired acceleration (in meters per second square)

HULLS_SET_VELOCITY_ORIENTATION is a macro which _<ts a desired hull orientation and move-
ment velocity. The behavior is exactly as in HULLS_SET_VELOCITY_DIRECTION, except the direction
and roll angle are specified as an angular triple (yaw, pitch, roll) in radians.

3.7 HULLS SET POSITION DIRECTION

HULLS_SET_POSITION_DIRECTICN(vehicle_id, component_number,
position, direction)
int32 vehicle_id:
int32 component_number;

12

float64 position[3];
float64 direction([3];

‘vehicle_id’
Specifies the vehicle ID

‘component_number’

Specifies the hull component number
‘position’

Specifies the desired position
‘direction’

Specifies the desired direction at that position

LibHulls Programmer’s Guide

HULLS_SET_POSITION_DIRECTION is a macro which sets a desired hull position and direction.
The hull model will achieve a position and direction as close as possible to these desires in a mannar
which is appropriate for the type of hull being modeled (for a tracked hull: move to position, then

turn in place; for a wheeled hull: do a three point turn; etc.).

3.8 HULLS SET_GOAL.CORRIDOR

HULLS_SET_GOAL_.CORRIDOR(vehicle.id, component_number,
approach_speed, position, directionm,

corridor_width)
int32 vwvehicle._id;
int32 component_number;
float64 approach_speed;
float64 position[3];
float64 direction[3];
float64 corridor_width;

‘vehicle_id’
Specifies the vehicle ID

‘component_number’

Specifies the hull component number
‘approach_speed’

Specifies the approach speed
‘position’ ‘

Specifies the start of the corridor
‘direction’

Specifies the direction of the corridor

— Iy W W W W W Wl W s Wl S e el e e O Ea-mae w-_—"

Chapter 3: Functions 13

‘corridor_width’
Specifies the width of the corridor

HULLS_SET.GOAL_CORRIDOR is a macro which sets a desired position, a desired speed to approach
that position and a corridor (expressed as a direction and a width) which is not to be exceeded at
the time the hull crosses the position. This is used, for example, to approach a corner on a road
without going so fast you will miss the corner.

3.9 HULLSSET_TARGET_ID

HULLS_SET.TARGET.ID(vehicle_.id, component_number, id)
int32 vehicle_id;
int32 component_number;

int3d2 id;
‘vehicle.id’
Specifies the vehicle ID
‘component_number’
Specifies the hull component number
‘id’ Specifies the ID of the target

HULLS_SET_TARGET.ID is a macro which sets the target which the hull should pursue (using
whatever method is supported by that hull). Note that this is primarily used by missile hulls, but
other hulls must support some version of the functionality.

3.10 HULLS SET_.TARGET_POSITION

HULLS_SET_TARGET_POSITION(vehicle_id, component_number, position)
int32 wvehicle.id;
int32 component_number;
float64 position[3];

‘vehicle_iqd’
Specifies the vehicle ID

‘component_number’
Specifies the hull component number

B Ny W U W W O e " L L L L s W T W

14 LibHulls Programmer’s Guide

‘position’

Specifies the target position

HULLS_SET_TARGET_POSITION is a macro which sets the position which the hull should pursue
(using whatever method is supported by that hull). Note that this is primarily used by missile
hulls, but other hulls must support some version of the functionality.

3.11 HULLS_GET.ETA

HULLS_GET.ETA(vehicle.id, component_number, position, eta)

int32 vehicle_id;
int32 component_number;
float64 position(3];

{float64|int32} *eta;

‘vehicle_id’
Specifies the vehicle ID

‘component_number’

Specifies the hull component number
‘position’

Specifies the desired position

$]

eta Returns the time it will take to get to that position

HULLS_GET.ETA is a macro which computes an estimated time of arrival at a point (in seconds),
given current hull state, and operating parameters. Since this is not a function, the compiler will
automatically cast the returned eta to whatever type is needed.

3.12 HULLS GET_TAKEOFF_ALT

HULLS_GET_TAKEOFF.ALT(Hvid, Hcnum, Haltitude)

int32 Hvid;
int32 Hcnum;
float64 Haltitude;

‘Hvid’ Specifies the vehicle ID

‘Henum’ Specifies the hull component number

Chapter 3: Functions

‘Haltitude’
Returns the altitude required for completion of take off

HULLS_GET.TAKEOFF_ALT returns (by reference) the altitude required for this hull to complete

its take off.

3.13 HULLS SET .TAKEOFF

HULLS_SET_TAKEOFF(Hvid, Hcnum, Haltitude)

int32 Hvid;

int32 Henum;

float64 Haltitude;
‘Hvid’ Specifies the vehicle ID
‘Hcnum’ Specifies the hull component number
‘Haltitude’

Specifies the target altitude

HULLS_SET._TAKEQFF sets the altitude for this hull to complete its take off.

3.14 HULLS SET . LANDED

HULLS_SET_LANDED(Hvid, Hcnum)

int32 Hvid;
int32 Henum;
‘Hvid’ Specifies the vehicle ID

‘Hecnum’ Specifies the hull component number

HULLS_SET_LANDED places the hull on the ground.

3.15 HULLS SET FLY_LEVEL

HULLS_SET_FLY_LEVEL(vehicle_id, component_number, track, speed,
altitude, fpa, max_turn_rates, max_accel)

16 LibHulls Programmer’s Guide

int32 vehicle_id;

int32 component_number;
float64 track([2];

float64 speed;

float64 altitude;

float64 fpa;

float64 max_turn_rates(3];
float64 max_accel;

‘vehicle_id’
Specifies the vehicle ID

‘component_number’
Specifies the hull component number

‘track’ Specifies the 2-D direction (X-Y as a normalized vector)
‘speed’ Specifies speed (meters per second)
‘altitude’
Specifies altitude (meters)
‘fpa’ Specifies the flight path angle (radians)
‘max_turn_rates’
Specifies maximum desired turn rates (track, pitch, roll) in radians per second

‘max_accel’
Specifies the maximum desired acceleration (in meters per second square)

HULLS_SET_FLY_LEVEL is a macro which sets a desired hull direction (track) speed and altitude.
The maximum turn rates are in the order track, pitch, roll. The maximum turn rates (in radians
per second) and maximum acceleration (in meters per second per second) will default to maximum
if specified as zero (or a NULL pointer).

Note that specifying a flight path angle (fpa) which is too large. could cause an airplane to stall.

3.16 HULLS GET_.TURN_PERFORMANCE

HULLS_GET_TURK_PERFORMANCE(vehicle_id, component_number,
max_turn, easy._turn, standard_turn, hard.turn)
int32 vehicle._id:
int32 component_nuaber;
float64 max_turn;
float64 easy_turn;
float64 standard_turn;
float64 hard_turn;

Chapter 3: Functions \7

‘vehicle_.id’
Specifies the vehicle ID
‘component_number’
Specifies the hull component number
max_turn
Specifies the maximum turn rate for the vehicle in radians per second.
‘easy_turn’
Specifies the turn rate for the vehicle in radians per second when trying to do an easy
turn.
‘standard_turn’
Specifies the turn rate for the vehicle in radians per second when trying to do an
standard turn.
‘hard.turn’

Specifies the turn rate for the vehicle in radians per second when trying to do an hard
turn.

HULLS_GET.TURN_PERFORMANCE is a macro which queries the vehicle for current turn rates, which
can be selected by a controller to set the vehicles desired turn rate.

3.17 HULLS GET_CLIMB_ PERFORMANCE

HULLS_GET_CLIMB_PERFORMANCE(vehicle_id, component_number,

max_climb, easy.climb, standard_climb, hard_climb)
int32 vehicle_id;

int32 component_number;
float64 max_climb;
float64 easy.climb;
float64 standard_climb;
float64 hard_climb;

‘vehicle._id’
Specifies the vehicle ID
‘component_number’
Specifies the hull component number
‘max_climbd’
Specifies the maximum climb rate for the vehicle in radians per second.
‘easy_climb’

Specifies the climb rate for the vehicle in radians per second when trying to do an easy
climb.

18 LibHulls Programmer’s Guide

‘standard_climb’
Specifies the climb rate for the vehicle in radians per second when trying to do an

standard climb.
‘hard_climb’
Specifies the climb rate for the vehicle in radians per second when trying to do an hard

climb.

HULLS_GET.CLIMB_PERFORMANCE is a macro which queries the vehicle for current climb rates,
which can be selected by a controller to set the vehicles desired climb rate.

3.18 HULLS GET FUELNEEDED

HULLS_GET.FUEL_NEEDED(vehicle_id, component_number, altitude, speed,
distance, fuel_needed)

int32 vehicle_id;

int32 component_number;

float64 altitude;

float64 speed;

float64 distance;

float64 fuel_needed;

‘vehicle_id’
Specifies the vehicle ID

‘component_number’
Spevifies the hull component number

‘altitude’
Specifies the altitude to return to point.

‘speaed’ Specifies the speed to return to point.

‘distance’
Specifies the distance to point.

‘fuel_needed’
Specifies the fuel that is needed to get to the point

HULLS_GET_FUEL_NEEDED is a macro which determines how much fuel is needed to get to a point,
given the distance to the point, and the desired altitude and speed to use to reach that point.

3.19 HULLS GET MAX RANGE

Chapter 3: Functions

HULLS_GET_MAX_RANGE(vehicle_id, component_number, max_range)

int32
int32

vehicle_id;
component_number;

float64 max_range;

‘vehicle_id’

Specifies the vehicle ID

‘component_number’

Specifies the hull component number

‘max_range’

Returns the fuel that is needed to get to the point

19

HULLS_GET_MAX_RANGE is a macro which determines the maximum range of the vehicle. For
land vehicles, it ignores factors such as terrain. For fixed-wing aircraft, it uses a standard thrust
rate and a nominal altitude of 18000 meters. In both of the above cases, HULLS_GET_MAX_RANGE

bases its calculation on the actual amount of fuel available. In the case of a missile, this macro \
returns the "maximum effective range” as specified in the missile’s parameter file. This is a static

value and does not change after the missile is launched.

3.20 HULLS GET _LIMITS

HULLS_GET.LIMITS(vehicle_id, component.number, position, directionm,

int32

int32

float64
float64
floaté4
float64
floaté4
floaté64
float64
float64
float64

‘vehicle_id’

max_speed, max_accel, max.decel, max_turn, min_radius,
max_sideways, max_up)
vehicle_id;
component_number;
position(3];
direction[3];
*max_speed;
*max_accel;
*max_decel;
*max_turn;
*min_radius;
smax_sideways;
*max_up;

Specifies the vehicle ID

‘component_number’
Specifies the hull component number

20 LibHulls Programmei’s Guide

‘position’

Specifies sample position (uses current if NULL is passed)
‘direction’

Specifies sample directoin (uses current if NULL is passed)
‘max_speed’

Returns maximum possible speed in meters/second
‘max_accel’

Returns maximum possible acceleration in meters/second/second
‘max_decel’

Returns maximum possible deceleration in meters/second /second
‘max_turn’

Returns maximum possible turn rate in radians/second
‘min_radius’

Returns minimum possible turn radius in meters
‘max_sideways’

The maximum speed a vehicle can move sideways. Zero for vehicles that can’t move

sideways.

‘max_up’ The maximum speed a vehicle can climb in a hover. Zero for non hovering vehicles.

HULLS_GET.LIMITS is a macro which determines the maximum performance limits of a hull.
The position and direction specify the state for which limits are desired. If NULL is passed, the
current values of the entity will be used.

