
ADST-TR-WO 032 68

ADVANCED DISTRIBUTED SIMULATION

AD-A282 773 T O

1111111l III! llEl luE El il Uii
ModSAF

PROGRAMMER'S REFERENCE [S DT I C
S!LECTE I

MANUAL uW 03 1994

VOL.1 F
(LibArtyEdit - LibHufls)

Ver 1.0 - 20 December 1993

CONTRACTNO N613-91-D-OO0

D.O.: 0021

CDRL SEQUENCE NO. A001

P .i i 1

U.S. Army Simulation Training, and nsrmtao Command (SlWCOM)
12350 Research Parkway
Orlando, FL 32826-3276

Preparedby:

-IM cem |

ADST Pmgram Office
12151-A Research Parkway r '-. ,

94-24445 Olan, FL 382

H~~ ll/iIIEiitIilI! 'i III, 94 8 0'; 0SD

ADST-TR-W003268

ADVANCED DISTRIBUTED SIMULATION
TECHNOLOGY

ModSAF

PROGRAMMER'S REFERENCE

MANUAL

VOL. 1

(LibArtyEdit - LibHulls)

Ver 1.0- 20 December 1993

CONTRACr NO. N61339-91-D-0001

D.O.: 0021

CDRL SEQUENCE NO. A001

Prepared for:

U.S. Army Simulation, Training, and Instrumentation Command (STRICOM)
12350 Research Parkway
Orlando, FL 32826-3276

Accesion For
NTIS CRA&I
orD I A8 - •

Preparedbyi. U;.d:,;ou..ced iL
Ju~iicaton

y t. B Ii),m s BY
Dist ibutiori I

ADS Program Office
12151-A Research Parkway

Orlando, FL 32826 Avail , u
Dist S;" a

REPORT DOCUMENTATION PAGE AB1007418
Public=oti burden lot this collecion ofat mMig ill estimated to amage I hour pe response. including the time for reliekwig maructior, searchirig ealing dia soures

mauin" doe data needed and comipleting and mvlewing fte collodion ol information. send comments regarding ti burden edste or anq ah1r Ope of
I'cmnof mtormation, rcluding suggestions for reducing ft burden, to Washinon Headquarters Services, Directorate tr iniormation Operaions and Reports, 1215

Meferson Dwi Hg" Suits 1204, "on, VA 22202-4302, and to the Office of Managemnent and Budget Proed (0704-01Be), Washngloni, DC 20603.
1. AGENCY USE ONLY OLaw MiIQ 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

12/20/93I
4. TITLE AND SUTITLE 5. FWINM NUMBERS
ModSAF Programmers Reference Manual

C N61339-91-D-O00i, Delivery
Order (0021), ModSAF (CDRL

Dr. Andy Ceranowicz, Joshua Smith, Anthony Courtenache, et. al

7. PERFORMIN ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
Loral Systems Company REPORT NUMBER1
ADST Program Office ADST-TR-W003268
12151 -A Research Parkway
Orlando, FL 32826

9SPO 11.; M: .740AGENCY NAME(S)MAD ADRES(E) 10. SPONSORING
Simulation Training and Instrumentation Command (STRICOM) ORGAIATMO REPORT
12350 Research Parkwa ADST-TR-W003268
Orlando, FL 32826-325

11. SUPPLEMENTARY NOTES

12L. DB1TRISUTIONAVAILAUUTY STATEMENT 1k DISTREBUTION CODE

A
1I. ANSTRACTr (Mxd... 200 words)
This document provide in-depth information on all libraries within the ModSAF application. Each section is devided into an
overview of thelbay an a fnctional description.

14. SULIECT TERM IS HIDROF PAGES
Modular Semi-Automated Forces, DIS, ADST, BDS-D Approx 1500

14.PRICE CODE

17. SECURIT Y CL.ASSIICATION 17. SECUITY CLASSIFICATION 17. SECURITY CLASSIFICATION 2L. LIMIATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED IUNCLASSIFEED UNCLASSIFIED UL

NSN 7540-01 -280.560 Stnd Form 28 (Rev. 24W6)
PUItdbYANSW iZU18
2.I02

ADST-TR-W003 268

LibArtyEdit

Chapter 1: Overview 1

1 Overview

The artillery editor allows the user to drop arbitrary artillery rounds on the DIS battlefield.
The editor supports two modes of operation:

Set up then Fire

In this mode, the user selects the Mode Set Up Mission, then sets the location, round
types, quantities, etc. When everything is set, the user selects the Mode Fire Mission
which sends the selected detonations. The Mode then automatically returns to Set Up
Mission.

Point to shoot
In this mode, the user selects the Mode Fire When Location In Set, then sets every-
thing except the location. When the round types, quantities, etc. are as desired, the

user selects Location then clicks on the map. The mission will be fired when the user
releases the mouse button. A separate mission will fire for each click.

The artillery editor is not reinitialized when it is raised, so that the default values for each
mission will be whatever values were used in the previous mission.

2 LibArtyEdit Programmer's Guide

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libartyedit, including the format and

meaning of its arguments, and the meaning of its return values (if any).

2.1 artyedit.init

void artyadit..init()

artyedit.init initializes libartyedit. Call the before any other libartyedit function.

2.2 artyedit-init.gui

int32 artyedit.init.gui(data.path, reader-flags, gui,
tactmap, tcc, map.erase.gc, sensitive,
refresh.event, db, ctdb, valve, aim.addr,
event.id, exercise, protocol)

char *data.path;
uint32 reader.flags;
SGUIPTR gui;
TACTMAP.PTR tactsap;
COORD.TCC.PTR tcc;
GC map.erase.gc;
SISTVE.WIDOWPTR sensitive;
CALLBACK.EVENTPTR refresh.event;
PC.DATABASE *db;
CTDB *ctdb;
PV.VALVE.PTR valve;
SinulationAddress *tmitoaddr;
int32 *event. d;
int32 exercise;
int32 protocol;

'data.path'

Specifies source directory for data files
'reader-flags'

Specifies data file r.A, iing flags
'gui' Specifies the GUI

'tactmap' Specifies the tactical map

4 LibArtyEdit Programmer's Guide

'tcc' Specifies the coordinate system
'map-erase-gc'

Specifies the GC used to erase on the map
'sonsitive'

Specifies the sensitive window
'reiresh.event'

Specifies the event invoked when the map is refreshed

'db' Specifies the PO database

'ctdb' Specifies the terrain database
'valve' Specifies the packet valve for transmission of detonations
'sim-addr'

Specifies the simulation address
'eventid'

Specifies, by referenence, the gloabl application event ID which is used, then incre-

mented for each outgoing detonation
'exercise'

Specifies the exercise on which PDUs should be sent
'protocol'

Specifies the protocol to use (SIMNET, DIS 1.0, DIS 2.0, etc.)

aztyeditinit._gui create the artillery tool. The data.path and reader.flags are used to

read the editor definition file, and are as in reader.read. A non-zero return value indicates a

libreader error occured.

ADST-TR-W003 268

I ULbAwsin

Table of C ontents

1 O verview

2 U s a g e3

2.1 BlIiII Ihha.s.ign ..

3 Functions...5

:1. 1 .1"signiiIit .. .

:1.2 asstiiii gii"w........ ...-

3.3

Chlapltr 1: Overview

1 Overview

Ii .gi b .. ~ iIII phu ll I 'i I2I(- hhh i I i IN, ,-,I II II I Il I 11 -(1111 11.' 1.4 -11 Ioi Ih ~ I 'ic iI I I~ I oili'NO

someh~f 1)1 IIr comhj)px aN.~.i!guu11iiu pahI;adighu.

('iapter 2: Uagc

2 U sage

'[hle oftw1~a rv library 1 ibassign.a* lioiidl be 1)11iii ll ~~aii('(in lal it, t11e (irvlP-Y

./comm~on/lib/*. Ywui %\ill iko lived ill(liader file libassign .h* %\11011 .ilitid kv(in.taIllevi li 114.

dii reclIorY -/common/ include/l1ibinc/'. 11' I itee Ii Ie. are 11ot ilNitailed. Yoil need I o (it) a -make' ill

I lle oibaA il luce iirector-Y. 11 I ile~v Iilve are aiieadY buiilt. voii cani skip illi (t , se tii i iiliiL

liihasigil.

2.1 Building Libassigii

h''l li iaS.igi soiiirce files are loitind inl 1114 directory '* /common/ 1ibsrc/l1ibass ign. RCS* iotiiia I

X-p('llh4 of Ite files c-all be foiniilliif/o mn.r/isclbsin

If Ill(I direclirv domnlbr/lbsin(oes iiot exist onl Youi iacliie. yol -diotild lua"e

tlie *genbuild" coin iua iitI to til da t e i lie cotiiiiii di00thiectori- hic-a rclhy.

To I111i Id alld illsiall 1114' library. do 1114e tohlowi hgl:

S cd common/libsrc/libassign
* co RCS/*,v
8 make install

''iis slioid d coin pile 1 lie Iiblrary *v libassign.a' atd itistall it aiid the hecader file *libassign.h*

in, tilie st aiiilarid iriectoies. if ainY errors occil d r111ing corn Jpilat iou. yolu may nleed to adjust tile
soiirce codle or- *Makefile' for filie iplatfloruii oin whichi you areP coinlhi g. li lassignt shiould comnpile
wit iioii I err-ors oil t lit' ollowiing lilatIforiiis:

*Mipb

*SC.I Ind(igo

*Still Spar-c

2.2 Linking with Libassign

Lib assigii call be un iket in to ait a pplica tioni progra in with Ii t he ollowiing finik tittle flags: 1ld

(source .o f iles] -L/common/lib -lassign [other librariesY. If youircotipilerdtoes not sup-

pol1-I ax. YOil ('all 11m Il liie e ii~ xpj)iciIllY: '1d [source .o f iles]

/comon/lib/libassign . a'.

Lihass~.iI~t dIfIupl~(Ii ('t IV Oiy l I Iiv Inllowiiug Ii br-aies: lihus~afoiii. fiiIm iap. IiI)comIdiiiatefii-

sons;6v le. libllbI ack. Iibp1o I ~II0. anud libireadvir.

3 Functions

3.1 assign-init

void assign..initoC

asinii iiiIz- ~ l w6,0em iit iaiAifwii
3.2 assign-init.gui

EDT..EDITOR_.PTR assign-.init-gui (data..path, reader-.flags, dialog-.parent,
gui, tactmap, tcc, map..erase-.gc,
sensitive, refresh-~event, db,
exit..fcn, exit..arg, reinit..fcn)

char *data..path;I uint32 reader-.flags;
Widget dialog-.parent;
SGUI-PTR gui;
TACTMAP..PTR tactmap;
COORD-.TCC-.PTR tcc;
GC map..oras...gc;
SNSTVE-.WINDOW-PTR sensitive;

CALLBACK..EVENT..PTR ref resh..event;
P0.DATABASE sdb:
ASSIGN..EXIT-.FUUCTION ci it.,fcn;
ADDRESS exit..arg;
ASSIGN-.REINITFUNCTION reinit..fcn;

-data-.path*

reader-.flags"

specii('s flag". lit1. I..* radrra Iiireiigdtali

-dialog..parent*
sjpecifies tf -vl) 4 -.31.1 p.ialv I mply d)))1)(ialo~gs

gui, specifies' I III. S.\ 1 4 J II

tactmap Specifies the tactical lmp

-tcc' spf-ciliev. Ili meiap coorliliale 'VYt4'ili

*map-.erase-gc

'sensitive'
Sp'cifies lilt,' ss4i4l.jt IPwi I4l4)m. h ii 1t411.4(hal al idl

'refresh-event*
Specifies I lit ('velit whIichi firevs whll III(e itiap is t'e(I('sled

*db Spec(ifies III(' I)Qrsd.isiIidij4 41.11 4 IaaidN(

*exit..fcn, exit..arg'

Spe(cify a fii lictloll to c.1avl ti 1144'l Ow asigliiiii is comlelj)4ted

*reinit..fcn'

Sl)(-Ci Iv. it Filiio 11(1 oc4ll it) r'ii i iili.e a I ask I'ra ie priorit4 oasipimeIiu (passtaskedit -remn t.

assign.init..gui create tilie miim~oi assiti iii ed Iit or. ile tiata lile (*delobj rdr*) is read
el tiher Front% or I lie specified dat a pal t. delw1 hd ig ii pon I It(- reader-flags. '['lie reader-flags
M1 &% a iin reader-read. .\ NULL re t ir i %-a 114 11 ital ces ain error oct u r('(.

Th II' xit.f cn shiLld be(tlecla lC red;i lollows:

void exit..fcn(.xit.arg, status)
ADDRESS exit-.arg;
EDT..EXIT-.STATUS status;

3.3 assign-.set..unit

void assign-.sot.unit(.ditor, unit-.id)
EDT..EDITOR-.PTR editor;
ObjectID *unit-id;

editor Speciflies tilie assign illiedi t dtor

*Ufli id'S peciflies Ih li s it for defaililt asigia ieiit

ass ignsetunit iit jal izes 1144' unit li('ii1 of 114' n rii hI ig assigiiit'i l 01dif1)to lit passed vak114.

3.4 assign..set-taskfram e

C hapte~r 3: Fin ict iwt 7

void assign...ut.taskframte(editor, taskframe-.id)
EDT.EDITOR-.PTR editor;
ObjectID *taskframe.id;

'editor* Specifies I Ilie ai~sipi i leII vd ii4 r

*taskf rame-.id'
specifis-sth i,kf~raiiu (Or (11-GaIltl a,-ig.ItI1ivi1t

assign..et..taskframe hiliz- Iiw~ l taskframe lieId of filie riii ii ii g assigu itii editor to Owi'

3.5 assign.-i.make-.assign nment

void ahuign-make..assignment(gui, unit, frame, assigner, instruction)
SGUI-PTR gui;
ObjectID *unit;
ObjectID *rame;
ObjectID *assigner;
Tasklnstallationlnstruction instruction;

.gui Specifies lthe GUI

-unlit* Specifie.. I lie un1it. to executle I lie utlissionl

-frame* Specifies a fraiiie or the iiiisjoii to execiite (aiitomiat ically finds first fraime)

-assigner'
Speciflies the ititit respottsi ble for itutkittg lt e assigitinet (pass NULL to idicat~e the

tIer)

instruct ion
Specifies hlow to start I lit, ittlissioi

ass ign-make-aussignment does all assigiiiuneiit. its I liollgh (ihe' user. hlad selectedl it 1uit an(I fraie

front lte assippnment editor.

ADST-TR--W003268

Libbalgun

Table of Contents

1 O v e rv ie w ... 1

2 A lg o rith m s .. 7

2.1 G un Tick Processing .. 7
2.2 bgun loader-tick .. 7
2.3 bgun.tracker.tick ... 8

2.3.1 bgun-firer-tick ... 10
2.4 Firing Event Processing ... 11

2.4.1 bgun-shoot-to-hit.location 11
2.4.2 bgun.shoot._o-.hit-.vehicle 12
2.4.3 bgun.shoot-intermdate 12
2.4.4 shootat.pointing .. 13

3 E x a m p les ... 15

4 F u n ction s ... 17

4.1 bgun init .. 17
4.2 bgun.class-init .. 17
4.3 bgun .tick ... 18
4.4 bguncomponent_availability ... 18
4.5 bgun-dam age .. 18

Chapter 1: Overview

1 O verview

Libbalgun implements an instance of the gun class of components. It provides a low-fidelity

model of generic ballistic gun behavior which is suitable for ModSAF tank main guns and machine

guns. libbalgun guns support burst shooting, multiple types of munitions, and table driven hit

probabilities. Also, the capability to hit un-intended targets is supported.

The parameters of a generic ballistic gun are specified in the configuration file for the vehicle

containing such a gun as follows:

(SiBallisticGun (phyudb.name <name of gun>)
(sensor.name <name of tracking sensor>)
(hit-.obscuring.vehicles <true I false>)
(rates (mn-elevation-rate) (max-elevation-rate)
(magazine.size <n>)
(loading-block <n>)
(load-time <integer milliseconds>)
(track-time (integer milliseconds>)
(munition munition-table>

(munition-table,

The (name of gun> must match the name of a gun as specified in the libphysdb database.

The <name of tracking sensor> must match the name of some sensor component of the vehicle.

hit..obscuring.vehicles indicates whether this gun can accidentally hit vehicles that obscure an

intended target. The rates for elevation are in degrees per second. magazine-size indicates how

many rounds of a munition may be simultaneously loaded in the gun. The time to load up to

loading.block rounds is specified by load-time.

A unition-table is of the form:

(<munition object type> (round.velocity <real meters/eoc>)
(rate <integer> burst rate shells/sec>)
(ms <real kg>)

(min-range <real meors>)
(max-range <real meters>)
(hit-table <hit-table-filname>)
(tracktime.table <tracktime-table>))

(munition object type> indicates the 'librdrconst' object type that will be sent in the Fire

and Impact PDUs. rate indicates the maximum sustainable burst rate in rounds per minute. A
value of -1 means the gun can be fired as fast as it has rounds available. A rate of -1 should not

2 Libbalgun Programmer's Guide

be used if the gun has a magazine size larger than 1 (this would imply that the entire magazine

could be shot at once. min.range and max.range should be considered as minimum and maximum

effective ranges.

A tracktim.etable is of the form:

(<real movingfirer.factor> <real moving.target-factor>
(<real range meters> <first-med msecs> <sub.-ed msecs> <sub.fixed mecs>)
(<real range meters> <firstmed resecs> <sub-med maocs> <sub.fixed usecs)

The tracktime table defines how long the target will be tracked before firing. The moving

factors are used to modify the tracktime for these conditions. The first.med describes the lognormal

distribution for the first shot by a firer at a specific target. The sub.med and sub-fixed are for

subsequent shots at a target. The median and fixed values are not interpolated for range. The

values are also not range-limited. Finally, if either moving factor is -1, then the tracktime will be
0. The actual calculation of the tracktime is described below.

So a simple table could be: (1.0 1.0 (0.0 3000 0 0))

This table says that a) moving firer and target have no effect on tracktime; b) the first shot's

tracktime will have a median of 3000 msecs, regardless of range; c) the subsequent shots' tracktimes
will be 0.

The hit-table-filename has a table, derived directly from AMSAA approved weapon delivery

accuracy data, with the following form:

(
(<range> <time of flight>
(horizontal fixed bias> <vertical fixed bias>
<horizontal variable bias> <vertical variable bias>
<horizontal random error> <vertical random error>
<horizontal stationary/moving add-on dispersion>
<vertical stationary/moving add-on dispersion>
<horizontal stationary/moving subtractive dispersion>
<vertical stationary/moving subtractive dispersion>
<horizontal moving/stationary add-on dispersion>
(vertical moving/stationary add-on dispersion>
(horizontal moving/stationary subtractive dispersion>
(vertical moving/stationary subtractive dispersion>)
(<range> (time of flight) ...)

Chapter 1: Overview 3

range is the distance between the shooter and the target. (real in meters)

time of flight is the time of flight for tie specific range. (real in seconds)

horizontal fixed bias and vertical fixed bias are fixed discrepancies between the desired
aim-point and the actual hit point. (real in mils)

horizontal variable bias and vertical variable bias are occasional discrepancies between
the desired aim-point and the actual hit point. (std deviation, real in mils)

horizontal random error and vertical random error are the random error factors. (std de-
viation, real in mils)

horizontal stationary/moving add-on dispersion and vertical stationary/moving add-
on dispersion are add-on dispersion when the shooter is stationary and the target is moving. (std
deviation, real in mils)

horizontal stationary/moving subtractive dispersion and vertical stationary/moving
subtractive dispersion are subtractive dispersion when the shooter is stationary and the target
is moving. (std deviation, real in mils)

horizontal moving/stationary add-on dispersion and vertical moving/stationary add-
on dispersion are add-on dispersion when the shooter is moving and the target is stationary. (std
deviation, real in mils)

horizontal moving/stationary subtractive dispersion and vertical moving/stationary
subtractive dispersion are subtractive dispersion when the shooter is moving and the target is
stationary. (std deviation, real in mils)

The algorithm to calculate missed di'.tance is described below:

1. Look up the hit table entry for a v, 'n range.

2. Calculate the overall bias (I i.

a. Extract the fixed bias i . ,..I '. %ariable bias standard deviation (V.STD.DEV) from
the entry.

b. The variable bias (V) i, .. d., '.,I I. drawing a normal random number from the variable

4 Libbalgun Programmer's Guide

bias distribution with zero mean, and standard deviation deviation is V.STD..DEV. V

rnd.normal-distribution(O.0, V.STDDEV)

c. The overall bias is calculated by adding F and V. B = F + V

3. Calculate the overall error (E).

a. Extract the random error standard deviation (R.STD.DEV), the add-on dispersion standard
deviation (A.STDDEV) and the subtractive dispersion standard deviation (S.STDDEV).

b. Calculate overall random error standard deviation (E.STD.DEV) by adding the variances
of the random error and add-on dispersion. Then subtract the variance of the subtractive
dispersion and take the square root of the result. E.STDDEV = sqrt(R.STD-DEV'2 *
A.STD-DEV-2 - S.STD-DEV-2)

c. The overall error is calculated by drawing a normal random number from the overall
random error distribution with zero mean, and standard deviation is E.STDDEV. E =

rnd-normaldistribution(O.0, E.STD.DEV)

4. Calculate the missed distance.

a. Given the overall bias (B) and overall error (E), the miss distance in mils (MMILS) can be
calculated as MMILS = B + E

b. Given the range (R), the missed distance in meters (MMETERS) can be calculated as
M.METERS = R*tan(MILTO.RAD(MMILS))

>>>>>>> ../acu/libbalgun.texinfo Libbagun supports up to 4 instantiations per vehicle (i.e., a
vehicle can have up to 4 generic ballistic guns). This number can be easily changed by recompilation.

The libbalgun library defines a common set of functions (and the semantics of those functions)
which are invoked on instances of the guns class (such as those instantiated by libbalgun or libm-
launcher). It is possible to modify the ballistic gun model by changing an exisiting guns interface
function or by adding a completely new function.

To modify an existing libbalgun interface function would require the following actions:

1. If the change occurs only in the function body, a change to the function code in the libbalgun
library if all that is needed. If the change occurs to the function's argument list, change
the function code in the libbalgun library and the guns interface structure definition found
in libguns.h. Also to maintain the common guns interface, change the code for the modified
function in any other gun specific component library (such as libmlauncher).

2. Recompile ModSAF.

To add an additional libbalgun function to the current model would require the following actions:

Chapter 1: Overview 5

1. Write the function as part of the libbalgun library. The function is written in the code that

manages the libbalgun class information attached to each vehicle (bgun-class.c).

2. Add the function and its declaration to any of the other gun specific component libraries. This

maintains the common guns interface.

3. In the libguns source code that handles libguns initialization processing, include a func-
tion-number, funccion entry identifying the new function for the cpnt _defin*-instance

function and every other gun instance library (such as libmlauncher).

4. In libguns.h, add an entry to identify the new macro aud associate it with a function code

number. This new addition means that the number of guns interface functions must be incre-
mented by one. The guns interface structure definition that appears in libguns.h must include
a structure to define the new function's argument list.

5. Recompile ModSAF.

To replace this ballistic gun model with a completely different one would require the following
actions:

1. Decide on the get functions and set functions that would be required in the new model. Try to
map these needed functions to the existing guns interface. A function can map if its argument
list can remain the same. Functions that can not map must be added to the guns interface.

2. For those functions that can map to the existing guns interface but whose code body you want
to change, edit the code for the function in the libbalgun source file that contains the code to
manage the libbalgun class information (bgun..class.c).

3. For those functions that can't map to the existing guns interface, add an additional function
to the guns interface. The addition procedure was described above.

4. Recompile ModSAF.

If an interface function is no longer needed, it is possible but not required, to remove it. Deletion
of an interface function is only allowed when that function is not needed in any of the specific
component libraries,

The deletion process requires these steps:

1. Delete the function code from each specific component library.

2. In the generic component library, remove the "function-number, function" entry identifying
the excess function in the "cmpnt-define-instance" function call. This function call is found in
the library's initialization code segment. In the library's public header file, remove the entry

for the excess macro and its associatiated function code number. Decrease the number of
interface functions by one. Delete the structure that defines the excess function's argument

6 Libbalgun Programmer's Guide

list in the interface structure definition.

3. Recompile ModSAF.

Chapter 2: Algorithms 7

2 Algorithms

The following sections describe the tick and firing event processing algorithms used by libbalgun.

2.1 Gun Tick Processing

When a gun is ticked via bgun.tick (vehicle..id, ctdb) the following processing occurs:

1. Retrieve the name of the sensor used by this gun.

2. Calculate dT, the time period between the last tick and this tick.

3. If the gun's state is BALGUN.STATE.DESTMYED then exit, otherwise do the ballistic gun simu-
lation by invoking three independent state machines: Loader, Tracker, and Firer. Loader, im-
plemented via the bgun.loader.tick function, does loading or unloading operations on quan-
tities of requested munition. Tracker, implemented via the bgun.trackertick function, does
tracking operations on requested targets or locations. Firer, invoked via the bgun-firer.tick
function, does shooting operations on requested targets or locations. These functions which
are each passed the argument list, (vehicleid, userdata.handle, gun, dM), are described
below.

2.2 bgun-loader-tick

The processing for bgunloadertick (which is determined by the gun's loading state) is as
follows:

If the loading state is BALGUI._LOADIIG.STTEIDLE, then exit if the requested transfer quantity
is 0. Otherwise call libsupplies via the function supp.ge.amount to see how many rounds are
currently in storage. A requested transfer quantity greater than 0 implies an intended load
and a requested transfer quantity less than 0 implies an intended unload. For an intended
load, clip the request if necessary, down to the amount available in storage or the amount that
there is enough room for in the breach. If the requested transfer quantity gets clipped down
to zero then exit, otherwise change the loading state to BALGU-LOADIIG.STATLLOADIIG. For
an intended unload, if there aren't enough rounds in the breach for the requested transfer
quantity to get unloaded, change the request to reflect the amount currently loaded. If the
change sets the requested transfer quantity to zero then exit, otherwise set the loading state
to BALGUN.LOADINGSTATE.UNLOADIIG. Set the loader time to the load time specified in the
configuration file.

8 Libbalgun Programmer's Guide

" If the loading state is BALGUNLOADINGSTATE.LOADING, then reduce the loading time by the
input dT, the time between ticks. If the loader time is still greater than zero, not enough
time has elapsed between ticks to load a round, so exit. Otherwise simulate the loading of one
round by increasing the loaded quantity by one and reducing the requested transfer quantity
by one. Invoke libsupplies to decrement the munition amount in the storage area by one
round. If the requested transfer quantity has dropped down to zero, set the loading state to
BALGUN.LOADING.STATE..IDLE, otherwise reset the loader time back to the load time of the
configuration file.

" If the loading state is BALGUNLOADING.STATE-_UNLOADING, then reduce the loader time by the
input dT, the time between ticks. If the loader time is still greater than zero, not enough
time has elapsed between ticks to miload a round, so exit. Otherwise simulate the unloading
of one round by decreasing the loael'd quantity by one and increasing the requested transfer
quantity by one. Invoke libsupplies to increment the munition amount in the storage area by
one round. If the requested transfer quantity has increased to zero, set the loading state to
BALGUN.LOADING.STATE_ IDLE. otherwise reset the loader time back to the load time of the
configuration file.

" If the loading state is not one of those named above, print an error message and set the loading
state to BALGUNLOADING.STATE. IDLE.

2.3 bgun-trackertick

The processing for bgun.tracker..tick is as follows:

1. Get the physical limits (the elevation up limit and down limit) and the turret name for this
gun.

2. The gun's physical elevation needs to be updated based on the projected elevation and rate
of the previous tick plus dT (the time between ticks). Since the projected elevation and rate
of the previous tick are recorded in the last vehicle appearance packet, retrieve them via a
libentity call. The new physical elev-ation is the sum of the retrieved elevation plus the change
in elevation this tick. That change is calculated by multiplying the retrieved elevation rate
by dT. Test whether the new elevation needs to be clipped to keep the gun elevation within
limits. If clipping is needed. determine the elevation direction (up or down) and then clip to
the appropriate limit. This lauidls the case when a long time between times could permit a
gun to go completely past a %ippfi pointt. Clipping causes a discontinuity in elevation and
requires a resetting of the r,,lrw.,-,l elevation rate to zero. Call libentity to pass it the new
elevation.

3. Set the new elevation rate, ..-.. . Th. retrieved elevation rate. Clip the rate, if necessary, to
keep the rate within the liit.- - ili,,d lt the configuration file. Call libentity to pass it the

Chapter 2: Algorithms

new elevation rate.

4. If the tracking mode is BALGUNTRACKING._MODE.MANUAL, the gun will use the elevation that t lie
user asks for rather than a requested tracking elevation. Therefore, set the gun's turret-request
field to FALSE and set turretatdesired to FALSE.

5. If the tracking mode is BALGUN.TRACKINGMODETARGET, retrieve the location of the requested
tracking target via a call to libentity. Use the same code as that used for
BALGUNTRACKINGMODE.LOCATION to calculate a tracking azimuth and tracking elevation.

6. If the tracking mode is BALGUNTRACKING_4ODELOCATION or
BALGURTRACKINGMODE.LOCATION, a requested azimuth and a requested elevation must be
calculated. First, retrieve the location and azimuth of the gun's vehicle via calls to libentity.
Using the position data, calculate a vector between the simulated vehicle and the requested
tracking location. Using the vehicle's azimuth, calculate the position to shoot at in hull coor-
dinates. The desired elevation and desired azimuth can then be determined using an asin, an
atan2, and a sqrt. The azimuth calculation is an atan2. The elevation calculation is done by
first calculating the 3D range (which can be used later as input to the Fire PDU), and using
an asin on the Z linear elevation in vehicle hull coordinates with respect to this 3D range. Note
that a less useful way of calculating this elevation is with an atan2 on Z with respect to the
distance in the XY plane, but this doesn't give the more useful 3D range as a side-effect. Since
the gun is in a tracking mode, it is necessary to note whether the turret mai7Ltains the requested
tracking azimuth. When it doesn't, turretat.desired is set to FALSE. This setting will be
used in the tests that determine the gun's tracking status. When the turret is not at the gun's

requested azimuth, set the gun's turret.request field to TRUE and invoke a turret component
macro to call a libgenturret function that simulates the moving of the turret to the requested
azimuth. If the turret is at the gun's requested azimuth, then set the gun's turretrequest field
to FALSE to indicate that this tracked gun is pointing at the proper location and does not

need to request that the turret rotate.

7. If the gun's tracking mode is not one of the valid modes (BALGUNTRACKINGMODE_ ANUAL,
BALGUNTRACKING-MODEMANUAL, or BALGUN-TRACKINGKODEMANUAL) print an error message,
and set the mode to BALGUNTRACKING.MODEMANUAL.

8. Adjust the requested elevation to make sure it does not exceed the gun's up or down limits.

9. Calculate dE (the change in distance to reach the requested elevation). If the gun is already
close enough to the requested elevation (within 1.5 degrees) and the elevation rate is very slow
(less than or equal to 1.5 degrees/sec) consider the gun to be at the requested elevation and
set the elevation rate to 0 degrees/second.

10. When the gun arrives at the requested elevation, set the gun's at.desired field to TRUE and

call libentity to update the gun elevation and elevation rate in the vehicle appearance packet.

11. If the gun has not yet arrived at the requested elevation, set a new elevation rate and set the
gun's at-desired field to FALSE. This FALSE setting will be used in tests that determine the
gun's tracking status. The new elevation rate is an adjustment that takes into account the size

10 libbalgun Programmer's Guide

of the dE (elevation change) and the how often this tracker code ticks.

12. The tracking phase begins when a target js defined, and the gun and turret are first pointed

at the desired location. This event is synonomous with the vehicle commander giving the

command "Gunner". The sense, detect, recognize, and identify steps have already taken
place. The coarse lay of the gun has not yet taken place. The length of the tracking phase is
defined by bgun.get.tracktime, which considers the firer's and target's velocities, the range to

the target, and whether this is the firer's first shot at this target.

13. The tracktime table for the loaded munition contains factors for moving firer and moving
target. The factors for the stationary condition are 1. The overall factor F is the product
of the firer and target factors. The tracktime table also contains median and fixed times
versus range. A median M defines a lognormal distribution, where the logs of the values are
normally distributed with a standard deviation of 0.5, and the median of the actual values
is M. The tracktime for the firer's first shot at a target and the firer's subsequent shots at a
target are given by: first tracktime = (F * lognormal(m=ffire-median)) sub. tracktimes - (
F * lognormal(m=sfire..median)) * sfire-fixed

14. After the tracking period has elapsed, the gun considered "tracked" (indicated by its tracking
field set at TRUE). If the gun is loaded, the gun can be fired.

15. Any successive ticks while the tracking field is set at TRUE, will test whether a loss of tracking
occurs because the gun and turret are not still where they are supposed to be.

2.3.1 bgun.firer-tick

The processing for bgun-firr..tick is as follows:

1. If this gun does not have a fire request (either an at-target or an at-location request), exit.

2. If the gun has ammunition loaded and its loading state is idle (rather than loading or unload-
ing), then continue. Otherwise, set the fire requests to FALSE and exit.

3. If the gun can not fire because of pending firing going on from a previous burst, exit.

4. If the loaded quantity is less then the firing request quantity, clip the firing request quantity
down to the loaded quantity.

5. Get munition specifics, such as the loaded munition type, from the gun's munition table.

6. If the request is a fire at-target request, reset the requests to FALSE. If this gun is tracked

and its tracking mode is BALGUN.TRACKING_4ODETARGET, compare the requested firing tar-
get to the requested tracking target. If the two targets are different invoke the function
shoot-at.pointing to calculate the location the gun is pointing at (this function is described
later). If the two targets are the same, then test for visibility to the target location via a call to
bgun.target.intersection. This functiou will invoke the SENSORS.GET.TARGET.VISIBILITY

Chapter 2: Algorithms 11

macro to determine if it would be possible for the gun to hit th, target. When there isn't vis-
ibility, this function will return an intermediate vehicle or location to which there is visibility.
If there is visibility, shoot the target via the function bgun.shoot.to.hit-vehicle; otherwise
shoot the intermediate vehicle or location via the function bgun..hoot.intermediate.

7. If the request is a fire at-location request, reset the requests to FALSE. If this gun is tracked
and its tracking mode is BALGUN.TRACKING.MODELOCATION, compare the requested firing lo-
cation to the requested tracking location. If the two locations are different invoke the function
shoot- at.pointing to calculate the location the gun is pointing at (this function is described
later). If the two targets are the same, then test for visibility to the target location via a call to
bgun-location. intersect. This function will invoke the SENSORS.GETLOCATIONVISIBILITY
macro to determine if it would be possible for the gun to hit a 3.0 X 3.0 meter cube at the
target location. When there isn't visibility, this function will set an intermediate vehicle or
location to which there is visibility. If there is visibility, shoot the location via the function
bgun- shootto-hit-location; otherwise shoot the intermediate vehicle or location via the
function bgun-hoot _intermediate.

8. Subtract the fired quantity from the loaded quantity.

9. Increment the next shot time by the time necessary to handle this request. This is determined
by the rate in the munition table.

2.4 Firing Event Processing

The following functions handle the firing event processing of libbalgun.

2.4.1 bgun-shoot-to.hit-location

The function:

bgun-shoot-to-hit-locat ion(vehicle-id, user-data-handle,

location, gun, muntable)

does the following-

1. Gets the location of the shooting vehicle plus the burst specifics (location).

2. Calculates the range and time of burst.

3. Calls the function send-ballistic-fire to build and send a Fire PDU.

12 Libbalgun Programmer's Guide

4. Schedules an Impact PDU via a deferred function call of send-ballistic-impact. The Impact

packet will be sent in accordance with the calculated burst time.

2.4.2 bgun-shoot_to.hit-vehicle

The function:

bgun.shoot..to-hit.vehicle (vehicle.id, user.data.handle,
target.id, gun, muntable)

does the following:

1. Gets the location of the shooting vehicle plus the burst specifics (location).

2. Performs the range and time of burst calculations.

3. Calls the function send.ballistic-.fire to build and send a Fire PDU.

4. Computes either a hit or miss based on the gun's hit probability tables.

5. If the shot is determined to be a hit, schedules an Impact PDU via a deferred function call of
send-ballistic-impact. The Impact packet will be sent in accordamce with the calculated

burst time.

6. If the shot is determined to be a miss, computes a miss position as being between 3 and 8 meters
directly short of the target and then schedules an Impact PDU via a deferred function call of

a nd.ballisticJ impact. The Impact packet will be sent in accordance with the calculated
burst time.

2.4.3 bgun-shoot_ intermediate

The function:

bgun.shoot.intermediate(vehicleid, user.data-handle. gun,
intlocation, int.vehicle, mun.-table)

does the following:

1. Gets the location of the shooting vehicle.

2. Updates the gun's derived quantities (vector and range) to accommodate the different location.

Chapter 2: Algorithms 13

3. Calls bgun..hoot.o.hit- location if this is a shot to the ground (or building) or if the

configuration file has the hit-obscuring- vehicles parameter set to FALSE.

4. Calls bgun.shoot .. to-hit._vehicle if this is a shot to an intermediate vehicle.

2.4.4 shoot- at-pointing

Libbalgun makes use of the functitn shoot.at-pointing when the gun wants to shoot but is
not pointing where it should be. To liatdle this fall through case, an alternate location is calculated
and shot at with the following steps:

1. Calculate a location that the gun isl pointing at that is no further away from the gun than the
loaded munition's maximum range will permit.

2. Test visibility to that point.

3. If the gun has visibility to that maximum range point, place the round on the ground at that lo-
cation via a call to bgun-shoot.to.hit.location, otherwise place the round at somewhere or
something in between the gun and t he max range location via a call to bgun-shoot._intlermediate.

14 Libbalgun Programmer's Guide

Chapter 3: Examples i

3 Examples

To get the component number of a gun with a particular name (such as "main-gun"):

int32 gun;

if ((gun - cmpnt-.locate(vehicle.id, name)) an
CMPNT-.NOT..FOUND)

printf ("Vehicle %d does not seem to have a gun called \"Zs\"A"

vehicle-id,
name);

To then give a command to that gun (the macro is defined by libguns; it assembles a GUNS-.INTERFACE
structure, and calls cupnt..invoke):

if (gun !- CMPNT..IOT..FOUND)
GUIS..SET.ELEVATIO(vehicleid. gun, elevation);

16 Libbalgun Programmer's Guide

Chapter 4: Functions 17

4 Functions

The following sections describe each function provided by libbalgun, including the format and

meaning of its arguments, and the meaning of its return values (if any).

4.1 bgun-init

void bgun.init(packe.valve, event-id, aim.addr. protocol.
data-path, flags)

PVVALVEPTR packet-valve;
int32 *event-id;
SimulationAddreas *sim-addr;
int32 protocol;
char *data-path;
uint32 flags;

'packet-valve'
Specifies the packet valve used to send fire and impact pdus

'.vent.id'
Specifies a pointer to a static host event counter

'uism-addr'

Specifies simulation address for outgoing event DIS IDs

'protocol'
Specifies protocol in use (0 for SIMNET, DIS.PltTOCOL.VERSIOI.* for DIS)

'flag.' libreader flags to pass to reader.read() (see section 'reader-read' in LibReader
Programmer's Manual) when hit table files are read

bgun-init initializes libbalgun. Call this before any other libbalgun function.

4.2 bgunclass-init

void bgun.las.sinit (parent.class)
CLASS.PTR parent-class;

'parent.class'

Class of the parent (declared with clasnxdeclare-class)

18 Libbalgun Programmer's Guide

bgun..clas..init creates a handle for attaching balgun class information to vehicles. The
parent-.class will likely be safobj-clasu.

4.3 bgun-.tick

void bgun..tick(vehicl...id, ctdb)
int vehicle-.id;
CTDB *ctdb;

'vehicle-.id'
Specifies the vehicle ID

'ctdb' Specifies the terrain database

bgun..tick ticks the guns for a vehicle. ctdb is required in order to access terrain information
for shooting misses.

4.4 bgun-.component..Availability

void bgun-.component-.availability(vhicle-i.d, component, in-.available)
int32 vehicle-.id;
int32 component;
int32 is-.available;

'vSpeiifies the vehicle ID

'component'
Specifies a component which has changed availability

'is-.available'
Specifies whether the component is available or not

bgun.component.availability insforitu; a vehicle's balguns about a change in status for com-
ponents. If a component that a lI)Ifln i% using. (such as the turret that the gun is attached to)
becomes unavailable, the gun tCIIP iiiaavailable.

4.5 bgun...damage

Chapter 4: Functions 19

void bgun-damag(vehicle.id, damage)
int32 vehicle.id;
int32 damage;

'vehicle.id'

Specifies the vehicle ID

'damage' Specifies whether the gun is damaged. When the function is invoked with damage

set to TRUE, the gun state will be set to BALGUN.STATELDESTROYED and libentity
will be invoked to set the gun elevation value to -0.3. When the function is in-

yoked with damage set to FALSE, a destroyed gun will have its the gun state reset

to BALGUN-STATE.HEALTHY and libentity will be invoked to reset the elevation value to

0.0.

bgun.damage informs a vehicle's balguns about whether they should be damaged or not. This

is used to model external damage assessment.

I ADST-TR-W003268

LibClobj

Table of C ontents

1 Overview..1

2 Functions .. 3

2.1 c2obj-iuit..3

Chapter 1: Overview 1

1 0 verview

Libc2obj provides the class superstructure in which all command-and-control sub-classes reside.

Examples of these sub-classes include: unit, graphics, task, task frame, and unitorg. They can be

thought of as the pieces that make up the c2obj class.

Various libraries define classes of objects which are instantiated. Most notably: LibPO creates

line graphics, units, task frames, etc. Often the same object is represented in two ways, once at a

low software layer, and again in a higher layer. For example:

Object Type Low-Layer Representation High-Layer Representation
-------------- ------------------------ -------------------------
route (line graphic) libpo persistent object libc2obj object

For each class of object, there is a senior layer (libc2obj) responsible for management of that
class. This will generally not be the layer which instantiates the objects (libpo). Hence for persistent
object classes:

High layer libc2obj

Mid layers
libunits, libgraphics, libtaskframe,...

Low layer libpo

Instances of the c2obj class are attached as user data to Persistent Objects of various classes
such as the line class, the point class, and the unit class (e.g. see section 'Unit Class' in LibPO

Programmer's Guide).

Libc2obj registers a
uew.obj ect.event.-handler (see section 'new.object.event-handler' in LibPO Programmer's Guide)
and an object.gone.event.handler (see section 'object.goneevent-handler' in LibPO Program-

mer's Guide) in the PO database to cause the creation and destruction of c2obj instances when

new PO objects are received or old PO objects are destroyed. For example, when a user at a

SAFstation creates a new unit, the resulting new.object.event.handler instructs LibPO to build an
instance of the unit class in the PO database. When a user deletes an existing point graphic from

the SAFSstation, the resulting object.gone.event.handler instructs libpo to remove the instance of

the point class in the PO database.

Adding a sub-class requires making the following changes to this library:

2 LibC2obj Programmer's Guide

1. Modify c2obj.init to initialize the sub-class.

2. Modify c2obj..create to create the sub-class at the appropriate point (after those sub-classes
in lower layers, and before those in higher layers).

3. Modify c2obj.destroy to also destroy the new sub-class.

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libc2obj, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 c2objinit

void c2objinit(db)
PODATABASE *db;

c2obj-init initializes libc2obj. Call this before any other libc2obj function. Note that this
function will call the *_classinit routines for all c2obj subclasses. Hence, you should call their
primary init routines before c2obj.init.

ADST-TR-W003 268

LibCaliback

Table of Contents

1 Overview ... 1I

2 Examples ... 5

3 Functions..9

3.1 callback-define-event .. 9
3.2 callback..register..handler 9
3.3 callback-jire.event ... 10
3.4 callback.unregister-handler 10
3.5 callback..destroy..event.. 11

Chapter 1: Overview 1

1 Overview

Information can be classified into two categories: state and events. State information is present
at all times, and describes things like the location of a vehicle, or the name of the mission being
executed. State information can be easily controlled and made available to all software modules
using the ModSAF data hiding/sharing techniques (see the ModSAF methodology documentation
in the ModSAF Programmer's Guide for more on this subject). Events are one time occurrences in
the simulation, such as the explosion of an artillery shell. Often, it is convenient to treat a change
of state as an event, such as when a vehicles runs out of fuel (the value of the fuel state variable
changed to zero).

Sharing event information is problematic. The most common method used in real time sim-
ulation, is strict function chaining: when event 'X' happens, function 'Y' will be called. To add
another consequence to event 'X' requires that function 'Y' be changed. This causes interoperability
problems, and may make layering of software impossible.

An alternative method of event handling is through the use of "callback" functions. A software
module which is interested in an event, requests that the software module generating that event
call a function when the event happens. If the software can only register one callback function,
however, this solution is little better than hard coding responses to events. What is needed is a
way for an arbitrary number of software modules to register event handlers, such that all of them

may be called.

X windows provides callback functionality using an extremely flexible (and consequently, very
computationally expensive) method. Events are identified by name (a character string), and are
uniquely tied to an object (e.g., pressing a button on the screen generates an event, pressing a
different button generates a different event); software modules can register callback routines by
specifying the object involved and the name of the event. No distinction is made between private
and public events. No facility exists for registering object-independent callback functions (a software
module must re-register the callback function with every object to make it apply to all of them).

Libcallback implements a similar functionality with a simple, real time technique. A software
module registers an event with libcallback, giving the types and order of arguments (libcallback
will need this information later); note that no name is given. Libcallback returns a handle to
the software module, which the module may either make public, or keep private. Other software
modules may register callback routines which are associated with this event handle, along with a
constant which it requests be passed as the last argument (this allows the receiver to define one
callback function to be used with a variety of similar events). When the event occurs, the software
generating the event passes libcallback the event handle and arguments; llbcallback then calls all

2 LibCalback Programmer's Guide

registered callback routines (the order of calling is not guaranteed, and cannot be depended upon).

A software module may create a unique event for each object created (as in X windows), or it
may create one event for an entire class of objects (such as the PO database object-changed event).
Unlike X, the number and type of arguments are defined on a per-event basis (X has a standard
set of three arguments which are passed to every callback routine).

The use of libcallback for distribution of events is not always appropriate. In general, libcallback
should be only be used to distribute event information from low layer service providers (such as
libpo or libvtab) to high layer independent object classes (such as libdfdam and libtactmap). The
use of libcallback for distribution of events wit hin an object is strongly discouraged; direct function
invocation should be used instead. The problem here is that a renegade programmer can use
libcallback to violate normal layering constraints. Consider the following examples:

Example 1: Proper use of libcallback

Indirect fire appears on the network in the form of a DIS PDU. A low layer service provider (such
as libpktvalve) receives this PDU and must distribute the indirect fire event to all interested high
layer object classes. One of these classes is the local vehicle simulation (which evaluates damage
from indirect fire). Another is the map display system (which draws indirect fire on the map). One
or both of these classes may appear in the simulation, depending upon how the program is linked
(as a SAFSIM, SAFSTATION, or POCKET SAF).

Libcallback provides a useful service in this case. The generator of the event is in a low layer,
and is not part of either receiver class (vehicle simulation, or map display). The receiving classes
are in high layers, are completely independent, and may or may not appear in the same executable
system.

Example 2: Improper user of libcallback

The physical simulation of a vehicle (e.g.. libtracked) determines that the vehicle has run out of
fuel. Running out of gas may trigger several responses within the vehicle. There are three options
for sharing the out-of-gas event:

1. The class which inherits liht r, ke'd ,. .. ,afobj class) may poll a public state variable within
the libtracked class to det'rmi i,. if t lie event has occurred.

2. Libtracked may provide a -,r... . 6 it, .uperior class, in the form of a callback function passed
in at initialization, and cal'..% , ..,i !!,.- ulicle runs out of fuel. The superior class would then
call appropriate function. iii ... Le I.,,:f.i td subsystems.

Chapter 1: Overview 3

3. Libtracked can define an event via libcallback, and all other subsystems of the vehicle which

respond to running out of fuel can register handlers for this event.

The first option is undesirable because it is both inefficient and requires making public state
which could otherwise be kept private. Hence, the only decision is between the second and third
options. Consider the following attributes:

Layering In option 2, the libtracked layer provides a service to the safobj class (telling it the

vehicle just ran out of fuel). Each other subsystem also provides services to the safobj
(responding appropriately to running out of fuel). Hence, layering is ensured.

In option 3, libtracked provides a service to all subsystems. Since some subsystems
can be in higher layers than libtracked, and others in lower layers, layering cannot be
guaranteed. Put another way, option 3 guarantees, that given enough time, someone
WILL violate layering.

Specification
In option 2, each service (the out-of-gas notification, and each out-of-gas reaction) is
specified. That a callback is provided by libtracked is specified in its initialization
routine; the other subsystem reaction functions are each specified as available public
function calls.

In option 3, only the existence of the event is specified. The subsystems which respond
to this event can only be discovered by an examination of the software.

Clarity In option 2, safobj will contain a function which calls all the subsystems which respond
to running out of fuel. The order will be explicit, and interactions between subsystems
will be predictable.

In option 3, the order in which subsystems react to running out of fuel cannot be
predicted, and the interactions between subsystems can only be found through experi-
mentation or detailed analysis.

Given these considerations, it is clear that libcallback is less desirable than using an explicit
callback within libtracked. The problem can be summarized succinctly: libtracked is in too high a
layer for libcallback to be useful.

LibCailback Programmer's Guide

Chapter 2: Examples 5

2 Examples

The following program demonstrates the use of libcallback functions. This program appears as

'test. c' in the libcallback source directory, and can be compiled with the command 'make test'.

/* Include these header files in any file using libcallback functions e/
#include <libcallback.h>
*include <stdext.h> /*common/include/global*/

/* This test program demonstrates a callback relationship between
* three libraries: (1) A network interface library which is detecting
" direct- and indirect-fire events; (2) A simulation library which
* queues these events for vehicle processing; (3) A display library
* which draws effects on a map.
*

* The network library defines the event, and puts the handle in a
* public variable. The other libraries know where to find the handle
* and the format of the event from the documentation of the network
* library; they attach their handlers.
*

* Note that while the simulation uses two different handlers, the
* display routine uses only one handler and discriminates via the user
* data. The latter is OK only if the events have the same number/types
* of arguments (in this case DOUBLE, PT).
*/

/* Network Library

CALLBACKEVERT.PTR df.event.handle;
CALLBACK.EVENTPTR if-event.handle;

void network.init ()

df-event.handle a callbackdefine.event(ADOUBLE, APTR, AEND);
if.event.handle - callbackdefine-event(A.DOUBLE, A.PTR, AEND);

void network-detect.df (when, data)
float64 when;
char *data;

callback.fire.event(df.event-handle, when, data);
}

void network.detect.if(when, data)
float64 when;

6 LibCallback Programmer's Guide

char *data;
{

callback-fire.event(if.event.handle, when, data);}

/* Simulation Library ,/

/* #include network public header */

void distribute-df(when, data, ignored)
float64 when;
char *data;
ADDRESS ignored;

/* allocate buffers and queue for vehicle processing... ./
printf("Simulation: df at %f <%s>\n", when, data);

void distributeif(when, data, ignored)
float64 when;
char *data;
ADDRESS ignored;

{
/* allocate buffers and queue for vehicle processing...
printf('Simulation: if at %f <(s>\n", when, data);}

void simulation.init()
{

callbackregiter-handler(df.event.handle, distributedf,
O/*Ignored,/);

callback-regiuter.handler(if.event.handle, distribute-if,
O/*Inored*/);

/e Display Library ,

/* Sinclude network public header */

#define DF.TYPE 1
#define IF.TYPE 2

void display.d _or.if(when, data, what)
float64 when;
char *data;
ADDRESS what;

{

Chapter 2: Examples7

switch(U(nt32) what)

case DF..TYPE:
printf('Display: df at %f <%.s>\n", when, data);
break;

case IF-.TYPE:
printf("Diuplay: if at %f CYs>\n, when, data);
break;

void display..inito)

callback-.register-.handler(df-.event-handle, display.df..or-if,
DF-.TYPE);

callback.regiuter-.handler(it-event-.handl., diuplay.df..or-.if,
IF..TYPE)-

void diuplay-no-.if()

callback-.unregister.handler(if..event-handle, display..df..or-.if,
IF..TYPE);

void display..if.too.uuch()

int32 i;

for(imO; ic10; i,,)
callback..zegiutez..handler(if..event..handle, diuplay..df-.or..if,

IF..TYPE);

mainc)

/* Initialize the libraries. Note that the library which define.
*the event must be initialized first.

network.initO;
sizuulation.inito;
display-.inito;

/* Trigger some events o/
network-.detect-.df(l .0. 'Bang");
network-.detect-.if(2 .0 **Boon");
network.detect..df (3.3.'Pw)

8 LibCailback Programmer's Guidle

/* Disable the display of indirect fir.e*
display.no-.if 0;

/* Trigger some events *
network.detect.,df(4.O, "Bang");
netork-.detect-.if(5.O, "Boom");
network-.detect..df(6.O. "Pow");

/* Add a whole bunch of callbacks *
display..if .too-.mucho;

1* Trigger some events .
netvork.detect-.df(4.O, "Bang");
network-.detect..if(5.O, "Boom");
network-.detect..df(6.O, "Pow");

/* Disable the if display again *
diuplay-.no..if 0;

/* Trigger some events *
netvork.detect-df(7.0, "Bang");
netvork-.detect..if(S.O, "Boom");
network-.detect..df(9.0. "Pow");

/* Clean up and exit */
calback.destroy- event (df .event.basndle);
callback-.destroy-.event(ifevent-handle);

Chapter 3: Functions 9

3 Functions

The following sections describe each function provided by libcallback, including the format and

meaning of its arguments, and the meaning of its return values (if any).

3.1 callback _define..event

CALLBACK.EVENTPTR callback.dtin.-vent(amxg.typO, arg_.typel,.
A-END)

int32 arg.typeO, arg.typel,

'arg.types'

Specifies the types of the arguments passed when the event fires. Chosen from the

set: AINT, A-DOUBLE, APTR, A-SHORT, A.CHAR, A-FLOAT (defined in com-
mon/include/global/stdext.h).

'A..ED' Constant which should always be passed as the last argument.

callback.define.event creates an event and returns a handle which can be used to register han-

dlers, fire the event, or destroy the event. The arguments specify the types of up to four arguments
which will be passed when the event fires. (e.g., callback.define.event(A.JNT, AJNT, A-DOUBLE,

A.END)).

3.2 callback..registerhandler

void cal.back.registerhandler(event-handle, handler.-function, user-data)
CALLBACK.EVENT.PTR event.handle;
CALLBACL.HANDLER handler.function;
ADDRESS user-data;

'eventhandle'

Identifies the event.

'handler-function'

Specifies the function to be called when the event occurs.

'user.data'

Specifies a constant which will be passed to the handler-function as the last argument.

10 LibCallback Programmer's Guide

callback.registerihandler notes that a function is to be called when an event occurs. The

event-handle identifies the event (created with callback.defineevent), the handlerfunction specifies

the address of the function which is to be called. The handler function should expect the argu-

ment types specified when the event was created (via callbackdefine.event), as well as a trailing

argument which is the constant value passed here as user data.

3.3 callbackfire.event

void callback.fire.event(event.handle, arg, arg...)
CALLBACKEVENT.PTR event handle;

'event.handle'

Identifies the event.

'args' Specifies up to four arguments to pass to the handlers.

callbackfire.event invokes all the handlers defined for the event in no particular order (if order

is important, libcallback is probably not the right solution, see Chapter 1 [Overview], page 1). The

types of the arguments are assumed to be those passed to callback.define.event (see Section 3.1

[callback'define'event!, page 9).

3.4 callback-unregister-handler

void callback-unregiuter.handler(event.handle, handler.function, user-data)
CALLBACKEVENT.PTR event-handle;
CALLBACKHANDLER handler-function;
ADDRESS userdata;

'event.handle'

Identifies the event.

'handler-function, user-data'

Specifies the function/user-data pair which should no longer be called when the event

occurs.

If a handler for the event-handle passed can be found which matches the

handler.function/user.data passed, callbacLunregister.handler will removed it the list of functions

called when the event is fired.

Chapter 3: Functions 11

3.5 callback-destroy -event

void callback.destroy-event(event..handle)
CALLBACKEVENTPTR event-handle;

'event-handle'

Identifies the event.

callback-destroy-event frees the memory associated with the passed event.handle. Referencing

this handle after after a call to this function will probably make the program crash (i.e., don't do
it).

ADST-TR-W003 268

LibClass

Table of C on tents

I Overview.. 1

2 Examples...3

3 Functions ... 9

3.1 class-.declare-.class... 9
3.2 class-reerve..user-.data ... 9
3.3 class..alloc..user..data..10o
3.4 classlfree-user-.data .. 10o
3.5 class..set.user-.data..10
3.6 class..get-.user-.data..11
3.7 class-set.global-data.. 11
3.8 class-get4lobal-data.. 12
3.9 class-.show.. 12
3.10 CLASS-.DEBUG .. 13
3.11 class..get-debug...13
3.12 class..debug-.byname ... 13
3.13 class-show..names..14

Chapter 1: Overview 1

1 Overview

An object is defined: "An area in computer memory that serves as a basic structural unit of
analysis" (Baron). A class defines the organization of data in that memory, and the functions which
operate on a group of objects which use the same organization. Typically a library will define a
single class, and will provide functions to create, destroy, or operate on objects in that class.

Often the same object is represented in two ways, once at a low software layer, and again in a
higher layer. For example:

Object Type Low-Layer Representation High-Layer Representation

Simulated Entity LibVTab vehicle LibSAFObJ object
Route LibPO persistent object LibC20bj object

Various libraries define classes of objects which are instantiated. Most notably:

" libpo creates graphics, units, task frames,etc.

" libvtab creates vehicles

" Xt creates widgets

Different high-layer classes need to attach different user data to these objects. For example,
when a route is created in libpo, the user interface software makes a bunch of widgets and stuff
which it wants to attach as user data to the object; simultaneously, the simulation software wants
to compile the route into its internal format, and attach that as user data. This leads to an
incompatibility which will prevent linking the workstation and simulation software together. What
is needed is a way to declare at run time the number of pieces of user data which will be attached
to each class of object.

Low layer classes generally allow the attachment of one piece of user data to each object (this
is true of libpo, libvtab, and Xt). Libclass provides a sort of user data multiplexer service to allow
each class (each library) within an application to attach its own kind of user data to each object.

As shown in the figure below, a single slot is also provided for a 'global' piece of user data to be
attached to each block. This slot is accessed through functions rather than the sub-class slots.

2 LibClass Programmer's Guide

Low Layer
Object

.. I [LibClass User Data Block
lUser I

Data --- > Global Slot I
.. I [Debug Info

I SubClass User Data I

[SubClass User Data -

I SubClass User Data I

Libclass also provides functions to aid in debugging. It manages run time modifiable flags which
enable or disable debugging for each class, on both a global and a per-instance basis. Furthermore,

it manages 'show' routines for each class, to aid in debugging.

Chapter 2: Examples 3

2 Examples

The program 'tout.c' in the libclass source directory demonstrates the mechanics of using

libclass. It can be compiled with the command 'make test'. The following example provides a

bigger picture of how libclass is to be used in the ModSAF application.

For each class of object, there is a senior layer responsible for management of that class. This

will generally not be the layer which instantiates the objects. Hence for persistent object classes:

High layer libc2obj

Mid layers
libunits, libgraphics, libtaskframe,

Low layer libpo

High layer libsafobj

Mid layers

libcollision, libcomponents, libentity,

Low layer libvtab

In each case, the low layer creates the objects (provides an object creation service), while the
high layer is responsible for managing all the other libraries which need to attach user data (and
hence expand upon the object). The low-layer representation of the object class does not define
many functions. In the case of persistent objects, the kernel does have a lot of state; in the case

of safobj's, there is next to none. In both cases, there is more than one layer between the high

and low layers which contributes state. Furthermore, these libraries differ depending upon how
the program is linked (STATION, SIM, POCKET). STATION means that the application has

no simulation capabilities, SIM means that the application has no user interface capabilities, and

POCKET means that the application has both user interface and simulation capabilities.

At initialization, libclass will provides unique handles by which classes may be referenced. For

example, libsafobj will do the following:

static CLASS.PTR safobj.class;

safobj.init(...)

safobJclass = class.declare.classO;}

4 LibClass Programmer's Guide

Each client library that needs to attach user data to a class thus declared will do so in its
initialization routine (the senior layer will pass it the handle just allocated). In the hypothetical
examples that follow, it is assumed that a vehicle of the safobj class has a "driver" sub-layer
(subclass).

static int32 driver-user.data.handle;

driver.init(safobj.class. ...)
CLASSPTR safobj.class;

driver-user.data.handle
class.reserve.user.data(safobj.class, "driver", drive.printer);

}

When an object of that class is instantiated, the most senior layer asks libclass to allocate space
for all the sub-layer's user data. Each sub-layer allocates its own user data in its instantiation
routine, and asks libclass to store a pointer to it.

safobj.creae(...)

{
VTABUSER.DATATYPE user.data;

/* libvtab provides a kernel object (referenced via the
* vehicle id), with a user-data slot which is filled in here.
*/

/* Ask libclasus to allocate space for all the pointers */
user.data a

(VTAB.USE LDATATYPE) class.alloc.userdata(safobj.class);

/* Store a pointer to this space with libvtab for later
* retrieval.
*/

vtab.set.vehicle(vehicle-id. user-data);

driver-create(vehicle, d ...);
}

driver.create(vehicle. :1 ...)
int32 vehicleid;

Chapter 2: Examples

/* Allocate space to store our unique state variables.
* Note that DRIVER.VARS in a private structure to
* libdriver.
*/

DRIVER.VARS *driver " ALLOCATEDRIVER.VARSo;

classet..user.data(vtab-getvehicle(vehicle.id).
driver.userdatahandle,
driver);

}

Thereafter, routines which need to access their class variables will get them from libclass:

void driver.do-something(vehicle.id, ...)
int32 vehicle.id;

DRIVER.VARS *driver a (DRIVELVARS)
clas.get-user.data(vtab-get.vehicle (vehicleid),

driver..user.data.handle);

if (.driver) /* Passive error detection */
return;

... operate on driver ...

Note that both get routines are macros, so the code here is really just doing array references.

Furthermore, the mess of code making up the first three lines of the function will be the same for
every functions, and hence can be encoded in a macro. An actual function should look more like
this:

void drivor.do.something(vehicleid, ...)
int32 vehicleid;

GEToVARS(vehicle.id, driver);

if (!driver) /* Passive error detection *1
return;

... operate on driver ...
}

I

6 LibClass Programmer's Guide

Since all the pointers to all the state structures are now stored in a generic array (allocated by
lilclass, and pointed to by the user data elements of the various kernel classes), debugging is a
problem. dbx is not able to cast variables for printing, so examining the state of a vehicle would
not be possible (except by looking at the raw numbers in memory, and matching them to structure
members by hand). The solution to this problem is the debugging information which was passed
to libclass at initialization time. Specifically, this includes:

* A string which identifies the name of the module ("driver", "gunner", ...)

* A pointer to a function which takes a pointer to the local data structure, and will print its
contents:

static void driver.print(driver)
DRIVELVARS *driver;

printf("State: %d (X.)\n", driver->state,el~~sa!;e-elring(driver.>eltale));

printf("Leader: d\n", driver->leadveh);

With this information, libclass provides the class.show service. This function can be called
from an application (such as from a tty commaad parser), or from 'dbx':

(dbx) print clas.ehow(vtab.ge1.tvehcle(1OS4), "driver")

driver

State: 1 (Idle)
Leader: 52

0
(dbx) print clau.shov(vtab.get-.vehicle(1054), "driver entity")

driver

State: 1 (Idle)
Leader: 52

entity

Vehicle ID: 54
Location: < 0.0 0.0 0.0 >

0
(dbx) print classs.ho(vtab..get.-vehicle(1054), "all")
.. prints all safobj information...

Chapter 2: Examples 7

Finally, libclass also provides run time debugging support. Rather than putting conditionally
compiled printf's into a library, an author should use the macro CLASS._DEBUG, as follows:

*define DRIVER.DEBUG(vehicle-id. format) \
CLASSDEBUG(vtab-geZtvehicle(vehicleid), driveruser-data.handle, \

format);

void driver.do.something(vehicleid, ...)
int32 vehicle.id;

{

DRIVERDEBUG(vehicle_ id,
("Vehicle 7d: Driver doing something\n", vehicle.id));

} Io

8 LibClass Programmer's Guide

Chapter 3: Functions 9

3 Functions

The following sections describe each function provided by libclass, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 class -declare -class

CLASS.PTR class.declare.class()

class-declare.-class declares an object class. Each object class can have an arbitrary number
of slots for pointers to sub-class data. The class handle returned by this function is referred to by
each sub-class when reserving a spot for its data.

3.2 classjreserveuser-data

int32 classreuerve-user.daa(parent.class, name, printer)
CLASSPTR parent.clas;
char *name;
CLASS.PRINTER printer;

'parentclass'

Identifies the class.

'name' An ASCII string naming the sub-class.

'printer' Specifies a function which can print the user data. This function should take one
argument, namely the user data.

classsreserve.user-data note% a pc-tpntial sub-class of the parent-.class (some instances
of the parent class may not have 'h,, .L% a sub-class). The parent-.class was declared with
class -declare-.class (see Sect t -t .1.1 ' ht.s'declare'class], page 9). Note that name and printer
are used only for debugging purp,..-,..

It is safe, although short-si-tt4-. i, . 0 for the printer.

10 LibClass Programmer's Guide

3.3 class -allo c-user-d ata

CLASSUSERDATATYPE class.allocuser-data(class)
CLASSPTR class;

'class' Identifies the class.

class-allo.user.data allocates a block of memory which will hold pointers to the various
sub-class data structures of the passed class. Store the return value of this as the user-data of the
libpo entry, llbvtab vehicle, Xt widget, or whatever. The passed class is the id of the class declared
with class. declare.class (see Section 3.1 [class'declare'class], page 9).

3.4 class-free -user-data

void class.freeuser.data (user.data)
CLASS.USERDATATYPE user-data;

S 'user..dat~a'
Identifies the user data to be freed.

classfree.user.data frees the block of memory created with class-allo.user-data, as
well as private data structures (like the debugging flags).

Never reference passed the user-data again after calling this function.

3.5 class -set _user-data

void class.se:t.user.data(parent._user-data, handle, user-data)
CLASS.USER.DATA.TYPE parent-user.data;
int32 handle;
CLASS.USERDATATYPE user-data;

'parentuser.data'

Pointer to a block of libclass user data.

'handle' Specifies which sub-class user data slot to use.

Chapter 3: Functions 11

'user.data'

Specifies the user data to be stored in that slot.

class-se.tusr.data sets the slot for a particular subclass of the passed user data memory
block. The parent.user.data is a block created with clas.alloc.userdata
(see Section 3.3 [class*alloc'user'data], page 10), and the handle is the one created for this subclass
with class.reserve.user.data (see Section 3.2 [class reserve userdata], page 9).

3.6 class getuser -data

CLASSUSER.DATATYPE clas-.get-_user.data(parent.user.data, handle)
CLASSUSER.DATATYPE parent.userdata;
int32 handle;

'parent._user.data'

Pointer to a block of libclass user data.

'handle' Specifies which sub-class user data slot to get.

class-ge't-user-data gets the data stored in a particular slot of the passed block of user-data
memory. The parentuser.data is a block created with classallocuser-data (see Section 3.3
[class alloc'user'data], page 10), and the handle is the one created for this subclass with classreserveuser_
(see Section 3.2 [class'reserve'user'data], page 9). If no user data was stored in this slot with
class.se-user-data (see Section 3.5 [class'set'user'data], page 10), a NULL pointer will be re-
turned.

3.7 class.set global-data

void class.setglobal-data(parent._user.data, user-data)
CLASS.USERDATATYPE parent.user-data;
CLASSUSERDATATYPE user-data;

'parent .user.data'

Pointer to a block of Iibclass user data.
'user.data'

Specifies the user data to be stored in the global slot.

12 LibClass Programmer's Guide

class -et.global-data sets the global slot of the passed user data memory block. This is

analogous to class.et.uuserdata, except that only one global slot is provided.

3.8 class..get..global-data

CLASS.USER.DATATYPE class-get-global.data(parent-user-data)
CLASSUSERDATATYPE parent.userdata;

'parent.user-data'
Pointer to a block of libclass user data.

class.get.global-data gets the global slot of the passed user data memory block. This is
analogous to class.get.user.data, except that only one global slot is provided.

3.9 class.show

void class.show(user-data, fields)
CLASS.USERDATATYPE user.data;
char *fields;

'user.data'

Pointer to a block of libclass user data.

'fields' Selects which fields to show.

class-show is a debugging print routine. It prints the named fields within the body of data

pointed to by user-data. Multiple fields can be given, separated by a space, comma, or other
delimiter. Also, one of the following may be given as the only field:

what Shows names of slots which have non-NULL values.

all Shows all fields.

This function can be called from 'dbx' to examine variables, as shown in the example (see
Chapter 2 [Examples], page 3).

Chapter 3: Functions 13

3.10 CLASS-DEBUG

void CLASSDEBUG(userdata, handle, (format-string, arg, args...))
CLASSUSERDATA.TYPE user-data;
int32 handle;

'user.data'

Pointer to a block of libclass user data.

'handle' Specifies which sub-class user data slot to test.

CLASS-DEBUG is a macro which calls printf with the passed format/args on if the debugging

is on for that slot on that class in this block. Will also print if debugging is on for that slot/class

globally. See the example (see Chapter 2 [Examples], page 3) for example usage.

3.11 class-get-debug

int32 class.get.debug(userdata, handle)
CLASS.USER.DATA.TYPE user-data;
int32 handle;

'uner-data'

Pointer to a block of libclass user data.

'handle' Specifies which sub-class user data slot to test.

class.getdebug determines if debugging output is appropriate for the particular handle of
the particular instance (or if it is set globally). Returns 1 if debugging is on, 0 if off. CLASS-DEBUG

is implemented using this function. An application may call this when enabling debugging triggers

more than just a printf (such as turning on extra error checks).

3.12 class -debug.byname

void class-debug.byname(user-data, fields, bit)
CLASSUSER.DATA.TYPE user-data;
char *fields;
int32 bit;

I

14 LibClass Programmer's Guide

' er-data'
Pointer to a block of libclass user data.

'fields' Selects which fields to enable/disable debugging.

'bit' 1 enables debugging; 0 disables.

class.debug-byname sets debugging flags associated with classes listed in fields either on (bit

== 1), or off (bit == 0). If a parent.-user- data is passed, debugging is set for that object only.

If a NULL pointer is passed as the parent.user.data, debugging is set globally. The special value

all can be passed as the field, to set all debtigging field for the object.

Note that the sequence class.debug.-byname(NULL. "all". 1) enables all debugging for all

objects.

3.13 class-show-names

void classhovwnamu C)

class-shov.names prints the named fields within the slots of all valid classes.

I
I

ADST-TR-W003 268

LibCmd~ine

Table of Contents

1 O v e r v ie w ... 1

2 E x a m p le s 3

3 F u n c t io n s 9

3.1 cm d.process options.. 9
3.2 cm d.aggregate 9
3.3 cmd.process.aggregate.opt ions 10
3.4 cm d.gripe ... 11

4 O p tion s S tru ctu res..... ... 13

4 .1 n am e 14
4.2 help ... 14
4.3 dependent-option .. 15
4.4 type ... 15
4.5 option .. 16
4.6 antLoption .. 16
4.7 default ... 16
4.8 value 17

Chapter 1: Overview 1

1 Overview

Libcmdline provides a flexible command line processor with the following features:

" Command line arguments are specified succinctly in the code, in a way which makes it easy to
add new ones.

" Each argument has accompanying information so libcmdline can print help, summarize selected

values, and do error checking.

" Each user can modify the default options used with each application program via an envi-
ronment variable. The name of this variable is derived from the name of the executable by
capitalizing it and appending ARGS. Hence, default arguments to an executable named phan-
tom could be stored in the environment variable PHANTOMARGS. This allows the creation
of one executable which can use symbolic links to yield different names and default behavior
(safstation, safsim, logger, etc.).

" Hence, arguments can be specified in three places: in the code, in an environment variable,
and on the command line (in increasing order of precedence).

" Each command line argument can be a switch, the mere presence of which indicates a value,
or it can be followed by one or more values (integers, floating point numbers, strings, or any
combination).

" Arguments can be interdependent, so for example, the user may only be allowed to specify an
exercise ID if running with the network; or specify a starting X if a starting Y is also specified
(and vice-versa).

" Multiple dependencies can be either conjunctively or disjunctively combined, so for example,
the interdependent X and Y can also be dependent upon a Z and upon there not being a
starting grid specified, and the Z can be dependent upon there being an X or a starting grid
specified.

* Unrecognized arguments are given back to the caller, so they can be passed to other command

line processors (such as Xtlnitialize). These unrecognized arguments can be given either on
the command line or in the user environment variable (so for example, STATIONARGS can
be "-g 800x500", which might not be recognized by libcmdline, but instead would be passed
on to Xt).

" Arguments can be abbreviated by ending them with a '.'. For example, if the application
expects -exercise 1, the user can type -e. 1 to achieve the same result. The reason for the
explicit '.' is that some arguments are not intended to be recognized (such as the -g option
just described).

The interface to libcmdline is through an array of CMDOPTION structures, although an applica-
tion will generally instead use a structure of various parallel structures, and specie values with

2 LibCmdLine Programmer's Guide

aggregate initialization (see Chapter 2 [Examples], page 3).

I

Chapter 2: Examples 3

2 Examples

The following code segment gives examples of all libcmdline features. This code serves as

a hypothetical example; it does not represent actual ModSAF code. See Chapter 4 [Options

Structures], page 13, for more information.

*include "libcudlin.h
*include (stdext .h> /*common/ includ./global*/

struct

CMD-.TOGGLL-OPTION safaim;
CND..TOGGLE..OPTION salutation;
CND..STRING..OPTION terrain;
CJ4D.TOGGL-OPTION network;
CND-.INTEGER..OPTION exercise;
CND..BOOLEAN-OPTION synch;
CND..INTEGEL-OPTION mcache;
CMD-.STRING-.OPTION startuap;
CND..INTEGER-OPTION scalenulm;
CMD..INTEGER-.OPTION scaledenom;
CND-.FLOAT..OPTION rndzeed;
CND-.INTEGEL-OPTION xioc;.
CND-.INTEGEL-OPTION yloc;

}options {

"ISAPSIN"I , "Selects whether to run SAF simulation processes"
NULL I
CND-.TOGGLE , "sim" * "nosim" * TRUE

"ISAFSTATION"I , "Selects whether to run SAP workstation processes"
NULL ,
CND..TOGGLE * "station" , "nostation" * TRUE

"Terrain Database Name" , "Specifies terrain database"
"'stationt aim"l
CND..STRIG , "terrain" , "nowhere" , "knox-0311"

"Network" ,"Selects whether to use network"
NULL,

CMD-.TOGGLE * "network" , "nonet" *TRUE

I "Exercise ID"I , "Specifies simulation exercise id"
"network",

4 LibCmdLifle Programmer's Guide

CMD..INTEGER * "exercise" , NULL,

"Synchronous" , "Run X windows in synchronous mode for debugging'
"station",
CMD.BOOLEAN , 'synch" *"asynch" , FALSE

"Map Cache" . "Specifies number of map screens to cache"
"station".
CMD..INTEGER. , "acache" , "nomcache" , 2

"Map Starting Grid" . *"Specifies initial location of map"
"sotation",
CMD-.STRING , "s tartuap" . "center" , NULL

"Map Starting Scale" . "Specifies initial map scale S V"
"sotation",
CMD-.INTEGER , "scale" *NULL 1,

/* Map Starting Scale takes two arguments *
NULL . NULL . NULL . CMD-.INTEGER , NULL , NULL ,200000

"Random lumber Seed" . "Seed value for random number generator"

CMD..FLOAT * "rand" N ULL ,0.0

"I" , "Starting X location"
"lykstation"
CND..INTEGER , ""*NULL G C'

*R" "Starting Y location"
"xkstation"
CID-IETEGER * "" NULL *0

main(argc. argv)
int argc;
char *argv EJ;

int32 leftover-.argc;
char **leftover-argv;

Chapter 2: Examples

cnd-.procesu..options(argc, argv, /* arga to main()*
&leftover-.argc, &leftover.argv. /* unrecognized *
(CMD-.OPTION *)koptions, /* options array *
sizeof(options), /* size of options array *
TRUE /* Verbose modes*

/* Pass remaining args to X windows *
Xtlnitialize(Xtlnitialize~argv[O). "Saf", NULL, 0,

&leftover-.argc, leftover..argv);

cmd.gripe(leftover-argc, leftover-.argv);

/* Example usage... */
printf("Roading /saf/terrain/Wsn", options. terrain, value);

It is also possible to describe command line options in multiple arrays by aggeregating them and
then processing the resulting structure. This is useful for keeping command line options associated
with modules. For example, one module could may control the application processes:

*include "libcmdline .h
include <stdext .h) Icomonl include/ global/

struct

CND.TOGGLL-OPTION safnim;
CMD..TOGGL-OPTIOI safutation;

}process-.optionsa{

"ISAFSINII , "Selects whether to run SAP simulation processes"
NULL ,
CMD-.TOGGLE * "sim" , "nosim" ,TRUE

"ISAPSTATION"I , "Selects whether to run SAP workstation processes"
NULLI
CMD..TOGGIE I"station" * "nostation" * TRUE

void proceuu..init (options, sizeof..options. map)
CMD-.OPTION **options;
uint32 *Bizeof..options;
CND-.TYPES ***map;

cud-aggregate (options, sizeof-.options,
(CMD-.OPTION *)&process..options,

6 LibCmdLine Programmer's Guide

sizeof (process-.options),
map);

void process-s.imul C)

printf ("Simulation process is %u\n".
process..options.satsim.value ? "On" : "Oott");

printf ("Workstation process is Wsn".
process-options.satstation.value li"on" :"Off");

Another module may control the network:

*include "libcmdline h"
*include <stdext h> /*common/include/global*/

struct

CND-.TOGGLE-.OPTION network;
CND-.INTEGEL-OPTION exercise;

}network-.options {

"Network" *"Selects whether to use network"'s
NULL
CND..TOGGLE , "network" * "nonet" * TRUE

"Exercise ID"I , "Specifies simulation exercise id"
"network" ,

CND-.INTEGER , "exercise" , NULL,1

void network-.init (options, sizeof-.options, map)
CND-.OPTION **liopt ions;
uint32 *sizeof..options;
CND..TYPES ***map;

cud-aggregate (options.* sizotoptions,
(CMD..OPTION *)&networkoptions,
sizeof (network-.options),
map);

void network-.simul 0)

printf ("Network is %s\n",

Chapter 2: Examples 7

network..options.netvork.value ? "On" : "Off");
if (netvork-.options .netvork. value)

printf ("Exercise ID is Wdn". network-.options.exercise.value):

The options from these two modules may be combined as follows:

*include "libcmdline~h
*include <stdext .h> /*comonlinclude/slobal*/

extern void process-init 0
extern void process-simul C);
extern void network-.init 0;
extern void netvork-.simul 0;

main(argc. argv)
int argc;
char *argv[0;

int32 leftovr-.argc;
char **leftover.argv;
CMD..OPTION *options;
uint32 sizoof-.options;
CMD-TYPES **map;

gizeof..options - 0;

process..init (toptions, ksizeof..options, fmap);
netvork-.init (&options, ksizeof..options, &miap);

cmd-.process...aggrgat..options(argc, argv, /* args to main()o
&leftover-.arge, kleftover-.argv, /* unrecognized *
options, /* options array */
sizeof..options. /* size of options array *
map, /* option value map *
TRUE /* Verbose mode *

process-.simuu
network..uimul 0

8 LibCmdLine Programmer's Guide

Chapter 3: Functions 9

3 Functions

The following sections describe each function provided by libcmdline, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 cmd.process.options

void cmd.process-options(argc. argv, leftover-argc, leftover-argv,
options. sizeofoptions, verbose)

int argc;
char *argv[];
int32 *leftover.argc;
char **leftover.argv[];
CMD.OPTION *options;
uint32 sizeof.options;
int32 verbose;

argc, argv'

Arguments to main

'leftover.argc, leftover.argv'
Returns unmatched arguments for processing by other command line parsers (such as
X Initialize)

'options' Specifies array of known options, returns values of those options
'sizeotfoptions'

Specifies the size of the options array (in bytes)
'verbose' Specifies whether to print values of options

cmd.process.options processes command line options, providing a value for each (either a
system default, an environment default, or a command line switch value). The options which are
not recognized are passed back in leftover-argc/v.

3.2 cmd-aggregate

int32 cmd.aggregate(aggregate, sizeofaggregate, piece, sizeof.piece, map)
CNDOPTION **aggregate;
uint32 *sizeoofaggregate;
CMD.OPTION *piece;

10 LibCmdLine Programmer's Guide

uint32 sizeofpiece;
CMDTYPES ***map;

'aggregate'

Pointer to a variable containing a pointer to the aggregate options array. The user

simply needs to declare the variable. cmdaggregate will fill it in properly.
'sizeof-aggregate'

A pointer to a variable containing the size of the aggregate options array. The user

should set the value of the variable to zero (0) before the first call to cmdaggregate.
'piece' An options array to be added to the aggregate array.
'sizeof.piece'

The size of piece.
'map' A pointer to a variable contain -. g a pointer to a map array. The user simply needs to

declare the variable. cmd.aggregate will fill it in properly.

cmd.aggregate adds a command line options array (piece) to a dynamically allocated command

line options array (aggregate).

3.3 cmd-process-aggregate-options

void cmd-procesuaggregate.optione(argc, argv, leftover.argc,
leftover.argv. options,
sizeof-options, map, verbose)

int argc;
char *argvl];
int32 *leftover-argc;
char **leftover.argv (];
CMD.OPTION *options;
uint32 sizeof.options;
CMD.TYPES **map;
int32 verbose;

'argc, argv'

Arguments to main.

'leftover.argc, leftoverargv'

Returns unmatched arguments for processing by other command line parsers (such as

XtInitialize).
'options' Specifies aggregated array of known options. Constructed in calls to cmd..aggregate.

'sizeof.options'

Specifies the size of the options array (in bytes). Determined in calls to cmd.aggregate.

Chapter 3: Functions 11

'map' Contains a mapping the aggregate options array and each of the pieces.
'verbose' Specifies whether to print values of options

cmd-process-aggregate -options processes command line options contained and an aggregate
options array. The value for each option (either a system default, an environment default, or a
command line switch value) is copied into the option arrays that make up the aggregate array. The
options which are not recognized are passed back in leftoverargc/v.

3.4 cmd.gripe

void cmd.grips(leftover-argc, leftover-argv)
int32 leftover.argc;
char *leftover.argv..;

'leftover.argc'

Specifies the number of unrecognized options

'leftover.argv'
Specifies list of unrecognized options

cmdgripe print a message listing unrecognized arguments.

I

12 LibCmdLine Programmer's Guide

I

Chapter 4: Options Structures 13

4 O ptions Structures

Libcmdline uses six structures to represent command line options. The first (CMDOPTION) is a

generic structure in which default values are specified and resulting values are returned using the

following union:

union cmd-types

int32 boolean;
int32 toggle;
int32 integer;
char *string;
float32 floating;

The remaining five structures are identical to this master structure, except that rather than
using a union, the default and resulting value fields are of a single simple type. This allows these

values to be specified using aggregate initializers in C, for example:

CMDTOGGLEOPTION safsim
{

"SAFSIM" , "Selects whether to run SAF simulation processes"
NULL ,
CNDTOGGLE , "sim", "nosimis TRUE ,

This type of initialization is not possible in C when the structure contains unions.

The CMD_0PTION structure is defined as follows:

typedef struct cmd.option

/* Descriptive name of thing controlled with option *1

char *name;

/* Description of purpose of this option */
char *help;

/* If non-NULL, specifies an option which must be selected (if the
" name is that of an option, the value associated with that option
* must be non-zero; if the name is that of an anti-option, the
* value must be zero) for this option to be allowed.
*/

14 LibCmdLine Programmer's Guide

char *dependent_ option;

/* CMD.BOOLEAN, CMDFLOAT, etc. */
int32 type;

/* Command line option (preceded with - on command line) */
char *option;

/* Version of the option which indicates 0. May specify NULL to
* indicate no such option when type a- INTEGER. STRING, or FLOAT;
" must give a value when type = BOOLEAN or TOGGLE.
*/

char *anti-option;

/* Default value (Note the mis-spelling because default is reserved) */
union cmd.types default;

/* Resulting value (don't bother to initialize) */
union cmd.types value;

CMDOPTION;

Each field is described in the following sections.

4.1 name

The name of the option is used for two purposes:

" When processing the command line with the Verbose flag set to TRUE, the name is used in
printing the value.

* If the name is not specified (NULL). the option is treated as a continuation of the previous
option. In this way, a single option can take more than one value.

4.2 help

The help string specified f0,r .-t Ii -191;1,,n is a description of what the option controls. Help

is used when one of the flags ... - .Ip. .11. or -?. Help strings should kept short to avoid
wrapping at the end of the scr,,.i

Chapter 4: Options Structures 15

4.3 dependent-option

dependent.option(s) are those which must be specified along with the current option. More than
one option can be listed here, tied together with the others using the characters 'W' or '', meaning.
respectively, that all or at least one of the dependent options must be given. (Don't use any space
in this string.)

Refering to a boolean or toggle option in the list of dependencies indicates that the value of
that option must be TRUE. Referring to any other kind of option indicates that the value of that
option must be different than the default value. Finally, referring to an anti-option, indicates that
that option must have a zero (or NULL) value. Note that depending on an option with more than
one value (see Section 4.1 [name], page 14), will perform these tests on the first value, but not on
any continuations.

Dependencies are not checked until after all command line arguments have been processed, so
options may be interdependent (-a depends on -b, and -b depends on -a).

4.4 type

The type of an option determines how its value is determined, printed, and stored. The following
types are defined:

CMDBOOLEAN
A True (1) or False (0) value. Simply listing the option on the command line is sufficient
to specify a True value. Similarly, listing the anti-option specifies a False value.

CMD_.TOGGLE

An On (1) or Off (0) value. The only difference between TOGGLE and BOOLEAN is in the
way the value is printed.

CMDINTEGER

An integer value.

CMD.STRIIG
A character string.

CND.FLOAT

A floating point number (in a format recognized by scanf(3)).

For each type, there is a variant of the CMD.OPTION structure. They are as follows:

16 LibCmdLine Programmer's Guide

CMD.BOOLEAN
CMD.BOOLEANOPTION

CMDTOGGLE
CMDTOGGLEOPTION

CMD-.INTEGER
CMDJNTEGEROPTION

CMDSTRING

CMD-STRINGOPTION

CMDFLOAT

CMDFLOATOPTION

4.5 option

The option string is the sequence of characters which are specified on the command line with
a '-' to select this option. This should be NULL when the option is a continuation of a previous
option (see Section 4.1 [name], page 14).

4.6 anti-option

The anrLoption string is a sequence of characters which can be specified on the command line
with a '-', to indicate a 0 or NULL value. Note that selecting the anti-option nullifies all continuations

of the option as well.

For boolean and toggle options, it is mandatory to specify an anti-option (otherwise environ-
mental defaults could not be overridden on the command line). For other types of options, NULL
may be specified to indicate its absence.

4.7 default

The default value (misspelled default because of conflicts with the C language) is the value
which is used unless overridden by the evironment variable or on the command line.

Chapter 4: Options Structures 17

4.8 value

The value ultimately selected for each option is placed here. This is a write-only field in libcmd-
line, any initial value will be overwritten by cmd-processaoptions().

ADST-TR-W003 268

LibCollision

Table of C ontents

1 Overview...1

2 Functions .. 3

2.1 col~iit .. 3
2.2 coll..c1ass-init ... 3
2.3 coll..rreate... 4
2.4 coilldestroy.. 5
2.5 col-process.pdus .. 5
2.6 coilltick...6
2.7 coU.ge-current ... 6
2.8 collignore ... 7

3 Access Keys ... 9

Chapter 1: Overview 1

1 Overview

Libcollision provides a 3D physical model of collision detection. It can detect collisions with
other network entities (platforms, missiles, and structures), as well as treelines, buildings, and th
ground. This library is also responsible for generating and processing collision PDUs. The library
uses a parametrically controlled timing heuristic to filter out redundant collisions (such as when
both parties in the collision send one another collision PDUs).

This library handles both the simple detection of intersections with nearby features used for slow
moving ground vehicles, as well as the more complex detection of collisions needed by a fast moving
vehicle which may jump a considerable distance between ticks. For example, a missile traveling at
Mach 1, ticking at 2 Hz will jump about 165 meters each tick. Hence, a ray must be run from the
old position to the new position to determine if any features were intersected along the way.

The parameters used by a vehicle (or missile) for collision detection are specified in its configu-
ration file as follows:

(SNCollision (check {tres} {buildings} {ground}
(platforma} (misilosl)

(announce {treeu} {buildings} {ground}
{platforms} {missiles})

(duration <integer milliseconds>)
(feature.masas <real kg>)
(fidelity [high i low)

The first parameter, check, lists those things for which collision detection is required. This
affects performance in two ways:

* Each tick, libcollision checks for collisions with those things listed. Each additional item has
some added cost.

* When a collision PDU is received, the collision is only reported to the parent object (see
Section 2.2 [coll'class'init], page 3) if the colliding entity matches one of the types listed. For

example, if a tank is configured to not check for collisions with buildings, then a collision
emminating from a network entity of domain Structure will not be passed on.

The announce parameter lists those collision which should be announced on the network (via a
collision PDU) when a collision is detected locally. For example, a missile would list platforms in

its check list, but not in its announce list, since the missile will be sending an impact PDU instead
of a collision PDU.I

2 LibCollision Programmer's Guide

The duration value is used in a simple heuristic which avoids redundant collision detection.

When a collision is detected, the time of that collision is noted. Each similar collision (with the same

entity or terrain feature) which occurs within the specified duration after the original collision is

then ignored. This gives the dynamics software a chance to back the vehicle out of the collision,

and protects from redundant damage assessment when both parties in a collision detect it and issue

collision PDUs.

The featuremass parameter specifies the mass which will be passed up to the parent object

when the software detects a collision with a terrain feature. This is intended to simplify encoding

of damage models.

Finally, the fidelity parameter (which has a value of high or low) is used to determine the
accuracy (and hence computational expense) of the algorithms used in collision detection. The

differences are primarily with respect to the point of intersection.

In the high fidelity model, the point of intersection will be accurately determined, using the
parallelepipeds described in libphysdb (width, length, height). For example, a collision with a

building will be detected exactly as the front edge of the vehicle touches the building.

In contrast, the low fidelity model detects collisions with terrain features using a bounding cube
which is aligned with the compass axes, and is as large as the vehicle's largest dimension. Collisions

with other vehicles are detected using a simple spherical model of vehicles.

Note that the low fidelity model does run the ray intersection test described above, so it may
be used for crude missile simulations.

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libcollision, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 coll-init

void coll-int(packet-valve, event.-id, exercise-id, sim-addr, protocol)

PVVALVE.PTR packet.valve;
int32 *eventid;
uint8 exercise.id;
SimulationAddress *him-addr;
int32 protocol;

'packet1_valve'

Specifies the packet valve used to send/receive collision PDUs
'event-id'

Specifies a pointer to a static host event counter

'exercise.id'

Specifies the exercise on which to broadcast collision PDUs

'sim.._addr'

Specifies simulation address for outgoing event DIS Is
t 'protocol'

protocol Specifies protocol in use (0 for SIMNET, DISPROTOCOL.VERSION.* for DIS)

coll.init initializes libcollision. Call this before calling any other libcollision functions. The
packet-valve is created with a call to pv-create.valve.

2.2 coll-classinit

void coll-class.init(parent..clas., callback)
CLASS.PTR parent.class;
COLLCALLBACK callback;

'parent.class'

Specifies the parent class (probably safobj.class)

4 LibCollision Programmer's Guide

'callback'

Specifies the function to call when collisions occur

col..class.init creates a handle (index) for attaching collision class information to vehicles.

The parent.class is one created with class.declare-.class. The callback function should be

declared:

void callback(vehicle-id. position, coll-type,
other.id, other-mass, other-velocity)

int32 vehicle.id;
float64 position[3J;
uint32 coiltype;
int32 other.id;
float64 other-mass;
float64 other-velocity[3];

This is called when a collision occurs, after the collision is announced on the network (provided
the type of collision is listed in the announce parameter list). The position sent is the point of

collision. The coiltype code is one of the following:

COLL-TREES

Indicates crossing a treeline or canopy edge.

COLL-BUILDINGS

Indicates crossing a building or other structure. If the other structure is represented

on the network, the vehicle ID of that structure will be provided.

COLL-GROUND
Indicates a collision with the ground.

COLL.PLATFORMS

Indicates intersecting a platform (vehicle, DI, etc.).

COLL-MISSILES
Indicates intersecting a missile (an entity on the network with a munition type).

If the collided entity exists in the vehicle table, its ID is given in the other-id field. For

collisions with terrain features, the other-mass will be that specified in the feature.mass field of

the parametric data, and the other.velocity will be zero.

2.3 coll..create

void coll-create(vehicle.id, parms)

Chapter 2: Functions

int32 vehicle-id;
COLLISION.PARAMETRIC.DATA *parms;

'vehicle.id'

Specifies the vehicle ID

'parms' Specifies initial parameters

collcreate creates the collision CIL,-i information for a vehicle and attaches it to the vehicle's

libclass user data.

2.4 coildestroy

void coll.destroy(vehicle. id)
int32 vehicleid;

'vehicle-id'

Specifies the vehicle ID

col-destroy frees the collision class information for a vehicle.

2.5 coll-processpdus

void coll.process.pdus (vehicle.id)
int32 vehicleid;

'vehicle-id'

Specifies the vehicle I)

co11proces.pdus proces-, an% - ,.Iiion PDUs received and enqueued since the last call to
this function. This may invok.o ,! .a.h..tck function passed to collclass-init if a received

collision is not one which wa.,% .t,. , .!.t-s tod locally. This should be called early in a vehicle's
tick, preferably before updatii .:.. in ,,ler to ensure minimal visual latency), and before
calling coilhtick.

6 LibCoision Programmer's Guide

2.6 coilltick

void coll.tick(vehicleid, ctdb)
int32 vehicleid;
CTDB *ctdb;

'vehicle.id'

Specifies the vehicle ID
'ctdb' Specifies the terrain database

col2_tick ticks the collision sub-class. During the tick, if a collision is detected, a packet may
be sent and the callback function passed to collclas.init may be invoked.

2.7 coll-get -current

void coll-get..current(vehicle-id, current)
int32 vehicleid;
COLL-CURRENT *current;

'vehicleid'

Specifies the vehicle ID
'current' Returns current collision information

coll.get.current returns a read-only list of vehicles which have been collided with recently.

The user data attached to each vehicle in the list specifies the simulation clock value at the time

of collision. It is safe to iterate over the list of vehicles, provided that iteration does not span more

than one tick (i.e., the collision subclass will also be iterating over this list). This function also

gives information about the most recent terrain collision. The COLL.CURRENT structure is defined

as follows:

typedef struct col.current

/* A list of recent vehicle collisions */
VTABLIST list;

/* A description of the most recent terrain collision */
struct
{

uint32 colltype; /* COLL-TREES, etc. ,/
uint32 simulation.clock;

Chapter 2: Functions 7

float64 location[3);
float64 mass;

. mosat.recent.-terrain;
COLL.CURRENT;

2.8 coll.ignore

void coll.ignore(vehicle.id, operation, other.id)
int32 vehicle.id;
COLL.IGNORE.OP operation;
int32 otherid;

'vehicle. id'

Specifies the vehicle ID
'operation'

Specifies whether to add or remove the other vehicle from the ignore list

'other.id'

Specifies vehicle to ignore

collignore adds or removes a vehicle to the list of vehicles which should be ignored in collision

detection. This can be used, for example, to avoid detecting collisions between platforms and their

missiles; or aircraft and carriers.

operation has one of the values:

COLL.ADD Ignore collisions with otherid.

COLL.REMOVE

Do not ignore collisions with other-id.

8 LibCollision Programmer's Guide

Chapter 3: Access Keys 9

3 Access K eys

In addition to the functions just described, libcollision also provides libaccess keys with which

many variables can be fetched at once. These keys, and the type of argument they expect are given

below:

coil.current

COLL.CURRENT *arg

I

I

I ADST-TR-W003268

LibComponents

Table of Contents

1 O v e rv ie w .. 1

2 E x a m p le s ... 5

3 F u n ctio n s ... 7

3.1 cm pnt init .. 7
3.2 cm pnt-defineclass ... 7
3.3 cm pnt-defineinstance .. 7
3.4 cm pnt.class-init ... w

3.5 cm pnt.create .. 9
3.6 cm pnt-destroy ... 10
3.7 cm pnt.available ... 10
3.8 cm pnt.Iocate .. 10
3.9 cm pnt.get-info ... 11
3.10 cm pnt.invoke ... 11
3.11 cmpnt-locatebymodel .. 12
3.12 cmpnt.get.capabilities ... 13

Chapter 1: Overview 1

1 Overview

Libcomponents is an architectural library which provides a level of abstraction away from specific

component interfaces. For example, although a vehicle may have one of several sensor models, the

interfaces to these models are all basically identical. Libcomponents allows an application to give
commands to its "sensor" without knowing which sensor model is being used. Through the use
of libparmgr, libcomponents also provides a facility to change, add, or delete a component model
after a vehicle has already been created.

The layering of the software looks something like this:

--------------------------- specific layer--------------------

TrackedHull FWAHull BallisticGun
WheeledHull RWAHull RocketLauncher Radar
DIHull NissileHull GenericTurret HissileLauncher Visual

---------------------------- generic layer--------------------

Hull Turret Gun Sensor

------------------------- architectural layer-----------------

Components

The software layering diagram shown above has been currently implemented via the ModSAF
library structure shown below.

---------------- specific component libraries---------------------

libtracked
libwheeled
librwa
libfwa libbalgun libradar
libmissile libgenturret libmlauncher libvisual

----------------- generic component libraries--------------------

libhulle libturrets libguns libsensors

------------------------- architectural library------------------

2 LibComponents Programmer's Guide

libcomponents

The parametric data of libcomponents identifies each component being used with a name and a

model number. Optionally, some components also list what capabilities that component provides

to the vehicle when the component is operational. For example, a T72M component entry might

look like this:

(SM.Components (hull SM.TrackedHull SAFCapablityMobility)
(turret SMGenericTurret)
(machine-gun [SM.BallisticGun I 0) SAFCapabilityFirepower)
(main-gun [SMBallisticGun 1 1] SAFCapabilityFirepower)
(visual SM.Visual))

The specific parameters used by each component are listed separately

(SiTrackedHull (max.speed ...) ...)
(SMGenericTurret (max.slew ...) ...)
([SMBallisticGun 1 0) (round.types munitionUSSR.30mm) ...)
(CS?_BallisticGun 1 1) (round.types munitionUSSR_125HEAT

munitionUSSR_ 125SABOT) ...)
(SX.Visual (max-detectable ...) ...)

The T72M whose component entry was displayed above will require one libhull, one libturret,

and one libvisual instantiation. It will require two libgun instantiations: one for the machine
gun and one for the main gun. The specific component library instantiations will be instances of
the generic component library class. This component class relationship for the libraries currently
implemented is shown below.

Instantiations of Belong to generic Have a command
of the library: component class: interface defined in:

libtracked hull libhulls
libwheeled hull libhulls
librwa hull libhulls
libfwa hull libhulls
libmissile hull libhulls
libgenturreot turret libturrets
libbalgun gun libguns
libmlauncher gun libguns
libvisual sensor libsensors

Chapter 1: Overview 3

libradar sensor libsensors

An application issues commands to a specific component library through its generic component

library. For example, an application will interfare to libtracked or libfwa through libhulls so that a

tank's movement control commands (which are performed by libtracked) and an airplane's move-

ment control commands (which are performed by libfwa) are both issued via the interface defined

by libhulls. Similarly, an application will interface to libvisual or libradar through libsensors.

The generic component libraries define the common set of functions that operate in the specific

component libraries. Each generic component library (such as libhulls, libsensors, libturret, and

libguns) directs libcomponents to define a component class for itself and tells libcomponents the

number of its defined functions. This information enables libcomponents to define a structure that

accommodates all the components of an object, plus it allows the object's user data to be allocated
enough space to hold the address of each function defined in the generic component library.

The interface to a generic component library is defined in it's public header file (such as lib-
turret.h, libguns.h, libsensors.h, and libhulls.h.). These interfaces allow an application to control
(set) or learn about (get) such things as component movement, shooting, and sensing. The ap-

plication gives a command to an objects's component by passing a macro defined in the generic
component library. This macro identifies the function which needs to be called. For example, the

macro, HULLS.SET.DIRECTION.SPEED, will result in the invocation of the specific component
function named, hulls.set-direction.speed.

When a function is to be called, the vehicle id, component number, and function pointer index

need to be passed to libcomponents so that the appropriate subclass data can be accessed. The
requested function needs an argument list to handle needed input (such as a direction or speed)

and/or returned output (such as a state or setting). The interface structure defined in the generic
component library defines the argument list which is passed on to a specific component library.

Libcomponents takes care of the following:

" Creating the components listed;

" Associating names of instantiations with user-data handles, for those libraries which support

multiple instantiations;

" Dispatching calls defined by the generic layer, but executed by the specific layer; and,

" Creating or deleting components at run time.

Creating/deleting instantiations also impacts the tasks which use those instantiations. For

example, a task which looks for targets wants to use all available sensors. Hence, libcomponents

4 LibComponents Programmer's Guide

must be able to propagate the information of what is available to the tasks at run time. This is

handled as follows: component is deleted/added, libcomponents calls a callback routine in libsafobj,
libsafobj calls functions in impacted tasks. This facility is also available to handle damage/repair

of components (libcomponent provides a function which the component-instance sub-class will call
when it is damaged/repaired).

Chapter 2: Examples

2 Examples

To initialize libhulls, a generic component class:

cmpnt..define-.class(SM-.classHull. HULLS-NUMLFUNCTIONS);

To initialize libtracked, an instance of the hull class:

tracked-user-data-b.andlea
class-.reserve-.user-.data(parent..class, "tracked", tracked-print);

/* Tell libcomponentu we are available. */
cmpnt..define-.intance(SM..TrackedHull, 1,* &tracked.user-.data-.handle,

tracked-.create, tracked-.destroy,
HULLS-.SET-.DIRECTION.SPEED-.FCN, set..dir-.speed,
HULLS..SET-VELOCITYGEAR-FCN, set-.vel-gear,
i4ULS-.SET..VELOCIT'L.DIRECTIONFCN, set..vel..dir,
HULLSSET-ELOCITY-ORIENTATION..FCN, set-.vel-ori,
MULLS-.SET-.POSITION..DIRECTIUN..FCN, set..pou.dir.
HUIl S-.SET-.GOAL-.CORRIDDR..FCN, uet..goal..corr,
HULLS-.SETTARGET-ID-.FCN, set..target-.id,
HULSSF.TATRGT-POSITIGN-FCN, set..taxget-.position,
HULLS-.GET-.ETA..FCN, get-.eta);

To get the component number of my hull:

extern int32 myhull;

if ((my-.hull a cupnt..locate(vehicle-id, reader-.get..yzbol("shUll"))
CNPNT-.NOT.,iOUND)

printf ("Vehicle %d does not seem to have a hull\n", vehicle..id);

To then give a command to that hull (the macro is defined by libhuls; it assembles a HULLS-.INTERFACE
structure, and calls cupnt-.invoke):

if (my-.hull != CMPNT..NOT-.FOUND)
HULLS-SET-DIRECTION-SPEED(vehicle.id, hull, dirvec, speed, 0.0, 0.0);

6 LibComponents Programmer's Guide

Chapter 3: Functions 7

3 Functions

The following sections describe each function provided by libcomponents, including the format

and meaning of its arguments, and the meaning of its return values (if any).

3.1 cmpnt-init

void cmpnt.init()

cmpnt.init initializes libcomponents. Call this before calling any other libcomponents func-

tions.

3.2 cm pntdefine -class

void cmpnt.define.class (saf-model.class, num functions)
uint32 saf.model-class;
int32 numnfunctions;

'uaf-odelclass'

Specifies the class being defined

'nu- functions'

Specifies the number of functions provided by that members of the class

cmpnt-define.clasu defines a class of component. The purpose of a class is to specify the func-

tions provided by components of this class. The saf.model.class is one defined in p-safmodels.h.

3.3 cmpnt-deflne.Jnstance

void cpnt..define-instance(saf.model, nu-.handles, handles,
create, destroy,
function-nuber, function.
function-number, function,

uint32 saf-model;

8 LibComponents Programmer's Guide

int32 num.handles;
int32 handles [];
CMPNT.CREATE create;
CMPNT.DESTROY destroy;
int32 function.number;
CMPNTFUNCTION function;

S 'saf.model'
4 d Specifies the model number of the instance (implies a class)
'num.handles'

Specifies the number of user data handles provided by the instance (will be > 1 if the
instance is multiply instantiable per vehicle)

'handles' Specifies a list of user data handles

create' Specifies the function to call to create an instantiation

'destroy' Specifies the function to call to destroy an instantiation
'functionnumber'

Specifies a function code number defined for the class

'function'
Specifies a function to call when given that functionnumber

cmpnut.define-instance defines an instance of a component class. The instance has a SAF
Model number (which implies a class) and a list of functions. The instance also informs libcompo-

nents of how many times it may appear per vehicle, and the handles used for each appearance.

The create and destroy functions should be of the form:

void create(vehicle-id, user.data-handle, params)
int32 vehicle.id;
int32 user.data..handle;
ADDRESS params;

void destroy(vehicleid, userdata-handle)
int32 vehicle.id;
int32 userdata-handle;

Each function should be of the form:I
void function(vehicle.id, user.data.handle, parameters)

int32 vehicleid;
int32 user.data-handle;
<CLASS>.INTERFACE parameters;

I

Chapter 3: Functions 9

3.4 cmpnt-classJnit

void cmpnt.claus.init(parent.class, availability-fcn)
CLASS.PTR parent-.class;
CMPNTAVAILABILITY availabiliy.fcn;

Sparent-.class'

Class of the parent (declared with class.declare-class)
availability-fcn'

Specifies the function to call when component availability changes

capnt.class-init creates a handle for attaching components class information to vehicles. The

parent-class is one created with class-declareclass.

The availability.fcn should be of the form:

void availability(vehicle.id, component-number, is.available)
int32 vehicle-id;
int32 component-number;
int32 is-available;

Note that this function is not called at vehicle creation (when, technically, components first
become available).

3.5 cmpnt.create

I void capnt-.create(vehicle.id, par=, name.symbol)
int32 vehicle.id;
COMPONENTS.PARAMETRIC.DATA eparms;
char *name.symbol;

I 'vohiclo.jd'

Specifies the vehicle I D
'parma' Specifies the initial parameter values
'namesymbol'

I
Specifies the namne of Thfe %..-in Ie' heing created (such as "vehicle-US-M1").

cupnutcreate creates the rc(nu4Iiaents cl.eis information for a vehicle and attaches it to the

I
I

10 LibComponents Programmer's Guide

vehicle's libclass user data. It also creates the components listed in its parametric data. The
nam.-ymbol should be a libreader symbol.

3.6 cmpnt-destroy

void cmpnt.destroy(vehicle.id)
int32 vehicleid;

'vehicle. id'

Specifies the vehicle ID

cmpnt.-dentroy frees the components class information for a vehicle. It also frees any component
instantiations.

3.7 cmpnt.available

void cmpnt.available(vehicle.id, saf.model, is-available)
int32 vehicleid;
uint32 oaf.model;
int32 is.available;

'vehicle-id'

Specifies the vehicle ID
'uaf..uodl'

Specifies the model going on/off line
'is.available'

Specifies whether new availability

cmpnt._available informs libcomponents that the component is/isn't available. Libcomponents
passes this information on to its parent (such as safobj) which tells users of that component it isavailable, or not to use it. Components which have been marked as unavailabile will not be able to
be located via cmpnt.locate.

3.8 cmpnt-locate

!
I

Chapter 3: Functions 11

int32 cupnt-.locate(vehicle.id, specific-name)
int32 vehicle-id;
char *specificnae;

'vehicle-id'

Specifies the vehicle ID

'specific-name'
Specifies the name of the desired component

cmpnut.locate finds the component number of a specific component name (the name should
be a libreader symbol). This number is then used in calls to cmpnt-.invoke. The return value
CMPNT..NOTFOUND is returned when no instance of the passed name can be found. Components
which have been marked as unavailabile by cmpnt.available will not be able to be located and
will return CMPNTNOTFOUND.

3.9 cmpnt.-get-info

void cpnt-ge.info(vehicle-id, component.number, specific.name., saf-odel)
int32 vehicle.id;
int32 component -number;
char **specific.name;
uint32 *sarjmodel;

'vehicle-id'

Specifies the vehicle ID
'compone.ntnumber'

Specifies the component
'specific.naae'

Returns the name of the component

'saf-_odel'
Returns the model number of the component (from 'p-safmodels .h').

cmpnt-getinfo gets the name and SAF model number of the specified component.

3.10 cmpnt-invoke

void czpnt-.invoke(funcion.number, vehicle-id,

12 LibComponents Programmer's Guide

component-number, interface-block)
int32 function-number;
int32 vehicle_ id;
int32 component-number;
ADDRESS interface.block;

'function-number'

Specifies the function to call
'vehicle.id'

Specifies the vehicle ID
'component.number'

Specifies the component to invoke upon

'interface.block'
Specifies a pointer to a block of parameters

cmpnt-invoke calls the specified function for the specified component. The interface-block
is defined by the component class header file. Note that the class header file generally provides
macros which prepare the parameters and invoke this function.

3.11 cmpnt-iocate-bymodel

void cmpnt-locate.bymodel(vehiclo.id, uafrmodel, list-size, list)
int32 vehicle-id;
uint32 saf.-odel;
int32 *list.size;
int32 list[];

'vehicltid'

Specifies the vehicle ID

'saf_:odel'

Specifies the class and instance part of the SAF model, for instance, SL.Visual

'list-size'

Specifies the size of the passed list array
Returns the number of components found

capnt.locate.byuodel finds all components with the specified saf-model class & instance.

The size of the passed list should be passed in *list.size. The number of components found is
returned in *list.-size.

m m • unms i mm mau nns ull | aaU ialnlunm n nnn um wm =A=

Chapter 3: Functions 13

3.12 cmpnt-get-.capabilities

uint32 cmpnt..get-.capabilitieu (vehicl...id)
int32 vehicle-.id;

'vehicl...id'

Specifies the vehicle ID

cupnt-.get..capabilitieu finds all the capabilities enabled on a vehicle as determined by having
available components with those capabilities, as specified in the components parametric data.

ADST-TR-W003 268

LibCoordinates

Table of Contents

1 O v e r v ie w ... 1

2 E x a m p les ... 3

3 F u n ctio n s ... 5

3.1 coord-init ... 5
3.2 coord-define.tcc ... 5
3.3 coordestimatetcc .. 6
3.4 coord.tcc.gcc.rotation .. 7
3.5 coord.convert .. 7
3.6 coord.error ... 9
3.7 coord.generate.grid ... 9
3.8 coord-describe-datums ... 11
3.9 coord-format atlon .. 11
3.10 coord-fixed-point_degrees .. 11
3.11 coord.floating.point.degrees ... 12
3.12 coord._parse-fixedpoint-degrees 12
3.13 coord-count-utm.zones .. 12
3.14 coord.lookup.datumby-ne ... 13
3.15 coordlookup.zone-letter ... 13
3.16 COORD.LATLONG.TOGRID.ZONE 13
3.17 COORD.WEST.LONG.OF.GRID.ZONE 14
3.18 COORD..EASTLONGOFGRIDZONE 14

Chapter 1: Overview 1

1 0 verview

There are many coordinate systems used to describe locations on the earth. Libcoordinates

provide a facility to translate between any of the following coordinate systems:

COORD.CHARACTERSTRING
Pretty-printed version of one of the other coordinate systems. You can only convert to

(not from) this system.

COORDGCC
Geocentric coordinates. This is a right-handed 3D cartesian system, with Z through the
north pole and X through the prime meridian at the equator. It assumes the WGS84
ellipsoid model of the earth. This is the coordinate system used in DIS.

COORDTCC
Topocentric coordinates. This is a right-handed 3D cartesian system, centered around
a given point, with Z going up, positive X east, and positive Y north. The system
can either be derived from UTM data (as SIMNET terrain databases have been; often
called the flat-earth approach) or from GCC data (often called the curved-earth drop-off

approach).

COORDLATLOI
Geodetic coordinates. This is the latitude and longitude system used by the air force,
navy, and meteorologists. Note that altitude is not measured from sea level, but rather

from the reference ellipsoid. Latitude and longitude can be with reference to the map-
ping datum used at that location, or with reference to the WGS84 ellipsoid.

COORD.U -NE
Universal Transverse Mercator projection coordinates. In this system the earth is
sliced into 6 degree wide sections (called zones), and the terrain in each is flattened

out. A location on a slice is identified with a northing which indicates distance from the
equator in meters, and an easting which indicates distance from the center of the zone.
Note that when converting from UTM to Geodetic (which is the first step in getting

to GCC), the altitude is not changed. This is not entirely correct, since the UTM
system increases the altitude at the edges of a zone, and decreases it in the middle.
The algorithms to do this altitude adjustment have not been built into libcoordinates.

COORDUT.PGRID

MilGrid coordinates. This is a shorthand notation expressing a UTM northing and
easting in terms of a map sheet, and an offset into that map sheet.

An added complication to these systems is the fact that different parts of the earth are mapped
using different assumptions about the earth's size. First, there is the assumption about the shape

2 LibCoordinates Programmer's Guide

of the earth, which is called the spheriod model. There are 13 different models currently in use.
Second, there is the assumption of the location of the center of the earth, which together with a
spheroid is called the datum (there are 40 of these). The data file 'coordinates.rdr' specifies
Molodenskiy parameters for each datum, which allows the software to translate point mapped with
each datum to the corresponding point given the current earth model (WGS84). The file also
specifies which datums are used in what parts of the world. Finally, the file gives the map shcet
code letters used by the MilGrid system in different places.

This data file is not complete - it only covers a small portion of the earth. The instructions for
adding descriptions of new areas to this file are contained in a header at the top of the file. Two
shell scripts ('rect' and 'bounds') are maintained within this library to assist in generation of the
data file.

Chapter 2: Examples 3

2 Examples

To define the TCC for Ft. Knox:

include <libctdb.h> / For datum definition */

COORD.TCC-PTR knox a coord-define-tcc(COORDUTM.NE,
4155000, 545000, 16, 'S',
DATUM. CONUSNAD27,
75000, 50000);

To get the MilGrid designation of the southwest corner of that database:

char but [20);
int32 ret;
float64 z;

if (rot = coord-conver(COORDTCC,
knox, 0.0, 0.0, 185.0,
COORDUTHmGRID,
COORDDEFAULTZONE, 8, but, kz))

printf("s\n", convert.rror(ret));

To get the GCC coordinate of the southwest corner of that database:

int32 ret;
float64 x, y, z;

if (rot - coord-conver(COORDTCC,

knox, 0.0, 0.0, 185.0,
COORD.GCC,
&i, &y, &z))

printf("'Z\n", converterror(ret));

LibCoordinates Programmer's Guide

Chapter 3: Functions

3 Functions

The following sections describe each function provided by libcoordinates, including the format

and meaning of its arguments, and the meaning of its return values (if any).

3.1 coord-init

int32 coord.init(directory, flags)
char *directory;
uint32 flags;

'directory'
Specifies the directory where the constants file is expected

'flags' Specifies reader options (see section 'reader.read' in LibReader Programmer's Manual)

coord-init initializes libcoordinates, causing it to read its data file (coordinates.rdr) either from
or the specified director. The reader.f lags are as in reader-read. The return value is zero if

the read succeeds, or one of the libreader return values (READERLREAD.ERROR READERFILE.NOTFOUND)
if it fails.

3.2 coorddefine.tcc

COORDTCCPTR coord-define.tcc (source.system,
origin.northing. origin.easting,
origin.zone.number, origin.zoneletter,
mapping-datum,
database-width, database-height)

COORD.SYSTEM source.system;
float64 origin.northing;
float64 origineasting;
int32 origin-zone-number;
int32 origin zone. etter;
int32 mapping-datum;
int32 database-.idth;
int32 database.height;

'source_.system'

Specifies the underlying system of the topocentric coordinate system

6 LibCoordinates Programmer's Guide

'origin.northing'

Specifies the northing of the southwest corner of the TCC
'origin-easting'

Specifies the easting of the southwest corner of the TCC
'origin.zone-number'

Specifies the zone number of the southwest corner of the TCC
'origin-zone-letter'

Specifies the zone letter of the southwest corner of the TCC
'mapping.datum'

Specifies the datum in which the TCC data is mapped (only used if source-system is
UTH-3E)

'database-width'
Specifies the east-west size of the TCC system (in meters)

'database-height'
Specifies the south-north size of the TCC system (in meters)

coord-define.tcc defines a "topocentric" coordinate system (centered around a given location,
at which Z is up, X is east, and Y is north). The sourcesystsm must be either COORDGCC or
COORD.UTM.NE. GCC derived TCC systems curve "down" in their Z values as distance increases
from the center point. UTM derived TCC systems are completely fiat. It is significantly cheaper
to convert TCC coordinates to or from the system from which it was derived than to or from the
other system. Use the returned pointer in calls to coord.convert.

3.3 coord.estimate.tcc

COORD.TCC.PTR coord.estimatetcc (source.system,
latitude.hun.sec, longitude-hun.sec,
origin.utm.grid,
database.width, database-height)

COORD.SYSTEN source-system;
int32 latitude.hun.sec;
int32 longitude.hun.sec;
char *originut.grid;
int32 database.width;
int32 database.height;

sourcesystey'

Specifies the underlying system of the topocentric coordinate system

Chapter 3: Functions 7

'latitude.hun.sec'

Specifies the latitude of the southwest corner of the TCC in hundredths of seconds

'longitude-hun.sec'
Specifies the longitude of the southwest corner of the TCC in hundredths of seconds

'origin-utz grid'
Specifies the UTM grid specification of the southwest corner of the TCC

'database-width'
Specifies the east-west size of the TCC system (in meters)

'database.height'
Specifies the south-north size of the TCC system (in meters)

coord.stimate.tcc makes a reasonably accurate guess at the TCC parameters, based upon
commonly known information.

3.4 coord._tcc.gccrotation

int32 coordtcc_gcc._rotation(tcc. matrix)
COORDTCCPTR tcc;
float64 matrix [3) [3);

'tcc' Specifies the TCC
'matrix' Returns the TCC to GCC rotation matrix

coordtcc.gccrotation fills in the passed 3x3 TCC to GCC rotation matrix based upon the

GCC-derived tcc (the GCC to TCC matrix is the transpose of the returned matrix). The return
value, if non-zero indicates that an error occured. Passing a UTMNE-derived TCC will yield an

error (the correct rotation from UTM to GCC is dependent upon the UTM location).

3.5 coord-convert

int32 coordonvert(from-system, values..., to-system, values...)
COORDSYSTEN from.system;
values... ;
COORDSYSTEN to-system;
values...;

8 LibCoordinates Programmer's Guide

'fromsystem'
Specifies the system to convert from

'to-system
Specifies the system to convert to

coord.convert takes two sets of arguments - from.system and to.system. Each system has
a unique code and a series of values:

COORD-_C ACTER.STRING
string

COORD-GCC

xyz

COORDTCC

tcc.ptr x y z

COORDLATLON
latitude longitude z locaLdatum

COORD...UTh.NE
zone northing easting z

COORDUT!_GRID
zone resolution string z

The types of these arguments are shown in the following table:

var fromtype to.-type units example
-- ----------- --------- ----------------

x float64 float64 * meters 5000.0
y float64 float64 * meter 5000.0
z float64 float64 * meters 283.0
zone int32 int32 * 38 or COORDDEFAULT.ZONE
northing float64 float64 * meters 500000.0 (+N -S)
easting float64 float64 * meter 500000.0
resolution int32 int32 digits 3 -- > ES450550
latitude float64 float64 * degrees 39.0 (+N -S)
longitude float64 float64 * degrees 42.0 (+E -W)
local-datum int32 TRUE/FALSE
tcc.ptr COORDTCCPTR
string char *

Note: UTM.GRID resolution is ignored for from.system
Explicit zone in UTIGRID string overrides passed zone
loca-datumnFALSE implies to use WGS84, as with GPS

Chapter 3: Functions 9

Non-zero return values indicate the following errors:

COORD.SYNTAX

Character string not of correct format

COO RD.TOO.LONG
Too many milgrid digits passed

COORDZONE.UNKNOWN

Milgrid in unrecognized r'TM zone

COORDGRIDUNKNOWN

Milgrid grid not recognized in UTM zone

COORDBAD.TCC

Passed TCC pointer invalid

COORDSYSTE.UNKNOWN

Either to.system or from-system is not recognized

3.6 coord-error

char *coord..rror(code)
int32 code;

'code'

coorderror returns a string describing the error code returned by coord.convert.

3.7 coord-generate-grid

void coord.gonerate.grid(tcc, in.x, max..x, in.y, max.y,
spacing, digits, label.mask,
mz.thin.sepents, maxhick.segments, max.labels,
n.thin.segments, thin.segments,
n.thick.segments, thick.segments,
nilabels, labels)

COORD.TCC..PTR tcc:
int32 min., ma..z, min.y, max.y;
int32 spacing;
int32 digits;
uint32 labol-mask;
int32 max.thin.segments;

10 LibCoordinates Programmer's Guide

int32 max.thick.segmentu;
int32 max.labels;
int32 *n.-hin.segments;
float32 thin.segments[];
int32 *nthick.segments;
float32 thick.segments [];
int32 *n-labels;
COORD.GRIDLABEL labels [];

'tcc' Specifies the TCC of the grid

'min-x, max.x, rain.y, max-y'

Specify the boundaries of the grid in TCC coordinates

'spacing' Specifies the grid line spacing (typically multiples of 10)

'digits' Specifies the number of digits with which to label grid lines

'label-mask'

Specifies th, sides to label

'maxthin.segments, maxthick.segments, max.labels'
Specifies the sizes of the three passed arrays

'nathinseguents, n.thick-segments, n.labels'

Returns the number of returned data items in each array

"thin-segments'

Returns a fiat list of n-thinsegments X/Y->X/Y line segments

'1hick.-segments'

Returns a flat list of n.1thick.segments X/Y->X/Y line segments

'labels' Returns a list of labels

coord.generate. .rid takes bounding points in TCC coordinates and generates two lists of line

segments (thin and thick) which form a grid with the specified spacing, and a list of text strings

which can be used to label the grid. Note that up to 4 * maxthin.segments may be stored in the

thin.segments array.

label.mask indicates which sides to label with an inclusive OR of the following masks:

* COORD..LABEL-LEFT

* COORDLABELRIGHT

* COORDJLABEL.TOP

* COORDLABELBOTTOM

The special mask COORD.LABELALL is the OR of all of these.

I

Chapter 3: Functions 11

Labels are specifies with the following structure:

typedef utruct

/* The location of the label in TCC coordinates */
inz32 x, y;
/* lull-terminated label string */
char txt [COORD.AX.GRID.LABEL.TXT];

I COORD.GRIDLABEL;

3.8 coord-describe..datums

void coord.describe.datums (

coord.describedatums prints descriptions of all known datums (from table read in
coord.init).

3.9 coord-formatiatlon

char *coordforatlatlon(latitude, longitude)
float64 latitude;
float64 longitude;

'latitude'

Specifies the latitude

'longitude'
Specifies the longitude

coord.formatlatlon returns a pointer to a character buffer which has the passed lat/long

represented as ASCII text. The buffer is static, so only one invocation per argument list is allowed.

3.10 coord -flxed_p oint.degrees

int32 coord.fixed.point.degree. (degrees)
float64 degrees;

12 LibCoordiuates Programmer's Guide

'degrees' Specifies an angle in degrees

coord-fized.point.derees returns an integer which is the passed number of degrees in a

DDMMSSHH format.

3.11 coord -floating-p oint-d egrees

float64 coord-floating.point.degrees (ddmsuhh)
int32 ddz-sshh;

'ddmsshh'
Specifies the encoded number

coord-floating-.pointdegrees decodes DDMMSSHH format into simple degrees.

3.12 coordparse-flxed..point..degrees

int32 coord-pars..fixed.point dgree8 (string)

char *string;

'string' Specifies a string in DDMMSSHH format

coord-parse..fied.point.dogress parses character string to generate DDMMSSHH format

fixed point integer.

3.13 coord _count.utm .zones

void coord.count.uta.zones (tcc.ptr, n.zones, base-zone)
COORD.TCC.PTR tcc-ptr;
int32 *n.zonos;
int32 *base.-zone;

'tcc-ptr' Specifies the TCC

'n.zones' Returns the number of zones

..I

Chapter 3: Functions 13

'basn.zone'
Returns the number of the lowest zone

coord .count-.utm.zones returns the number of utm zones covered by the database TCC, and

the number of the lowest zone.

3.14 coord -lookup -datum _by..ne

int32 coord.lookup.datua-by-ne(zone, northing, easting)
int32 zone;
float64 northing;
float64 easting;

'zone' Specifies the zone

'northing'
Specifies the northing

'casting' Specifies the easting

coord.lookup-datui.by.ne returns the DMA suggested mapping datum for a particular loca-

tion.

3.15 coord-lookup.zone-letter

char coord.lookup.zone.letter(zone, northing)
int32 zone;
float64 northing;

'zone$ Specifies the zone

'northing'

Specifies the northing

Given a zone & a northing, coord-lookup.zone.letter looks up the correct letter designation.

3.16 COORD.LATLONG-TO -GRID-ZONE

14 LibCoordinates Programmer's Guide

int32 COORDLATLNG.TO.GGRID.ZONE(latitude, longitude)
float64 latitude;
float64 longitude;

'latitude'

Specifies the latitude

'longitude

Specifies the longitude

Given a latitude & longitude, the macro COORD.LATLONG.TO.GRID.ZONE determines the UTM

zone number in which that coordinates resides. With the exception of a couple of anomalies, the
world is broken up into 6 degree wide slices.

3.17 COORDWESTLONGOF.FGRID-ZONE

float64 COORD.WESTLONG.OF.GRI D.ZONE(zone)
int32 zone;

'zone? Specifies the zone

Given a grid zone (in the range 1 through 60), the macro COORD.WEST.LONGOFGRID.ZONE
returns the longitude of the western edge of that zone at the equator.

3.18 COORDEASTLONG-OFFGRIDZONE

float64 COORD..EAST..LOIGCF.RID.ZONE(zone)
int32 zone;

'zone? Specifies the zone

Given a grid zone (in the range I thr,,ioh 60), the macro COORD.EAST.LONG.OFGRID.ZONE
returns the longitude of the eastern ,vil K,f that zone at the equator.

ADST-TR-W003268

LibCreate

Table of Contents

1 Overview.. 1

2 Algorithms .. 3

2.1 Load Leveling Creation.. 3
2.2 Migration... 4
2.3 Fault Tolerant Takeover 5
2.4 Defeating Load Leveling Creation 5

3 Examples...7

4 Functions .. 9

4.1 cr-init..9
4.2 cr..change-.exercise..10
4.3 cr..debugging...10
4.4 cr..new-.object ... 10
4.5 cr..destroy-.object...11

Chapter 1: Overview 1

1 Overview

Libcreate provides the following services for simulated ModSAF entities:

* distributed creation of simulated entities with load balancing between computers of the same

simulatorType (such as simulator.LL.SAFSIM, a type that indicates the computer's ability

to simulate entities)

* application directed handoff of simulated entities from one simulator to another

* fault-tolerant takeover of simulated ModSAF entities belonging to a simulator of a similar

simulatorType when that simulator crashes or exits

The algorithms used to provide these services are provided in the next chapter.

Libcreate works by attaching obj ect.changed and simulator.gone handlers (see section 'Events
and Event Handlers' in LibPO Programmer's Manual) in the PO database, as well as through two

interface functions to deal with new and deleted objects.

When a PO entry indicates that a unit object that has not yet been simulated and that entry's
"shouldBeSimulated' field is set at TRUE, then libcreate simulates the unit via the following

procedure.

1. Make a call to libsafobj, telling it to go ahead and instantiate the corresponding object as a
local vehicle. The unit-name of the entry (such as US.14D) matches to a .rdr file (such as

US.Fl4Dparams.rdr) so that the appropriate configuration files are read. Libsafobj returns a
vehicle.id when the object has been instantiated.

2. Set the simulated entity to have needed data (such as exercise number, location, forcelD,
marking, and appearance). This data is passed to libentity from libcreate and the Unit PO
(libPO). Next, build a rotation matrix corresponding to the direction the user wanted the unit

to face, and set the simulated entity to point that way.

3. Initialize the hull component of the safobj by having the hull point in the desired direction

and by assigning an initial speed of zero.

4. Make the appropriated changes to the PO to reflect that this object has been simulated.

(The "simulated" field will be set to TRUE, and the "shouldBeSimulated" field will be set to

FALSE.)

5. Make a call to libentity to activate the new entity, that is, have it start broadcasting packets.

6. Finally, set the association between the safobj and the c2obj by mapping the safobj's vehicle..id
with the c2obj's unit PO.

2 LibCreate Programmer's Guide

Chapter 2: Algorithms 3

2 Algorithms

The following sections describe the algorithmic implmentations of the load-leveling creation,
migration, and fault-tolerant takeover services of libcreate. Each algorithm depends on the fact
that every ModSAF simulated entity has a corresponding Unit Class Persistent Object (PO) cor-
responding to that simulated entity. The Unit Class objects provide the shared state variables
between simulators that are used to arbitrate who will simulate an entity at what time. Since
the persistent Unit Class objects will in the steady state be consistent across all simulators, the
decision of what simulator will simulate what entity will be consistent across all simulators. Since
the persistent Unit Class objects can survive a simulator crashing, the simulated entities derived
from those persistent Unit Class objects can survive a simulator crashing.

Through out each algorithm description, it is important to note that although local inconsisten-
cies concerning a PO object can occur temporarily between simulators, over time each simulator
will have consistent information about each object in the database.

The following fields in the Unit Class object are relevant to the creation process:

shouldBtr. lated
'3 if a Unit C4 3s object should be simulated as a simulation entity

simulatec
TRUE if a Unit Class object is simulated as a simulation entity. This field is never true
if ,houldBeSimulated is TRUE.

simulator
SimulationAddress of the simulator which currently is or most recently has simulated
an entity corresponding to this object

simulationID

VehicleID of the simulated entity corresponding to this object

2.1 Load Leveling Creation

Given an object A in which shouldBeSimulated as TRUE and simulated - FALSE, there are
three cases:

1. If simulator is not NULL, then change the object to have simulator a B, where B is the
simulator registering the least simulation load in it'a periodic simulatorPresntPDU. Increase

I

4 LibCreate Programmer's Guide

your local notion of that simulator's load based on what increased load you would incur for

that vehicle.

2. If simulator is you, wait for a small amount of time and then perform the maybe.create

procedure.

3. If simulator is not you, ignore the creation which has been selected for another simulator.

When the maybe-create procedure is executed, if you are still the selected simulator for that

object, and the object still wants to be .ilnulated. simulate the entity and set shouldBeSimulated

= FALSE, simulated=TRUE, and simulationID to the id of the newly simulated entity.

If, through missed PO packets. two or more simulators decide to simulate entities corresponding

to the same object, all but one of the simulators will end up destroying the entities through the

process of migration, described below.

2.2 Migration

Given an object A in which Simulated on TRUE and SimulationlD is a local vehicle and simulator

is not me, this indicates a request for me to release my vehicle to the other simulator. To do this,

deactivate the vehicle with a deactivateReason of vehicleHandoff.

Given an object A in which Simulated -- TRUE and SimulationlD is a remote vehicle and

simulator is me, this indicates a request for me to take over a vehicle from another simulator. To

do this, create a local vehicle immediately, reusing the simulationlD. Activate this vehicle (i.e.,

broadcast vehicle appearance packets) upon a short delay or receipt of a deactivaePDU for that

vehicle with a deactivaeReason of vehicleHandoff, which ever occurs first.

Note that where load-leveling creation does load-leveling at the time that simulated vehicles are

created, migration can be used to do lsad. leveling after creation.

Also note that it is not safe f,,r a program to exit soon after performing a migration of it's

units. This is because it is po-,%:,le 1) -fart a migration to a simulator that has crashed. The

source simulator performing tlh. itrA11 ,,n may be the only simulator to hear about the simulator

crashing after beginning the wiir.tm,,n. .itd in that case, the source simulator is the only simulator

who will know to change the inmr.ion de,,tination via the Fault Tolerant Takeover process.

Chapter 2: Algorithms 5

2.3 Fault Tolerant Takeover

Given a simulator S which has timed out of the database, query for all objects U in which
simulator -- S and simulated == TRUE. For each of those objects, set simulated -= FALSE and

shouldBeSimulated == TRUE. Perform the choose operation as in (see Section 2.1 [Load Leveling

Creation], page 3), and this case reduces to Load Leveling Creation.

2.4 Defeating Load Leveling Creation

Not all simulated vehicles want to be load-leveled across different simulators. For instance, some
applications may want all the vehicles in a platoon to be on one simulator. This can be accomplished
via creation conventions when creating unit hierarchies (task organizations). If a simulator (or user

interface) wants a unit and all it's subordinates simulated on the same simulator, it should mark
just the unit with shouldBeSimlated as TRUE. If it wants any subordinates to be potentially
created on other simulators, those should be marked as shouldBeSimulated == TRUE. When a
simulator goes to choose a simulator for an object where shouldBeSimulated == TRUE, it should
scan the entire PO database for any subordinates where shouldBaSimulated == FALSE. All those
units should be changed to have the same simulator simulate them, and the subordinates should

be modified to have shouldBeSimulated -= TRUE once the destination simulator is chosen.

6 LibCreate Programmer's Guide

Chapter 3: Examples 7

3 Examples

The following code fragments demonstrate usage of all libcreate functions:

/* 1. Acquire a simulation exercise.
* 2. Acquire a simulation address, sim.addr.
* 3. Determine the number of vehicles this simulator can
* simulate, and take the inverse of that number to calculate
* a loading factor.
• 4. Determine the type of simulator you are, typically a
* simulatorLLSAFSIM (for load-leveling SAFsim).

S 5. Determine the simulation protocol version being used.
* 6. Create an active open PO database, po.db.
* 7. Create a packetvalve, valve, and sent it up to process PD
* packets.

cr-init(po.db, valve, protocol,
exercise, simaddr, simulator-type, loading);

/*
* Turn on creation debugging.

cr-debugging (TRUE);

* Change all (past, present, and future) my created vehicles to

• a new exercise.
*/

cr_. hange.exercise (new..ex) ;

8 LibCreate Programmer's Guide

Chapter 4: Functions 9

4 Functions

The following sections describe each function provided by libcreate, including the format and
meaning of its arguments, and the meaning of its return values (if any). The algorithms for
load-leveling creation, migration, and fault-tolerant takeover are described in (see Chapter 2 [Al-
gorithms], page 3).

4.1 cr-init

void cr.init(db, aim.exercise.id, sim.-address, aim-type,
loading-factor)

PODATABASE *db;
PV.VALVE.PTR packet.valve;
int32 s ia. protocol, version;
uintS sin.exercine_ id;
SimulationAddres sin.address;
SizulatorType sin.type-
float32 loading.factor;

db an open active PO database

packet.valve
the libpktvalve valve being used for reading and writing PDUs.

aim-protocol-version

the version of the SimulationProtocol being used for this exercise.

sioLexercise.id
the exercise to simulate entities on. This should match the exercise being listened to
for SimulationProtocol packets in the packet valve.

s im-address
simulation address being used by this computer, and it must match the address used
when db was opened.

sim-.type the type of simulator that can he chosen to simulate entities

loading.factor

the weight that one %,.hirl has on the simulation as a fraction of full load

crit initializes libcreate. C., it to li.ten for new and changed UnitClass objects in the
PO database and to respond to tl,,-. ,hj..rt. %ith local creation and deletion of entities.

I
I

10 LibCreate Programmer's Guide

4.2 cr-change-exercise

void cr.change.xerciue(ui..exercise.id)
uint8 sim..exerciseeid;

'sinezercise-id'

Specifies a new exercise id.

cr.change.exerciae causes all locally created entities to change to a new exercise and forces
I all newly created entities to be created in the specified exercise.

I

4.3 cr..debugging

void cr.dcbugging(flag)
int32 flag;

'flag' Specifies whether or not debugging statements should be printed. Has either TRUE or
FALSE value.

cr.debugging turns debugging print statements either on or off, according to the flag. When
debugging is on, indications of the creation process are printed to utdout.

I
S 4.4 cr-new-object

void cr.now.object(db, entry)
PO.DATABASE *db;
PO.DEDB.TRY *entry;

S 'rb' A Persistent Object database.
'entry' A new Persistent Object entry that just arrived in the database.

cr.ne.object- should be called for every new PO en-try. If the entry is of type
obj ec-tClassUnit and it should be simulated as a simulation object, this function will cause the

appropriate entity to be created.

I

Chapter 4: Functions 11

4.5 cr.destroy-object

void cr.dostroyobj ect (db .entry)
PO.DATABASE *db;
PODBENTRY *entry;

'db' A Persistent Object database.
'entry' A new Persistent Object entry that is about to be deleted from the PO database.

cr.destroy-object should be called for every PO entry which is about to be deleted. If the
entry is of type objectClassUnit and it is being simulated, this function will cause the appropriate
entity to be deactivated and destroyed.

ADST-TR-W003268

LibCTDB

Table -of Contents

I Why Libctdb?..1
1.1 Smaller storage requirements...................................1I
1.2 More efficient disk cache 3

1.2.1 Elevation cache.......................................3
1.2.2 Feature cache..4

1.3 New algorithms... 4
1.3.1 Elimination of search 4
1.3.2 Efficient implementations.............................. 6
1.3.3 Judicious approximation 7

1.4 Optimized for ISC processors..................................7
1.5 Improved intervisibility model.................................. 7
1.6 More thorough documentation 8

2 Examples...9

2.0.1 Elevation Lookup..................................... 9
2.0.2 Visibility Testing.................................... 10

3 Functions..1is

3.1 ctdb..apparent..shape.. 15
3.2 ctdb..apparent.size..16
3.3 ctdb..contour-image .. 17
3.4 ctdb..contour..route...18S
3.5 ctdb..contour..segmeuU .. 19
3.6 ctdbind.ground-intersection 20
3.7 ctdbet-treeline..segment,.....................................21
3.8 ctdbiind.highground .. 21
3.9 ctdb..hypso..bitmap...22
3.10 ctdb..hypeo-image... 23
3.11 ctdblookup,.eevatioa 24
3.12 ctdblookup.featureino 24
3.13 ctdbiookup.maxelevaton 25
3.14 ctdbiookup.so...... 26
3.15 ctdb..place-.vehide... 26
3.16 ctdb.point.oi..databae 27
3.17 ctdb..point..on..pound.......................................27
3.18 ctdb..get..uildinp 28
3.19 ctdb..point.thru.point 29

LibCTDB User Manual and Report

3.20 ctdb..point..to..point.. 3o

3.21 ctdb.print..description 31
3.22 ctdb..print..stats... 32
3.23 ctdb.profile-vector .. 32
3.24 ctdb..ptop..raster .. 32
3.25 ctdbsead..34
3.26 ctdbsreread...35
3.27 ctdb..vehicle..blockage.. 35

4 Porting Guide ... 37

4.1 Platform specific optimization................................. 37

Chapter 1: Why Libctdb? 1

1 W hy Libctdb?

The Compact Terrain Database library, libctdb, is used by an application to acces elevation,
soil type, and feature data of a SIMNET database. Terrain databases are compiled from SI000
source (or other source formats) into libctdb format. Applications use libctdb to load this database
into memory, and then use libctdb functions to access the data therein.

Libctdb functions include:

" Reading the database into memory or cache

" Maintaining useful information about the database, such as its size, minimum and maximum
elevation, and UTM zone, northing and easting (its location on the planet)

" Point elevation lookup

" Elevation lookup along a line segment (find high ground, find terrain profile, etc.)

" Soil type lookup
* Vehicle placement (rotation matrix generation)

" Intervisibility calculation (including terrain and vehicle blockage)

" Radar clutter calculation

* Generating graphic representation of the terrain such as contour maps and hypsometric maps,
in real time

The CTDB header format includes a lag which indicates whether the database was generated
assuming grid squares break along diagonals running from NW to SE or along diagonals running
from SW to NE. The library's public funtions take note of this flag at invocation and apply different
internal algorithms accordingly see Chapter 6 [Algorithms], page 57.

Libctdb provides several advantages over other terrain access libraries used in the past. Some
of the highlights are detailed in the following sections.

1.1 Smaller storage requirements

The libctdb terrain database file format uses several compression methods to minimize storage
requirements. The resulting files are one-sixth to one-twentieth the size of files used by previous
terrain database libraries. In addition to reducing hardware cost associated with storing these
databases, this compression allows more of the database to be stored in main memory (improving
performance by reducing disk access).

2 LibCTDB User Manual and Report

The largest savings is derived by exploiting the regular nature of terrain database modeling.

Most elevation data is obtained from the Defense Mapping Agency (DMA). DMA data is a regular

sampling of elevations. The sampling interval is specified as "Level 1" (90 meter spacing) or "Level

2" (30 meter spacing). SIMNET databases are built from this data as follows:

1. The DMA data is down-sampled to 125 meter spacing. This is done using linear interpolation.
We refer to a point in this 125 meter grid as a post.

2. Each square in the grid is broken in! two triangles via a line running northwest to southeast:

l\ I\ I
I\ I\ II \l \l
I \1 \

I\ I\ I
I\ I\ I
I \l Xl
I Xl \l

and each triangle is assigned a soil type.

3. The grid is broken into patches 500 meters on a side:

4-4-4-4-4-4-4-,-,

I I I
. 4, 4.4 4"4***.*.

I I I

I I I

I I I
4--4-4-4-4-4--,-,

Each post, therefore, has an elevation and two soil types (by convention, the soil types of the

two triangles to its southeast). The libctdb format encodes the information regarding each post

(elevation, two soil, and some ffags into a 32 bit item. Hence, to store a grid the size of the Ft.

Knox database (50 km x 75 kin) requires 400 posts x 600 posts x 4 bytes per post = just under 1

MB. The posts are stored in such a way that the post for a particular XY location can be found

with a few arithmetic operations.

In addition to this regular grid of elevations, some areas of the terrain are modeled more precisely

using microterrain. Microterrain is a collection of squares and triangles which cover a portion of

a patch. Libctdb uses an oriopnal al orithm to store these microterrain polygons in a compact

fashion.

Chapter 1: Why Libctdb? 3

On the surface of the terrain ne "buildings" (which is loosely defined to include pipelines and

other opaque non-penetrable structures), trees (individual trees, tree lines, and tree canopies), and

linear features (roads and rivers). For each patch, the microterrain and surface features (each
encoded in a compact fashion) are stored together.

Adding features to the Ft. Knox database brings the total storage requirement up to 4.5 MB.
By contrast, other database formats typically require around 30 MB to store Ft. Knox. The large
SAKI database (360 km x 290 ki) requires about 30 MT in libctdb format, over 600 MB in other
formats. The greater compression is achieved because the SAKI database is mostly desert, and
hence relatively free of features.

1.2 More efficient disk cache

Although libctdb terrain databases are relatively small, they may still require more memory
than an application can afford to give up. The solution to this problem is the use of a disk cache.
Libctdb uses two caches, one for the elevation grid, and another for the patch features.

When an application loads a libctdb database, it specifies the maximum memory which can
be used to store the database. This memory is split up between the two caches, such that the
probability of a hit is the same for each. This will typically result in more memory allocated for
the feature cache, since databases will usually require more storage for features than for elevations.

1.2.1 Elevation cache

The elevation data is stored using a technique called tiling, in which the large rectangular grid
is broken into equally sized sub-rectangles. Each sub-rectangle (called a page) is a square, with 32
posts on a side (4 kin). The 32 x 32 posts require 4 Kb of storage. Since the posts are grouped into
geographically close areas, and applications will typically be accessing geographically close areas,
cache consistency (the probability a needed page is in the cache) will be high for most applications.

The elevation cache is a direct mapped, fixed size cache. That is, when the application needs
a page of elevation data which is not currently in the cache, it is loaded into the cache location
page-numbor MODULUS cache-size. The page numbers are assigned in east to west (minor), south
to north (major) order. Such a caching scheme, runs the risk of thrashing (consistently missing)
when two different pages which happen to occupy the same cache location are needed simulta-
neously. For example, if the database is 20 pages wide, and the cache size is 20 pages, running
visibility rays due north will cause frequent cache misses. To avoid this problem, the caching code

4 LibCTDB User Manual and Report

monitors cache performance, and when thrashing is detected, the cache size is lowered by one

(within reason).

1.2.2 Feature cache

Feature data presents a different problem. Some patches have ve-. few features, others have

very many. The quantity of feature data in a patch is referred to as feature density. Measured in

4 byte words, Ft. Knox has feature densities ranging from 1 to 739 for a patch group of 4 adjacent

patches (grouping patches into sets of four is a technique used to reduce overhead). Hence, using

a single cache in which each entry can hold any patch (the technique used for the elevation cache)
will result is a great deal of internal fragmentation (wasted space). Instead, during compilation,

each patch group is assigned to one of 16 caches. Each cache has about the same number of entries,
but the size of each entry varies by cache to minimize fragmentation.

1.3 New algorithms

New algorithms have been developed to improve performance of libctdb functions. The key
improvements have been the elimination of unnecessary search, the use of more efficient methods

for several key routines, and the judicious use of approximation.

1.3.1 Elimination of search

Finding an elevation on the regular grid does not require any search, except in the case where

microterrain is present.

In addition to elevation and soil information, each post in the regular grid has boolean flags
which indicate the presence of microterrain, buildings, trees, or other features. By checking these

flags, libctdb can avoid searching for features it will not find. In the case of NW.SE diagonalization,

the flags indicate the presence of features in the square to the southeast, and the case of SW.NE
diagonalization, the flags refer to features in the square to the northeast of the post.

Furthermore, each feature is marked with a bit mask, identifying which posts it crosses within

its patch. In the following example, each post within the patch is identified by the hexadecimal

digits '0' through 'F'. A road is drawn with the symbol 'W'.

Chapter 1: Why Libctdb? 5

For V..SE diagonalization:

C-D-E-F-*
I I 000 0
8 9 A B +
I ##81 1100 a C

4 5 6#7 4
I #8 I 0110 a 6
0 1#2 3 +
I # I 0010 a 2

For SV.IE diagonalization:

I I 0000a 0
CDEF+

I ###l 1100 a C
8 9 AB +
I ### I 0110 a 6
4 5#6 7 +
I # I 0010 a 2
0-1-2-3-+

Notice that the post mask for a feature turns out to be the same regardless of the diagonalization

of the underlying grid. The road covers the triangles associated with posts 1, 5, 6, A, and B.

Hence it would be marked with the flags 0xOC62. Twenty-five bits are reserved for this mask to

accommodate future database requirements. A function finding the soil type of a point southeast of

post 6 and northwest of post 3, could eliminate all roads which do not have bit 6 set. In other words,

the domain of feature searches can be limited to very likely candidates with only one arithmetic

operation per feature.

Another critical algorithm which has been coded to minimize search is the intervisibility algo-

rithm. Using a technique borrowed from computer graphics called digitalization, rasterization, or

scan conversion, the triangle edges which cross a line of sight ray can be predicted almost exactly.

In the following example, the line of sight ray is show on the left as a series of '.', the posts deter-

mined to be involved are shown in the middle as '8', and the edges tested are shown on the right.

(Interior posts removed for clarity.)

6 LibCTDB User Manual and Report

+# # +0100a4

+ .+ + # + + #- 0100 n 4
I\

* * .88 *# +-8- # 0110 a 6
+ + 0010 a 2

+.+ + + ++ + + + +

Sight Line Posts Edges

As the posts are determined by the rasterization algorithm, a mask can be assembled which
encodes which triangles line of sight crosses (in the previous example it would be '0z4462'). This
mask can be compared against the masks associated with features such as trees, buildings, and
microterrain, to reduce the search domain. Also the feature flags associated with the posts traversed
are used to eliminate entire classes of features which could not possibly have interfered with visibility
on the patch being tested.

1.3.2 Efficient implementations

Many often-invoked routines have been written using a mathematical construct known as para-
metric equations, in which coordinates of line are described by simultaneous equations of a
common parameter, rather than one in terms of the other. A line segment would be defined,

z = At), V = 0). 0 5 t < I

rather than,

: = AX).,. <' :5 <_ :xM,. Y-it <5 Y <_ Fms,.

Not only is it less expensive to solve for t than for z and V in most cases, but in the case of
intersecting finite line segments, the point of intersection can usually be determined to be out of
bounds (t < 0, or t > 1) before it is actually computed (t will typically be computed via a division,
hence the range of t can be determined by comparing the magnitude of the numerator versus that
of the denominator).

In addition to line/line intersection tests, parametric equations are also used to improve perfor-
mance of linear interpolation and point/line proximity tests.

Chapter 1: Why Libctdb? 7

1.3.3 Judicious approximation

In some cases, reasonably accurate approximations are used rather than computing the exact

answer. The most notable example of this is the use of single precision square root, fsqrt 0, rather
than the float64 precision version, sqrt(). Also, the vehicle placement code uses an approximation
to guarantee the rotation matix generated is orthonormal, avoiding a square root and an expensive
matrix operation.

1.4 Optimized for RISC processors

The libctdb functions have been exo ively profiled and tuned to yield maximum performance
on RISC platforms. The types of optimizations which help RISC platforms are foreign to many
programmers, and hence are rarely performed. They include:

" Avoiding conversions between different numeric formats (integer, single precision floating point,
and float64 precision floating point).

" The use of float64 precision floating point rather than single precision for temporary variables
to avoid type conversions during evaluation.

" Using many local variables, rather than small, fixed size arrays to make maximum use of CPU

registers.

* Using multiplication, Tather than division, wherever possible.

" Judicious use of static global variables to reduce parameter passing overhead in function invo-

cations.

* Use of array syntax (a[ij), rather than pointer syntax (*(ai)), in cases where the latter
would prevent certain optimizations by the compiler.

* Use of if ... else if ... else f chains rather than switch case statements when the num-
ber of choices is small.

Performance tests were used to cmnfirm choices of syntax in all cases.

1.5 Improved ir*.rvisibility model

In addition to execution sr --d improvements, the fidelity of the intervisibility model has been
significantly improved. The new model incmporatea:

8 LibCTDB User Manual and Report

* Light transmittance model used for modeling cumulative effect of intervening trees, with tree

opacity a caller specified parameter.

* Use of both target width and height (relative to the viewer) for determination of visible area

(older models used height only).

* Accurate model of building sizes and locations (older models used only compass aligned bound-

ing box).

* Determination of visibility as an analog value in the range 0 to 1, rather than a digital Visi-

ble/Partial/Blocked result.

* Accurate model of vehicle-blocking-vehicle viibility, incorporating width and height (relative

to the viewer) of intervening vehicles.

e Reasonably fast, extremely high fidelity rasterization model available, which can determine

exactly what parts of a vehicle are visible.

1.6 More thorough documentation

In addition to this document, llbctdb is documented via extensive in-line comments, and a

documented header file.

Chapter 2: Examples

2 Examples

The following programs demonstrate the use of selected libctdb functions. The programs were
intentionally kept brief for clarity. In general, a program should declare a variable of type 'CTDB'
to hold header information, call ctbrad . to initialize this structure, and then call other
libctdb functions with a pointer to this variable as their first argument.

2.0.1 Elevation Lookup

The following program reads a libctdb format database, prints information in the database
header, and finds the elevation at the ceu1te. of the dzwabase.

*File: dbcenter.c

*Compiled as follows:

*cc -o dbcenter dbcenter.c -I/comon/include/libinc; -L/camanlib ~
* -lctift -In

1* Include this header in all tiles r_9rmci Ubctdb functions.
*constanfts * or data structures.

include 42ilbctdb .h),

inain(argc. argv)
int32 argc;
char sazgvO3;

CTDB ctdb; 1. Allocate storage on the stack for the database
" header. Most of the mmry used by libctdb
" winl be allocated dynamically when the database
" is reed.

float" aid-.. a id-y. aid.z;

if (argc Is 2)

printf("Usage: %9 4file-same,%W. azgvO3);
ezit(0) ;

As Read the database. Allow the library no more than IPM of

10 LibCTDB User Manual and Report

* storage. lote that it an error occurs, libctdb will call
* euit(1).
*/

ctdb.read(kctdb. a zgv1] , 1<<20);

/* Print a description of the database.
0I

ctdb.print.description(&ctdb);

/I Find the midpoint of the database.
C,

aidz s (ctdb.ma.z + ctdb.min.z) / 2.0;
mid.y a (ctdb.max.y * ctdb.ainy) / 2.0;

/ Find the elevation at that point.
5/

aid.z a ctdb.lookup.elevation(&ctdb, aid.., aid.y);

/* Print the result.
*/

printf("Center of database: OIf %f I, n".
mid.:, mid.y, id.:);

}

2.0.2 Visibility Testing

The following program reads a libctdb format database, and determines visibility between two
user specified points. Libcoord is used to translate the user specified coordinates from UTM to
X,Y. Libreader is used to read the libcoord database.

Note that information in the CTDB data structure can be used to initialize libcoord.

i /*
* File: ckvis.c

SCopiled as follows:

* cc -o ckvis ckvis.c -I/conmon/include/libinc -L/coon/lib \
• -lctdb -icoord -ireader -11 -lm

1* Include ti s header in all files referencing[libctdb functions,
c constants, or data structures.

include (libctdb.h)

Include~~

thi

he
de

In
al

i
e

e
e

e
c

ng
l

b
b f n t o s

Chapter 2: Examplea1

/* Other header f iles.
$ include (libreader .h>
#include <libcoord.h>

/s Typical values 0/
#def in* EYEJIGHT 2.0
#defineo TARGET-BRIGHT 2.0
#*f in. TARGET..VIDTI 4.0
Fdeflne TREE-OPACITY 0.5 I. Nust be between 0.0 and 1.0 C

main(argc. argv)
1nt32 argc;
char *argvO;

CTDB ctdb; /* Allocate storage on the stack for the database
" header. Nest of the mmory used by libctdb
" will be allocated dynamically when the database
" is read.

DATA-UNION utmjfile;
int32 ro;
floats4 eye.:. eye..y. oye..z;
floats4 targ.:. targ..y targ..z;
float64 via;

if (argc !- 4)

printf(Unagt: %s (file-name) <eye UTh) (target UTh)'%n'.
arpvEOJ);

exit(0);

A5 Read the database. Allow the library no more than 1MB of
storage. Note that If an error occurs, libctdb will call
* zit(1).

ctdb..read(Actdb, aup (13. 1<<20);

/s Initialize libcoord.

if (reader..read.fil('/saf/config/uta.lisp". * uta..file) !-0)

printf ("Error reading libcoord database~n');
ouit(0);

coord-set.2ilgrid..table(uta..file-.array);
slunet..origln.northing * ctdb .origiu..northing;
sint..origin-east lag * ctdb .origin..easting;
siunet..origin..zone a ctdb .origin..zone.number;
aisiuntorigin.zone. letter a ctdb .origin..zone..letter;

12 LihCTDB User Manual and Report

sianetdatus ctdb .datum;

/* Convert user supplied coordinates.

rot a convert..coordinates (COORDSYSTEK..UTNGRID.
COORD-DEFAULT..ZONE. 0.* argv liJ.
COORD..SYSTE-SIN NETr.
&eye..z. &eye..y);

if (rot

priatf ("Error converting UTN %a: Wsn".
argv[lJ. convert..error(rec));

.zit(O);

rot a convert-coordinates (COORD..SYSTEM..UTNGRID,
COORD...DEFAULT..ZONE. 0. argv t2J.
COORD-.SYSTDLSlHNET,
ktarg.z, ktarg.y);

if (rot)

printf ("Error converting UTH %s: %s\n'.
argv (2J convert-orror(ret));

exit(0) ;

/a Find the elevation at each point.

eye..z -ctdb..lookup..elevation(Actdb, eyoex, eye..y);
targ.z *ctdb..lookup..elevation(&ctdb. targ-z. targ..y);

/a Compute visibility using typical values.

vie * cdb.point..to..point(kctdb.
eye..zo sycly. eye..zo
targ.z targ.y * targ.z,
targ..z*TARGETHEIG~rT
TAMGET..VIDTH,
REE-OPACITY,
0.0. /* Compute even if

: barely visible.

0 /a No vehicles in the
a way.

/a Print the result.

printf("5.2fZZn". 100.0 avie);

Chapter 2: Examples 13

14 LibCTDB User Manual and Report

Chapter 3: Functions 15

3 Functions

The following sections describe each function provided by libctdb, including the format and
meaning of its arguments, and the meaning of its return values (if any). Descriptions of how each
function performs its task can be found in the algorithms section. See Chapter 6 [Algorithms],
page 57.

3.1 ctdb.apparent.shape

void ctdb-apparent.hape(xO, yO, zO, xl, yl, zi,
rotation, length, width, height,
app.loc, zh, X.min, x.Max, z..in, z.uax,
proj, dist, object.correction,
raster)

float64 xO, yO, zO;
float64 xl, yl, zi;
float64 rot at ion [3 [3];
float" length, width, height;
float64 app-loc [3];
float64 *zh;
float64 *x.in;
float64 *x-max;
float64 *z.Lin;

float 64 *z-max;
float:64 proj [3] [3];
float64 *dit;
float04 *obJect . correct ion;
uint32 raster [32];

'xO, yO, zO'
Specifies the location of the viewer

'xl, yl, Z1'

Specifies the location of the target
'rotation'

Specifies the 3x3 rotation matrix of the target

'length' Specifies the length of the target (its Y dimension)
'width' Specifie3 the width of the target (its X dimension)

'height' Specifies the height of the target (its Z dimension)
'app.loc' Returns the apparent location of the target
'zh' Returns the z-value at the top in the target

16 LibCTDB User Manual and Report

ixzain x.iaX, z..in, z.ax'

Returns the extents of the target (in viewer coordinates)
'proj' Returns an orientation matrix for the target's projection coordinate system. In this

coordinate system, Y runs down the line of sight, Z runns perpendicular to Y and the
world XY plane, and X runs perpendicular to Y and Z.

'dint' Returns the distance to the origin of the target's coordinate system
'obj ect.correction'

Returns the ratio: distance to the nearest point on the target divided by the distance
to the target

'raster' Returns a rasterized outline of the target

ctdb.apparent.shape is similar to ctdb.apparentsize, except that, in addition to returning the
"size" of the distant object, it returns the raster giving a bitmap of the outline of the vehicle as
seen from the eye point. In addition, it returns the apparent leftmost, rightmost, top and bottom
of the object in "projection" coordinates. This is the frame of reference for the raster.

The value of object.correction returned is used by the caller to pass to subsequent calls to
ctdb.ptop.raster. This value is a ratio, the distance from the viewpoint to the nearest vertex of
the target divided by the distance to the target.

The value of zh returned is the z-coordinate of the highest vertex of the target as as seen from
the viewer's perspective, expressed in world coordinates.

See Section 3.2 fctdb'apparent'size], page 16.

3.2 ctdbapparent.size

void ctdb.apparnt.size(xO. yO. zO. xi, yl, zi,
rotation, length, width, height,
app.loc, app.vidth, appheight)

float64 ZO, yO. zO;
float64 xl, yi, zi;
float64 rotation (3] 3] ;
float64 length, vidth, height;
float64 app.loc (3];
float64 *app.vidth;
float64 *app.height;

'xO, yO, zO'

Chapter 3: Functions 17

Specifies the location of the viewer
'xl, yl, z1'

Specifies the location of the target
'rotation'

Specifies the 3x3 rotation matrix of the target

'length' Specifies the length of the target (its Y dimension)
'width' Specifies the width of the target (its X dimension)

'height' Specifies the height of the target (its Z dimension)
'app-loc' Returns the apparent location of the target
'app.width, appheight'

Returns the apparent dimensions of the target

ctdb.apparent.size finds the apparent size of the perpendicular parallelepiped described by
length, width, height, given the eye point xo,yO,zO, the target location xl,ylzl and target ro-
tation. The apparent width and height of the object are returned, as well as a location corrected
to be at the bottom center of the apparent location.

This function is provided to allow extremely accurate intervisibility tests. Ideally this should be
run for the target, as well as for each potentially blocking vehicle. For applications needing a more
coarse measure of visibility, it is probably not necessary to use this function.

See Section 3.1 [ctdb'apparent'shape], page 15.

3.3 ctdb.contour-image

void ctdb.contour.image(ctdb,
low.x, low_y, width, height,
scale.mpp,
dirt-pixel, contour-pixel,
img)

CTDB *ctdb;
int32 low.x;
int32 low.y;
int32 width;
int32 height;
float64 scal.mpp;
int32 dirt-.pixel;
int32 contour.pixel;
char iagO;

18 LibCTDB User Manual and Report

'ctcdb' Pointer to initialized CTDB structure.

'low.x, low.y. width, height'
Specifies screen extents, in meters.

'scale.app'

Specifies screen scale in meters per pixel.

'dirt.pixel, contour.pixel'
Specifies pixel values to use for background and contours, respectively.

'iMl Returns Z-pixmap format image of terrain contours.

ctdbcontour.image generates a Z-pixmap format image of the contours of the terrain bound by
low.x,low-y to low.x+width,low.y*height, using dirt-pixel as a background, and contour-pixel as
the foreground. The size of the image is computed from scale.mpp (meters per pixel). This routine
may be faster than ctdbcontour..segments for extremely large terrain areas, although its use at
application side is much more complicated.

See Section 3.5 [ctdb'contour'segments], page 19.

3.4 ctdbcontour..route

void ctdb.contour-route(ctdb, xO, yO, xl, yl,
max.deviat ion, direction,
sin.signiicantslope, n-route, route)

CTDB *ctdb;
float64 x0, yO;
float64 xl, yl;
float64 max-deviat ion;
int32 direction;
float64 sin-s tgnif leant-alope;

int32 *n.route;
ROUTE.POINT route ;

'ctdb' Pointer to initialized CTDB structure.

'o yO' Specifies start of route.

'xl, yl' Specifies end of route.

'max.deviation'

Specifies the maximum deviation from the original route

'direct ion'
Specifies whether valleys or crests are desired

Chapter 3: Functions 19

'ain.significant.slope'

Specifies the sin of the minimum slope angle which should be considered significant
'n-route' Specifies size of route array. Returns number of points in route.
'route' Returns the contoured route.

ctdb.contour.route generates a route between points xO,yO and xlyl which follows the
contour of the terrain. The route either attempts to stay high (direction==CTDB.CREST) or low
(direction==CTDBVALLEY), but will not deviate more than max.deviation from the original
route. The route is returned in route 0 and the length of the route is returned in n.route. Upon
invokation, n-route should contain the maximum number of points which will fit in route. When
the routine returns, route[0] will be at xO,yO, and route [(*n.route)-l) will be at xiyl.

See Section 3.23 [ctdb'profie'vector], page 32.

3.5 ctdbcontour-segments

void ctdb-contour-segments (ctdb.
interval,
x-low, y.low, x.high, y.high,
drawvfcn)

CTDB *ctdb;
float64 interval;
int32 x.low, y.low, x.high, y-high;
void (*draw.fcn)(/* int32 segcnt;

float64 segs[CTDBMAXCOI OUR.PTSj;
float64 elevs [CTDBIAXCONTOURPTS/4J

*/) ;

'ctdb' Pointer to initialized CTDB structure.

'interval'
Specifies distance between contour lines, in meters.

'x.lov, y.low, x.high, y.high'

Specifies screen extents, in meters.

'draw-fcn'
Called periodically to draw a group of line segments.

ctdb.contour.segments calls the passed drawfcn for each contour line segment in the area bound
by x-low,yiow to x-high,y-high at the specified interval. segcnt is the number of elements in the

I

20 LibCTDB User Manual and Report

segso array (xO, yO, xl, yl, in meters). seg.cnt/4 is the the number of elements in the elevs[] array

(one elevation for each line segment in the segs[] array).

See Section 3.3 [ctdb'contour'imagel, page 17.

3.6 ctdbjfind-ground-intersection

int32 ctdb.find-ground.intersection(ctdb, O, yO, zO, xl, yl, zi,

pt.ret, tests,
D..Veh,
veh, ignoreO, ignorel, hit_veh)

CTDB *ctdb;
float64 xO, yO, zO;
float64 xl, yl, zI;
float64 pt._ret[3J;
uint32 tests;
int32 n.veh;
CTDBVEHICLELOCATION vehrO;
int32 ignor.O, ignorel ;
int32 *hit.veh;

'ctdb' Pointer to initialized CTDB structure.

'xO, yO, zO'

Specifies the start of a 3D line
'xl, yl, zi'

Specifies the end of a 3D line
'pt.reot' Returns the first intersection of 3D line with ground polygon

'tests' Specifies the intersection tests to be performed
'n-veh' Specifies the number of vehicles in the veh[array.
'veh' Specifies locations of other vehicles which may block visibility.

'ignoreO, ignorel'

Specifies 0, 1, or 2 vehicles in the veho array which should not be checked.

'hit-veh' Returns the first vehicle which blocked the ray.

ctdbfindgroundintersection locates the point at which the ray from <xO yO zO> to <xl yl
zl> crosses through the terrain grid, a microterrain polygon, a building, or a tree line (including

those which surround canopies). The point of intersection (+/- 1 meter along the ray when testing

ground polygons) is returned in pt.ret. If no such intersection can be found, the routine returns 0,
otherwise one of the following constants:

Chapter 3: Functions 21

CTDB..HIT-GROUND
Indicates a ground polygon was intersected.

CTDB-.HIT..BUILDIIG
Indicates the ray passed under the roofline of a building.

CTDB-.HIT-.TREELINE
Indicates the ray passed through a treeline, or under the edge of a tree canopy.

CTDB-.HIT-.VEHICLE
Indicates the ray crossed a vehicle in the veh array.

CTDB-.HIT-.WATER
Indicates the ray crossed a linear feature which isn't a road.

The endpoints are clipped to database boundarit If the return value is CTDB-.HIT-VEHICLE,
the index of that vehicle in the veh array is returned in *.hit-veh. Note that individual trees are
not modeled accurately enough for tests of them to be meaningful.

The tests parameter should be an inclusive OR of the same constants which are returned
(CTB..HIT.GROUND, etc.). Depending upon which of these bits are set, the various types of features
will be tested for intersection with the ray.

3.7 ctdb-et-treeline-.segment

void ctdb..get..treeine.uegwent(ctdb, ptO, ptl)
CTDB *ctdb;
float64 ptO[2J;
float64 pti [2];

'c=db' Pointer to initialized CTDB structure.

'pto, ptl' Return the endpoints of the intersected treeline segment.

ctdb..get-reeline.segment() must be called *after* a call to ctdb..find-ground-intersectionQ). If
a treeline was intersected in the call to ctdb-find..ground.intersectiono, then the endpoints of that
segment of the treeline (in meters from the lower left coner of the database) are returned in ptOI]
and ptlfl. If there was no treeline inte'rsection in the last call to ctdb-find.ground..intersectiono,
zeros are returned in ptOIJ and pt 1-9.

3.8 ctdbjlind-.high-ground

22 LibCTDB User Manual and Report

float64 ctdb.find.high.ground(ctdb, O, yO, xi, yl, xy-at.high)
CTDB *ctdb;
float64 O, yO;
float64 xi, yl;

float64 *xy.at.high;

'ctdb' Pointer to initialized CTDB structure.

'4ZO, y0 ' Specifies the start of the search line

'xI, yi' Specifies the end of the search line

'xy-at.high'
Returns the X and Y coordinates of the high point (applications may pass NULL. if
they are not interested in this value).

ctdblnd.high.ground returns the elevation of the highest point between xO,yO and xlyl. If
non-NULL, xy.at.high will be filled in with the x and y values of this point. Hence, to get the 3D

point, usage would be: vec[Z] = ctdb.find.high.ground(ctdb,xO,yO,xliyl,vec); The ray from xO,yO
to xlyl is clipped to terrain boundaries, if the ray does not cross the terrain, the returned elevation
will be 0.0, and the returned point will by xO,yO.

3.9 ctdb_hypso..bitmap

void ctdb_hypso_bitmap(ctdb, low-x, loy, width, height,
scale.-pp, &in.z, max-z, bitmap)

CTDB *ctdb;
int32 low.x;
int32 low.y;
int32 width;
int32 height;
float64 scal.*_mpp;
float64 uin.z;
float64 nax-z;
char bitzap I"];

'ctdb' Pointer to initialized CTDB structure.

'low.x, low_y. width, height'
Specifies screen extents, in meters.

's c a lc.fspp '
Specifies screen scale in meters per pixel.

'mm_.: u ax..z'

Chapter 3: Functions 23

Specifies the minimum and maximum altitudes which should be represented (ctdb-
>min.z and ctdb->max.z are good candidates).

'bitnap' Returns an XY-bitmap format image of the hypsometric map.

ctdb.hypso.bitmap generates an XY-bitmap format hypsometric image of the terrain bound by
lowx,lowy to low.x+width,lowy+height, using dithering. Points off the terrain database are set
to 0. The size of the image is computed from scale.mpp (meters per pixel). min.z and maxz are
passed in by the caller. points at or below min.z use an empty dither, and points at or above max.z
use a solid dither. Points in between use dither patterns with density proportional to elevation.
The returned bitmap is suitable for a call to XPutIaage() or XCreatePixapFro.BitmapData().

NOTE: This function is conditionally compiled only if the the CFLAGS has -DHYPSO. This
avoids a dependency on libdither if libctdb is not being used for hypsometric map drawing.

3.10 ctdb..hypso-image

void ctdb.hypsoimage(ctdb, low.x, low.y, width, height,
ucale.upp,
ncells, czap, off.terrain.pixel,
img, min-z, mx-z)

CTDB *ctdb;
int32 low.x;
int32 lowgy;
int32 width;
int32 height;
float64 scalempp;
int32 ncelle;
int32 cmap1;
int32 off.terrain.pix.l
char ligO;
float64 *in.z;
float64 *nax.z;

'ctdb' Pointer to initialized CTDB structure.

'low.x, loy, width, height'

Specifies screen extents, in meters.

Specifies screen scale in meters per pixel.

'ncells' Specifies the number of cells available in the color map.
'caap' Specifies pixel values for elevation ranges.

24 LibCTDB User Manual and Report

'off errain.pixel'
Specifies pixel value for points off the terrain database.

'ig' Returns a Z-pixmap format image of the hypsometric map.

u Z., maxoz'
Returns the minimum and maximum altitudes in the area (useful for assigning colors
to the colormap).

ctdb.hypso.image generates a Z-pixmap format hypsometric image of the terrain bound by
low.xlow-y to low.x+widthlowy~height, using the pixel values specified in the cmap[O..nceils-
1] array. Points off the terrain database are set to the off.terrain-pixel value. The size of the
image is computed from scale..mpp (meters per pixel). *min.z and *max-z return the elevations
corresponding to cmap[O] and cmap[ncells-1], respectively. It is expected that the caller can use
this information to change the color map appropriately.

NOTE: This function is conditionally compiled only if the the CFLAGS has -DHYPSO. This
avoids a dependency on libdither if libctdb is not being used for hypsometric map drawing.

3.11 ctdbilookup-elevation

float64 ctdblookup.elevation(ctdb, x, y)
CTDB *ctdb;
float64 z;
float64 y;

'ctdb' Pointer to initialized CTDB structure.
'x, y' Specifies a point on the database.

ctdb.ookup.elevation finds the elevation at the specified point on the terrain database based
upon the elevation grid and microterrain. x and y are in meters. The point is tested to make sure

it is not off the terrain database (it is not necessary for the application to make this check), and
0.0 is returned in that case.

See Section 3.13 [ctdblookup'max'elevation], page 25.

3.12 ctdb Jookupifeature-info

Chapter 3: Functions 25

int32 ctdb-lookup.feature.nfo(ctdb, x, y,
soil-rot, width.ret, direction.rot)

CTDB *ctdb;
float64 x;
float64 y;
int32 *soil-ret;
float64 *widthret;
float64 direction.ret [2];

'ctdb' Pointer to initialized CTDB structure.

'x, y' Specifies a point on the database.
'oilirot'

Returns the soil type of the feature
'vidth.ret'

Returns the width of the feature

'direction-ret'
Returns the direction of the feature

ctdb-lookup-featureinfo takes a point and looks to see if there is a linear feature under it. If
so it returns 1 and fills in the the type, width, and direction variables passed to it. Otherwise it
returns 0 and type, width, and direction are undefined.

3.13 ctdblookup-max.elevation

float64 c:db.lookup.Aax.elevation(ctdb, x, y, checkcanopiu)
CTDB *ctdb;
float64 x;
float44 y;
int32 check-canopies;

'ctdb' Pointer to initialized CTDB structure.
'x, y' Specifies a point on the database.

'check.canopies'

Indicates whether the altitude returned should clear tree canopies.

ctdb-lookup.maxelevation finds the elevation at the specified point on the terrain database
based upon the elevation grid, microterrain, buildings, and if check.canopies is 'TRUE', tree canopies.
x and y are in meters. The point is tested to make sure it is not off the terrain database (it is not
necessary for the application to make this check), and 0.0 is returned in that case.

26 LibCTDB User Manual and Report

3.14 ctdb-lookup-soil

int32 ctdb.lookup.soil(ctdb, x, y)
CTDB *ctdb;
float64 x;
float64 y;

'ctdb' Pointer to initialized CTDB structure.

'x, y' Specifies a point on the database.

ctdblookup.soil finds the soil type at the specified point on the terrain database based upon

the elevation grid and microterrain. x and y are in meters. The point is tested to make sure it is

not off the terrain database (it is not necessary for the application to make this check), and 0 is

returned in that case.

3.15 ctdb.place.vehicle

void ctdbplace.vehicl%(ctdb, z, y, length, width, dx, dy,
z, rotation, soil)

CTDB *ctdb;
float64 x;
float64 y;
float64 length;
float64 width;
float64 dx;
float64 dy;
float64 *z;
float64 rotation[3] [3] ;
int32 *soil;

'ctdb' Pointer to initialized CTDB structure.

'x, y' Specifies a point on the database.

'length, width'

Specifies the length (Y dimension) and width (X dimension) of the vehicle.

'dx, dy' Specifies the direction of the vehicle as a cosine/sine pair. north = <0 1>, south = <0
-1>, east = <1 0>, .,tt = <-I 0>

4Z9 Returns the elevation at the point.

'rotation'

Returns a 3x3 rotation matrix for the vehicle.

Chapter 3: Functions 27

'soil' Returns the soil type at the point.

ctdb.place-vehicle finds the elevation, hull-to-world rotation matrix, and soil type for a vehicle
siting at the specified point, facing the specified direction. x, y, length, and width are in meters.
<dx dy> is assumed to be a unit vector pointing in the direction of the vehicle. The elevation is
returned in *z, the rotation matrix is filled in, and the soil type is returned in *soil. The point is
tested to make sure it is not off the terrain database (it is not necessary for the application to make
this check); points off the database have an elevation of 0.0, a fiat rotation matrix pointing in the
specified direction, and a soil type of 0.

3.16 ctdb -p oint-on-database

int32 ctdb-pointon.dat;abaso(ctdb, x. y)
CTDB *ctdb;
float64 x;
float64 y;

'ctdb' Pointer to initialized CTDB structure.
'x, y' Specifies the point to check.

ctdb.point-on-database returns 1 if the point is on the database, 0 if it is not. All libctdb
functions make this check internally.

3.17 ctdbpoint-on-ground

int32 ctdb.point.on.ground(ctdb, x, y, radius, soil.ret)
CTDB *ctdb;
float64 x;
float64 y;
float64 radius;
int32 *soil-ret;

'ctdb' Pointer to initialized CTDB structure.
&x, y I Specifies the center of the circle.

'radius' Specifies the radius of the circle.
'soil.ret'

Returns the soil type at the center of the circle.

28 LibCTDB User Manual and Report

ctdb.point-on.ground returns I if the circle centered at the passed location, with the specified

radius is completely ground (no trees or buildings cross the circle). The soil type at the passed

point is also returned so the caller can check for undesired soil types. This function is used for

initializing vehicles in reasonable locations.

See Section 3.15 [ctdb'place'vehicle], page 26.

3.18 ctdb.get-buildings

int32 ctdb.ge.tbuildings(ctdb, x, y, radius, max-count, buildings)
CTDB *ctdb;
float64 X;
float64 Y;
float64 radius;
int32 maxcount;
CTDBFEATURE.OUTLINE buildings 0;

'ctdb' Pointer to initialized CTDB structure.
'x, y' Specifies the center of the circle.
'radius' Specifies the radius of the circle.

'max.count'
Specifies the maximum number of buildings to count

'buildings'

If non-NULL, returns list of building outlines

ctdb.ge.tbuildings returns the number of buildings within the specified radius of the passed

point. If any corner of a building is within the radius, the building will be included (note that

if the circle falls completely within a building, that building will not be detected). If non-NULL,

buildings will be filled with the list of buildings (where max.count specifies the number which

will fit in the passed array). The max.count parameter can also be used when buildings is NULL

to indicate the maximum number to count. For example, if the question being asked is "are there

more than 10 buildings in this area?", then the number 11 may be passed in, so that the search

can be stopped as soon as possible.

The buildings are returned using the following structure:

typedef struct ctdb-featureoutline
{

:int32 nuvert~s;

Chapter 3: Functions 29

float64 verts [lo [3);
} CTDB. FEATURE. OUTLINE;

n.vets returns the number of vertices in the outline of the building, and verts returns the 3D
coordinate of each vertex (following the rooffine of the building).

3.19 ctdb.p oint-thru -point

float64 ctdb.pointthru.point(ctdb, xO, yO, zO, xl, yl, z., zh,
width, tree-opacity,
minimu.visibility, range,
n-.veh,
vh, ignoreO, ignorel)

CTDB *ctdb;
float64 xO, yO, zO;float64 X1, Y1, Z1, Zh;

float64 width;
float64 tre.opacity;
float64 minimu.visibility;
float64 range;
int32 n-veh;
CTDB.VEHICLELOCATION veh 0;
int32 ignoreO, ignorel;

'ctdb' Pointer to initialized CTDB structure.

'xO, yO, zO'
Specifies the eye point.

'xl, yl, z1, zh'
Specifies the target location, and the bottom and top of the target.

'width' Specifies target width.

'tree-opacity'

Specifies reduction of visibility resulting from trees.

'iiniaimuvisibility'
Specifies a threshold below which 0 may be returned.

'range' Specifies the range of the radar sensitive to clutter.

'n-veh' Specifies the number of vehicles in the vehO array.

'yah' Specifies locations of other vehicles which may block visibility.

'ignoreO, ignorel'
Specifies 0, 1, or 2 vehicles in the veho array which should not be checked.

30 LibCTDB User Manual and Report

ctdb.point-thru.point is a special version of intervisibility for use with radar. Within the passed

range, objects behind the target block visibility to the same extent as objects in front of it.

See Section 3.20 [ctdb'point'to'pointJ, page 30.
See Section 3.24 [ctdb'ptop'raster], page 32.
See Section 3.27 [ctdb'vehicdeblockage], page 35.
See Section 3.2 [ctdb'apparent'size], page 16.

3.20 ctdb.point.to.point

float"6 ctdb-point.1to-poinlt(cldb, x0, y0, z0, xl, Y1, Z1., Zh,

width, tree.opacity,
minimu.visibility, n-veh,
veh, ignoreO, ignorel)

CTDB *ctdb;
float64 xO, yO. zO;
float64 xl, yl, zi, zh;
float64 width;
float64 treeopacicy;
float64 minim.mvisibility;
int32 n.veh;
CTDB.VEHICLE.LOCATIOI vehO3;
int32 ignoreO, iguorel;

'ctdb' Pointer to initialized CTDB structure.

'xO, yO, zO'
Specifies the eye point.

'xl, yl, zl, zh'
Specifies the target location, and the bottom and top of the target.

'width' Specifies target width.

'tro.opacity'
Specifies reduction of visibility resulting from trees.

'minimum.visibility'
Specifies a threshold below which 0 may be returned.

'n-veh' Specifies the number of vehicles in the vehf array.

'veh' Specifies locations of other vehicles which may block visibility.

'ignoreO, ignore 1'
Specifies 0, 1, or 2 vehicles in the veho array which should not be checked.

Chapter 3: Functions 31

ctdbpoint-to.point performs an intervisibility check starting at the point xO,y0 and proceeding

to the point xl,yl. zO is the eye point of the viewer and zl and zh are the bottom and top of the

target. width is the width of the target, and is used when comparing against individual trees and

buildings, otherwise a zero-width target is assumed. All these values are in meters. tree.opacity

encapsulates the effect trees have on the visual system being modeled. An opacity of 0 indicates trees

have no effect; 1 indicates trees completely block visibility. The effect of multiple trees is combined

using a simple light transmittance model. The visible target area (adjusted for tree opacity) is
returned as a floating point number in the range 0.0 to 1.0 (0.0 for complete blockage, 1.0 for

complete visibility). Since visibility can only get smaller as more features are tested, knowing the
minimum visibility interesting to the application can greatly enhance the speed of calculation. Even
very small values (such as 0.05) can greatly increase speed. If the visibility measure drops below

this visibility, 0.0 will be returned. The ray from x0,yO to xl,yl is clipped to terrain boundaries,
visibility is 1.0 in areas off the terrain database.

The last set of parameters are only examined if n-veh is non-zero; hence they need not be
passed unless vehicle blocking vehicle intervisibility calculations are required. If n.veh is non-zero,
ctdbpointtopoint first calls ctdb.vehicle.blockage with the arguments specified (see Section 3.27
[ctdb'vehice'blockage], page 35, for an explanation of these arguments). Note that since a target
could be partially blocked by terrain and partially blocked by vehicles, two separate calls (one to

ctdb.pointto.point with n-veh=O, and one to ctdbftvehicle-bockage) will not necessarily yield the
same result as one call to ctdb.point.to.point with n-veh>O.

See Section 3.19 [ctdb'point'thru'point], page 29.
See Section 3.27 [ctdb'vehicle'blockage], page 35.
See Section 3.24 [ctdb'ptop'raster], page 32.
See Section 3.2 [ctdb'apparent'size], page 16.

3.21 ctdb...print-description

void ctdbprint_duscription(ctdb)
CTDB *ctdb;

'ctdb' Pointer to initialized (rilm %tructure.

ctdb..print-description prints a descrription of the passed ctdb database including min/max in-

formation and memory usage statitics.

32 LibCTDB User Manual and Report

3.22 ctdbprint-stats

void ctdb.print.statu (ctdb)
CTDB *ctdb;

'ctdb' Pointer to initialized CTDB structure.

ctdb.print.stats prints cache performance statistics.

3.23 ctdb..profile-vector

int32 ctdb.profile.vactor(ctdb, xO, yO, xl, yl, a-prof, prof)
CTDB *ctdb;
float64 xO, yO;
float64 xl, yl;
int32 *n.prof;
float64 prof 0 [3);

'ctdb' Pointer to initialized CTDB structure.

'x0, yo' Specifies start of vector.
'xl, yi' Specifies end of vector.
'n-prof' Specifies size of prof array. Returns number of point in profile.
'prof' Returns exact 3D profile of vector, conforming to each grid or microterrain edge.

ctdb.profile-vector generates a sequence of 3D points along the specified ray from xO,yO to xl,yl

which exactly follow the contour of the terrain. The points are returned in proffl and the number

of points is returned in n.prof. Upon invocation, noprof should contain the maximum number of

points which will fit in proffl. If more profile points are necessary than will fit in proffl, the function

returns 0, otherwise it returns 1. ctdb.profile.vector clips the specified ray to terrain database

boundaries, hence the points xOyO and xl,yl will not necessarily be the first and last points in the

profJ array (although they usually will be).

3.24 ctdb..ptop..raster

float64 ctdb.ptop-.ruter(ctdb, xO, yO, zO, xl, yl. zl, zh,
width, ftype, objectc.correction, tre.eopacity,
minium.visibility, grid.

Chapter 3: Functions 33

X.in, x.max, z.min, z.max, actual-visible.area,
n.vh, veh, ignoreO, ignorel)

CTDB *ctdb;
float64 xO, yO, zO;
float64 xl, yl, z1, zh;
float64 width;
int32 ftypo;
float64 obj ect.correct ion;
float64 tree.opacity;
float64 minimum~visibility;

CTDBRASTER grid;
float64 *x-min;
float64 *x.Max;
float64 z.ain;
float64 *z.max;
float64 ,actual.visible.area;
int32 nveh;
CTDB.VEHICLE.LOCATION veh ;
int32 ignoreO, ignorel ;

'ctdb' Pointer to initialized CTDB structure.

'xO, yO, zO'
Specifies the eye point.

'xl, yl., z, zh'
Specifies the target location, and the bottom and top of the target.

'width' Specifies target width.

'Ityp.' If viewing a feature, specifies the type of feature being viewed.

'obj ect.correct ion'

Specifies target scale factor (see below).

'tree-opacity'

Specifies reduction of visibility resulting from trees.

'inimum.viibility'
Specifies a threshold below which 0 may be returned.

'grid' Specifies the exact profile of the target.
'x..in, x.ax, z..in, z.ax'

Specifies the size of the target in various dimensions.
'actual-visible.area'

Returns actual visible area.
'n.vh' Specifies the number of vehicles in the vehj array.
'vah' Specifies locations of other vehicles which may block visibility.

'ignoreO, ignorel'
Specifies 0, 1, or 2 vehicles in the veho array which should not be checked.

34 LibCTDB User Manual and Report

ctdb.ptop.raster is the same as ctdbpoint.to.point except that it takes an additional argument,
CTDBRASTER grid, a pre-computed raster supplied by the client. It also requires the frame
of reference (x.min, xmax, z.min, z.max) in "projection" coordinates of the raster. These are
adjusted according to the result of the intervis computation and passed back to the caller to
reticulate the object.

Object correction must be supplied by the caller and is computed by a call to
ctdb.apparent..-shape. This value is used as a scale factor to "pull back" the shape of the target
along parametric lines to the eye point to enable intervis calculations in two steps for terrain features
as targets.

See Section 3.20 [ctdb'point'to'point], page 30.
See Section 3.19 [ctdb'point'thru*point], page 29.
See Section 3.27 [ctdb'vehicle'blockage], page 35.
See Section 3.2 [ctdb'apparent'size], page 16.
See Section 3.1 [ctdb'apparent'shape], page 15.

3.25 ctdb..read

void ctdb.read(fname, ctdb, memory.limit)
char *fname;
CTDB *ctdb;
int32 memory.limit;

'fnam.' File name of database. Can be any valid unix path in the style of open(2).

'ctdb' Pointer to uninitialized 'CTDB' type variable.

meory..limit'

Maximum amount of memory which should be used, in bytes.

ctdbread loads the ctdb format terrain database from the named file, and puts the resulting
information into the user-supplied CTDB structure. This structure will be needed for calls to
almost all libctdb functions.

If the database needs less than the allowed amount of memory, only the amount needed will
be allocated. If the database is larger than this amount, a cache will be used, sized to fit within
this limit. Note that the special value '0' may be used to indicate an unlimited amount of memory
(usually a bad idea, since the ibctdb cache will typically perform much better than virtual memory
would).

Chapter 3: Functions 35

It is assumed that loading databases occurs during the initialization phase of a program, and

hence if an error is detected, libctdb will invoke exit(1).

3.26 ctdb-reread

void ctdb-reread(fnaue, ctdb, memory.limit)
char *fname;
CTDB *ctdb;
int32 memory-limit;

'fname' File name of database. Can be any valid unix path in the style of open(2).
'ctdb' Pointer to initialized 'CTDB' type variable.

'memory.limit'

Maximum amount of memory which should be used, in bytes.

ctdb.read loads the ctdb format terrain database from the named file, and puts the resulting

information into the user-supplied CTDB structure, as in ctdb-read. However, it is assumed that

the passed CTDB structure already contains a database, and that the memory used by the original

database must be either reused or freed.

See Section 3.25 [ctdb'read], page 34.

3.27 ctdbvehicle-blockage

float" ct:db_vehicle.blockage(ctdb. xO, yO, zO, xl, yl, zi, zh,
width, n.veh, veh, ignoreO, ignorel)

CTDB *ctdb;
float64 xO, yO, zO;
float64 xl, yl, z1, zh;
float64 width;
int32 n.veh;
CTDB.VEHICLE.LOCATION vehO3;
int32 ignoreO, ignorel;

'c-db' Pointer to initialized CTDB structure.

'xO, yO, zO'

Specifies the eye point.

IT

36 LibCTDB User Manual and Report

'xl, yl, zI, Zh'
Specifies the target location, and the bottom and top of the target.

'vidth' Specifies target width.
'n.veh' Specifies the number of vehicles in the veh[] array.
'veh' Specifies locations of other vehicles which may block visibility.

'ignoreO, ignorel'
Specifies 0, 1, or 2 vehicles in the vehU array which should not be checked.

ctdbvehicle..blockage performs a visibility check from the eye point to the target point, com-
paring against the vehicles passed in the veh[] array. The locations and width are as in
ctdb..point.topoint. n-veh is the size of the vehU array. Vehicles in the vehD array are only checked
if the 'used' field is set. The height and width are assumed to be projected onto the viewing plane
of the observer. Two vehicles can be eliminated from the search by setting ignoreO and ignorel
to their indices in the veh] array. To avoid eliminating vehicles, pass CTDB.DONTIGNORE for
ignoreO and ignorel. As in ctdbpoint.to.point, the return value is in the range 0.0 for full blockage,
to 1.0 for full visibility.

See Section 3.2 [ctdb'apparent'size], page 16.
See Section 3.20 [ctdb'point'to'point], page 30.

Chapter 4: Porting Guide 37

4 Porting Guide

The libctdb library has been compiled on the following platforms:

0 Mips

* Apollo

* Hewlett-Packard

The code is written to be extremely portable, but on other platforms some modification may be
necessary. The most likely problem is the lack of the single precision square root function fsqrt (.
The first definitions in the header file 'libctdb.h' allow correction of this problem:

Sifdef apollo
#d9fine fsqrt uqrt
#endif

This can be extended to correct similar problems on other machines.

Another potential problem is the dependency on the common library 'libdither'. This library is
only used if the hypsometric map generating functions ctdb.hypoinage or ctdb.hypso.bituap
will be used on the target platform. If these functions will be used, the preprocessor symbol HYPSO
must be defined. This can be achieved in the 'Kakef ile' with the line:

EXTRA.CFLAGS = -DHYPSO

Omitting the HYPSO definition will cause the hypsometric mapping functions to be omitted from
the 'libctdb. a' archive, and hence the common include file 'libdither.h' will not be needed.

4.1 Platform specific optimization

The libctdb source code has been written in a manner which works best when compiled with an
optimizing compiler. For almost all compilers, optimization is enabled with the compiler flag '-0'.
This should be one of the arguments passed to 'cc' when this library is compiled.

Other heuristics have been applied as well (see Section 1.4 [Optimized for RISC], page 7). In
general, these conventions will nc' have a significant impact on non-RISC architectures. If porting

38 LibCTDB User Manual and Report

to a new platform on which performance is a primary concern, the use of a profiler is highly
encouraged. 'test .c' in the libctdb library is good test program for use with a profiler. The

mechanics of profiling differ from platform to platform, but the following rules should generally

apply:

• Always profile an optimized executable. The execution profile of non-optimized code is gener-

ally nothing at all like the profile of optimized code.

" Do not change the calling sequences of functions to be different for a particular platform. This
inhibits portability and reuse of code.

" Never make a change to the code without testing to see if it actually improved performance.
The 'test' program can be used to confirm average execution times for most functions.

" If a change is specific to a particular platform, it should be coded using 'Iifdef' syntax. For
example, if a target platform performs significantly better using unsigned short rather than
int for iteration variables, an appropriate coding would be:

/* Optimization */
#ifdef my.achine
#define ITERATOR.TYPE uint32 short
Se18o
#define ITERATORTYPE int

Sendif

ITERATORTYPE i;

This allows future porters to easily decide whether this optimization improves performance on

their target platform.

ADST-TR-W003268

LibDelObj

Table of C ontents

1 Overview.. 1

2 Usage .. 3

2.1 Building Libdelobj .. 3
2.2 Linking with Libdelobj..3

3 Functions .. 5

3.1 delobj..init..........................5
3.2 delobj-init 5

Chapter 1: Overview 1

1 Overview

LibDelObj provides a simple object deletion editor for the GUI. The user can select objects to
delete (which are marked with big red X's), then can delete them by clicking "Done". The library
takes care of some of the complexities of deleting object, such as removing text associated with
deleted objects.

I

2 LibDelObj Programmer's Guide

Chapter 2: Usage 3

2 Usage

The software library 'libdelobj a' should be built and installed in the directory
'Icomon/libI'. You will also need the header file 'libdelobj .h' which should be installed in the
directory VIccin/ iinclude/llib inc/'P. If these files are not installed, you need to do a 'make' in
the libdelobj source directory. If these files are already built, you can skip the section on building
libdelobj.

2.1 Building Libdelobj

The libdelobj source files are found in the directory '/comon/liburc/libdolobj'. 'RCS' format
versions of the files can be found in /nf a/ common- arc /1ibarc/l ibdelobj'.

If the directory 'common/librc/libdtlobj' does not exist on your machine, you should use
the 'genbuild' command to update the common directory hierarchy.

To build and install the library, do the following:

* cd coumon/libsrc/libdelobj
* co RCS/*,v
make inst all

This should compile the library 'libdelobi .a' and install it and the header file 'libdelobj .h'
in the standard directories. If any errors occur during compilation, you may need to adjust the
source code or 'Makef ile' for the platform on which you are compiling. libdelobj should compile
without errors on the following platforms:

* Mps

" SGI Indigo

" Sun Sparc

2.2 Linking with Libdelobj

Libdelobj can be linked iflt') 411 .tpplication program with the following link time flags: 'id
[source .o f iles] -L/coinmon/lib -ldelobj (other libraries]'. If your compiler does not sup-

4 LibDelObj Programmer's Guide

port '-L' syntax, you can use the archive explicitly: 'Id [source .o f iles]
/coinon/lib/libdelobj .a'.

Libdelobj depends directly on the following libraries: Iibsafgui, Iibtactmap, libcoordinates, lib-
sensitive, llbcallback, libpo, libeditor, and libreader.

Chapter 3: Functions 5

3 Functions

The following sections describe each function provided by libdelobj, including the format and

meaning of its arguments, and the meaning of its return values (if any).

3.1 delobj-init

void delobj .init C)

delobj-init initializes libdelobj. Call the before any other libdelobj function.

3.2 delobj-init-gui

int32 delobj-init.gui(data.path, reader-flags,
gui, tactap, tcc, map.erase_gc,
sensitive, refresh.event, db)

char *data-path;
uint32 reader-flags;
SGUIPTR gui;
TACTKAP.PTR tactuap;
COORDTCCPTR tcc;
GC maperase.gc;
SNSTVEWINDOW.PTR sensitive;
CALLBACK.EVENTPTR refresh.event;
PO.DATABASE *db;

'data.path'

Specifies the directory where data files are expected
'reader-flags'

Specifies flags to be passed to reader.read when reading data files
'gui' Specifies the SAF GUI

'tactuap' Specifies the tactical map

'tcc' Specifies the map coordinate system

'uap-erase-gc'

6 i Specifies the GC which can erase things from the tactical map

'sensitive'
j Specifies the sensitive window for the tactical map

6 LibDelObj Programmer's Guide

'refresh.event'

Specifies the event which fires when the map is refreshed

'db' Specifies the persistent object database

delobj.init.gui create the object deletion tool. The data file ('delobj .rdr') is read either
from '.' or the specified data path, depending upon the reader.flags. The reader-f lags are as
in reader-read. The return value is zero if the read succeeds, or one of the libreader return values:
R.ADER..READ...ERROR, READER.FILE.NOTFOUND.

ADST-TR-W003268

LibDetonation

Table of C ontents

1 Overview.. 1

2 Functions ... 5

2.1 det..Init... 5
2.2 det..class-init ... 5
2.3 det..create ... 6
2.4 det..destroy.. 6
2.5 det.add..target ... 7
2.6 det-Aelete-.target .. 7
2.7 det..clear-list ... 7
2.8 det-f.ick... 8

Chapter 1: Overview 1

1 Overview

Libdetonation provides a model of proximity detonation. It can detect detonations due to
proximity with other network entities (platforms, missiles, and structures). Proximity detonation
due to the ground, buildings, and other terrain features is not yet supported. This library will
generate impact PDUs, if told to do so for a given vehicle.

This library determines that a detonation should occur if the distance to the target, as measured
along the secant between positions of the ticked vehicle (usually a missile) during consecutive ticks
achieves a local minimum (and is less than the detonation.radius parameter specified for the
model instance.) In performing this calculation, the position of the target is projected forward or
backward in time ("Anti-RVA") to find the point on its trajectory closest to the point where the
local minimum occurred. This estimated location is passed back via the registered DET.CALLBACK
function. If the local minimum has been passed and the distance to the target is greater than
detonation-radius, then a near-miss is declared.

There are two models used for selecting potential target entities: low-fidelity and high-fidelity.
When low-fidelity detonation is used, a list of potential targets must be supplied by the simulation.
These are the ONLY vehicles which will trigger detonation. When high-fidelity is used, libdetonate
builds a suitable list of nearby vehicles to check. This is considerably more expensive.

In addition to proximity detonations which are within the detonation radius specified by the
parametric data, libdetonation also informs clients of near-misses with vehicles on the list of deto-
nation candidates.

The parameters used by a vehicle (missile) for detonation detection are specified in its configu-
ration file as follows:

(SMDeonation (check (trees) {buildings} {ground}
{platform} {misiles})

(detonationradius <real oters>)
(fidelity [high I low])

The first parameter, check. lists tho e things for which detonation detection is required. This
affects performance when high-fidelity detonation is enabled.

The detonation-radius parauneter %per'ifies the maximum proximity which will trigger a det-
onation for this vehicle (missile. I

I

2 LibDetonation Programmer's Guide

Finally, the fidelity parameter (which has a value of high or low) is used to determine

the method for selecting potential targets. It also affects the expense of the algorithms used in

determining if detonation should occur.

In the high fidelity model, entire classes of entities are checked for proximity, while in the low
fidelity model, a list of vehicles (targets) must be built using the function do.tadd.target().

det..tick ticks the detonation sub-class. During the tick, if a detonation is detected, a packet
can be sent and the callback function (if any) registered with dt._classJ.nit will be invoked. The

detonation tick input includes the vehicle id of the missile and a pointer to the terrain database
on which the missile is simulated. The detonation tick processing of a missile includes the follow
steps:

1. Set the libdetonation variable, old.pos, to the location the missile was at last tick (detonation.
>last.pos). This will be referred to as old position.

2. Get libentity information(enLposition, ent-velocity, ent.stationary) and store it as new.pos,
velocity, and stationary. Set the detonation-last.pos field to new.pos (the newly retrieved
ent.position).

3. Call the function .nt-get.phyndb(vehicle.-id) to get the missile's physical data, which in-
cludes the missile dimensions. Find an upper bound size by using the maximum of length,
width, and height. This upper bound is needed when calculating the range to pass to the

position based vehicle table.

4. If the missile is stationary it is not necessary to check for detonations with terrain so omit
DETBUILDINGS, DET.GROUND, and DET.TREES from the missile's detect checklist. If
the detect checklist indicates DET.PLATFORMS, DET.MISSILES, or DET.BUILDINGS add

the relevant types (VTAB.VEHICLE, VTAB..MISSILE, VTAB.STRUCTURE) to the missile's

list of types-to-check.

5. If the missile's detect checklist still contains some types and high fidelity processing is indicated

for this missile, create a binary tree vtab structure named "to.check" to pass to libpdtab so a
list of potential target vehicles within a specified range can be generated.

6. Call the function pbt._getvehicle (cx, cy, range, to.check) to get the to-check list (a list
of vehicles that are within range). The missile locus (cx, cy) was determined by interpolating a

location midway between the old and new positions. The range was determined by the distance
between the old and new positions, the upper bound size, and the >error threshold between
actual locations and locations used by libpbtab (the position-based vehicle table).

7. Remove the vehicle id of this missile from the to-check list.

8. If the count of vehicles in the list is zero, then remove the types DETPLATFORMS and

DETMISSILES from the types-to-check list. This means there is no need to check the vehicle
table at all.

Chapter 1: Overview 3

9. If there are no types left in the types-to-check list, exit.

10. If this missile is not stationary, then perform whichever type of fidelity processing is indicated
for this missile (either high fidelity or low fidelity processing). The processing for these fidelity
types differs in the choice of possible targets. Basically, the processing consists of checking
whether the distance squared to each vehicle in the list of potential targets has achieved a
local minimun and whether this local minimum has occurred at a distance which is less than
the minimum detonation radius. Then of these distances, pick the minimum. A more detailed
description of the detonation detection algorithm is presented below.

The detonation detection software performs the following actions:

1. For each possible target, determine if it is a candidate for detenotation. A target is a candidate
for detonation when the missile's closest point to target has just been passed. This is calculated
by comparing the missile's current distance to target with the missile's old position distance
to target.

2. For a candidate, calculate its potential "hit.point". A "hit-point" is computed to be the point
on the line segment from old.pos to new.pos which is closest to the current location of the
target, veh[vcount].location. It is not decided whether the target was hit yet. Find the point
on the projected path of the target that is closest to the computed "hit-point" to determine if
it is within the detonation radius. To do this, project the position of the target vehicle using
its current velocity (6 anti.-RVA") and find the point on its trajectory ("projected.pos") that
is closest to "hit-point." If this "projected.pos" is within range, classify this detonation as a
hit. If this "projected.pos" is outside the detonation radius, classify this detonation as a near
miss.

The three functions that can be called to handle the different "hit" classifications are: vehi-
cle.detonation..detected, vehicle.near.miss.detected, and terrain.detonation-detected.

The vehicle.detonation-detected function does the following:

1. Determine the detection type of the hit object (either DET.PLATFORMS, DETMISSILES,
or DETBUILDINGS).

2. Invoke the detonation callback function registered with do tclase.init. A callback function
is used to inform another safobj sub-class library (such as libmissile) of the detonation. That
library might need to modify private data (for example, saving the missile's detonation position
and the target id) and/or perform an action (for example, send an impact PDU onto the

simulation network).

The vehiclo-.near-.m.i.iadtected function does the following:

4 LibDetonation Programmer's Guide

1. When DEBUG_-DETONATION is ON, print a message saying that the object passed close to

this target and print the distance squared between the missile and target.

2. Invoke the callback function registered with det.class-init. Since the detonation library

really only figures out if the missile got within a given radius of the target, libmissile needs to

decide if it was legitimate for the the missile to be aware of this condition. For example, "Does
the missile have an active radar?" or "If the missile depends on reflected radar emissions from
the launching aircraft, is the aircraft still alive and the radar still locked on?"

The terrain.detonation-detected function does the following:

1. When DEBUG-DETONATION is ON, print a message saying that the object detected a

detonation with either trees, building, or ground. Also print the impact location.

2. Invoke the callback function registered with dot.class.init with the other id field set at 0.

I

I

I

I

Chapter 2: Functions 5

2 Functions

The following sections describe each function provided by libdetonation, including the format
and meaning of its arguments, and the meaning of its return values (if any).

2.1 det init

void dotjinit()

det..init initializes libdetonation. Call this before calling any other libdetonation functions.

2.2 det..class-init

void det..class-nit(parent..class, callback)
CLASS-.PTR parent-.class;
DET..CAI.IBACK callback;

'pazrent-.class'

Specifies the parent class
'callback'

Specifies the function to call when detonations occur

dot-class-init creates a handle for attaching detonation class information to vehicles. The
parent-.class is one created with class..declare..clas5. The callback function should be de-
dared:

void callback(vehicl..id, position, det..type, other-id, target-.position)
int32 vehicle-id;
float64 position 133;
uint32 dot-type;
int32 othe..id;
float64 target..postion (3];

This is called when a detonation occurs. The position sent is the point of detonation andI targot.postion is the estimated position of the target at that time. The dot-.type code is one of
the following:

6 LibDetonation Programmer's Guide

DETTREES

Indicates proximity to a treeline or canopy edge.

DETBUILDINGS
Indicates proximity to a building or other structure. If the other structure is represented

on the network, the vehicle ID of that structure will be provided.

DETGROUND
Indicates a detonation due to proximity to the ground.

DETPLATFORS

Indicates proximity to a platform (vehicle, DI, etc.).

DET.ISSILES
Indicates proximity to a missile (an entity on the network with a mmition type).

DET.NEAR.MISS
Indicates a near-miss of a target on the detonation list

If the collided entity exists in the vehicle table, its ID is given in the otherid field. For

detonations with terrain features, the other.id will be zero.

2.3 det-create

void dot.create(vehicle.id, parnm)
int32 vehicleid;
DETONATIONPARANETRIC.DATA *parm;

'vehicleoid'

Specifies the vehicle ID
'paras' Specifies initial parameters

det-create creates the detonation class information for a vehicle and attaches it to the vehicle's

libclass user data.

2.4 det-destroy

void dot..destroy(vehicle, id)
int32 vehicle.id;

Chapter 2: Functions 7

'vehicle-id'

Specifies the vehicle ID

det-destroy frees the detonation class information for a vehicle.

2.5 det-addtarget

void det-addtarget(vehicle.id, target-id)
int32 vehicle-id;
int32 targe.tid;

'vehicle.id'

Specifies the vehicle ID

'target.id'
Specifies the vtab ID of the target to be added

det.add.target adds a target to the list of detonation candidates for a missile.

2.6 det..delete.target

void det.delete.target (vehicle.id, targt._id)
int32 vehicle.id;
int32 targetid;

'vehicle-id'

Specifies the vehicle ID

'target.id'

Specifies the vtab ID of the target to be deleted

deotdelete.target deletes a target from the list of detonation candidates for a missile.

2.7 det-clearist

void detclear.lint (vehicleid)

int32 vehicle_id;

8 LibDetonation Programmer's Guide

'vehicle.id'

Specifies the vehicle ID

dot-clear-list clears the list of detonation candidates for a missile.

2.8 det-tick

void det-tick(vehicleid, ctdb)
int32 vehicle-id;
CTDB *ctdb;

'vehicle.id'
Specifies the vehicle ID

'ctdb' Specifies the terrain database

de.tick ticks the detonation sub-class. During the tick, if a detonation is detected, a 2 acket

may be sent and the callback function passed to det-claus-init may be invoked.

ADST-TR-W003 268

LibDI

Table of C ontents

1 Overview...1

2 Examples..5

3 Functions..7
3.1 ciisinf-init..7
3.2 disinfciass-init..7
3.3 disinf-tick... 7
3.4 disinf-collision .. 8
3.5 disinf-damage...9

Chapter 1: Overview 1

1 Overview

Libdi implements an instance of the hull class of components. It provides a low-fidelity model
of DI vehicle dynamics. Capabilities are modeled only to the second order (maximum velocity,
maximum acceleration), and they depend upon the soil type. Unlike previous models, the param-
eters for each soil type are specified in a data file, so the software does not need to be modified to
accommodate new types of terrain.

The parameters of a DI vehicle are specified in its configuration file as follows:

(DI (soils (<integer soil type> (max.speeds <float forward IPH>
<float reverse KPH>)

(max.accel <float ups2>)
(maxdecel <float ups2>)
(max.turn <float dpi>)
(max-climb (float degrees>)
(dust-speeds (float saallKPH>

<float mediuKPH>
(float largeKPH>))

(<integer soil type> (max-speeds (float KPH>
(float reverse KPR>)

(max.accel (float nps2>)
(max.decel (float mps2>)
(max-turn (float dps>)
(max.climb (float degrees>)
(dust.speeds (float smallPH>

(float nedimKPH>
(float largePH>))

(fuel-usage ((float speed1> (float speed2> ...)
((float ratel> (float rate2> ...))

The parameters specified for soil type 0 (or the first soil type, if no 0 type is provided) are used
as a default when on a soil type not in the list.

To indicate that the vehicle should not kick up any dust on a kind of soil, specify a speed which
is higher than the maximum the vehicle can travel across that soil.

The fuel-usage table consists of a list of speeds in kilometers per hour, with a list of corresponding
consumption rates in liters per hour. If an older vehicle parameter file is used, with a scalar
fuel-usage figure, it will ignore it and use the internal default corresponding to 8 kilometers per
liter. The minimum table size is one speed/rate pair.

2 LibDI Programmer's Guide

Applications interface to the DI model primarily through the libhulls interface. The most

efficient interface for controlling vehicle motion is HULLSSET.DI RECTION_-SPEED. All interfaces use

only two dimensions of the provided parameters. Also, when a direction vector is given it is not

necessary to make that vector a unit vector. Libdi will do the normalization only if it is necessary

(for example, if the vehicle is already pointing the right way, no normalization is needed).

Libdi supports only one instantiation per vehicle (i.e., a vehicle may not have more than one DI

hull).

The libhulls library defines a common set of functions (and the semantics of those functions)

which are invoked on instances of the hulls class (such as those instantiated by ibtracked or libfwa).

It is possible to modify the DI model by changing an exisiting hulls interface function or by adding
a completely new function.

To modify an existing libdi interface function would require the following actions:

1. If the change occurs only in the function body, only change the function code in the libdi

library. If the change occurs to the function's argument list, change the function code in

both the libdi library and the hulls interface structure definition found in libhulls.h. Also to

maintain the common hulls interface, change the code for the modified function in any other

hull specific component libraries (such as libfwa or libmissile).

2. Recompile ModSAF.

To add an additional libdi function to the current model would require the following actions:

1. Write the function as part of the libdi library. The function is written in the code which

manages the libdi class information attached to each vehicle (di.class.c).

2. Add the function and its declaration to any of the other hull specific component libraries. This

maintains the common hulls interface.

3. In the libdi source code that handles libhull initialization processing, include a function-number,

function entry identifying the new function for the capnt.defineinustance function and ev-

ery other hull instance library (libfwa. libmissile, etc.).

4. In libhulls.h, add an entry to identify the new macro and associate it with a function code

number. This new addition means that the number of hulls functions must be incremented by

one. The hulls interface structure definition that appears in libhulls.h must include a structure

to define the new function's argument list.

5. Recompile ModSAF.

I

Chapter 1: Overview 3

To replace this DI model with a completely different one would require the following actions:

1. Decide on the get functions and set functions that would be required in the new model. Try to
map these needed functions to the existing hulls interface. A function can map if its argument
list can remain the same. Functions that can not map must be added to the hulls interface.

2. For those functions that can map to the existing hulls interface but whose code body you
want to change, edit the code for the function in the libdi source file that contains the code to

manage the llbdi class information (di-class.c).

3. For those functions that can't map to the existing hulls interface, add an additional function
to the hulls interface. The addition procedure was described above.

4. Recompile ModSAF.

I

4 LibDI Programmer's Guide

Chapter 2: Examples 5

2 Examples

To get the component number of my hull:

extern int32 my.hull;

if ((my.hull = capnt-locate(vehicle.id, reader.get.symbol ("hull"))) ==
CMPIT.NOTFOUND)

printf("Vehicle %d does not som to have a hull\n", vehicle.id);

To then give a command to that hull:

if (my.hull !- CMPNTNOT.FOUND)
HULLS.SET.DIRECTION.SPEED(vhicle-id, hull, dirvec, speed, 0.0, 0.0);

I

i
I
I
I
I

6 LibDI Programmer's Guide

Chapter 3: Functions 7

3 Functions

The following sections describe each function provided by libdi, including the format and mean-
ing of its arguments, and the meaning of its return values (if any).

3.1 disinf-init

void disinf.init()

diuinf..iit initializes libdi. Call this before calling any other libdi functions.

3.2 disin fclass.init

void disinf.clausinit (parznt.class)
CLASS.PTR parent.claus;

'parent-clasu'

Class of the parent (declared with clasu.declare-clau).

disinfclaus.init creates a handle for attaching DI class information to vehicles. The par-
ent-dass is one created with class.declareclass.

3.3 disinf-tick

void disin tick(vohicle.id. ctdb)
i:nt32 vehicloid;
CTDB *ctdb;

'vehicle.id'

Specifies the vehicle II)

'ctadb' Specifies the terrain dalahaev the vehicle is operating on.

disin~f-tick ticks the DI hull dynamics model.

8 LibDI Programmer's Guide

3.4 disinf-collision

void dininf-collision(vehicle.id, position, coll..type,
i other.id, other.mase, other.velocity)
int32 vehicle, .id;

float64 position[3);
uint32 coll.type;
int32 other.id;
float64 other.mass;
float64 other.velocity [3);

'vehicle-id'

Specifies the vehicle ID

'position'

Specifies the position of impact in world coordinates

'coiltype'

Specifies the type of collision

'other.id'

Specifies the vehicle ID of the other party (or 0 if terrain)

'other-mass'
Specifies the mass of the other party

'other-velocity'

Specifies the velocity of the other party

disinf collision tells the DI hull dynamics model that a collision occured. The colltype

should be one of the libcollision constants:

COLL-TREES
Indicates crossing a treeline or canopy edge.

COL.BUILDINGS
Indicates crossing a building or other structure. If the other structure is represented
on the network, the vehicle ID of that structure should be provided.

COLL.GROUiD
Should not be checked for ground vehicles.

COL.PLATFORMS

Indicates intersecting a platform (vehicle, DI, etc.).

COL.MISSILES

Indicates intersecting a missile (an entity on the network with a aunit ion type.

Chapter 3: Functions 9

3.5 disinf-damage

void disinf-damage(vehicle..id, damage)
int32 vehicle-.id;
int32 damage:

'vehicle, id'

Specifies the vehicle ID

'damage' Specifies whether the DI dynamics should simulate being damaged

dialzd..-damage tells the DI hull dynamics model that it is damaged (or not) depending on the
boolean value of the damage flag.

ADST-TR-W003268

I
I'
I
1
I
I'

LibDlSConst

I)
I
1

Table of Contents

O v e rv ie w ... 1

1.1 E xam ples .. 2

2 F u n ctio n s .. 3

2.1 disconst.init ... 3
2.2 disconst-print ... 3
2.3 disconst-guisesim net-to-dis .. 3
2.4 disconst.guisedis.to.simnet .. 4
2.5 disconst-appearance-simnet-to-dis 4
2.6 disconst-.appearance-dis.to.simnet 5
2.7 disconst..capabilities.simnet.to s 5
2.8 disconst-capabiities-dis-to.simnet 5

Chapter 1: Overview

1 Overview

LibDISConst performs conversions between SIMNET and DIS constants for object type (guise)
specification, appearance modifiers, and capabilities. The object type translations are specified in
a data file ('disconst.rdr'). The appearance and capabilities translations are hard-coded (speci-
fication of these translations via a data file would be very difficult, since SIMNET and DIS are not
very similar in the way they specify these items).

Internally, the translations are stored in two formats:

o The SIMNET to DIS translations are stored in a libOTMatch format database (see section
'Overview' in LibOTMatch Programmer's Manual).

* The DIS to SIMNET translations are stored in a n-ary tree, each node of which contains an

array of sub-trees which are selected by the value of a field of the DIS entity type. Since all of
the fields except country are within the range 0-255 (and most are less than 20), this selection
is done using a direct map (no searching). Country codes are mapped down to a few small
integers using a second-level map, to allow a direct map scheme to be used within the search
tree for countries as well.

The source data for the translations comes from the data file 'disconst .rdr'. It contains the
following sections:

Traversal Instructions

Although all DIS entities are described using the same taxonomy (Kind, DomaLa,
Country, Category, Sub-category, Specific, Extra), not all entity kinds use all
the fields. Also, different entity kinds traverse the fields in different orders (for plat-
forms, Domain selects the meaning of Category; for munitions, Category selects the
meaning of Domain). Thus, the first thing specified in the data file is a default order of
traversal, and special traversals for selected kinds. The traversal instructions take the
general form:

(DIS Kind for vhich instructions apply>
DISKind <field> <field> <field> ...)

)

The first traversal in-trirt ion is the default.

Country Codes

For compactness, an,! to allow hoth DIS 1.0 and DIS 2.0 object specifications within the
same data file, the rmjntriri are stored internally using alookup table. The translations

2 LibDISConst Programmer's Guide

refer to the countries by name. This name is used as the key into a lookup table. The

lookup table takes the general form:
C
("<country name>" (DIS 1.0 code number> <DIS 2.0 code number>)

)

All countries referenced in the next section must appear in this lookup table.

Translations

Next come the SIMNET to DIS translations (the software deduces the DIS to SIMNET
translations from this list at startup). The translation table takes the general form:

(
(<SIMNET Object Type> (<Kind> <Domain> "<Country>"

<Category> <Sub-category> <Specific>
<Extra))

)

All the fields except Country are small integers (Kind and platform Domain macros are

supplied at the top of the file). Country should be a string which matches one of the
countries in the Counry Code table, above.

Order is significant in two cases:

1. If more than one SIMNET object type corresponds to a single DIS entity type,
the first one listed will determine the resulting DIS->SIMNET translation.

2. If a DIS entity type which is not in the table is translated to a SIMNET object
type, it will default to the first object encountered which matches the most fields
earliest in the traversal order (analogous to the libOTMatch defaulting scheme).

Thus, more common object types should be listed earlier in the data file.

The data file is complete as of the initial writing of this document. There are many defined SIM-
NET object types for which no obvious DIS equivalent exists (including almost all the structures).
These problem translations are noted in the data file with comments.

To print the translation table in a format similar to the DIS standard, make test, then run

test 1. The test program can also peform conversions from the command line (run test with no
arguments for usage instructions).

1.1 Examples

The test program 'test. c' gives examples of how to initialize libDISConst, and perform object
type conversions.

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libDISConst, including the format

and meaning of its arguments, and the meaning of its return values (if any).

2.1 disconst-init

int32 disconst.init(data.path, reader-flags, dis.version)
char *data.path;
uint32 reader-flags;
int32 disuversion;

'datapath'

Specifies directory where data file is expected
'reader-flags'

Specifies libreader format file reading flags

'dis_version'

Specifies version of DIS in use

disconstinit initializes libdisconst, causing it to read its data file ('disconst .rdr') from the

passed directory (or '.') using the specified readerf lags. The return value is 0 for success, or

one of the libreader reader-read return values.

2.2 disconst-print

void disconst-printO ()

disconsBt.print prints the DIS->SIMNET translation tree in a manner similar to the DIS
specification.

2.3 disconst-guise-simnet-to-dis

void disconst-guis.simnt-to.diu(sinno, dis, warhead)
ObjectType *siunet;

4 LibDISConst Programmer's Guide

DIS.ENTITY.TYPE *dis;
DIS.WARHEAD.TYPE *warhead;

'simnoe' Specifies SIMNET object type

'dism Returns DIS entity type
'warhead' Returns DIS warhead type

disconstguise-sinnet.to.dis converts a SIMNET guise to its DIS equivalent. If the warhead
is not desired, pass NULL.

2.4 disconst-guise.dis.tosim net

void disconstguiso.di-to.simnot(dis, warhead, sinet)
DIS.ENTITYTYPE *dis;
DIS.WARHEADTYPE *warhead;
ObjectType *simnet;

'din' Specifies DIS entity type
'warhead' Specifies DIS warhead (or NULL)

'uimnet' Returns SIMNET object type

disconst.guise.din.to-simmet converts a DIS guise to its SIMNET equivalent. If the war-
head is not relevant, pass NULL for warhead.

2.5 disconst _appearance-simnetto..dis

void disconstappearancesinet.to.dis (di.type, szinet, din)
DIS.ETITY.TYPE *dis.1type;
uint32 *jimet;
DIS.ENTITYAPPEARANCE *dis;

'dis..type'

Specifies DIS entity type
'sinnet' Specifies SIMNET appearance bits

'din' Returns DIS appearance bits

disconst-.appearancesiunet-todis converts a SIMNET appearance to its DIS equivalent.

Chapter 2: Functions

2.6 disconst-.appearance-dis-to.Bim net

void diuconst..appearance..diu..to.imnot(di..typO, din. ainot)
DIS..ENTITY-TYPE *dis-.typ.;
DIS_.ENTITY-.APPEARANCE *diu;
uint32 *Biunet;

'di...typ.'
Specifies DIS entity type

'dis' Specifies DIS appearance bits
'uiunet' Returns SIMNET appearance bits

disconst-appeamnce-.diu..to-s.imanot converts a DIS appearance to its SIMNET equivalent.

2.7 disconst-.capabilities-simnet-to-dis

void disconst-.capabilities-s.iunet-.to..dis (smmaet, din)
VehicloCapabilit ie *Blmnet;
DIS..ENTITY-.CAPABILITIES *din;

'simnet' Specifies SIMNET capabilities

'dial Returns DIS capabilities

discont-.capabilitiou-sint..to-dis converts a SIMNET capabilities record to its DIS
equivalent.

2.8 d isconat.-capabilities Adis-to-Bim net

void discoust..capabilities-.diuto.sioet (dis, siunet)
DIS..EETITY..CAPABILITIES *diu;
VohicloCapabilities *siunet;

'dis' Specifies DIS capabilities
'ernset' Returns SIMNET capabilities

discont-.capabilities..-din -to-aeimnet converts a DIS capabilities record to its SIMNET
equivalent.

ADST-TR-w003 268

LibDither

Table of Contents

1 Overview..1I

2 Examples ... 3

3 Functions .. 7

3.1 dither-.matrix .. 7
3.2 dither..bitmaps..7
3.3 dither-.or... 7
3.4 dither..copy.. 8

Chapter 1: Overview 1

1 Overview

Libdither uses a fairly standard method for generating shading dithers.

A program using libdither will first make a dither-generating matrix using the function dither-matrix .
The function generates a NxN dither matrix where N is a power of 2. The algorithm is based on the
Judice, Jarvice, Ninke recurrence relation detailed in Foley, vanDam, et. al. (II edition, p. 571).
The dither matrix can be used to generate dither bitmaps. For example, the 2x2 dither matrix:

can be used to generate the following bitmaps:

00 10 10 11 11
00 00 01 01 11

These bitmaps can be generated explicitly, or they can be generated on an as-needed basis, and
copied or OR'd into other bitmaps.

Macros are provided to correctly declare the matrix (DITHER..TRI) and bitmap
(DITHERBITNAPS) data structures, as well as a macro which computes the number of unique
bitmaps which can be generated from a dither matrix of a given size (DITHER..COUIT).

2 LibDither Programmer's Guide

I
I
I
I

Chapter 2: Examples 3

2 Examples

The following example program (called 'xtent. c' in the libdither source directory) fills the root
window with a number of 4x4 rectangles. Each rectangle is stippled with a dither corresponding
to its distance from the center of the screen. A 16x16 dither pattern is used.

Depending upon whether #define DO.-RECTS is present, the program will either use
dither.bitmap() to generate stipples for a GC, or it will use dither.orO to generate one large
bitmap. The second version runs about 15 times as fast, due to the reduction X traffic.

#define DO.RECTS*/

Sifndef DO.RECTS
#define DO.BITNAP
#endif

Iinclude "libdither.h"

#include <X11/Xlib.h>
include <(ll/lutil .h>
#include <stdio.h>
#include Cmath.h>

#define SIZE 16

lifdof DO.RE.CTS
main()

Display *dpy;
int32 screen;
Window root;
GC 5c;
int32 i, z, y;
int32 w, h, 9w, Hh;
float64 d;
DITHEKKATRI(mat ,SIZE);
DITHERBITNPS(bitu ,SIZE);
Pimap pix[DITHER.COUIrr(SIZE)];

/* Make the dither generating matrix */
dither.matrix(SIZE, mat);

/* Make DITHERCOUNT(SIZE) bitmaps from the matrix */
dither.bitmaps(SIZE, mat, bits);

4 LibDither Programmer's Guide

/* Open the display device .
dpy a Z0pen.DisplayOIULL);
it (!dpy)

exit (2);

/* Find the screen and root window .
screen a Dot aultScreen(dpy);
root a Root~indov(dpy, screen);

I. Generate DITHER..COUIT(SIZE) pizuaps from the bitmaps *
for (1.0; 1DITHER-COUIT(SIZE) ; 14)

pix[iJ a XCreateBitnapFrouData(dpy, root, bits~i), SIZE, SIZE);

/* Create a GC for filling in the rectangles *
gc a XCreateGC~dpy. root. 0, NULL);
XSetForeground(dpy, gc. DlackPizel~dpy, screen));
XSetBackground(dpy, gc. WhitePixel(dpy. screen));
XSetFillStyle(dpy, gc, FillopaqueStippled);

/* Find the size of the screen *
v a Display~idth(dpyscreen);
h n Displaylieight(dpy.screen);
Hi a w/2;
Hh a h/2;

1* Find the distance that the furthest rectangle will fall from the
*center.

d asqrt(liveHv + Jh*ffh);

/* Fill in a bunch of 4z4 rectangles, stippled according to their
*distance from the center of the screen.

for (ymO;y~h;y+U4)
for (x*O;xcw;x+u4)

i a (DITHER-COUNr(SIZE)-1)
sqrt((H.-x)e(Hv-x) + (Hh-y)i'(Hh-y))Id;

ZStStipple(dpy, gc. piz~iJ);
lVilllectangle(dpy. root, gc, x, y, 4, 4);

/* Close the display S
XCloseDisplay (dpy);

#endif
#ifdof DO..BITNAP
main()

flmage *image;

Chapter 2: Examples

Display *dpy;
int32 screen;
Window root;
GC gc;
int32 1, x, y;
int32 w, h, Hw, Hh;
f loat64 d;
DITHER..KATRIZ (mat ,SIZE);
char *bitmap;

/* Make the dither generating matrix *
dither-.matrix(SIZE, mat);

/* Open the display device *
dpy a XOpenDisplay(NULL);
if (!dpy)
exit (2);

/* Find the screen and root window *
screen - Dot aultScreen(dpy);
root a Root~indow(dpy, screen);

/* Find the size of the screen *

w a DisplayWidth(dpyscreen);
h a Displaylieight(dpyscreen);

/* Allocate a bitmap big enough to cover the whole screen *
bitmap - (char eOmalloc(h * ((v.7)/B));
bzero(bitnap, h * ((w+7)/8));

/* Create an ITS itmap format Usmage *
image a XCreatelmage(dpy, N=L, 1, XY~itmap, 0, bitmap,

w. h. 8. (v.7)18);

I. Find the distance that the furthest rectangle will fall from the
*center.

liv a w/2;
Rh = h/2;
d a sqrt(liv*Hw + Hh*Hh);

/* Fill in a bunch of 4x4 rectangles, stippled according to their
*distance from the center of the screen.

for Cy=O ;y~h;y.*4)
for (xwO;x~w;x.s4)

i - (DITHER..COUNT(SIZE)-1)*
sqrt ((Hw-x) *(Hw-x) + (Rh-y)*(Hh-y)) d;

dither-.or(SIZE, i, mat, bitmap, w, h, xy y, 4, 4);

6 LibDither Programmer's Guide

I* Create a GC for copying the image *I
gc - XCreateGC(dpy, root, 0, NULL);
XSetForeground(dpy, gc, BlackPixel(dpy, screen));
XSetBackground(dpy, gc, WhitePixel(dpy, screen));

/* Copy the bitmap to the screen */
XPutlmage(dpy, root, gc, image, 0, 0, 0, 0, v, h);

/* Close the display */
XCloseDisplay(dpy);

Sendif

Chapter 3: Functions 7

3 Functions

The following sections describe each function provided by libdither, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 dither-matrix

void dither.Aatrix(size, mat)
int32 size;
DITHER.MATRIX(mat, size);

'size' Specifies the size of the dither matrix
'mati Returns the dither-generating matrix

dither-matrix creates a dither matrix which can then be passed to dither generating functions.

3.2 dither.bitmaps

void dither.bitmaps(size, mat, bits)
int32 size;
DITHERMATRIX(mat, size);
DITHERBITMAPS(bits, size);

'size' Specifies the size of the dither matrix
mat' Specifies the dither generating matrix

'bits' Returns the bitmaps

dither.bitmaps creates DITHER.COUNT(size) bitmaps from the dither generating matrix (cre-
ated with dither-matrixo). bits [iJ O<=i<DITREt.COUI(size), is the ith bitmap, and can be
passed to X-windows functions such as XPutlmageO, or XCreatePixmapFroBmimapDataO.

3.3 dither-or

void dither.oz(size, which-dither, mat, bitmap, bitmap.width,

8 LibDither Programmer's Guide

bitmap..height. xO, yO, area-w.idth, area-.height)
int32 size;
int32 which..dither;
DITHER..MATRIX (mat, size);
char *bitmap;
int32 bitmap..vidth;
int32 bitmap.height;
int32 XO, yO;
int32 area...idth. area..height;

&size' Specifies the size of the dither

'which-dither'
Specifies which dither to generate

'mat' Specifies the dither-generating matrix

'bitmap' Returns the bitmap

'bitmap..vidth. bitmap..height'
Specifies the size of the bitmap

'zO, YO' Specifies the starting location within the bitmap
'area-.vidth, area-.height'

Specifies the area to dither within the bitmap

dither-.or OR's in an area-w.idth x area-.height section of the which-ditherth dither gen-
erated from the matrix mat. The upper left comner of the dither is at zO * yO of the bitmap.

See (undefined) [dithercopy], page (undefined).

3.4 dither-.copy

void dithez..copy~nize, which-.dither, mat, bitmap, bitmap..vidth,
bitmap..height. xO, yo, area-width, area-.height)

int32 size;
int32 which-.dither;
DITHER-..ATRIX(uat, size);
char *bitmap;
int32 bitmap..vidth;
int32 bitmap-.height;
int32 zO, YO;
int32 area-wvidth, area-.height;

'size' Specifies the size of the dither

Chapter 3: Functions 9

'which.dither'

Specifies which dither to generate
'matl Specifies the dither-generating matrix

"bitmap' Returns the bitmap

'bitmap-width, bitmap.height'
Specifies the size of the bitmap

'xO, yO' Specifies the starting location within the bitmap
4area-vidtch, area-height'

Specifies the area to dither within the bitmap

dither.copy works just like dithr.or, except that zero bits in the dither are set to zero in
the bitmap. Hence, dither.copy runs only about half the speed of dither-or.

See (undefined) [dither'orl, page (undefined).

ADST-TR-W003268

LibDr

Table of Contents

1 O v e rv ie w ... 1

2 E x a m p le s .. 3

3 F u n ction s ... 5

3.1 drJfirst-orderlinear-dr ... 5
3.2 dr.second-orderlineardr .. 6
3.3 dr-first-order angular -dr ... 7
3.4 dr-unpack.angular-velocity .. 8
3.5 dr.check-ocation-thresholds .. 8
3.6 dr-check.orientation.threshold 9
3.7 dr-quat-transform ... 10

Chapter 1: Overview 1

1 Overview

Because of limitations in network bandwidth, the DIS world uses the concept of dead reckoning

(DR) to lessen the network traffic of DIS entities. The theory is that if the (DR) algorithm used

by a particular entity is known, the position (and orientation if the algorithm specifies it) of a

remote entity can be approximated until the next actual update is received. On the sender's side,

the sender calculates the actual state of the entity and then compares it against the approximated

state that the world assumes as truth. If the two states deviate by more than a specified set of

thresholds, the sender must send out a packet updating its state for the rest of the players.

Libdr provides a set of generic routines which can be combined to do various types of dead

reckoning algorithms. It assumes a cartesian coordinate system, such as GCC or SIMNET's Level

Metric, but is independent of units; the parameters - position, velocity, time, etc - must be specified

consistently, but the user may choose the units. In other words, if position is specified in meters, and

time in seconds, the velocity must be specified in meters/second. It can not be kilometers/second

or meters/millisecond. Position, velocity, and acceleration must be also be specified with respect

to the same coordinate system (WORLD vs BODY).

In addition to the dead reckoning routines, libdr also provides a set of routines to do positional

and rotational threshold checking. These routines can be used in conjunction with the dead reck-

oning routines to determine whether or not a entity has exceeded its thresholds, requiring that a

packet be sent out to update its position in the world.

All linear dead reckoning routines are supported for both float32 and float64 vectors. Angular

dead reckoning routines using 3 x 3 matrices for rotation are supported for both float32 and float64

matrices. Angular dead reckoning routines using quaternions for rotation are currently supported

for float64 quaternions only. Threshold routines for rotational checking are supported for both

float64 and float32 matrices. Threshold routines for rotational checking using quaternions and

positional checking are supported for float64 only. Elapsed-time and position are always represented

using float64's. In addition, the angular dead reckoning routines support both WORLD.to.BODY

and BODY-to.WORLD matrices as well as quaternions. The naming convention for these functions

is:

32 bit or 64 bit floating point
Name contains 32 or 64 at or near end

body or world

Name ending in body or world indicates that rotations are specified as body.to.world

or worldto.body respectively.

matrix or quat

I

2 LibDr Programmer's Guide

Name contains matrix or quat at or near end indicates that rotations are specified

using a 3 x 3 matrix or quaternion respectively.

For example, the 64 bit, first order angular dead reckoning function using world.to.body matrices

is dr.first-order.angular.dr.matrix64.world.

The Functions Chapter specifies the versions which are currently supported. The prototype
types described in that section use generic terms as follows:

scalar a Either float32 a or float64 a

vector v Either float32 v[3J or float64 v[3J

matrix m Either float32 m[31 [3) or float64 a [3) [3)

quat q quaternion which contains 2 parts, a scalar, referred to as qscalar and a vector,

referred to as qvector

rotation r
Either matrix or quat

II

!3
Chapter 2: Examples 3

2 Examples

The program 'dx..test', found in 'dr-test. c' in the libdr source directory, demonstrates some

possible uses for libdr. It can be compiled with the command 'make dr.test'. Due to the nature of

the test cases, they do not determine their own success or failure. Their output must be analyzed

by the tester with the help of a scientific calculator.

The first order and second order linear dead reckoning routines can be easily combined to form

the following algorithms, defined in the DIS 2.0 Standard. The 3 letter naming conventions can be

interpreted as:

F/R : Fixed Rotation or 1st Order Rotation
P/V : tst Order Position or 2nd Order Position (Velocity)
W/B : World or Body Coordinates

FPW : Fixed Rotation, First Order Position, World Coordinates
Defined as Algorithm 2 in the DIS 2.0 Standard
(DR algorithm used in SINNET)

RPW : First Order Rotation, First Order Position, World Coordinates
Defined as Algorithm 3 in the DIS 2.0 Standard

RVW : First Order Rotation, Second Order Position, World Coordinates
Defined as Algorithm 4 in the DIS 2.0 Standard

FYW : Fixed Rotation, Second Order Position, World Coordinates
Defined as Algorithm 5 in the DIS 2.0 Standard

FPB Fixed Rotation, First Order Position, Body Coordinates
Defined as Algorithm 6 in the DIS 2.0 Standard

FVB : Fixed Rotation, Second Order Position, Body Coordinates
Defined as Algorithm 9 in the DIS 2.0 Standard

The following code fragment illustrates how the routines can be combined to execute the RPW

algorithm. The 'RPW' is specified in the DIS 2.0 standard as DR algorithm 3. For this algorithm,

first order linear positional dead reckoning as well as first order rotational dead reckoning is ap-

plied. Initial velocity is specified in WORLD Coordinates. Example is for float64's using an initial
BODY-to.WORLD orientation matrix.

4 LibDr Programmer's Guide

/*
* Given elapsed.time, initialposition, and velocity, a
* current.position position is calculated and returned in
* 'current.position'

float64 elapsed-time; /* time from when initial-position was
accurate until now */

float64 initial.position[3]; /* position before DR applied */
float64 velocity[3); /* linear velocity, WORLD coords 5/

float64 current-position[3]; /* position after DR applied *1

dr.first.order.linear.dr64 (elapsed.time, initial.position, velocity,
current.position);

/*
* The angular velocity vector only changes when a new packet arrives.
* To save compute cycles, the omega and axis of rotation that is
* extracted from the vector should be cached.

* Given an angular velocity vector, omega (the magnitude) and axis of
* rotation are determined and returned in 'omega' and 'axis'.
*/

float64 angular.velocity[3); /* angular velocity, WORLD coorda *1
float64 omega; /, unpacked angular velocity */
float64 axis[3J; /* axis of rotation */

dr-unpack-angular.vlocity64 (angular-velocity, fomega, axis);

/*

* Given an initial BODY-to.WORLD matrix, elapsed.time, omega, and
* axis of rotation, a current BODYTO.WORLD matrix is calculated
* and returned in 'current.body.to.world'.
*/

float64 initial-body.to.world[3] [3J; /* BODY.to.WORLD matrix before DR */
float64 current.body.to-world[3] [3]; /* BODY.to.WORLD matrix after DR */

dr-first.order-angular.drsatri64.body (elapsed-tlme, omega, axis,
initial.body.to.world,
current-body.to.world);

Chapter 3: Functions 5

3 Functions

The following sections describe each function provided by libdr, including the format, meaning
of its arguments, and meaning of its return values (if any).

3.1 dr-flrst-order.Jinear-dr

void dr..firuC..order-linear..dr (elapsed-.time, initial-position,
initial-velocity. current-.pouition)

float:6 elapued..time;
vector initial-.position[33;

)r initial-velocity (3);
currezit-.position(3J;

'elapsed-.time'
Time elapsed between initial.poxition and current-.position

'initial-.position'
Position to dead reckon from.

'initial velocity'
Velocity to apply to initial-.position to calculate current-.posltion.

'current-.posit ion'
New position after dead reckoning-, return value.

Available formats:

* dr-firt.order.linear.dr64

* dr-firtorderlinar-.dr32

dr-first.order-linear-dr64 performs first order linear dead reckoning using the equation:

p - P-0. + (v.0 * %)

p :current-.position p-0, : initial-position
v-0 : initial-velocity
t : elapsed-.time

6 LibDr Programmer's Guide

3.2 dr.second-orderlineardr

void dr.second.order-linear.dr (lapsod.tize, initial.position,
initialvelocity, initial.acceleration,
cuzrent-.position, current-velocity)

float64 elapsod.tie;
vector initial-position[3);
vector initialvelocity [3);
vector initial-acceleration[3);
vector currentoposition(3);
vector current.velocity [3);

'elapsed-time'
Time elapsed between initial-position/velocity and current..po,,ition/velocity

'initial.position'

Position to dead reckon from.

'initial velocity'
Velocity to apply to initial-position to calculate

'initial-acceleration'
Velocity to apply to initial.position to calculate current.position and current.velocity

'cuTrrent.position'

New position after dead reckoning; return value.
'current.velocity'

New velocity after dead reckoning; return value.

Available formats:

" dr-second-order.linear-dr64

" dr-second-order.-lnmza.dr32

dr-second.order.linear-dr64 performs second order linear dead reckoning using the equa-
tion:

p - p-0 * (v.0 * t) + (0.5*a_0*(t-2))
v a v.0+ a.0

p : current-position p.0 : initial-position
v : current-velocity v.0 : initial-velocity

a-0 : initial.acceleration
t : elapsed.time

Chapter 3: Functions 7

3.3 dr-first-order-angular-dr

void dr.first-order.angular-dr e .lapsed.time, omega, axis,
initial-rotation, current.rotation)

float64 elapsed.time;
ucalar omega;
vector axis;
rotation initial-rotation;
rotation current.rotation;

'elapsed.time'

Time elapsed between initial.rotation and current.rotation

'omega' Magnitude of angular velocity.
'axis' Axis of rotation of angular velocity
'init ia1 rotation'

Rotation to dead reckon from
'current.rotation'

New rotation after rotational dead reckoning; return value.

Available formats:

" drfirst-order-angular-dr.matrix64.body

" dr.firstorder-angular-dr-matrix32_body

" dr-firstorder-angular.dr.ma.trix64_world

* dr-f irstorder-angular.dr-.matrix32_world

* dr-first.orderangulardrquat64_.orld

dr-firstlorderangular.dr performs first order angular dead reckoning using either cosine

matrices or quaternions. The change in rotation for a given time frame is represented by the

following quaternion:

h-angle : half.angle of rotation
9 : omega
t : *lapsed.tim
axis : axis of rotation
quat : intermediate quaternion for change in rotation (qacalar, qvector)
sangle : sin (h.angle)

h-angle U O.5*Vt
qscalar W cos (h-angle)
qvector[O] a s-angle * axis[0]

8 LibDr Programmer's Guide

qvector[1] - sangle * axis[l]
qvector[2) - a-angle * axis[2)

If the input rotation is a quaternion, the initial-quaternion is concatenated with the newly
calculated quaternion to return a quaternion representing the dead reckoned rotation. If the input
rotation is a matrix, the newly calculated quaternion is first converted to a direction cosine matrix.
Two matrices are then concatenated to return a matrix representing the dead reckoned rotation.

3.4 dr-unpackangularvelocity

extern void dr-unpack.angular.velocity (angular-velocty, omega, axis)
vector angular-velocity;
scalar *omega;
vector axis;

'angular-velocity'

Angular velocity vector in Body Coordinates.
'omega' Pointer to Magnitude of angular velocity; return value.
'axis' Axis of rotation of angular velocity; return value.

Available formats:

" dr.unpack.angular-velocity64

" dr-umpack-angular-velocity32

dr.unpack.angulaz-_velocity takes an angular velocity vector and extracts its magniitude,
omega, and its axis of rotation, axis. This action need only be done whenever the angular velocity
changes, not each time one performs angular dead reckoning. Therefore, it is suggested that this
routine be called only when necessary and the values for omega and axis be cached for efficiency.
For remote entity rotational dead reckoning, this would need to be called for a particular entity
whenever a new packet arrived for it.

3.5 dr-check.jocation -.thresholds

int32 dr.chck-location.thresholds (thresh-sq. current.position
dr.position)

scalar thresh.sq;

Chapter 3: Functions 9

vector current.position;
vector dr.posit ion;

'thresh.sq;'
Square of the position threshold. Must be in units consistent with those used for

position.
'current.position'

Actual position of the local entity

'dr.position'
Dead reckoned position of the local entity since the last packet was sent

dr-.check.location.thresholds compares the current-position with that of dr.position. If
'current' deviates from 'dr' by more than the specified threshold, it returns TRUE (1) indicating
that the threshold has been exceeded and therefore, a packet should be sent. Otherwise, it returns
FALSE (0). The algorithm actually requires the square of the threshold. Therefore, for efficiency,
the routine takes the threshold squared as a parameter rather than just the threshold value and
assumes the user can cache the squared value instead of recomputing it every time.

3.6 dr.checkorientation -threshold

int32 dr.check-orientation.threshold (thresh, currentrotation,
dr.rotat ion)

scalar thresh;

rotation current-rotation;
rotation dr.rotation;

'thresh' For efficieny purposes, thresh has different representations depending on whether or

not quaternions or matrices are used. Given a rotational threshold in radians, thresh
should be one of the following:

thresh - cos (0.5 * rotation threshold) ; for quaternions

thresh a 2 * cos (rotation threshold) + 1 , for aatrices

'current._rotation'

Rotation representing the actual orientation of the entity

'dr.rotation'
Rotation representing the dead reckoned approximation of the orientation of the entity.

Available formats:

10 LibDr Programmer's Guide

" dr.check, orientation.threshold.matrix64

" drcheck.orienation.threshold.matrix32

" dr-check-orientation.threshold.quat

dr.check.orientation-threshold compares the current-rotation with that of the dr-rotation.
If 'current' deviates from 'dr' by more than the specified threshold, it returns TRUE (1) indicating
that the threshold has been exceeded and therefore, a packet should be sent. Otherwise, it returns
FALSE (0). As with dr-check-location.thresholds, the algorithms utilize the threshold infor-
mation in a manner which can be precalculated and stored for future use. Details of the format
are indicated above under 'thresh'.

3.7 drquat-transform

void dr.quat.transform (src, rotation, deet)
vector src;
quat rot;
vector dest;

'src' Initial vector that is to be transformed.

'rot' Quaternion which represents the rotation by which the vector is to be rotated.

'deet' Resulting vector after transformation has been applied; return value.

dr.quat-.transform rotates a vector by the rotation specified in the quaternion. Ultimately,
this belongs in a quaternion equivalent of libvecmat.

ADST-TR--W003268

Libechelondb

Table of Contents

1 Overview ... 1

1.1 Examples .. 3

2 Functions .. 5

2.1 echdbijnit 5
2.2 echdb-expand..5

Chapter 1: Overview

1 Overview

Libechelondb provides a database of named standard military echelon organizations (also re-
ferred to as Units), which can be used as templates or parts of templates for unit creation. Libech-
elondb uses a database format which is accessed using libotmatch (see section 'Overview' in Li-
bOTMatch Programmer's Manual). A GUI for unit creation can access this library to allow the
initialization of a unit to expand into the initialization of an entirely instantiated unit hierarchy.
Given a unit to be created, libechelondb only supplies the information used to create the unit and
its subordinates. It does not actually create the unit persistent object or its subordinate persistent
objects.

The types of information stored in the echelon database are as follows:

The collection of subunits in a unit

The subunits can be recursive references to other libechelondb units. For example, a
platoon can contain several vehicles, while a company can contain several command
vehicles and several platoons.

The way vehicle designations are generated for each vehicle or unit
For example, a company might be designated as "A ", the first platoon in that company
might be designated as "Al ", and the second vehicle in the first platoon might be

designated "A1211.

The order of promotion between units
This ordering can also be used to identify unique members in a formation of units.
This information is stored implicitly in the data file by the ordering of the subunits.

The echelon database is stored in the data file 'echelondb. rdr'. The format of this data file is
as follows:

(<unit identifier> (<subunit identifier1>
<subunit identifier2>
<subunit identifier3>

fmore unit definitions>

<unit identifier> is the object type representing the unit.

A <subunit identifier> has the following format:

2 Libechelondb Programmer's Guide

([leafltree] [<vehicle identifier> I <unit identifier>] <marking pattern>)

leaf means that this is a terminal node in a unit hierarchy. tree means that this subunit should
be reexpanded into other subunits by means of a recursive query into the database. A unit identifier
could be specified as a leaf node, which would imply a unit hierarchy containing a command unit
which does not have vehicles in it. This could be used to support the representation of aggregate
simulation, or provide empty units for later task organization.

The <vehicle identifier> or <unit identifier> specifies the object type of the unit at this
level in the hierarchy. Vehicle object types indicate physical vehicles within the unit hierarchy,
while unit object types indicate conceptional aggregate units (with or without vehicles subordinate
to them).

The <marking pattern> is a three character string used to generate markings for a particular
unit in the hierarchy. In such a string. the character ? indicates to inherit the character at this
position from the superior unit. Thus. a vehicle with a marking pattern of "??4" will receive a
marking of "A24" when present in a platoon labeled "A2"

An example of a data file which supports platoons, companies and battalions of M1 tanks is as
follows:

(unit-.US.NM1Platoon ((leaf vehicle.US.M "??1")
(leaf vehicleUS.M1 "??2")
(leaf vehicle.US..1 "??3")
(leaf vehicleUS.M1 "??4")))

(uni.US.M1.Company ((leaf vehicle.US.-I "?66")
(leaf vehicle.US.Ki "?65")
(tree unit.US.M1.Platoon "?1 ')
(tree unitUS..MIPlatoon "1?2 ")
(tree unitjUS.M1.Platoon "?3 I'))

(unitUSJI..BattalionHQ ((leaf vehicleUS.M1 "HU ")
(leaf vehicle.US_4i "HQ2")))

(unit.USMlBatallion ((tree unitUSMI.BattalionHQ "H ")
(tree unit.US-MI.Company "1 ")
(tree unit.US.MlCompany "2 "1)
(tree unit.US-Mi._Company "3 I'))

)

The algorithm used within hhh.,,,ll fur ,lueries is as follows. Queries are initiated by a call

Chapter 1: Overview 3

to echdb..xpand, passing in an array of the ECHDBDATA structure to be filled out. The format of
the ECHDB.DATA data structure, which will be filled out by calls to echdb.expand, is as follows:

typedef struct echdb.data
{

ObjectType type;
int32 superior;
int32 promotion.index;
char designation[4);

I ECHDB.DATA;

type is the vehicle or unit object type of the unit.

superior is the array index of the unit which is superior to this unit. The topmost unit, which
will be the zeroth element of the array, will have a superior of -1.

promotionindex is a small integer representing the order of promotion for all the units directly
subordinate to the superior of this unit. All units directly subordinate to a particular superior unit
will have a unique promotion.index.

designation is a NULL terminated 3-character string which represents the designation or "bumper-
number" of the unit.

Queries into the database by echdbexpand use otm.query (see section 'otm.query' in LibOT-
Match Programmer's Manual) to access the data for a particular unit. First, the input unit is used
to fill out the zeroth ECHDBDATA element. Then, if a unit is found via a direct ota...query match,
the data returned by otm.query is used to fill out other ECHDB.DATA elements. Recursive queries
are performed to expand any elements marked as tree nodes.

1.1 Examples

The test program 'test. c' demonstrates initialization of libphysdb and all the libraries it de-
pends on. The output of a sample run is as follows:

crimson-> testl unit-USMi.Company "A "

Expansion of uni.US.1.Company yields 18 subunits:
0: unit.USM1_Company, marking "A ", index 0, superior is -1
1: vehicleUS.lM, marking "A66", index 0, superior is 0
2: vehicleUSMi, marking "A65", index 1, superior is 0

4 Libechelondb Programmer's Guide

3: unit.US..Platoon, marking "Al ", index 2, superior is 0
4: unit.US.HI.Platoon, marking "A2 ", index 3. superior is 0
5: unit.USM.Platoon, marking "A3 ", index 4, superior is 0
6: vehicleUS.-M, marking "All", index 0, superior is 3
7: vehicleUS.Mi, marking "A12", index 1, superior is 3
8: vehicle.US.M, marking "A13", index 2. superior is 3
9: vehicle.US.Ml, marking "A14", index 3, superior is 3

10: vehicleUS.Ml, marking "A21", index 0, superior is 4
11: vehicleUS.HI, marking "A22", index 1, superior is 4
12: vehicleUS.M, marking "A23", index 2, superior is 4
13: vehicle.US.4l, marking "A24", index 3, superior is 4
14: vehicle.USMl, marking "A31". index 0, superior is 5
15: vehicle.US.-I, marking "A32", index 1, superior is S
16: vehicle.US.Ml, marking "A33", index 2, superior is 5
17: vehicle.US.Ml, marking "A34", index 3, superior is S

I

I
I
I

Chapter 2: Functions

2 Functions

The following sections describe each function provided by libechelondb, including the format
and meaning of its arguments, and the meaning of its return values (if any).

2.1 echdbjinit

int32 *chdb-.init(directory, flags)
char *directory;
uint32 flags;

'directory'

Specifies the directory where the echdb file is expected

'flags' Specifies reader options (see section 'reader-.read' in LibReader Programmer's Manual)

.chdb-.init initializes libechdb, causing it to read its data file 'echdb.rdr' from the specified
directory. The flags are as in reader-.read. The return value is zero if the read succeeds, or
one of the libreader return values: READER-.READ-.ERRDR READER.FILE.EOT-FOUND.

Note that the libreader function readerinit, the librdrconmt function rdc-init, and the
libotuatch function otu..init must be called before this function.

2.2 echdb..expand

int32 echdb-...pand(input, input-.designation, output-.length, output)
ObjectTyp. input;
char input..desigzaationO;
int32 output-.length;
ECHDB-DATA output 0;

'input' Specifies the unit to look up in the database

'input-.designation'
Specifies the ASCII character designation -string for the top level unit. Designations
for lower level units will be derived from this string.

'output-.longth'

Specifies the maximum number of outputs to fill out.

6 Libechelondb Programmer's Guide

'output' Specifies an array of ECHDB..DATA records to fill out the results of the query.

*chdb.expand looks up the supplied input in the echelon database and fills out the units in the
output structure. A maximum of output.length units will be filled out. echdb.expand returns
the number of entries in output that have been filled out by the call. input is always returned as
the zeroth element of output. If input is not found in the echelon database, I will therefore be
returned.

I,
I

ADST-TR-W003 268

LibEditor

Table of Contents

1 O v e r v ie w ... 1

1.1 Nam e D efinition ... 1

1.2 Structure Definition ... 1

1.3 Editor D efinition .. 4
1.3.1 A LT IT U D E ... 4
1.3.2 A N G LE ... 4
1.3.3 CHOOSE-ONE .. 5
1.3.4 CHOOSE.SOM E ... 6

1.3.5 D A T E ... 7
1.3.6 DRAW .AREA .. 7
1.3.7 D ISTANCE ... 7
1.3.8 F U E L ... 8
1.3.9 LA BEL ... 8
1.3.10 LIN E ... 8
1.3.11 M UNITIONS .. 9
1.3.12 O BJECT .. 9
1.3.13 O VERLAY ... 9
1.3.14 OVERLAY-DISPLAY 10
1.3.15 PLACE .. 10
1.3.16 SCALE .. 10
1.3.17 SO RT ... 11
1.3.18 SPEED .. 11
1.3.19 STEALTH ... 12
1.3.20 STRING .. 12
1.3.21 TIM E ... 12
1.3.22 TOG G LE ... 13
1.3.23 VECTO R ... 13
1.3.24 VEHICLE ... 13

1.4 Initialization Rules ... 14
1.5 Rendering Information .. 14

2 U sa g e .. 1 7

2.1 Building Libeditor .. 17
2.2 Linking with Libeditor ... 17
2.3 Exam ples .. 18

LibEditor Programmer's Guide

3 F u n ctio n s .. 19

3 .1 ed t.init ... 19

3.2 edtsetsensitive.cl s ... 19

3.3 edt.offer-default _object .. 20
3.4 edt.create .. 20
3.5 edt-.create.defaults-editor ... 23
3.6 edt.createprofilem enu .. 23
3.7 edtload ... 23
3.8 edtload -reader .. 24

3.9 edt.setield .. 24

3.10 edt.apply-offset ... 25
3.11 edt-state .. 25
3.12 edt-query .. 26
3.13 edt.nam e .. 26
3.14 edt-get.references .. 26
3.15 edtform at .. 27
3.16 edt.pvd-defaults .. 29
3.17 edt-color.choice ... 29
3.18 edt-editor.em pty ... 30

4 E v e n ts ... 3 1

4.1 edt-defaults-calback ... 31

5 X Resource Definitions ... 33

6 Defining New Types ... 35

Chapter 1: Overview 1

1 O verview

Libeditor provides a facility to build flexible data-driven editors with a minimum of effort. The
library is an integral part of the ModSAF user interface architecture.

The programming paradigm used is as follows:

The application defines a data structure which is to be edited. This data structure is fixed-size,
although it may contain one variable length field (such as the way a protocol PDU cannot be
larger than the ethernet packet, but it may contain a variable amount of valid information).

" The application defines a data file which expresses five things about the data which is edited:

" The name of the editor

" The memory layout of fields in the structure

" The abstract type of those fields which may be edited

" The way to initialize each field

" The fields which impact the way an item is rendered

" The application passes this information to libeditor at startup, at which time a user interface
is constructed. Optionally, the application may also pass functions which are called to display
the item being edited, and to process the edited item when the editor is exited.

" The application starts the editor when needed.

The following sections describe the five main sections of an editor definition file.

1.1 Name Definition

The first thing which must be specified for an editor is its name. This should be a short
description of what the editor does. For example:

(name "Text Editor")

1.2 Structure Definition

The structure is defined by listing each member of the structure by name, and then specifying
its data type, and optionally its length. Padding is specified by using the reserved label padding
and specifying how many bits (must be a multiple of 8).

2 LibEditor Programmer's Guide

For example, the structure:

struct too

intl6 bar;
int16 .paddingl;
uint32 baz [3);

Would be defined with the expression:

(struct (bar int16)
(padding 16)
(baz uint32 3))

The data types which are recognized are as follows:

int8 uint8 int16 uint16 int32 uint32 float32 float64
PointDescription MunitionQuantity Obj ectIDType

When the editor is created, the software compares the size of the structure specified by this data
file to the size passed in, to help identify inconsistencies (usually padding problems).

Note that C compilers pad structures for efficient access to data over the bus. In general, the

following rules should be assumed:

The byte offset to a primitive type which is n bytes long will be a multiple of n. For example,
the structure:

struct

intS bar;
int16 baz;

} foo;

has a byte of implicit padding between bar and baz so that baz may start on a 2 byte offset
into the structure.

* The byte offset to a structure within a structure must conform to the strictest alignment
requirements of the sub-structure's members. For example, the structure:

struct

int8 bar;

Chapter 1: Overview 3

Ctruct{
int16 baz;
int32 bax;

} biz;
} foo;

has 3 bytes of implict padding between bar and the sub-structure biz, and 2 bytes of implicit
padding between baz and bax.

" The total size of a structure must be a multiple of its member's strictest alignment requirement.
This is to ensure structures can be placed into arrays. For example, the structure:

struct{
int32 bar;
intI6 baz;

} foo;

has 2 bytes of implicit padding after baz, so that the entire structure is a multiple of 4 bytes
(the requirement of bar).

" Bitfields generally require 4 byte alignment.

These rules are enforced to varying degrees on different hardware platforms. To ensure porta-
bility, always declare padding explicitly:

struct
{

int8 bar;
uint8 _padl;
uintl16 _pad2;
int32 baz;

} foo;

The alignment requirements of libeditor's basic types are as follows:

int8 1

uint8 1

int;6 2

uint6 2

int32 4

uint32 4

float32 4

float64 8

4 LibEditor Programmer's Guide

PointDescription

4

MunitionQuantity
4

Obj ectIDType
2

1.3 Editor Definition

An editor is defined by a series of editables. Each editable has a name, a type, a storage
location (which is a reference back to a name listed in the struct part of the data file), and other
configuration data. For example, the editor definition for a text object editor might look like this:

(editor ("Location" PLACE location)
("Color" CHOOSE.ONE color HIDE EDT.OVERLAY.COLORS)
("Overlay" OVERLAY overlay)
("Text" STRING text S length))

There are currently 16 different types of editables, which are described in the following sections.

Note that in the usage syntax used below, [indicates an optional field, I indicates a choice
between two or more values, and {} indicates a list of values.

1.3.1 ALTITUDE

Usage

(<name> ALTITUDE <storage>)

Internal Representation
Meters.

Description
An altitude. The user can specify distance in meters, kilometers, feet, miles, or nautical
miles.

1.3.2 ANGLE

Chapter 1: Overview 5

Usage

(<name> ANGLE <storage> [<ccy bound> <cv bound>])

Internal Representation
Zero refers to North, and the value increases in a counter-clockwise direction. The
units are either:

" BAMs, if stored in an :nteger type

* Radians, if stored in a floating point type

Description
An angle. User has choice of specifying in degrees, mils. or compass units. If specified,
the counter-clockwise bound (<ccv bound>) and clockwise bound (<cv bound>), which
should be an integer in degrees. are represented on the display but not enforced.

1.3.3 CHOOSE-ONE

Usage

(<name> CHOOSE.ONE <storage> SHOWIHIDE
(<choice name> <choice value> [<color name>]) }

)

Internal Representation
Integer or floating point value of current choice.

Description
A choice of one item from a list of choices. The editable can be configured such that
all choices are presented (SHOW), or with only the current choice shown (HIDE). If a
color name is given, that color will be used for the background color of the choice (this
is used in the pre-defined macro EDTOVERLAYCOLORS for a list of standard overlay
colors).

Note that it is possible to use CIHOOSE.ONE to specify a choice from a number of libreader
symbols, as opposed to integer or floating-point values. To do this, the structure definition in the
program would be specified as:

struct foo

char *symbol;

and the structure definition i ' jjfittr definition file would be specified as:

I
I

6 LibEditor Programmer's Guide

(struct

(symbol uint32)

)

Then, strings may be specified for <choice value>, (as well as in initialization section of the

editor definition file), as follows:

(editor

("Symbol" CHOOSE-.ONE symbol HIDE
("Labell" "symbol-valuel")
("Label2" "symbol-value2")

)
)

The CHOOSE-ONE editable type also will correctly handle the case where the target structure
type is an array of characters, and the value is a string:

(struct

(symbol uint8 30)

)

(initial

(symbol CONSTANT "uymbol-valual")

)

1.3.4 CHOOSE-SOME

Usage

(<name> CHOOSE-SOME <value storage> <length storage> SHOWIHIDE
{ (<choice name> <choice value> [<color name>]) }
)

Internal Representation

Array of integer or floating point values which were selected, and the number of elements
of that array which are used.

Chapter 1: Overview 7

Description

DA choice of several items from a list of choices. The editable can be configured such
that all choices are presented (SHOW), or with only the current choice shown (HIDE). If
a color name is given, that color will be used for the background color of the choice.
The values of all the selected values are placed in successive position in the <value
storage> array. The number of items chosen is placed in the <length storage>.

Note that CHOOSE.SOME can be used to choose values from a number of libreader symbols, as in
CHOOSE-ONE (see Section 1.3.3 [CHOOSE'ONE], page 5).

1.3.5 DATE

Usage
(<name> DATE <storage>)

Internal Representation
Seconds since 1970 ("unix" time).

Description
A date. The user specifies the month, day, and year.

1.3.6 DRAW-AREA

Usage

(<name> DRAW-_AREA <storage>)

In ternal Representation

An X widget

Description

A drawing area widget is returned in the storage area.

1.3.7 DISTANCE

Usage

(<name> DISTANCE <storage>)

Internal Representation

Meters.

8 LibEditor Programmer's Guide

Description
A distance. The user can specify distance in meters, kilometers, feet, miles, or nautical

miles. It can also be specified by dragging on the map.

1.3.8 FUEL

Usage

(<name> FUEL <storage> [<requisite>)

Internal Representation
Liters.

Description
A quantity of fuel. The user can specify liters, gallons, or pounds. If a requisite is
specified, the Fuel display will only appear if that structure member has a value.

1.3.9 LABEL

Usage

(<name> LABEL <storage>)

Internal Representation
A NULL-terminated string.

Description

An output-only string. This provides a facility for editors to provide descriptive text
to the user.

1.3.10 LINE

Usage

(<name> LINE <value storage> <length storage>)

In tern at Representation

Array of PointDescriptions.

Description
A multi-segment line. The user clicks out a line on the map, and can edit it in a variety
of ways. The points are placed in successive slots of the <value storage> array (which

must be declared type PointDescription). The number of points is placed in the
<length storage>.

Chapter 1: Overview 9

1.3.11 MUNITIONS

Usage

(<name> MUNITIONS <storage> [<requisite>])

Internal Representation

Array of MunitionQuantitiess.

Description

A list of munitions. The user may change the value associated with each munition,

but not the type. A U is entered for unlimited supplies. When a U is entered, the

internal representation becomes the negative of the current value. The last current value

becomes the amount of the munition, but the negative sigi Aes it is never decremented.

The munitions are placed in successive slots of the <st. eage> array (which must be

declared type MunitionQuantity). Unused slots use the invalid munition code 0. If a

requis ite is specified, the Munition display will only appear if that structure member

has a value.

1.3.12 OBJECT

Usage

(<name> OBJECT <storage> [ONESHOTINOCANCEL) [POINTSTYLE <style>]

{objectClass...})

Internal Representation

ObjectID.

Description

A persistent object. The user may select any object on the map which is in one

of the specified classes. If no object is chosen, the value 0/0/0 will be stored. If

ONESHOT is specified, the value will be set back to 0/0/0 immediately after the render

function is called (this allows an editor to pick many objects, which the application

then keeps track of). If either ONESHOT or NOCAICEL is specified, no Cancel Choice

button will be provided. If POINTSTYLE is specified, then the next value should be the

type of point which is created by the system in response to a user map click (provided

objectClassPoint appears in the list of classes. The <storage> must be an array of

three intl6s.

1.3.13 OVERLAY

Usage

10 LibEditor Programmer's Guide

(<name> OVERLAY <storage>)

Internal Representation
ObjectiD.

Description
An overlay. The user may select an existing overlay, or create a new one. Attributes

of the overlay may also be edited. If no overlays exist when the editor comes up, one
is created. The <storage> iust be an array of three intl6s.

1.3.14 OVERLAYDISPLAY

Usage

(<name> OVERLAY.DISPLAY <value storage> <length storage> SHOWIHIDE)

Internal Representation
Array of ObjectlDs of overlays that are selected, and the number of elements of that
array which are used.

Description
A choice of several overlays selected from a list of overlays. The editable can be config-
ured such that all choices are presented (SHOW), or with only the current choice shown
(HIDE). The objectIDs of all the selected overlays are placed in successive positions in
the <value storage> array. The <value storage> array must be declared as an array
of ObjectlDs. The number of items chosen is placed in <length storage>.

1.3.15 PLACE

Usage

(<name> PLACE <storage>)

Internal Representation

Two-dimensional TCC location (either two integer, or two floating point numbers).

Description
A place. The user may I% r)' a location in X/Y, Latitude/Longitude, or UTM coordi-
nates, or may select a 14w.llon on the map. The <storage> must be an array of at
least two elements.

1.3.16 SCALE

Chapter 1: Overview 11

Usage

(<name> SCALE <storage> LSHOWIHIDE] [<min label> <max label>
[frin val> fmax val> [<units>]]])

In ternal Representation

Number.

Description
A number. The editable can be configured such that the current value is shown numer-
ically and graphically (SHOW), or only graphically (HIDE). The user can adjust the value
by moving an indicator, or (if SHOW) by typing a value (much like the ANGLE widget).

The minimum and maximum ends of the scale are labeled with the <min label> and
<max label> strings, if specified. The scale defaults to a range of 0.0 to 1.0, un.
less a different <min val> and <-ax val> are specified (these should be floating point
numbers). Finally, for scales configured to SHOW their value, if a string is specified for
<units> (such as "1" or "deg/sec"), this will be displayed to the right of the value.

1.3.17 SORT

Usage

(<name> SORT <value storage> <length storage> [<omit storage>]
{ (<choice name> <choice value>) }
)

Internal Representation
Array of integer or floating point values in sorted order, the number of elements of that
array which are used, and (optionally) the index of the first element which is to be

omitted.

Description
A sorted list. The user is presented with a list o- - soi- e and may move them up or
down relative to one another. If an <omit storage, provided, an omit line will be
presented which may be exploited by the user to indicate that some choices are to be
omitted (whatever that might mean to an application).

1.3.18 SPEED

Usage

(<name> SPEED <storage>)

Internal Representation
Meters/Second.

12 LibEditor Programmer's Guide

Description
A speed. The user may specify a value in meters/second, km/hour, feet/second,

miles/hour, knots or mach.

1.3.19 STEALTH

Usage

(<name> STEALTH <storage>)

In ternaJ Representation
Vehicle ID.

Description
A stealth or stealth preview. The user may select a stealth from the map. If no object
is chosen, the value 0 will be stored. The <storage> must be an int32.

1.3.20 STRING

Usage

(<name> STRING <value storage> <lines> [<length storag.>])

Internal Representation
A N LL-terminated string.

Description
A string. The user may type up to the number of characters which will fit in the passed
<value storage (which must be an array), leaving at least one element for NULL
termination. The <lines> attribute indicates how many lines should be presented for

text entry (multi-line text windows are scrollable). If specified, the <length storage>
will be filled with the length of the string, including the NULL terminator.

1.3.21 TIME

Usage

(<name TIME <storage>)

Internal Representation
Seconds.

I

Chapter 1: Overview 13

Description
An absolute or relative time. The user may specify a time with up to second resolution.
It is up to the application to decide whether to treat this time as a relative or absolute
quantity.

1.3.22 TOGGLE

Usage

(<name> TOGGLE <storage>)

In terna) Representation
0 or -1

Description

A True or False value. The user is given a toggle button which can be set on or off.

1.3.23 VECTOR

Usage

(<name> VECTOR <storage>)

Internal Representation
Two two-dimensional TCC locations (either four integers, or four floating point num-
bers).

Description
A map click-and-drag. The user clicks on the map for the first location and drags out
to the second location. This is provided to facilitate building tools which use such
gestures as their input.

1.3.24 VEHICLE

Usage

(<name> VEHICLE <storage>)

In ternal Representation
Vehicle ID. If storage is an array of three int16s, the full 48 VehiclelD will be stored,

otherwise the 32 bit hashed id will be used.

14 LibEditor Programmer's Guide

Description

A vehicle. The user may select a vehicle from the map. If no object is chosen, the value
0 will be stored. The <storage> must be an int32.

1.4 Initialization Rules

Each field in the struct part of the editor must be initialized. For example:

(initial (foo CONSTANT 0)
(bar FORCE "You must provide a bar")
(baz REFERENCE bar)
)

The initialization method must be specified as one of the following:

CONSTANT (<storage> CONSTANT {<values>})

A constant value.

FUNCTION (<storage> FUNCTION <function>)
The system initializes the value by calling a function. The function names currently
recognized are:

current.date

Gets the current date. Only may be used with DATE editable.

curren.t ize

Gets the current time. Only may be used with TIME editable.

FORCE (<storage> FORCE <help message>)
Forces the user to provide a value. The help message is displayed at the bottom of the
screen in a distracting manner.

REFERENCE

(<storage> REFERENCE <storage>)

References another storage location. If that storage location is initialized with FORCE,
the value will be copied after the user has give the referent value.I

1.5 Rendering Information

The last part of an editor definition is the render list. It specifies the names of storage locations

which, when changed, should cause the object to be redrawn (the application provides a drawing

function to libeditor at create time). For example:

Chapter 1: Overview 15

(render foo bar)

In addition, the application may use the following reserved words in the render list:

APPLY Indicates that an 'Apply' button should be provided which the user can click on to

trigger a redraw.

REVERT Indicates that an 'Revert' button should be provided which the user can click on to

revert to initial values, and triqer a redraw.

EXPOSE Indicates that the application needs to redraw when the map is refreshed or exposed

(this would be true of anythingi which drew directly on tile map widget).

NOINIT Indicates that the editor should only be initialized once. Thereafter, the editor will
resume with exactly the confi-guration it was left with when last exited. This is useful

for editors which always operate on a single set of data.

16 LibEditor Programmer's Guide

Chapter 2: Usage 17

2 Usage

The software library 'libeditor. a' should be built and installed in the directory
'/common/lib/'. You will also need the header file 'libeditor.h' which should be installed in the
directory '/common/include/libinc/'. If these files are not installed, you need to do a 'make' in
the libeditor source directory. If these files are already built, you can skip the section on building
libeditor.

2.1 Building Libeditor

The libeditor source files are found in the directory '/coumon/libarc/libeditor'. 'RCS' format
versions of the files can be found in '/nfs/comonsrc/libsrc/libeditor'.

If the directory 'comon/librc/libeditor' does not exist on your machine, you should use
the 'gonbuild' command to update the common directory hierarchy.

To build and install the library, do the following:

cd common/libsrc/libeditor
co RCS/*,v
S make install

This should compile the library 'libeditor.a' and install it and the header file 'libeditor.h'
in the standard directories. If any errors occur during compilation, you may need to adjust the
source code or 'Nakef ile' for the platform on which you are compiling. libeditor should compile
without errors on the following platforms:

* Mips

* SGI Indigo

* Sun Sparc

2.2 Linking with Libeditor

Libeditor can be linked into an application program with the following link time flags: 'ld
[source . o files] -L/common/lib -leditor [many other NodSAF libraries]'. If your compiler
does not support '-L' syntax, you can use the archive explicitly: 'ld [source .o files] /common/lib/libedi

18 LibEditor Programmer's Guide

Libeditor depends on libcallback, libcoordinates, libpo, libquad, libreader, libsafgui, libsensitive,
and libtactmap.

2.3 Examples

The test program, 'test . c', and its data file, 'test . rdr', give a complete example of how to
define editors. See those files for example usage.

C1,apter 3: Functions 19

3 Functions

The following sections describe each function provided by libeditor, including the format and

meaning of its arguments, and the meaning of its return values (if any).

3.1 edt-init

void edtinit(directory, reader-flags)
char *directory;
uint32 reader-flags;

'directory'
Specifies directory where configuration file can be found

'reader-flags'

Specifies reader options (see section 'reader-read' in LibReader Programmer's Manual)

edt.init initializes libeditor, causing it to read its data file ('aditor.rdr') from the passed
directory. The return value is zero if the read succeeds, or one of the libreader return values
(READERREADERROR, READERFILE.NOT.FOUND) if it fails.

3.2 ed t -set -sensitive-class

void edt.set.sensitive.class(gui, type, class)
SGUI.PTR gui;
EDTSENSITIVETYPE type;
SNSTVE.CLASS *class;

'gui' Specifies the GUI
'type' Specifies which sensitive class is being specified

'class' Specifies the class which represents that type for this GUI

edt-set.sensitiveclass sets the class structure used by al editors to interact with a class

of senstitive objects. This class should be initialized by the caller with SNSTVEINIT.CLASS (see

section 'Class Definition' in LibSensitive Programmer's Manual).

I

20 LibEditor Programmer's Guide

Since many dit.*-.ent libraries define objects which editors are interested in, and since most of
those libraries will themselves depend on libeditor, it makes the most sense to have this information
set globally, from the top-down. In cases where no sensitive class information has been given for a
particular class, the editors will merely not support map interaction with those objects.

The type should be one of the following:

Terrain Classes
EDT-ROADS

Persistent object classes

(Note that user-data should point to ALLOCd ObjectlD structure.)
EDT-POINT, EDT-LINE, EDT-SECTOR. EDT.TEXT, EDT-UNIT, EDT-TASK, EDT.TASKFRAME

Simulation classes
(Note that user.data should be vehicle ID)
EDTVEHICLE, EDTSTEALTH

3.3 edt-offerdefault-object

void dt.offer.default-object(gui, obj.id)
SGUI.PTR gui;
ObjectID *objid;

'gui' Specifies the GUI
'obj.id' Specifies the object ID

edt-offer.default-object offers a default object to the next editor which is resumed. This
object will be accepted if the editor is forcing the selection of an object, and the offered object is
of a type acceptable for the OBJECT editable.

3.4 edt-create

EDT.EDITOR.PTR edt-create(dofinition, sizeof-structure,
render.fcn, render.arg,
* it..fcn. exit-arg, leave.mode,
gui, tactmap, tcc, map.erasegc,
3ensitive, refresh-event, db)

READER.UNION *definition;

Chapter 3: Functions 21

uint32 sizoofstructure;
EDT.RENDER.FUNCTION render-fcn;
ADDRESS render_ arg;
EDTEXIT.FUNCTION exit..fcn;
ADDRESS exit._arg;
int32 leave-mode;
SGUIPTR gui;
TACTMAPPTR tactmap;
COORDTCC.PTR tcc;
GC map.erase-gc;
SNSTVEWINDOW.PTR sensitive;
CALLBACKEVENT.PTR refresh-event;
PO.DATABASE *db;

'definition'
Specifies the definition of the editor in libreader format

'sizeof-structure'

Specifies the size of the data structure which is edited

'renderdrcn, render-arg'

Specifies a function (and argument) which is called to render the data being edited

(may be NULL)

'exit-.fcn, exit.arg'

Specifies a function (and argument) which is called when the editor is exited (may be

NULL)

'leave-mode'

Specifies whether the current SGUI mode whould be exited when the editor is exited
'gui' Specifies the GUI

'tactmap' Specifies the tactical map

'tcc' Specifies the mapping coordinate system

'map-erase.gc'

Specifies the GC used to erase things from the map (provided by llbtactmap)

'sensitive'

Specifies the sensitive window

'refresh-event'

Specifies the event which fires when the map is refreshed

'rib' Specifies the P0 database

edt.create creates an editor. The design of the editor is specified in the passed definition. The

software ensures at create time that the data described in the definition file correlates with the

intended structure by comparing the sizes. The editor will load up with the initial values specified

22 LibEditor Programmer's Guide

in the data file, but will remain unmanaged until started by edt.state. The 1eave-.mode flag
indicates whether the editor should exit the passed mode when the user clicks 'done' or 'abort'.

The render function should be declared as follows:

void render(editor, transient, old-data, newdata, arg)
EDTEDITORPTR editor;
int32 transient;
ADDRESS old.data;
ADDRESS newdata;
ADDRESS arg;

The transient flag indicates whether the rendering is the result of a transient operation (such
as draging the mouse). Libeditor guarantees that after a transient operation is finished, render will
be called once more with the transient flag set to FALSE..

The old-data and newdata are old and new versions of the data being editing. The old version
should be used to erase the existing rendition, and the new version should be used to draw.

The arg is whatever was passed to edt-create as the render.arg.

The exit function should be declared as follows:

void exit.function(editor, data, arg. status)
EDTEDITORPTR editor;
ADDRESS data;
ADDRESS arg;
EDT.EXIT.STATUS status;

The data is the final version of the data which was edited. If the user clicked 'Abort', this will
be the same as the initial version.

The arg is whatever was passed to edt-create as the exit.arg.

The status is one of the following:

EDT-DONE The user clicked 'Done' or the user clicked on the arrow icon and no forced choices were

outstanding.

EDT-ABORT
The user clicked 'Abort' or the user clicked on the arrow icon and forced choices were

Chapter 3: Functions 23

outstanding.

3.5 ed t -create -defaults -editor

EDT.EDITOR.PTR edt-createdefaults-editor(gui, exit.fcn, exit.arg)
SGUI.PTR gui;
EDT.EXIT.FUNCTION exit.fcn;
ADDRESS exit.arg;

'gui' Specifies the GUI
'exit-.fcn, oxit.arg'

Specifies the function to call at exit

edt-create.defaults.-editor creates the libeditor user preferences (defaults) editor. This
editor allows customization of default units for many editable types.

3.6 edtcreate.profile-menu

void edt-create.profile-menu(gui, dialog-parent, dir)
SGUIPTR gui;
Widget dialog.parent;
char dir];

'gui' Specifies the GUI
'dialog-parent'

Specifies the widget which should parent libxfile dialogs

'dir' Specifies the directory where profiles are stored

edt-createprofile-enu create the user profile menu, which allows the user to save/load the
contents of the user preferences (defaults) editor.

3.7 edt.Joad

void edtload(editor, data, size)
EDT.EDITOLPTR editor;

24 LibEditor Programmer's Guide

ADDRESS data;
uint32 size;

'editor' Specifies the editor

'data' Specifies the data
'size' Specifies the size of the data

edt.load loads the passed data into the editor. If you pass NULL for the data, it reloads the
editor with the initial values.

3.8 edtJoad-reader

void edt.load.reader(editor, count, data)
EDTEDITOR.PTR editor;
int32 count;
READER-UNION *data;

'editor' Specifies the editor
'count' Specifies the number of initialization parameters (typically

read.data.array[O].integer - 2)

'data' Specifies the initialization parameters (typically &read.data. array [2J)

edtload.reader loads the passed libreader format data into the editor for subsequent initial-
ization. This initialization overrides the initialization parameters originally given the editor. Fields
which are not specified retain their original initialization methods and values.

3.9 edt-etjfield

void edtse.tfield(editor, member-offset, addr, size)
EDT.EDITORLPTR editor;
uint32 member-offset;
ADDRESS addr;
uint32 size;

'editor' Specifies the editor
'member.oftfset'

Specifies the byte-offset of the field which is to be changed

Chapter 3: Functions 25

'addr' Specifies the address of the new value

'size' Specifies the size of the new value

edt.set.field initializes a single field of a running editor. as though the user had specified
that field. The format of the provided value must the be same as the storage format of that field
in the edited data structure.

3.10 edt.apply-offset

void adtapply-offset(editor. member.offset, index, dx, dy)
EDL.EDTORPTR editor;
uint32 member.offset;
int32 index;
int32 dx, dy;

'editor' Specifies the editor

'member.offset'

Specifies the byte-offset of the field which is to be changed

'index' If changing a line, specifies the index of the point to be changed

'dx, dy' Specifies the amount of change (in pixels)

edt.applyof fet incorporates the user's initial drag into the currently edited graphic, as
though the drag had occurred in the context of the editor. The member.offset identifies which
member of the structure the offset should be applied to (if not a PLACE or LINE editable, nothing
will happen). The index field specifies (for LINEs only) which vertex should be offset; -1 indicates
movement of the whole object.

3.11 edtstate

void edt.stato(editor, mode. state)
EDT.EDITORPTR editor;
SGUI-MODEPTR mode;
SGUI.NODE.STATE state;

'editor' Specifies the editor

'mode' Specifies the mode a.. . Itlz the state (used for display of help messages)

1

26 LibEditor Programmer's Guide

'state' Specifies the new state

edt.state sets the state of an editor to one of the libSAFGUI states (ACTIVE, SUSPENDED.
RESUMED, INACTIVE).

See section 'sgui-add-mode' in LibSAFGUI Programmer's Manual.

3.12 edt-query

int32 edt.query(editor, value)
ED r.EDITOR.PTR editor;
ADDRESS value;

'editor' Specifies the editor
'value' Returns the editor values

edt.query gets the current values of the object being edited. The return value is 1 if any forced
choices are still unresolved, 0 otherwise. This may be called when the editor is inactive.

3.13 edt.name

char *edt.name(oditor)
EDTEDITORPTR editor;

'editor' Specifies the editor

edt-name returns the name of the editor.

3.14 edt-get-references

void edt.get-references(editor, data, refcount, references)
EDT.EDITR_.PTR editor;
ADDRESS data;
uinta8 *refcount;
ObjectID references [;

I

Chapter 3: Functions 27

'editor' Specifies the editor

'data' Specifies the data which contains the references

'ref count'

Returns the number of ObjectlD references made by the editor

'references'

Returns the ObjectlD value for each reference made in the passed data

*dt.get.references finds all the ObjectID's referenced in the passed data structure and copies

them into the passed array. This can be used to fill in the references list in a Task Class object.

3.15 edtlformat

uint32 edt..format(gui, output, format, args...)
ADDRESS gui;
char output [];
char format [;
args...

'gui' Specifies the GUI (declared as an ADDRESS so libraries needn't specifically depend

upon libSAFGUI)
'output' Returns the formatted string

'format' Specifies the output format

'args...' Specifies format arguments

edt-format is like sprintf, in that it generates a formatted output based upon a format string,

and a set of arguments. Whereas sprintf uses % to specify output tokens, edt._format uses #.

Values are output in a manner appropriate given the user's GUI preferences (UTMs vs Lat/Long,

for example). The return value is the length of the formatted string. The recognized tokens are as

follows:

Altitude

Token Sh

Argument float64

Units Meters

Example "28000 feet"

Angle

Token #a

...-

28 LibEditor Programmer's Guide

Argument feloat64

Units Radians

Example "35 degrees"

Distance

Type #d

Argument feloat64

Units Meters

Example "150 feet"

Fuel

Type If

Argument float64

Units Liters

Example "2000 lbs"

Location

Type #1

Argument COORD.TCC.PTR float64 float64

Units Meters (X, Y)

Example "16SES45005500"

Object

Type #o

Argument PO.DATABASE * ObjectID.

Example "Task Frame 'Fly On Route'

Speed

Type #2

Argument float64

Units Meters/Second

Example "mach 1. 1"
Vehicle

Type #v

Argument VehicleID *

Example "All (15)"

Also, the following tokens are provided to avoid the need to use both edt-format and sprintf:

Float

Chapter 3: Functions 29

Token #G

Argument float64

Same as %g

Integer

Token #D

Argument int32

Same as %d
~String

Token
#S

Argument char*

Same as %a

3.16 ed tpvd -defaults

void edt-pvd.default (gui, result)
SGUI.PTR gui;
EDT.PVDDEFAULTS *result;

'gui' Specifies the GUI
tresult' Returns the settings

edt.pvd.defaults returns user preferences (defaults) editor choices related to PVD operation.

3.17 edt.color..choice

void edt.colorchoice(editor, pretty-name, value, color)
EDT.EDITORPTR editor;
char *pretty-name;
int32 value;
Pixel color;

'editor' Specifies the editor
'prettyname'

Specifies a libreader symbol, which identifies the editable
'value' Specifies the value associated with the choice to be colored

30 LibEditor Programmer's Guide

'color' Specifies the desired color.

edt.colorchoice sets the foreground color of a button in a CHOOSE-ONE or CHOOSE-SOME
editable. The pretty.-name should be a libreader symbol which corresponds to the name of the
editable in the editor section of the definition file (see Section 1.3 [Editor Definition], page 4).

3.18 edt-editor-empty

int32 edt.editor-.empty(editor)
EDTEDITORPTR editor;

'editor' Specifies the editor

edt editor-.empty returns TRUE it the editor has no editables.

I

i

Chapter 4: Events 31

4 Events

The following sections describe each event provided by libeditor.

4.1 edt..defaults..callback

CALLBACX-EVENT-.PTR edt..defaults-.cafllback;

The edt-.defaults-.callback event fires in response to the user changing the settings of the
defaults editor.

The handler should be prototyped as follows:

void handler(gui)
SGUI-PTR gui;

See Section 3.16 [edtpvddefaultsj, page 29.

32 LibEditor Programmer's Guide

Chapter 5: X Resource Definitions 33

5 X Resource Definitions

Many attributes of the fields which make up an editor are specified via the X resource database.
These can be overridden for individual fields in individual editors, to customize the interface beyond
its default appearance.

In general, a resource override should be formatted as follows:

*. SAFGUI. *. Editor. *. Editor Name. *. Field Name. *. [Component Name]. Attribute: Value

For example, to change the label on the object button for the unit field in the mission assignment
editor:

I *.SAFGUI.*.Editor. *.Mission Assignment.*.Unit.*.ObjectButtonlabolString:

Select Unit from Nap

To change the help string associated with this editable:

.SAFGUI..Editor.*.Mission Assignment.,.Unit.*.Help: \
Select a unit from the map (valid choices are hot).

As these examples show, the component name of the field is only needed when the resource
would otherwise be ambiguous (it is needed for the first example because both the ObjectButton

and the Cancel Choice members have a labelString attribute).

I
I

I

34 LibEditor Programmer's Guide

Chapter 6: Defining New Types 35

6 Defining New Types

One design goal of libEditor is that the user is never confronted with raw data types (such as
"a number"). It is much better if the input is requested in a way specifically designed for the
parameter being specified (such as "a speed"). It seems likely that as the program expands, we
will find continue to find more types of quantities that can be edited. This chapter give step by
step instructions for adding a new type.

Note that it if you choose to use a built-in Motif widget class (such as xmToggleButtonWid-
getClass), you must call the function edt.focus-fix on the created widget. This is to correct a
problem with Motif focus management (clicking in a widget which already has the focus pushes the
focus into an adjacent widget). Custom widgets (such as the edt-dateWidgetClass) do not need
this function called on them at create time. because they explicitly prevent the problem in their
implementation using a construct like:

if (!_XmFocuIlsHere((Widget)v))
XmProcossTraversal((Widget)v, XmTRAVERSE.CURRENT)

in their focus-accepting methods.

The procedure described is relatively simple, since it does not require map input, a unique input
widget (it is assembled from text & toggles), or any special map display methods. To create a
widget with these features, first follow the instructions below, then find another editable (such as
PLACE or ANGLE) to use as an example for the other features.

I. Name the type. Choose a name which is short and descriptive.

2. Add the necessary types and prototypes to 'libedtlocal.h'. Each widget type has its own
section in this file, add the new one joist before the comment:

/* ADD NEW TYPES HERE "I

3. Define any necessary enumerated types and prototype the create and set-value functions.

4. If the editable supports different units. add them to the EDT.DEFAULTS data structure.

5. Add the name of the new type to thme EDT.CLASS enumerated type (put it in alphabetical
order).

6. If the editable will support any pxrial configuration parameters (display options, etc.), create
a EDT..<clasa>CONFIG stroo tmr tir iltdl them, just prior to the comment:

I* ADD NEW CONFIGS HERE */

Then add that to the config m -,mim-r)f the EDT.EDITABLE structure.

36 LibEditor Programmer's Guide

7. Update the file 'editor.rdr' to include the new units. Be sure to add the new field to the

struct, editor, initial and render lists.

8. Update the functions save.profile and load.profile in 'edt-profile.c' to include the

new units.

9. Next, add co-e to 'edt.init.c' to recognize and create the new type. Find the comment:

/* ADD NEW SYMBOLS HERE */

and add a variable to the list (in alphabetical order) for the new type. Add the initialization

for that type, just below. Finally, add the new type to the if-else-if chain a little farther

down.

10. If the editable requires a certain type of storage (must be an integer, for example), add a check

for that before the comment:

/* ADD NEW CHECKS HERE *I

11. If the editable supports special configuration, add the necessary parsing before the comment:

/* ADD NEW CONFIG PARSING HERE */

12. Add a case to the switch in the function create-widget to create the new widget type. Put

it in alphabetical order.

13. Next, add code to 'edtstate. c' to initialize the new type. Find the comment:

/* ADD NEW INITIALIZATION HERE */

and add a case to the switch to initialize the new type. Note that at this point the values have

already been converted into every necessary format, so just use the one which is appropriate

for the new editable.

14. Create a file in which to define the new widget 'edt-_type> . c'. This is fairly easy if you start

with a similar widget definition file as a prototype, and use case-insenstive string replace to

customize it.

15. Add necessary resources for this new widget to 'editor. xrdb'. This should include a help

string, and probably some layout information (again, find a similar widget and copy it).

16. Add a description of the new editable type to the Editor Definition section of

'libeditor. texinfo'.

17. Add the new file to the 'Makefile'.

18. Test the new editable by adding it to the test editor defined in 'test. rdr' and 'test. c'.

i
I
i

I ADST-TR-W003 268

LibEntity

Table of Contents

I O v e r v ie w ... 1

2 E x a m p le s ... 3

3 F u n ctio n s ... 5

3.1 entinit .. 5
3.2 entsetninmumpbt-error .. 5
3.3 ent.get..minimum.pbterror ... 6
3.4 ent.set-.battle-schem e ... 6
3.5 ent.classinit ... 7
3.6 ent.create ... 7
3.7 ent.destroy ... 8
3.8 ent-tick ... 8
3.9 ent-packet-received ... 9
3.10 ent.set _exerciseid ... 9
3.11 ent-activate .. 10
3.12 ent-deactivate .. 10
3.13 ent-active ... 11
3.14 ent.clear.thresh.stats ... 11
3.15 ent-print-thresh stats ... 11
3.16 ent.convert-location.to-dis ... 11
3.17 ent.convert-velocity-to.dis ... 12
3.18 ent-convert.]ocationJromds .. 12
3.19 ent.convert-velocity-from-dis .. 13
3.20 ent-format-location ... 14
3.21 ent.set.vehicle.class ... 14
3.22 ent.set~forceid ... 14
3.23 ent.set-uises .. 15
3.24 ent.set.m arking ... 15
3.25 ent.set.position ... 16
3.26 ent.set.rotation ... 16
3.27 ent.setorientation ... 17
3.28 ent.set-.appearance .. 17
3.29 ent.set-appearance.bits .. 18
3.30 ent.unset.appearancebits .. 18
3.31 entset..capabilities ... 19
3.32 ent-setengine-speed .. 19

ii LibEntity Programmer's Guide

3.33 ent.set-velocity .. 20
3.34 ent..set.artic-value .. 20

3.35 ent-set.artic.rate ... 21

3.36 ent.get.exercise-id ... 21

3.37 ent.get_vehicle-class .. 21

3.38 ent-get.lorce-id .. 22
3.39 ent.get-guises ... 22
3.40 ent-getguise .. 23
3.41 ent.get.m arking ... 23

3.42 ent.get-position ... 24

3.43 ent.get-rotation ... 24
3.44 ent.get-orientation .. 24

3.45 ent-getdirection ... 25
3.46 ent.get.-appearance ... 26
3.47 ent.get.capabilities .. 26
3.48 ent-get-engine.speed ... 27
3.49 ent.get.velocity ... 27
3.50 ent-getspeed.squared ... 27
3.51 ent-get.speed .. 28
3.52 ent-getstationary .. 28
3.53 ent-getartic euler .. 29
3.54 ent-get.artic.euler.ate ... 29
3.55 ent.get.artic-pivot .. 30
3.56 ent.get.artic _position ... 31
3.57 ent-get.artic-rotation ... 31
3.58 ent.get-.turret-.articulation ... 32
3.59 ent-get-rotationsp .. 32
3.60 ent-get-velocity-op .. 33
3.61 ent.get-physdb ... 33
3.62 ent.get.atitudea4 ... 34

3.63 ent-getdis.guises ... 34
3.64 ent.get-dislocation ... 34
3.65 ent-et.dis velocity .. 35
3.66 ent-get is_orientation .. 35
3.67 ent.get.dis.-appearance ... 36
3.68 ent.get.dis.capabilities ... 36

4 Access Keys ... 37

Chapter 1: Overview 1

1 Overview

Libentity provides a uniform interface to all network entities represented within SAF. Entity is
a sub-class of each vehicle.

In addition to the bookkeeping functions to create, destroy, activate, etc., libentity provides a
collection of get and set functions for each of the entity state variables. This functions act as a lazy
evaluation buffer, which prevents conversions to or from network representation until absolutely
necessary, and then saves those converted values until they once again become out of date.

Note that libentity currently only supports getting DIS style data from an entity. In the future,
libentity may be modified to accept the setting of DIS style data for local vehicles, causing SIMNET
style data to be derived from the DIS data.

The entity sub-class of the vehicle is also responsible for maintaining that vehicle's location in
the position-based table. For local vehicles, this update occurs whenever the position is changed.
For remotes, this update occurs either (1) when a packet is received which modifies the remote
vehicle's position, or (2) when the RVA'd position of the vehicle exceeds a tolerable error threshold
from the position represented in the table.

Lazy evaluation of remote vehicle RVA is implemented to guarantee the following:

* Each remote vehicle is RVA'd no more often than once every full loop through the scheduler.

* Remotes are not RVA'd unless get.position is explicitly called, or RVA is necessary to update
the position-based vehicle table.

The parameters for an entity are used primarily for network interactions. They are as follows:

(SiLEntity (length-threshold <real percent>)
(width.-threhold <real percent>)
(height.threshold <real percent>)
(rotation.threshold <real degrees>)
(turret-.threuhold <real azimuth degrees>)
(gun.-threshold <real elevation degrees>)
(vehicle-class (int class>)
(guises <int primary gui.o> ;; What this thing really is

<int secondary guise> ;; A similary tbing with an
opposite country code

(send.dis.deactivate <true I false>)
)

2 LibEntity Programmer's Guide

The thresholds are used for dead reckoning, to indicate when a packet should be transmitted.
They are typically 10% and 3 degrees. The vehicle-class should be either vehicleClassSimple
or vehicleClassTank, depending upon whether the vehicle has a turret. Two guises must be pro-
vided - the primary guise, which should be accurate; and the secondary guise which should be a simi-
lar vehicle with a different country code (used in relative battle scheme battles). senddis.deactivate

is a boolean value indicating whether or not the entity should send a DIS.DEACTIVATE_REQUEST
pdu when the entity deactivates (under DIS). This will typcially be true for all vehicles except
missiles, since missile impacts provide an implicit deactivate under DIS.

Chapter 2: Examples 3

2 Examples

To set an entity's position:

*include 'libentity.h>

float64 porn;

ent-s.et-.porition(vehicle..id. porn);

To get an entity's position:

*include Clibentity .h>

float64 porn;
ent-et-.position(vehicle-.id. porn);

To get an entity's position and velocity via libaccess:

*include <libaccenrn.h>
*include Clibentity.h> I. To got key prototype S
#include Crtdezt.h> /* To got A-.END ~

float64 pon [3);
float64 v.l [3;

accernu.get (vehicl...id,
Gft-.position. porn.
*flt..vlocity, *Vol,

A..END);

4 LibEntity Programmer's Guide

Chapter 3: Functions 5

3 Functions

The following sections describe each function provided by libentity, including the format and

meaning of its arguments, and the meaning of its return values (if any).

3.1 ent-init

void ent.init(packet-valve, tcc, protocol, useatlas.variations)
PV.VALVEPTR packet.valve;
C00RD.TCCPTR tcc;
int32 protocol;
int32 use. atla-.. ariat ions;

'packet.valve'

Specifies the packet-valve to usc when sending packets.

'tcc' Specifies the terrain coordinate system

'protocol'

Specifies protocol in use (0 for SIMNET, DISPROTOCOLVERSION_* for DIS)
'usse_ atlas-variations'

Specifies whether to use the Atlas Elektronik protocol variations when communicating
with a DIS protocol. This impacts conversions of locations and velocities.

ent-init initializes libentity. Call this before calling any other libentity functions. The
packet-.valve is created with a call to pv.create.valve.

3.2 entset.minimumpbt.error

void ent.setminimum.pbt..rror(errorthreshold)
float64 error-threshold;

'errorthreshold'

Specifies the maximum error allowed between a vehicle's actual location and that used

in the position-based table.

ent.set.minimum.pbt-error reduces the allowable error (in meters) in the position-based table.

Only those remote vehicles which exceed this error will be RVA'd and updated in the position based

6 LibEntity Programmer's Guide

table. Calls which pass larger values than the current threshold are ignored. Until this error value

is set, no RVA will be done on behalf of the position-based table (RVA will be done, however, for

those vehicles which have their position queried).

3.3 ent-.getrn inimumpbterror

float64 ent-get-minimum.pbt,.error()

ent-get_minimum pbt.error returns the current error threshold being maintained by libentity
for the position-based table.

See (undefined) [ent'set'minimum'pbt'error], page (undefined).

3.4 ent..setJbattle-scheme

void entsuot.battlo.scheme(battle-schame)
uint8 battle-scheme;

I 'battle.scheme'

Specifies the new battle scheme (battleSchmelRelative or battleSchomeAbuolute).

ent.eat .battle.-achuem sets the battle scheme used to generate vehicle guises for local vehicles.
The PARAMETRIC-DATA used by an entity specifies two guises which are used to describe the vehicle,
one which actually represents the vehicle, and a similar one on the other side. For example, a

T72-M tank might be defined with the guises:

I (guises vehicleUSSRLT72M vehicleUSMN1)

or,

(guises vehicle.USSRT72M vehicleGermany.LE02)

IThe relationship cf this data to what goes out on the network is a function of both the global
battle scheme and the force of the given vehicle. The rules are as follows:

I . For relative battle scheme, if the force is:

I

Chapter 3: Functions 7

distinguished, other
The guises are used just as they appear in the PARAMETRIC-_DATA.

observer A US or German object type is selected for both guises.

target A USSR object type is selected for both guises.

* For absolute battle scheme, if the force is:

distinguished, other
The first guise listed in the PARAMETRIC.DATA is used for both guises.

observer A US or German object type is selected for the distinguished guise, and a USSR
object type is selected for the other.

target A USSR object type is selected for the distinguished guise, and a US or German
object type is selected for the other.

3.5 ent-class.jnit

void ent.class.init(parent.class)
CLASS.PTR parent-class;

'parent_ class'

Specifies the parent class of entity (probably safobj.class).

entclass-init creates a handle for attaching Entity class information to vehicles. The
parent.claas is one created with class-declare.class.

3.6 ent..create

void ent-create(vehicleid, parms, deactivate.fcn)
int32 vehicle-id;
ENTITYPARAMETRIC.DATA *parms;
void (*deactivate-fcn)(/* int32 vehicle-id */);

ivehicloid'

Specifies the vehicle-id of the vehicle to be created.

'parms' Specifies parametric data for the entity.

'deactivae.-fcn'

Specifies the function to call if the remote vehicle is deactivated.

8 LibEntity Programmer's Guide

ant-create creates the Entity class information for a vehicle and attaches it to the vehicle's
libclass user data. All vehicle start inactive. Local vehicles become active (start broadcasting
appearance packets) when ent..activate is called. Remote vehicles become active when their first
appearance packet is received. The argument 'parms' is only necessary for local vehicles. You may
pass NULL for this argument for remotes.

The deactivateicn is called when remote vehicles receive a deactivate request packet. It is up
to the creator of the instance to act on the deactivate.

Libentity keeps a five minute history of vehicles which it has deactivated (for whatever reason).
When entcreate is called with a vehicle-id which corresponds to a vehicle in this history, the
new vehicle is automatically initialized wit It the values from the previous incarnation. The position
is RVA'd forward to where the vehicle would be at the current time, had it not ceased to exist. This
functionality is provided to simplify simulation handoff. In other cases, the caller would normally
set all the fields of the entity appearance to override these default values.

This can be called for Any vehicle.

3.7 ent-destroy

void entdestroy(vehicle.id)
int32 vehicle-id;

'vehicle.id'

Specifies the vehicle ID.

*ntdestroy frees the Entity class information for a vehicle. For local active vehicles, a deac-
tivate will automatically be sent.

This can be called for Any vehicle.

3.8 ent-tick

void ent-tick(vehicle.id)
int32 vehicle-id;

Chapter 3: Functions 9

'vehicle.-id'

Specifies the vehicle ID.

ent.tick for remotes, manages timeouts and RVA. For locals, sends current appearance of

vehicle on network if warranted by RVA thresholding. This should be called no more often than

once per 67ms.

This can be called for Any vehicle.

3.9 ent.packet-received

void ent.packet.received(vehicle-id, packet)
int32 vehicle-id;
PVPACKET *packet;

'vehicl.id'

Specifies the vehicle ID.

'packet' Pointer to the packet received.

ent.packotreceived calls this function when a new appearance packet or a deactivate packet

is received off the network. The packet must be allocated using pv-buffer-allocate.

Receipt of an appearance packet will cause the update of the position-based table component

of the vehicle.

This can be called for Remote vehicles only.

3.10 ent.set -exercise-id

void ent.set.exercie.id(vehicleid, exercieeid)
int32 vehicle-id;
uint8 exerciseid;

'vehicle.id'

Specifies the vehicle ID.

10 LibEntity Programmer's Guide

'exerciso.id'
Specifies the exercise ID.

ent-.seut.exercise.id sets the exerciseid field of the entity. This may be called more than

once (to change exercises, for example).

This can be called for Local vehicles only.

3.11 ent.activate

void ent.activate(vehicle_ id)
int32 vehicle.id;

'vehicle.id'

Specifies the vehicle ID.

ent.activate allows appearance packets to be sent on the network for this vehicle.

This can be called for Local vehicles only.

3.12 ent-deactivate

void ent-deactivato(vehicle.id, reason)
int32 vehicle.id;
DeactivateReason reason;

'vehicle.id'

Specifies the vehicle ID.

entddeactivate prohibits transmission of appearance packets for this vehicle. It will send a
deactivate packet if the vehicle is not already inactive. The sent deactivate packet will be marked

with the supplied DeactivateReason.

This can be called for Local vehicles only.

Chapter 3: Functions 11

3.13 entactive

int32 ent.active (vehicle.id)
int32 vehicleid;

'vehicle. id'
Specifies the vehicle ID.

ent.active returns whether the vehicle is currently active (see (undefined) [ent'activate], page (un-

defined)).

This can be called for Any vehicle.

3.14 ent.clear-thresh-stats

void ent_cleaz'_.thresh-.stats ()

ent-clear-thresh.-tat8 resets all thresholding statistics to zero.

See (undefined) [ent'print'thresh'stats], page (undefined).

3.15 ent.printthreshstats

void ent-print .1threshs.tatu ()

ent-print-thresh-stats prints RVA thresholding statistics.

I

3.16 ent-convert.Jo cation -to_d isI
void ent-.convert.location.to.dis (vehicle.id, internal-location, dis.location)

int32 vehicle.id;
float64 *internal-location;
float64 *dis.location;

I
I

12 LibEntity Programmer's Guide

I
'vehicle.id'

Specifies the vehicle ID (or 0 if none available)

'internal-location'
Specifies a location in the internal format (TCC)

'dis.location'
Returns the same location in the DIS format (GCC or Atlas, depending upon how

libentity was initialized)

ant.convert-location-to.dis converts the passed location from internal to the DIS format.

This is provided as a convenience so libraries do not all have to hold on to the TCC.

3.17 ent-convert-velocity-to-dis

void ent.convert.velocityto.dis (vehicle.id, internal-velocity,
internal-location. din-velocity)

int32 vehicle.id;
float64 *internal.velocity;
float64 *internal-location;

float32 *disnvelocity;

'vehiclo.id'

Specifies the vehicle ID

'internal.volocity'

Specifies a velocity in the internal format (TCC)
'internal~location'

Specifies a location in the internal format (TCC) (pass a NULL pointer if none is

known)

'dis.volocity'

Returns the same velocity in the DIS format (GCC or Atlas, depending upon how

libentity was initialized)

ant.convert.velocityto-dis converts the passed velocity from internal to the DIS format.
This is provided as a convenience so libraries do not all have to hold on the transformation matrices.

NOTE: the diu.velocity is returned as float32 *, since that is how it is stored in DIS packets.

3.18 en t.convertJo cation..from _dis

I
I1

Chapter 3: Functions 13

void ent-.convert.location.from.dis(vehicle-id,
dis-location, internal.location)

int32 vehicle.id;
float64 *die.location;
float64 *internal.locat ion;

'vehicle.id'

Specifies the vehicle ID (or 0 if none available)

'die.location'

Specifies a location in the [)IS format (GCC or Atlas. depending upon how libentity
was initialized)

'internal-location'

Returns the same location in the internal format (TCC)

ent-.convert-.locaionfrom.dis converts the passed location from DIS to the internal format.
This is provided as a convenience so libraries do not all have to hold on to the TCC.

3.19 ent-convert-velocity-from _dis

void nt-.convert.vlocity.from.dis(vehicl.id, di.velocity,
internal-velocity, internal-location)

int32 vehicle, id;
float32 *dis-velocity;
float64 *internal-velocity;
float64 *internal.location;

'vohicle.id'

Specifies the vehicle ID

'diu.velocity'

Specifies a velocity in the DIS format (GCC or Atlas, depending upon how libentity
was initialized)

'internal.volocity'

Returns the same velocity in the internal format (TCC)

'internal.location'
Specifies a location in the inte'rnal format (TCC) (pass a NULL pointer if none known)

entconvert..velocity- from..dis ,o,,.wrt the passed velocity from DIS to the internal format.
This is provided as a convenience .- itahr. r.. do not all have to hold on the transformation matrices.
NOTE: the dis.velocity is piLs.,1 ., fl at32 s. since that is how it is stored in DIS packets.

14 LibEntity Programmer's Guide

3.20 entitorm atJo cation

char *ent-forat.location(vehicle.id, x, y)
int32 vehicle.id;
float64 x, y;

'vehicle.id'

Specifies the vehicle ID.
'x, y' Specifies the location

ent-format.location converts the passed location to a character string suitable for transmis-

sion in a radio message. Currently this will be as a UTM string, but in the future the output

format may become a parameter of the entity.

3.21 ent-set -vehicle -class

void ent.setvhicle.clas(vehicle-id, vehicle.class)
int32 vehicle-id;
VehicleClass vehicle-class;

'vehicle. id'

Specifies the vehicle ID.

'vehicle-class'

Specifies the new class (Static, Simple, Tank).

ent._set.vehicle-class is used to set the vehicleclass attribute of vehicle appearance. This

attribute is not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.22 en t.set-force..id

void nt-.set.force.id(vehicle.id, force.id)
int32 vehicle, id;
ForceID force-id;

Chapter 3: Functions 1

'vehicl...id'

Specifies the vehicle ID.

'force-.id'

Specifies the new force (distinguished, other, observer, target).

ant-set.forc...id is used to set the forceid attribute of vehicle appearance. This attribute is
not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.23 ent-.set-guises

void ent-.set-.guiseu (vehicle.id, guines)
int32 vehicl...id;
VehicleGuines *guinea;

'vehicle-id'

Specifies the vehicle ID.

&guises' Specifies the new guises.

ent-..u-c.guises is used to set the guises attribute of vehicle appearance. This attribute is not
translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.24 ent..set...marking

void out..set-jaarking(vehicle-.id, marking)
int32 vehicle-.id;
Vehicleffarking *uarking;

'vehicle-.id'

Specifies the vehicle ID.

'marking' Specifies the new marking.

16 LibEntity Programmer's Guide

ent.set.marking is used to set the marking attribute of vehicle appearance. This attribute is

not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.25 ent.set-position

void ent-set.position(vehicleid, position)
int32 vehicle.id;
float64 position[3];

'vehicle.id'

Specifies the vehicle ID.
'position'

Specifies the new position.

*nt.bet.poition is used to set the position attribute of vehicle appearance. This attribute is

not translated to network representations until absolutely necessary.

This function also updates the position-based table component of the local vehicle.

This can be called for Local vehicles only.

3.26 ent..set..rotation

void ent.set.rotation(vehicle.id, rotation)
in%32 vehicle~id;

float64 rotation[3] [3);

'vehicle.id'

Specifies the vehicle ID.
'rotation'

Specifies the new rotation.

*n%set rotation is used to set the rotation attribute of vehicle appearance. This attribute is

not translated to network representations until absolutely necessary.

Chapter 3: Functions 17

This can be called for Local vehicles only.

3.27 ent-set..orientation

void ent..et.orientation(vehicle-id. rotation, heading, pitch, roll)
int32 vehicle-id;
float64 rotation[3] [3);
float64 heading, pitch, roll;

'vehicle.id'

Specifies the vehicle ID.
'rotation'

Specifies the new rotation.

'heading'
'pitch'

'roll' Specifies the new orientation.

ent.set.orientation is used to set rotation and orientation attributes of vehicle appearance.

This attribute is not translated to network representations until absolutely necessary.

It is assumed that the passed orientation angles and rotation matrix are equivalent. Note that

although the rotation could be computed from the angles, or vice-versa, it is assumed that the caller

has a good chance of knowing some sin, cos, atan, etc. which we would rather not recompute.

This can be called for Local vehicles only.

3.28 ent..set..appearance

void ent-set-appearance(vehicleid, appearance)
int32 vehicle.id;
uint32 appearance;

'vehicle.id'

Specifies the vehicle ID.

'appearance'

Specifies the new appearance bits.

18 LibEntity Programmer's Guide

ent.set- appearance is used to set appearance attribute of vehicle appearance. This attribute

is not translated to network representations until absolutely necessary.

This function performs x - y

This can be called for Local vehicles only.

3.29 entset.appearance -bits

void ent.set.appearance.bits(vehicle-id, appearance)
int32 vehicle-id;
uint32 appearance;

'vehicle.id'

Specifies the vehicle ID.

'appearance'
Specifies the bits to set.

entset-.appearance.bits is used to set some bits in the appearance attribute of vehicle ap-

pearance. This attribute if. not translated to network representations until absolutely necessary.

This function performs x {= y

This can be called for Local vehicles only.

3.30 ent-unsetappearance -bits

void ent.unsetappearance.bits (vehicle-id, appearance)
int32 vehicle-id;
uint32 appearance;

'vehicle..id'

Specifies the vehicle. 11)
'appearance'

Specifies the bits to '.tr.

Chapter 3: Functions 19

entunset.appearancebits is used to unset some bits of the appearance attribute of vehille
appearance. This attribute is not translated to network representations until absolutely necessar%.

This function performs x &= -y

This can be called for Local vehicles only.

3.31 ent-set -capabilities

void ent.setcapabilities(vehicleid, capabilities)
int32 vehicleid;
VehicleCapabilities *capabilities;

'vehicle-id'

Specifies the vehicle ID.
'capabilities'

Specifies the new capabilities.

ent..set.capabilities is used to set the capabilities attribute of vehicle appearance. This
attribute is not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.32 ent-set-engine.speed

void ent.set-engine.speed(vehicle.id, speed)
int32 vehicle-id;
uintt6 speed;

'vehicle-id'

Specifies the vehicle ID.
'speed' Specifies the new engine speed.

ent.set.-engine.speed is used to set the engine-speed attribute of vehicle appearance. This
attribute is not translated to network representations until absolutely necessary.

20 LibEntity Programmer's Guide

This can be called for Local vehicles only.

3.33 en t-set -velocity

void ent.set.velocity(vehicle-id, velocity)
int32 vehicle-id;
float64 velocity[3];

'vehicle-id'

Specifies the vehicle ID.
'velocity'

Specifies the new velocity.

ent.set-velocity is used to set the velocity attribute of vehicle appearance. This attribute is

not translated to network representations until absolutely necessary.

This can be called for Local vehicles only.

3.34 en t.set-artic -value

void enltsetartic.value(vehicleid, articname, value)
int32 vehicle.id;
char *artic.name;
float64 value;

'vehicle.id'

Specifies the vehicle ID.

'artic-.nams'
Specifies the name of the articulation (a libreader symbol)

'value' Specifies the new value of the articulation

ent..etartic.value is used to set the value of an articulation named name. The value is

interpreted depending on the type of articulation being set. For instance, in the case of a turret

(such as one called "primary-turret"), the value is interpreted as azimuth radians, with 0 being

along the vehicle's X axis and rotating counterclockwise.

This can be called for Local vehicles only.

I

Chapter 3: Functions 21

3.35 ent.set.artic.-rate

void entset.articrate(vehicle.id, articname, value)
int32 vehicle_.id;
char *articname;
float64 value;

'vehicle-id'

Specifies the vehicle ID.
cartic.name'

Specifies the name of the articulation (a libreader symbol)
'value' Specifies the new value of the articulation rate

enset.artic.rate is used to set the change value of an articulation named name. The value
is interpreted depending on the type of articulation being set. For instance, in the case of a turret
(such as one called "primary-turret"), the value is interpreted as azimuth radians per second,
with 0 being along the vehicle's X axis and rotating counterclockwise.

This can be called for Local vehicles only.

3.36 en t.get -exercise-id

uint8 ent.get-exercise.id(vehicle-id)
int32 vehicle.id;

'vehicle.id'
Specifies the vehicle ID.

en-get..exercine.id is used to get the exercise ID of a vehicle.

This can be called for Any vehicle.

3.37 en t-get -vehicle-class

VehicleClass ent..get.vehicle.clasu (vehicle.id)
int32 vehicle-id;

22 LibEntity Programmer's Guide

'vehicle.id'

Specifies the vehicle ID.

ent.get-veh.icle- class is used to get the vehicle-class attribute of vehicle appearance. When

translations from network representation to internal representation are necessary, these will be done

upon invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.38 en t-get..force..id

ForceID entget_ force_id(vehicle.id)
int32 vehicle.id;

'vehicle-id'

Specifies the vehicle ID.

ent.geZtforceid is used to get the forceid attribute of vehicle appearance. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.39 ent-get.guises

void ent.get.gui ou (vehicle.id, guises)
int32 vehicle-id;
VehicleGuise *guises;

'vehicle-id'

Specifies the vehicle ID.
'guises' Returns the guises

ent-get.guises is used to get the guises attribute of vehicle appearance. When translations

from network representation to internal representation are necessary, these will be done upon

invocation of the get function, and saved for future calls.

I

Chapter 3: Functions 23

This can be called for Any vehicle.

3.40 ent-get-guise

Obj ectType ent.get.guise(vehicle-id. viewing.force)
int32 vehicle, id;
ForcelD viewing-force;

'vehicle.id'

Specifies the vehicle ID.
'viewing-force'

Specifies the force of the viewer.

ent-ge-tguise is used to get the guise attribute of vehicle appearance. When translations from
network representation to internal representation are necessary, these will be done upon invocation
of the get function, and saved for future calls.

Unlike ont._ge-tguises (see (undefined) [en'getguises], page (undefined)), this function gets
the appropriate guise relative to the passed viewing-force.

This can be called for Any vehicle.

3.41 ent-get-marking

void enotget-arking(vehicl.id, marking)
int32 vehicleid;
VehicleMarking *marking;

'vehicleid'

Specifies the vehicle ID.
'marking' Returns the marking.

ent.get-marking is used to ce.t i h,. ,,,..rkiu attribute of vehicle appearance. When translations
from network representation to it..rfi.il representation are necessary, these will be done upon
invocation of the get function. .,,,I -. , ,J flr future calls.

This can be called for Any %.hi- 1..

24 LibEntity Programmer's Guide

3.42 ent-get-position

void antget-.position(vehicle.id. position)
int32 vehicle.id;
float64 position[3);

'vehicle.id'

Specifies the vehicle ID.
'position'

Returns the position.

ent.get.position is used to get the position attribute of vehicle appearance. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.43 ent-get-rotation

void *ntgetr.rotation(vehicl.id, rotation)
int32 vehicle-id;
float64 rotation[3] [3);

'vehicle-id'

Specifies the vehicle ID.
'rotation'

Returns the rotation.

ent.get.rotation is used to get the rotation attribute of vehicle appearance. When transla-
tions from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.44 ent-get-orientation

Chapter 3: Functions 25

void ent.get.orientation(vehicle.id, heading, pitch, roll)
int32 vehicle, id;
float64 *heading;
float64 *pitch;
float64 *roll;

'vehicle.id'

Specifies the vehicle ID.

'heading' Returns the heading (0 == East, increasing counter-clockwise).
'pitch' Returns the pitch (0 == Level, increasing up).
'roll' Returns the roll (0 = = Level, increasing counter-clockwise).

ent..get1:_orientation is use to get the orientation attribute of a vehicle. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

If the vehicle orientation was set with ent._set..orientation, this is computationally inexpen-
sive. If, however the orientation was set with ent-_set.rotation, many transcendental operations
are required. Either way, the returned data will be valid.

Pass a NULL pointer for any unwanted values.

This can be called for Any vehicle.

3.45 ent-get-direction

void ent.get.direction(vehicleid, direction)
int32 vehicle-id;
float64 direction[3];

'vehicle-id'

Specifies the vehicle ID.

'direction'

Returns the direction.

ent-get.direction is used to get the direction attribute of vehicle appearance. When transla-
tions from network representation to internal representation are necessary, these will be done upea
invocation of the get function, and saved for future calls.

26 LibEntity Programmer's Guide

Note that direction is derived from rotation, but will be cheaper to compute than rotation under

DIS.

This can be called for Any vehicle.

3.46 ent.get-appearance

uint32 ent.get-appearance (vehiclo-id)
int32 vehicle-id;

'vehicle.id'

Specifies the vehicle ID.

ent.get- appearance is used to get the appearance attribute of vehicle appearance. When
translations from network representation to internal representation are necessary, these will be
done upon invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.47 ent-get -capabilities

void ent-get.capabilities (vehicle.id, capabilities)
int32 vehicle-id;
VehicleCapabilitiee *capabilities;

'vehicloid'

Specifies the vehicle ID.
'capabilities'

Returns the capabilities.

entget.capabilities is used to get the capabilities attribute of vehicle appearance. When
translations from network representation to internal representation are necessary, these will be done
upon invocation of the get function, and saved for future cals.

This can be called for Any vehicle.

I

Chapter 3: Functions 27

3.48 ent-get-engine-speed

uintl6 *nt-.getengine, speed(vehicle.-id)
int32 vehicle-id;

'vehicle.id'
Specifies the vehicle ID.

ent .get-engine.speed is used to get the engine-speed attribute of vehicle appearance. When

translations from network representation to internal representation are necessary, these will be done

upon invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.49 ent-get -velocity

void entget..velocity(vehicle.id, velocity)
int32 vehicle.id;
float64 velocity[3);

'vehicle-id'

Specifies the vehicle ID.
'velocity'

Returns the velocity.

ent-get-velocity is used to get the velocity attribute of vehicle appearance. When translations
from network representation to internal representation are necessary, these will be done upon
invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.50 ent-get-speed -squared

float64 ent.get-peed.squared(vehicle.id)
int32 vehicleid;

28 LibEntity Programmer's Guide

'vehicle-id'

Specifies the vehicle ID.

ent -got -speed-squared is used to get the speed.squared attribute of vehicle appearance. When

translations from network representation to internal representation are necessary, these will be done

upon invocation of the get function. and saved for future calls.

Note that speed.squared is derived fromn velocity, but since the value will be cached within

libentity, it is better to call this function tian to call ent.getovelocity and compute speed squared

manually.

This can be called for Any vehicle.

3.51 ent-get.speed

float64 ent.getLspeed(vehicle.-id)
int32 vohicle-id;

'vehicle-id'

Specifies the vehicle ID.

ent..ge*tp.ed is used to get the speed attribute of vehicle appearance. When translations from

network representation to internal representation are necessary, these will be done upon invocation
of the get function, and saved for future calls.

Note that speed is derived from speed.squared, but since the value will be cached within libentity,
it is better to call this function than to call cnt.getvelocity or ent.get-speed.squared and compute

speed manually.

This can be called for Any vehicle.

3.52 ent.get-stationary

int32 *nt.getstationary' vehicle- id)
int32 vehicle-id;

Chapter 3: Functions 29

'vehicle.id'

Specifies the vehicle ID.

ent..ge1ts.tationary is used to get the stationary attribute of vehicle appearance. When trans-

lations from network representation to internal representation are necessary, these will be done upon

invocation of the get function, and saved for future calls.

This can be called for Any vehicle.

3.53 ent.get-artic-euler

void ent-get.artic-euler(vehicle.id, artic.name, yaw, pitch, roll)
int32 vehicle_ id;
char *artic.nae;
float64 *yaw;
flot64 *pitch;
flot64 *roll;

'vehicle.id'

Specifies the vehicle ID.

'artic-nama'
Specifies the name of the articulation (a libreader symbol)

'yaw' Returns the yaw value (in radians) of the articulation

'pitch' Returns the pitch value (in radians) of the articulation
'roll' Returns the roll value (in radians) of the articulation

ent-ge-artic-euler is used to get the euler angles for an articulation named articname.

Any of the pointers for yaw, pitch, or roll can be NULL, in which case that component of the
articulation value will not be returned.

This can be called for Any vehicle.

3.54 en t-get. artic -eu lert-rate

void ent.get.artic.etuler.rate (vehicle.id, artic.nae,
yaw-rate, pitch.rate, roll-rate)

int32 vehicle.id;

30 LibEntity Programmers Guide

char *artic.name;
float64 *yav-rate;
float64 *pitch-rate;
float64 *roll-rate;

'vehicle.id'

Specifies the vehicle ID.

'art ic-.nam'
Specifies the name of the articulation (a libreader symbol)

'yaw.rate'

Returns the yaw rate (in radians per second) of the articulation
'pitch-rate'

Returns the pitch rate (in radians per second) of the articulation
'roll.rate'

Returns the roll rate (in radians per second) of the articulation

ent-get..artic-euler-rate is used to get the euler rates for an articulation named artic.name.
Any of the pointers for yaw.rate, pitch-rate, or roll-rate can be NULL, in which case that
component of the articulation rate will not be returned.

This can be called for Any vehicle.

3.55 en t.get artic-pivot

void ont._get-artic-pivot(vehicle.id, articname, position)
int32 vehicle-id;
char *artic-naze;
float64 position[3];

'vehicle-id'

Specifies the vehicle ID.

'artic._nam'
Specifies the name of the articulation (a libreader symbol)

'posit ion'

Returns the position of the pivot point (in vehicle coordinates) of the articulation.

ent-.getartic.pivot is used to get the pivot point for an articulation named artic.name.
For example, the pivot point for a gun is the base of the gun, and the pivot point for a turret is

Chapter 3: Functions 31

the location of the axis of rotation.

This can be called for Any vehicle.

3.56 en t.get.artic -position

void ent.get-artic.position(vehicle-id, artic.name, position)
int32 vehicle.id;
char *artic.name;
float64 position[3);

'vehicle-id'

Specifies the vehicle ID.
'articname'

Specifies the name of the articulation (a libreader symbol)
'position'

Returns the position of the end point (in vehicle coordinates) of the articulation.

entget-artic.position is used to get the position for an articulation named articnane.
For example, the position for a gun is the tip of the gun. The position for a turret is the location
of the axis of rotation since a turret doesn't usually have a unique length.

This can be called for Any vehicle.

3.57 ent.get.artic..rotation

void ent-get-arxtic-rotation(vehicleid, artic-name, rotation)
int32 vehicleid;
char *artic-nae;
float64 rotation[3 [3);

'vehicle-id'

Specifies the vehicle ID.

'artic-nams'
Specifies the name of the articulation (a libreader symbol)

'rotation'

Returns the rotation matrix for the articulation.

32 LibEntity Programmer's Guide

ent.get..artic.ro.tation is used to get the rotation matrix for an articulation named artic.name.

This rotation matrix can be used to transform a position in articulation coordinates into vehicle co-

ordinates. Note that to do the transformation completely, you will have to consider the articulation

position (see (undefined) [ent'get'artic'position], page (undefined)).

This can be called for Any vehicle.

3.58 ent-getturret.articulation

void ent-get.urre.tariculation(vehicleid, articulation)
int32 vehicle, id;
DIS.ARTICULATIONPARAMETER *articulation;

'vehicle.id'

Specifies the vehicle ID.

'articulation'

Returns the DIS representation of the turret's orientation

*nt.gelt.turret.articulation is used to get the DIS representation of a turret's orientation.

This can be called for Any vehicle.

3.59 ent-get -rotation sp

void .ntgetrotation.p(vehicleid, rotation)

int32 vehicle_ id;
float32 rotation[3J [3];

'vehicle-id'

Specifies the vehicle ID.

'rotation'

Returns the rotation (in single precision).

entget.rotationsp is used to get the rotation attribute of vehicle appearance (single preci-

sion version needed to build appearance packets). When translations from network representation

to internal representation are necessary, these will be done upon invocation of the get function, and

saved for future calls.

Chapter 3: Functions 33

This can be called for Any vehicle.

3.60 ent et..evelocity-.sp

void ent_.get_velocitysp(vehicle-id, velocity)
int32 vehicle_.id;
float32 velocity[3] ;

'vehicle-id'

Specifies the vehicle ID.
'velocity'

Returns the velocity (in single precision).

ent-.get.velocity.sp is used to get the velocity attribute of vehicle appearance (single precision
version needed to build appearance packets). W'hen translations from network representation to

internal representation are necessary, these will be done upon invocation of the get function, and

saved for future calls.

This can be called for Any vehicle.

3.61 ent-get-physdb

PHYSDBDATA *ent-ge.physdb(vehicle.id)
int32 vehicle id;

'vehicle.id'

Specifies the vehicle ID.

ent.getphyndb looks up the object type of the vehicle in the physdb database (see section
'physdblkey' in LibPhysDB Progranirr Manual). The returned data is a pointer to the physical

information typical of an object wit t I h,tt chjct type (such as its dimensions). Because of the lazy

evaluation and cacheing, calling t hi. f,,rfc tion will yield better performance that calling otm..query

explicitly (see section 'otm.query" m l.0-() [Mlatch Programmer's Manual).

This can be called for Any %,.hu. le.

34 LibEntity Programmer's Guide

3.62 en tget.altitude -agl

float64 entget.altitude.agl(vehicle.id, ctdb)
int32 vehicle-id;
CTDB *ctdb;

'vehicleid'

Specifies the vehicle ID.

'ctdb' Pointer to the CTDB terrain database structure.

ent-get.altitude-.agl is used to get the altitude AGL (Above Ground Level) of a vehicle.

Note that altitude.agl is derived from position, but since the value will be cached within libentitv.
it is better to call this function than to call ent.get-position and compute altitude AGL manually.

This can be called for Any -vehicle.

3.63 ent-get dis-guises

void entgetdis.guises(vehicle.id, regular, alternate)
int32 vehicle-id;
DISENTITYTYPE *regular;
DISENTITYTYPE *alternate;

'vehicleid'

Specifies the vehicle ID.

'regular' Pointer to the regular DIS guise for the vehicle.

'alternate'

Pointer to the alternate DIS guise for the vehicle.

ent.get-diasguiues is used to get the normal and alternate DIS guises of a vehicle.

This can be called for Any vehicle.

3.64 ent-get-d is.o cation

Chapter 3: Functions 35

void ent.get.di.location(vehicle-id, location)
int32 vehicle.id;
float64 *location;

'vehicle.id'

Specifies the vehicle ID.

'location'
Pointer to the DIS location for the vehicle.

ent.get.dis.location is used to get the DIS location (in a Z-down GCC coordinate system)

of a vehicle.

This can be called for Any vehicle.

3.65 ent-get-dis -velocity

void ent.get.di..volocity(vehicleid, velocity)
int32 vehicle-id;
float32 *velocity;

'vehicle-id'

Specifies the vehicle ID.
'velocity'

Pointer to the DIS velocity for the vehicle.

ent-get-dis-velocity is used to get the DIS velocity (in a Z-down GCC coordinate system)
of a vehicle.

This can be called for Any vehicle.

3.66 ent-get-dis..orientation

void entget.dis-orientation(vehicle-id, orientation)
int32 vehicle.id;
DISEULERANGLE *orientation;

36 LibEntity Programmer's Guide

'vehicle.id'

Specifies the vehicle ID.
'orientation'

Pointer to the DIS velocity for the vehicle.

ent.get.dis.orientation is used to get the DIS orientation of a vehicle.

This can be called for Any vehicle.

3.67 ent.get.disappearance

DISENTITYAPPEARANCE ent-get.disappearance (vehicl.id)
int32 vehicle, id;

'vehicle-id'

Specifies the vehicle ID.

ent-getdis.-appearance is used to get the DIS appearance bits of a vehicle.

This can be called for Any vehicle.

3.68 ent-get..dis-capabilities

void ent.get-diu-capabilities (vehicle.id, capabilities)
int32 vehicleid;
DIS.ENTITYCAPABILITIES *capabilities;

'vehicle-id'

Specifies the vehicle ID.
'capabilities'

Pointer to the DIS capabilities for the vehicle.

ent.get-.dis.capabilities is used to get the DIS capabilities bits of a vehicle.

This can be called for Any vehicle.

Chapter 4: Access Keys 37

4 A ccess K eys

In addition to the get functions just described, libentity also provides libaccess keys with whichI many variables can be fetched at once. These keys, and the type of argument they expect are given
below:

uintS *azgI ent..vehicle-.class
VehicleClass *arg

In-oci ForceID *axg
ent-guises VehicleGuises *arzgpent..marking

Vehicle~arking *arg

ent..position

f1oat64 mzg [3)
ent-rotation

float64 arg[3J [3]
en t-direction

float64 arg [3)
en L.appea-an ce

uint32 *sjrg

ent..capabilities
VehicleCapabilities *arg

en t.engine-speed

ent-velocity

I enat-stationary

float32 ar9[3J [3)

38 LibEntity Programmer's Guide

en t-elocity.sp
float32 arg[3)

en t..physdb
PHYSDB-.DATA **argI en t.disjocation
DIS-.WORLD..COORDINATES aargI ~ ~en t-.dis-.velocity
DIS..VECTOR *arg

en t ..dis..orien tation

DIS..EULER-.ANGLE *arg

ent-dis..appearance
DIS-.ENTITY-.APPEARANCE *arg

ent-dis-.capabilities

DIS-.ENTITY-.CAPABILITIES oarg

ADST-TR-W003 268

Libeoorder

Table of C ontents

1 Overview...1

2 Functions ... 3

2.1 eonoiit .. 3
2.2 eono..classinit .. 3
2.3 eono..create.. 3
2.4 eono..destroy ... 4
2.5 eono..create..task .. 4
2.6 eono..Aelete-.task .. 4

Chapter 1: Overview

1 Overview

Libeonorder inplements an enabling task which checks an associated task authorization object.
If the authorized bit is set, libeonorder's predicate function returns TRUE, otherwise it returns
FALSE. The GUI code is responsible for setting the authorization bit. When the predicate function
is invoked, it first checks to see if the task authorization object exists as a reference in the task's
state object. If the authorization object does not yet exist, it is created.

I
!
I

I
I
i

2 Libeonorder Programmer's Guide

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libeonorder, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 eono.init

void eono.init()

eono.init initializes libeonorder. Call this before any other libeonorder function.

2.2 eono-class-init

void eonoclasuinit(parent-class)
CLASS.PTR parent-class;

'parent-class'

Class of the parent (declared with class.declare.class)

eono.clasuinit creates a handle for attaching eonorder class information to vehicles. The
parent-class will likely be safobj-class.

2.3 eono..create

void eono-create(vehicle-id, params, po-db)
int vehicle-id;
EONORDERLPARAMETRICDATA *params;
PO.DATABASE *po.db;

'vehicle-id'

Specifies the vehicle ID

'parau' Specifies initial parameter values
'po.db' Specifies the PO DATABASE used for the exercise

4 Libeonorder Programmer's Guide

eono..create creates the eonorder class information for a vehicle and attaches it vehicle's block

of libclass user data.

2.4 eono-.destroy

void sono-.dstroy~vehiclo..id)
int vehicle-id;

'vehicle-id'

Specifies the vehicle ID

eono-destroy frees the eonorder class information for a vehicle. This should be called before
freeing the class user data with class- Jr..usr-data.

2.5 eon o -.create..-task

PO..DB.ENTRY *.ono.creat...task(po..db)
PO-.DATABASE *po..db;

' po..dbl Specifies the P0 DATABASE for the exercise

eono..delete-.tank creates an enabling class with model SILEonorder. When the task is cre-
ated, no state references are created.

2.6 eono-delete-.task

int32 sono-.d1.t...task(po..db. *onorder-.task)
PO-.DATABASE *po-db;
PO-.DB-.ENTRY seonorder.task;

'vehicl..id'

Specifies the vehicle' 11)

'eonorder-.task'

Specifies the enabling ta to be &estroyed

Chapter 2: Functions 5

eono.delete-task destroys the specified on-order enabling task, along with its' referenced
authorization object (if any).

ADST-TR-W003268

Libetcm

Table of C ontents

1 O verview.. 1

1.1 Task Parameters ... 2
1.2 Task Parameters..2

2 Functions..

2.1 etcm-izut...3
2.2 etcm..classinit ... 3
2.3 etcmscreate.. 3
2.4 etcm..destroy ... 4
2.5 etcmjnit..taskstate ... 4

Chapter 1: Overview 1

1 0 verview

Libetcm implements an enabling task which detects when a unit is about to cross a control
measure. The criteria which libetcm uses to detect this are context-dependent and include the
previous taskframe, i.e. what the unit is currently doing, as well as the taskframe containing the
enabling task, i.e. what the unit would do if libetcm's predicate returned a non-zero value. This
contextual "matrix," as well as the simulation state of the unit, are used by the predicate function
registered by libetcm with libtask. The contextual information is known to the task manager and
is passed in the argument list to the predicate function of the enabling task when it is called:

PO.DBENTRY *curren-opaque.taskframe;
Po.DBIEWrRY *next..task.frame;

In addition, the following information is passed to the predicate function when it is called in
case the current executing task frame does not provide enough context for the predicate function
to make its decision, e.g. the current frame is a transparent override:

int32 number.of_executing_ 1tasks;
PO.DBENTRY *executing.tasks[];

This library is also responsible for setting the shared parameters of the appropriate task in the
task frame pointed to by PODBENTRY *nert-task.frame.

For example, suppose a unit is following a route and is about to cross a phase line, where
the unit has been ordered to launch an assault. The control measure enabling task is responsible
for calculating how far away from the phase line the unit must begin to prepare for the assault.
Libetcm's predicate function returns a non-zero value when the unit reaches this location. This
library is also responsible for setting the shared parameters of the prepare-to-assault task in its
own frame so that the prepare-to-assault task will be able to prepare for the assault. This may
invovle slowing the unit down, keeping to the projected path along its current route, and halting
at the desired location in preparation for the assault.

The task state machine is written using the AAFSM format which is translated to C using the
'fsm2ch' utility (see section 'Overview' in LibTask Programmer's Manual).

Libetcm depends on libuflwrte, libpo, libclass, libctdb, libaccess, libreader, and libparmgr.

2 Libetcm Programmer's Guide

1.1 Task Parameters

The format of the parametric data is as follows:

(SMETCM (waypt.error <distance meters>))

The waypt-error parameter specifies the distance from a vertex of a control measure at which
a vehicle will perceive that it has crosed the control measure.

1.2 Task Parameters

In enabling tasks for control measures. the parameter block of the task data structure is empty.

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libetcm, including the format an(]
meaning of its arguments, and the meaning of its return values (if any).

2.1 etcmj-nit

void etcm..init()

*tcm..init initializes libetcm. Call this before any other libetcma function.

2.2 etcm-.class-init

void otcm-class-.init(parent.clau.)
CLASS-.PTR parent..clasu;

'parent-.class'
Class of the parent (declared with clauss.-declare-.class)

etc=n.clas..init creates a handle for attaching etcm class information to vehicles. The parent-.class
will likely be uafobj-.class.

2.3 etcm-.create

void otcu..create(vhicle-.id, parama, po..db, ctdb)
imt vehicle-.id;
ETCLPARAMETRIC..DATk *params;
PO..DATABASE *po..db;
CTDB *ctdb;

'vehicle-.id'

Specifies the vehicle ID

'params' Specifies initial parameter values

'po.db' Specifies the P0 database where the task can be found

4 Libetcm Programmer's Guide

'ctdb' Specifies the terrain database currently in use

etcuLcreate creates the etcm class information for a vehicle and attaches it vehicle's block of

libclass user data.

2.4 etcm.destroy

void etcm-destroy(vehicle-id)
int vehicle.id;

&vehicleid'

Specifies the vehicle ID

etcm-dastroy frees the etcm class information for a vehicle. This should be called before freeing
the class user data with clase-free.user-data.

2.5 etcm _init -task -state

void etcm.init.tak.state(task, state)
TaskClass *task;
TaskStateClass *state;

'task' Specifies a pointer to the task class object to be initialized.
'state' Returns the initialized state

Given a new SILETCH task that is about to be created, etcm.init-task.state initializes the

model size, and state variables.

ADST-TR-W003 268

LibExecmat

Table of Contents

1 Overview...1

2 Functions .. 3

2.1 execmatjnit 3
2.2 execmatinit.gui 3
2.3 execmat-set..uuit 4
2.4 execmatscreate..... ... 4

Chapter 1: Overview

1 Overview

Libexecmat creates the execution matrix editor for units and subordinate units. The execution
matrix is used to create and assign missions. A mission is made up of a series of task frames
separated by control measures (a control measure can be NULL). Reaching a control measure
advances the mission to the next task frame. The control measure is referred to as an ETCM
(Enabling Task Control Measure) because reaching this control measure enables the mission to
advance to the next task frame. A task frame can be made "On Order". A mission will stay in its
current task frame if the next task frame is "On Order". Authorizing an "On Order" advances the
mission to the authorized task frame.

Each displayed task frame is really made up of two task frames - the Preparatory task frame
and the Actual task frame. Only the Actual task frame is displayed in the execution matrix. The
task frame editor MUST return the two task frames linked together by the previousKissionFrame
field. Each task frame has a primary task which is used to determine whether the task frame is
finished. (If the primary task is done, the task frame is done.)

In addition to the ETCM enabling task, there is another enabling task called the In-Phase
enabling task. The In-Phase enabling task determines whether the unit's peer units are in the
same phase as it is. This is done by seeing if the peer units have completed their preparatory task
frames for the same phase.

In each of the prep and actual task frames, there is a postfix logic stack which determines the
conditions that must be met before this taskframe is executed. The logic stack algorithm for the
preparatory task frame is:

Primary task of previous frame is done OR
ETCH of phase is crossed OR
On Order of task frame has been given (if applicable)

If any of these conditions is met, the preparatory task frame is executed.

The logic stack algorithm for the actual task frame is:

Primary task of prepatory task is done AND
Other peer units are in-phase AND
On Order of actual task frame has been given (if applicable)

2 LibExecmat Programmer's Guide

If all of these conditions are met, the actual task frame is executed. Note that there is no
guarantee that the ETCM of the phase has been reached. This is done because there might be
some user error where the ETCM could never be reached and the mission still needs to advance.

When the user clicks the "Done" button on the execution matrix editor, the task frames are
linked intoa mission for each unit. The mission is linked backwards using the previous~isaionFrame
field in the task frame. If the unit has not already been assigned a mission, this mission is assigned
to the unit. Although the mission code i, gneral enough to support a tree structure, the current
missions are flat.

The execution matrix editor is not controlled by libeditor. so it has to keep track of its own
state when it becomes active, suspeiid1il. etc.

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libexecmat, including the format and
meaning of its arguments, and the meaning of its return values (if any).

2.1 execmat.init

void execuat._inito)

execmat-init initializes libexecmat. Call this function before calling any other libexecmat
functions.

2.2 execmat-init4ui

EXECMAT-.GUI-PTR execmat.initgui (data.path, reader-flags.
gui, %actmap, tcc, map.erase.gc,

sensitive, refresh-event, db, exitfcn.exitarg)
char *data-path;
int32 reader-flap;
SGUIPTR gui;
TACTNAP.PTR tactuap;
COORD.TCC.PTR tcc;
GC Map..rase.gc;
SISTVE-VINDOWPTR sensitive;
CALLBACKoEVENTPTR refreshevent;
PO.DATABASE *db;
ASSIGN.EXITFUNCTION exitfcn;
ADDRESS exit-arg;

'data.path'

Specifies the directory where data files are expected
'reader.flags'

Specifies flags to be passed to reader-road when reading data files
'gui' Specifies the SAF GUI

'tactmap' Specifies the tactical map

'tcc' Specifies the map coordinate system
'map.erase.gc'

Specifies the GC which can erase things from the tactical map

4 LibExecmat Programmer's Guide

'db' Specifies the persistent object database

'exitf cn, exit.arg'
Specifies a function to call when the assignment is completed

execmat.init.gui creates the execution matrix editor. The execution matrix editor consists
of up to 6 phases of tasks for UNITORG.MAX..BREADTH units.

2.3 execmat..setunit

void execmat.stunit(emgui, unit.id, tasking.type)
EXECNAT.GUIPTR .mgui;
ObjectlD *unit.id;
EXECNATTASKING.TYPE tasking-type;

'euui' Specifies EXECMATGULPTR data structure
'unitid' Specifies the unit id.

'tasking-type'
Specifies SUBORDINATE.TASKING or UNIT-TASKING

execmat.setunit fills in the emgui data structure units with either the unitid passed in
or subordinate units of the unitid passed in depending on the tasking.type. If the units (or
subordinate units) are currently executing a mission, their po task frames are retrieved and filled
into the emgui data structure as well as the pushbutton widgets of the matrix user interface. The
names of the units are retrieved from the unit po and filled in the label widgets of the matrix user
interface.

2.4 execmat.create

void execuat.state(gui, mode, state)
EXECKAT.GUIPTR gui;
SGUI_.ODEPTR mode;
SGUIMODESTATE state;

'gui' Specifies the SAF GUI

'mode' Specifies the mode to use

'state' Specifies the new state

Chapter 2: Functions

execmat. tate sets the state of the execution matrix editor. This is equivalent in functionality

to edt.state0, but is needed because the execution matrix editor is not controlled by libeditor.

ADST-TR-W003 268

LibFCS

Table of Contents

1 Overview...1

2 Usage .. 3

2.1 Building Libfcs ... 3
2.2 Linking with Libfcs..3

3 Functions .. 5

3.1 fcs.init ... 5
3.2 fcs..classinit... 5
3.3 fcs..create ..
3.4 fcs..destroy ... 6
3.5 fcsload .. 6
3.6 fcs..quantities ... 6
3.7 fcs..ready .. 7
3.8 fcs-fire.. 8
3.9 fcs-flre.at..target.. 8
3.10 fcs-flre.at-location..9

Chapter 1: Overview 1

1 Overview

libfcs profides a fire-control system abstraction for SAF vehicles which have a large number of
libguns components (see section 'Overview' in LibGUNS Programmer's Manual), such as aircraft.
libfcs provides an interface where weapon launcher commands can be specified in terms of the
munition which will be fired; libfcs uses selection algorithms to determine which launcher is most
suitable to direct the libguns commands for a given munition. In the future, Iibfcs can be expanded
to support selection algorithms which can perform such tasks as launching missiles in the proper
order from an aircraft with multiple missile launcher stations in order to keep the aircraft as
balanced as possible, or to avoid a launched missile from colliding with an un-launched missile.

The parameters of the fire control system are specified in the configuration file for the vehicle
containing a libfcs fire control system as follows:

(SFireControl (components <namel> <name2> ...))

The name of each component being controlled by the fire control system is specified. Each name
must be a gun component of the vehicle.

2 LjbFCS Programmer's Guide

Chapter 2: Usage 3

2 Usage

The software library 'libfcs. a' should be built and installed in the directory
'/common/lib/'. You will also need the header file 'libfcs.h' which should be installed in the

directory '/comon/include/libinc/'. If these files are not installed, you need to do a 'make' in
the libfcs source directory. If these files are already built, you can skip the section on building

libfcs.

2.1 Building Libfcs

The libfcs source files are found in the directory '/common/libsrc/libfcs'. 'RCS' format ver-

sions of the files can be found in '/nfs/common-.src/libsrc/libfca'.

If the directory 'common/libsrc/libfcs' does not exist on your machine, you should use the
'genbuild' command to update the common directory hierarchy.

To build and install the library, do the following:

cd common/libsrc/libfcs
co RCS/*,v
* make install

This should compile the library 'libfca. a' and install it and the header file 'libf Cs. h' in the
standard directories. If any errors occur during compilation, you may need to adjust the source
code or 'Nakefile' for the platform on which you are compiling. libfcs should compile without

errors on the following platforms:

* Mips

" SGI Indigo

" Sun Sparc

2.2 Linking with Libfcs

Libfcs can be linked into an application program with the following link time flags: 'id [source
.o files] -L/common/lib -lf cs'. If your compiler does not support '-L' syntax, you can use the
archive explicitly: 'ld [source .o files] /common/lib/libf cs. a'.

LibFCS Programmer's Guide

Libfcs depends on libaccess libcomponents libreader libguns libparmgr libvtab and 1ibclass.

I
I
I
I
I
I
I
1
I

Chapter 3: Functions5

3 Functions

The following sections describe eachi function provided by libfcs, including the format and mean-
ing of its arguments, and the mc.aning of its return values (if any).

3.1 fcsinit

void fcs..init()

fics..init initializes libfcs. Call this before any other libfcs functions.

3.2 fics-.class-init

void fca-.casu.init(parent..class)
CLASS-.PTR parent-.class;

'parent-.class'

Specifies the parent class of entity (probably safobj.class).

f co-.clauu.init creates a handle for attaching FCS class information to vehicles. The parent-.class
is one created with class..declare-.clasu.

3.3 fcs-.create

void fcs..croate(vehicle-.id. par=s)
int32 vehicle.id;
FCS..PARAHETRIC-.DATA *par=s

'vehicle-.id'

Specifies the vehicleijd (if i l~ie eicle to be created.
'parms' Specifies parametric dalt.t for tlie fire control system.

tcu..create creates the F(M a .- :0ination for a vehicle and atttaches it to the vehicle's
libclass user data.

6 LibFCS Programmer's Guide

3.4 fcs..destroy

void tcu..deutroy(vehicle.id)
int32 vehicl...id;

'vehicle..id'

Specifies the vehicle.id of the vehicle to be created.

f cs..destroy frees the FCS class information for a vehicl,

3.5 fcs-Joad

void fcu..load~vehicle-.id, munition, store, quantity)
int32 vehicle-id;
uint32 munition;
int32 store;
int32 quantity;

'vehicle-.id'

Specifies the vehicle ID
'munition'

Specifies the type of munition to load
'store' Specifies from what store to load the munition from

'quantity'

Specifies the quantity of munitions to load into the gun

f cs.load starts the loading procedure for a quantity number of munitions from the supplied
store for an apropriate gun component. fcs-.load will dynamically determine the appropriate
component to direct the GUNS-SET.LOAD..MUNITION command
(see section 'GUNS -ET.L OAD..MU NITIO N' in LibGUNS Programmer's Manual) from the list of
possible components specified as parametric data to libf cu.

3.6 fcs-quantities

void fcs..quantities(vehicle..id, munition, current-.limit, absolute-.limit)
int32 vehicle..id;
uint32 munition;

Chapter 3: Functions 7

int32 *cu-rent.limit;
int32 *absolute.limit;

'vehicle.id'

Specifies the vehicle ID
'munition'

Specifies the type of munition to load
'current.limit'

Specifies the current limit on this munition type

'absolute-limit'
Specifies the absolute limit on this munition type

fcu.quantities returns (by reference) the current and absolute maxima of the number of
rounds that the FCS can fire of the specified munition type on the given vehicle. These quantities
are related to but not necessarily equal to supplies available and should be interpreted as how many
rounds the FCS can fire given unlimited supplies. These may be based on limitations of the actual
weapons or implementations of the code modeling the weapons.

3.7 fcs-ready

void fcs.ready(vehicleid, munition, ready, missileid)
int32 vehicle-id;
uint32 munition;
int32 *ready;
int32 *missileid;

'vehicl._id'

Specifies the vehicle ID
'munition'

Specifies the munition to check
'ready' Returns whether a gun containing the specified munition is ready for firing

'id' Returns vehicle ID of a ready missile

fce.ready returns (by reference) whether an appropriate gun component is ready to fire the
requested munition. For missile launchers, the vehicle ID of the ready missile is returned (by
reference) as well. A gun is generally not ready if it is not loaded or is in the procr of loading or
unloading munitions.

1
8 LibFCS Programmer's Guide

I
cs.ready will dynamically determine the appropriate component to direct the

GUNS.GETIREADYTO.FIRE command (see section 'GUNSGET.READY.TO-FIRE' in LibGUNS

Programmer's Manual) from the list of possible components specified as parametric data to libfcs.

3.8 fcs-fire

void fcs.fire(vehicle.id, munition, quantity)
int32 vehicle.id;
uint32 munition;
int32 quantity;

'vehicle-id'

Specifies the vehicle ID

'iunition'
Specifies the munition

'quantity'

Specifies quantity of loaded munition to shoot

fce.f ire attempts to launch a weapon of the specified munition from one of the possible guns

in the fire control system. The weapon is fired in whatever direction it is currently pointing.

fcu.f ire will dynamically determine the appropriate component to direct the GU'SSET.FIRE

command (see section 'GUNS.SET..FIRE' in LibGUNS Programmer's Manual) from the list of
possible components specified as parametric data to lie~ .

3.9 fcs-fire -at -target

void fcu.-lre-at..target(vehicleid, targe.id, munition, quantity)
int32 vehicle.id;
int32 targetid;
uint32 munition;
int32 quantity;

'vehicle.id'

Specifies the vehicle ID

'target .id'

Specifies the target to fire at

Chapter 3: Functions 9

mSpecifies
the munition

'quantity'

Specifies quantity of loaded munition to shoot

fca.fire..at..target attempts to launch a weapon of the specified munition from one of the
possible guns in the fire control system. The weapon is fired with the intent to hit the target, if
possible. If the weapon is a guided munition (such as a missile), there may be other actions required
during the flight of the munition to ensure that it will hit the target.

fc-fire.at.target will dynamically determine the appropriate component to direct the GUNSSETFIRE.
command (see section 'GUNS.SET.FIRE.ATTARGET' in LibGUNS Programmer's Manual) from
the list of possible components specified as parametric data to libf ca.

3.10 fcs-fire -at..o cation

void fc.fire-.at.location(vehicle-id, location, munition, quantity)
int32 vehicle_ id;
float64 location3];
uint32 munition;
int32 quantity;

'vehicle.id'

Specifies the vehicle ID

'location'
Specifies the location to fire at

Specifies the munition
'quantity'

Specifies quantity of loaded munition to shoot

fcu.fireat.location attempts to launch a weapon of the specified munition from one of the
possible guns in the fire control system. The weapon is fired with the intent to hit the location,
if possible. If the weapon is a guided munition (such as a missile), there may be other actions
required during the flight of the munition to ensure that it will hit the location.

fcsufireatlocation will dynamically determine the appropriate component to direct the
GUNSSETFIREATLOCATION command (see section 'GUNS.SETFIRE.AT-LOCATION' in Lib-

10 LjbFCS Programmer's Guide

I
GUNS Programmer's Manual) from the list of possible components specified as parametric data to

I
libfcu.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ADST-TR-W003268

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Table of Contents

O 0verview.. 1

1.1 Algorithms ... 1
1.2 File Format..2
1.3 Data Structures... 5
1.4 Examples..6

2 Functions .. 7

2.1 formdbinit ... 7
2.2 formdb..expand ... 7
2.3 formdb..create..routes .. 8
2.4 formdb..generate-roadmarch..order 10
2.5 formdb..occupy..area.. 11
2.6 formdb..herringbone.. 11

Chapter 1: Overview 1

1 Overview

LibFormationDB provides a database of named standard military formations which can be
used for initial placement of units as well as for station keeping of units during iovement. Lib-
FormationDB uses a database encoded in fibreader format (see section 'Overview' in LibReader
Programmer's Manual) d to represent the placement of units in a formation. Note that in this
context, the term 'units' can refer to individual vehicles or to unit aggregates (such as sections,
platoons, companies, etc.).

LibFormationDB provides two primary interface routines for accessing formation information.
formdb.expand can be used to apply a formation and spacing to units for a given location and
direction. Position information (where a unit should be to be in station) is returned, as well as
desired scan-sectors for each unit. The routine can take current positions of the units into account
in order to assign formations which minimize vehicle movement (such as reversing a formation or
using an alternate assignment of units to formation stations). formdb-create-routes can be used
to apply a specified formation and spacing to units which should be following a supplied route.
Routes are generated for each unit which are similar to the input route and have the property that
if each unit follows each route, the units will appear to be keeping station, at least at the route
vertices. Note that this routine is not suitable for roadmarch, since roadpoiuts for followers would
not be preserved.

1.1 Algorithms

To be placed in a formation, units are laid out one at a time in lines called rays. A given
formation may contain one or more rays in which to place units. Any ray (except the first one
specified) will refer to a previously specified ray to indicate a reference starting position for that
ray. The first ray in a formation refers to no other ray.

Each ray in a formation is given a unit one at a time in ray-breadth order. If a ray exceeds
some specified maximum number of units, that ray is skipped from receiving more units. The
formation laydown algorithm uses data in the formation database file to decide the order by which
units are assigned the formation, thus allowing the explicit positioning of specific units such as a
unit-leader. Additional information about the placement algorithm is contained in the description
of the LibFormationDB file format (see Section 1.2 [File Format], page 2).

The algorithm used to minimize vehicle movement in the assignment of vehicles to a formation
template for formdb.expand is to assign vehicles in all formation orderings and to choose the one

2 LibFormationDB Programmer's Guide

which minimizes crossings. Among those assignments with the same number of crossings, the one
containing the minimum sum of of distances to be travelled by every unit is chosen.

The algorithm used to generate follower routes in formdb_.create- routes is to use formdb.expand
at the begining of the route to identify the starting position of each unit. formdb.expand is used
at every waypoint which is at least the specified sampling distance apart. At those waypoints,
the direction chosen is the mean of the incoming and outgoing directions. The formation ordering
remains constant over an entire route. Route segments are inferred as straight line connections
between formation expanded waypoints.

1.2 File Format

Formation information is stored in the formation database 'formdb. rdr' as follows:

(<formation-name>
(<ray-specifier>
<ray-specifier2>

(<placement-number1> <placement-number2> <placement-numb~r3> ...)
<other placement lists>

)

<formation-name> specifies the name of the formation.

Gray-specifier> specifies the incremental placement of vehicles along a ray as follows:

(<reference> <compassoffset> <Z.offset> <spacingfactor> <max>)

<reference> is the index of the ray that this ray keys off. The indices of the rays are zero-based.
The first ray on which a vehicle will be placed will have a reference of -1.

<compass.off set> indicates the direction to place subsequent units from previous units already
placed in a ray. For the first unit in a ray, the <compass-offset> specifies the offset from the first
unit in the referenced ray. The <compass.offset> for the first vehicle in the first ray is not used.
The values of <compasoffset> are specified by the following macro names, which are defined in
'formdb. rdr':

Chapter 1: Overview 3

" FORMDBFRONT

" FORMDB.BACK

* FORMDB.RIGHT

" FORJDBLEFT

" FORMDB.FRONTBIGHT

" FORMDBFRONTLEFT

" FORMDB.BACKRIGHT

" FORMDB.BACKLEFT

The interpretation of the <compass-offset> directions are as in the following table:

II I
FORMDB.FRONTLEFT I FORMDB.FRDNT I FORMDB.FRONT.RIGHT III II

-- I
I II

I I ~ I-I-III
FORMDBLEFT I I I FORNDB.RIGHT

I I III I
I I ~ I---III

(previously placed
unit)

--- III II
FORMDBBACKLEFT I FORMDBBACK I FORMDB.BACKRIGHTt II

--

<Z-offset> specifies whether or not the placement along the ray includes a Z component, for
3-dimensional formations. This is only useful for air-formations. The values for <Z.offset> can be:

" FORNDB.LEVEL

" FORMDBUP

" FORMDBDOWN

<spacingfactor> specifies a positive real multiplicative factor to use when applying a for-
mation spacing to vehicles along a ray. Vehicles placed on a diagonal ray will have an additional
implied multiplicative factor equal to the sqrt(2). This implies that a formation with a uniform

4 LibFormationDB Programmer's Guide

spacing factor for all rays will result in all units being placed on a virtual grid. For uniform spacing,

the <spacing.f actor> will typically be equal to 1.0.

<max> specifies the integer maximum number of vehicles to be placed on a ray. A value of -1

means an infinite number of vehicles mav be placed on this ray.

<placement-numborN> specifies the a.sigiient order in which units are placed into a formation.
A unit's "job" (also referred to in MI.SAF as its promotion index) is used to index this list to
decide when that unit should be placed wiili respect to other units in the formation. For example,
the ordering (2 3 1 4) specifies that the unit with a job of I should be placed second, the unit with
the job of 2 should be placed third, the unit with the job of 3 should be placed first, and so on.
This allows precise ordering of vehicle-; in the formation to produce tactically correct assignments.
By convention, job I refers to a urit leader, such as a platoon leader, 2 refers to the leader's
"wingman", 3 refers to the unit's second-in-command, such as a platoon sergeant, and 4 refers
to the "wingman" of the second-in-command. Units with job numbers greater than the length of
the list will be placed after all other units in job number order. Negative indices can be used to
represent the placement of vehicles in last-to-first order. For example, the ordering (-1 -2 -3 -4)
indicates that the unit with a job of I will be placed last.

Note that in ModSAF, "jobs", as reported in the task~rglndex and functionalOrgIndex fields
of a UnitClass Persistent Object, are indexed starting at zero, as opposed to the "jobs" referred

to in the libFormationDB data file, which are indoxed starting at one (in order to match typical
Platoon training manuals). Hence, the assignment for the unit I specified in 'formdb. rdr' may refer
to a ModSAF entity containing a functionalOrgIndex of value 0 in its corresponding UnitClass

Persistent Object.

See section 'Unit Class' in LibPO Programmer's Manual.

Multiple placement lists may be specified in order to allow formation orderings that minimize
crossing of vehicles or distance travelled.

As an example of complete formation specification, the following could be used to specify an
echelon-right formation.

; Echelon formations are like column with a slant
2 2 1 1
1 1 2 2

'; 4 3 3 4
;; 3 4 4 3

I;

Chapter 1: Overview

;;

(echelon-right
((-I FORMRDB.IGHTBACK FORDBLEVEL 1.0 -1))
(;; Wingman in front
(2 1 4 3)
(2 1 3 4)
;; Leader in front
(U 2 3 4)
(1 2 4 3)

;; Reverse formations
(3 4 1 2)
(4 3 1 2)
(4 3 2 1)
(3 4 2 1))

)

1.3 Data Structures

Formation queries utilize the following data structure to encode unit information for both input

and output:

typedef struct formdb-data
{

/* Inputs */
int32 job;
float64 current-position[3];

/* Outputs */
float64 desiredposition [3);
float64 scan.ccv;
float64 scan-co;

} FORMDB.DATA;

The input fields of FORMDBDATA are job and current.position, and they are used as input to
the formationdb query routines. The remaining fields are output fields set by the query function,

as follows:

desired-position is the location that this unit should should be at in order to be in formation.

scan-ccw and scan.cw define algorithmically generated scan sectors for the unit, represented

as counter-clockwise and clockwise radians in vehicle coordinates. Zero is out the front of the

6 LibFormationDB Programmer's Guide

vehicle and increases positively counter-clockwise. The scan limits are interpreted the same way

as the slew limits are interpreted in libPhysDB (see section 'physdb.nearest.-angle' in LibPhysDB

Programmer's Manual). The scan sectors generated for vehicles in a formation are typical for that

vehicles in that formation.

Routes for station keeping are represented via the ROUTEPOINTS data structure in 'stdroute. h'

Output routes generated by the formdb-create..routes routine will have point id which ref-

erence the indices of the input route. Also, because of input route sampling, some input route point

indices may never be referenced by a generated output route.

1.4 Examples

The test programs 'fotest. c' and 'rtest. c' demonstrate the use of LibFormationDB to generate
the initial placement of units and the generation of station-keeping routes, respectively.

I

I

I
I
I

Chapter 2: Functions 7

2 Functions

The following sections describe each function provided by libFormationDB, including the format
and meaning of its arguments, and the meaning of its return values (if any).

2.1 form dbjinit

int32 formdb.init(directory, flags, ctdb)
char *directory;
uint32 flags;
CTDB *ctdb;

'directory'

Specifies the directory where the formdb file is expected

'flags' Specifies reader options (see section 'reader-read' in LibReader Programmer's Manual)
'ctdb' Specifies a CTDB terrain database to use for checking formations against water obsta-

cles.

formdb-init initializes libformdb, causing it to read its data file 'forzdb. rdr' from the specified
directory. The flags are as in reader-read. The return value is zero if the read succeeds, or
one of the libreader return values: READER-READ_.I .R READER.-FILE.NOTFOUND.

Note that the libreader function reader.init must be called before this function.

2.2 formdb..expand

int32 formdb.expand(formation-name, spacing, direction, location,
optimize, n.units, unit.data, assignment-key)

char *formation-name;
float64 spacing;
float64 direction;
float64 location[3] ;
int32 optimize;
int32 n-units;
FORMDBDATA unit-data[];
int32 *assignment.key;

8 LibFormationDB Programmer's Guide

' forlmation namne'

Specifies the name of the formation. This should be a libreader symbol.
'spacing' Specifies a desired spacing between units, in meters

'direction'

Specifies the desired direction of the units in the formation, in radians. 0 is interpreted
as north, and directions increase positively counter-clockwise.

'location'
Specifies the desired location of the center of mass of the formation. If it is equal to
[0.0, 0.0, 0.0), then the center of mass will remain unchanged.

'optimize'

Specifies whether to allow reordering of the desired formation to minimize unit crossing
and unit movement.

'n-units' Specifies the number of units in the unit-.data array.
'unitdata'

Specifies and returns data for the units. Desired vehicle placement and scan sector
information will be returned in this data.

'assignmont.key'

If optimize is TRUE, an index for the optimal assignment chosen for the formation will
returned here. If optimize is FALSE, the assignment specified by assignment_key will
be used. assignment.-key can be NULL, in which case the first assignment specified in
the 'formdb. rdr' database will be used if optimize is FALSE.

formdb.expand calculates desired positions, station-keeping information and scan sector infor-
mation for the units represented in the passed in unitdata to be in the specified formation,
spacing and direction. Note that the input fields of the the unit.data must be filled out prior
to this call.

assignment_key can be used to record an initial optimal assignment and to reuse that assign-
ment in later calls to formdb-expand.

A return value of 0 means that the routine succeeded. A return value of -1 indicates failure.
The only source of failure is an unrecognized formation name. In the case of failure, each unit's
desired-position will be equal to its current-position, and nominal values will be supplied for
scan sectors.

2.3 form db..create-rou tes

Chapter 2: Functions 9

int32 formdb.create.routeu(formation-name, spacing, n.units, unit.data,
input.routs, samplingdistance,
output-routes. input-follovingunit,
ass ignment.key)

char *formation.name;
float64 spacing;
int32 n-units;
FORMDB.DATA unit.data[];
ROUTEPOINTS *inputroute;
float64 sampling.distance;
ROUTE.POINTS output.routes[J;
int32 *input_ following.unit;
int32 assignment.key;

'formation name'
Specifies the name of the formation. This should be a libreader symbol.

'spacing' Specifies a desired spacing between units, in meters
'n.units' Specifies the number of units in the unit-data array.
'unit-data'

Specifies job and current location data for the units. The return fields scan.ccw and

scan.cw will be set.

'input.route'

Specifies the intput route as an ROUTE-POINTS structure (see 'stdroute.h')
'sampling-distance'

Specifies the minimum distance between points in the input route that will be used to

create waypoints for the output routes.

'output.routes'
Returns the routes that all the units in the unit.data should follow to stay in forma-

tion. On input, this should be an array of uninitialized ROUTE-POINTS. On output,

this array will contain data with each OIUTrEPOINTS structure containing an initial-

ized allocated array of ROUTE.POINT. This memory must be deallocated when no longer
needed via STDDEALLOC (output. route [i]. points).

'input.following.unit'
Returns the index into the unit-data array of the unit which, due to the assignment

of units in a formation. (ti follow the input route and remain in formation. If no

such unit exists, -1 will he returned.
'asusignment-koy'

Specifies the desired j ib pl.tjon relationships (or to choose an optimal relationship, if
-1)

I formdb.create.routes aplpli,-. h,, .iwciri.'d formation and spacing to the units in unit-data

I
I

10 LibFormationDB Programmer's Guide

and the input-route and generates output.routes for every unit. The output routes will be

similar to the input.route except for:

1. route-point displacements to account for station-keeping offsets,

2. tewer points to smooth out input points that are too close together for followers to check-point

against. Input points that are closer to each other than sampling.distance will be ignored

in the generation of the output routes.

Every ROUTE-POINT in an output route will have a point.id referring to one of the original

point.id indices in the input-route. Note that this routine is not suitable for generating road

following routes, since waypoints for followers are not preserved.

Formations with an even spread and an odd number of units may contain a unit which could fol-
low the input route, as opposed to the generated output route. This is reported in input.folloving.unit.

Formations with an even number of vehicles typicaily generate output routes which straddle the
input route and will have a input- folloving-unit of -1.

A return value >= 0 means that the routine succeeded, and indicates the assignment order which
was chosen (see Section 2.2 [formdb'expand], page 7). A return value of -1 indicates failure. The
only sources of failure are an unrecognized formation name or an input route that is contains less

than two waypoints. In the case of failure, the output routes will be identical to the input routes,
and nominal values will be supplied for scan sectors.

Note that data allocated within the output-routes array must be freed when no longer in use.

2.4 form db 4enerate-road march-order

void formdb.generate.roadmarch..order(n.units, unit..data, order.array)
int32 n.units;
FORMDB_DATA unit.dataO];
int32 order.array [];

'n.units' Specifies the number of units in the unit.data array.

unmit-.data'
i ' d 'Specifies job and current location data for the units. The return fields of scan-ccw and

scan.cw will be filled out.

'order-array'

Returns the order of march. Each element of this array is an index into the unit-data

I
I

Chapter 2: Functions 11

array.

Given unit-data, formdbgenerate.roadmarch.order return the order on which the units

should follow one another on the road. This is currently defined as the preferred column order.

The order of march is defined by the order of indices returned in order-array.

2.5 formdb -occupy-area

void formdb.occupy.area(radius, location, n.units, unit-data, directions)
float64 radius;
float64 location[3);
int32 n-units;
FORMDBDATA unit.data[];
float64 directions [];

'radius' Specifies the desired radius of the area

'location'
Specifies the desired location of the center of mass of the formation. If it is equal to

[0.0, 0.0 .0.0), then the center of mass will remain unchanged.

'n.units' Specifies the number of units in the unit.data army.
'unit-data'

Specifies and returns data for the units. Desired vehicle placement and scan sector
information will be returned in this data.

'directions'

Returns the directions that each unit should face.

formdb..occupy.area returns desired positions for the units to be on a circle of a given radius

at a location to provide for all around security.

2.6 formdb-herringbone

void formdbherringbone(spacing, direction, location, n.units, unit-data)
iloat64 spacing;
float64 direction;
float64 location[3);
int32 n.units;
FORNDBDATA unit-data[];

12 LibFormationDB Programmer's Guide

'spacing' Specifies a desired spacing between units, in meters

'direction'

Specifies the desired direction of the units in the formation, in radians. 0 is interpreted

as north, and directions increase positively counter-clockwise.

'location'
Specifies the desired location of the center of mass of the formation. If it is equal to

[0.0, 00.0, 0.0, then the center of mass will remain unchanged.
'nunits' Specifies the number of units in the unit-_data array.

'unit._data'

Specifies and returns data for the units. Desired vehicle placement and scan sector

information will be returned in this data.

formdbherringbone returns desired positions for the vehicles to get off of the road from column

formation. For simplicity, this is currently modeled just as a staggered column. Because there is

no road information in formdb, there is no guarantee that this actually gets the units off the road.

ADST-TR-W003 268

Lib~wa

Table of Contents

1 Overview 1

2 Examples ... 5

3 Functions I........................ 7

3.1 fwainit 7
3.2 fwa-.classinit .. 7
3.3 fwa-.tick ... 7
3.4 fwa..collsion.. 8
3.5 fwa-damage..9

Chapter 1: Overview

O 0verview

Libfwa implements an instance of thie liull class of components. It provides a low-fidelity model
of fwa vehicle dynamics. Capabilities are miodeled only to the second order (maximum velocity,
maximum acceleration).

The parameters of a fwa vehicle are specified in its configuration file as follows:

(fia (c..drag-..uper (float ~
(c-.drag-..ub <float >)
(vehicle-mass (float) kg)
(thrust-.min (float> N)
(thrust-max (float> N)
(lift-min (float> N)
(lift-max (float> N)
(hide-.min (float> N)
(side-.max (float> N)
(induced-.drag..factor (float)>
(takeoff-.alt (float a>)
(speed-.tau (float sec)
(fpa.tau (float sec)
(track-.tau (float sec)
(roll-.tau <float sec)
Caoa-.tau (float sac)
(fuel-.usage (float kg/)
(airplane-drag-.index (float >)
(takeoff-s.peed (float mpu2)
(thrust-map <char £32J filename)
(har&.-turn-.rate (float portion of current maximum>)
Cstandard-.turn..rate (float degrees/second)
(easy-.turn.rate (float degrees/uecond)
Chard..climb.rate (float portion of current maximum)
Cstandard-.climb-.rate (float portion of current maximum>)
(easy..climb..rate (float portion of current maximum)
(fuel-.usage ;;All values floats, list in increasing order

< percent) (percent>).
(<altitude), (liter/sec) (liter/sec) .
(<altitude) (liter/sec) (liter/sec) .

Applications interface to t he f%%, iun~,mll p~rimarily through the libhulls interface. The most
common interface for controllaiz~~e~ . iiotion in the air is HULLS..SET..FLY-LEVEL. Libfwa will
do the normalization only if it k 1,~ -,.r 'for example, if the vehicle is already pointing the right
way, no normalization is needed.

2 LibFwa Programmer's Guide

Libfwa supports only one instantiation per vehicle (i.e., a vehicle may not have more than one
fwa hull).

The following equations describe the dynamics of the fixed wing hull.

air-.density a initial-air.density * exp(-Z/HR)
initial-air-.density - .0249
HR a 34,602.5 - . 14604Z
Z is the altitude of the vehicle

thrust - (mass * gravity * sin(flight.path..angle) +
mass * speed..rate..goal + drag)/cos~angle-of..attack)

track-.force - mass * Cupeed)-2 * cos(flight.path-.angle)
track.rate-.goal

flight.path-.angle..force = mass * speed
flight.path-angle-rate-.goal+
mass * gravity * cos(flight-path-.angle)

roll-.angle a arctntrack-force/flightpath.angle-.force)

normal force - sqrt(flight-.path-.angle-.force-2 + track-.forc.-2)
Coef-.lift a 21,522.3
lift-.goal - normal-.force / (1.0 + (2.0 * thrust)/

air-donsity * Cost-.lift * speed-2)I angle..of..attack a 2 * lift-.goal /
(air..density * speed-2 * Coef-.lift)

lift a (air-.density * speed-2 * Coef..lift * angl...of-.attack)/2

coef-.sub-.or.super :coet-drag.subsonic when speed < speed of sound
:coef-.drag.supersonic otherwiseI coef-drag :drag cosf of weapons + drag cost of airplane

drag = air-.density * speed-2 * coef-.sub..or.super * coef-.drag +I lift * angle..of..attack;

speed-.rate - (thrust * cos (angle-.of-.attack) - drag) I mass * gravityI * sin(flight.path-.angle);
flight-.path.angle..rate a (lift + thrust * sin~angle-.of..attack) +

cos(roll..angle) + side * sin(roll..angle))/speed
track-.rate = (lift + thrust + sin~angle-.of..attack)) * sin(roll..angle)

/ mass * speed * cos(flight-path-.angle)

I Applications interface to the fixed wing aircraft (fwa) model primarily through the libhulls
interface. The libhulls library defines a common set of functions (and the semantics of thoseI functions) which are invoked on instances of the hulls class (such as those instantiated by libtracked,
libfwa, or libmissile).

Chapter 1: Overview 3

It is possible to modify the fwa model by changing an exisiting hulls interface function or by
adding a completely new function. To modify an existing hulls interface function requires the

following actions:

1. If the change occurs only in the function body, a change to the function code in Lhe libfwa

library is all that is needed. If the change occurs to the function's argument list, change the
function code in the libfwa library and change the hulls interface structure definition found
in libhulls.h. Also to maintain the common hulls interface, change the code for the modified
function in any other hull specific component library (such as libtracked and libmissile).

2. Recompile ModSAF.

To add an additional libfwa function to the current model requires the following actions:

1. Write the function as part of the libfwa library. The function is written in the code which
manages the libfwa class information attached to each vehicle (fwa.class.c).

2. Add the function and its declaration to any of the other hull specific component libraries. This
maintains the common hulls interface.

3. In the libfwa source code that handles libhull initialization processing, include a function-number,
function entry identifying the new function for the cpnt-defins-_instance function and ev-
ery other hull instance library (libtracked, libmissile, etc)

4. In libhulls.h, add an entry to identify the new macro and associate it with a function code
number. This new addition means that the number of hulls functions must be incremented by
one. The hulls interface structure definition that appears in libhulls.h must include a structure

to define the new function's argument list.

5. Recompile ModSAF.

To replace this fwa model with a completely different one requires the following actions:

1. Decide on the get functions and set functions that would be required in the new model. Try to
map these needed functions to the existing hulls interface. A function can map if its argument
list can remain the same. Functions that can not map must be added to the hulls interface.

2. For those functions that can map to the existing hulls interface but whose code body you want
to change, edit the code for the function in the libfwa source file that contains the code to
manage the libfwa class information (such as fwa.class.c).

3. For those functions that can't map to the existing hulls interface, add an additional function
to the hulls interface. The addition procedure was described above.

4. Recompile ModSAF.

4 LibFwa Programmer's Guide

If an interface function is no longer needed, it is possible but not required, to remove it. Deletion

of an interface function is only allowed when that function is not needed in any of the specific
component libraries,

The deletion process requires these steps:

1. Delete the function code from each specific component library.

2. In the generic component library, remove the "function-number, function" entry identifying

the excess function in the "cmpnt-define.instance" function call. This function call is found in
the library's initialization code segment. In the library's public header file, remove the entry
for the excess macro and its associatiated function code number. Decrease the number of
interface functions by one. Delete the structure that defines the excess function's argument
list in the interface structure definition.

3. Recompile ModSAF.

Chapter 2: Examples 5

2 Examples

To get the component number of my hull:

extern int32 my-hull;

if ((my.hull - cmpnt.locate(vehicle-id. reader.get-symbol("hull")))
CMPNT.NOT.FOUND)

printf("Vehicle %d does not seem to have a hull\n", vehicle-id);

To then give a command to that hull:

if (my.hull != CMPNTNOT.FOUND)
HULLS.SET.DIRECTION.SPEED(vehicle.id, hull, dirvec, speed, 0.0, 0.0);

____________ _____________________

6 LibFwa Programmer's Guide

Chapter 3: FunctionsT

3 Functions

The following sections describe each function provided by libfwa, including the format and

meaning of its arguments, and the meaning of its return values (if any).

I 3.1 fwa-init

void tva-.init()

I ftva..init initializes libfwa. Call this before calling any other libfwa functions.

3.2 fwa-.class-init

void fva..clasu..init(parent..class)
CLASS-.PTR parent-.class;

'parent-.class'
j Class of the parent (declared with claus..declar...clame).

fva..clae-init creates a handle for attaching fwa class information to vehicles. The par-I ent..class is one created with class-declare-.class.

3.3 fwa-.tick

I void fwa..tick(vehicle-i.d, ctdb)
1nt32 vehicle-.id;I CTDB *ctdb;

'vehicle-id'

Specifies the vehicle ID
'ctdb' Specifies the terrain database

I fvwa.tick ticks the fwa hull dynamics model.

8 LibFwa Programmer's Guide

3.4 fwa-collision

void fwa.collision(vehicle.id, position, coll.type,
other.id, other.mass, other.velocity)

int32 vehicleid;
float64 position[3);
uint32 coll-type;
int32 other.id;
float64 other-mass;
float64 other.velocity[3);

'vehicle. id'

Specifies the vehicle ID
'posit~ion'

Specifies the position of impact in world coordinates

'coll.type'

Specifies the type of collision these values are defined in the library libcollision.
'other-id'

Specifies the vehicle ID of the other party (or 0 if terrain)
'othermaas'

Specifies the mass of the other party
'other.velocity'

Specifies the velocity of the other party

fva.collision tells the fwa hull dynamics model that a collision occured. The col..type should

be one of the libcollision constants:

COLL-TREES
Indicates crossing a treeline or canopy edge.

COLL-BUILDINGS

Indicates crossing a building or other structure. If the other structure is represented

on the network, the vehicle ID of that structure should be provided.

COLL.GROUND
Should not be checked for ground vehicles.

COLL-PLATFORMS

Indicates intersecting a platform (vehicle, DI, etc.).

COLL.MISSILES

Indicates intersecting a missile (an entity on the network with a munition type.

fva.collision sets the vehicles appearance to smoking and flaming. If the collision is with the

Chapter 3: Functions 9

I
ground, the vehicles appearance is also set to destroyed.

I 3.5 fwa-damage

void fwa-damage(vehicle-id, damage)
int32 vehicl-id;
int32 damage;

'vehicl. id'

Specifies the vehicle ID
'damage' Specifies whether the fwa dynamics should simulate being damaged

fma.damag. tells the fwa hull dynamics model that it is damaged (or not) depending on the
boolean value of the damage flag.

I

I
I
i

i
I
I

I ADST-TR-W003268

I
I
I
II

I
I
I
I Libgenradio

I
I
I'
I

I

I
I
I

Table of Contents

1 Overview 1

1.1 Examples .. 1

2 Functions..3

2.1 grad-iuit...3
2.2 gradslass-init...3
2.3 grad..create ... 4
2.4 grad..destroy...4
2.5 grad..send-text.. 4
2.6 grac-subscribe ... s5
2.7 grad-.tick..

Chapter 1: Overview

1 Overview

LibGenRadio provides rudimentary radio communications to ModSAF entities. It allows trans-

mission of ASCII strings using the radio protocols of SIMNET and DIS, including issuance of

transmitter and signal PDU's.

Initially, functionality is limited to vehicles sending brief messages, which are then received and

displayed by the GUI.

1.1 Examples

/* currently in main.c */ grad.init(dstadir, READEROVERRIDE, valve, 0);

/* currently in so-init.c */grad.class-init(safobjclass);

/* currently in so-local.c */grad-create(vehicleid, (GENRADIOPARAMETRICDATA *)parms);

/* currently done from tasks */ grad..send-text(vehicle.id, "Standing by");

/* currently done from solocal.c */graddestroy(vehide-id);

2 LibGenRadio Programmer's Guide

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libgenradio, including the format and

meaning of its arguments, and the meaning of its return values (if any).

2.1 grad-init

void grad.init(data.dir, flags, valve, protocol)
char *data.dir;
uint32 flags;
PV.VALVE.PTR valve;
int32 protocol;

'data-dir'

Path to data files.

'flags' Flags to pass to libreader.

'valve' Libpktvalve handle to use for network access.

'protocol'

Protocol version in effect for this run of ModSAF.

grad-init initializes LibGenRadio. Call this before any other libgenradio function.

2.2 grad-classjnit

void grad.class.init(parent_class)
CLASSPTR parent-class;

'parent-class'

Class of the parent (declared with classdeclare.class)

grad.class.init creates a handle for attaching genrado class information to vehicles. The
parent.class will likely be saf obj.-class.

4 LibGenRadio Programmer's Guide

2.3 grad-create

void grad.create(vehicle.id, paraza)
int vehicle-id;
GENRADIO.PARAMETRICDATA *params;

'vehicleoid'

Specifies the vehicle ID

'params' Specifies initial parameter values

grad.create creates the genradio class information for a vehicle and attaches it vehicle's block
of libclass user data.

There are currently no parametric data.

2.4 grad-destroy

void grad-destroy(vehicle-id)
int vehicl.id;

'vehicle.id'

Specifies the vehicle ID

grad.destroy frees the genradio class information for a vehicle. This should be called before
freeing the class user data with class-freuser-data.

2.5 grad.send.text

void gradesnd-text(vehicle-id, string)
int32 vehicle-id;
char *string;

'vehicle.id'

Specifies the vehicle
'string' Points to the text to be sent over the radio.

Chapter 2: Functions 5

grad.sond..text initiates transmission of the specified text over the vehicle's radio. The length
of the string sent is truncated to GRAD_4AX.MSG-_LEN, which is defined in libgenradio.h. An internal
copy of the text is maintained, so the memory indicated by string may safely be altered or
deallocated any time after this function returns.

2.6 grad.subscribe

void gradsubscribe(vehicle-id, message.queue)
int32 vehicle_ id;
QUEUE-QUEUE message.queue;

'vehicloeid'

Identifies the vehicle containing the radio
'ctdb' Specifies the queue for incoming messages

grad.subscribe requests that incoming messages be enqueued on the passed queue. The mes-
sages are placed in the queue using a GRLAD.MESSAGE structure:

typedef struct grad-mesuage

uint32 time-received;
int32 senderid;
char textE[;

} GRADMESSAGE;

Only ModSAF generated ASCII text messages will be enqueued.

Libgenradio will take care of the deallocation of the queue when the vehicle is destroyed; however,
it ;s the responsibility of the caller to flush any messages remaining on the queue.

2.7 grad.tick

void grad-tick(vehicle.id. ctdb)
int32 vehicle.id;
CTDB *ctdb;

'vehicle.id'

Identifies the vehicle iretaining the radio to be ticked.i

6 LibOenRadia Programmer's Guide

'ctdb' Specifies the terrain database

grad..tick checks radio state and issues PDU's as required.

I
I
I
I
I
I
I
1
I
I
I
I
I

ADST-TR-W003268

LibGenturret

I
I
I
I
I
I
I
I

Table of C ontents

1 Overview..1I

2 Examples...5

3 Functions..7

3.1 generic.turret-init... 7I3.2 generic-.turret-dcass-init.. 7
3.3 generic-.turret-tick .. 7
3.4 generic-.turret-dasnage ... 8

Chapter 1: Overview

1 Overview

Libgenturret implements an instance of the turret class of components. It provides a low-fidelity
model of generic turret dynamics and capabilities. Turrets that can not support 360 degree slewing
(as reported in llbphysdb) are supported. Turrets can be described as having either a continuous
range of slew rates or set discrete rates.

The parameters of a generic turret are specified in the configuration file for the vehicle containing
such a turret as follows

(generic-turret (physdb-name <name>)
(rates continuous (min-slew deg/sec> (max-slew deg/sec>))

Oft
(generic-turret (phsydb-name <name>)

(rates discrete <ratel sloew deg/sec>
(rate2 slow dog/sec>
<rate3 slow deg/soc>
; rates must be monotonically increasing

The (name> must match the name of the turret as specified in the libphysdb database. The
rates are in degrees per second. For continuously slewable turrets, the minimum slew rate is the
slowest the turret can slew without stopping, and will frequently be 0. For discretely slewable
turrets, the rates are the various speeds the turret can slew.

Applications interface to the generic turret model primary through the libturrets interface. The
most efficient interface for controlling turret azimuth is TURREIS.SET.AZINUTH.

Libgenturret supports up to 4 instantiations per vehicle (i.e., a vehicle can have up to 4 generic
turrets).

The libturrets library defines a common set of functions (and the semantics of those functions)
which are invoked on instances of the turrets class (such as those instantiated by libgenturret).

It is possible to modify the generic turret model by changing an exisiting turret interface function
or by adding a completely new interface function. The process of modification of an existing
libgenturret function is fairly simple when the change occurs only in the function body. In that
case, the programmer would only need to change the function code in the libgenturret library. The
process of modification of an existing libgenturret function is more complicated when the change
occurs to the function's argument list. In that case, the programmer would need to change both

2 LibGenturret Programmer's Guide

the function code in the libgenturret library and the turrets interface structure definition found in
libturrets.h. Currently libgenturret is the only turret specific component, but if there were more,
the programmer would also need to change the code for the modified function in those libraries
to maintain the common turrets interface. When all these changes have been made to the source
code, ModSAF would need to be recompiled.

To add an additional interface function to the current model, a programmer would need to
perform the following actions:

1. Write the function as part of the libgenturret library. The function is written in the code that
manages the libgenturret class information attached to each vehicle (gturclass.c).

2. Currently libgenturret is the only turret specific component, but if there were others, the
programmer would need to add the function and its declaration to their libraries to maintain
the common turrets interface.

3. In the libturrets source code that handles libturrets initialization processing, include a func-
tion.number, function entry identifying the new function for the cupnt-.define.na:tance
function.

4. In libturrets.h, add an entry to identify the new macro and associate it with a function code
number. Increment the number of turret interface functions by one. Include a structure to
define the new function's argument list in the turrets interface structure definition.

5. Recompile ModSAF.

To replace this genturret model with a completely different one would require the following
actions:

1. Decide on the interface functions that would be required in the new model. Try to map these
needed functions to the existing turrets interface. A function can map if its argument list can
remain the same. Functions that can not map must be added to the turrets interface.

2. For those functions that can map to the existing turrets interface but whose code body you
want to change, edit the code for the function in the libgenturrets source file that contains the
code to manage the libgenturret class information (gtur-class.c).

3. For those functions that can't map to the existing turrets interface, add an additional function
to the turrets interface. The addition procedure was described above.

4. Recompile ModSAF.

Since libgenturret is the only specific turret library, it would be safe, but not required, to
remove any model functions that are no longer needed. This deletion of functions would be more
problemetic if there were multiple turret models. In that case it would be necessary to check

Chapter 1: Overview 3

that the function was not needed in one of the other specific component libraries. To remove an

unnecessary libgenturret function from the current model, a programmer would need to perform

the following actions:

1. Delete (or comment out) the function code from the libgenturret library (see gturclass.c). If

there were other specific turret component libraries, the function would be deleted from those

libraries as well.

2. In the libturrets initialization code. remove the "function-number, function" entry identifying

the excess function in the "cmpnt define-instance" function call.

3. In libturrets.h, remove the entry that identifies the excess macro and its associatiated function

code number. Delete the number of turret interface functions by one. Delete the structure

that defines the excess function's argument list.

4. Recompile ModSAF.

LibGenturret Programmer's Guide

Chapter 2: Examples 5

2 Examples

To get the component number of a turret with a particular name (such as "primary-turret"):

int32 turret;

if ((turret = capnt-locate(vhicle-id, name)) nu
CMPNT.NOTFOUND)

printf("Vehicle %d does not seem to have a turret called \"s\".\n",
vehicle id,
name);

To then give a command to that turret (the macro is defined by libturrets; it assembles a

TURRETS-_INTERFACE structure, and calls cmpnt.ivoke):

if (turret !- CMPNT.NOT.FOUND)
TURRETSSET.AZIUTH(vehicle.id, turret, azimuth);

6 LibGenturret Programmer's Guide

Chapter 3: Functions 7

3 Functions

The following sections describe each function provided by libgenturret, including the format and

meaning of its arguments, and the meaning of its return values (if any).

3.1 generic.turret.init

void generic.turret.init (

genric.turret.tinit initializes libgenturret. Call this before calling any other libgenturret

functions.

3.2 generic. -turret -class-init

void goneric.turret-.class.init (parent.class)
CLASS.PTR parent.class;

'paront..class'

Class of the parent (declared with clasu-declare.class).

generic-turret .class-.ifit creates a handle for attaching generic-turret class information to

vehicles. The parent.class is one created with class..declare.class.

3.3 genericturret -tick

void generic.turre ttick(vehicle.id)
int32 vehicle.id;

'vehicle.id'

Specifies the vehicle ID

generic.-turret tick ticks the generic turret dynamics model.

8 LibGenturret Programmer's Guide

3.4 generic-turret-damage

void genoric-turret.damage(vehicleid, damage)
int32 vehicle.id;
int32 damage;

'vehicle.id'

Specifies the vehicle ID

'damage' Specifies whether the generic turret should simulate being damaged

generic.turret.damage tells the generic turret model that it is damaged (or not) depending
on the boolean value of the damage flag.

ADST-TR-W003268

LibGraphics

Table of C on tents

O 0verview.. 1

2 Usage .. 3

2.1 Building Libgraphics 3
2.2 Linking with Libgraphics 3

3 Functions 5

3.1 grph..init 5
3.2 grph..create-.editors ... 5
3.3 grph..register-.associat ion 6
3.4 grph..edit-.text 6
3.5 grph..classinit .. 7
3.6 grph..rreate.. 7
3.7 grph..destroy ... 7
3.8 grph..changed...8
3.9 grph-overlay-.changed.. 8

Chapter 1: Overview 1

1 Overview

LibGraphics implements a C2 subclass for the display and editing of persistent objects. It
handles the display of points, lines, text, and taskframes, and the editing of points, lines, and text.

Each class of object has a corresponding sensitive class, which is used when the graphic is displayed.

LibGraphics also allows other libraries to register their own sensitive classes which are used when
the displaying text associated with objects of other classes (such as Units).

I

2 LibGraphics Programmer's Guide

Chapter 2: Usage 3

2 Usage

The software library 'libgraphics. a' should be built and installed in the directory

'/common/lib/'. You will also need the header file 'libgraphics .h' which should be installed in
the directory '/conmon/include/libinc/'. If these files are not installed, you need to do a 'make'
in the libgraphics source directory. If these files are already built, you can skip the section on
building libgraphics.

2.1 Building Libgraphics

The libgraphics source files are found in the directory '/comon/libsrc/libgraphics'. 'RCS'
format versions of the files can be found in '/nfu/comon-src/libsrc/libgraphics'.

If the directory 'common/librc/libgraphics' does not exist on your machine, you should use
the 'genbuild' command to update the common directory hierarchy.

To build and install the library, do the following:

S cd comon/libsrc/libgraphics
co RCS/*,v
make install

This should compile the library 'libgraphics. a' and install it and the header file
'libgraphics .h' in the standard directories. If any errors occur during compilation, you may need
to adjust the source code or 'Makefile' for the platform on which you are compiling. libgraphics

should compile without errors on the following platforms:

* Mips

" SGI Indigo

" Sun Sparc

2.2 Linking with Libgraphics

Libgraphics can be linked into an application program with the following link time flags: 'id
(source .o files] -L/conon/lib -igraphics [other libraries'. If your compiler does not

4 LibGraphics Programmer's Guide

support '-L' syntax, you can use the archive explicitly: '1d (source .o f iles)

/couon/lib/libgraphics -a'.

Libgraphics depends directly on the following libraries: libselect, libprivilege, libsafguli, lib-

tactmap, libcoordinates, libsensitive, libeditor, libreader, lib class, and libpo.

Chapter 3: Functions 5

3 Functions

The following sections describe each function provided by libgraphics, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 grph-init

void grph.init()

grph.init initializes libgraphics. Call this function before calling any other libgraphics func-
tions.

3.2 grph-create.editors

int32 grphcreate.editors (data.path, reader-flags,
gui, tactmap, tcc, map.erase4c,
sensitive, refresh-event, db, select)

char *data.path;
int32 reader.flags;
SGUIPTR gui;
TACThAP.PTR tactmap;
COORDTCCPTR tcc;
GC map.orase-gc;
SNSTVE.VINDO _PTR sensitive;
CALLBACKEVMTPTR refresh.event;
PODATABASE *db;
SELECT.TOOLPTR select;

'data-path'
Specifies the directory wher7 data files are expected

'readerflags'

Specifies flags to be passed to reader-read when reading data files
'gui' Specifies the SAF GUI

'tact ap' Specifies the tactical map

'tcc' Specifies the map coordinate system

uap.erase.gc'

Specifies the GC which can erase things from the tactical map

6 LibGraphics Programmer's Guide

'sensitive'
Specifies the sensitive window for the tactical map

'refresh. event'
Specifies the event which fires when the map is refreshed

'db' Specifies the persistent object database
'select' Specifies the select tool

grph..create-.editors creates the graphics editors. The data file ('graphics. rdr') is read
either from '.' or the specified data path, depending upon the reader..f lags. The reader-.flags
are as in reader-.read. The return value is zero if the read succeeds, or one of the libreader return
values: READER..READ..ERROR, READER-.FILE-..NOT-.FOUND.

3.3 grph-.register-.association

void grph..register..association(gui, po-.class, e nstve-.class)
SGUI-.PTR gui;
PersistentObj ectClass po-.class;
SISTVE-.CLASS *snstve-class;

'gui' Specifies the SAF GUI
'po-.class'

Specifies the persistent object class (objectClassUnit, etc.)
'snstve..class'

Specifies the sensitive class

grph..register..associat ion tells the graphics editors the sensitive class which should be used
when displaying text associated with objects of the specified PO class. This should be called after
all graphics editors have been created.

void grph-o.dit-.tezt (gui, id)
SGUI..PTR gui;

ObJectID *id;

'gui' Specifies the GUI

Chapter 3: Functions 7

'id' Specifies the ID of the text to edit

grph.edit._text starts up the text editor for the passed text object. This function is provided
to allow editing of the text associated with an object. Note that the caller is responsible for making

sure the GUI is in a state where the text editor can be started (i.e., another OBJECT.-ODE editor is

not running).

3.5 grph-class init

void grph-clasu, init (parent..class)
CLASSPTR parent.clasus;

'parent_ class'

Specifies the parent class (probably c2obj.class)

grph- class..init creates a handle for attaching graphics class information to entries. The
parnt.-class is one created with class-declare-clas.

3.6 grph..create

void grph.create (ontry)
PO_DB_EITRY *entry;

'entry' Specifies the graphic entry

grphcreate creates the graphics class information for a entry and attaches it to the entry's
libclass user data. This function simply returns if no graphics editors have been created (running
without a GUI), or the entry is not of a class for which libgraphics is responsible.

3.7 grph.destroy

void grph.destroy (entry)
PO_DB_ENTRY *entry;

'entry' Specifies the graphic entry

8 LibGraphics Programmer's Guide

grph..deutroy frees the graphics class information for a entry.

3.8 grph-.changed

void grph-.changd(.ntry)
PO..DB..ENTRY *entry;

'entry' Specifies the graphic entry

g(rph-.changed updates displayed graphic in response to a libpo object-chaniged event.

3.9 grph-.overlay..changed

void grph..overlay-.changd(entry)
PO-.DB..ENTRY *entry;

'oentry' Specifies the graphic entry

grph..overlay-.changed updates displayed graphic in response to a libpo object-.changed event
for the graphic's overlay.

ADST-TR-W003268

LibGuns

Table of C ontents

1 O v e rv ie w .. 1

2 E x a m p le s .. 5

3 F u n ctio n s .. 7

3.1 guns-init .. 7
3.2 GUNS.GETMAGAZINE.SIZE .. 7
3.3 GUNS.SETLOADMUNITION 7
3.4 GUNS.SETUNLOADMUNITION S
3.5 GUNSGETLOADEDMUNITION ;
3.6 GUNS.SETLAUNCHERYPOSITION 9
3.7 GUNSGETLAUNCHER.POSITION 9
3.8 GUNS.SETELEVATION ... 10
3.9 GUNS.SET.TARGET ... 10
3.10 GUNS.SETLOCATION ... 11
3.11 GUNS.GET.TARGET.ISTRACKED 11
3.12 GUNSGET.LOCATION-ISTRACKED 12
3.13 GUNSGETREADYTOFIRE 12
3.14 GUNS-SETSIRE ... 13
3.15 GUNS.SET.FIRE-ATTARGET 13
3.16 GUNS.SET.FIRE.AT.LOCATION 14
3.17 GUNS-GET.ALLOWED.MUNITIONS 14

I

Chapter 1: Overview

1 Overview

Guns is a SAF components class. The purpose of a components class is to define a common
set of functions which are invoked on instances of that class, and the semantics of those functions.
Other than defining these functional semantics, components classes don't actually *do* anything.

Access to gun functions is achieved through macros defined by Iibguns. These macros invoke
'cmpnt.invoke' with a code number which identifies the function to run. Libcomponents then runs
this function for the particular gun mode via a jump table.

The table below shows how the gun component relationships have been currently implemented
via the ModSAF library structure.

specific libraries generic library architectural library

libbalgum libguns libcouponents
libalauncher libguns libcomponents

As mentioned above, libguns requires the services of libcomponents, an architectural library
which provides a level of abstraction away from the specific gun component interfaces. When the
ModSAF application gets set up to run, the libguns initialization process directs libcomponents
to define a gun component class. This information enables libcomponents to define a structure
to accommodate all of the gun instantiations a simulated object is allowed to have. The libguns
initialization process also tells libcomponents the number of its defined gun interface functions.
This enables a simulated object's user data to be allocated enough space to hold the address of
each of the interface functions defined in libguns.

The parametric data of libcomponents identifies each component that needs to be modeled when
a vehicle is simulated. For example, a component entry for a T72 tank might look like this: (see

the file named USSRT72M.params.rdr)

(SHComponentu (hull SM.Trackediull)
(turret SH.GenericTurret)
(machine-gun ESM.BalliticGun 1 0])
(main-gun [SN.BallisticGun 1 1])
(visual SH.Visual))

A T72M simulated vehicle (which belongs to the safobj class) will have component sub-class data

which tells the ModSAF software to maintain a structure that includes one libbalgun instantiation
for the machine gun and one libbalgun instantiation for the main gun.

2 LibGuns Programmer's Guide

Since an application will interface to libbalgun or libmlauncher through libguns, a tank's main

gun shooting control commands (which are performed by libbalgun) and an airplane's missile

launcher commands (which are performed by libmlauncher) are both issued via the interface defined

by libguns. A command to load ammunition is therefore the same whether the object is loading a

main gun, machine gun, or missile launcher. What is different is the type or ammunition to load and

that is passed as input to the gun function. Similarly, an application can obtain information about
the state of any of its guns though the libguns interface. The table below shows the relationship
between the specific and generic library for the guns component.

Instantiations of Belong to generic Have a command
of the library: component class: interface defined in:

libbalgum guns libguns
libmlauncher guns libguns

The interface to libguns is defined in its public header file (libguns.h). This interface lets an
application set gun controls or get gun information without knowing which specific gun model is

being used. Applications interface to the ballistic gun model or missile launcher model primarily
through the macros defined in libguns. These macros map to functions which are invoked on
instances of the guns sub-class (such as the libmlauncher component instantiated for an airplane
or the libbalgun component instantiated for a tank).

One interface for controlling a gun is the macro GUISSETUNLOAD.(IINITIOI which maps to a
function which starts the procedure of transfering a given number of loaded munitions to a storage
bin. A possible definition for this macro is shown below.

*define GUNSSETUNLOADUNITION(.vid, _cnum, .store, -quantity){
GUNS-INTERFACE .gif;
_._gif. u. setunload-junit ion. store = -store;
_gif.u. set-unload.mition.quantity = .quantity;
capnt-invoke(GUNS.SET.UNLOADMUNITIOI.FCN, _vid, .cnum, (ADDRESS)&gif);}

The GUISIITERFACE structure defined in libguns.h is the structure which is passed to any gun
function. This structure is a union of structures that each define an argument list for a gun interface

function. An abbreviated example that assumes there are only two gun functions is shown below.
Typically there will be many interface functions and therefore more structure definitions in the
union. The macros hide this structure from the users of these functions.

typedef struct guns.interface

I

Chapter 1: Overview 3

union

struct guns.set.unload.munit ion

int32 store;
int32 quantity;

} set.unload-munition;
struct guns-.geZtloaded-munition
f

uint32 munition;
int32 quantity;

} geztloadod.munition;
} u;

} GUNS-INTERFACE;

Issuing a command to an objects's gun component is done by invoking one of the macros defined
in libguns. These macros identify the specific component function which needs to be called. For
example, invoking the GUNSSET.UNLOAD.NUNITIOI macro will result in the calling of the specific
component function named setunload-munition. In the public header file of each generic library,
macros are associated with a function code number so that a call to the libcomponents library
(via the cmpnt.invoke function) will dispatch a call to the appropriate function. The specific

component functions are defined and installed by the specific libraries (libbalgun and libmlauncher).
In this case, both libraries install a function with the same name, 'setunload.munition" (there
is no name conflict because each function is declared static). It is the specific function (either

libbalgun's setunload-munition or liblmauncher's set.unload.munition) which is called when the
macro is invoked.

Invoking the macro results in two actions: (1) setting up of the interface structure and (2)

passing of necessary information to libcomponent. The macro passes the vehicle id, component

number, and function pointer index to libcomponent so that the appropriate library (libbalgun or

libmlauncher) data can be accessed. The requested function can require input (such as a storage
bin to unload the munition into and a quantity to transfer into the storage bin) and/or output

(such as a setting) . Therefore, libcomponents must also be passed the address of the interface
structure that holds this data.

4 LibGuns Programmer's Guide

I
I
I
I
I
I

Chapter 2: Examples5

p 2 Examples

To initialize fibbalgun. an instance of the gun class which provides for up to BGUN...AX..GUNS

guns per entity:

int32 i;
char but (256);

for (i a0; i < BGUN.HAX.GUNS; i++)

(void) uprintf(buf, "gun~d". 0);
bgm..user-.data-.handle EiJ=

class-.reserv...user.data(parent..class, buI bgun..print);

/* Tell libcomponents we are available. */
cmpnt-.define-instmnce(S..BallisticGul. BGUNMAX..GUNS,

bg.uuer-data.handle,
bgun..create, bgun..destroy,
GUNS-.GET.MAGAZINE-.SIZE-FCN, get ..magazine...ize,
GUNS ...ELOAD.J4UNITIONJFC, set..load-.munition,
GUNS..SVT,-ILOAD_..UNITION_.FCN, set-.unload-mmnit ion,
GUNS-.7 , '-4DED..MUurrI01LPCM, get..loaded-.munit ion,
GUNS..Si2 ',AUNCliER-.POSITION..FCN, uet..launcher..position,
GUNS..GET-LAUNCHER-.POSITI ON-.FCN. get-launcher-pou it ion,
GUNS-.SET..ELEVATION..FCN, set-.elevation,
GUNS-.SET-TARGET..FCN, set-target,
GUNS-.SET-.LOCATION..FCN, set..locat ion,
GUNS.-GET..TARGET-.IS-.TRACKED..FCN, get..target..ia.tracked,
GUNSGET..LOCATI0ILIS.TRACKED..FCN,
get-ocation.i.tracked,
GUNS..GETREADY-.TO-.FIRE..FCN, get..ready.to-.f ire,
GUNS..GET..KUNITION-READY-.FCN, get-munit ion..ready,
GUNS.SET.FIR-FCI. set-.f ire,
GUIS..SET..FIRE.ATTAAGET..FCN, set~fire~at-target,
GUIS..SET-.FIRE-.AT-.LOCATION..FCN, uet-.fire.at.location,
GUNS..GET..ALOWED..UNITIONS-FCN, get-alloved.munitions);

To get the component number of a gun with a particular kiame (such as "main-gun'):

int32 gun;

if ((gun a cmpnt..locate(vehicle..id, name)) us
CMPNT-NOT.FOUND)

printf ("Vehicle %d does not soe" to have a gun called \"%sV\"
vehicle-.id.
name);

6 LibGuns Programmer's Guide

To then give a command to that gun (the macro is defined by libguns; it assembles a GUNS-.INTERFACE
structure, and calls caiput-.invoke):

it (gun !au CNPNT..NOT..FOUND)
GUNS.SETELEVATION(vehcl...jd, gun, elevation);

Chapter 3: Functions 7

3 Functions

The following sections describe each function provided by libguns, including the format and

meaning of its arguments, and the meaning of its return values (if any).

3.1 guns-init

void guns-inito;

gunsuinit initializes libguns. Call this function after cmpnt.init, and before any specific gun
init functions.

3.2 GUNSGET..MAGAZINE-SIZE

void GUNS.GET.MAGAZINESIZE(.vid, _cnum, .quantity)
int32 _vid;
int32 _cnum;
int32 *-quantity;

'_vid' Specifies the vehicle ID

'_cnu' Specifies the gun component number

'-quantity'
Returns the maximum magazine size of munitions loadable

GUNS.GETNAGAZIE.SIZE returns (by reference) the maximum magazine of munitions that can
be simultaneously loaded into the gun.

3.3 GUNSSETLOAD..MUNITION

void GUNSSETLOAD.MUNITION(_vid, .cnum, _munition, -store, .quantity)
int32 .vid;
int32 _cnu;
int32 .store;
uint32 -mumition;
int32 -quantity;

I

8 LibGuns Programmer's Guide

I rid' Specifies the vehicle ID

'.cnum' Specifies the gun component number

'.munit ion'
Specifies the type of munition to load

'.store' Specifies from what store to load the munition from

'.quantity'
Specifies the quantity of munitions to load into the gun

GUNS.SET.LOADMUNITION starts the loading procedure of a number of munitions from the
supplied store. Illegal requests to load too many munitions will be clipped to legal amounts.

3.4 GUNSSETUNLOADMvUNITION

void GUNS.SETUNLOADNUNITON(.vid, _cnum, -store, -quantity)
int32 .vid;
int32 _cnum;
int32 -store;
int32 -quantity;

_vid' Specifies the vehicle ID

'_cnu' Specifies the gun component number

-'.store' Specifies into what store to unload the munition into

'.quantity'

Specifies the quantity of munitions to unload from the gun

GUNSSETUNLOAD.MUNITION starts the unloading procedure of a number of already loaded mu-
nitions into the supplied store. Illegal requests to unload too many munitions will be clipped to
legal amounts.

3.5 GUNSGET..LOADED..MUNITION

void GUNSGETLOADED.IUNITION(_vid, .cnum, -mnition, -quantity)
int32 .vid;
int32 .cnum;
uint32 *-munition;pint32 *.quantity;

Chapter 3: Functions 9

'.vid' Specifies the vehicle ID

'.cnuM' Specifies the gun component number

'_,munition'
Returns the loaded munition

'.quantity'
Returns the loaded quantity

GUNS.GETLOADEDIKUITION returns (by reference) the quantity and munition loaded in the

gun.

3.6 GUNS.SETLAUNCHER-POSITION

void GUNS.SETLAUNCHERPOSITION(_vid, .cnua, -active)
int32 _vid;
int32 .cnum;
int32 -active;

'.vid' Specifies the vehicle ID

'.cnUU' Specifies the gun component number

'.active' Specifies whether to set the launcher active or not

G JNS.SETLAUICHER.POSITION starts process of putting gun in active or inactive position based
on the boolean value of active. For things like a TOW missile launcher or a LOSAT mast launcher,

this may take some time and/or result in appearance modifiers changing in the entity. A gun must

made active before it is ready to fire.

3.7 GUNSGETLAUNCHER-POSITION

void GUIS.GT.LAUUCIIERtPOSITIOE (.vid, .cnu, -active)
int32 .vid;
int32 .-.cnu;
1nt32 *.active;

'.vid' Specifies the vehicle ID

'..cnu' Specifies the gun component number

10 LibGuns Programmer's Guide

'.active' Returns current state of gun position

GUNS.GET.LAUNCHER.POSITION retrieves state of gun launcher. This returns TRUE if the gun has
only one position or if the gun is in the firing position.

3.8 GUNS.SETELEVATION

void GUNS.SET.ELEVATION(.vid, .cnum, .el)
int32 _vid;
int32 _cnuz;
int32 .e1;

'_rid' Specifies the vehicle ID

'.cuM' Specifies the gun component number

'.e1' Specifies the desired elevation

Certain guns (such as a tank main gun) can be elevated. For those guns, GUNSSET.ELEVATION
will select a desired elevation for that gun. If the gun does not support elevation, this will not do

anything. If the requested elevation is not possible, the requested elevation will be clipped to a
legal value.

Setting the elevation of the gun automatically takes the gun out of the target tracking mode
(see Section 3.9 [GUNS'SET'TARGET], page 10) or location tracking mode (see Section 3.10
[GUNS'SET-LOCATION], page 11).

3.9 GUNS-SETTARGET

void GUNS.SETTARGET(.vid, .chum. _targetid)
int32 .vid;
int32 _ cnu;
int32 _targetid

'..vid' Specifies the vehicle 11)
I '-cn1a' Specifies the gun c-milmnent number

'.targetid'
Specifies the id of the taritet to track

I

Chapter 3: Functions 11

GUNSSET.TARGET puts the gun in an automatic mode where the gun will attempt, through
use of the gun's turret component, to track on the targetid. Note that if the gun's turret is not
slewable, this may not do anything.

Setting the elevation of the gun (see Section 3.8 [GUNS'SETELEVATION], page 10) automat.
ically takes the gun out of this target tracking mode.

3.10 GUNSSETLOCATION

void GUNS.SET.LOCATION(.vid, _cnum, .location)
int32 _vid;
int32 .cnum;
float64 _location[3];

'.vid' Specifies the vehicle ID
'.cnu' Specifies the gun component number

'location'

Specifies the location to track

GUNSSETLOCATIOI puts the gun in an automatic mode where the gun will attempt, through
use of the gun's turret component, to track on the location. Note that if the gun's turret is not
slewable, this may not do anything.

3.11 GUNSGETTARGETJS..TRACKED

void GMSGEr.TARGET.ISTRACKED (vid, .cnUst, _target id, -result)
int32 .vid;
int32 .cnum;
izt32 _targetid;
int32 *.result;

'.vid' Specifies the vehicle ID

'.ChUM' Specifies the gun component number
'...targetid'

Specifies the id of the target to track

'.result' Returns whether the target is tracked

12 LibGuns Programmer's Guide

GUNSGET.TARGETIS.TACKED returns (by reference) whether the vehicle _targetid is success-

fully tracked by the gun.

3.12 GUNSGET-LOCATION-ISTRACKED

void GUNSGET.LOCATIONIS.TACKED(_vid, _cnua, -location, .result)
int32 _vid;
int32 .cnua;
int32 .location;
int32 *-result;

'.rid' Specifies the vehicle ID

'_cnum' Specifies the gun component number

'_locat
opecifies the location to track

'.result' Returns whether the location is tracked

GUNSGETLOCATIONIS.TRCKED returns (by reference) whether the position .location is suc-

cessfully tracked by the gun.

3.13 GUNSGET.READYTOFIRE

void GUNS_GErltADY.TOFIRE(_vid. _cnu, .ready, .id)
int32 _vid;
int32 _cnuu;
int32 *-ready;
int32 *-id;

_vid' Specifies the vehicle ID

_cnuu' Specifies the gun component number

.ready' Returns whether the gun is ready for firing

-.id' Returns vehicle ID of ready missile

GUIS.GET.READYTO.FIRE returns (by reference) whether the gun is ready to fire. For missile

launchers, the vehicle ID of the ready missile is returned (by reference) as well. The gun is generally

not ready if it is not loaded or is in the process of loading or unloading munitions.

Chapter 3: Functions 13

I
I 3.14 GUNS-SET-FIRE

void GUS.SET.FIE(.vid, _cnum, .quantity)
int32 .vid;
int32 .cnum;
int32 -quantity;

S'.vid' Specifies the vehicle ID

_ '.Cnum' Specifies the gun component number

'.quantity'
Specifies quantity of loaded munition to shoot

GUISSET.FIRE launches a weapon. The weapon is fired in whatever direction it is currently

pointing. If the weapon is not loaded, this will do nothing. If .quantity specifies an amount

gre&ter than that currently loaded by the gun, the amount will be clipped down to the loaded
amount.

I 3.15 GUNSSETFIRE..ATTARGET

I void GUISSET.FIRE_ATTARGET(_vid, _cnu, .quantity, .targetid)
int32 .vid;
int32 .cnum;
int32 .quantity;
inc32 .targetid;

'.vid' Specifies the vehicle IDI '.cnim' Specifies the gun component number

'.quantity'

'_targetid'Specifies quantity of loaded munition to shoot

Specifies the target to fire at

GUSSETFIE.AT.TARGET launches a weapon at .targetid. If the weapon is not tracked onI the target, this will most likely miss the target. If the weapon is not loaded, this will do nothing.

If .quantity specifies an amount greater than that currently loaded by the gun, the amount will

be clipped down to the loaded amount.I
I

14 LibGuns Programmer's Guide

3.16 GUNSSETFIREATLOCATION

void GUNS.SET.FIRE.AT.LOCATION(.vid, .cnum, .quantity, .location)
int32 .vid;
int32 .cnum;
int32 .quantity;
float64 .location[3];

'_rid' Specifies the vehicle ID

'.cu' Specifies the gun component number

'_quantity'

Specifies quantity of loaded munition to shoot

'.location'

Specifies the location to fire at

GUNSSETFIRE.AT.LOCATION launches a weapon at .location. If the weapon is not tracked
on the location, this will most likely miss the location. If the weapon is not loaded, this will do

nothing. If -quantity specifies an amount greater than that currently loaded by the gun, the
amount will be clipped down to the loaded amount.

3.17 GUNSGET.ALLOWEDMUNITIONS

void GMSGET.LLOWEDMUIITIONS(_vid, _chum, _num, -munitions,

-cur, _abu)
int32 _vid;
int32 cnuum;
int32 *_nua;
GUNSJUNITIOIS .munitions;
GUNS- QUANTITIES .cur;
GUIS-QUANTITIES .abs;

S '.vid' Specifies the vehicle ID

'.cnu' 9 Specifies the gun component number

Returns the length of the list (<= GUNS.MAX.MUNITIONS)

'.-munitions'

Returns the list of allowed munitions

'_cur Returns the list of current limits on munition quantities;

'.abs' Returns the list of absolute limits on munition quantities;

Chapter 3: Functions 15

GUNSGETALLOWEDI).IfIITIONS returns (by reference) a list of munitions which can be loaded
in the gun. The data is returned in a GUNS-IMUNITIONS data structure which is declared as follows:

typedef uint32 GUNSMUNITIONS(GUNSMAX.MUNITIONS);

In addition, two lists of quantities are returned (by reference.) One, is the list of quantities of
munitions which the gun currently can fire. one is the list of maximum quantities of munitions the
gun can fire. Both of these are based on internal limitations of the gun implementation and may
not be equal to the supplies of the munitions available to the vehicle.

The lists of quantities are returned in a GUNS-QUANTITIES data structure which is declared as
follows:

typedef int32 GUNS.QUANTITIES [GUNS.MAX.MUNITIONS]);

The current value of GUNS.MAX.UNITIONS is 4.

I ADST-TR-W003 268

Table of Contents

1 Overview.. 1

1.1 Examples .. 1I

2 Functions .. 3

2.1 hminit .. 3
2.2 hm..get-thrust-imap..3
2.3 hm..thrust... 3
2.4 hm..power... 4
2.5 hm..air..density ... 4
2.6 hm..air..density-.rat-sq.. 5
2.7 hm..mach..velocity... 5
2.8 hm..velocity..mach... 5

Chapter 1: Overview 1

1 Overview

LibHM provides utility functions for managing Height/Mach (HM) diagrams. The library con-
tains an editor 'bmedit', which can be used to generate a thrust map, which is a generalization
about engine capabilities which can be derived from an HM diagram.

The library contains the tool make.uu, which takes a new .map file, and uuencodes it so it can
be stored and used by rcs. .uu versions of the .map file are converted by the makefile back to the
.map format.

The library provides functions for reading these thrust maps, and accessing the information
therein. It also provides utility functions for computing air density and true mach number.

1.1 Examples

The following code fragments from a version of libFWA, demonstrate usage:

/* Read the thrust map *I
fva->thrut_map - hmget-thrustmap(params->thrustmap);

current_thrust.max - hm.thrust(fva->t hrust.map,
fva->position[Z],
fva->speed .actual);

2 LibHM Programmer's Guide

I
I
I
I

Chapter 2: Functions 3

2 Functions

The following sections describe each function provided by libhm, including the format and

meaning of its arguments, and the meaning of its return values (if any).

2.1 hm-init

void hm-init(datadirectory)
char *data.directory;

'data-directory'

Specifies the directory where thrust maps are expected

hmrinit initializes libhm. The passed data directory will be used when reading thrust maps, if
the named files cannot be found in '.'.

2.2 hm-get.thrust-map

HMTHRUSTMAP.PTR bzget.thrust-map(file.name)
char *filename;

'filename'
Specifies the file in which the thrust map is stored

hb.get-thrust.map returns the thrust map stored in the name file. Note that the data is

cached so that future references to the same file will return the same pointer. A NULL return value
indicates an error occured.

2.3 hm-thrust

float64 bm.thrust(thrust.map. altitude, velocity)
HM.THRUST_-APPTR t hr-.s t- map;
float64 a it-Zde;
float64 velcIt y;

4 LibHM Programmer's Guide

'hrust.map'
Specifies the thrust map (created by hm.get.thrustmap)

'altitude'
Specifies current altitude (meters)

'velocity'

Specifies current speed (meters/second)

hm-athrust looks up the maximum thrust available (in Newtons) given the passed altitude and
velocity.

2.4 hm.power

float64 hm.power(thrust.map, altitude, velocity, mass, drag)
HM.THRUSTMAP.PTR thrust.map;
float64 altitude;
float64 velocity;
float64 mass;
float64 drag;

'thrust-map'

Specifies the thrust map (created by hm.-get-thrust-map)

'altitude'
Specifies current altitude (meters)

,velocity'
Specifies current speed (meters/second)

'mass' Specifies current vehicle mass (kilograms)

'drag' Specifies current drag (newtons)

hm.power looks up the available power, given the altitude and velocity (which aie used to
determine thrust), and mass and drag.

2.5 hm.air-density

float64 hm.airdenuity(altitude)
float64 altitude;

I

Chapter 2: Functions 5

'altitude'
Specifies an altitude (meters)

hm-.air..density computes the air density at a passed altitude.

2.6 hm-.air-.density.rat-.sq

float64 ba-.air.dnity-.rat-s.q(altitude)
float64 altitude;

'alti ude'Specifies an altitude (meters)

hm-.air-.dnsity-.rat-e.q returns the square of the ratio of air density at an altitude to air
density at sea level (needed in some equations). Equivalent to
square (ha-. air.density (altitude) Abm-.air-.density (0.-0)), but much cheaper to compute.

2.7 hm -mach -.velocity

float64 hm-.mach.vlocity~mach, altitude)
float64 mach;
float64 altitude;

'mach' Specifies a mach number

'altitude'
Specifies an altitude (meters)

hm..mach.vlocity computes the velocity (meters/second) which corresponds to the passed
mach number for the given altitude.

2.8 hm...velocity...mach

float64 hm..velocity.mach(volocity, altitude)
float64 velocity;
float64 altitude;

6 LibHM Programmer's Guide

'velocity'

Specifies a velocity (meters/second)

'altitude'
Specifies an altitude (meters)

hm.velocity.mach computes the mach number which corresponds to the passed velocity for
the given altitude.

ADST-TR-W003 268

LibHuls

Table of Contents

1 O v e r v ie w ... 1

2 E x a m p le s .. 5

3 Functions ... 7

3 .1 h u lis init 7
3.2 HULLS.SETEXTERNAL..(ONTROL 7
3.3 HULLS.SET.DIRECTION ;SPEED 8
3.4 HULLS.SETVELOCITY.G EAR 9
3.5 HULLS.SETVELOCITYDIRECTION 10
3.6 HULLS.SETVELOCITY..ORIENTATION 11
3.7 HULLS.SETPOSITION.-DIRECTION 11
3.8 HULLS.SETGOALCORRIDOR 12
3.9 HULLS.SETTARGETJD .. 13
3.10 HULLS-SETTARGET.POSITION 13
3.11 HULLS.GETETA .. 14
3.12 l{ULLSGETTAKEOFF.ALT 14
3.13 HULLS.SETTAKEOFF .. 15
3.14 HULLS.SET.LANDED ... 15
3.15 HULLS.SET.FLY.LEVEL ... 15
3.16 HULLS.GET.TURN.PERFORMANCE 16
3.17 HULLS.GET.CLIMB.PERFORMANCE 17
3.18 HULLS.GETFUEL.NEEDED 18
3.19 HULLS.GET.MAX.RANGE 18
3.20 HULLS.GET.LIMITS ... 19

Chapter 1: Overview

I
1 OverviewI

Hulls is a SAF components class. The purpose of a components class is to define a common
set of functions which are invoked on instances of that class, and the semantics of those functions.

Other than defining these functional semantics, components classes don't actually do anything.

Access to hull functions is achieved through macros defined by libhulls. These macros invoke

cmpnt.invoke with a code number which identifies the function to run. Libcomponents then runs

this function for the particular hull mode via a jump table.

The table below shows how the hulls component relationships have been currently implemented
via the ModSAF library structure.

specific libraries generic library architectural library

libtracked libhulls libcomponents
libfva libhulls libcomponents
libmissile libhulls libcomponents
librwa libhulls libcompononts
libvheeled libhulls libcomponents

As mentioned above, libhuls requires the services of libcomponents, an architectural library
which provides a level of abstraction away from the specific hulls component interfaces. When the

ModSAF application gets set up to run, the libhulls initialization process directs libcomponents
to define a hull component class. This information enables libcomponents to define a structure

to accommodate all of the hull instantiations a simulated object is allowed to have. The libhulls
initialization process also tells libcomponents the number of its defined hull interface functions.

This enables a simulated object's user data to be allocated enough space to hold the address of
each of the hull interface functions defined in libhuls.

The parametric data of libcomponents identifies each component that needs to be modeled when

a vehicle is simulated. For example. a component entry for a T72 tank might look like this: (see
the file named USSR.T72M.param.r'lr)

(SH.Components (hull SM.Trackedffull)
(turret SM.GonericTurret)
(machine-gun [SM.BallinticGun 1 01)
(main-gun rSM.BallisticGun I 1])
(visual SX.Visual))

I

2 LibHuIls Programmer's Guide

A T72M simulated vehicle (which belongs to the safobj class) will have rin ponent sub-class data

that tells the ModSAF software to maintain a structure that includes one L)nracked instantiation.

Since an application will interface to libtracked, libfwa, librwa, libwheeled, or libmissile through

libhulls, a tank's movement control commands (which are performed by libtracked) and an airplane's
movement commands (which are performed by libfwa) are both issued via the interface defined by
libhulls. A command to change the controls is therefore the same whether the hulls component

belongs to a tank or an airplane. What is different are the actual values used to set the controls and
those values are passed as input to the function. Similarly, an application can obtain information
about the state of its hull though the libhulls interface. The table below shows the relationship
between the specific and generic library for the hulls component.

Instantiations of Belong to generic Have a command
of the library: component class: interface defined in:

libtracked hulls libhulls
libfwa hulls libhulle
libuissile hulls libhulls
librva hulls libhulls
libuheeled hulls libhulls

The interface to libhulls is defined in its public header file (libhulls.h). This interface lets an
application set hull controls or get hull information without knowing which specific hull model is

being used. Applications interface to the tracked, fwa, or missile model primarily through the
macros defined in libhulls. These macros map to functions which are invoked on instances of the
hulls sub-class (such as the libtracked component instantiated for a tank, the libfwa component
instantiated for an airplane, or the libmissile component instantiated for a missile).

The libhulls interface is defined in ibhulls.h, the public header file for libhulls. One interface

for controlling vehicle motion is the HULLSSETDIRECTIONSPEED macro which maps to a function
that sets a desired direction of travel and a speed. Each macro is associated with a function code
number so that a cal to the libcomponents library (via the cmpnt.invoke function) will dispatch
a call to the appropriate library (such as libfwa, libmissile, or libtracked). The definition for this
macro might appear as shown below.

*define HULLS.SET.DIRECTIONSPEED(Hvid, Hcnum, Hdir, Hsp, imtr, Hma)

HULLS-INTERFACE _hif;
.hif.u.set.directionspeed. direction a Hdir;
.hif.u.set-direction-speed.speed a Hap;_~hif.u.set-direct:ion-speed.max.-turn-rate a Hmt:r;

_hif.u.set.direction-speed.max.accel a llma;

I

Chapter 1: Overview 3

cmpnt.invokO(HULLS.SET.DIRECTIODNSPEED-FCN, Hvid, Hcnum, (ADDESS)khif);

The HULLS.INTERFACE structure defined in libhulls.h is the structure that is passed to any hull

function. This structure is a union of structures that each define an argument list for a hull function.

An abbreviated example that assumes there are only two hull functions is shown below. Typically

there will be many functions and therefore more strucure definitions in the union. The macros hide

this structure from the users of these functions.

typedef utruct hulls.interface

union
{

struct huls..et-.direction-s.peed
{

float64 *direction;
float64 speed;
float64 max.turn.rate;
float64 max-accel;

setdirection.speed;
struct hulls.setvolocity.gear
{

float64 *velocity;
int32 gear;
float64 max.turn.rate;
float64 max.accel;

s uet.velocity.gear;
} U;

3 HULLS.INTERFACE;

Issuing a command to an objects's hulls component is done by invoking one of the macros

defined in libhulls. These macros identify the specific component function which needs to be called.

For example, invoking the HULLSSETDIRECTION.SPEED macro will result in the calling of the

set.direction.speed specific component function. In the public header file of each generic library,

macros are associated with a function code number so that a call to the libcomponents library (via

the cmpnt.invoke function) will dispatch a call to the appropriate function. The specific component

functions are defined and installed by the specific libraries (libtracked, libfwa and libmissile). In

this case, all three libraries install a function with the same name, "set-direction.speed" (there

is no name conflict because each function is declared static). It is the specific function (either

libfwa's set-direction.speed, libtracked's set-direction.speed, or libmissile's set-direction.speed) that

is called when the macro is invoked.

Invoking the macro results in two actions: (1) setting up of the interface structure and (2) passing

of necessary information to libcomponent. The macro passes the vehicle id, component number,

4 LibHulls Programmer's Guide

and function pointer index to libcomponent so that the appropriate library (such as libtracked,
libfwa, or libmissile) data can be accessed. The requested function can require input (s -h as a
direction and speed) and/or output (such as a setting) . Therefore, libcomponents must also be
passed the address of the interface structure that holds this data.

In the code segement:

cmpnt.invoke(HULLS.SET.DIRECTION.SPEED.FCN. Hvid, Hcnuz, (ADDRESS)k..hif);

HULLS..SETDIRECTION.SPEED.FCN serves as the function pointer index, Hvid provides the ve-
hicle id, Hcnum provides the component number, and k-_hif provides the address for the function's
argument lists.

Chapter 2: Examples5

2 Examples

To initialize libtracked, an instance of the hull class:

tracked-uer-data-handle
class..reaerve..uuer..data(parent-clasu, "tracked", tracked-print);

/* Tell libcomponents we are available. */
cmpnt..define.instance(SM-Trackedll, 1.* ktracked.user.data-.handle.

tracked-.create, tracked-.destroy,
HULSSET.DIRECTION-SPEED..CN. set-.dir..upeed,
HULLS-SET-ELOCITY-GEAR.FCN, *et-.vel-gear,
HULLS..SET.VELOCITY-.DIRCTION-FCN, uet-.vel-dir,
HULLS..SET..VELOCITY-.ORIENTATIOI..FCN, set-.vel-ori,
HULLS-.SET..POSITION-DIRECTION-FCN, nout.po...dir,
HULLS-.SET..GOAL..CORRJDGR-FCN, set..goal-.corr,
HULLS..SET..TARGET-ID-FCI, set..target-id,
HULLS-.SET.TARGET.POSITION-FCN, *et..target-.position,
HULLS.GET-.ETA-.FCX, get-.eta,
HULLS-.GET.TkKEOFF-AT-.FCN, get-.takeoff..alt,
HULLS..SET..TAXEOFF-.FCI, not-.takeoff,
HULLS-SET-.LANDED-FCI, bet-.landed,
HULLS..SET..FLY..LEVEL-.FC~t-fly.level.
HULLS-.GET-.TLRL PERFORMAJCLFCI, get..turu..perf ornance,
HULLSGET-.CLIMB-.PERFOR)1INCE-FCN, t.clib-performance,
HULLS-.GET..FUEL-EEDED.FCN, get-fuelneeded,I, ~HULLS-.GET. MAX-.RANGL-FCN, get-.iax..rmzg.,HULSET-TRNAL.COIRL-FCN, set..ezternal-.control,
HULLS-.GET..LINITS..FCN, get-.limits);

To get the component number of my hull:

extern int32 my-.hull;

if C(my..hull = cmpnt..locate(vehicl..id, reader..get..symbol(u'higl"))am
CMPNT..NDTJDUND)

priatf(Vehicle %d does not seem to have a hull\n", vehicle..id);

To then give a command to that hull (the macro is defined by libhulls; it assembles a HULLS-.INTERFACE
structure, and calls cmpnt..invoke):

if (my-.hull != CNPNT..NOT-.FOUND)
HULLS..SET..DIRECTION.SPEED(vehjcl.id, hull, dirvec, speed, 0.0, 0.0):

6 LibHulls Programmer's Guide

Chapter 3: Functions T

3 Functions

The following sections describe each function provided by libhulls, including the format and
meaning of its arguments, and the meaning of its return values (if any).

3.1 hulls.init

void hullsinito;

hul..init initializes libhulls. Call this function after cmpnt.init, and before any specific hull
imit functions.

3.2 HULLS_-SETEXTERNALC ONTROL

HULLSSETEXTERNALCONTROL(vehicl.id, component-number, velocity,
direction, position, roll-angle, maxturnrates,
maxaccel)

int32 vehicle.id;
int32 component -number;
float64 velocity[3];
float64 direction[3 1;
float64 position[3];
float64 roll-angle;
float64 maxturnrates [3];
float64 max-accel;

'vehicleoid'

Specifies the vehicle ID

'component-number'

Specifies the hull component number

'velocity'

Specifies desired velocity (meters per second)

'direction'

Specifies desired direction

'position'

Specifies desired position

8 LibHulls Programmer's Guide

'max.turn.rat '

max- Specifies the maximum desired turn rate (radians per second)

Specifies the maximum desired acceleration (meters per second squared)

HULLS.SET.EXTERNALCONTROL is a macro which sets a desired direction of travel and movement
velocity, as well as an expected position. A negative speed indicates backward movement is desired.

It is assumed that the hull should face down the Y component of the direction. Some hulls may not
support backward movement, in which case they will reverse the desired direction. The maximum
turn rate (in radians per second) and maximum acceleration (in meters per second per second) will
default to maximum if specified as zero.

The direction vector need not be a unit vector (specific component models may often be able to
avoid normalizing this vector at all, saving a square root).

3.3 HULLS.SET.DIRECTION..SPEED

HULLSSETDIRECTIONSPEED (vehicle id, component-number,
direction, speed, maxturn.rate, max.accel)

int32 vehicle.id;
int32 component-number;
float64 direction[3] ;
float64 speed;
float64 maxturnrate;
float64 max.accel;

'vehicle.id'

Specifies the vehicle ID
'component-number'

Specifies the hull component number

'direction'

Specifies desired direction
'speed' Specifies desired speed (meters per second)
'max.turn.rate'

Specifies the maximum desired turn rate (radians per second)

'max-accel'
Specifies the maximum desired acceleration (meters per second squared)

HULLSSETDIRECTION.SPEED is a macro which sets a desired direction of travel and a speed.

Chapter 3: Functions 9

A negative speed indicates backward movement is desired. It is assumed that the hull should face
down the Y component of the direction. Some hulls may not support backward movement, in which
case they will reverse the desired direction. The maximum turn rate (in radians per second) and
maximum acceleration (in meters per second per second) will default to maximum if specified as
zero.

The direction vector need not be a unit vector (specific component models may often be able to
avoid normalizing this vector at all, saving a square root).

3.4 HULLSSETVELOCITYGEAR

HULLS.SET.VELOCITYGEAR(vehicle_ id, component.number,
velocity, gear, maxturn.rate, max.accel)

int32 vehicle-id;
int32 component-number;
float:64 velocity[3);
int32 gear;
float64 maxturn.rate;
float64 maxaccel;

'vehicleid'

Specifies the vehicle ID
'component-number'

Specifies the hull component number
'velocity'

Specifies the desired velocity (meters per second)
'gear' Specifies the desired gear
'max-turn-rate'

Specifies the maximum desired turn rate (radians per second)
'max.accel'

Specifies the maximum desired acceleration (meters per second squared)

HULLSSET.VELOCITY_.GEAR is a macro which sets a desired velocity, and a direction of movement
(forward/backward). It is assumed that the hull should face down the Y component of the direction.
Some hulls may not support backward movement, in which case they will reverse the desired velocity.I The maximum turn rate (in radians per second) and maximum acceleration (in meters per second
per second) will default to maximum if specified as zero.

The gear should be one of:

10 LibHulls Programmer's Guide

HULLS.GEAR.FORWARD

Forward movement

HULLSGEARREVERSE
Backward movement

3.5 HULLSSETVELOCITY.DIRECTION

HULLSSET.VELOCITY.DIECTION(vehicle.id, component.number,
velocity, direction, roll-angle,
maxturn.rates, max.accel)

int32 vehicle, id;
int32 component-number;
float64 velocity[3);
float64 direction[3];
float64 roll-angle;
float64 max.turn.rates [3);
float64 max.accel;

'vehicle.id'

Specifies the vehicle ID
'component-number'

Specifies the hull component number
'velocity'

Specifies the desired velocity (meters per second)

'direction'
Specifies the desired direction

'roll-angle'

Specifies the desired roll angle (radians)

'max.turn-rates'

Specifies maximum desired turn rates (yaw, pitch, roll) in radians per second

'max.accel'

Specifies the maximum desired acceleration (in meters per second square)

HULLSSETVELOCITYDIRECTION is a macro which sets a desired hull direction and movement

velocity. Some hull models require that the direction and velocity vectors be colinear; these models
will strive to achieve the velocity, and will select forward or backward movement, depending on the

dot product of the two vectors. Some hull models also may ignore the rol.angle. The maximum

turn rates are in the order yaw, pitch, roll. The maximum turn rates (in radians per second) and

Chapter 3: Functions

maximum acceleration (in meters per second per second) will default to maximum if specified as

zero (or a NULL pointer).

3.6 HULLSSETVELOCITYORIENTATION

HULLSSETVELOCITYORI NTATION(vehicleid. component.number,
velocity, orientation,
max-turn.rates, maxaccel)

int32 vehicle, id;
int32 component-number;
float64 velocity[3);
float64 orientation[3];
float64 max.turnrates [3];
float64 max-accel;

'vehicle.id'

Specifies the vehicle ID
'component.number'

Specifies the hull component number
'velocity'

Specifies the desired velocity
'orientation'

Specifies the desired orientation (yaw, pitch, roll) in radians
'maxturn-rates'ISpecifies maximum desired turn rates (yaw, pitch, roll) in radians per second

max-accel'

Specifies the maximum desired acceleration (in meters per second square)

HULLSSETVELOCITY.ORIENTATION is a macro which _tts a desired hull orientation and move-

ment velocity. The behavior is exactly as in HULLS_-SET.VELOCITY.DIRECTION, except the direction

and roll angle are specified as an angular triple (yaw, pitch, roll) in radians.

I
3.7 HULLSSETPOSITION_-DIRECTION

HUSL-.SETPOSITIONDIRECT7 N (vehicleid, component.number,
position, direction)

int32 vehicle-id;
int32 component.-..ber;

I
I

12 LibHulls Programmer's Guide

float64 position[3];
float64 direction[3);

'vehicle-id'

Specifies the vehicle ID
'component.number'

Specifies the hull component number
'position'

Specifies the desired position

'direction'
Specifies the desired direction at that position

HULLSSETPOSITIONDIRECTION is a macro which sets a desired hull position and direction.
The hull model will achieve a position and direction as close as possible to these desires in a mamxr
which is appropriate for the type of hull being modeled (for a tracked hull: move to position, then
turn in place; for a wheeled hull: do a three point turn; etc.).

3.8 HULLSSETGOALCORRIDOR

HULISSETGOAL.CORRIDOR(vehicle.id, component.number,
approach.sp.ed, position, direction,
corridor.width)

int32 vehicle.id;
int32 component.number;
float64 approach.speed;
float64 position[3J;
float64 direction[3];
float64 corridor-width;

'vohicloid'

Specifies the vehicle ID
'component-number'

Specifies the hull component number
'approach-speed'

Specifies the approach speed
'position'

Specifies the start of the corridor

'direction'

Specifies the direction of the corridor

Chapter 3: Functions 13

'corridor.-idth'
Specifies the width of the corridor

HULLSSET.GOALCORRIDOR is a macro which sets a desired position, a desired speed to approach
that position and a corridor (expressed as a direction and a width) which is not to be exceeded at
the time the hull crosses the position. This is used, for example, to approach a corner on a road
without going so fast you will miss the corner.

3.9 HULLS.SET.TARGET.ID

HULLSSET.TAGET.ID(vehicle.id, component.number, id)
int32 vehicle.id;
int32 component.number;
int32 id;

'vehicle.id'

Specifies the vehicle ID
'component-number'

Specifies Zhe hull component number

'id' Specifies the ID of the target

HULLS-SET.TARGETrID is a macro which sets the target which the hull should pursue (using
whatever method is supported by that hull). Note that this is primarily used by missile hulls, but
other hulls must support some version of the functionality.

3.10 HULLS -SET_-TARGETP OSITION

HUI SL.SET.TARGETPOSITION(vehiclo-id, component.number, position)
int32 vehicle.id;
int32 component-.number;
float64 position[3J;

'vehicle.id'

Specifies the vehicle ID
'component number'

Specifies the hull component number

14 LibHulls Programmer's Guide

'position'

Specifies the target position

HULLS.SET.TARGET.POSITION is a macro which sets the position which the hull should pursue
(using whatever method is supported by that hull). Note that this is primarily used by missile
hulls, but other hulls must support some version of the functionality.

3.11 HULLS-GETETA

HULLS.GET.ETA(vehicle.id, component.number. position, eta)
int32 vehicle-id;
int32 component.number;
float64 position[3);
{float84t int32} *eta;

'vehicle.id'

Specifies the vehicle ID
'component.number'

Specifies the hull component number
'position'

Specifies the desired position
'eta' Returns the time it will take to get to that position

HULLSGET.ETA is a macro which computes an estimated time of arrival at a point (in seconds),
given current hull state, and operating parameters. Since this is not a function, the compiler will
automatically cast the returned eta to whatever type is needed.

3.12 HULLSGETTAKEOFFALT

HULLSGETTAKEOFF.ALT(Hvid, Hcnum, Haltitude)
int32 Hvid;
int32 Hcnum;
float64 Haltitude;

'Hvid' Specifies the vehicle ID
'Hcnum' Specifies the hull component number

Chapter 3: Functions 15

'Haltitude'

Returns the altitude required for completion of take off

HULLS.GET.TAKEOFF_ ALT returns (by reference) the altitude required for this hull to complete

its take off.

3.13 HULLS.SETTAKEOFF

HULLS.SET.TAKEOFF(Hvid, Hcnum, Haltitude)

int32 Hvid;
int32 Hcnum;
float64 Haltitude;

'Hvid' Specifies the vehicle ID

'Hcnum' Specifies the hull component number

'Haltitude'
Specifies the target altitude

HULLS..SET.TAKEOFF sets the altitude for this hull to complete its take off.

3.14 HULLS-SET_-LANDED

HULLSSETLANDED(Hvid, Hcnuum)
int32 Hvid;
int32 Hcnum;

'Hvid' Specifies the vehicle ID

'Hcnum' Specifies the hull component number

SHULLS_.SET_.LANDED places the hull on the ground.

3.15 HULLS -SETFLYLEVEL

HULLSSET.FLYLEVEL(vehicle.id, component-number, track, speed,
altitude, fpa, max..turn-rates, max.accol)

I

16 LibHulls Programmer's Guide

int32 vehicle.id;
int32 component.number;
float64 track[2];
float64 speed;
float64 altitude;
float64 fpa;
float64 max.turn.rates [3);
float64 max.accel;

4vehicle.id'

Specifies the vehicle ID

'IComponent.nuaber'

Specifies the hull component number

'track' Specifies the 2-D direction (X-Y as a normalized vector)
'speed' Specifies speed (meters per second)

'altitude'

Specifies altitude (meters)

'fpa' Specifies the flight path angle (radians)

'fmax._turn.rates'

Specifies maximum desired turn rates (track, pitch, roll) in radians per second

'max.accel'

Specifies the maximum desired acceleration (in meters per second square)

HULLS.SET.FLT.LEVEL is a macro which sets a desired hull direction (track) speed and altitude.
The maximum turn rates are in the order track, pitch, roll. The maximum turn rates (in radians
per second) and maximum acceleration (in meters per second per second) will default to maximum

if specified as zero (or a NULL pointer).

Note that specifying a flight path angle (f pa) which is too large. could cause an airplane to stall.

I 3.16 HULLSGETTURN_-PERFORMANCE

I HULLS.GETTURJPERFORNANCE(vehicle.id, component.number,
max.turn. easy.turn, standard.turn, hard.turn)

int32 vehicle, id;

int32 component number;
float64 max-turn;
float64 easy.turn;
float64 standard.turn;
float64 hard.turn;

I

Chapter 3: Functions 17

'vehicle.id'

Specifies the vehicle ID

'component.number'

'm um' Specifies the hull component number

Specifies the maximum turn rate for the vehicle in radians per second.
I 'easy..turn'

Specifies the turn rate for the vehicle in radians per second when trying to do an easy

turn.
'a-tandard..turn'

Specifies the turn rate for the vehicle in radians per second when trying to do an

standard turn.

'hard-.turn'
Specifies the turn rate for the vehicle in radians per second when trying to do an hard
turn.

HULLSGETTURN.PERFORKANCE is a macro which queries the vehicle for current turn rates, which

can be selected by a controller to set the vehicles desired turn rate.

3.17 HULLSGETCLIMB-PERFORMANCE

HULLS.GET.CLIMB.PERFORMANCE(vehicle. id, component-number,
max-climb, easy.climb, standard.climb, hard-climb)

int32 vehicle-id;

int32 component.number;
float64 max-climb;
float64 easy.climb;
float64 standard-climb;
float64 hard-climb;

'vehicleid'

Specifies the vehicle ID

'component-number'
Specifies the hull component number

'max-climb'

Specifies the maximum climb rate for the vehicle in radians per second.

'easy-climb'

Specifies the climb rate for the vehicle in radians per second when trying to do an easy

climb.

I
I

18 LibHulIs Programmer's Guide

'standard-climb'
Specifies the climb rate for the vehicle in radians per second when trying to do an

standard climb.

'hard.climb'

Specifies the climb rate for the vehicle in radians per second when trying to do an hard

climb.

HULLS.GET.CLIMB.PERFORMANCE is a macro which queries the vehicle for current climb rates,
which can be selected by a controller to set the vehicles desired climb rate.

3.18 HULLSGET.FUEL.NEEDED

HULLSGET_FUELNEEDED(vehiclid, component.number, altitude, speed,
distance, fuel.needed)

int32 vehicleid;
int32 component.number;
float64 altitude;
float64 speed;
float64 distance;
float64 fuel-needed;

'vehicleid'

Specifies the vehicle ID

'component _number'

Speifies the hull component number

'altitude'

Specifies the altitude to return to point.

'speed' Specifies the speed to return to point.

'distance'

Specifies the distance to point.

'fuel-needed'

Specifies the fuel that is needed to get to the point

HULLS.GETFUELNEEDED is a macro which determines how much fuel is needed to get to a point,

given the distance to the point, and the desired altitude and speed to use to reach that point.

3.19 HULLSGETJMAXRANGE

t
I

Chapter 3: Functions 19

HULLS.GET.AX.RANGE(vehicle-id, component.number, maxrange)
int32 vehicle,id;
int32 component,-number;
float64 max-range;

'vehicle. id'

Specifies the vehicle ID
'comnponent-.number'

Specifies the hull component number
'max-range'

Returns the fuel that is needed to get to the point

HULLSGET-KAX.._RANGE is a macro which determines the maximum range of the vehicle. For
land vehicles, it ignores factors such as terrain. For fixed-wing aircraft, it uses a standard thrust
rate and a nominal altitude of 18000 meters. In both of the above cases, HULLS.GET.MAX.RANGE
bases its calculation on the actual amount of fuel available. In the case of a missile, this macro
returns the "maximum effective range" as specified in the missile's parameter file. This is a static
value and does not change after the missile is launched.

3.20 HULLS_-GET.-LIMITS

HULLS.GETLIMITS(vehicleid, component-number, position, direction,
max-speed, max.accel, max.decal, max.turn, min.radius,
max-sideways, max-up)

int32 vehicleid;
int32 component.number;
float64 position[3J;
float64 direction[3);
float64 *max-speed;
float64 *max..accel;
float64 *uax-decol;
float64 *max.-turn;
float64 *min.radius;
float64 *max.eideways;
float64 *maxup;

'vehicle_ id'

Specifies the vehicle ID
'component-number'

Specifies the hull component number

20 LibHulls Programmes's Guide

'position'

Specifies sample position (uses current if NULL is passed)

Specifies sample directoin (uses current if NULL is passed)

Returns maximum possible speed in meters/second

Returns maximum possible acceleration in meters/second/second

muax-.decal'
I Returns maximum possible deceleration in meters/second/second

'uax-tun'
Returns maximum possible turn rate in radians/second

'min-radius'

Returns minimum possible turn radius in meters
'max-si.deways'

The maximum speed a vehicle can move sideways. Zero for vehicles that can't move
sideways.

imax.up' The maximum speed a vehicle can climb in a hover. Zero for non hovering vehicles.

HULLS.GETLINITS is a macro which determines the maximum performance limits of a hull.

The position and direction specify the state for which limits are desired. If NULL is passed, the
current values of the entity will be used.

I

