

AD-A282 768

DTIC ELECTE JUL 2 0 1984 F

Aberdeen Proving Ground, Maryland

Revised Final
Phase I RCRA Facility Investigation Report

Tooele Army Depot-North Area Suspected Releases SWMUs DAAA15-90-D-0011

Volume I Text

December 1993

This document has been approved for public release and sale; its distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Acproved JMB No. U704-0188

Fusic reporting durgen for this collection of information is estimated to 3-letage i nour per response, including the time for reviewing instructions, searching existing data sources, pathening and maintaining the gata needed, and completing and reviewing the collection of information. Send committee estimate or sevices associate this collection of information, including suggestions for reducting this oursen. So washington reasonations services. Circulated suggestions and federal, 1215 Jefferson Davis manness, suite 104 Artington, 73, 12222-4302, and to the Office of Management and Sudget, Programmer Reduction Project (9764-3188), Washington, 25, 23533.

1. AGENCY USE ONLY (Leave DIANK)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	December 1998	Revised	Pinal
4. TITLE AND SUBTITLE TOORLE ARMY DEPOT-NORTH A PHASE I RFI REPORT Volume I - Tent Volume II - App 6. AUTHOR(S) Shank, D.L., Jr.		ASIES SWMUS - Appendix K	5. FUNDING NUMBERS C DAAA15-80-D-0011 TA 0004
Brupicks, D.C. Drain, D.C. 7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Montgomery Watson Cor 4525 South Wasatch Blvd. Salt Lake City, Utah 8412		•	2942.0140
9. SPONSORING/MONITORING AGENCY U.S. Army Environments		(5)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Abordeen Proving Groun			SFIM-AEC-IR-CR-08128
11. SUPPLEMENTARY NOTES			·
12a. DISTRIBUTION/AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
Distribution Statement A. Ap	proved for public release; d	list-"bution is unlimited.	

13. ABSTRACT (Maximum 200 words)

Environmental investigations were conducted during 1983-83 at twenty suspected releases solid waste management units (SWMUs) at the Tonele Army Depot-North Area (TEAD-N) as part of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) under the terms of a State of Utah Corrective Action Permit. Field sampling activities were conducted at seventeen of the twenty SWMUs to determine if treatment, storage, or disposal of hazardous wastes or constituents have released contaminants to the environment. Previous waste practices and controls at three SWMUs indicate that adequate protection against contaminant releases exists at these facilities, and no field sampling was required.

A total of 606 soil samples, 12 sediment samples, and 19 water samples were collected, as well as 17 background soil samples. Based on records reviews and the sampling results, three SWMUs are recommended for no further action, one SWMU is recommended for no further action under the Corrective Action Permit, and 16 SWMUs are recommended for further study. Of these 16 SWMUs, 10 are recommended for further sampling activities to obtain additional data for a subsequent risk assessment, and six are recommended for risk asses current-use risk evaluations utilizing the existing environmental data.

LAM SUBJECT TERMS	15. NUMBER OF PAGES 488 (Text) plus Appendices		
RCRA Facility Investigation, Sc Army Environmental Center (A	16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500		Pr	andard Form 298 (Rev. 2-89)

U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MD (FORMERLY THE U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY)

REVISED FINAL RCRA FACILITY INVESTIGATION REPORT TOOELE ARMY DEPOT NORTH AREA SUSPECTED RELEASES SWMUS PHASE I STUDY

December 1993

Accesion For				
NTIS DTIC Usum Justific	O	•		
By Distrib	ction (
Avadassa				
Dist	Avail 1996 Sphuai			
A-)				

Project No.: 2942.0140

94-22564

Montgomery Watson (formerly James M. Montgomery, Consulting Engineers, Inc.) 4525 South Wasatch Boulevard, Suite 200 Salt Lake City, Utah 84124

U.S. ARMY ENVIRONMENTAL CENTER (FORMERLY THE U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY)

Contracting Officer's Representative

Mary Ellen Heppner

Project Geologist

Harry Woods

Project Safety Officer

Dianna Feireisel

Project Chemist

Douglas Scarborough

TOOELE ARMY DEPOT, UTAH

Commander

Colonel David Emling

Director, Industrial Risk Management

Joseph Paulick

Deputy Director

R. Glenn Roberts

Environmental Program Branch Chief

Roy Niskala

Environmental Engineer

Larry Fisher

PROJECT STAFF MONTGOMERY WATSON

Technical Director

Bruce McMaster, Ph.D.

Project Manager

David Shank, Jr., P.G.

RCRA Facility Investigation Staff

Carrie Campbell
Deborah Carter-Drain
Mary Privitera
Daniel Krupicka, P.G.
Brad Holdaway

Quality Assurance Coordinator

Steven Johnson, R.G.

Criteria Committee Meeting Members

Sue Spencer P.G. William Mabey, Ph.D. Robert Marinai, P.G.

Report Production

Peggy Ashe
Desiree Beaudry
Dawnetta Bolaris
Valerie Brooks
Kelly Craig
Kim Nay
Marilyn Orton
Wendy Reisenauer
Patricia Schneider
Phyllis Winters

TABLE OF CONTENTS

	PAGE
ACRONYMS	
IRDMIS CHEMICAL ACRONYMS	
EXECUTIVE SUMMARY	
1.0 INTRODUCTION	1-1
1.1 Regulatory Background	1-1
1.2 Phase I RFI Objective, Purpose, and Scope	1-2
1.3 Organization of This Report	1-2
2.0 INSTALLATION DESCRIPTION	2-1
2.1 Location	2-1
2.1.1. Facility Description and History	2-1
2.1.2. Description of Surrounding Communities	2-3
2.2 Geographic Setting	2-4
2.3 Geology and Soils	2-5
2.3.1. Regional Geology	2-5
2.3.2. Site Geology and Soils	2-7
2.4 Groundwater and Surface Water	2-11
2.4.1. Groundwater	2-11
2.4.2. Surface Water Hydrology	2-19
2.5 Climate	2-19
2.6 Vegetation and Wildlife	2-20
2.6.1. Vegetation	2-21
2.6.2. Wildlife	2-22
3.0 ENVIRONMENTAL INVESTIGATIONS AT TEAD-N	3-1
3.1 Introduction	3-1
3.2 Previous Investigations at TEAD-N	3-1
3.2.1. Installation Assessment - 1979	3-1
3.2.2. Installation Environmental Assessment - 1982	3-1
3.2.3. Investigation at the Open Burning/Open Detonation Area - 1982-85	3-2
3.2.4. Exploratory Environmental Contamination Survey - 1982	3-3
3.2.5. Analysis of Existing Facilities/Environmental Assessment Report - 1983	3-4
3.2.6. Monitoring Activity and Waste Disposal Review and Evaluation - 1985	3-4
3.2.7. Study of Environmental Balance - 1985	3-4
3.2.8. Performance of Remedial Response Activities, Final Plan - 1985	3-5
3.2.9. Analytical/Environmental Assessment Report - 1985	3-5
3.2.10. Groundwater Quality Assessment, Tooele Army Depot - 1986	3-5
3.2.11. Engineering Report for Closure of the Industrial Wastewater Lagoon - 1986	3-6

3.2.12. Industrial Wastewater Lagoon and Ditches-Groundwater	3-7
Quality Assessment Report, Corrective Action Plan, and	
Record of Decision - 1986	
3.2.13. EPIC Aerial Photography Report - 1986	3-7
3.2.14. Interim RCRA Facility Assessment - 1987	3-8
3.2.15. Groundwater Quality Assessment Engineering Report - 1988	3-8
3.2.16. Preliminary Assessment/Site Investigation - 1988	3-8
3.2.17. Remedial Investigation - 1990	3-9
3.2.18. Groundwater Quality Assessment for Tooele Army Depot; Tooele, Utah - 1991	3-10
3.2.19. Pre-Construction Soil Sampling at the DRMO Storage Yard and the Drum Storage Areas - 1992	3-10
3.3 Phase I RFI Investigation at TEAD-N - 1992	3-11
3.3.1. Introduction	3-11
3.3.2. Scope of Investigation	3-19
3.3.3. RFI Investigation Activities	3-20
4.0 BACKGROUND SOIL CONDITIONS AND DATA REPORTING LIMIT EVALUATION	4-1
4.1 Background Soil Conditions	4-1
4.1.1. Soil Sampling Programs	4-1
4.1.2. Analysis of Background Soils Data	4-1
4.1.3. Data Evaluations	4-2
4.1.4. Determination of Upper Thresholds	4-2
4.2 Data Reporting Limit Evaluation	4-6
4.2.1. Background	4-6
4.2.2. Analytes Affected	4-6
4.2.3. Impacts to the Analytical Program	4-6
5.0 CONTAMINATION CHARACTERIZATION	5-1
5.1 Introduction	5-1
5.2 OB/OD Areas - Main Demolition Area (SWMU 1)	5-2
5.2.1. Description of the OB/OD Area	5-2
5.2.2. Site Conditions	5-2
5.2.3. Main Demolition Area Site Description and Waste Generation	5-2
5.2.4. Previous Sampling and Phase I RFI Sampling and Results	5-4
5.2.5. Contamination Assessment	5-9
5.2.6. Recommendation	5-10
5.3 Cluster Bomb Detonation Area (SWMU 1a)	5-10
5.3.1. Site Description and Waste Generation	5-10
5.3.2. Previous Sampling and Phase I RFI Sampling and Results	5-10
5.3.3. Contamination Assessment	5-11
5.3.4. Recommendation	5-13
5.4 Burn Pad (SWMU 1b)	5-13
5.4.1. Site Description and Waste Generation	5-13
5.4.2. Previous Sampling and Phase I RFI Sampling and Results	5-14
5.4.3. Contamination Assessment	5-14
5.4.4. Recommendation	5-16

5.5 Trash Burn Pits (SWMU 1c)	E 17
5.5.1 Site Description and Waste Generation	5-17
	5-17
5.5.2. Previous Sampling and Phase I RFI Sampling and Results	5-17
5.5.3. Contamination Assessment	5-18
5.5.4. Recommendation	5-22
5.6 Propellant Burn Pans (SWMU 1d)	5-23
5.6.1. Site Description and Waste Generation	5-23
5.6.2. Previous Sampling and Phase I RFI Sampling and Results	5-23
5.6.3. Contamination Assessment	5-25
5.6.4. Recommendation	5-26
5.7 Box Elder Wash	5-26
5.7.1. Site Description and Waste Generation	5-26
5.7.2. Previous Sampling and Phase I RFI Sampling and Results	5-27
5.7.3. Contamination Assessment	5-27
5.7.4. Recommendation	5-29
5.8 Sand Blast Area (SWMU 4)	5-29
5.8.1. Site Description and Waste Generation	5-29
5.8.2. Site Conditions	5-29
5.8.3. Previous Sampling and Phase I RFI Sampling and Results	5-29
5.8.4. Contamination Assessment	5-30
5.8.5. Recommendation	5-30
5.9 Sewage Lagoons (SWMU 14)	5-32
5.9.1. Site Description and Waste Generation	5-32
5.9.2. Site Conditions	5-32
5.9.3. Previous Sampling and Phase I RFI Sampling and Results	5-33
5.9.4. Contamination Assessment	5-39
5.9.5. Recommendation	5-40
5.10 AED Demilitarization Test Facility (SWMU 19)	5-40
5.10.1. Site Description and Waste Generation	5-40
5.10.1. Site Description and waste Generation 5.10.2. Site Conditions	5-41
5.10.2. Sive conditions 5.10.3. Previous Sampling and Phase I RFI Sampling and Results	5-41
5.10.4. Contamination Assessment	5-41
5.10.5. Recommendation	5-43
5.11 AED Deactivation Furnace Site (SWMU 20)	5-43
5.11.1. Site Description and Waste Generation	5-43
5.11.2. Site Conditions	5-43
5.11.3. Previous Sampling and Phase I RFI Sampling and Results	5-44
5.11.4. Contamination Assessment	5-44
5.11.5. Recommendation	5-46
5.12 Deactivation Furnace Building (SWMU 21)	5-46
5.12.1. Site Description and Waste Generation	5-46
5.12.2. Site Conditions	5-46
5.12.3. Previous Sampling and Phase I RFI Sampling and Results	5-47
5.12.4. Contamination Assessment	5-47
5.12.5. Recommendation	5-50
5.13 DRMO Storage Yard (SWMU 26)	5-51
5.13.1. Site Description and Waste Generation	5-51
5.13.2. Site Conditions	5-51
5.13.3. Previous Sampling and Phase I RFI Sampling and Results	5-51
5.13.4. Contamination Assessment	5-52
5.13.5. Recommendation	5-57

5.14		entainer Storage (SWMU 27)	5-57
	5.14.1.	Site Description and Waste Generation	5-57
	5.14.2.	Site Conditions	5-58
	5.14.3.	Previous Sampling and Phase I RFI Sampling and Results	5-58
	5.14.4.	Contamination Assessment	5-58
	5.14.5.	Recommendation and Interim Health Risk Evaluation	5 -6 0
5.15		rum Storage Area (SWMU 28)	5-61
		Site Description and Waste Generation	5-61
	5.15.2.	Site Conditions	5-62
		Previous Sampling and Phase I RFI Sampling and Results	5-62
	5.15.4.	Contamination Assessment	5-62
		Recommendation	5-64
5.16	Drum Sto	orage Areas (SWMU 29)	5-64
		Site Description and Waste Generation	5-64
	5.16.2.	Site Conditions	5-65
		Previous Sampling and Phase I RFI Sampling and Results	5-65
		Contamination Assessment	5-66
		Recommendation	5-74
5.17		Handling and Storage Area (SWMU 34)	5-74
-		Site Description and Waste Generation	5-74
	5.17.2.	Site Conditions	5-75
		Previous Sampling and Phase I RFI Sampling and Results	5-75
		Contamination Assessment	5-75
	5.17.5.	Recommendation	5-77
5.18		nated Waste Processing Plant (SWMU 37)	5-77
		Site Description and Waste Generation	5-77
	5.18.2.	Site Conditions	5-78
	5.18.3.	Previous Sampling and Phase I RFI Sampling and Results	5-78
		Contamination Assessment	5-79
		Recommendation	5-79
5.19		l Wastewater Treatment Plant (SWMU 38)	5-81
		Site Description and Waste Generation	5-81
	5.19.2.	Site Conditions	5-81
		Previous Sampling and Phase I RFI Sampling and Results	5-81
		Contamination Assessment	5-82
		Recommendation	5-82
5.20		ecovery Facility (SWMU 39)	5-85
		Site Description and Waste Generation	5-85
	5.20.2.	Site Conditions	5-85
		Contamination Assessment and Recommendation	5-86
5.21		shout Building (SWMU 42)	5-86
		Site Description and Waste Generation	5-86
	5.21.2.	Site Conditions	5-87
		Previous Sampling and Phase I RFI Sampling and Results	5-87
		Contamination Assessment	5-88
		Recommendation	5-91
5.22		Storage Areas for P999 and Mustard Agent-Filled Mortar	5-91
		SWMU 43)	0.01
		Site Description and Waste Generation	5-91
	5.22.2	Site Conditions	5-91
		Contamination Assessment and Recommendation	5-91

5.23 Tank Storage for Trichloroethylene (SWMU 44)	5-92
5.23.1. Site Description and Waste Generation	5-92
5.23.2. Site Conditions	5-92
5.23.3. Contamination Assessment and Recommendation	5-92
5.24 Stormwater Discharge Area (SWMU 45)	5-93
5.24.1. Site Description and Waste Generation	5-93
	5-93
5.24.2. Site Conditions	
5.24.3. Previous Sampling and Phase I RFI Sampling and Results	5-93
5.24.4. Contamination Assessment	5-96
5.24.5. Recommendation	5-96
5.25 Used Oil Dumpsters (SWMU 46)	5-96
5.25.1. Site Description and Waste Generation	5-96
5.25.2. Site Conditions	5-97
5.25.3. Previous Sampling and Phase I RFI Sampling and Results	5-97
5.25.4. Contamination Assessment	5-97
5.25.5. Recommendation	5-102
5.26 Boiler Blowdown Water (SWMU 47)	5-102
5.26.1. Site Description and Waste Generation	5-102
5.26.2. Site Conditions	5-102
5.26.3. Previous Sampling and Phase I RFI Sampling and Results	5-102
5.26.4. Contamination Assessment	5-103
5.26.5. Recommendation	5-106
6.0 SUMMARY OF RECOMMENDATIONS	6-1
6.1 SWMU-Specific Recommendations	6-2
6.1.1. Open Burning/Open Detonation Areas (SWMU 1, 1a, 1b, 1c, 1d)	6-2
6.1.2. Box Elder Wash	6-4
6.1.3. Sand Blast Area (SWMU 4)	6-5
6.1.4. Sewage Lagoons (SWMU 14)	6-5
6.1.5. AED Demilitarization Test Facility (SWMU 19)	6-6
	6-6
6.1.6. AED Deactivation Furnace Site (SWMU 20)	
6.1.7. Deactivation Furnace Building (SWMU 21)	6-7
6.1.8. DRMO Storage Yard (SWMU 26)	6-7
6.1.9. RCRA Container Storage (SWMU 27)	6-7
6.1.10. 90-Day Container Storage Area (SWMU 28)	6-8
6.1.11. Drum Storage Areas (SWMU 29)	6-8
6.1.12. Pesticide Handling and Storage Area (SWMU 34)	6-8
6.1.13. Contaminated Waste Processing Plant (SWMU 37)	6-9
6.1.14. Industrial Wastewater Treatment Plant (SWMU 38)	6-10
6.1.15. Solvent Recovery Facility (SWMU 39)	6-10
6.1.16. Bomb Washout Building (SWMU 42)	6-10
6.1.17. Container Storage Areas for P-999 and Mustard Agent-Filled	6-11
Mortar Rounds (SWMU 43)	
6.1.18. Tank Storage for Trichloroethylene (SWMU 44)	6-11
6.1.19. Stormwater Discharge Area (SWMU 45)	6-11
6.1.20. Used Oil Dumpsters (SWMU 46)	6-12
6.1.21. Boiler Blowdown Water (SWMU 47)	
	6.19
6.2 SWMU Prioritization	6-12 6-13

REFERENCES

APPENDIX A - SUMMARY OF PHASE I FIELD INVESTIGATION

APPENDIX B - TEST PIT AND SOIL BORING LOGS

APPENDIX C - DATA QUALITY EVALUATION

APPENDIX D - GROUNDWATER AND SURFACE WATER SAMPLING AND

MEASUREMENT DATA

APPENDIX E - GEOPHYSICAL SURVEY RESULTS

APPENDIX F - SUMMARY OF UXO SUPPORT SERVICES

APPENDIX G - RESULTS OF EXPLOSIVES FIELD SCREENING AND EXPLOSIVE

REACTIVITY TESTING

APPENDIX H - FIELD SURVEY DATA

APPENDIX I - USATHAMA SOURCE WATER AND BENTONITE APPROVALS, AND

TEAD N EXCAVATION AND WASH WATER DISCHARGE PERMIT

APPENDIX J - GEOTECHNICAL TESTING RESULTS

APPENDIX K - IRDMIS PROJECT DATA FILES

LIST OF TABLES

1	NO.	TITLE	PAGE
1	l-1	Suspected Releases Solid Waste Management Units (SWMUs)	1-3
2	2-1	General Characteristics of Surface Soil of TEAD-N Investigation Area	2-12
3	3-1	Field Program Summary	3-12
4	l-1 l-2 l-3	Summary Statistics for Shallow Background Soils Summary Statistics for Deep Background Soils Background Soil Upper Thresholds	4-3 4-4 4-5
5	SWMU	-Specific Analytical Results that follow Section 5.0:*	
	3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 3-18 3-21 3-24 3-26	Main Demolition Area (SWMU 1) Analytical Results Cluster Bomb Detonation Area (SWMU 1a) Analytical Results Burn Pad (SWMU 1b) Analytical Results Trash Burn Pits (SWMU 1c) Analytical Results Propellant Burn Pans (SWMU 1d) Analytical Results Box Elder Wash Analytical Results Sand Blast Area (SWMU 4) Analytical Results Sewage Lagoons (SWMU 14) Analytical Results AED Demilitarization Test Facility (SWMU 19) Analytical Results AED Deactivation Furnace Site (SWMU 2C, Analytical Results Deactivation Furnace Building (SWMU 21) Analytical Results DRMO Storage Yard (SWMU 26) Analytical Results RCRA Container Storage (SWMU 27) Analytical Results 90-Day Container Storage Area (SWMU 28) Analytical Results Drum Storage Areas (SWMU 29) Analytical Results Contaminated Waste Processing Plant (SWMU 34) Analytical Results Industrial Wastewater Treatment Plant (SWMU 38) Analytical Results Bomb Washout Building (SWMU 42) Analytical Results Stormwater Discharge Area (SWMU 45) Analytical Results Used Oil Dumpsters (SWMU 46) Analytical Results Boiler Blowdown Water (SWMU 47) Analytical Results	
_	-1 -2	Summary of Recommendations for Suspected Releases SWMUs SWMU Prioritization	6-3 6-14

* Note: Table numbers correspond to individual sections for each SWMU. Tables 5-1, 5-20, 5-22, and 5-23 are not included here, as these sections do not contain analytical results.

LIST OF FIGURES

FIGUI NO.	RE TITLE	PAGE
2-1	Site Location Map	2-2
2-2	Geologic Map of Tooele Valley	2-6
2-3	Depth to Bedrock Contour Map	2-10
2-4	Soil Type Map	2-14
2-5	Groundwater Elevation Contour Map; June 1992-January 1993	2-16
3-1	SWMU Location Map	3-18
5-2-1	Open Burning/Open Detonation Area SWMU Location Map	5-3
5-2-2	Main Demolition Area (SWMU 1) Test Pit Soil Samples (Metals)	5-5
5-2-3	Main Demolition Area (SWMU 1) Test Pit Soil Samples (Organic Compounds)	5-6
5-2-4	Main Demolition Area (SWMU 1) Test Pit Soil Samples (Explosives)	5-7
5-2-5	Main Demolition Area (SWMU 1) Test Pit Soil Samples (Anions)	5-8
5-3-1	Cluster Bomb Area (SWMU 1a) Test Pit Soil Samples	5-12
5-4-1	Burn Pad (SWMU 1b) Test Pit Soil Samples	5-15
5-5-1	Trash Burn Pits (SWMU 1c) Test Pit Soil Samples (Metals and Cyanide)	5-19
5-5-2	Trash Burn Pits (SWMU 1c) Test Pit Soil Samples (Organics and Dioxins/Furans)	5-20
5-5-3	Trash Burn Pits (SWMU 1c) Test Pit Soil Samples (Explosives and Anions)	5-21
5-6-1	Propellant Burn Pans (SWMU 1d) Test Pit Soil Samples	5-24
5-7-1	Box Elder Wash Area Surface Soil Samples	5-28
5-8-1	Sandblast Areas (SWMU 4) Surface Soil Samples	5-31
5-9-1	Sewage Lagoons (SWMU 14) Surface Water	5-34
5-9-2	Sewage Lagoons (SWMU 14) Sediment Samples	5-35
5-9-3	Sewage Lagoons (SWMU 14) Groundwater-July 1992	5-36
5-9-4	Sewage Lagoons (SWMU 14) Groundwater-February 1993	5-37
5-9-5	Sewage Lagoons Stiff Plots (SWMU 14) July 1992 and February 1993	5-38
	AED Demilitarization Test Facility (SWMU 19) Surface Soil Samples	5-42
5-11-1	AED Deactivation Furnace Site (SWMU 20) Surface Soil Samples	5-45
	Deactivation Furnace Building (SWMU 21) Surface Soil Samples (Metals and Cyanides)	5-48
5-12-2	Deactivation Furnace Building (SWMU 21) Surface Soil Samples (Explosives, Organic Compounds, Dioxins/Furans, and Anions)	5-49
5_19_1	DRMO Storage Yard (SWMU 26) Surface Soil Samples (Metals and Cyanides)	5-53
5.12.9	DRMO Storage Yard (SWMU 26) Shallow Soil Samples (Metals and Cyanides)	5-54
5 10 0	DRMO Storage Yard (SWMU 26) Surface Soil Samples (Organic Compounds)	5-55
	DRMO Storage Yard (SWMU 26) Surface Soil Samples (Organic Compounds)	5-56
	RCRA Container Storage Yard (SWMU 27) Surface Soil Samples	5-59
	90-Day Drum Storage Area (SWMU 28) Surface Soil Samples	5-63
	Drum Storage Area (SWMU 29) Pre-Construction Soil Sampling (TCLP)	5-67
9-10-I	Drum Storage Areas (SWMU 29) Surface Soil Samples (Metals and Cyanides)	5-68
		5-69
	Drum Storage Areas (SWMU 29) Deeper Soil Samples (Metals and Cyanides)	5-70
0-10-4 5 10 5	Drum Storage Areas (SWMU 29) Surface Soil Samples (Organic Compounds)	5-70 5-71
	Drum Storage Areas (SWMU 29) Deeper Soil Samples (Organic Compounds)	5-71 5-72
	Drum Storage Areas (SWMU 29) Surface Soil Samples (Pesticides)	
	Drum Storage Areas (SWMU 29) Deeper Soil Samples (Pesticides)	5-73
	Pesticide Handling and Storage Area (SWMU 34) Surface Soil Samples	5-76
9-18-1	Contaminated Waste Processor (SWMU 37) Surface Soil Samples	5-80
	Industrial Waste Treatment Plant (SWMU 38) Surface Soil Samples	5-83 - 5.84
	Industrial Waste Treatment Plant (SWMU 38) Spent Activated Carbon Sample	
	Bomb Washout Building (SWMU 42) Surface Soil Samples Bomb Washout Building (SWMU 42) Shallow Soil Samples	5-89 5-90

5-24-1	Stormwater Discharge Area (SWMU 45) Sediment and Soil Samples	5-94
5-24-2	Stormwater Discharge Area (SWMU 45) Surface Water Samples	5-95
5-25-1	Used Oil Dumpsters (SWMU 46) Surface Soil Samples	5-98
5-25-2	Used Oil Dumpsters (SWMU 46) Shallow Soil Samples (1 foot bgs)	5-99
5-25-3	Used Oil Dumpsters (SWMU 46) Shallow Soil Samples (1 foot bgs)	5-100
5-25-4	Used Oil Dumpsters (SWMU 46) Shallow Soil Samples (1 foot bgs)	5-101
5-26-1	Boiler Blowdown Water Areas (SWMU 47) Sediment Samples	5-104
5-26-2	Boiler Blowdown Water Areas (SWMU 47) Surface Water Samples	5-105

ACRONYMS

AEC (U.S.) Army Environmental Center
AED Ammunition Engineering Directorate
AEHA U.S. Army Environmental Hygiene Agency

ASCS Agricultural Stabilization and Conservation Service

AST Aboveground Storage Tank
bgs beneath ground surface
CDM Camp, Dresser, and McKee
cm/s centimeters per second
CRL Contract Reporting Limits

CWP Contaminated Waste Processing Plant DCQAP Data Collection Quality Assurance Plan

DMP Data Management Plan

DRMO Defense Reutilization and Marketing Office

EA Environmental Assessment
EMO Environmental Management Office
EP Toxicity Extraction Procedure Toxicity
EPA Environmental Protection Agency

EPIC Environmental Photographic Interpretation Center

ERTEC Earth Technology Corporation

FS Feasibility Study ft/yr feet per year

GAC Granular Activated Carbon gpd/ft² gallons per day per square foot HASP Health and Safety Plan

HSWA Hazardous and Solid Waste Amendments
HWCP Hazardous Waste Contingency Plan
IDW Investigation-Derived Wastes
IWL Industrial Wastewater Lagoon

JMM James M. Montgomery, Consulting Engineers, Inc.

MCL Maximum Contaminant Level

MSL Mean Sea Level

NEPA
National Environmental Policy Act
OB/OD
Open Burning/Open Detonation
PAH
Polycyclic Aromatic Hydrocarbons
PCDD
Polychlorinated Dibenzo Dioxin
PCDF
Polychlorinated Dibenzo Furan
PMP
Project Management Plan
PQL
Practical Quantitation Limits

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation
RI Remedial Investigation

SPCCP Spill Prevention Control and Countermeasures Plan

SVOC Semi-volatile Organic Compounds SWMU Solid Waste Management Unit

TCLP Toxic Characteristics Leaching Procedure

TEAD-N Tooele Army Depot, North Area
TIC Tentatively Identified Compound

TOD Tooele Ordnance Depot

TRPH Total Recoverable Petroleum Hydrocarbons
USATHAMA U.S. Army Toxic and Hazardous Materials A

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

USGS U.S. Geological Survey

USCS Unified Soil Classification System
USSCS U.S. Soil Conservation Service
UST Underground Storage Tank
VOC Volatile Organic Compound

μg/L micrograms per liter

IRDMIS CHEMICAL ACRONYMS

124TCB 1.2.4-Trichlorobenzene **112TCE** 1.1.2-Trichloroethane 1.2-Dichloroethenes/1.2-dichloroethylenes (cis and trans isomers) 12DCE 12 DCLE 1.2-Dichloroethane 135TNB 1.3.5-Trinitrobenzene 13DNB 1.3-Dinitrobenzene 2CLP 2-Chlorophenol 2MENAP 2-(1-Methylethyl) napthalene 24DCLP 2,4-Dichlorophenol 24D 2.4-Dichlorophenoxyacetic acid 24DNT 2.4-Dinitrotoluene **26DNT** 2.6-Dinitrotoluene 2MENAP 2-(1-Methylethyl) naphthalene 4MP 4-Methylphenol/4-cresol ACET Acetone **ACLDAN** alpha-Chlordane AG Silver **ANAPNE** Acenaphthene ANTRO Anthracene AS Arsenic **B2EHP** bis (2-Ethylhexyl) phthalate BA Barium Benzo (A) anthracene BAANTR BAPYR Benzo (A) pyrene **BBFANT** Benzo (B) fluoranthene BBZP Butylbenzyl phthalate BE Beryllium **BGHIPY** Benzo (G,H,I) perylene **BKFANT** Benzo (K) fluoranthene BTZ Benzothiazole C-10 Decane C21 Heneicosane CA Calcium CCL3F Trichlorofluoromethane Cadmium CD CH2CL2 Methylene Chloride CHCL3 Chloroform CHRY Chrysene Chloride CL CL6BZ Hexachlorobenzene CR Chromium CU Copper CYN Cvanide **DMP** Dimethyl phthalate Di-N-butyl phthalate **DNBP ENDRN** Endrin Ethylbenzene ETC6H5 **FANT** Fluoranthene FE Iron **FLRENE** Fluorene **FURANS** Dibenzofurans - nonspecific GCLDAN gamma-Chlordane HEXANE Hexane HG Mercury

Cyclotetramethylenetetranitramine

Hepta-dioxins

Hepta-furans

HMX

HPCDD

HPCDF

HPCL Heptachlor
HXCDD Hexa-dioxins
HXCDF Hexa-furans

ICDPYR Indeno (1,2,3-C,D) pyrene

ISODR Isodrin K Potassium MEC6H5 Toluene

MESTOX Mesityl oxide/4-Methyl-3-penten-2-one

MG Magnesium
MN Manganese
NA Sodium
NAP Naphthalene
NB Nitrobenzene

NI Nickel

NIT Nitrite, nitrate - nonspecific NNDPA N-Nitrosodiphenylamine

OCDD Octa-dioxins
OCDF Octa-furans

ODECA Octadecanoic acid/Stearic acid
PAH Polynuclear aromatic hydrocarbons

PB Lead

PCDD Penta-dioxins
PCDF Penta-furans
PCP Pentachlorophenol
PHANTR Phenanthrene

PHENOL Phenol Phosphate

PPDDD 2,2-Bis (para-chlorophenyl)-1,1-dichloroethane
PPDDE 2,2-Bis (para-chlorophenyl)-1,1-dichloroethane
PPDDT 2,2-Bis (para-chlorophenyl)-1,1,1-trichloroethane

PYR Pyrene

RDX Cyclonite/Hexahydro-1,3,5-trinitro-1,3,4-triazine

SE Selenium
SO4 Sulfate
TCDD Tetra-dioxins
TCDF Tetra-furans

TCLEE Tetrachloroethylene/Tetrachloroethene

TL Thallium

TPO4 Total phosphates

TRCLE Trichloroethylene/Trichloroethene

TXYLEN Xylenes, total combined

V Vanadium XYLEN Xylenes ZN Zinc

EXECUTIVE SUMMARY

Under the terms of Corrective Action Permit UT3213820894 signed on January 7, 1991, the State of Utah, Department of Environmental Quality is requiring the Tooele Army Depot (TEAD) to conduct corrective action investigations at 46 solid waste management units (SWMUs) at the north area of TEAD (TEAD-N). For regulatory purposes, the 46 SWMUs were divided into three groups for environmental investigation and potential remediation. Two of the groups (the SWMUs with known releases and suspected releases) are being administered under the requirements of RCRA while the third group is being administered under CERCLA under a Federal Facility Agreement.

The 20 SWMUs suspected of having released hazardous waste or contaminants to the environment are the subject of this Phase I RCRA Facility Investigation (RFI). The objective of the Phase I RFI is to determine the presence or absence of environmental contamination at each of the suspected releases SWMUs and to recommend either additional investigations or no further action.

TEAD-N is located in the Tooele valley about 35 miles southwest of Salt Lake City, Utah, and immediately west of Tooele, Utah. The primary activities conducted at TEAD-N are rebuilding and storing military vehicles and equipment and storing conventional munitions. Hazardous wastes or constituents have been handled, treated, or disposed of at numerous locations around TEAD-N. Wastes generated include dust and ash with elevated metals and organic compounds from incinerating munitions and packaging materials, ash and debris containing elevated metals and explosives from open burning and open detonation of propellants and munitions in unlined disposal pits, and used sand blast media, used motor oil, and waste solvents from vehicle maintenance activities. In addition to these process-specific waste streams, elevated levels of pesticides, metals, and organic compounds are also present in areas where pesticide residues, boiler blowdown water, industrial waste water, and bulk wastes are handled or were discharged.

Field sampling investigations were conducted at 17 of the 20 suspected releases SWMUs to determine if treatment, storage, or disposal of hazardous wastes or constituents have released contaminants to the environment. No sampling activities were conducted at three SWMUs where records of past waste management practices and ongoing waste management practices and controls indicate that there has been adequate protection against releases from these facilities. At the 17 SWMUs where field sampling was conducted, a total of 606 soil samples, 12 sediment samples, 12 groundwater samples, and seven surface water samples were collected to determine if contaminants had been released to the environment. In addition, 17 background soil samples were collected to evaluate the concentrations of naturally-occurring metals and other compounds.

Based on the records reviews and sampling results, no further action is recommended at the three SWMUs where there were no indications of a contaminant release and proper waste management techniques were on-going. By contrast, the sampling programs detected contaminants above background at the 17 suspected releases SWMUs included in the Phase I sampling program. Contaminants detected frequently consist of metals above background, volatile organic compounds, and semivolatile organic compounds. Pesticides, petroleum hydrocarbons, and explosives were also detected at several SWMUs. Phase II investigations, including risk assessments, are recommended for 16 of the 17 SWMUs where contaminants were detected. Although contamination was detected at SWMU 27, no further action under RCRA Corrective Action is recommended here as the contaminants detected pose no current risks and additional sampling and risk assessment will be conducted in the future as part of RCRA closure of this facility. Currently, there are sufficient data available to support the risk assessments at 6 of the 16 SWMUs recommended for risk assessments. Additional sampling is recommended at 10 of the 16 SWMUs to provide the additional data needed to support the risk assessments.

Section 1

1.0 INTRODUCTION

1.0.0.1. This report summarizes the findings of the Phase I Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) conducted at 20 solid waste management units (SWMUs) at the Tooele Army Depot, North Area, Utah (TEAD-N). Site characterization studies of TEAD-N have been conducted by the Army and its consultants since 1979 to determine the nature and extent of contamination resulting from the storage, treatment, and disposal of hazardous waste and hazardous waste constituents at various locations on the Depot. Most of the information contained in this report was generated during the Phase I RFI investigations conducted during the summer of 1992 by Montgomery Watson (Montgomery) (formerly James M. Montgomery, Consulting Engineers, Inc. (JMM)) and its subcontractors. Supplemental information contained in this report was taken from previous environmental investigations.

1.0.0.2. The RFI is being conducted by the U.S. Army Environmental Center (USAEC) (formerly the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA)) and its contractors on behalf of TEAD. Montgomery's work is being performed under Task Order 0004 of Contract DAAA-15-90-D-0011.

1.1 REGULATORY BACKGROUND

1.1.0.1. After groundwater contaminated from disposal of hazardous wastes at TEAD-N was discovered, a consent decree was issued in 1986 to TEAD by the United States District Court for the District of Utah. The terms required that TEAD conduct an assessment of the groundwater quality, close an industrial wastewater lagoon and associated wastewater ditches, develop groundwater cleanup levels, and prepare a Corrective Action Plan addressing remediation of contaminated groundwater. The terms of the Corrective Action Plan are specified in a Corrective Action Permit signed by the Utah Department of Environmental Quality (formerly the Department of Health) and TEAD on January 7, 1991. In addition to requiring a clean up of the groundwater, Module VII of the Corrective Action Permit requires that TEAD conduct corrective action investigations of 46 SWMUs at TEAD-N. UDEQ and EPA divided the 46 SWMUs into three groups to implement the permit. Nine of the SWMUs known to have released contaminants to the environment comprise one group. Twenty SWMUs suspected of having released contaminants were placed in another group, and the remaining 17 SWMUs that make up the third group are included in a Federal Facility Agreement between the State of Utah, EPA and TEAD. The twenty

SWMUs suspected of having released hazardous waste or hazardous waste constituents to the environment are the subject of this Phase I RFI.

1.2 PHASE I RFI OBJECTIVE, PURPOSE, AND SCOPE

1.2.0.1. Objective and Purpose. As stated in the corrective action permit, the objective of the Phase I RCRA Facility Investigation is to document a release or absence of a release of hazardous waste or hazardous waste constituents from each SWMU. To meet this objective, the purpose of the Phase I RFI report is to evaluate all the available background and environmental information available for each of the 20 suspected releases SWMUs, determine if a release of hazardous waste or hazardous waste constituents has occurred, and prioritize each of the SWMUs where a release occurred for additional investigation according to the threat posed to human health and/or the environment. Table 1-1 contains a summary of the suspected releases SWMUs included in this investigation.

1.2.0.2. Phase I RFI Scope. According to the terms of Task Order 0004, Montgomery was requested to conduct a Phase I RFI at each of the 20 SWMUs suspected of releasing contaminants to the environment. The scope of work for the Phase I RFI consists of three main elements. First, a comprehensive set of project work plans was prepared. These included the:

- Project Management Plan (PMP)
- Data Collection Quality Assurance Plan (DCQAP)
- Health and Safety Plan (HASP)
- Data Management Plan (DMP).

The next element was an extensive field investigation in which environmental samples were collected from 17 of the 20 suspected releases SWMUs and several facility-wide monitoring and sampling programs were conducted. The final element in the Phase I RFI is the preparation of this RCRA Facility Investigation summary report.

1.3 ORGANIZATION OF THIS REPORT

1.3.0.1. The information presented in this report has been organized in accordance with the Interim Final RCRA Facility Investigation (RFI) Guidance. Volume 1 of the Phase I RFI (this volume) contains the text sections while volumes 2 and 3 contain the supporting data in appendices. Volume 1 contains six sections as follows: Section 1.0 is the Introduction,

TABLE 1-1

SUSPECTED RELEASES SOLID WASTE MANAGEMENT UNITS (SWMUs)

SWMU	Description	General Location	Comment
1	Main Demolition Area	SW Corner of TEAD-N	Subarea within the Open Burning/Open Detonation Areas currently used for open detonation of munitions
la	Cluster Bomb Detonation Area	SW Corner of TEAD-N	Subarea within the Open Burning/Open Detonation Areas. Poorly defined, used for open detonation of cluster bomblets in the past
1b	Burn Pad	SW Corner of TEAD-N	Subarea within the Open Burning/Open Detonation Areas. Used for open burning of propellant in the past
lc	Trash Burn Pits	SW Corner of TEAD-N	Subarea within the Open Burning/Open Detonation Areas. Used to burn and bury dunnage in the past
1d	Propellant Burn Pans	SW Corner of TEAD-N	Subarea within the Open Burning/Open Detonation Areas. Currently used to burn propellants.
4	Sandblast Areas	Maintenance Area	Spent sandblast media collects in dumpsters at Buildings 615, 617, and 597.
14	Sewage Lagoons	West of Maintenance Area	Receives sanitary sewage from the administration and maintenance areas.
19	AED Demilitarization Test Facility	West of Ordnance Area	Building 1376. Used to test demilitarization equipment and techniques.
20	AED Deactivation Furnace Site	West of Ordnance Area	Buildings 1351, 1352, and 1356. Used to test deactivation equipment.
21	Deactivation Furnace Building	West of Ordnance Area	Building 1320. Used to Demilitarize small arms munitions.
26	DRMO Storage Yard	East Side of Maintenance Area	Building 2025, Storage Yards, and Salvage Yard

TABLE 1-1

SUSPECTED RELEASES SOLID WASTE MANAGEMENT UNITS (SWMUs) (CONTINUED)

SWMU	Description	General Location	Comment
27	RCRA Container Storage	Administration Area	Building 528. Used to store hazardous wastes needing treatment prior to disposal.
28	90-Day Container Storage Area	South Side of Maintenance Area	Buildings 596 and 585 and Open Storage Areas. Used to store hazardous wastes not requiring treatment prior to disposal
29	Drum Storage Areas	South Side of Maintenance Area	Satellite Storage Building 576. Currently used to store hazardous materials used at TEAD.
34	Pesticide Handling and Storage Area	Maintenance Area	Building 518. Used to store, batch, and load pesticides and herbicides.
37	Contaminated Waste Processing Plant	West of Ordnance Area	Building 1325. Permitted to incinerate PCP-treated wooden packaging materials.
38	Industrial Wastewater Treatment Plant	West of Maintenance Area	Used to treat wastewater from maintenance shops.
39	Solvent Recovery Facility	SW Corner of Maintenance Area	Building 600B. Used to recycle solvents.
42	Bomb Wash Out Building	North End of Administration Area	Building 539. Used in the past to reclaim small arms munitions.
43	Container Storage Areas for P999 and Mustard Agent- Filled Mortar Round Storage	18 Igloos in Ordnance Area	Igloos B1002, C117, D304, G308, G1005, J202, C902, C903, C909, C910, C912, J102, J104, J110, J201, J202, K906, and K1007.
44	Tank Storage of Trichloroethylene	South End of Maintenance Area	Formerly located in Building 620.

TABLE 1-1

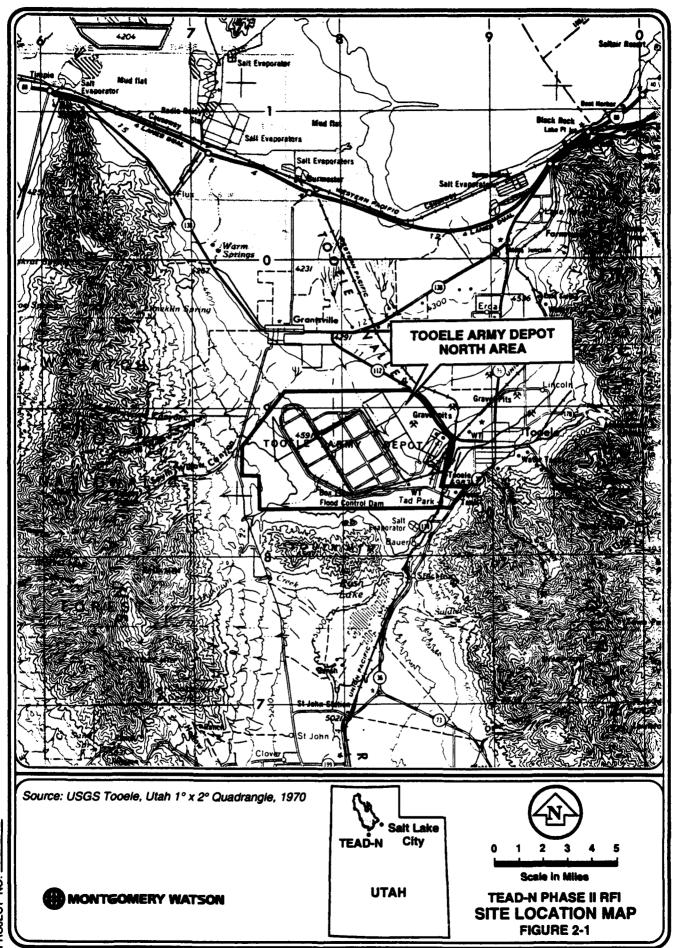
SUSPECTED RELEASES SOLID WASTE MANAGEMENT UNITS (SWMU*) (CONTINUED)

SWMU	Description	General Location	Comment
45	Stormwater Discharge Area	Between Administration and Maintenance Areas	Small unlined pond that receives runoff from the administration area.
46	Used Oil Dumpsters	Various Locations in Maintenance Area	Buildings 507, 509, 510, 511, 522, 602, 607, 611, 619, 620, 621, 637, and 691.
47	Boiler Blowdown Water	Several Locations in Maintenance Area	Buildings 606, 610, and 637.

SWMU numbering corresponds to that used in Table 8, Solid Waste Management Units with Suspected Releases, of Module VII of RCRA Corrective Action Permit UT3213820894 for the Tooele Army Depot North Area, with the exceptions of SWMU-1d and SWMU-39 which were added to this list and SWMU-41 which is excluded from this list.

Section 2.0 is a description of the TEAD-N facility, and Section 3.0 is a summary of the environmental investigations conducted at TEAD-N. Also included in Section 3.0 is an overview of the Phase I RFI investigation conducted in support of this project. Section 4.0 presents a discussion of background soil conditions and a discussion of practical quantitation limits (PQLs) versus the USAEC contract reporting limits (CRLs) and how they impact the results of this investigation. Section 5.0 contains a contamination characterization for each SWMU included in this study. Section 6.0 is a summary of the results and recommendations based on the contamination characterizations. In addition to raw data, each appendix in Volumes 2 and 3 of this report is prefaced by a brief description of the types of data and their organization.

Section 2


2.0 INSTALLATION DESCRIPTION

2.0.0.1. The following sections present the site background and physical setting of TEAD-N. Included in these sections are discussions of the location, geographic setting, soils and geology, groundwater and surface water, climate, vegetation, and wildlife of the TEAD-N area. Most of these topics have been well documented in previous investigations, particularly in the Groundwater Quality Assessment Engineering Report to the Tooele Army Depot, Utah, prepared by JMM (JMM, 1988), and the Tooele Army Depot, Preliminary Assessment/Site Investigation Final Draft Report, Volume I - North Area, prepared by EA Engineering, Science and Technology, Inc. (EA, 1988). These reports assess the regional hydrology, geology, and hydrogeology of the TEAD-N area. Much of the information in the following sections is taken from the JMM and EA reports.

2.1 LOCATION

2.1.1. Facility Description and History

- 2.1.1.1. TEAD-N encompasses 24,732 acres in the Tooele Valley in Tooele County, Utah (Weston, 1990). It is located approximately 17 miles north of the Tooele Army Depot, South Area (TEAD-S) and 35 miles southwest of Salt Lake City. The Tooele Valley is bounded to the south by the Stockton Bar and South Mountain, to the west by the Stansbury Mountains, to the east by the Oquirrh Mountains, and to the north by the Great Salt Lake. The city of Grantsville is approximately two miles north of TEAD-N, and the city of Tooele is located immediately to the east. The location of TEAD-N is depicted in Figure 2-1.
- 2.1.1.2. TEAD-N was established as Tooele Ordnance Depot (TOD) on April 7, 1942, by the U.S. Army Ordnance Department. During World War II, TEAD was a backup depot for the Stockton Ordnance Depot and Benicia Arsenal, both in California, and eventually assumed the duties of the Ogden Arsenal (Ogden, Utah). Vehicles, small arms, and other equipment for export were stored at TEAD. It was redesignated as TEAD-N in August 1962. The developed features of TEAD-N may be grouped into four main areas: (1) the ammunition storage igloos and magazines, (2) the administrative buildings, (3) the industrial maintenance area, and (4) the open revetments.
- 2.1.1.3. The Tooele Army Depot (North and South Area combined) is one of the major ammunition storage and equipment maintenance installations in the U.S., and supports other Army installations throughout the western United States. The current mission of

PROJECT NO. 2942.0170

TEAD-N is to provide installation support to attached organizations and to operate other facilities, as assigned. Its major functions include the following:

- · Supply, distribute, and store general supplies and ammunition
- Store strategic and critical materials
- Maintain ammunition and general supplies for TEAD-N
- Demilitarize ammunition
- Supervise training of assigned units and provide logistical support and training assistance to U.S. Army Reserves
- · Design, manufacture, procure, store, and test ammunition equipment
- · Repair, maintain, and store military vehicles and other equipment.
- 2.1.1.4. The operation of several Department of Defense installations, including TEAD-N, TEAD-S, and Dugway Proving Ground, continues to be the major industry in Tooele County.

2.1.2 Description of Surrounding Communities

- 2.1.2.1. Tooele Valley is mostly undeveloped, with the exceptions of the cities of Grantsville (1991 population 4,500) and Tooele (1991 population 13,887) and occasional residential developments north of Tooele City. The current population of Tooele County is 26,601 (Tooele, 1991). Grantsville is approximately two miles north of the northwest corner of TEAD-N while Tooele is next to the northeast corner of the Depot. Livestock grazing and limited cultivation predominate in the valley. Nearby commercial mining activities consist of the Carr Fork and Bingham Copper Mines located eight to ten miles to the northeast and east of TEAD-N in the Oquirrh Mountains, and the Barrack Resources Mercur Mine to the southeast.
- 2.1.2.2. Except for the City of Tooele, properties immediately adjacent to TEAD-N boundaries are undeveloped. Properties to the north are used for pasture while properties to the west and south are used for rangeland grazing. Properties east of TEAD-N consist of a

combination of residential portions of Tooele and undeveloped rangeland along the lower western slopes of the Oquirrh Mountains. Several gravel pits are also located southeast of TEAD-N along SR 36. Except for the southeastern portion (bounded by SR 36), TEAD-N is bounded on the east by the Union Pacific Railroad right-of-way. The Tooele Municipal Airport and scattered residential homes are located along the eastern boundary north to SR 112, which forms the northeastern boundary of TEAD-N. The area northeast of SR 112 is undeveloped except for a construction company and Tooele County Landfill.

2.2 GEOGRAPHIC SETTING

2.2.0.1. TEAD-N is located in the southern portion of Tooele Valley. Tooele Valley is bounded on the north by the Great Salt Lake at an elevation of approximately 4,200 feet above mean sea level (MSL). The eastern border of the valley is the north-south trending Oquirrh Mountains, which rise sharply from the valley floor at an elevation of approximately 5,200 feet above MSL to a maximum elevation of 10,350 feet above MSL. The western border of the Tooele Valley is formed by the Stansbury Mountains, which reach a maximum elevation of 11,301 feet above MSL. South Mountain, a relatively low-lying, east-west trending structure, and the Stockton Bar, a Pleistocene feature deposited by Lake Bonneville at its highest level, bound the valley on the south, separating Tooele Valley from Rush Valley.

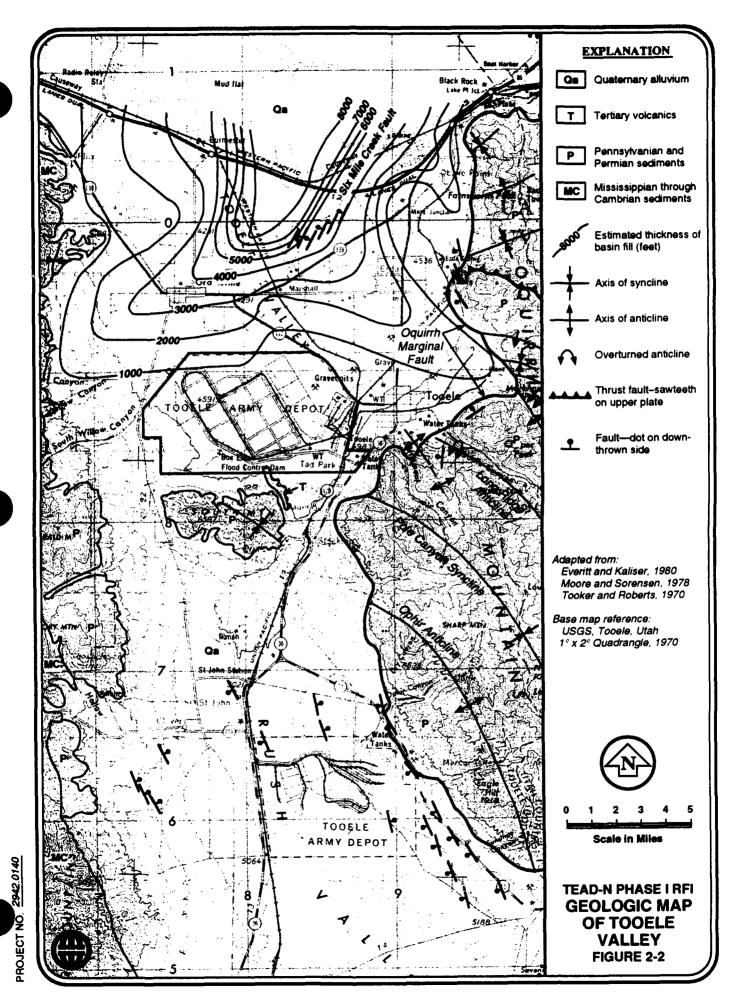
2.2.0.2. Physiography. Tooele Valley is situated in the Lake Bonneville Basin of the Basin and Range physiographic province, which includes Nevada, western Utah, and portions of Arizona, California, Oregon, and Idaho. The Lake Bonneville Basin, typical of Basin and Range physiography, is characterized by alternating, isolated, north-trending, block-faulted mountains, and intermontane basins flanked by alluvial slopes.

2.2.0.3. Topography. The topography of the Tooele Valley floor is the result of coalescing alluvial fans (bajada) that were formed by debris eroded from the Oquirrh and Stansbury mountains. These fans were formed during Pleistocene time when a shallow arm of Lake Bonneville occupied the area, leaving a series of wave-cut benches and gravel bars along the margins of the valley. The Stockton Bar is the most prominent example of this type of Lake Bonneville feature.

2.2.0.4. Surfacial expressions of the influence of Lake Bonneville are present around the perimeter of the Tooele Valley. Valley topography shows evidence of wave-cut benches and shoreline erosion. The major lake levels and their dates are as follows (Currey, 1984):

Lake Level	Elevation	Time Period
• Stansbury	4,500 feet above MSL	23,000 to 20,000 years ago
 Bonneville 	5,090 feet above MSL	16,000 to 14,500 years ago
• Provo	4,740 feet above MSL	14,500 to 13,500 years ago
• Gilbert	4,250 feet above MSL	11,000 to 10,000 years ago

2.2.0.5. Since TEAD-N occupies the central portion of the Tooele Valley, the alluvial fans that lie beneath the east, south, and western perimeters of the facility slope gently toward the valley center. Thus the TEAD-N topography is characterized by gently sloping surfaces dissected by a series of intermittent (ephemeral) stream channels. Average topographic gradients of the northern portion of TEAD-N are approximately 70 feet per mile and increase to about 150 feet per mile near the southern boundary in the vicinity of South Mountain. The elevation of the ground surface in the TEAD-N area ranges from about 4,500 feet above MSL at the northern boundary to about 5,200 feet on the western boundary.


2.3 GEOLOGY AND SOILS

2.3.0.1. This section describes the geologic setting of Tooele Valley. Included here is information on the soils at TEAD-N, which were a major focus of the RFI investigations. Since geologic conditions at TEAD-N are similar to those throughout the Tooele Valley, the following description of regional geology serves as an introduction to site geology.

2.3.1. Regional Geology

2.3.1.1. As discussed earlier, the Tooele Valley is bounded by Basin and Range block-faulted mountain on three sides. The Oquirrh Mountains to the east and South Mountain to the south are composed primarily of extensively folded and faulted, alternating beds of quartzite and limestone of late Mississippian, Pennsylvanian, and early Permian age. The composition of the Stansbury Mountains to the west is similar, with the exception of the occurrence of Cambrian quartzite. Gravity surveys indicate that many faults are present in the bedrock beneath the valley. This suggests that the Tooele Valley basin is probably not a single down-faulted structural depression, but is more likely a complex collection of troughs and ridges caused by several down-faulted blocks (ERTEC, 1982). The geology of the region is depicted in Figure 2-2.

2.3.1.2. Tooele Valley is filled with a thick sequence of unconsolidated sediments of Tertiary and Quaternary Age. The older Tertiary sediments comprise the Salt Lake

Group and consist of moderately consolidated sand, gravel, silt, and clay with an abundance of volcanic ash (Everitt and Kaliser, 1980). The younger Quaternary sediments consist of interlayered and unconsolidated sand, gravel, silt, and clay, including sediments deposited before, during, and after the existence of Lake Bonneville. The thickness of the valley sediments ranges from a few feet at the margins of the valley to over 8,000 feet in the north central part of the valley (Everitt and Kaliser, 1980). The contact between the Tertiary and Quaternary sediments was reported to be between 800 and 900 feet below the ground surface (ERTEC, 1982).

2.3.1.3. Bedrock beneath the unconsolidated sediments of the Tooele Valley consists of alternating quartzite and limestone beds similar to the late Paleozoic rocks found in the Stansbury Mountains, Oquirrh Mountains, and South Mountain.

2.3.1.4. Several potentially active faults were identified in the Tooele Valley by Everitt and Kaliser (1980); two of these faults are located near TEAD (Figure 2-2). The Oquirrh marginal fault was observed along the base of the Oquirrh Mountains, just east of the City of Tooele. Evidence of post-Lake Bonneville (less than 18,000 years ago) and post-Holocene displacement (less than 10,000 years ago) was interpreted from fault scarps south of Middle Canyon and northward to Bates Canyon and Lake Point. Post-Holocene movement was also interpreted from scarps along the Six-Mile Creek fault north of Grantsville. These faults are the likely result of geologically recent Basin and Range tectonism.

2.3.2. Site Geology and Soils

2.3.2.1. Unconsolidated alluvial and lacustrine valley fill lies beneath most of TEAD-N. These sediments consist of clay and silt interbedded with sand, gravel, and cobbles eroded from the Oquirrh and Stansbury Mountain ranges. Geologic conditions beneath TEAD-N are similar to those found elsewhere in the Tooele Valley, with the valley fill overlying Paleozoic limestone, quartzite, and sandstone formations. Since both the unconsolidated valley fill and bedrock occur at TEAD-N, they are discussed separately in the following paragraphs.

2.3.2.2. Valley Fill Deposits. The unconsolidated quartzite, sandstone, and limestone alluvium underlying TEAD-N is typical of alluvial fan deposits, consisting of poorly sorted clayey and silty sands, gravels, and cobbles. Lateral changes in the coarseness of the granular sediments are apparent across TEAD-N. In general, the sediments tend to

become finer grained as distances from the source areas increase. Along the east margin of the Depot, coarse, silty gravels, with some cobbles and boulders are the predominant soil types. The coarse-grained layers are composed of fine and coarse gravels with varying fractions of sands and cobbles, and they comprise productive aquifer zones when saturated. By contrast, sediments beneath the central, western, and northern parts of the Depot are silts, fine sands, and gravels. The finer soils are typically yellowish brown to grayish orange with varying concentrations of brown, yellow, and orange quartzite and dark gray limestone clasts.

2.3.2.3. Erosion and deposition of the valley fill was influenced by climate, precipitation rates, and periods of inundation by Lake Ponneville. As a result, the sediments have been reworked, and units that may have been deposited contemporaneously may not appear to be the same unit. Consequently, lithologic correlation between alluvial units over long distances is difficult. However, continuous fine-grained layers (silty clays and clayey silts) have been observed in soil borings in the north eastern portion of TEAD-N (JMM, 1988).

2.3.2.4. Fine-grained layers within the valley fill have been estimated to range from less than 10 feet to more than 70 feet thick. The fine-grained layers are composed of varying fractions of clayey silt, silty clay, and silty, fine to coarse sand. Because the permeability of the fine-grained materials is low, they can act as barriers to groundwater movement. These fine-grained layers are believed to be areally continuous, and in areas north of the TEAD-N boundary they maintain hydraulic heads between different water-bearing zones beneath the same location.

2.3.2.5. Evidence of bedding was also identified from seismic refraction surveys conducted by ERTEC (1982). Three distinct velocity layers were identified and interpreted to represent colluvium, uncemented conglomerate, and cemented conglomerate in order of increasing depth. Investigations by JMM (1988) also indicate cemented gravels are present at TEAD-N. Samples from deep soil borings revealed cemented gravels at depths greater than 350 feet below ground surface (bgs) beneath the northern portion of TEAD-N and north of the TEAD-N boundary (JMM, 1988).

2.3.2.6. Although the deeper gravels are believed to be cemented, evidence from drilling indicates that the cement does not completely fill the voids between clasts. Examination of drill cutting samples from the cemented zones reveal that a rind-like calcareous coating exists on the surface of many of the gravel clasts.

- 2.3.2.7. Bedrock. Bedrock in the Tooele Valley has been subjected to many geologic forces throughout history. Laramide folding during the late Cretaceous, Basin and Range faulting during the Miocene and Pliocene, and eastward tilting of the Oquirrh Mountains during the Pliocene and Pleistocene have created multiple fault blocks composed of highly deformed Paleozoic rocks. In addition to the structural deformation, bedrock has been extensively weathered through repeated inundations by Lake Bonneville and silicified and altered by hydrothermal fluids (Tooker and Roberts, 1970).
- 2.3.2.8. Little bedrock is exposed at TEAD-N. Therefore, existing TEAD-N bedrock data are based on investigations of the closed Industrial Wastewater Lagoon (IWL) and on geophysical surveys conducted over the entire TEAD-N area. The most significant bedrock features are a series of limestone and quartzite outcrops located approximately 1,000 feet north of the closed IWL in the north east portion of TEAD-N, as depicted in Figure 2-3. Borehole and geophysical data indicate that bedrock in this area occurs as a topographically high, elongated block, oriented northeast to southwest, with deeper suballuvial flanks extending to the southwest and southeast.
- 2.3.2.9. Bedrock beneath the north east portion of TEAD-N consists of brown and gray quartzite and blue-gray and black limestone. Depths to bedrock range from surface outcrops in the northeast corner of TEAD-N to more than 2,000 feet bgs in the south-central portion of the facility. The depth to bedrock across TEAD-N is shown in Figure 2-3.
- 2.3.2.10. Fractures measured in the bedrock outcrops during previous investigations were generally vertical or near vertical with strikes of about 30° to 50° west of north (JMM, 1988). These directions are approximately perpendicular to the bedding attitudes observed in the outcrops. Evidence of extensive bedrock fracturing was revealed during previous investigations (JMM, 1988). Specifically, the dolomite or argillaceous limestone in the area beneath the IWL and the interbedded sandstone and quartzite at the northwest end of the bedrock block showed evidence of extensive fracturing. Diamond drill cores of these beds revealed zones of open fractures and dissolution cavities that appear to have developed primarily along fracture planes (JMM, 1988). The presence of the open fractures and dissolution zones, combined with the uniform groundwater elevations observed in the bedrock body, suggest that groundwater conditions in the bedrock are largely controlled by these features (JMM, 1988).

PROJECT NO. 2942.0140

2.3.2.11. Surface and Near-Surface Soils. Surface and near-surface soil characteristics in the TEAD-N investigation areas reflect the topographic location and the geologic materials from which they were formed. The soils consist primarily of gravelly loam, loam, or fine sand that developed on alluvial deposits or lacustrine sediments. According to unpublished soils maps of the Tooele Valley, the primary surface soils identified at TEAD-N consist of the following soil series (USSCS, 1991):

- Abela
- Berent
- Hiko Peak
- Birdow
- Medburn

2.3.2.12. Soils that develop in semi-arid climates do not develop strong diagnostic horizons. In general, these soils are deep, well-drained, moderately permeable, and alkaline (i.e., pH greater than 7). Water and wind erosion potentials for these soils are considered moderate and slight, respectively. The Abela, Hiko Peak, Birdow, and Medburn soil series contain inclusions of other soil types. However, the inclusions are either intermingled with the main soil type, or their area is too small to map independently. As a consequence, the inclusions are not identified in the major mapping units.

2.3.2.13. The most important difference between the main soil types and the inclusions is texture change (particle size). Soil particle size (percent gravel, sand, silt, and clay) is one of the principal factors determining the chemical and hydraulic properties of soil. Table 2-1 provides a detailed description of the primary soil series and the inclusions found at TEAD-N in each soil series mapping unit. A map of the USSCS soil units present at TEAD-N is presented in Figure 2-4. This figure also shows the RFI background soil boring locations.

2.4 GROUNDWATER AND SURFACE WATER

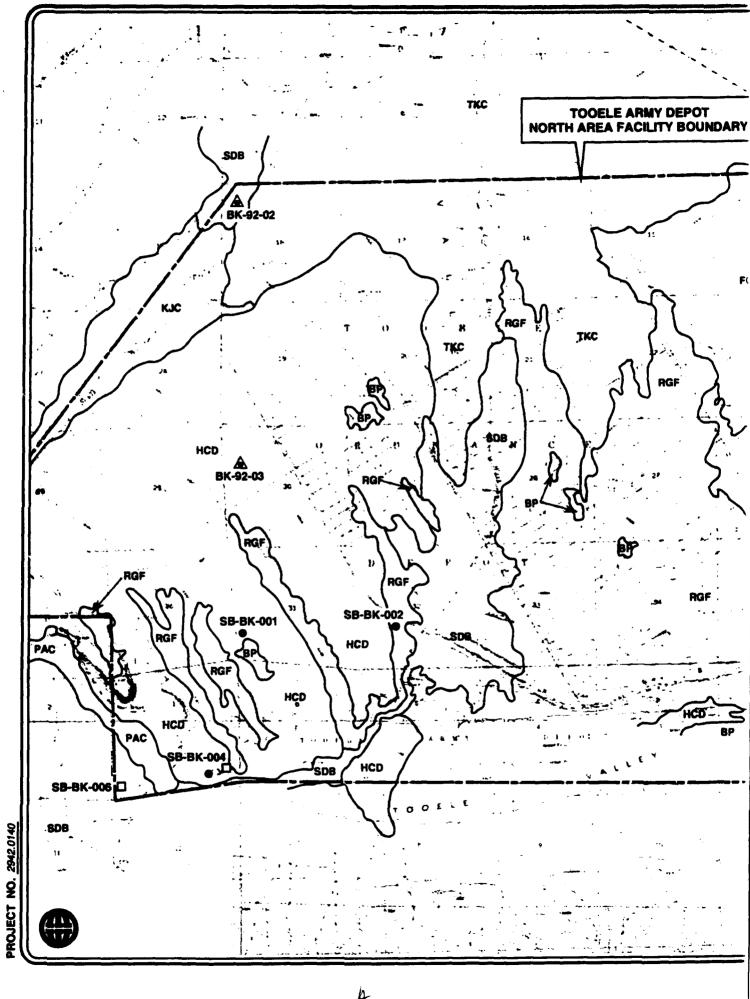
24.1. Groundwater

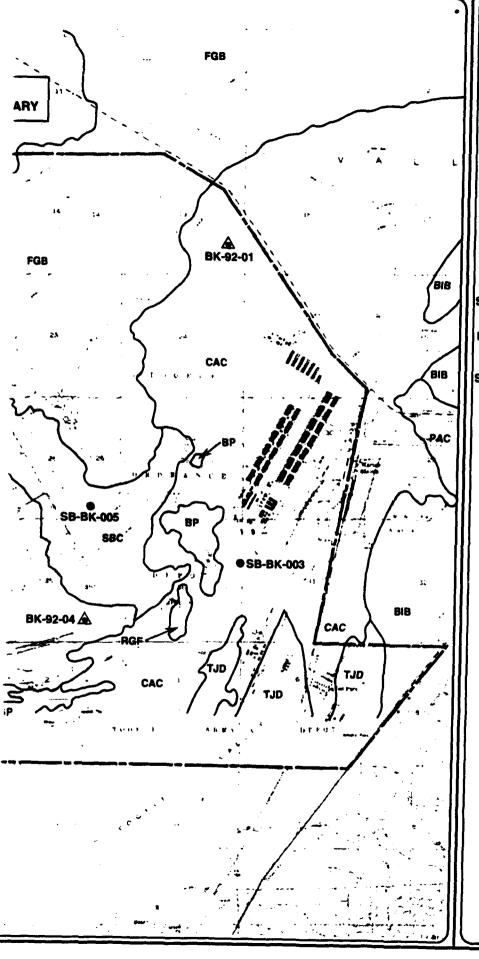
2.4.1.1. Regional Hydrogeology. Most of the usable groundwater in the Tooele Valley occurs in the valley fill deposits, and to a lesser extent, in the underlying bedrock. Because the valley fill deposits are generally coarse-grained, they form a productive aquifer

TABLE 3-1

GENERAL CHARACTERISTICS OF SURFACE SOIL OF TEAD IN INVESTIGATION AREA

						Cheracteristics		
Mappeler	Soll Type	Origin	General Location	Texture	Depth (Fost BGB)	Soft pH	Permoability	Inditeration Rate (contract)
Abels Included in this	Abela	Developed in alluvium derived orimarily from	Alluvial fans on 1 to 8 percent alongs at elevations of 4,600 to	Gravelly loam (GM-GC: 8C:8M)	0 to 0.8	7.9 to 8.4	Mod.rspid	1.410-3 to 4.2110-3
unit are Borrant		Himestone and quartitle.	6,000 feet shove MSL.	Very gravelly loam GC-GM)	0 to 1.7	7.9 to 9.0	Mod. rapid	1.4x10.3 to 4.2x10.3
				Very gravelly loam to extremely gravelly eandy loam (GM-GC; GP-GM)	1.7 to 5	8.8 to 9.0	Mod. rapid	1.4x10 ⁻³ to 4.2x10 ⁻³
	Borvant	Developed in alluvium	Shallow soil over a carbonate commented hardone on fan	Gravelly loam	0 to 0.5	7.4 to 9.0	Moderate	4.2x10-4 to 1.4x10-3
		from limestons.	terraces on short or medium beneth, convex 2 to 15 percent	Very gravelly loam (GM-GC)	0.5 to 1.5	7.9 to 9.0	Moderate	4.2x10-4 to 1.4x10-3
			alopes at elevations of 5,200 to 5,500 feet above MSL.	Indurated	3.6	ď.	٧	« z
Bereat-Hilto Peak Compley, Included	Berent	Edian sends derived from mixed rock types.	Hummacky vegetated sand dunes and fan terraces up to 30	Loamy fine sand (SM)	0 to 0.15	7.4 to 8.4	Rapid	42x10-3 to 1.4x10-2
in this unit are Antoh, Medbern, Sprager, Taylernfat, Duneland, and Rock Outerop soils.			percent alopse at elevations of 4,500 to 5,800 feet above MSL.	Pine aand (SM)	0. 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.9 to 9.0	Rapid	Greater than 1.4x10 ⁻³
	Hiko Peak	Developed in alluvium from mixed rock types.	Alluvial fan terraces on medium langth, convex, 2 to 15	Gravelly losm (GM-GC)	0 to 0.5	7.9 to 8.4	Mod. Rapid Mod. Rapid	1.4x10-3 to 4.2x10-3
			percent alopes at elevations of 4,400 to 6,000 feet above MSL.	Very gravelly loam (GM-GC)	0.5 to 1	7.9 to 9.0		1.4x10-5 to 4.2x10-3
				Very gravelly loam (GM-GC)	166	6.6 to 9.0		1.4x10-3 to 4.2x10-3
	Amtoft	Developed in alluvium	Rock cutcrops on 30 to 70	Very cubbly loam	1990	7.9 to 9.0	Mod. rapid	1.4x10 ^{.3} to 4.2x10 ^{.3}
		denves moss succe bypes.	percent proper.	Extremely cobbly loam	1615	7.9 to 9.0	Mod. rapid	1.4x10 ⁻³ to 4.2x10 ⁻³
				Unweathered bedrock	9.1	4 X	Y Z	۲
	Spager	Developed in allumium derived from limentone	Alluvial fan terraces on 2 to 15 persont along at alevations of	Gravelly form	0 to 0.5	7.4 to 9.0	Mod Rapid	1.4x10-3 to 4.2x10-3
			5,200 to 6,200 feet above MSL.	Very gravelly loam,	0.5 to 2	Greater than 8.4	Mod Rapid	1.4x10-3 to 4.2x10-3
				seedy loam (GM-GC). Inderated	84	V	< Z	۷ ۲


TABLE 3-1


GENERAL CHARACTERISTICS OF SURFACE SOIL OF TEAD-N INVESTIGATION AREA (CONTINUED)

;						Characteristics		
Unde	Boff Type	Origin	General Location	Testure	Dapta (Peet BGB)	Boll pH	Permenbility	Infikration Rate (emisse:)
	Tayloreflat	Alluvium and lacuatrine sedimenta derived from mixed rock types.	Lake terraces and alluvisi fan terraces on medium length, linear to convex, 1 to 6 percent slopes at elevations of 5,000 to 6,000 feet above MSL.	Loam (CL-ML) Loam (CL-ML) Loam (CL-ML) Loam (CL-ML)	0160.6 0.5 to 1.0 1.0 to 4 4 to 5	7.9 E. 8.4 7.8 E. 8.4 8.5 E. 9.0 8.5 E. 9.0	Mod. Governor	42x104 to 1.4x103 1.4x104 to 1.4x103 1.4x104 to 1.4x103 1.4x104 to 1.4x103
	Duneland	Sand; derived from mixed rock types.	Ridges and intervening troughs made of fine sand sized particles on lake plains and low lake terraces.	Sand (SM:SW)	< Z	< Z	4 Z	« 2
	Rock outerop	Dependant on the type of bedrock.	Exponence of barren bedrock that occur mainly on escarpments or ridges. Slopes range from 30 to 60 percent.	«	∢ Z	< Z	< Z	¥ Z
Modburn. Included in this	Medburn	Developed in alluvium and lacustrine sediments,	Lake terraces and alluvial fan terraces on short or	Fine sandy losm (SM; SC·SM)	9000	7.9 to 8.4	Mod. rapid	1.4x103 to 4.2x103
unit are Hiko Peak and Taylorsflat soils.		derived predominantly from sedimentary rocks.	medium length, convex or linear, 2 to 8 percent alopes at elevations of 4500 to 5500 Sect	Fine sandy loam (SM; SC:SM) Fine sandy loam	0.5 to 3.5	7.9 to 9.0	Mod. rspid	1.4x10 3 to 4.2x10-3
			above MSL.	(SM; SC.SM)	3.5 to 6	8.5 to 9.0	Mod. rapid	1.4x10-3 to 4.2x10-3
Birdow. Included in this	Birdow	Developed in alluvium derived predominantly	Flood plains, etream terraces, and alluvial fans on long,	Loam (CL-ML)	0 to 2.3	7.4 to 8.4	Moderate	4.2x10 4 to 1.4x10 ⁻³
unit are Erda and Latewin eoils.		from Himstone and quartzile.	linear, or alightly concave I to 4 percent alopes at elevations from 4,250 to 6,200 feet above MSL.	Loam (CL-ML)	23 to 6	7.9 to 9.0	Moderate	4.2x10 ⁻⁴ to 1.4x10 ⁻³
	Erde	Developed in alluvium and lacuatrine eedimenta derived from mixed rock types.	Alluvial fan terraces and Jake terraces en 1 to 5 percent alopes at elevations of 4,260 to 6,000 feet above MSL.	Silt loam (CL-ML) Silt loam (CL-ML) Silt loam, silty clay loam (CL-ML)	0601 163 366	7.4 to 8.4 7.9 to 9.0 7.9 to 9.0	Mod. Slow Mod. Slow	1.4104 to 4.2104 1.4104 to 4.21104 1.41104 to 4.21104

Source: Taken from USSCS, 1991a.

NA Not evailable

EXPLANATION

BP Borrow Pits
BIB Lakewin Series
CAC Abela Series
FGB Manessa Series
HCD Hiko Peak Series

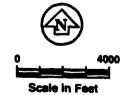
KJC Hiko Peak — Taylorsflat Complex Series

PAC Birdow Series

RGF Berent — Hiko Peak Complex Series

SBC Medburn Series

SDB Medburn Saline Series

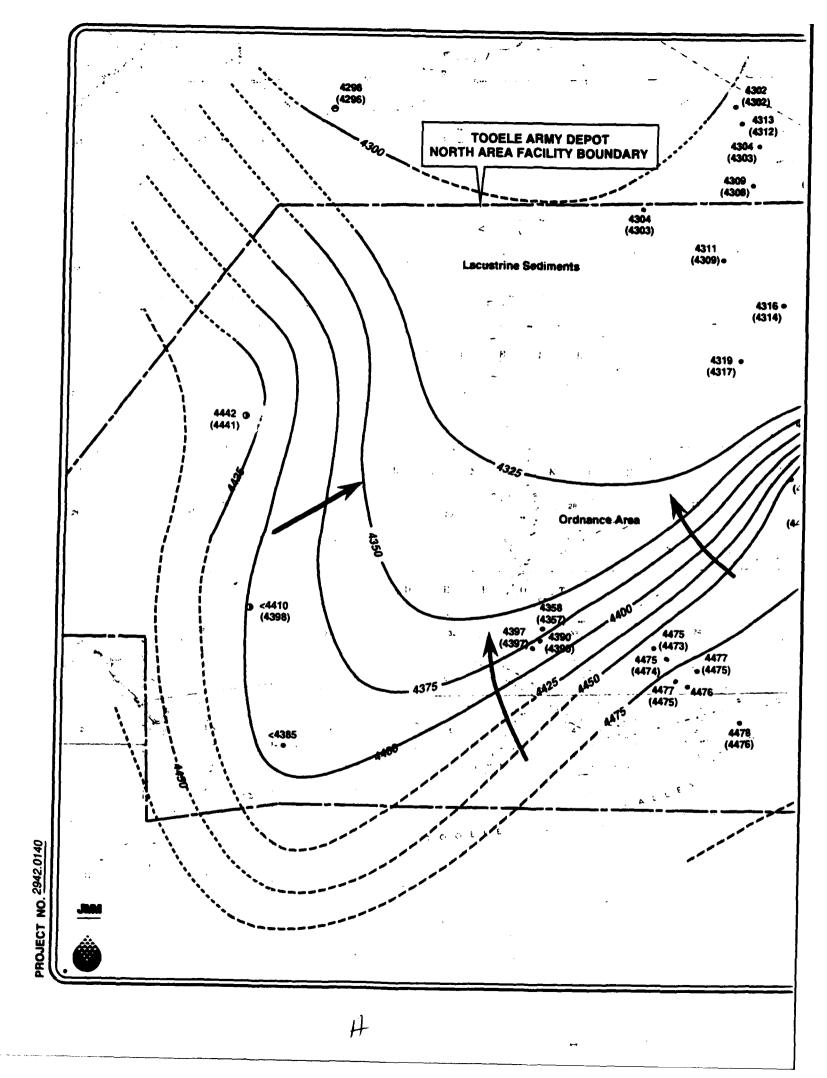

TJD Doyce Series
TKC Taylorsflat Series

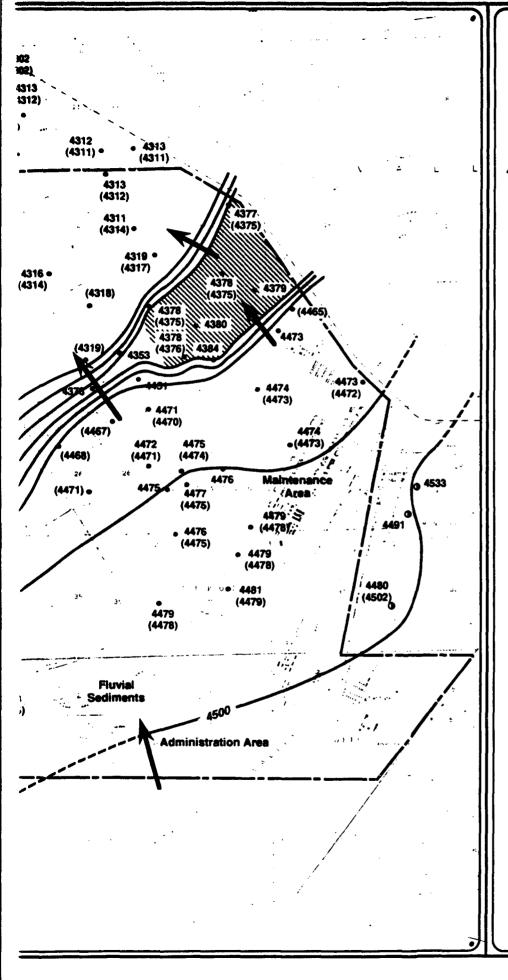
Background soil sample location (JMM)

Background soil sample location (SEC BK-92-01 Donohue)

Deep background soil boring location

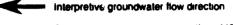
Source: USSCS, 1991b


TEAD N SOIL TYPE MAP FIGURE 2-4 system when saturated. Although little is known about the water-bearing characteristics of the bedrock aquifer, it is important to the Tooele Valley hydrogeologic system because it serves as a source of underflow to the valley fill along the margins of the Tooele Valley (JMM, 1988).


2.4.1.2. The valley fill aquifer is composed of saturated valley fill sediments. The most productive zones of this aquifer correspond to areas underlain by coarse sediments. The city of Tooele operates several production wells that draw water from the valley fill aquifer just east of the eastern Depot boundary. In addition, the Depot operates six production wells that tap the valley fill aquifer. North of the Depot, the numerous private wells constructed in the valley fill sediments supply water for irrigation, stock watering, and culinary uses.

2.4.1.3. The bedrock aquifer consists primarily of the quartzites and limestones located adjacent to and beneath the valley fill sediments. In general, these rocks exhibit low primary permeability. However, secondary permeability can be relatively high locally, due to the presence of fractures and solution openings in the bedrock (JMM, 1988). No known production wells are completed in the bedrock aquifer, although there are numerous groundwater monitoring wells.

2.4.1.4. Regionally, groundwater originates at recharge areas along the basin margins and moves inward toward the center of the Tooele Valley. Groundwater flows northward toward the Great Salt Lake and ascends to discharge areas in the northern parts of the valley. Recharge zones along the valley margins and upper reaches of the valley are characterized by downward vertical gradients. Major groundwater discharge areas exist in areas north of TEAD-N where numerous springs and artesian wells are found. Piezometers and monitoring wells installed near the northern TEAD-N boundary revealed upward vertical gradients in that area (JMM, 1988).


2.4.1.5. Site Hydrogeology. As with the other parts of the Tooele Valley, the aquifer system beneath TEAD-N is composed of bedrock overlain by an extensive valley fill aquifer. As shown in Figure 2-5, the bedrock aquifer occurs beneath a relatively small area of TEAD-N, while the remainder of TEAD-N and the Tooele Valley is directly underlain by the valley fill aquifer. While both the valley fill and bedrock aquifers have unique hydraulic characteristics, they readily communicate groundwater and are, therefore, considered to comprise a single aquifer system (JMM, 1988). As shown in Figure 2-5, the groundwater table in the valley fill and bedrock aquifers is present at three distinct elevations separated by areas of steep hydraulic gradients that trend northeast to

EXPLANATION

- Existing monitoring wells and piezometers
- Municipal and TEAD-N water supply wells
- Private wells

4475

Groundwater elevation contour (feet, MSL) dashed where inferred.

IIIII

Area of shallow bedrock aquiter

4378

Groundwater elevation, June 1992 (feet, NGL)

(4375)

Groundwater elevation, January 1993

Base map reference: USGS 7.5 minute quadrangles — "Tooele, Utah" and "Grantsville, Utah."

TEAD-N PHASE I RFI
GROUNDWATER ELEVATION
CONTOUR MAP
JUNE 1992-JANUARY 1993
FIGURE 2-5

southwest beneath the Depot. Because of the different hydraulic characteristics exhibited by both aquifers, they are described separately in the following paragraphs.

2.4.1.6. Valley Fill Aquifer. The valley fill aquifer consists of two areas of saturated alluvium and lacustrine sediments composed primarily of gravels, with major interbeds of varying concentrations of sands, silts, and clays. During June, 1992, groundwater elevations beneath the southeast corner of TEAD-N ranged from 4,475 to 4,485 feet. By contrast, groundwater elevations beneath the north and west portions of the Depot were about 100 feet lower at 4,375 to 4,380 feet during the same time period.

2.4.1.7. Aquifer thicknesses range from zero at the bedrock block outcrops north of the IWL area to more than 750 feet near the northern boundary of TEAD-N. Although the valley fill aquifer contains alternating discontinuous layers of fine- and coarse-grained sediments, it is considered to be a single aquifer system because no confining layers have been identified by investigations conducted of the southern end of the Tooele Valley. However, the contrast between the hydraulic conductivities of the fine-grained and coarse-grained layers is sufficient to maintain different hydraulic heads between layers beneath the northern area of the Tooele Valley (JMM, 1988).

2.4.1.8. The average horizontal hydraulic conductivity of the valley fill aquifer is approximately 1,500 gallons per day per square foot (gpd/ft²) or 7.1 x 10⁻² centimeters per second (cm/s), whereas the average vertical hydraulic conductivity is approximately 225 gpd/ft² (1.1 x 10⁻² cm/s). Because of the heterogeneity of the sediments, calculated groundwater velocities range from about 4 feet per year (ft/yr) to greater than 9,800 ft/yr (JMM, 1988). Based on the vertical hydraulic conductivity values, the average calculated vertical groundwater velocity ranges from less than 1 to 200 ft/yr (JMM, 1988). The average porosity of the alluvial aquifer was estimated to be 25 percent.

2.4.1.9. Bedrock Aquifer. The bedrock aquifer consists of the saturated parts of a large bedrock block which lies directly beneath a portion of the eastern part of TEAD-N. The bedrock block is elongated in a northeast to southwest direction and lies beneath the ground surface at depths ranging from zero to nearly 400 feet. The bedrock is composed of calcareous, cemented quartzite, silica - cemented ortho-quartzite, calcareous sandstone, and fine-grained limestone. Although the permeability of the bedrock material itself is very low, there is strong evidence that extensive fracturing in the bedrock allows considerable groundwater flow.

- 2.4.1.10. Production rates from monitoring wells drilled in the bedrock aquifer vary widely and depend upon the amount of fracturing penetrated. The hydraulic conductivity of the quartzite bedrock is estimated at 2,000 gpd/ft². Where the bedrock contains clay-filled fractures, the hydraulic conductivity is estimated to be two gpd/ft². The hydraulic gradients in the bedrock block range from 0.02 to 0.09 feet per foot (ft/ft). The horizontal velocity of groundwater in the bedrock block ranges from less than 10 ft/yr to about 5,500 ft/yr. The average porosity of the bedrock is estimated to be three percent (JMM, 1988).
- 2.4.1.11. Groundwater Chemistry. Based on extensive water quality analyses, three major, naturally-occurring groundwater types were identified at TEAD-N (Types 1, 2, and 3), which were differentiated from each other based on the concentrations of major ions (e.g., calcium, magnesium, potassium, sulfate, chloride, nitrate, fluoride, and bicarbonate [JMM, 1988]). These three water types are generally found in specific geographic areas across TEAD-N, although overlap occurs.
- 2.4.1.12. Type 1 groundwater occurs generally within the valley fill and bedrock aquifers on the eastern and western portions of the site and reflects the influence of mixing with recharge waters from the mountains. Type 1 groundwater is characterized as a bicarbonate water (does not contain dominant cations or anions) that is typical of groundwater in recharge areas derived from precipitation. In addition, sodium concentrations are lower with respect to chloride compared to other groundwater types. The city of Tooele production wells and most TEAD-N water supply wells intercept Type 1 groundwater.
- 2.4.1.13. Type 2 groundwater reflects the influence of mixing with more saline water from the bedrock aquifer and from underflow from Rush Valley and occurs in the northern, southern, and central portions of TEAD-N. It is characterized by higher concentrations of all major ions, specifically chloride and sodium, than Type 1 groundwater.
- 2.4.1.14. Type 3 groundwater occurs in the valley fill aquifer north of the TEAD-N boundary, beneath the off-Depot area investigated by JMM (1988). Type 3 groundwater is characterized by the highest concentrations of sodium and chloride, calcium, and sulfate. Type 3 groundwater mixes with geothermal waters to the north of TEAD-N, and because of slightly elevated temperatures is considered geothermal groundwater.

usage, and industrial use accounted for the remainder. Approximately 40 percent of total annual discharge from the Tooele Valley groundwater system is to wells, with the remaining discharge attributed to springs, evapotranspiration, and underflow to the Great Salt Lake. Previous reports estimate that TEAD-N usage accounts for only 4 percent of water use within Tooele Valley (JMM, 1988).

2.4.1.16. Several large irrigation and livestock supply wells are located north of TEAD-N. These irrigation and stock wells are pumped in the summer months and may locally affect the groundwater flow system near TEAD-N during this period (WCC, 1986).

2.4.2. Surface Water Hydrology

2.4.2.1. There are five perennial streams in the Tooele Valley, with a total discharge of approximately 17,000 acre-feet of water per year (Razem and Steiger, 1981). These streams originate in the mountains above the Tooele Valley in response to rapid snowmelt and summer thunderstorms. Two streams originate in the central Oquirrh Mountains at the eastern side of the valley and enter the valley near Tooele, and the other three originate in the central Stansbury Mountains on the western side of the valley.

2.4.2.2. No perennial streams exist at TEAD-N, although the western border is cut by ephemeral stream drainages from South Willow and Box Elder Canyons. South Willow Creek, near the northwest boundary of TEAD-N, is the largest stream in the Tooele Valley, with an annual flow of approximately 4,830 acre-feet. Box Elder Wash, which crosses TEAD-N from south/southwest to north, is an ephemeral stream that has an annual discharge of approximately 900 acre-feet. Except during rare periods of heavy rain or rapidly melting mountain snowpacks, surface water flow from South Willow drainage or Box Elder drainage does not reach TEAD-N. The surface water from these drainages are either diverted for irrigation shortly before or after they leave the canyons or the waters infiltrate directly into the unconsolidated deposits near the mountain fronts.

2.5 CLIMATE

2.5.0.1. The climate of the Tooele valley is temperate and semi-arid and is characterized by limited precipitation, hot and dry summers, cool springs and falls, and moderately cold winters. The lowest temperatures typically occur in January (monthly mean of 28° F) and the highest temperatures occur in July (monthly mean of 75° F) (EA, 1988). The mean

winters. The lowest temperatures typically occur in January (monthly mean of 28° F) and the highest temperatures occur in July (monthly mean of 75° F) (EA, 1988). The mean annual air temperature at Tooele from 1941 to 1970 was 51 degrees Fahrenheit. The average growing season (frost-free days) is from April 1 to October 25.

2.5.0.2. Because of the location of the continental storm track, most of the precipitation in the Tooele Valley occurs as snow between the months of October and May. Summers are generally dry with occasional thundershowers. May is usually the wettest month, and June through July is the driest period. The greatest amount of precipitation occurs in the adjacent Oquirrh and Stansbury Mountains, where the average annual precipitation is more than 40 inches per year. The average annual precipitation at the City of Tooele for the period from 1897 to 1985 was 16.95 inches. At Grantsville, approximately two miles from TEAD-N, the average annual precipitation from 1957 to 1977 was 11 inches (Razem and Steiger, 1981). Gates (1965) estimated that the average annual precipitation that falls on the valley and the mountain precipitation contributed by tributaries to the valley is approximately 200,000 acre-ft.

2.5.0.3. Air circulation in the Salt Lake Basin, which includes the Tooele Valley, is typical of locations where a large body of water influences wind directions (EA, 1988). The predominant wind directions in the Tooele valley, south to north and north to south, are caused by diurnal temperature changes. As the surface temperature of the land increases during the day (compared to the temperature of the lake), the winds generally blow upslope, from north to south, into the valley and mountains. As the land cools (compared to the temperature of the lake) during the night, the wind direction reverses and moves downslope toward the lake, from south to north.

2.6 VEGETATION AND WILDLIFE

2.6.0.1. Because TEAD-N occupies a largely undeveloped area, and contains large areas of relatively undisturbed land, native plants and animals are present throughout the Depot. The following paragraphs provide background information on the plant and animal species that are found in the TEAD-N area and focus on threatened or endangered animal species that may be present at TEAD-N.

2.6.1. Vegetation

- 2.6.1.1. Climate and soil types are the most important factors determining which plant communities will be found at TEAD-N. In general, TEAD-N is undeveloped rangeland and can be classified as an Artemesia Biome. The dominant plant types in this biome are sagebrush (Artemesia) and saltbrush (Artiplex). Because the climate is relatively constant, this general classification can be subdivided into smaller groups based on vegetation and soil types. The plant types found at TEAD-N consist of native, introduced, and ornamental species. In this section, the major soil types found at TEAD-N (see Figure 2-4) will be used to discuss the occurrence of flora at TEAD-N; however, the occurrence of ornamental species will not be discussed. No endangered plant species have been identified at TEAD-N.
- 2.6.1.2. Abela Soils. The dominant plant species currently found in conjunction with Abela soils are mountain big sagebrush, rabbitbrush, snakeweed, yellowbrush, cheatgrass, and bluebunch wheatgrass. The potential plant community in this mapping unit is about 50 percent perennial grasses, 10 percent forbs, and 40 percent shrubs. Plant species considered important for human or wildlife use in this unit are bluebunch wheatgrass, bluegrass, mountain big sagebrush, and antelope bitterbrush (USSCS, 1991).
- 2.6.1.3. Hiko Peak Soils. The dominant plant species currently found most often in conjunction with the Hiko Peak soils are Wyoming big sagebrush, Douglas rabbitbrush, Indian ricegrass, and cheatgrass. The potential plant community is approximately 45 percent perennial grasses, 15 percent forbs, and 40 percent shrubs. Plant species considered important for human or wildlife use in this soil mapping unit are Wyoming big sagebrush, bluebunch wheatgrass, and Indian ricegrass (USSCS, 1991).
- 2.6.1.4. Medburn Soils. The dominant plant species currently found in conjunction with the Medburn soils are black greasewood, shadscale, bottlebrush, squirreltail, spiny horsebrush, and seepweed. The potential plant community for this soil mapping unit is approximately 30 percent perennial grasses, 15 percent forbs, and 55 percent shrubs. Plant species considered important for human or wildlife use are black greasewood, Wyoming big sagebrush, bottlebrush, squirreltail, and Indian ricegrass (USSCS, 1991).
- 2.6.1.5. Birdow Soils. The dominant plant species found to occur in conjunction with the Birdow soils are basin big sagebrush, bluebunch wheatgrass, rabbitbrush, and basin wildrye. The potential plant community for this soil mapping unit is about 70 percent perennial grasses, 10 percent forbs, and 20 percent shrubs. Plant species considered

important for human or wildlife use are basin wildrye, western wheatgrass, and basin big sagebrush (USSCS, 1991).

2.6.1.6. Berent Soils. The vegetation currently found in conjunction with the Berent soils is Utah juniper, Wyoming big sagebrush, needle-and-thread, and cheatgrass. The potential plant community on this soil mapping unit is an overstory of Utah juniper with about 30 percent cover. Understory vegetation is about 45 percent perennial grasses, 20 percent forbs, and 35 percent shrubs. Important plant species for human and wildlife use are needle-and-thread, Indian ricegrass, and fourwing saltbush (USSCS, 1991).

2.6.2. Wildlife

2.6.2.1. TEAD-N is inhabited by a variety of animals, including large and small mammals, insects, birds, amphibians, snakes, and lizards. Some of the more common residents include mule deer, black-tailed jack rabbits, desert cottontail rabbits, coyotes, burrowing owls, horned larks, meadowlarks, and western kingbirds. In addition, migrating waterfowl and raptors use flyways that cross TEAD-N. A complete listing of the animal species found in the TEAD-N area is included in the Installation Environmental Assessment, Tooele Army Depot, North and South Area, Tooele, Utah Report (ERTEC, 1982).

2.6.2.2. Currently, there are two endangered species, the bald eagle and the peregrine falcon, that may use the TEAD-N area. Bald eagles from northern latitudes hunt along streams and lakes throughout Utah and winter in Rush Valley, south of TEAD-N. Peregrine falcons have been reintroduced in the marshes along the Great Salt Lake and near Timpie Springs Wildlife Management Area in the northern end of the Stansbury Mountains. Both species may be visitors to the TEAD-N area. The ferruginous hawk, Swainson's hawk, and longbilled curlew, which are listed as federal and state candidate endangered species, use the TEAD-N area (Benton, 1991). No other threatened or endangered animal species have been identified in the TEAD-N area.

Section 3

3.0 ENVIRONMENTAL INVESTIGATIONS AT TEAD-N

3.1 INTRODUCTION

3.1.0.1 This section presents summaries of the various environmental investigations which have been conducted at the TEAD-N facility. From 1979 to the present, a series of environmental investigations have been performed at TEAD-N, including the 1992 RFI which is the focus of this report. These investigations have been conducted by both government agencies and private contractors, and have varied widely in scope, ranging from general surveys of the area to remedial investigations (RIs) and preliminary risk assessments. Although many of the investigations discussed in this section were conducted prior to the designation of various sites as SWMUs, a parenthetical SWMU reference is added to the discussions for clarity, where applicable.

3.1.0.2. Section 3.0 concludes with an overview of the Phase I RFI activities conducted by JMM at TEAD-N. A more detailed description of these RFI activities is found in Volume II, Appendix A.

3.2 PREVIOUS INVESTIGATIONS AT TEAD-N

3.2.1. Installation Assessment - 1979

3.2.1.1. An initial investigation of both TEAD-N and TEAD-S was performed by USATHAMA during 1979 with the objective of assessing environmental quality at TEAD with regard to use, storage, treatment, and disposal of hazardous materials (USATHAMA, 1979). The assessment consisted of a review of existing records and interviews with past and present facility personnel. No environmental sampling activities were conducted.

3.2.1.2. The assessment concluded that a potential for contaminant migration exists at both TEAD-N and TEAD-S, and indicated that chemical agents, plating rinse waters, and explosives residues were major chemicals of concern.

3.2.2. Installation Environmental Assessment - 1982

3.2.2.1. This assessment was prepared by the Army and its contractor to provide a summary of TEAD activities and facilities thought to have a potential environmental impact (Inland Pacific Engineering Company, 1982). This report described TEAD activities,

facilities, and the surrounding environment, including an inventory of indigenous flora and fauna. Resources were examined in and around the TEAD facility, and the impact of facility closure on those resources was examined.

3.2.3. Investigation at the Open Burning/Open Detonation Area - 1982-85

3.2.3.1. The TEAD-N Open Burning/Open Detonation (OB/OD) Areas (SWMUs 1, 1a, 1b, 1c) were the subject of a four-phase investigation by the U.S. Army Environmental Hygiene Agency (AEHA) conducted from 1981 through 1984. This investigation evaluated the potential for environmental contamination at OB/OD areas at army depots nationwide, with the overall objective being to determine which areas should continue to be used for OB/OD operations.

3.2.3.2. Records reviews and limited sampling of potential source media were conducted. The following summarize the various phases of the investigation with respect to the OB/OD area at TEAD-N:

- Phase I of the investigation was an initial screening to determine which OB/OD
 facilities warranted sampling and analysis (AEHA, 1982). AEHA identified
 several areas where detonation, disposal, and burning activities had been
 previously conducted at the TEAD-N OB/OD Areas.
- Phase II consisted of sampling and analyzing surface and near-surface soils for Extraction Procedure Toxicity (EP Toxicity) of metals and selected explosives (AEHA, 1983). Four previously-used detonation pits at the Main Demolition Area were sampled, with six soil samples collected from the area of each pit (24 total). Analyses showed leachable concentrations of cadmium exceeded the RCRA limit of 1.0 mg/L in all four sampled pits. Detectable levels of several explosives were also found. Four surface soil samples from the Cluster Bomb Detonation Area (SWMU 1a) were collected, and minor concentrations of leachable metals and explosives were found, none above RCRA levels. A total of 14 samples were collected from seven locations at the Burn Pad (SWMU 1b), with no leachable analytes above RCRA EP Toxicity limits. In addition, one burn residue sample and two soil samples were collected and analyzed from the Trash Burn Pits (SWMU 1c). Arsenic, Barium, Mercury, and 2,4,6-TNT were detected.

- Phase III summarized and compared results from all OB/OD areas sampled during Phase II (AEHA, 1984).
- Phase IV consisted of additional sampling and analysis of soils at selected locations, including the Trash Burn Pits (SWMU 1c) (AEHA, 1985). Eight surface soil samples and 29 borehole samples, ranging from 5 to 20 feet below ground surface, were collected here during the Phase IV sampling. These soils were analyzed for silver, arsenic, barium, chromium, cadmium, lead, selenium, and mercury on a totals and EP Toxicity basis. Analysis for six explosive compounds was also conducted. All EP Toxicity results were below the detection limits, and explosives results did not exceed the guidelines of 1,000 mg/kg established by AEHA.

3.2.3.3. The AEHA investigations concluded the metals of concern are lead, cadmium, and barium, but that no remedial action was necessary. AEHA did recommend a hydrogeological evaluation to assess the public health risk of certain explosive compounds in groundwater. No OB/OD areas were closed as a result of this study.

3.2.4. Exploratory Environmental Contamination Survey - 1982

- 3.2.4.1. During 1981-82, the Earth Technology Corporation (ERTEC) conducted an environmental study to identify potential source areas for contamination at both the south and north areas of TEAD (ERTEC, 1982). The study was comprised of two phases: Phase I (1981) consisted of a data search and preliminary site visits to identify sites with the greatest potential for surface and subsurface contaminant migration, while Phase II (1982) involved soil, sediment, surface water, and groundwater sampling and analysis. Magnetics, gravity, seismic refraction, and resistivity geophysical techniques were used at TEAD-N to define subsurface features. Part of the program included ten wells and borings drilled at various locations around TEAD-N.
- 3.2.4.2. The Phase II investigation concluded that contamination and contamination migration at TEAD were generally minimal, but a plume of groundwater contamination was associated with the Industrial Waste Lagoon (SWMU 2), and possibly other maintenance area facilities. This plume was found to be migrating toward the TEAD-N north boundary, and was noted as a possible long-term source of contamination to the alluvial aquifer. The TNT Washout Ponds were also found to have contaminated groundwater in the regional aquifer with RDX, but the contaminant migration rate was reported to be slow.

Recommendations included expanding the groundwater monitoring program, with additional wells and soil borings near the sewage lagoons, and some additional soil sampling.

3.2.5. Analysis of Existing Facilities/Environmental Assessment Report - 1983

- 3.2.5.1. In early 1983, TEAD Facilities Engineering conducted a study to identify and summarize activities and /or missions associated with TEAD, and perform an environmental assessment of these activities. It described major activities, cultural elements, and environmental characteristics surrounding the TEAD facility.
- 3.2.5.2. No conclusions or recommendations for additional work were presented.

3.2.6. Monitoring Activity and Waste Disposal Review and Evaluation - 1985

- 3.2.6.1. The objective of this review, conducted by CH2M Hill, was to determine the adequacy of ERTEC's 1982 Phase I and II investigations, and determine if adequate information is available to support a feasibility study (FS). All available data were reviewed to determine the existence of data gaps.
- 3.2.6.2. CH2M Hill determined that data deficiencies did exist in the ERTEC Phase II report, and that geologic, chemical, and hydrologic conditions throughout TEAD must be evaluated. A semiannual sampling of all monitoring and water supply wells was recommended, as well as installation of two additional monitoring wells north of the TNT Washout Facility (SWMU 10).

3.2.7. Study of Environmental Balance - 1985

- 3.2.7.1. Published in March of 1985, this study was conducted by the U.S. Army and described the environmental management program at TEAD. It developed an ecological profile of the facility, as well as presenting goals for TEAD with respect to air, water, solid waste, radiation, and hazardous materials management.
- **3.2.7.2.** The study concluded that further environmental controls were necessary at TEAD to prevent contamination releases.

3.2.8. Performance of Remedial Response Activities, Final Plan - 1985

3.2.8.1. In March of 1985, Camp, Dresser, and McKee (CDM) completed a review of Department of Defense documents, with the objective of making recommendations as to the completeness of the documents. Technical support and potential approaches to site remediation were discussed.

3.2.8.2. This study was developed as a guide to implementing alternative remedial actions at TEAD.

3.2.9. Analytical/Environmental Assessment Report - 1985

3.2.9.1. In November 1985, TEAD Facilities Engineering summarized the conclusions of previous environmental studies done at TEAD to assess the potential impacts of projected development at the facility. Site maps were reviewed, and existing land use studied to update the established Preservation Plan. Interviews were conducted with security, traffic control, and health services personnel.

3.2.9.2. Conclusions from this report stated that no proposed building or project at TEAD presented any long-term or irreversible negative impacts on the environment of the Tooele Valley.

3.2.10. Groundwater Quality Assessment, Tooele Army Depot - 1986

3.2.10.1. During the period of January 1985 to February 1986, Woodward-Clyde Consultants conducted a two-phase field program at TEAD-N, which focused on the groundwater contamination associated with the IWL (SWMU 2) and the connected unlined outfall ditches. The lagoon liquid, sludge, and soils surrounding the lagoons and ditches were sampled and analyzed during Phase I, as well as groundwater from existing monitoring and water supply wells. During the Phase II work, an eight-well detection monitoring system was installed, with wells placed upgradient and downgradient of the IWL and ditches. Hydraulic conductivity tests were performed on the eight new wells, as well as groundwater sampling activities. Nine pre-existing wells were also sampled.

3.2.10.2. The conclusions from this project are summarized as follows:

- Regional groundwater flow in the upper portion of the aquifer system is generally
 to the northwest, and there are two aquifers (alluvial and bedrock) which
 appeared to be hydraulically connected. Both aquifers were found to have high
 hydraulic conductivities.
- Leakage from the IWL and unlined ditches had altered local groundwater flow patterns, and created a groundwater mound.
- Groundwater in the vicinity of the IWL and ditches contained varying concentrations of volatile organic compounds (VOCs), in the range of 1 to 100 µg/L. The extent of the contamination, especially to the north and west, was not defined.
- Contaminated media identified included the industrial waste water and sludges in the IWL.
- Contaminants of concern included VOCs, SVOCs, and metals.

3.2.11. Engineering Report for Closure of the Industrial Wastewater Lagoon - 1986

- 3.2.11.1. In March of 1986, Montgomery completed an engineering report which assessed feasible alternatives for the closure of the IWL with respect to cost, effectiveness, and regulatory compliance. The necessary engineering analyses for closure were developed. This report provided a description of the distribution of source chemicals and discussed available treatment processes.
- 3.2.11.2. The report concluded that for source soils and sludges at the IWL: 1) removal and off-site disposal, or 2) removal to a new, on-site disposal facility were the most feasible remedial alternatives.

- 3.2.12. Industrial Wastewater Lagoon and Ditches-Groundwater Quality
 Assessment Report, Corrective Action Plan, and Record of Decision 1986
- 3.2.12.1. This three-phase investigation was conducted by Montgomery, to define the extent and magnitude of the groundwater contamination associated with the Industrial Waste Lagoon (SWMU 2) and wastewater outfall ditches.
 - Phase I characterized the geologic conditions and groundwater flow in the area utilizing 31 piezometers.
 - Phase II determined the distribution of chemicals in the groundwater using 25 groundwater monitoring wells.
 - Phase III included additional monitoring well installation and sampling, and evaluated potential remedial alternatives.
- 3.2.12.2. The report concluded that trichloroethylene was the predominant contaminant, and the highest concentrations were found beneath the wastewater ditches south of the industrial waste lagoon (IWL). A remedial strategy was developed utilizing extraction wells, an air stripper, and injection wells at the northern end of TEAD-N. The time needed for remediation was estimated to be 30 years. The need for additional monitoring wells to further characterize groundwater quality was noted.

3.2.13. EPIC Aerial Photography Report - 1986

- 3.2.13.1. Through an interagency agreement between the U.S. EPA and USATHAMA, the Environmental Photographic Interpretation Center (EPIC) provided imagery analysis support for a study of selected sites at both TEAD-N and TEAD-S. Archival black and white and color infrared photographs were obtained from existing imagery libraries of the U.S. Geological Survey (USGS), the EPA, and the Agricultural Stabilization and Conservation Service (ASCS). These photographs were used to identify possible areas of past use, storage, treatment, and disposal of hazardous materials.
- 3.2.13.2. The focus of the report at TEAD-N was mainly the OB/OD Area (SWMU 1) (previously referred to as the "Demolition Range") and the TNT Washout Facility (SWMU

- 10). Eight photographs, ranging in age from 1952 to 1981, were provided of the areas presently occupied by SWMUs 1, 1a, 1b, 1c, and 1d.
- 3.2.13.3. The conclusions took the form of an enumeration of visible activities at the areas of interest over the covered period.

3.2.14. Interim RCRA Facility Assessment - 1987

- 3.2.14.1. A facility assessment was performed by NUS Corporation with the objective of evaluating releases of hazardous wastes and to identify corrective actions where necessary, under the Hazardous and Solid Waste Amendments (HSWA) of 1984. Existing information from U.S. EPA and State of Utah files was compiled and reviewed to verify characteristics of existing SWMUs and to identify additional SWMUs.
- 3.2.14.2. Continued and first-time sampling at several SWMUs at TEAD-N was recommended, including the IWL, the Pesticide/Herbicide Handling and Storage Building (SWMU 34), the Sewage Lagoons (SWMU 14), and the Sanitary Landfill (SWMU 15). Missing historical data were identified, and a radiological survey was recommended.

3.2.15. Groundwater Quality Assessment Engineering Report - 1988

- 3.2.15.1. Additional characterization of groundwater quality in the IWL area (SWMU 2) was provided by this May 1988 report by Montgomery. Twelve new monitoring wells were installed and sampling and analysis were continued at 19 existing wells for VOCs, selected metals, and major cations and anions.
- 3.2.15.2. Significant concentrations of several VOCs were detected in TEAD-N monitoring wells, including trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride. Major cations and anions were found to increase in concentration with depth and distance along flow lines. An additional six monitoring wells were recommended by Montgomery to evaluate the distribution of contaminants in unmonitored zones, specifically from 250 to 450 feet below ground surface.

3.2.16. Preliminary Assessment/Site Investigation - 1988

3.2.16.1. Between September 1985 and November 1987, EA Engineering Science and Technology, Incorporated performed a data review and preliminary field sampling and analysis investigation at both TEAD-N and TEAD-S, with the objective of identifying

SWMUs at TEAD that presented a known or potential threat to public health or the environment (EA, 1988). The scope of the investigation involved a review of existing databases, including information provided by USATHAMA, for potential source information. A site inspection was carried out, including personnel interviews, and five monitoring wells and four lysimeters were installed. Existing monitoring wells were sampled, as well as surface soils and sediment for metals, explosives, VOCs, and SVOCs.

3.2.16.2. Explosives were detected in the soils and sediments at the TNT Washout Facility (SWMU 10), and recommendations were made to either discontinue or relocate the Laundry Facility, or install an impermeable liner beneath the Laundry Effluent Pond (SWMU 11). Additional monitoring wells at the TNT Washout Facility, Drum Storage Areas (SWMU 29), Chemical Range (SWMU 7), and X-Ray Lagoon (SWMU 3) were recommended, as well as soil borings at the TNT Washout Facility.

3.2.17. Remedial Investigation - 1989

3.2.17.1. This Remedial Investigation (RI) was conducted by Roy F. Weston for USATHAMA with the objective of summarizing and reviewing data from previous investigations and identifying and investigating data gaps for the TNT Washout Facility (SWMU 10), Chemical Range (SWMU 7), Old Burn Area (SWMU 6), Sanitary Landfill (SWMU 15), and Drum Storage Areas (SWMU 29) (Weston, 1990). An associated field program was performed consisting of 30 boreholes for soil characterization, 28 monitoring wells for groundwater evaluations, and a geophysical survey for old burial areas. Groundwater and soil samples were analyzed for metals, VOCs, SVOCs, explosives, and major cations/anions.

3.2.17.2. Low concentrations of explosives were found in shallow soils around the TNT Washout Facility (SWMU 10), and additional monitoring wells were recommended to characterize the perched groundwater zone present there. Benzene, 1,2-dichloroethane, and trichloroethylene were detected in groundwater at the Sanitary Landfill (SWMU 15). The Drum Storage Areas (SWMU 29) showed limited soil/groundwater contamination, and surface soil samples collected at the Chemical Range (SWMU 7) and Old Burn Area (SWMU 6) showed low concentrations of metals. It was noted that additional monitoring wells were also required to characterize the groundwater zone between the Sanitary Landfill and the Sewage Lagoons (SWMU 14). Continued sampling of existing wells was recommended.

3.2.18. Groundwater Quality Assessment for Tooele Army Depot; Tooele, Utah - 1991

3.2.18.1. The focus of this groundwater quality assessment was again the contamination associated with the IWL and wastewater ditches. The objective was to provide additional groundwater elevation and analytical data for corrective actions evaluations. Groundwater elevation measurements from 140 existing piezometers and monitoring wells were obtained, and groundwater samples were collected from 26 existing wells.

3.2.18.2. This assessment verified conditions at TEAD-N as similar to those reported in previous investigations. Groundwater flow was found to be in a north to northwest direction. The contaminants detected during this investigation and the position of the trichloroethylene plume were similar to results from the 1988 Montgomery and 1990 Weston reports.

3.2.19. Pre-Construction Soil Sampling at the DRMO Storage Yard and the Drum Storage Areas - 1992

3.2.19.1. Tetra Tech, Inc., under supervision of facilities personnel, conducted soil sampling activities at both the DRMO Storage Yard (SWMU 26) and the Drum Storage Areas (SWMU 29) as part of a pre-construction environmental assessment (EA), as required by the National Environmental Policy Act (NEPA). The following summarize the sampling activities and results:

- Tetra Tech personnel collected soil samples from five locations at the DRMO Storage Yard (SWMU 26) at depths ranging from 6 in. to 24 in. below ground surface, with two samples submitted from each location, for a total of 10 soil samples. The samples were in the vicinity of a proposed building location, and were submitted for analysis by the Toxic Characteristics Leaching Procedure (TCLP) method (EPA Method 1311). Seven of the samples contained detectable concentrations of cadmium in the leachate, and one slightly exceeded the RCRA regulatory limit of 1.0 mg/L for cadmium.
- Soil sampling at the Drum Storage Areas (SWMU 29) was conducted at 14 locations. Two soil samples were collected from each location for a total of 28 samples. All samples were submitted for analysis according to TCLP. These samples were collected in advance of construction of four new buildings and

repair of one existing structure. None of the samples showed parameters exceeding the RCRA regulatory limits.

3.3 PHASE I RFI INVESTIGATION AT TEAD-N - 1072

3.3.1. Introduction

3.3.1.1. During the summer of 1992, Montgomery conducted the field investigations for the Phase I RCRA Facilities Investigation (RFI) at TEAD-N. The objective of this investigation was to determine if hazardous wastes or hazardous constituents had been released from 20 SWMUs suspected of having done so. Table 3-1 contains a summary of the field program conducted in support of the Phase I RFI. The SWMU numbering system follows that established by the Corrective Action Permit for Tooele Army Depot-North Area. Figure 3-1 shows the locations of these SWMUs.

3.3.1.2. Three of the SWMUs on the suspected releases list were designated as needing no further action, as site activities, facility design, and current management practices indicated little potential for contaminant release. These include:

- Solvent Recovery Facility (SWMU 39). This facility is relatively new, equipped
 with adequate containment features, and follows proper work management
 practices. No spills of reportable quantities have occurred at this facility.
- Container Storage Areas For P999 and Mustard Agent-Filled Mortar Rounds (SWMU 43). This SWMU is composed of six igloos where M55 rocket components were stored, and 12 igloos in which mustard agent-filled mortar rounds were stored. The rocket components did not contain or contact chemical agents or warheads, and therefore no investigation of these igloos was conducted. In addition, a records review of available information revealed no indication of any leaks from the mustard agent-filled mortar rounds. For this reason, no additional investigation of these igloos was conducted.
- Tank Storage For Trichloroethylene (SWMU 44). This SWMU was located at the southern end of Building 620 in the Maintenance Area, where trichloroethylene was stored in a 500-gallon tank. Spent trichloroethylene from the tank was discharged into sewers that ultimately emptied into the IWL. Use of the tank ceased in 1984, and in 1991 it was turned over to the DRMO Yard for salvage.

FIELD PROGRAM SUMMARY

SWMU	Site Name	Sampling Objective	Program Scope	Retionals
- 42	Main Demolition Area Cluster Bomb Detonation Area Propellant Burn Pans	Evaluate whether OB/OD activities have released metals, anions, PCDD/PCDF, VOCs, SVOC.	Identify OB/OD locations through field observations and serial photo interpretation	Identify areas with potential for maximum contamination
			Excavate 95 test pits to approximately five feet. Collect two soil samples per pit (190 total)	Collect soil samples from areas with potential for maximum centeminant concentrations and from other areas to define aerial extent
		•	Drill and sample five soil borings to a depth of 100 feet. Collect seven samples per boring (35 total)	Collect soil samples from areas where potential for surface water inflitration may be driving contaminants toward the regional water table
# 2	Burn Ped Trash Burn Pita	Evaluate whether OB activities have released metals, anions, VOCs, SVOCs, PCDD/PCDF, or	Identify OB locations through field observations and serial photo interpretation	Identify areas with potential for maximum contamination
		explodives to the going	Confirm OB locations through terrain conductivity and geomagnetic geophysical surveys	Verify OB locations
		•	Excavate 26 test pits to depths of five to eight feet. Collect two samples per pit (62 total)	Collect soil samples from old burn/disposal pits to see if residue or debris is releasing contamination
		•	Drill and sample three soil borings to a depth of 100 feet. Collect seven samples per boring (21 total)	
	Box Elder Wash	Determine if OB/OD activities have released metals, anions, or explosives to the surface soils in Box Elder Wash	Collect eight aurface soil samples from locations along Box Elder Wash where it enters the Depot, where it tends to pond as it passes through the OB/OD area, and at several other areas	Assess potential impacts the OB/OD activities may have on surface water

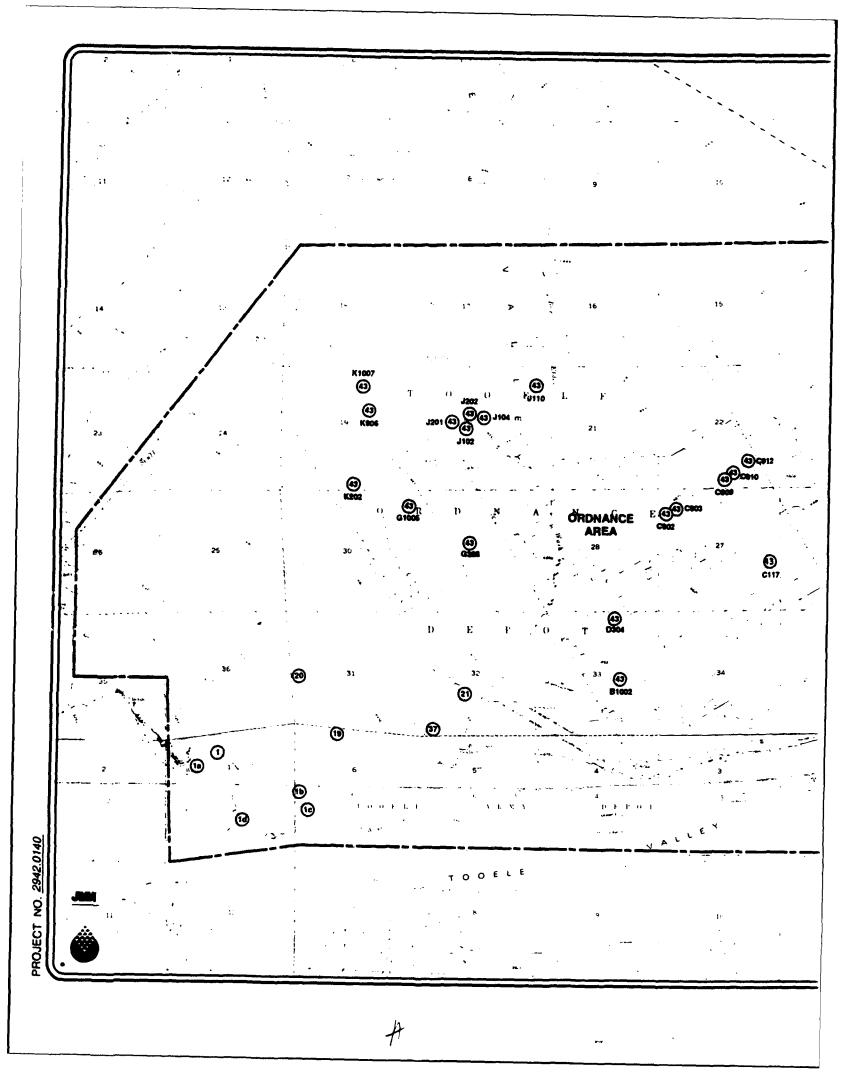
TABLE 3-1

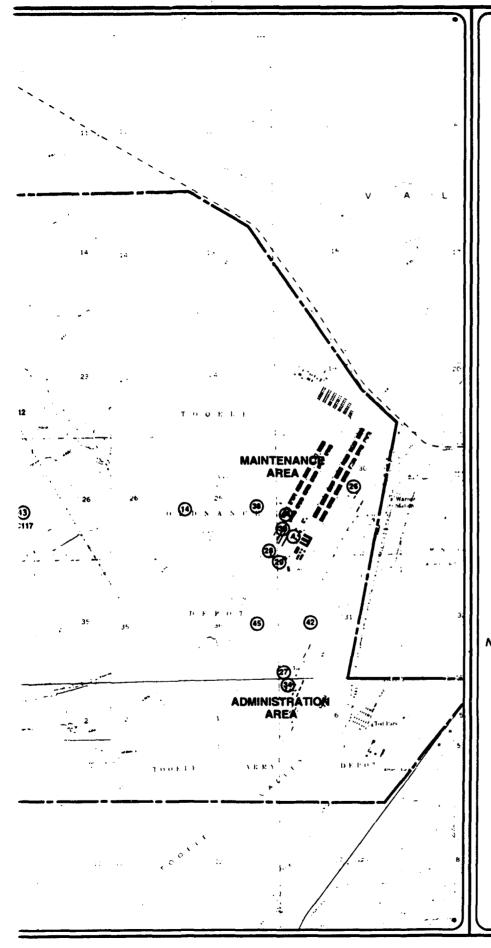
BWMU Number	Site Name	Sempling Objective	Program Scope	Rationale
•	Sandblast Areas	Determine if sandblast media is a source of metals, VOCs, or SVOCs in the nearby soils and surface water pathways	• Collect six samples of nearby surface soils	Determine presence or absence of contaminants from sandblast media
z	Sewage Lagoons	Determine whether sewage lagoons are a source of VOCs, SVOCs, metals, anions, or TPHC in the underlying soils and groundwater	• Collect two samples of water and sediment from both lagoons. Collect two rounds of groundwater samples from five wells	Compare water quality in the lagoon with upgradient, crosegradient, and downgradient groundwater quality
29	AED Demilitarization Test Facility	Determine if this SWMU is a source of metals, anions, VOCs, SVOCs, or explosives in surface soils	 Collect 12 surface soil samples from around the buildings and test areas 	Determine presence or absence of contaminants from tests at the facility
a	AED Desctivation Furnace Site	Determine if this SWMU has released metals, VOCs, SVOCs, or explosives to the surrounding surface soils	• Collect 16 surface soil samples from around the edges of the paved areas	Determine presence or absence of contaminants from demilitarization tests at the facility
8	Deactivation Furnace Building	Determine if the deactivation furnace has released metals, VOCs, SVOCs, PCDD/PCDF, TPHC, or explosives to the surrounding surface soils	• Collect 10 surface soil samples from around the edges of the paved areas	Determine presence or absence of contaminants from demilitarization activities at the facility
8	DRMO Storage Yard	Determine if salvage and storage activities have released metals VOCs or SVOCs to the	· Establish a sampling grid across the site	Use grid to provide areal coverage
			• Collect 45 surface soil samples from stained areas and from other randomly located sample locations in the sampling grid spaces	Examine surface soils in areas suspected of receiving contamination

TABLE 3-1

8WMU Number	8tte Name	Sampling Objective	Program Scope	Rationale
			Collect 15 soil samples from a depth of three feet from areas suspected of having subsurface contamination	Examine suspected contaminated subsurface soils
B	RCRA Container Storage Area	Determine if this SWMU has released metals, VOCs, or SVOCs to surface soils	Collect seven surface soil samples	Determine if a release has occurred from this facility
8	90-Day Drum Storage Area	Determine if this SWMU has released metals, VOCs, SVOCs, or TPHC to surface soils.	Collect eight surface soil samples	Determine presence or absence of contaminants from hazardous materials storage.
8	Drum Storage Areas	Determine if past drum storage practices have released metals, VOCs, SVOCs, pesticides, or TPHC to surface and shellow.	Establish a sampling grid in areas where drums were reportedly stored	Use grid to provide areal coverage
		sels composing this SWMU	Randomly locate 27 borings to five feet in the sampling grid apaces	Examine surface and shallow soils for contaminants
		•	Collect two soil samples per boring (54 total)	Examine surface and shallow soils for contaminants due to surface water transport/infiltration
		•	Drill 10 borings to five feet in lowlying areas where surface water run-off may have ponded. Collect two samples per boring (20 total)	
*	Pesticide Handling and Storage Area	Determine if surface soils around this facility have received metals, pesticides, or herbicides contamination	Collect six surface soil samples from beneath gravel around handlingbatching areas and beneath drain pipes	Determine if pesticide handling and mixing has released contaminants to the nearby soils

TABLE 9-1

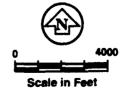

SWMU Number	Site Name	Bampling Objective	Program Scope	Rationale
æ	Contaminated Waste Processor	Determine if metals, VOCs, SVOCs, explosives, or PCDD/PCDF have been released by this furnace	Collect 12 surface soil samples from around the edges of the paved areas	Examine nearby soils for presence or absence of contaminants
8	Industrial Wastewater Treatment Plant	Determine if residual metals, VOCe, or SVOCe remain in surface soils which received windblown GAC	Collect four surface soil samples from areas known to have received GAC	Examine soils for presence or absence of contaminants
			Collect one sample of GAC from Storage Container	Examine GAC for types of contaminants
8	Solvent Recovery Facility	No sampling planned	₹ 2	This SWMU has adequate protection against releases, and activities follow proper waste management practices
ā	Bomb Washout Building		 Drill 9 borings to five feet along washout water discharge areas 	Determine presence or absence of contaminants in surface and shallow soils
		Duming and washout acuvities	• Collect two samples per borehole (18 total)	
			Collect eight surface soil samples from around the building and wash water discharge ditch	Examine surface soils around building for indication of contaminants from airborn releases
			 Dr.il four borings to 5 ft around the site of the second furnace 	Examine site of second furnace for presence or absence of contaminants
			• Collect two samples per borehole (8 total)	
\$	Container Storage for 1999 and Mustard Agent-Filled Mortar Rounds	No sampling planned	~ X	This SWMU never received any chemical agent-contaminated rocket components, and there are no indications of any leaks from the mortar rounds.


TABLE 2-1

8 WMCU Number	Bite Name	Bampling Objective	Program Scope	Rationale
*	Trichloroethylene	No sampling planned	NA	TRCLE tank that contained F-listed wastes was cleaned, removed from the building, and turned in for salvage
*	Stormwater Discharge Area	Determine if surface water discharges are a source of	Collect five surface water samples	Examine whether current discharges carry contaminants
		metals, VOCs, SVOCs, explosives, and posticides in this area	Collect five sediment samples	Examine whether contaminants are present in the sediment
		•	Drill one borehole to 26 feet and collect seven soil samples	Determine if infiltrating surface water is carrying contaminants toward regions!
•	Veed Oil Dumpeters	Determine if the dumpaters are accordence of TPHC in shallow underlying soils	Collect 36 soil samples from both surface soils and 1 foot bgs from area near used oil dumpsters and from surface water runoff locations	Examine if dumpsters have released contamination to nearby soils
•	Boiler Blowdown Water	Determine if discharges of boller blowdown water are a source of metals, VOCs, or SVOCs or TPHC to soils	Collect one sample of surface water and two sediment samples from discharge areas	Examine if boiler blowdown water is releading contamination to underlying soils
Y X	Groundwater Elevation Survey	Develop updated, comprehensive groundwater elevation maps	Messure groundwater levels in 53 wells and piezometers	Evaluate groundwater flow patterns for understanding contaminant transport
¥ X	Field Topographic Survey	Allow all sample locations to be easily assigned survey coordinates	Survey and mark known reference points at each SWMU	Enable direct measurement from sample locations to survey reference points

TABLE 3-1

	esholds U-specific	
Rationale	Develop upper concentration thresholds against which to compare SWMU-specific sampling results	l Recovery Act npounds Unit bons
Program Scope	Collect surface and shallow soil samples from 9 locations across TEAD-N also drill 1-100 foot deep boring for deeper background data	Pentachlorodibenzofuran Resource Conservation and Recovery Act Semi-Volatile Organic Compounds Solid Waste Management Unit Total Petroleum Hydrocarbons Trichloroethylene
	Collesemp TEA1 Dorin	PCDF RCRA SVOC SWOC TPHC TRCLE VOC
Sampling Objective	Provide background data to determine the range of concentrations of naturally occurring compounds	torate irketing Office on
Bite Name	Background Soil Sampling Program	Ammunition Equipment Directorate Defense Reutilization and Marketing Off Granular Activated Carbon Not Applicable Open Burning/Open Detonation Pentachlorodibenzodioxin
BWMU Number	Y X	AED DRMO GAC NA OB/OD PCDD



EXPLANATION

- Open Burning/Open Detonation Areas
- Sandblast Area
- 14 Sewage Lagoons
- 19 AED Demilitarization Test Facility
- 20 AED Deactivation Furnace Site
- 21 AED Deactivation Furnace Building
- S DRMO Storage Yard
- 77 RCRA Container Storage Yard
- 90-Day Drum Storage Area
- 29 Drum Storage Areas
- Pesticide Handling and Storage Area
- 37 Contaminated Waste Processing Plant
- se Industrial Wastewater Treatment Plant
- 39 Solvent Recovery Facility
- 42 Bomb Washout Building
- 43 Container Storage for P999 (igloo numbers indicated)
- H Tank Storage for TCE
- 45 Stormwater Discharge Area
- 46 Used Oil Dumpsters
- 7 Boiler Blowdown Areas

Note: The various locations of SWMUs 46
(Used Oil Dumpsters) and 47 (Boiler
Blowdown Water areas) are not shown
although they are present at several
locations in the administration and
maintenance areas.

TEAD N PHASE I RFI SWMU LOCATION MAP FIGURE 3-1 Because neither the tank nor any contamination from the tank remains at the site, no further action was required.

3.3.1.3. The remainder of this section contains an overview of the major RFI activities conducted at the remaining 17 suspected releases SWMUs. More detailed information on the Phase I RFI field activities is included in Appendix A. The supporting data from various investigative programs are included in other appendices. Results of the Phase I RFI are presented in Section 5.0 under the specific SWMU characterizations.

3.3.2. Scope of Investigation

3.3.2.1. A comprehensive description of the Phase I RFI field sampling program is included in the Data Collection Quality Assurance Plan (DCQAP) prepared for this project (JMM, 1992). Field investigations at the 17 suspected release SWMUs included sampling soil, sediment, surface water, and groundwater to investigate the presence or absence of contamination. Geophysical techniques, a groundwater elevation survey, and a topographical survey complemented the field sampling effort.

3.3.2.2. The following aspects of the field investigation are discussed in this section:

- Geophysical investigations at the OB/OD Area
- Test pit soil sampling, logging, and deep borehole sampling at the OB/OD Area
- Groundwater sampling from five monitoring wells near the Sewage Lagoons
- Surface water sampling from the Sewage Lagoons, the Stormwater Discharge Area, and the Boiler Blowdown Areas
- Collection of surface soil samples (0 to 1 feet bgs) from 14 SWMUs and nine background locations
- Collection of shallow (1 to 5 feet bgs) soil samples from five SWMUs and nine background locations
- Collection of deeper soil samples (greater than 5 feet bgs) from the Stormwater
 Discharge Area and one background soil boring

- Sediment sampling at the Sewage Lagoons, the Stormwater Discharge Area, and the Boiler Blowdown Areas
- Facility-wide topographical survey for sample locations
- Facility-wide groundwater elevation survey
- Investigation-derived waste handling.

3.3.3. RFI Investigation Activities

3.3.3.1. Geophysical Investigations * OB/OD Area (SWMUs 1b and 1c). During the period of July 8 to July 15, 1992, Practical Geophysics of Salt Lake City, Utah conducted ground magnetic and soil conductivity investigations at the Burn Pad (SWMU 1b) and the Trash Burn Pits (SWMU 1c) in the OB/OD Area at TEAD-N. The objective of the investigations was to define the presence and location of buried debris in pits and trenches in these SWMUs.

3.3.3.2. Prior to the actual field measurements, a composite map of old burial features was compiled from six generations of aerial photographs, ranging in dates from 1952 to 1987. A total station surveying instrument was used to turn angles and measure distances from known reference points in the field to locate the images on the composite map.

3.3.3.3. Once the old excavation features were located, both a proton precession magnetometer and a soil conductivity system were used to confirm the locations of burial features. The geophysical subcontractor made numerous traverses at right angles to the long axis of the buried trench features utilizing both instruments. The length and spacing of the traverses were dependent on the size of the feature being investigated. The locations of the subsurface anomalies were staked and labeled for the later test pit siting. Through the use of these methods, a total of 50 burial features were defined by the geophysical investigations. The final report of the geophysical subcontractor (Practical Geophysics) is included with Appendix E of this report.

3.3.3.4. Test Pit and Deep Borehole Sampling and Logging at the OB/OD Area. One hundred twenty-one test pits were excavated, sampled, and logged at the five sub-SWMUs in this area to investigate surface and near-surface soils and burial pits in the

OB/OD Areas. In addition, eight boreholes were drilled, sampled, and logged to a depth of 100 feet bgs. The objective of the test pit and borehole program was to determine if historical OB/OD activities have released contaminants to the surrounding soils. All soil samples were submitted for metals, cyanide, explosives, and anions. In addition, selected soil samples were also analyzed for VOCs, SVOCs, dioxins/furans, and explosive reactivity.

3.3.3.5. Sampling locations were determined by historical photographs of the OB/OD Area dating back to 1952 showing the locations of prior demilitarization activities. Sampling locations within the respective excavation pits were determined by Montgomery field personnel based on the contents of each test pit. Two soil samples were collected from each excavation. If a buried burn and/or debris zone was uncovered, one sample was collected from it and another from directly under the zone, if possible, to provide an indication of possible contaminant migration. If no burn or debris layer was found, the samples were collected from the surface and at total depth. Seven soil samples were collected from each 100-foot borehole, based on the soil stratigraphy of the hole.

3.3.3.6. Test pits were excavated using a rubber tired backhoe, and ranged from 4 to 12 feet in depth. The 100-foot boreholes were drilled with a percussion drill rig. The test pit and borehole logs are included with this report as Appendix B. The distribution of the test pits and the boreholes was as follows:

- Main Demolition Area (SWMU 1) 82 test pits and three deep boreholes
- Cluster Bomb Area (SWMU 1a) six test pits and one deep borehole
- Burn Pad (SWMU 1b) six test pits and one deep borehole
- Trash Burn Pits (SWMU 1c) 20 test pits and two deep boreholes
- Propellant Burn Pans (SWMU 1d) seven test pits and one deep borehole.

3.3.3.7. Groundwater Sampling at the Sewage Lagoons (SWMU 14). Two rounds of groundwater samples were collected from five monitoring wells in the vicinity of the Sewage Lagoons and submitted for VOC, SVOC, filtered metals, selected anions, and TRPH analyses. Field sampling logs are included as part of Appendix D. Monitoring wells sampled were N-135-90, N-134-90, N-136-90, B-1, and A-3, which were chosen to provide upgradient, downgradient, and crossgradient groundwater quality information with respect

to the Sewage Lagoons. The first sampling round was conducted in July, 1992, and the second round was conducted approximately seven months later, in February, 1993.

3.3.3.8. Surface Water Sampling at the Sewage Lagoons, Stormwater Discharge Area, and Boiler Blowdown Water Discharge Areas (SWMUs 14, 45, and 47). At each SWMU where surface water was present, the field investigation program included surface water sampling. The following paragraphs summarize the surface water sampling activities during the Phase I RFI at TEAD-N:

- Sewage Lagoons (SWMU 14). Two surface water samples from the active lagoon (Lagoon 1) were collected from locations at opposite ends of the lagoon. Access to sample locations was made possible by use of a small row boat. The samples were submitted for VOCs, SVOCs, metals, and selected anions analyses to determine if contaminants are present in the surface water in the lagoon.
- Stormwater Discharge Area (SWMU 45). Three surface water samples were collected from the ponded water in this SWMU and submitted for VOC, SVOC, metals, and explosives analyses. These samples were collected to confirm the presence of various VOC contaminants, and determine if other types of contaminants are present.
- Boiler Blowdown Water Discharge Areas (SWMU 47). To determine if boiler blowdown water is a source of contamination of nearby soils or water, one surface water sample was obtained from an exterior sump at Building 610 which collected boiler blowdown effluent, and one surface water sample was collected from a discharge area west of Building 691. These samples were analyzed for VOCs, SVOCs, filtered metals and TRPH.

3.3.3.9. Surface Soil Sampling. To evaluate the presence or absence of surface soil contamination, surface soil samples were collected at SWMUs 4, 19, 20, 21, 26, 27, 28, 29, 34, 37, 38, 42, 45, and 46. These samples were collected as either a grab sample or a composite sample, depending on whether a judgmental or random rationale was used. At SWMUs 26, 29, 42, and 46 the surface soil samples were collected at the 0 to 1-foot interval from shallow soil borings. At SWMU 45, one surface soil sample was collected from the 0-1 foot interval in the 25-foot soil boring. Soil boring logs are included in Appendix B.

3.3.3.10. Shallow Soil Sampling. To determine if soil contamination is present in the shallow subsurface, shallow soil was sampled (1 to 5 feet bgs) at SWMUs 26, 29, 42, 45, and 46. At all locations except SWMU 46 the samples were collected by hollow-stem auger drilling and sampling methods. At SWMU 46, the shallow soil samples were excavated with a stainless steel shovel and collected with a stainless steel sampling trowel.

3.3.3.11. Deeper Soil Sampling at the OB/OD Areas (SWMUs 1-1d) and the Stormwater Discharge Area (SWMU 45). Nine 100-foot deep soil borings were drilled at various locations at the OB/OD Area using a percussion-type dual-wall reverse circulation air rotary drilling rig to explore the possibility of contamination at depth. One of these borings was drilled at a location distant from known contaminant sources associated with the OB/OD Area, and served as a source of background information for the subsurface soils there. A total of seven soil samples from various depths were collected from each boring, all samples were analyzed for explosives and metals and selected samples were analyzed for VOCs and SVOCs.

3.3.3.12. Deeper soil samples were also collected from the Stormwater Discharge Area (SWMU 45) by means of a hollow-stem auger drill rig. To detect the presence of contaminants migrating downward from the ponded water at SWMU 45, seven soil samples were collected from the 25-foot soil boring and analyzed for VOCs, SVOCs, metals, and explosives.

3.3.3.13. Sediment Sampling at the Sewage Lagoons, Stormwater Discharge Area, and Boiler Blowdown Areas (SWMUs 14, 45, and 47). Sediment samples were taken in conjunction with surface water samples to help define if contaminants are present in the sediments. Two samples of bottom sludge from the Sewage Lagoons (SWMU 14) were obtained and submitted for VOC, SVOC, metals, and anions analysis, and five samples of sediment from the ponded water at the Stormwater Discharge Area (SWMU 45) were submitted for VOCs, SVOCs, metals, anions, and pesticides. In addition, two sediment samples from the blowdown sump at Building 610 and from a discharge area west of Building 691 were collected and analyzed for VOCs, SVOCs, total metals, and TRPH.

3.3.3.14. Spent Granular Activated Carbon Sampling at the Industrial Wastewater Treatment Plant (SWMU 38). To evaluate the nature of chemicals present in spent granular activated carbon (GAC) stored at the Industrial Wastewater Treatment Plant, a single sample of this material was collected during the Phase I RFI field program.

Since the spent GAC was known to have absorbed various types of potentially hazardous chemicals, level C personal protective equipment was required.

3.3.3.15. Facility-Wide Topographic Survey. Prior to the field sampling activities, a topographic survey was conducted to establish reference locations at the various sampling sites. Once these reference points were established, the actual sample locations were tied to the Utah State Plane Coordinate System at the time of sample collection with a Brunton compass.

3.3.3.16. In addition, all boreholes 25 feet deep or deeper were surveyed by CRS Engineering, Inc. using more rigorous surveying equipment and techniques. This included the nine 100-foot borings at the OB/OD Areas (SWMUs 1-1d) and the 25-foot borehole at the Stormwater Discharge Area (SWMU 45).

3.3.3.17. Facility-Wide Groundwater Elevation Survey. One task of the Phase I RFI field work was a facility-wide groundwater elevation survey. Montgomery personnel measured the depth to water in 48 selected wells and piezometers across the TEAD-N facility during two rounds of measurements. The first of the two scheduled rounds of groundwater elevation measurements was made during early June 1993, around the time of the seasonal groundwater maximum (June-July). The second round of measurements was conducted in January 1993, when seasonal groundwater levels are at their seasonal minimum (December-January).

3.3.3.18. Groundwater elevations were measured with an electronic water level indicator, and measured to the nearest 0.01 foot from the top of the inside well casing. The results of the groundwater elevation surveys are presented on the groundwater elevation contour map included in Section 2.0 (Figure 2-5).

3.3.3.19. Background Soil Sampling. To provide a measure of the concentrations of naturally-occurring metals and anions in soils, surface and subsurface soils were sampled at 10 uncontaminated locations across TEAD-N. Background soil sample locations and a discussion of the sampling results are included in section 4.0 of this report. Surface soil samples were collected from the 0 to 1-foot interval and shallow soil samples from 3 to 5 feet bgs. In addition, one 100-foot soil boring was drilled and sampled in the OB/OD Area to characterize the deeper soils there. Except for the deep boring, all soil samples were collected with a decontaminated stainless steel hand auger. Five of the shallow background

locations were sampled by Montgomery personnel, and four locations were sampled by Rust E&I (formerly SEC Donahue) personnel.

3.3.3.20. Investigation-Derived Waste Handling. Proper handling of investigation-derived wastes (IDWs) was described in the DCQAP (JMM, 1992). Investigation-derived wastes included soils from test pits and soil borings, water from monitoring well purging, and rinsate from equipment decontamination. Soil removed during the process of excavating the test pits was placed adjacent to the test pit in a spoil pile by the backhoe. Following examination for munition metal parts, the test pit spoil pile was replaced as backfill in the test pit from which it was excavated.

3.3.3.21. Soil brought to the surface as cuttings or excess samples during drilling operations was screened with either a PID or FID organic vapor detector. Soil from the cuttings and soil samplers remained at the site if the soils were not saturated, no visible contamination was seen, and no elevated levels of organic vapors were detected. In this case, soils from the shallow borings was used to backfill boreholes from which they originated. In the deeper borings, excess soil was spread out over the ground surface, as these boreholes were backfilled using a bentonite-cement grout. Except for the 25-foot boring at the Stormwater Discharge Area (SWMU 45), no saturated soils, or visible or detectable contamination was encountered during the drilling operations. Because the soils from the boring at SWMU 45 were saturated, they were drummed and stored in the 90-day drum storage area pending the results of laboratory analysis. Since elevated levels of metals were detected (see section 5.0) in the associated soil samples, soils in the drum were again sampled and analyzed for toxicity characteristics according to the Toxicity Characteristics Leaching Procedure (TCLP). Because the results of this analysis indicated that the soils did not exhibit the characteristics of a toxic hazardous waste, the drum was turned over to TEAD for disposal as a non-hazardous waste.

3.3.3.22. Purge water and water from decontamination activities generated while sampling five monitoring wells in conjunction with the sewage lagoons investigation was placed into a 500-gallon holding tank provided by the drilling subcontractor. After a review of the types and concentrations of contaminants in the water, a permit was obtained allowing discharge into the Industrial Wastewater Treatment Plant system.

3.3.3.23. The decontamination process, which used high-pressure steam-cleaning equipment, generated significant quantities of rinsate. In all cases, the rinsate was

captured and containerized in 55-gallon drums which were discharged to the Industrial Wastewater Treatment Plant system.

Section 4

4.0 BACKGROUND SOIL CONDITIONS AND DATA REPORTING LIMIT EVALUATION

4.0.0.1. This section contains discussions regarding the concentrations of metals and anions detected in background soil samples. The metals and anions concentrations in background soil samples represent natural conditions and will be compared with the results of soil sample analyses at individual SWMUs where these compounds are suspected contaminants. In addition to evaluations of background conditions, a discussion is included of the differences between USAEC certified reporting limits (CRLs) and practical quantitation limits (PQLs), as recommended by USEPA SW 846.

4.1. BACKGROUND SOIL CONDITIONS

4.1.1. Soil Sampling Programs

4.1.1.1. Surface and shallow background soil data were collected by both Montgomery and SEC Donohue personnel during two separate field investigation programs in 1992. Between the two studies, background soil sampling locations were sited across TEAD-N to represent each of the major soil types present on the Depot. Background samples were collected at locations that were unaffected by the physical operations at the SWMU sites, but near enough to obtain similar soil types. To evaluate shallow soils (soils less than 10 feet deep). samples were collected from surface and 2 to 3-foot depths at each of nine locations (see Figure 2-4) and were submitted for analyses of total metals, selected anions, and pH. In addition, one 100-foot deep boring was drilled near the OB/OD area, and soil samples were collected and analyzed to assess the composition of the deep soils (soil from depths 10 feet deep and deeper) at this location. This deep boring was located in an undisturbed portion of the OB/OD area approximately 4,000 feet southwest of the Main Demolition Area (SWMU 1) and about 2,500 feet southwest of the Propellant Burn Pans (SWMU 1d) (see Figure 5.2.1.). Seven soil samples were collected from depths of 10, 15, 30, 45, 60, 70, and 100 feet. As with other background soil samples, all seven were analyzed for metals, anions, and pH.

4.1.2. Analysis of Background Soils Data

4.1.2.1. Representative concentrations of naturally-occurring metals and anions were needed to compare with SWMU-specific analytical results. Tables 4-1 and 4-2 present summaries of the analytical results of background samples for shallow and deep soils,

Page No. 1 06/19/93

TODELE AD-MORTH AREA: SHALLON BACKGROUND SAMPLES (< 10 ft.) USED FOR STATISTICAL AMALYSES SOIL ANALYTICAL RESULTS FOR METALS

	Br. 02-01	BKB-92-02	BKB-92-03	BKB - 92 - 04	SB - BK - 001	58-XI-85	200 · 34 · 35	
Serpie 10	0 74 - 0 10 10 10 10 10 10 10 10 10 10 10 10 1				362.00	724110	711 10777	A77.110
=	11701	11703	11/05	11/0/1	0111-112			
	07/15/02	07/15/02	07/15/92	07/15/92	07/26/92	07/26/92	07/26/92	07/26/92
Date Sampled	3/15/15	9 000 6	4 000	3,000 1	0.000 ft	3.000 ft	0.000	2.000 11
Depth (ft)	3.000 11	3	3					
Hetals and Cyanide (ug/g)			:	•	0000	OUT OFCC	8010 0000	2590 0000
	¥	X	≨	*	20.000	2000 - 0022	36.01	
	< 34.0000	× 34.0000	< 3.4200	× 74.0000	× 7.1400	× 7.1400	4 7.1400	7.1600
Aur menu	U000 U7C >	× 48.0000	< 240.0000	< 240.0000	4.0400	3.2200	6.0500	2.7600
Arsenic	220 0000	100 000	76.0000	89.0000	95.6000	36.7000	96.0000	38.7000
	2000	0 0 780	0 0 780	< 0.0780	1.2100	0.6330	1.2000	· 0.5000
Deryllica	0053.0	0,0,0	0767 0 7	0727 0 7	< 0.7000	0.7000	0.810	< 0.7000
Codeine	V 1.3000	0.7640	37.0		2640 0000	OUT WOU	1140 0000	1.4900 0000
	42	¥	*	¥	726U.WW	A00.000		2000
	10 0000	13.5000	5.1800	9.3300	10.4000	· 4.0500	1.9000	6.6500
Chromita		1	\$	1	3.9800	2.0800	0020.	2.1500
Copel t	9000 E1	10 7000	1.0500	5.7700	9.3400	3.3600	17.8000	6.5100
Copper	13.000	9000	9000 \$	< 5.0000	< 0.9200	· 0.9200	0.9200	< 0.9200 ×
Cyanide	3.000	0000.000	0000 0071	9000 00011	10200,0000	7450.0000	10200.0000	4790.0000
Ira	.26000.0000	11000.0000	3000 V	7 2000	0005	90% Y	32 5000	2,7400
Lead	22.0000	0.7860	9.000	99.	1740 0000	9000 0111	0000 0207	2160 0000
Magnesium	¥	£	≦ :	E :	9000.0000	2000	213 0000	200
Mendenese	¥	4	\$	₹	2/3.UM0	99.100	6.36.0000	
	< 0.0259	< 0.0259	< 0.02 59	< 0.0259	• 0.0500	• 0.0500 •	· 0.0500	× 0.0500
	\$ 7.5000	< 2.4600	< 2.4600	< 2.4600	9.7300	4.3500	9.2600	2.1400
H:CKel		4	4	¥	2720.0000	541.0000	3070.0000	781.0000
Potessium	0000 0013	0000 015 >	× 510.0000	< 510.0000	< 0.2500	0.2500	· 0.2500	< 0.2500
Selenium	0.000	9590	C7CU U	0.0421	· 0.5890	· 0.5690	0.6346	· 0.5890
Silver	2000	9000	1	4	225.0000	193.0000	243.0000	189.000
Sodius	VII	0000 021	120 0000	0000 0Z1 >	9029	· 6.6200	6.6200	• 6.6200
Theitien	4 1/0.000	200.071 ×			15 1000	0097 8	15, 9000	0007.6
Venadium	¥ #	≦	S .				9000	900
	0000 02	70.00	95%	26.9000	39.600	37.6		

Hotes: < = Not detected at the value shown, MA = Not analyzed

TABLE 4-1 (CONTINUED)

TOOELE AD-NORTH AREA: SHALLON BACKGROUND SAMPLES (< 10 FT.) USED FOR STATISTICAL ANALYSES SOIL ANALYTICAL RESULTS FOR METALS

Sample 10	SB-8K-003	SB · BK · 003	SB-BK-004	58 - 8K - 004	SB - BK - 005	SB - BK - 605	BKS-92-01	BKS-92-02
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0111*779	011.1*780	011.1*781	0111*782	011.1-783	011.1-784	11700	11702
Date Sampled	07/26/92	17/26/92	07/27/92	07/27/92	07/27/92	07/27/92	07/15/92	07/15/92
Depth (ft)	0.000 ft	2.000 ft	0.000 ft	3.000 ft	0.000 ft	3.000 ft	0.000 ft	0.000 ft
Metals and Evanide (ug/s)								
Alumina	13200.0000	12100.0000	17100.0000	10500.0000	6550.0000	7460.0000	42	4
Antimony	< 7.1400	< 7.1400	< 7.1400	. 7.1400	< 7.1400	< 7.1400	× 34.0000	× 34.0000
Arsenic	24.0000	19.0000	6.5500	9.8600	19.0000	16.0000	· 120.0000	120.0000
	166.0000	157.0000	169.0000	147.0000	92.2000	94.9000	190.0000	190.0000
	1.3500	1.2600	1.5300	1.2900	0.6380	0.8380	< 0.0780	4 0.0780
Cadaius	0.8470	< 0.7000	< 0.7000	• 0.7000	< 0.7000	< 0.7000	< 0.4240	< 0.4240
Cateium	38200.0000	34600.0000	47100.0000	28000.0000	36800.0000	9000 00069	¥	W.
Chronium	15.6000	14.4000	19.5000	15.2000	9.8700	10.3000	12.6000	16.5000
Cobalt	5.3900	0090.4	6.8700	2.6600	2.5700	2.6700	¥#	1
Comer	23.1000	15.9000	15.0000	11.3000	10.4000	4.8300	12.7000	29.0000
Cvanide	< 0.9200	¥	43	< 0.9200	< 0.9200 ×	< 0.9200	· 5.0000	· 5.0000
500	12900.0000	10900.0000	16300.0000	13300.0000	7040.0000	6770.0000	20000.0000	17000.0000
	55.5000	32.7000	12.0000	10.9000	30.5000	10.7000	17.0000	62.0000
Magnesium	10100.0000	7800.0000	11400.0000	6950.0000	5620.0000	9990.0000	42	≨
Mandanasa	458.0000	370.0000	477.0000	376.0000	195.0000	140.0000	¥	¥#
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.0374	< 0.0259
Mickel	13.1000	11.2000	17.9000	14.2000	7.1900	8.1400	< 2.4600	· 2.4600
Potessium	4570.0000	3830.0000	5670.0000	2320.0000	2300.0000	1620,0000	¥	ž
Selection	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	> ≦	< 510.0000
Silver	0.6600	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	0.2120	0.1210
Sodium	343.0000	323.0000	463.0000	1790.0000	272.0000	683.0000	₹	*
That i ium	9.6000	< 6.6200	< 6.6200	· 6.6200	< 6.6200	< 6.6200	83.0000	< 83.0000
Vanadium	20.5000	19.4000	27.7000	23.8000	13.1000	23.1000	¥	¥
	107,0000	76.2000	65.1000	53.8000	29.4000	26.9000	95.0000	94.0000

TABLE 4-1 (CONTINUED)

Page No. 1 08/19/93

TOORLE AD-MORTH AREA: SHALLOM BACKGROUND SAMPLES (< 10 FI.) USED FOR STATISTICAL ANALYSES SOLL ANALYSES

Depth (11)

¥	× 34.0000	< 72.0000	160.000	< 0.0780	< 0.4240	4	13.2000	¥¥	11.9000	< 5.0000	16000.0000	16.0000	¥#	3	0 0 0 0	4670.0	< 2.4600	€	< 510.0000	0.0687	¥	< 170.0000	\$	24.0000	
4	< 34,0000	63.2000	79.0000	< 0.0780	< 0.4240	¥2	0090.9	AN.	14.4000	× 5.0000	7500,0000	₹	. 3		KE (0.00	AC20.0 >	< 2.4600	*	< 510.0000	0.6600	*	× 170.0000	VN.	4	
Hetals and Cyanide (ug/g)	ALCHINE	Antimony							118007	indeposit of	Cyaniae) Los	0001	Magnesium	Manganese	Mercury						Society			2100

Notes: < = Not detected at the value shown, NA = Not analyzed

Page No. 1 08/19/93

TABLE 4-1 (CONTINUED)

TODELE AD'NORTH AREA: SHALLON BACKGROUND SAMPLES (< 10 fl.) USED FOR STATISTICAL ANALYSES SOIL ANALYSICAL RESULTS FOR GENERAL CHEMICALS

Sample 1D Lab 10 Date Sampled Depth (ft)	8K8-92-01 11701 07/15/92 3.000 ft	BKB-92-02 11703 07/15/92 2.000 ft	8KB-92-03 11705 07/15/92 3,000 ft	8KB-92-04 11707 07/15/92 3.000 ft	SB - BK - 001 011.1°775 07/26/92 0.000 ft	\$8-8K-001 01L1°776 07/26/92 3.000 ft	\$8-8K-002 01.11•777 07/26/92 0.000 ft	SB BK-002 011 1*778 07/26/92 2.000 ft
Anions (ug/g) Browide Chloride Fluoride Witrate Witrite Witrite Witrite Junitele Flooride Intrate Intrate Total phosphates	 8.8300 136.0000 4.9.2000 3.3600 3.1600 4.5.0000 466.0000 ANA 	< 8.8300 < 59.6000 < 19.2000 < 3.3600 < 3.1600 NA < 5.0000	 6.8300 39.6000 19.2000 3.1600 4.5000 16.4000 14.4000 	< 8.6300 < 19.2000 < 3.3600 < 3.1600 < 5.0000 < 14.4000	NA NA NA 0000.004 NA NA NA NA NA NA NA NA NA NA	NA < 6.0500 NA NA < 0.6000 NA < 90.4000 270.0000	NA NA NA NA 1,3400 4000 190,0000	MA . 6.4500 MA . MA . 6.4500 MA . 0.6000 . 230.0000
General Inorganic Parameters pM	42	¥	ş	¥	8.5600	8.0600	9.0800	6.7500

Notes: < = Not detected at the value shown, NA = Not analyzed

TABLE 4-1 (CONTINUED)

TODELE AD-NORTH AREA: SHALLOW BACKGROUND SAMPLES (< 10 FI.) USED FOR STATISTICAL ANALYSES SOLL ANALYSES

Page No. 1 08/19/93

Sample 1D Lab 1D Date Sampled Depth (ft)	\$8-8K-003 0111*779 07/26/92 0.000 ft	SB-6K-003 011.1°780 07/26/92 2.000 ft	SB - BK - 004 011.1*781 07/27/92 0.000 ft	SB·BK·004 OIL1*762 07/27/92 3.000 II	SB-BK-005 0111*783 07/27/92 0.000 ft	SB-8K-005 011.1°786, 07/27/92 3.000 ft	6K5-92-01 11700 07/15/92 0.000 ft	8KS -92 - 02 11702 07/15/92 0.000 ft
Anions (ug/s) Bromide Chloride Fluoride Mitrate Mitrite Mitrite, nitrate - nonspecified Phosphate Sulfate Total phosphates	*** *********************************	MA	NA	240.0000 NA NA NA 0.6970 NA < 90.4000 350.0000	NA	8.4500 8.4500 8.4 8.4 8.4 6.0000 260.0000	< 8.8300 < 39.6000 < 19.2000 9.4500 < 3.1600 < 5.0000 < 14.4000	« B. B300 « 19. 6000 « 19. 500 » 3. 3600 « 5. 5. 000 « 5. 600 « 6. 600 » 6. 600 « 6. 600 « 6. 600 » 6. 600 » 6. 600 « 6. 600 » 60
General inorganic Parameters pH	7.7500	5,9100	8.5400	9.1100	B . 7200	9.7600	4	4

Motes: < = Not detected at the value shown, NA = Not analyzed

Page No. 1 08/19/93

TABLE 4-1 (CONTINUED)

TOOELE AD-NORTH AREA: SHALLON BACKGROUND SAMPLES (< 10 F1.) USED FOR STATISTICAL ANALYSES SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Serple 10	BKS-92-03	BKS-92-04	
2 2	11704	11706	
Dete Sampled	07/15/92	07/15/92	
Depth (ft)	0.000 ft	0.000 ft	
Anions (us/a)			
Breaide	< 8.8300	< 8.8300	
Chloride	× 39.6000	< 39.6000	
Fluorida	< 19.2000	< 19.2000	
Mitrate	< 3.3600	2.9900	
# in the	< 3.1600	< 3.1600	
Hitrite, nitrate - nonspecified	¥	W	
Proschate	< 5.0000	< 5.0000	
Sulfate	× 14.4000	< 14.4000	
Total phosphates	¥	≦	
General Inorganic Parameters	4	ž	
5 .	[]	ŧ	

TOOGLE AD MORTH AREA: DEEP BACKGROUND SAMPLES (>= 10 FT.) USED FOR STATISTICAL ANALYSES SOIL ANALYSES

	900 · XE · BS	900·¥-15	28 - EK - 006	58 - BK - 006	28-14-006 28-14-006	20 × 306	900· XE · 85
	011.1+785	011.1*786	011.1*787	0111*788	011.1*789	0111-790	0111-791
te Sempled	07/22/92	07/22/92	07/22/92	07/22/92	07/22/92	07/22/92	07/22/92
epth (ft)	10.000 ft	15.000 ft	30.000 ft	45.000 ft	60.000 fc	70.000 fc	100.000 14
terals and Evenide (18/8)							
Altaine	3310.0000	11300.0000	19000.00001	4360.0000	19200.0000	15800.0000	6190.0000
Ant learn	15.0000	< 7.1400	< 7.1400	10.000	< 7.1400	< 7.1400	9.9500
Arsenic	9.5000	5.5000	5.1400	3.4800	5.1000	7.8900	7.7200
Parisa	45.3000	62.6000	152.0000	441.0000	132.0000	192.0000	34.1000
Bervillium	< 0.5000	0.8600	1.3200	0.7440	1.5400	1.4400	0.7180
Cadhius	< 0.7000	< 0.7000	o 0.7000	< 0.7000	< 0.7000	< 0.7000	· 0.7000
Catain	170000.0000	41000.0000	7120.0000	160000.0000	5500.0000	43700.0000	140000.0000
	7.5500	13.3000	18.7000	7.7500	16.8000	24.3000	11.6000
Cobeli	2.3600	9.6400	7.7500	2.2900	8.4400	9.0800	2.4800
Cooper	\$.6000	9.3100	13.3000	6.9200	16.1000	11.9000	9 . 3000
Cyanide	< 0.9200	< 0.9200 ×	< 0.9200 <	< 0.9200	< 0.9200 <	0.9200	2.6000
5.	5580.0000	11700.0000	16400.0000	6520.0000	18900.0000	18200.0000	7550.0000
peat	6.0500	11.2000	13.0000	0096.7	15.0000	12.0000	9.2400
Magnes ica	35600.0000	6430.0000	8350.0000	12800.0000	7430.0000	9000.0009	16800.0000
Mananese	0000 677	398.0000	269.0000	304 . 0000	909 909	455.0000	196.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	• 0.0500	< 0.0500	0.0500	0.0500
Mickel	11.8000	12.5000	16.9000	9.8700	18.4000	15.5000	11.6000
Potnesium	801.0000	2530.0000	7690.0000	977.0000	7480.0000	3620.0000	1350.0000
Selenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ·	< 0.2500
Silver	< 0.5890	< 0.5890	0.8180	< 0.5890	< 0.5890	· 0.5890	< 0.5890
Sedius	830.0000	1740.0000	1240.0000	431.0000	779.0000	9000. 5%	361.0000
Theilite	11.7000	· 6.6200	· 6.6200	10.3000	< 6.6200	· 6.6200	10.9000
Vanadium	15.9000	25.3000	29.5000	13.8000	30.000	25.8000	15.9000
	טייטן זכ	000Y 07	A8 2000	28 7000	0007 72	58, 1000	37,3000

Notes: < = Not detected at the value shown, MA = Not analyzed

TABLE 4-2 (CONTINUED)

TODELE AD-WORTH AREA: DEEP BACKGROUND SAMPLES (>= 10 FT.) USED FOR STATISTICAL AMALYSES SOIL ANALYTICAL RESULTS FOR GEMERAL CHEMICALS

Sample 19 Lab 19 Bate Sampled Papth (11)	\$8 - \$K - 006 011.1°785 07.722/92 10.000 ft	\$8-8K-006 01L1*786 07/22/92 15.000 ft	88-8K-006 011.1°787 07/22/92 30.000 ft	58 8K - 006 011 1* 786 07/22/92 07/22/92	\$8 - 8K - 006 011 1°789 07 722 / 92 60,000 ft	\$8-8K-006 0111*790 07/22/92 70.000 ft	58 - 8K - 506 011 1°791 07/22/92 100.000 ft	Ĭ
Anions (ug/g) Chioride Mitrite, nitrate - nonspecified Sulfate Total phosphates	470.0000 1,0700 295,0000	1500.0000 7.3400 790.0000 210.0000	49.8000 3.94.00 4.0000 3.40.0000	22.3000 0.8570 < 90.4000 190.0000	33.5000 1.7100 < 90.4000 130.0000	36.1000 1,5100 < 90.4000 270.0000	28.1000 1.1800 < 90.4000 150.0000	
General Inorganic Parameters pil	8.7000	0062.9	9.04/10	9.0700	9.6200	8.4600	9.1900	

respectively. To determine if elevated concentrations of metals or anions are present at a particular SWMU, it was necessary to establish a range of naturally-occurring concentrations of these compounds. For this, statistical methods were used to calculate the mean, standard deviation, 95 percent confidence intervals, and other summary statistics for each metal and anion population. The results of these statistical analyses are presented in Tables 4-3 and 4-4 for depths less than 10 feet and depths of 10 feet or greater, respectively. In cases where analytical results were below the USAEC CRLs, a value equal to one-half the CRL was substituted. In reviewing these data, it must be recognized that the concentrations of a large percentage of the analytes (for example, cyanide, mercury, selenium, thallium) were below the CRLs, and therefore the reported means represent some limiting concentration value rather than representing an actual abundance of the constituent.

4.1.3. Data Evaluations

4.1.3.1. In order to retain statistical validity, the data sets generated for each analyte were first reviewed for any obviously anomalous values, and then checked for normal distributions. The lead concentration of 160 µg/g (ppm) for the surface sample at location BK-92-03 was excluded from the data set for this calculation based on the observation that the sampled location is in, or near, a former firing range and ammunition test range. Because this one value appeared to be anomalous, and it skewed the statistical results, it was excluded from the population of lead concentrations. Data sets containing four or more values were checked for normal distribution according to the coefficient of variation test (USEPA, 1989a). As shown in Tables 4-3 and 4-4, only the shallow soil data set for arsenic and the deep soil data set for chloride exhibited non-normal distributions according to this test.

4.1.3.2. To evaluate whether the analytical results from single soil samples may indicate contamination, several measures of an upper bounds of the distribution of soil constituents were calculated and are also included in Tables 4-3 and 4-4. The values for the 95% upper confidence limit and the 95%/95% upper tolerance limits (USEPA, 1989a) are listed, along with the arithmetic means plus two and three standard deviations. These limits generally describe a range of upper limit values above which concentrations may be considered to be elevated above the site-wide "background level." While such elevated values may indicate an anthropogenic contribution, these levels also may be due to location-specific levels (as may be present in depositional environments) or an inevitable outlier. Such occurrences then can be evaluated in the context of sources or risk and remediation data needs.

TABLE 4.3 SUMMARY STATISTICS FOR SURFACE AND SHALLOW BACEGROUND SOILS(*)

Compound	Namber Semples	Number of Detections	Percent Detections	Mean	Standard Deviation	Normal Distribution(b)	Geometric Mean	Maximum Concentration Detected	Upper 96% Confidence Interval	Upper Becond Standard Deviation	Upper Third Standard Deviation	Upper 866 Confidence Interval
Ziver Ziver	=	2	66.6	0.274	0.197	*	0.194	0990	0.371	0.667	0.8642	0.7742
Jeminum	2	2	100.0	8,760	4,572	>-	7,309	17,100	12.030	17.904	22476.7034	22068.8042
reenic	2	=	61.1	39.6	904	z	21.6	63.2	68.6	121	161.5301	142.9635
le riem	92	91	0.001	121	64.0	>	103	270	163	249	312.7678	283 6391
beryllium	2	•	0.08	0.588	0.562	>-	0.239	1.63	0.868	1.71	2.2747	2.0178
Alcium	2	9	100.0	28,740	19,925	>	910'61	000'69	42,993	68,590	88515.4015	86742.0647
-dmium	92	84	11.1	0.366	0.196	SC	0.328	0.847	0.463	0.766	0.9498	0.8609
bloride	2	•	16.7	30.4	6.83	Š	10.5	240	69.7	148	206.9629	180.0668
'abelt	2	9	100.0	3.95	1.64	>	3.66	6.87	90.9	7.04	8.6812	8.4436
Chromium	2	11	3	11.7	4.6 1	>	10.6	9.61	0.41	21.0	26.6707	23.65.7
opper	2	17	ž	12.0	69.9	>-	99.6	0.83	16.3	25.4	32.0703	28.0136
yanide	91	•	0.0	1.48	1.02	SC	1.07	0.460	2.02	3.52	4.6400	4.0636
8	92	91	100.0	11,697	969'9	>	10,191	26,000	14,430	22,988	28683.9270	26081.0623
lercury	9 2	-	9.9	0.021	0.001	¥	0.020	0.037	0.026	0.035	0.0420	0.0388
Potessium	2	2	0.001	2,742	1,534	>	2,229	5,670	3,839	5,810	7343.9334	7207.4163
lagraceium	2	2	0.001	6,318	3,324	>-	5,233	11,400	8,695	12,965	16288.7815	15992.9617
andlanes	2	9	100.0	569	139	>	228	477	368	246	664.6585	672.3300
Afice	2	2	100.0	472	462	>	357	1,790	803	1,396	1867.5902	1816.4962
ickel	2	2	99	6.25	5.18	>	8.	17.9	8 .83	9'91	21.8017	10.4333
itrates	2	-	90	1.06	0.661	>-	0.829	2.16	3.1	2.38	3.0402	2.9613
ī	11	11	100.0	19.7	17.2	>	12.9	62.0	28.5	54.0	136.1220	119.6743
atimony	18	•	0.0	8.69	6.64	S S	6 .26	1.71	12.0	22.0	28.6176	26.52
olenium	11	•	0.0	240	290	S	3.30	0.125	643	1,420	2009.3481	1706.2124
ulfate	8	-	9.6	63.8	102	SC	26.2	994	<u>*</u>	12	368.6366	312.1980
hallium	9	-	9.	36.1	37.1	SC	13.7	8.60	63.6	95	146.4164	128.4634
otal phosphete	2	2	100.0	386	23.1	>-	248	610	331	3	641.3422	633.1460
anadium	2	2	100.0	17.6	6.02	>	16.5	27.7	22.0	28.7	36.7012	36.166
3	11	2	3	9.19	27.4	>	41.2	101	65.7	90	133,8322	119.748

All values in page unless otherwise stated.

(a) Surface and shallow sails are samples less than 10 fest deep.
(b) Yindicates data set is normally distributed, N indicated it is not normal.

NC Not calculated

TABLE 4-4 SUMMARY STATISTICS FOR DEEP BACEGROUND SOILS^(a)

Silver 7 Aluminum 7 Arrenic 7		Detections	Mean	Deviation	Normal Distribution(b)	Geometric	Concentration Detected	Confidence	Bendard	Deviation	Interval
Avenieum ?	-		0.369	0.183	Š	0.341	0.818	0.200	0.736	0.919	0.962
Arsenic 7	~	100.0	11,309	6,325	*	9,256	19,200	6,458	23,969	30284	32808
7 6	-	8	5.48	27	>-	6.34	7.72	£.	7.5	9.10	9.67
	1	0.001	184	821	>-	112	₹	36.3	Ę	9	50 1
Beryllium 7	9	86.7	0.982	0.433	>	0.856	1.54	0.5612	1.86	3 .28	13
Calcium 7	1	100.0	190,18	67,380	>-	42,983	000'021	18,739	215,818	283197	310062
Cadmium 7	0	0.0	0.350	0000	SC	0.350	0.350	0.350	0.350	0.350	0.360
Chloride 7	~	100.0	306	910	z	82.8	1,500	991>	1,326	1836	90 0 0
Cobalt 7	-	0.001	6.16	250	>	4.47	8.44	29.5	1.0	12.6	13.6
Chromium 7	1	0.001	14.3	9 .9	>	13.2	24.3	9.07	3 2.0	31.2	33.4
Copper 7	-	0.001	9.93	3.68	> -	9.25	16.1	6.62	17.3	21.0	22.4
Cyanide 7	-	14.3	0.766	0.749	S	0.589	2.60	0.073	2.36	301	3.31
Ton 1	-	0.001	12,407	5,568	>-	11,068	18,900	7,258	23,542	29110	31331
Mercury 7	•	00	0.025	0000	S	0.025	0.026	0.025	0.026	0.025	0.026
Potassium 7	-	0.001	2,661	1,552	*	2,149	0 09 ′ †	1,226	5,764	7316	7936
Magnesium 7	-	0.001	13,469	969'6	> -	11,100	36,600	4,491	32,850	42545	46413
Management 7	-	0.001	425	132	*	9	909	303	269	623	976
Sodium 7	-	100.0	198	448	>	755	1,740	446	1,767	2206	752
Nickel 7	-	0.001	13.8	28.2	>-	13.6	18.4	11.1	9.01	22.6	23.7
Nitrates 7	-	100.0	2.62	2.19	>	1.87	7.34	0.480	6.90	9.0	2
Les	•	0.001	9.78	3.67	>	9.03	16.0	9 .39	17.1	808	22.2
Antimony 7	60	43.0	7.03	23	S	6.86	16.0	3.07	16.6	20.0	21.6
Selenium 7	•	0.0	0.125	0000	SC N	0.125	0.125	0.125	0.126	0.125	0.126
Sulfate 7	~	28.6	187	261	SC SC	6.98	2 6	<63.8	901	998	1073
Thelifem 7	43	42.0	6.69	3.83	SC	5.53	11.7	3.07	14.3	2	=
Total phosphate 7	-	100.0	236	83.6	>-	ធ	98	9 51	5	9	619
Vanadium 7	-	0.001	22	6. 40	>-	2 3.3	30.0	16.4	7	41.5	7
Zine 7	1	100.0	6.67	16.9	>	46.8	74.4	34.3	63.7	<u>.</u>	101

All values in poly unless otherwise stated.

(a) Deep sells are those 10 feet deep or deeper.
 (b) Yindicates date set is normally distributed, N indicates it is not normal.

NC Not cakulated

4.1.4. Determination of Upper Thresholds

4.1.4.1. Upper thresholds are the concentrations of metals and anions that are believed to represent the upper range of naturally-occurring values. Analytical results above the upper thresholds are considered to be indicative of a release of contaminants to the environment.

4.1.4.2. Three criteria were used to determine the upper threshold of background concentrations. First, if the sample population for each analyte contained four or more data points above the USAEC CRLs, it was considered to be statistically valid. In this case, the upper threshold was set at two standard deviations from the mean concentration. Tables 4-3 and 4-4 indicate that this statistic provides the most conservative measure of the upper bounds of the distribution of soil constituents. In the case where the analyte sample population contained less than four but greater than zero detections, the upper threshold was set at the maximum concentration that was detected. Finally, in the case where there were zero detections in the analyte sample population, the upper threshold was set at the CRL, and any detection in environmental samples would be considered above background. Table 4-5 summarizes these results.

4.1.4.3. To meet the Phase I RFI objectives, the facility-wide background sampling enables a screening-level evaluation of metals and anion contamination. However, because upper thresholds were determined for the entire TEAD-N facility, they may not reflect SWMU-specific background conditions, which will need to be established prior to any corrective measures studies. To better define the SWMU-specific conditions, additional background sampling is recommended at several of the SWMUs (see Section 6.0). As these data become available they will be added to the statistical base for determining the background threshold values. Future investigations will use all the available background data to interpret naturally-occurring concentrations of soil constituents.

4.1.5. Discussion of Results

4.1.5.1. Based on the types of activities at TEAD-N, releases of lead to the environment appears to be a major concern. The following discussion addresses the specific issue of background lead concentrations. The database shows the other values for lead may be apparently elevated compared to the calculated means. Further evaluation of expected sources indicates that surface soil samples SB-BK-002, SB-BK-005, and SB-BK-003 (with lead concentrations of 32, 30, and 55 ppm, respectively) are from locations intermittently

TABLE 4-5 BACKGROUND SOIL UPPER THRESHOLDS

Compound	Surface and Shallow Soils ^(a)	Deep Soils(b)
Silver	0.667	0.818(c)
Aluminum	17900	24000
Arsenic	121	7.94
Barium	249	411
Beryllium	1.71	1.85
Calcium	68600	216000
Cadmium	0.847 ^(c)	0.700(d
Chloride	240(c)	1330
Cobalt	7.04	10.1
Chromium	21.0	25.6
Copper	25.4	17.3
Cyanide	0.920 ^(d)	2.60 ^(c)
Iron	230	23500
Mercury	0.0374 ^(c)	0.050(d)
Potassium	5810	5760
Magnesium	13000	32800
Manganese	546	690
Sodium	140	1760
Nickel	16.6	19.6
Nitrate	2.38	6.90
Lead	54.0	17.1
Antimony	7,14(d)	15.0 ^(c)
Selenium	0.250(d)	0.250(d)
Sulfate	466(c)	790 ^(c)
Thellium	9.60(c)	11.7 ^(c)
Total Phosphate	449	402
Vanadium	29.6	35.1
Zine	106	83.7

All values in µg/g

- Surface and shallow soils are those less than 10 feet deep Deep soils are those 10 feet or deeper

All upper thresholds set at 2 standard deviations from mean concentrations except:

- Upper threshold set at maximum value detected in background samples due to low frequency of detections.
- Upper threshold set at CRL due to no detections.

4~

downwind from SWMUs 21, 15, and 42, respectively. Each of these SWMUs are possible sources of airborne lead releases from furnaces or incinerators. Downwind deposition of lead from such sources may slightly increase the measured lead concentrations in soils in these locations. Additionally, the lead concentration from the surface soil sample from location BK-92-02 (at 62 ppm) is considered anomalous for unknown reasons, and the 32 ppm concentration in the two-foot samples from location SB-BK-003 is suspect because of the 55 ppm concentration of lead in the surface sample and the proximity of the location to the furnace. Deleting these values from the lead data set gives an arithmetic mean value of 11.6 ppm compared to a value of 19.7 in Table 4-3. The difference between the values is not considered significant, but may be reevaluated if more data become available or if the difference is important in a risk or remediation context.

4.1.5.2. It also should be noted that the arsenic data in Table 4-3 may overestimate the background levels of this element that is often of concern at sites. The overestimate of means and upper limits is due to the use of default values of one-half of the CRL, which are in the range of 240 to 48 ppm for some samples. These concentrations are more than a factor of ten greater than those measured in other samples using lower detection limits. These data also may be reevaluated if the arsenic levels are a concern in the context of risk or remediation evaluations.

4.2 DATA REPORTING LIMIT EVALUATION

4.2.1. Background

4.2.1.1. The Corrective Action Permit for the Phase I RFI specifies USEPA SW-846 (USEPA, 1986) practical quantitation limits (PQLs) for reporting analytical data results. Since the USATHAMA certified reporting levels (CRLs) are not always consistent with the PQLs, this section has been prepared to discuss the differences and their effects on the analytical data evaluations.

4.2.2. Analytes Affected

4.2.2.1. In soil samples, numerous analytical results of nine metals (mercury, selenium, silver, beryllium, cadmium, cobalt, chromium, antimony, and thallium) and cyanide, plus two analytical results for vanadium and zinc and one result for copper, potassium, sodium, and nickel fell between the CRLs and PQLs. In addition, several analytical results for five posticides fell between the CRLs and PQLs. For water samples, several analytical results

for 16 metals and phosphorous fell into this category. Where the SW 846 PQLs are lower than the USATHAMA CRLs, the analytical results were downloaded from the analytical laboratories and presented in Appendix K.

4.2.3. Impacts to the Analytical Program

- 4.2.3.1. Soils. With the exception of the low levels of five pesticides detected in soil samples, incorporation of the data that fall between the CRLs and PQLs would impact the determination of background concentrations of metals, cyanide, and phosphorus. The background data set for these analytes could be affected where values at or below the CRL are used in determining the upper threshold of background concentrations. Tables 4-3 and 4-4 show that sample populations for cadmium, cyanide, mercury, antimony, and selenium have incorporated the CRLs to determine an upper background threshold. However, in view of the objective of the Phase I RFI (i.e., to determine if hazardous waste or constituents have been released), incorporation of CRL data into the determination of upper thresholds for these metals and anions will not affect the conclusions of this study. Because pesticides detected in soil samples probably indicate a release of contaminants, several samples from both the Drum Storage Area (SWMU 29) and the Stormwater Discharge Area (SWMU 45) show elevated levels of pesticides. However, because the same pesticides were detected in other samples above the CRLs, the addition of these data have no impact on the results of the analytical program for soils.
- 4.2.3.2. Water. The impacts of the differences between the CRLs and PQLs on water sample data are similar to those of the soils. However, because only limited water sampling was included in the program, similar to the soils results, the different data sets will have no effect on the results of this study (i.e., to determine if a release has occurred).
- 4.2.3.3. Although the Phase I RFI results are not affected by the different reporting limits, the use of these data for evaluating health risks during Phase II will be affected. Where concentrations of contaminants between the CRLs and PQLs may trigger a health effect, the PQL data will be substituted.

Section 5

5.0 CONTAMINATION CHARACTERIZATION

5.1 INTRODUCTION

5.1.0.1. This section contains the results of the Phase I investigations conducted by Montgomery at each of the 20 SWMUs included in this program. The discussions presented focus on the objective of the Phase I RFI, which is to determine if, at each SWMU, a release of hazardous wastes or constituents has occurred. Each SWMU is discussed individually in terms of the following: Site Description and Waste Generation, Site Conditions, Previous Investigations and Phase I RFI Sampling and Results and Contamination Assessment. Where possible, the contamination assessment includes a comparison of the sampling analytical results with health risk based criteria and action levels as recommended in the RFI Guidance (USEPA, 1989) and/or in the proposed Subpart S Amendments to RCRA (USEPA, 1990). Each SWMU-specific discussion culminates with a recommendation for either no further action or a Phase II investigation. Specific recommendations for Phase II activities are included in Section 6.0 of this document.

5.1.0.2. Most of the analytical data collected during this Phase I RFI (i.e., results for soil, sediment, surface water, and groundwater sampling) are presented in SWMU-specific figures that accompany the SWMU-specific text sections. The analytical results are also included in a series of tables located at the end of this section. Table numbers are the same as the first order headings for each SWMU in the text sections. In addition, the last two or three digits in the sample identification numbers in the data tables correspond to the sample numbers shown in the corresponding figures.

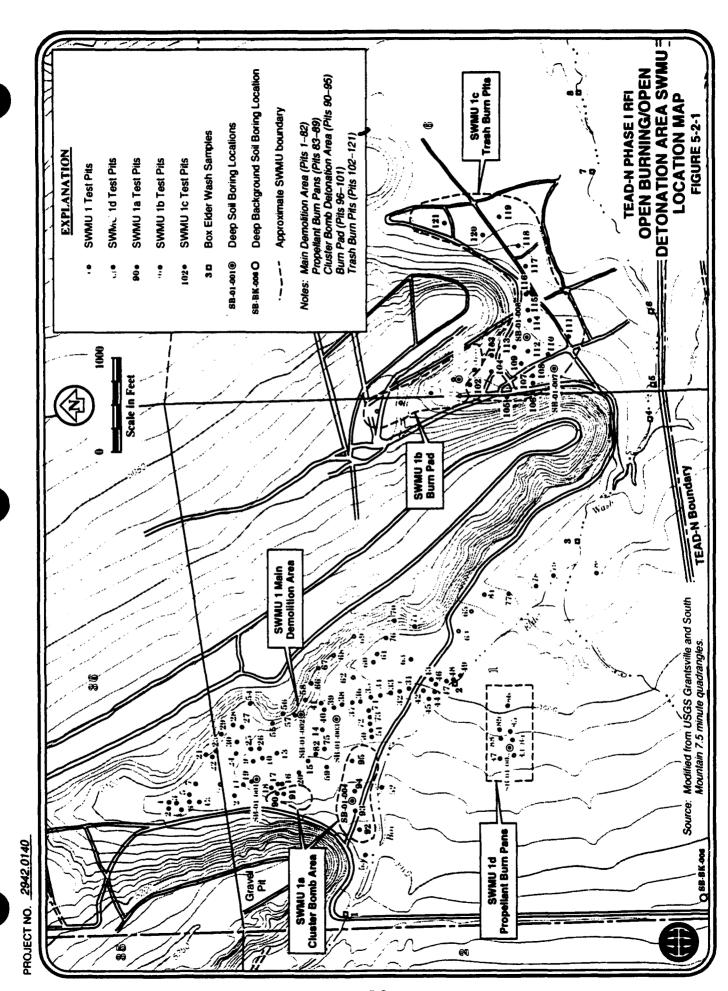
5.1.0.3. The tables include all positive detections for organic compounds and all metals and ion concentrations that exceed upper background thresholds (see Section 4.0 for discussion of background thresholds). Data included in the tables at the end of this section are generally the same as those presented in the figures with some exceptions due to data evaluation. The figures present only those data that are considered valid after the data evaluation process (see Appendix C), and do not include compounds qualified as laboratory contaminants, which include phthalates, Freon, toluene, and hexane. Other data not presented include those that are considered suspect due to method blank contamination. Data which is considered estimated (i.e., due to holding time violations, etc.) is noted on the analytical figures by an asterisk. The IRDMIS chemical abbreviations which appear on the figures can be referenced to the list of chemical acronyms which follows the Table of Contents.

5.2 OB/OD AREAS - MAIN DEMOLITION AREA (SWMU 1)

5.2.1. Description of the OB/OD Area

5.2.1.1. The Open Burning/Open Detonation (OB/OD) Area is located in the southwestern corner of the TEAD-N facility. Figure 3-1 shows the location of the OB/OD Area with respect to the rest of the facility. For the purposes of this investigation, the OB/OD Area was divided into five separate subunits based on previous site activities. These subunits are as follows:

- The Main Demolition Area SWMU 1
- The Cluster Bomb Area SWMU 1a
- The Burn Pad SWMU 1b
- The Trash Burn Pits SWMU 1c
- The Propellant Burn Pans SWMU 1d


5.2.2. Site Conditions

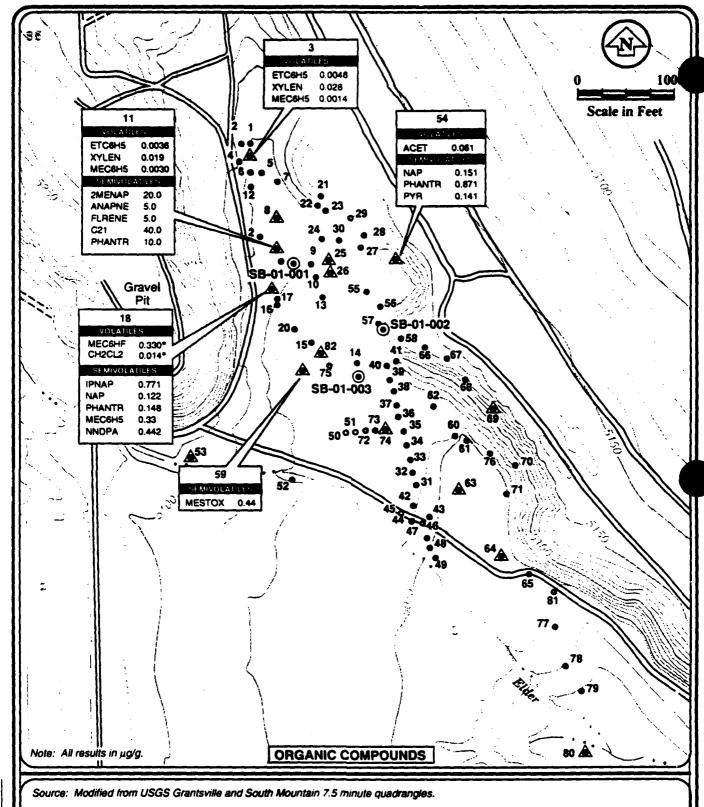
5.2.2.1. The OB/OD Area (including the Main Demolition Area) is located near the eastern base of the Stansbury Mountains in an erosional dissection of a delta formed by Pleistocene Lake Bonneville (AEHA, 1984). Soils underlying the Main Demolition Area have been mapped by the U.S. Soil Conservation Service as Hiko Peak Series and are composed of sands, silts, and clays developed in alluvium from mixed rock types. Depth to bedrock in this area is generally greater than 700 feet. The depth to the regional groundwater table is over 700 feet based on a soil boring located immediately east of SWMU 1, which was drilled to 709 feet bgs without encountering the water table (ERTEC, 1982). Characteristic of this semi-arid climate, surface water flow is limited to infrequent heavy precipitation events. Drainage is to the south and southwest into Box Elder Wash, which runs east and eventually north for several miles before exiting the facility at the northern boundary.

5.2.2.2. The OB/OD Area subunits are treated individually in the following sections of the contamination assessment. Figure 5-2-1 shows the OB/OD Area and the locations and approximate boundaries of each of the subunits that comprise SWMU 1.

5.2.3. Main Demolition Area Site Description and Waste Generation

5.2.3.1. The Main Demolition Area (SWMU 1) comprises the largest part of the Open Burning/Open Demolition Area and has been used since the 1940s for various

demilitarization activities, including munitions detonation, propellant flashing, and the disposal of various materials from the TEAD-N facility by burning and/or burial. SWMU 1 is currently used for emergency demilitarization of bombs and other explosive munitions. Past activities have included open burning and open detonation of numerous types of munitions and other items in open trenches. As trenches became full of debris and residue, they were backfilled, and new trenches were excavated. Burial is no longer used as a means of waste disposal.


5.2.4. Previous Sampling and Phase I RFI Sampling and Results

5.2.4.1. Previous Investigations. Previous investigations at the Main Demolition Area consist mainly of a four-phase investigation by the U.S. Army Environmental Hygiene Agency (AEHA) during the period 1982-85. This investigation was one of many conducted at OB/OD areas nation-wide to evaluate the potential for environmental contamination. The focus of this AEHA study was mainly the Burn Pad and Trash Burn Pits (SWMUs 1b and 1c) to the east. Surface and subsurface soil samples were collected during Phases II and IV of the study, and results showed the presence of metals and low levels of explosive compounds (AEHA, 1984), but sample locations are not known precisely. See Sections 5.4 and 5.5 (SWMUs 1b and 1c) for more information on the AEHA sample results.

5.2.4.2. Phase I RFI Sampling and Results. Test pits were sampled and logged at 82 locations in the Main Demolition Area during the Phase I RFI. Two soil samples were collected from each test pit for a total of 164 soil samples collected at depths ranging from the ground surface to 10 feet. Five soil samples were submitted for explosive reactivity testing. In addition, three 100-foot soil borings were completed at SWMU 1, and seven soil samples were submitted for analysis from each. Contaminants detected include significant concentrations of metals, minor concentrations of VOCs and SVOCs, and several explosive compounds.

5.2.4.3. Figures 5-2-2 through 5-2-5 show the contaminants found above the background levels. Where both samples from a given test pit showed contamination, the highest value is shown on the figure. This convention is followed for all the test pits at each SWMU at the OB/OD Area. Due to space limitations, Figure 5-2-2 shows only the results for the metals barium, cadmium, and lead, which were previously identified by AEHA as being the metals of concern at the OB/OD Area. Sample results for other metals considered to be contaminants are shown in Table 5-2, included at the end of Section 5.0.

2942.0140

EXPLANATION

- Test pit location
- ▲ Test pit sampled for VOCs/SVOCs
- Deep soil boring location
- * Data considered estimated. Refer to Appendix C.

TEAD-N PHASE I RFI
MAIN DEMOLITION AREA
(SWMU 1)
TEST PIT SOIL SAMPLES
FIGURE 5-2-3

NO. 2942.0140

5.2.5. Contamination Assessment

5.2.5.1. Based on the results of the Phase I RFI sampling program, it appears a release of contaminants has occurred to the surface and shallow sub-surface soils at the Main Demolition Area. Metals above the RFI background levels were detected in most of the soil samples across SWMU 1. Several samples also exceeded the proposed action level thresholds of 4000 µg/g for barium and 40 µg/g for cadmium. The source of much of this metals contamination is the extensive amount of buried metallic debris observed in the numerous burial trenches, where the highest analytical results for metals occurred.

5.2.5.2. Both VOCs and SVOCs were detected in the shallow sub-surface (less than 10 feet bgs) soils at SWMU 1. Of the fifteen pits sampled for organic compounds, six contained detectable concentrations of VOCs and/or SVOCs (Figure 5-2-3). None of the VOCs or SVOCs exceeded the proposed action level thresholds. No surface samples were submitted for VOC/SVOC analysis at SWMU 1. Localized contamination of soils by organic compounds at SWMU 1 may have been caused by the use of fuels for burning munitions or other items.

5.2.5.3. Detectable quantities of several explosives compounds were found across the Main Demolition Area, probably resulting from the extensive history of OB/OD disposal activities that have taken place here. Figure 5-2-4 summarizes the results of the chemical analyses for explosives. Explosives were found at all depths, but appear in the highest concentrations at the surface and near-surface (down to 1 foot bgs). Because of the numerous concentrations of explosive compounds detected, only the concentrations above 5.00 µg/g for most compounds have been indicated in the figure. This level is below available health-risk guidance for all compounds except 2,4-DNT and 1,3,5-TNB. For these two compounds, all results above 2.27 and 3.9 µg/g, respectively, have been shown. These concentrations reflect health-based levels for these compounds in soil (USEPA, 1989 and USEPA, 1992, respectively). In addition, proposed Subpart S action levels for 2,3-DNT and 2,6-DNT isomers are 1.00 µg/g (USEPA, 1990).

5.2.5.4. One soil sample, selected from an area with burn residue, was submitted for dioxin/furan analysis, and none of these compounds were detected. Elevated levels of nitrates, total phosphates, and sulfate were found in many soil samples. It is not known if elevated levels of these compounds are present because of locally higher background concentrations in the OB/OD areas, or if they may result from the OB/OD activities.

5.2.5.5. Although contamination was found in the surface and shallow sub-surface soils at SWMU 1, the results from the three 100-foot boreholes confirm that this contamination does

not persist to depth. The generally fine-grained, alkaline nature of the OB/OD area soils probably tends to inhibit contaminant migration. Vertical migration of contaminants is also minimized by the semi-arid climate present at TEAD-N, where evaporation rates exceed precipitation. These factors, and the depth to groundwater in this area (greater than 700 feet), make it unlikely that a threat to groundwater exists.

5.2.6. Recommendation

5.2.6.1. Based on the results of the Phase I RFI sampling, there is evidence that demilitarization activities at this SWMU have released contaminants to the environment. For this reason, it is recommended that this SWMU be included in future Phase II investigation activities. Specific recommendations for the Main Demolition Area are included in Section 6.0 of this document.

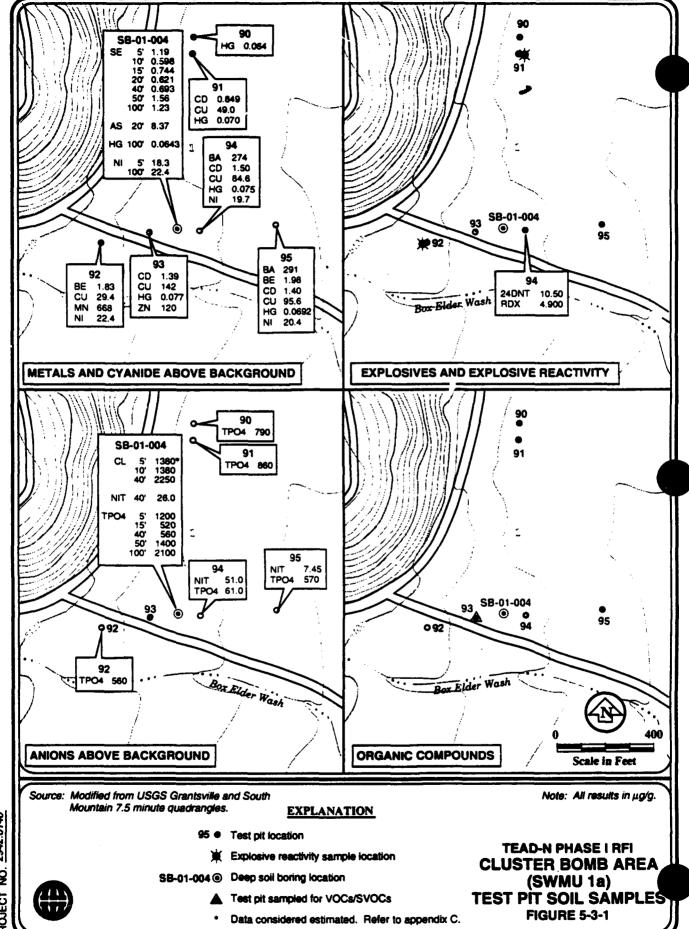
5.3 CLUSTER BOMB DETONATION AREA (SWMU 1a)

5.3.1. Site Description and Waste Generation

5.3.1.1. The Cluster Bomb Detonation Area (SWMU 1a) is located at the OB/OD Area, in the southwestern corner of the TEAD-N facility. It is comprised of two small areas, totaling about 25 acres in size, along the western side of the Main Demolition Area (SWMU-1). Evidence from aerial photographs and field inspection in these areas revealed several small craters where cluster bomb demilitarization was thought to have occurred (Figure 5-2-1). This area was reportedly used during the early and mid-1970s (Rutishauser, 1991). Currently, the area is covered by native vegetation, and SWMU 1a is no longer used for demilitarization activities.

5.3.2. Previous Sampling and Phase I RFI Sampling and Results

5.3.2.1. Previous Investigations. The U.S. Army Environmental Hygiene Agency (AEHA) collected and analyzed four surface soil samples from the area of SWMU 1a in 1981, during their four-phase study of OB/OD areas nationwide. The samples were analyzed for six explosive compounds and for EP Toxicity. Results of these analyses showed concentrations of barium, arsenic, mercury, lead, RDX, 2,4,6-TNT, and TETRYL in the EP Toxicity leachate at levels below regulatory limits or AEHA criteria. Sample locations were not recorded in available documents.


5.3.2.2. Phase I RFI Sampling and Results. Six test pits were excavated, sampled, and logged at the Cluster Bomb Detonation Area during the Phase I RFI sampling. Two soil samples were collected from each test pit for a total of 12 samples. In addition, one 100-foot soil boring was completed, and seven soil samples were collected from various depths. All samples were analyzed for total metals, cyanide, explosive chemicals, and anions, and selected samples were also submitted for VOC, SVOC, and dioxins/furans analysis. Two soil samples from this SWMU were submitted for explosive reactivity tests.

5.3.2.3. Figure 5-3-1 shows the concentrations of metals and cyanide, explosive chemicals, anions, and organic compounds that were detected at concentrations above the RFI background values, and their locations at SWMU 1a. Table 5-3, at the end of Section 5.0, contains a summary of the compounds detected.

5.3.3. Contamination Assessment

5.3.3.1. Based on the results of the Phase I RFI sampling at SWMU 1a, it appears that contaminants have been released to the surface and near-surface soils. Several metals were found at elevated levels in all six test pits, but, with one exception, none were found at levels of concern as quantified by available health-based criteria tables (USEPA, 1989). Mercury was found in all the pits except one, with all results below 0.100 µg/g. Cadmium was found in three of the six pits, with all concentrations less than 2.0 µg/g. For comparison, proposed RCRA Subpart S action levels are 20 µg/g and 40 µg/g for mercury and cadmium in soil, respectively. Beryllium was detected in one sample at a concentration of 1.83 µg/g which exceeds the proposed Subpart S 0.2 µg/g action level. Selenium was detected in all of the samples submitted for the 100-foot boring, although this may reflect natural levels of this metal in deeper soils because it was noted in other deep soil borings at the OB/OD Area and infrequently detected in the surface and shallow soils analyses.

5.3.3.2. One sample from test pit EP-01-093 was selected for VOC and SVOC analysis based on field screening with a photoionization organic vapor detector (PID). It contained only a small amount of the tentatively identified compound (TIC) hexadecanoic acid. Only one sample, from test pit EP-01-094, at 5 feet bgs, contained explosive compounds. The concentration of 2,4-DNT (10.5 μ g/g) in this sample exceeds the health-based criteria for carcinogens in soil for this compound (2.27 μ g/g). The two soil samples submitted for explosive reactivity testing both were found to be nonreactive.

5.3.3.3. All samples were analyzed for the major anions, and some elevated levels of nitrates/nitrites and total phosphates were found. Total phosphates in particular seem to be elevated throughout the deep soil boring. One sample from SWMU 1a was submitted for dioxin/furan analysis. None of these compounds were found.

5.3.3.4. In general, a release of contaminants has occurred at SWMU 1a, although most are present at levels below applicable health-based criteria and draft Subpart S action levels for soil. The exceptions to this are one detection of beryllium (1.98 µg/g) and one of DNT (10.5 µg/g) that exceed the respective Subpart S action level and health-based criteria for these analytes in soil.

5.3.4. Recommendation

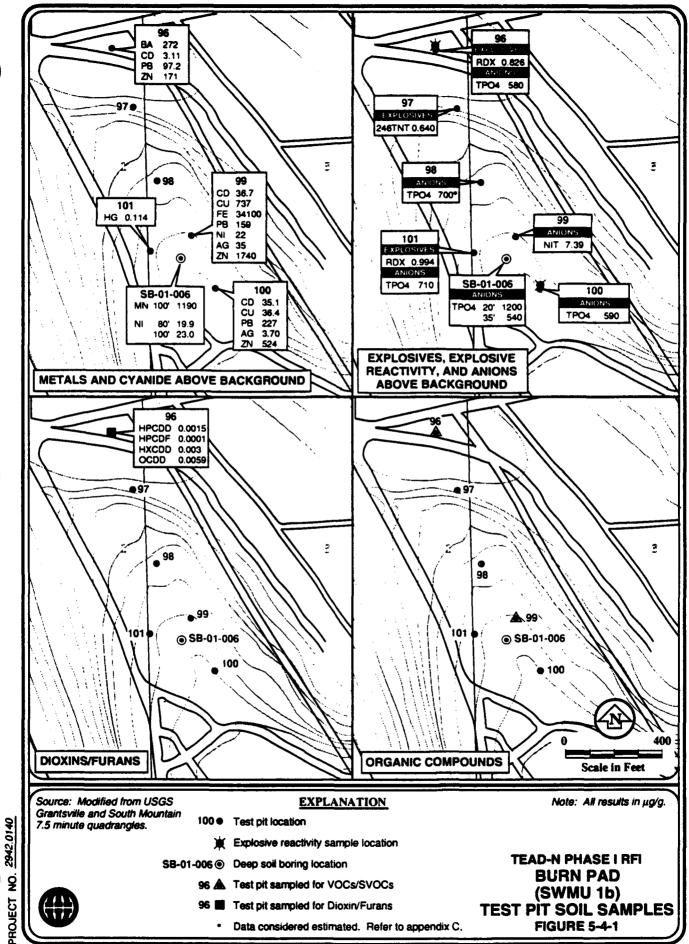
5.3.4.1. Based on the results of the Phase I RFI sampling at the Cluster Bomb Detonation Area, there appears to be a release of contaminants to the environment. However, because of the location of this SWMU relative to the Main Demolition Area (i.e., physically contained within the Main Demolition Area), it is recommended that future investigations of the Cluster Bomb Detonation Area be incorporated into investigations of the Main Demolition Area, and SWMU 1a should not be investigated as a separate sub-SWMU.

5.4 BURN PAD (SWMU 1b)

5.4.1. Site Description and Waste Generation

5.4.1.1. The Burn Pad (SWMU 1b) is located at the OB/OD Area, in the southwestern corner of the TEAD-N facility (Figure 3-1). Figure 5-2-1 shows the location of the Burn Pad with respect to the larger OB/OD Area. It previously consisted of a cleared pad approximately 300 feet by 90 feet in size where propellant was burned in open trenches, and projectiles were flashed. This activity began sometime prior to 1959, and open burning was reportedly discontinued before 1977 (AEHA, 1983). Analyses of aerial photographs from 1959, 1966, and 1978 revealed that five separate trenches were excavated in the pad. The area has since been regraded and revegetated. The Burn Pad is no longer used for any demilitarization activities.

5.4.2. Previous Sampling and Phase I RFI Sampling and Results


5.4.2.1. Previous Investigations. The U.S. Army Environmental Hygiene Agency (AEHA) collected and analyzed fourteen surface and near-surface soil samples from the Burn Pad and its vicinity during its Phase II study in 1981 (AEHA, 1982). The samples were analyzed for six explosive compounds and for EP Toxicity of the eight RCRA metals. Results of these analyses showed concentrations of arsenic, mercury, HMX, and RDX in the EP Toxicity leachate, but at levels below regulatory limits (USEPA, 1988) or AEHA criteria. These previous sample locations were not recorded in available documents.

5.4.2.2. Phase I RFI Sampling and Results. Six test pits were excavated, sampled, and logged at the Burn Pad during the Phase I RFI sampling. Two soil samples were collected from each test pit for a total of 12 samples. Two soil samples from this SWMU were submitted for explosive reactivity testing. In addition, one 100-foot soil boring was drilled, with seven soil samples collected from various depths in the boring. All samples were analyzed for total metals, cyanide, explosive compounds, and anions, and selected samples were also submitted for VOC, SVOC, and dioxins/furans analysis.

5.4.2.3. Figure 5-4-1 shows the concentrations of metals and cyanide, explosives, and anions, dioxins/furans and organic compounds detected at concentrations above the RFI background values, and their locations at SWMU 1b. Table 5-4, at the end of Section 5.0, contains a summary of the contaminants detected.

5.4.3. Contamination Assessment

5.4.3.1. Based on the results of the Phase I RFI sampling at SWMU 1b, it appears that contaminants have been released to the surface and near-surface soils by previous activities. Concentrations of several metals were found in four of the six test pits, but none were present at levels of concern, based on available health-based criteria tables (USEPA, 1989), and none exceeded proposed Subpart S action levels. Test pits EP-01-099 and EP-01-100 showed the highest levels of metals, with both cadmium and lead present at elevated levels. Test pit EP-01-096 also contained these metals, but in lower concentrations. The deep soil boring showed levels of nickel and manganese above the background thresholds for deep soils near the bottom of the boring, but these metals are not of concern at these levels and may represent native soil conditions.

5.4.3.2. Two samples from the Burn Pad (from test pits EP-01-099 and EP-01-096) were submitted for VOC and SVOC analysis based on field screening with a PID. A low concentration of tetrachloroethene was reported in a sample from EP-01-099. However, this compound was detected as a tentatively identified compound (TIC) by the SVOC method and not confirmed by the VOC method and will not be considered in this assessment. A minor amount of a phthalate compound (B2EHP) was also reported from the 35-foot bgs sample from the soil boring, but it also will be disregarded as it is a common laboratory contaminant.

5.4.3.3. Soil samples from two test pits contained the explosive RDX and a sample from a third test pit contained 2,4,6-TNT. Concentrations of these explosives were less than $1 \mu g/g$. Results of two soil samples submitted from SWMU 1b for explosive reactivity testing were both negative.

5.4.3.4. One sample from SWMU 1b (EP-01-096, 3.5 feet bgs), which was collected from an area of burned debris, was submitted for dioxin/furan analysis. Several isomers of dioxins and furans were detected (all less than 0.01 µg/g), and none of the dioxins/furans detected were the tetrachlorinated isomer (TCDD or TCDF), which is the most toxic. However, one dioxin isomer (HXCDD) was detected here at 0.003 µg/g, which exceeds the proposed Subpart S action level for this isomer (0.0001 µg/g). All samples were analyzed for the major anions, and some slightly elevated levels of nitrates/nitrites and total phosphates were found. It is not known if these analytes are naturally-occurring soil constituents or the byproducts of explosive compounds from the previous demilitarization activities conducted here.

5.4.3.5. In general, contaminants are present at SWMU 1b in the surface and near-surface soils. Even though the groundwater underlying SWMU 1b was not sampled, the depth to the water table makes it unlikely that groundwater contamination has occurred due to activities at the Burn Pad. The generally fine-grained and alkaline nature of the site soils, combined with the semi-arid climate, also help to decrease the mobility of the contaminants.

5.4.4. Recommendation

5.4.4.1. Based on the results of the Phase I RFI sampling at the Burn Pad, a release of contaminants has occurred. As the effect on human health and the environment of this release is not known at this time, especially for on-site workers and wildlife, a Phase II evaluation of the existing data is recommended. Specific recommendations for this sub-SWMU are included in Section 6.0.

5.5 TRASH BURN PITS (SWMU 1c)

5.5.1. Site Description and Waste Generation

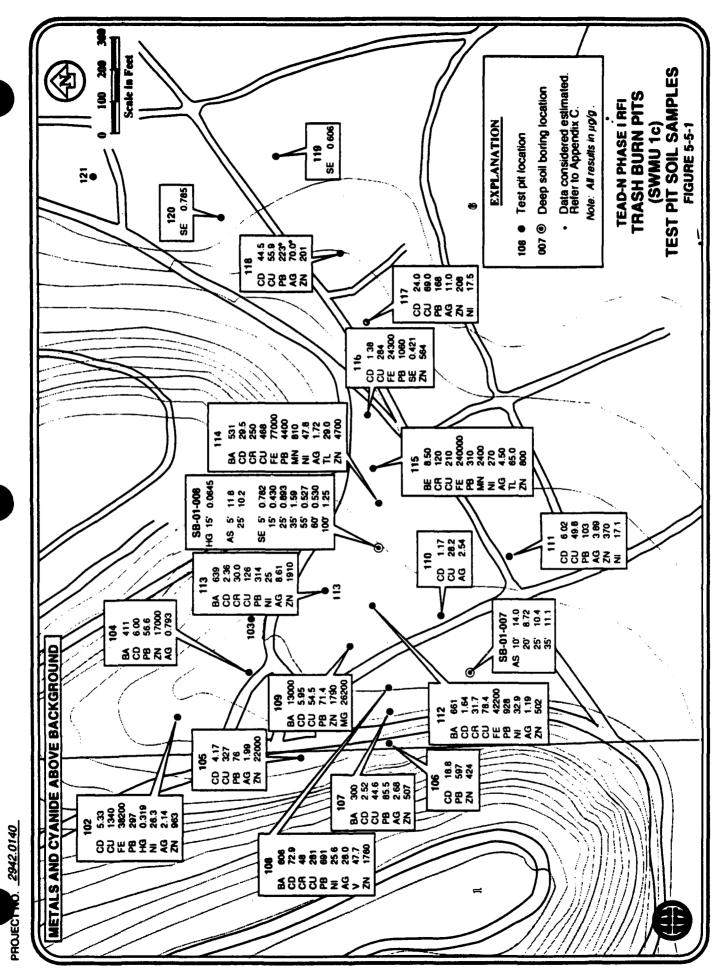
5.5.1.1. The Trash Burn Pits (SWMU 1c) are located in the OB/OD Area in the southwestern corner of the TEAD-N facility (Figure 3-1). Figure 5-2-1 shows the location of the Trash Burn Pits with respect to the larger OB/OD Area. This SWMU consists of an area previously used for open burning of waste packaging material potentially contaminated with explosives. Large pits were excavated using heavy equipment and filled with waste materials to be burned. When the pit was filled with ash and debris, it was covered and regraded, and a new pit was dug. Pits were generally up to several hundred feet long, 8-10 feet wide, and 4-6 feet deep (Rutishauser, 1990). Analysis of aerial photographs of this area shows that activities at SWMU 1c pre-date 1959.

5.5.1.2. Various types of waste have reportedly been burned and disposed of in the Trash Burn Pits. Debris from propagation testing and solvent drums were observed during a previous investigation (AEHA, 1983). Volatile organic compound contaminated wastes were also reportedly disposed of here. Open detonation of munitions is not believed to have occurred at this SWMU (McCoy, 1989). The Trash Burn Pits are no longer used for any disposal activities.

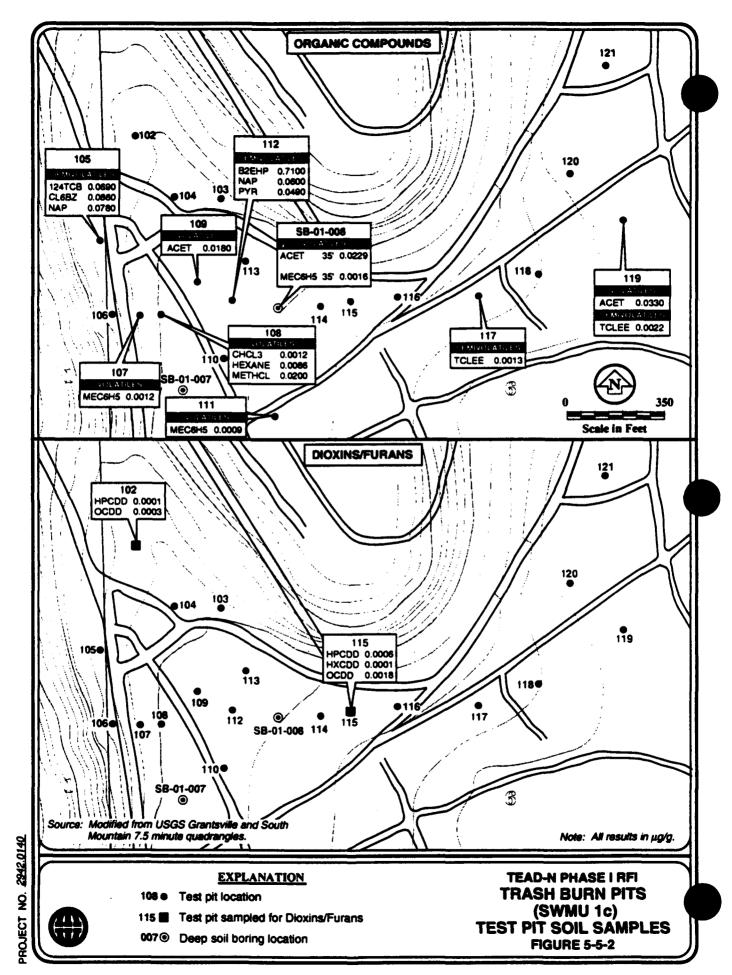
5.5.2. Previous Sampling and Phase I RFI Sampling and Results

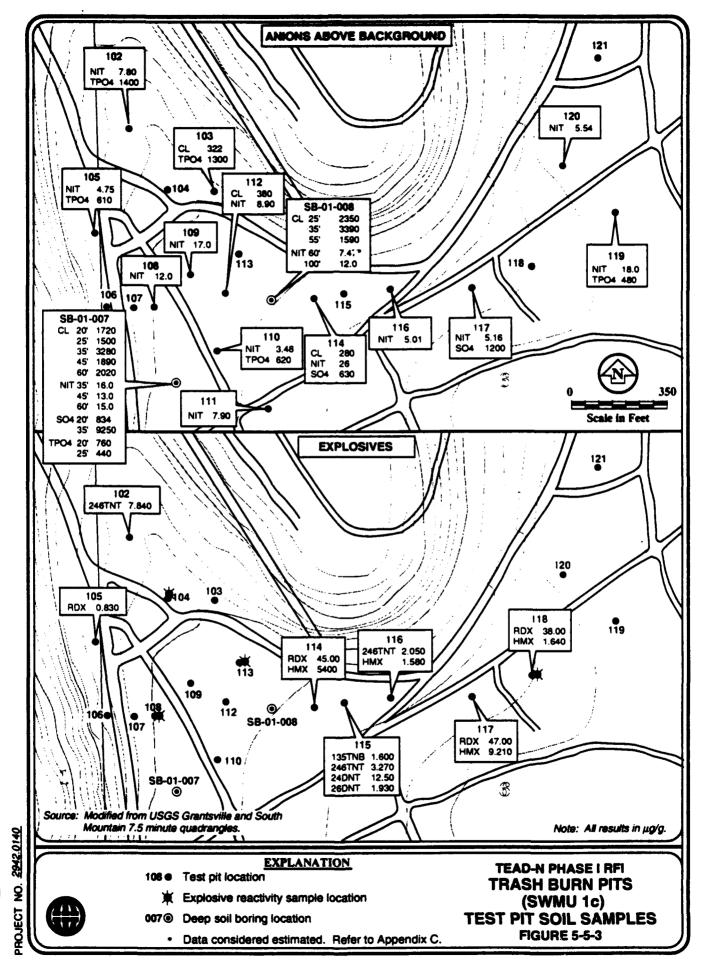
5.5.2.1. Three samples, including one burn residue sample and two soil samples, were collected from the Trash Burn Pits during the AEHA Phase II sampling. Samples were analyzed for EP Toxicity metals, RDX, HMX. 2,4,6-TNT, 2,4-DNT, and 2,6-DNT. Arsenic, barium, mercury, and 2,4,6-TNT were detected in the soil samples (AEHA, 1983). During Phase IV of the AEHA study, 36 soil samples were collected, including eight from surface soil sample locations and 28 from boreholes (down to 20 feet bgs) in the Trash Burn Pits area. Phase IV samples were analyzed for EP Toxicity metals, total metals (PB, CR, CD, AS, AG, BA, HG, and SE), and explosives (HMX, RDX, 2,4,6-TNT, TETRYL, 2,4-DNT, and 2,6-DNT). All EP Toxicity results were below the detection limits. RDX was found in four of the surface soil samples (2.2 mg/kg to 14.9 mg/kg) and HMX was found in one surface soil sample (2.4 mg/kg). These results did not exceed the explosive compound guidelines (1,000 mg/kg) established for the AEHA study. Other compounds that were detected included several metals (AS, PB, CR, CD, and BA). However, arsenic, lead, and chromium were believed to be naturally occurring in the soils. Results of this investigation suggest that the primary

analytes of concern at this site are barium, lead, and cadmium. None of these compounds were detected at levels approaching any present health-based action criteria, however.


5.5.2.2. During the Phase I RFI, twenty test pits were excavated, sampled, and logged. Two soil samples were collected from each test pit, for a total of 40 samples. Four soil samples from this SWMU were submitted for explosive reactivity testing. In addition, two 100-foot soil borings were drilled, with seven soil samples collected from various depths in each boring. All samples were analyzed for total metals, cyanide, explosive compounds, VOCs, SVOCs, and anions, and one selected sample of burn residue was submitted for dioxin/furan analysis.

5.5.2.3. Figures 5-5-1, 5-5-2, and 5-5-3 show the concentrations of metals and cyanide. volatile and semi-volatile organic compounds and dioxins/furans, and anions and explosives that were detected at concentrations above the RFI background values in SWMU 1c. Table 5-5, included at the end of Section 5.0, contains a summary of the contaminants detected.


5.5.3. Contamination Assessment


5.5.3.1. Based on the results of the Phase I RFI sampling at SWMU 1c, contaminants have been released to the surface and near-surface soils by on-site activities. Varying concentrations of several metals were found in seventeen of the twenty test pits, with barium, cadmium, chromium, lead, and zinc being most common. Two of the metals identified by AEHA of greatest concern (AEHA, 1985), cadmium and lead, were present at concentrations up to 73 and 4400 μ g/g, respectively. Two detections of cadmium (test pits 108 and 118) were above the proposed Subpart S action level of 40 μ g/g for cadmium in soil. The deep soil boring SB-01-008 showed some above-background levels of selenium throughout the boring. However, as discussed in Section 5.3, this may be due to naturally-occurring conditions in the deeper soils. Cyanide was not detected at SWMU 1c.

5.5.3.2. Volatile and semi-volatile organic compounds were detected in eight of the twenty test pits and at 35 feet in one of the two soil borings. The VOCs toluene and acetone were detected in several samples while chloroform, hexane and methylene chloride were present in one sample. All VOCs were found in concentrations less than 1 μ g/g, and generally less than 0.1 μ g/g. These levels are more than 100 times less than the health-based criteria and proposed Subpart S action levels. The highest concentration for an SVOC was bis (2-ethylhexyl) phthalate at a concentration of 0.710 μ g/g in pit EP-01-112. This level is below the proposed Subpart S action level of 50 μ g/g. Other SVOCs detected include naphthelene,

5-19

- 1,2,4-trichlorobenzene, hexachlorobenzene and pyrene at concentrations below 0.1 mg/g. Of these compounds, only 1,2,4-trichlorobenzene has a proposed action level (2000 μ g/g). Several trace concentrations of the VOC trichlorofluoromethane were detected in seven test pit samples, but have not been included here due to the probability that they resulted from laboratory contamination (e.g., a possible refrigerant leak).
- 5.5.3.3. Two samples from SWMU 1c (EP-01-102, 3.5 feet bgs and EP-01-115, 5.5 feet bgs), were collected from an area of buried debris and submitted for dioxin/furan analysis. Low concentrations (i.e., less than $0.002 \,\mu g/g$) of hepta-, octa-, and hexachlorodioxins were found. None of these compounds were the tetrachlorinated isomer, but one hexachlorodioxin (HXCDD) result from test pit 115 of $0.0001 \,\mu g/g$ equaled the proposed Subpart S action level for that isomer.
- 5.5.3.4. All samples were analyzed for the major anions. Concentrations of nitrates/ nitrites, total phosphates, and chloride were found above background in twelve of the twenty test pits, as well as both soil borings. These could be due to natural conditions or could be the byproducts of explosive compounds from the previous demilitarization activities conducted here. The soil borings in particular show elevated chloride concentrations down to about 60 feet bgs, but these elevated values are likely due to naturally-occurring conditions in the deeper soils.
- 5.5.3.5. Seven test pits were found to contain explosive compounds in the soil, with a sample from test pit EP-01-114 having the highest concentration of 5400 μ g/g of HMX. Explosive compounds were found in the soils at all depths sampled in the test pits, ranging from surface to 9.5 feet bgs. One sample from test pit EP-01-115 contained 12.5 μ g/g of 2,4-DNT and 1.93 μ g/g of 2,6-DNT which exceed the respective health-based criteria and proposed Subpart S action levels of 2.27 μ g/g and 1.0 μ g/g for these isomers of DNT.
- 5.5.3.6. In general, contaminants are present at SWMU 1c at various levels in the surface and near-surface soils. Even though the groundwater underlying SWMU 1c was not sampled, the depth to the water table here makes it unlikely that groundwater contamination has occurred due to activities at the Trash Burn Pits. The generally fine-grained and alkaline nature of the site soils, combined with the semi-arid climate, also help to decrease the mobility of the contaminants present.

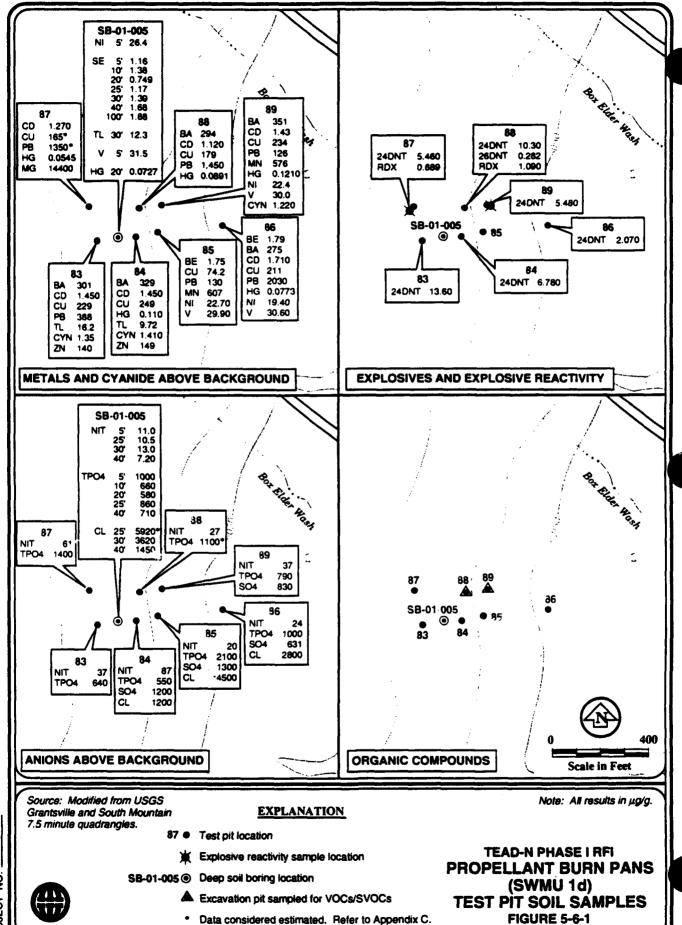
5.5.4. Recommendation

5.5.4.1. Based on the results of the Phase I RFI sampling at the Trash Burn Pits, a release of contaminants has occurred. As the effect on human health and the environment of this release is not known at this time, especially for on-site workers, a Phase II evaluation of the

existing data is recommended. Specific recommendations are included in Section 6.0 of this report.

5.6 PROPELLANT BURN PANS (SWMU 1d)

5.6.1. Site Description and Waste Generation


5.6.1.1. The Propellant Burn Pans (SWMU 1d) are located at the OB/OD Area in the southwestern corner of the TEAD-N facility (Figure 3-1). Figure 5-2-1 shows the location of the Burn Pans with respect to the larger OB/OD Area. This SWMU consists of an area of approximately 600 feet by 200 feet which has been cleared of vegetation and equipped with eight large steel "pans". Bulk propellant scheduled for disposal is loaded into the pans and ignited with fuses. The propellant material burns down to a fine ash, which is then containerized and handled as a hazardous waste. The propellant handling and burning is conducted according to all AEHA recommended best management practices (AEHA, 1987). The pans are covered between burns to prevent precipitation from accumulating in them.

5.6.1.2. The only wastes disposed of at SWMU 1d are the propellants that are burned here. During the Phase I RFI field program, the Propellant Burn Pans were used frequently.

5.6.2. Previous Sampling and Phase I RFI Sampling and Results

5.6.2.1. Previous Investigations. No previous sampling activities have been conducted at SWMU 1d, except as associated with the larger OB/OD Area. The U.S. Army Environmental Hygiene Agency (AEHA) collected and analyzed several soil samples from the OB/OD Area during the period 1981-84, but available documents do not identify the exact locations of these samples. The Propellant Burn Pans were not in operation prior to the late 1980s (Rutishauser, 1990).

5.6.2.2. Phase I RFI Sampling and Results. Seven test pits were excavated, sampled, and logged at the Propellant Burn Pans during the Phase I RFI sampling. The test pits were excavated adjacent to and between the burn pans, and two soil samples were collected from each test pit for a total of 14 samples. Two soil samples from this SWMU were submitted for explosive reactivity testing. In addition, one 100-foot soil boring was drilled, with seven soil samples collected from various depths in the boring. All samples were analyzed for total metals, cyanide, explosive compounds, and anions, and one selected sample containing ash residue was submitted for dioxin/furan analysis. Two samples were submitted for VOC and SVOC analyses. Figure 5-6-1 shows the concentrations of metals and cyanide, explosives, anions, and organic compounds that were detected at concentrations above the RFI

background values, and their locations at SWMU 1d. Table 5-6, included at the end of Section 5.0, contains a summary of the contaminants detected.

5.6.3. Contamination Assessment

5.6.3.1. Based on the results of the Phase I RFI sampling at SWMU 1d, it appears that contaminants have been released to the surface soils by the ongoing open burning activities. Varying concentrations of several metals were above the RFI background thresholds in all seven of the test pits, with barium, cadmium, copper, and lead being most common. Samples from three of the test pits also contained elevated levels of cyanide. Of the 14 test pit samples submitted for metals analysis, only surface soils contained elevated levels of metals, indicating that the metals contamination is almost exclusively on the ground surface. The metal detected at the highest concentrations at SWMU 1d is lead, with one sample containing 2,030 µg/g. The elevated concentrations of lead in the surface soils are probably related to the presence of lead aside as a constituent of the propellants that are burned. Elevated levels of beryllium above the proposed Subpart S action level of 0.2 µg/g were present in two of the test pits. The deep soil boring SB-01-005 showed some detections of selenium above background throughout the boring although, as discussed in Section 5.3, this is not necessarily related to SWMU 1d activities since no selenium above the background threshold was detected in the test pit soil samples.

5.6.3.2. Six of the seven surface soil samples from the test pits contained explosive compounds, with 2,4-DNT detected in all six samples. Concentrations of this isomer in five of the samples exceeded the proposed health-based criterion of 2.2 7 µg/g for 2,4-DNT compounds in soil. Of the two soil samples submitted for explosive reactivity, neither was explosively reactive. No explosive compounds were detected in the subsurface soils.

5.6.3.3. One sample from SWMU 1d (EP-01-088), which was collected from the surface, was submitted for dioxin/furan analysis. No dioxins or furans were detected. All samples were analyzed for the major anions, and elevated levels of nitrates/nitrites, total phosphates, sulfates, and chloride were present in all of the test pits. Unlike the metals and explosives detected, elevated levels of these anions were found in both surface and subsurface soils. Concentrations of nitrates/nitrites, total phosphates, and chloride above the background thresholds were detected to about 40 feet bgs in the deep soil boring. Although the levels of these anions are above the upper thresholds determined for background conditions, they could be due to naturally-occurring conditions in the deeper soils.

5.6.3.4. Volatile and semi-volatile organic compounds were not detected in any of the collected samples from SWMU 1d, with the exception of butyl phthalate which was detected in the surface soil sample from test pit EP-01-088. This result is thought to be a product of laboratory contamination, and not an indication of a contaminant release.

5.6.3.5. In general, metals and explosive chemical contamination is present at SWMU 1d in the surface soils, and probably originates from the open burning of propellants in the burn pans. The contamination found at SWMU 1d does not persist at depth, and, in fact, is not present below the top 1 to 2 feet. Even though the groundwater underlying SWMU 1d was not sampled, the depth to the water table here makes it unlikely that groundwater contamination has occurred due to activities at the Propellant Burn Pans. The generally fine-grained and alkaline nature of the site soils, combined with the semi-arid climate, also help to decrease the movement of the contaminants present. The lack of any organics, explosives or elevated metals not thought to be related to background conditions in the soil boring indicates that the levels of contamination present here do not persist at depth.

5.6.4. Recommendation

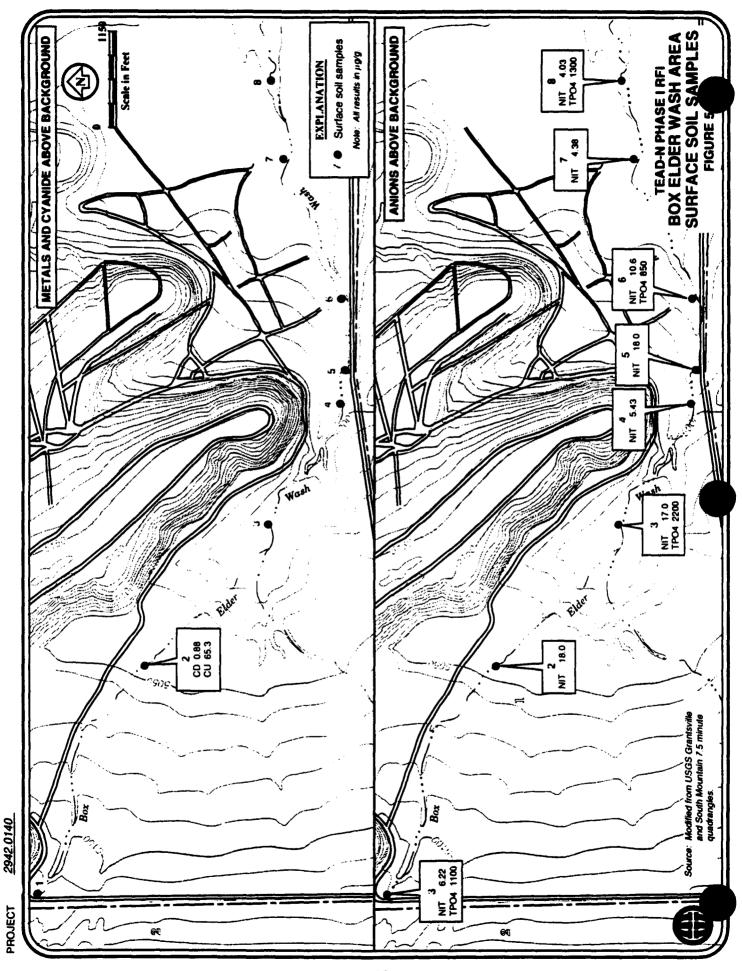
5.6.4.1. Based on the results of the Phase I RFI sampling at the Propellant Burn Pans, there is evidence that demilitarization activities at this SWMU have released metals and explosive compounds to the surrounding surface soils. It is recommended that this SWMU be included in the Phase II evaluations for this reason. Specific recommendations for a Phase II evaluation are included in Section 6.0 of this report.

5.7. BOX ELDER WASH

5.7.1. Site Description and Waste Generation

5.7.1.1. Box Elder Wash is a dry drainage channel that runs from the foothills of the Stansbury Mountains to the west across the TEAD-N facility. It was included in the Phase I RFI sampling activities because during heavy precipitation or snow-melt events it receives surface water runoff from the OB/OD Area. There are no waste-producing activities associated with the wash itself. Figure 3-1 shows the location of Box Elder Wash with respect to the TEAD-N facility. Figure 5-2-1 shows the locations of the various SWMUs at the OB/OD Area, and their relation to Box Elder Wash.

5.7.2. Previous Sampling and Phase I RFI Sampling and Results


5.7.2.1. Previous Investigations. With one possible exception, no previous sampling activities are known to have been conducted in Box Elder Wash. One surface soil sample may have been collected from the wash during the U.S. Army Environmental Hygiene Agency (AEHA) Phase IV study at the OB/OD Area. The results for this sample, listed as the "downgradient stream sediment" sample, showed minor concentrations of several metals in the totals analyses, but at levels that could be considered naturally occurring in the native soil. This soil sample was probably collected from a location downstream of the OB/OD Area, but available documents do not show the exact location.

5.7.2.2. Phase I RFI Sampling and Results. To evaluate whether the OB/OD activities have released contaminants that might be transported by surface water into and along Box Elder Wash, eight surface soil samples were collected from the wash. Samples were collected from locations upstream, adjacent to, and downstream from the OB/OD Area SWMUs. All samples were analyzed for total metals, cyanide, explosives, and anions.

5.7.2.3. Figure 5-7-1 shows the concentrations of metals, cyanide, and anions that were detected, and the sampling locations along Box Elder Wash. Table 5-7, included at the end of Section 5.0, contains a summary of the detected contaminants.

5.7.3. Contamination Assessment

5.7.3.1. Based on the results of the Phase I RFI sampling along Box Elder Wash, no soil contamination has occurred. The contaminants present at the various SWMUs at the OB/OD Area do not appear to have been transported by surface water runoff into or along this wash. The only metals detected above the background thresholds were cadmium and copper, and the concentrations of these metals are just slightly above the upper thresholds for background. No explosives were detected. The concentrations of major anions in some of the samples, while above the statistically-generated background values for facility soils, are not considered a concern here in the absence of other contaminants. Even though no sub-surface samples were collected in Box Elder Wash, it is considered unlikely that contaminants originating from surface water runoff would penetrate to the sub-surface without affecting the surface soils.

5.7.4. Recommendation

5.7.4.1. Since no significant release of contaminants has occurred into or along Box Elder Wash from the OB/OD Area activities, no further action is recommended here.

5.8 SAND BLAST AREA (SWMU 4)

5.8.1. Site Description and Waste Generation

5.8.1.1. Three sand blast areas are present in the maintenance area of TEAD-N. They are located in Buildings 615, 617, and 600, where sand blast media are reused until they lose their effectiveness. The spent media have the consistency of a fine dust and are collected for temporary storage in dumpsters prior to removal by a hazardous waste contractor for off-site disposal. There are three types of sand blast media used at TEAD-N: steel grit, ground walnut shells, and glass beads.

5.8.2. Site Conditions

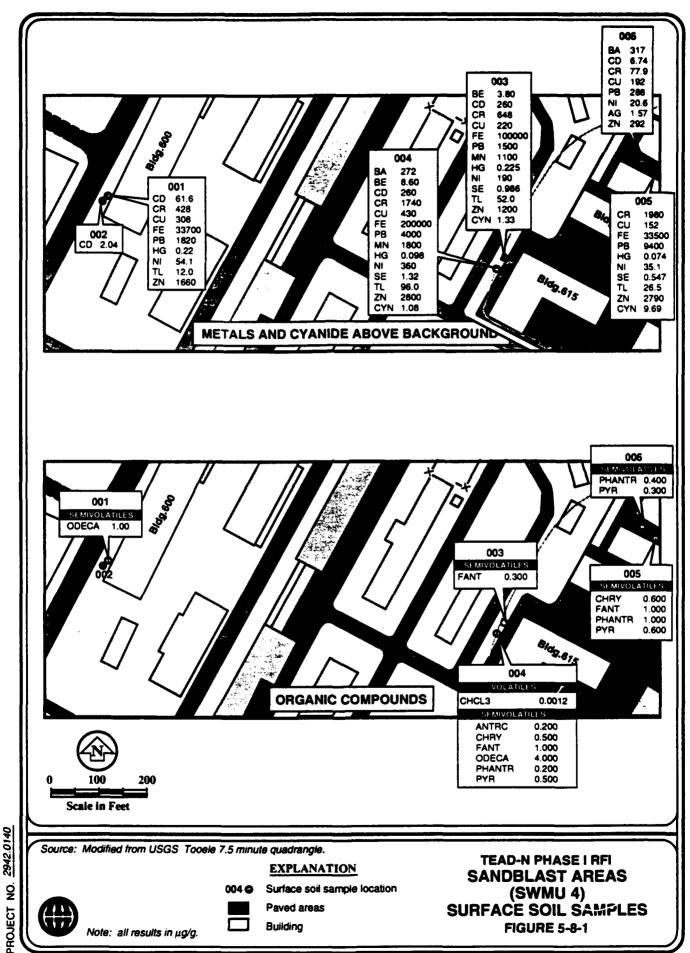
5.8.2.1. The used sand blast media are directed into sealed dumpsters that lie outside the buildings. Since the dumpsters are placed on concrete slabs that are surrounded by asphalt parking lots and roadways, there is little or no exposed soil in the immediate vicinity of these dumpsters. Silty gravels of the Abela Series are present beneath the maintenance area (USSCS, 1991). Depth to bedrock is estimated to be greater than 500 feet, and the depth to groundwater is approximately 300 feet bgs. Groundwater flow beneath the maintenance area is toward the northwest. Surface water runoff patterns have been modified locally in the maintenance area by construction of parking lots and drainage ditches. However, the topography beneath the maintenance area slopes toward the northwest.

5.8.3. Previous Sampling and Phase I RFI Sampling and Results

5.8.3.1. Previous Sampling. Previous sampling of this SWMU is limited to analyses of used sand blast media samples collected by the TEAD Environmental Management Office personnel. The results of their sampling found that the spent steel dust contained barium, cadmium, lead, and nickel but no concentrations were above the threshold for characterizing a waste as hazardous according to the EP Toxicity analysis. The spent walnut dust also contained barium, cadmium, chromium, and lead. Total lead and chromium concentrations were 17,000 $\mu g/g$ (1.7 percent) and 3,000 $\mu g/g$ (0.3 percent), respectively. EP Toxicity levels of

chromium in the walnut dust exceeded the threshold for characterizing a waste as hazardous (greater than 5 mg/L). No analytical results of the spent glass beads were available.

5.8.3.2. Phase I RFI Sampling and Results. Two samples were taken from near each of the spent sand blast media collection points (six total). Nearby surface soils and surface water runoff pathways were sampled and all samples were analyzed for VOCs, SVOCs, and metals. Analytical results from these samples are shown in Figure 5-8-1. Sampling results are also summarized in Table 5-8 located at the end of Section 5.0.


5.8.4. Contamination Assessment

5.8.4.1. Based on the results of the Phase I RFI sampling program, it appears that contaminants have been released to the surface soils in the vicinity of the spent sand blast media collection points. Concentrations of metals above background levels were detected in all six of the samples collected. Metals detected frequently included cadmium, which ranged up to 260 μ g/g, lead which ranged up to 9,400 μ g/g, and barium which was present in concentrations up to 317 μ g/g. Several other metals were also detected, and cyanide was detected in concentrations up to 9.69 μ g/g. Proposed Subpart S soil action levels for beryllium and cadmium were exceeded in four of the six samples.

5.8.4.2. Organic compounds were also present in several of the samples collected. VOCs were limited to one detection of chloroform at 0.0012 μ g/g which is well below the proposed Subpart S action level of 100 μ g/g. SVOCs were detected in five samples of six soil samples. These were mostly polyaromatic hydrocarbons which are a likely constituent in the paints present in the spent sand blast media. Concentrations of the polyaromatic hydrocarbons ranged from 0.2 μ g/g to 4 μ g/g. In addition, five of six soil samples showed trace amounts of toluene, phthalates, and/or TCF, but these results are attributed to probable lab contamination. The toluene results are qualified as "Not Detected" due to associated method blank contamination.

5.8.5. Recommendation

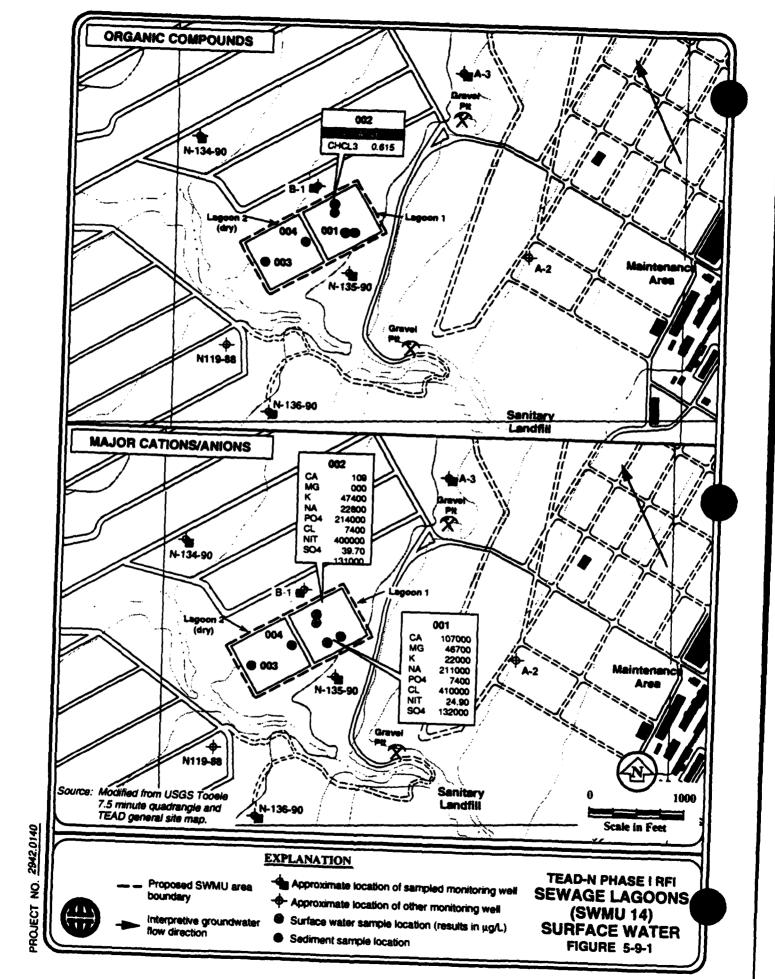
5.8.5.1. Based on the results of the Phase I RFI sampling, it appears that the used sand blast media collection points are a source of contaminants released to the environment. For this reason, it is recommended that this SWMU be included in future Phase II evaluation activities. Specific recommendations for the Phase II evaluations are included in Section 6.0.

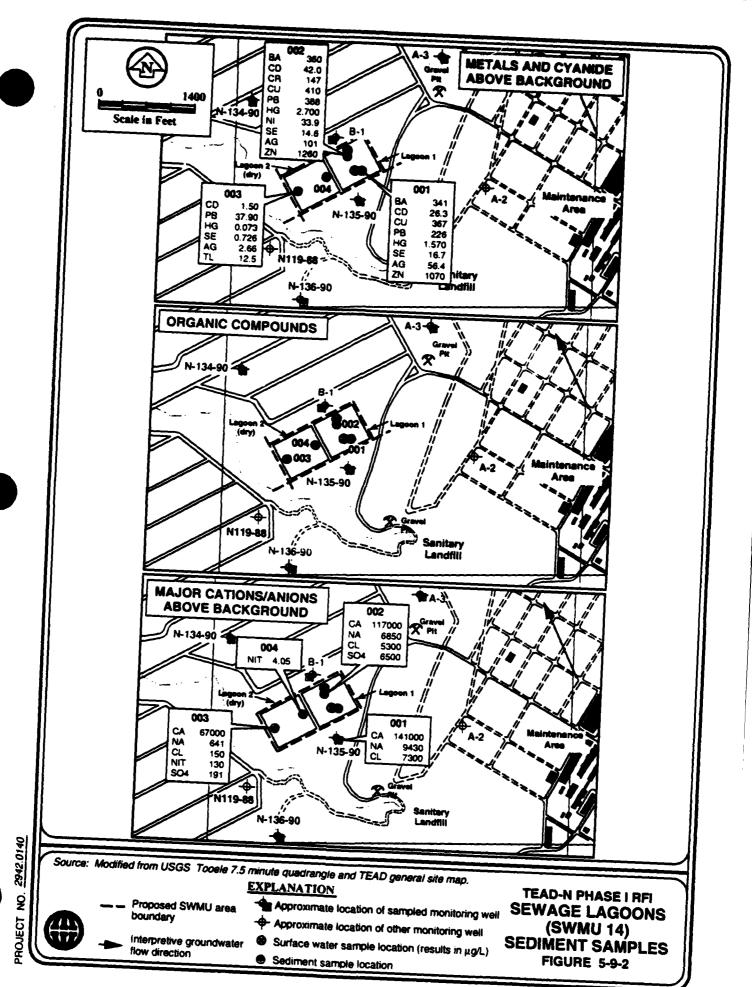
5.9 SEWAGE LAGOONS (SWMU 14)

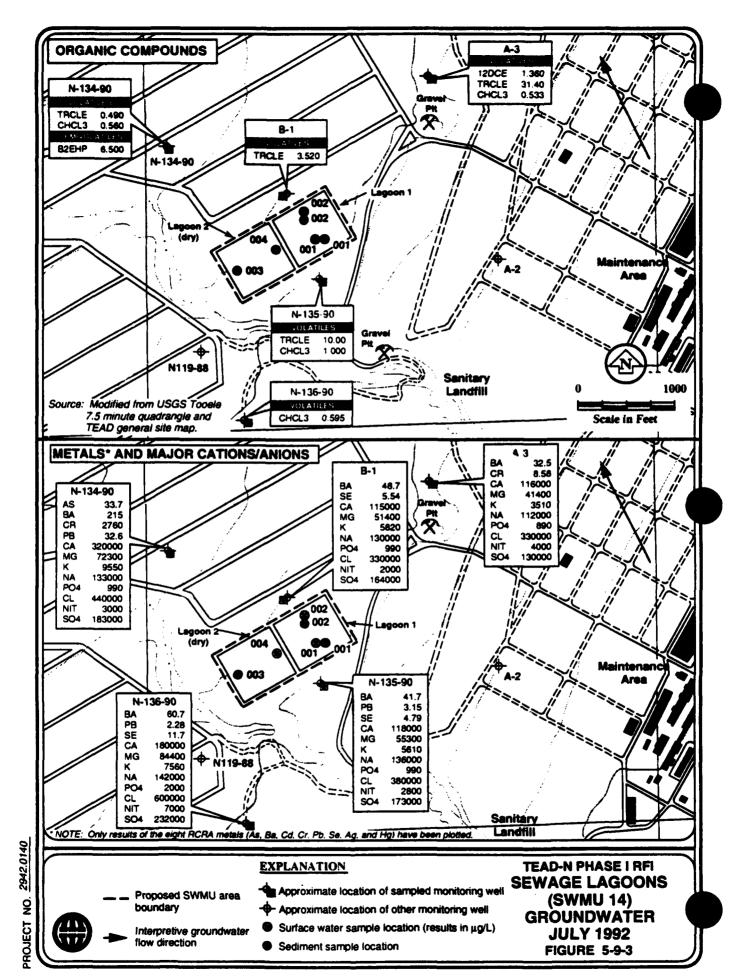
5.9.1. Site Description and Waste Generation

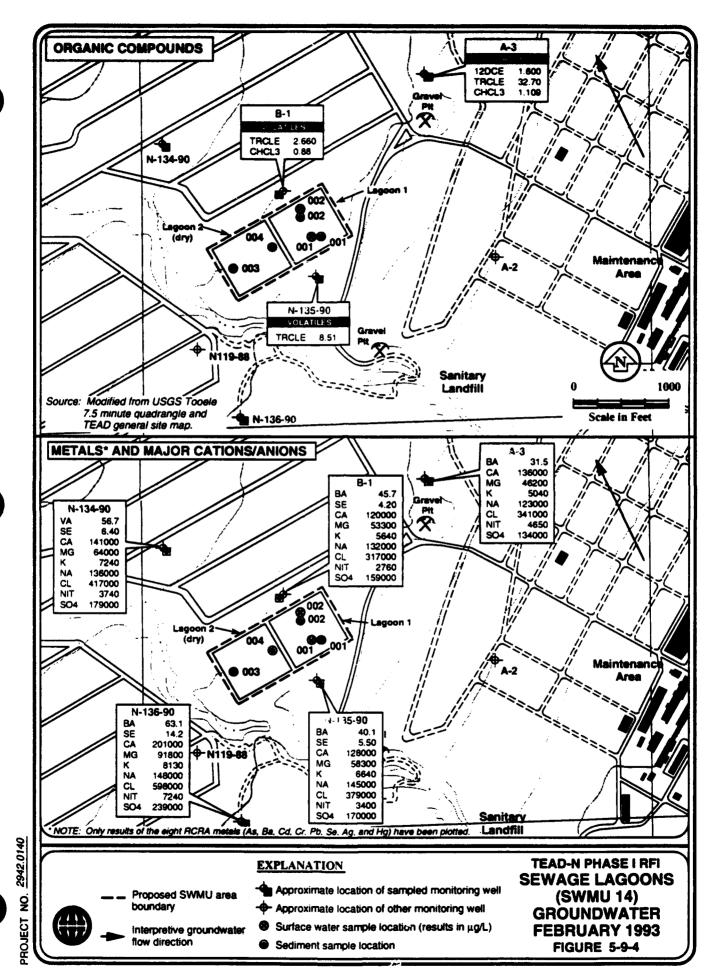
5.9.1.1. The Sewage Lagoons are located on the west side of the maintenance area of TEAD-N approximately 2,000 feet northwest and downgradient of the sanitary landfill (Figure 1-3). Prior to 1974, sewage was discharged to evaporation lagoons located in the landfill and to the arroyo immediately south of the landfill. In 1974, the existing sewage lagoons were constructed and began receiving wastewater from housing and warehouses in the maintenance and administrative areas. Only domestic sewage has been discharged to these lagoons since their construction (Ware, 1992).

5.9.1.2. Each lagoon covers approximately 7.4 acres (617 feet by 518 feet) and is designed to contain wastewater up to 4 feet deep (EA, 1988). The capacity of each lagoon is approximately 9 million gallons and the average daily flow rate to the lagoons is approximately 90,000 gallons per day (ERTEC, 1982).


5.9.2. Site Conditions


5.9.2.1. Previous investigations in this vicinity indicate that soils consist of coarse-grained sands and gravels interlayered with fine-grained silts and clays (JMM, 1988). The depth to bedrock in the lagoon area is estimated at 1,125 feet bgs (ERTEC, 1982). Regional groundwater is approximately 200 feet bgs, and the direction of groundwater flow is toward the northwest (JMM, 1988).


5.9.2.2. The lagoons were designed so that the first lagoon initially fills with wastewater and then discharges to the second lagoon. Under normal operating conditions when evaporation rates are high (spring, summer, and fall), only the first lagoon remains filled, and the second lagoon receives discharge from the first lagoon only during winter months. Although the lagoon bottoms and lower portions of the perimeter berms are lined with native clay, the liner is suspected of leaking (Fox, 1989). In addition, wastewater in the first lagoon often rises above the clay liner, allowing wastewater to discharge into the unlined portions of the perimeter berms. JMM (1988) estimated that 60 to 70 percent of the effluent percolates into the underlying soils.


5.9.3. Previous Sampling and Phase I RFI Sampling and Results

- 5.9.3.1. Previous Sampling. Previous investigations (JMM, 1988; Weston, 1990; and ERTEC, 1982) indicated the presence of VOCs and several metals in monitoring wells both upgradient and downgradient of the sewage lagoons. Monitoring wells immediately upgradient of the sewage lagoons are downgradient of the Sanitary Landfill (SWMUs 12 and 15) and crossgradient from the closed industrial wastewater lagoon outfall ditches. Both of these areas have been sources of groundwater contamination and are known release units under the Post Closure Permit that will be or have been investigated separately.
- 5.9.3.2. A groundwater sample collected by ERTEC (1982) from monitoring well N-4 had elevated concentrations of nitrate, nitrite, nickel, zinc, chloride, fluoride, sulfate, and sodium in addition to detectable levels of trichloroethylene and gross beta radiation. Although the exact location of this well is not known, a review of the ERTEC report indicates it lies between the sanitary landfill and the sewage lagoons. Trichloroethylene was also found both upgradient and downgradient of sewage Lagoon 1. In upgradient monitoring wells N-119-88 and A-2, concentrations were 18.4 µg/L and 3.9 µg/L, respectively. In downgradient wells B-1 and B-4 (located approximately 3300 feet to the north), trichloroethylene concentrations were 13 µg/L and 22 µg/L, respectively (JMM, 1988). Due to the upgradient presence of trichloroethylene, at about the same concentrations as those downgradient, the sewage lagoons are not believed to be a source of this compound. Other VOCs, including 1,1,1-trichloroethane, xylene, benzene, trans-1,2-dichloroethene were detected in monitoring wells upgradient of the lagoons, but not in monitoring wells downgradient of the lagoons.
- 5.9.3.3. Phase I RFI Sampling and Results. The objective of investigating this SWMU was to determine if the sewage lagoons are contributing contaminants to the groundwater beneath this portion of TEAD-N. Two surface water samples and two sediment samples were collected from the north lagoon and two sediment samples were taken from the south lagoon (as the lagoon was dry). Groundwater was sampled from wells N-134-90, N-135-90, N-136-90. A-3, and B-1. All samples were analyzed for VOCs, SVOCs, TRPH, metals, and anions.
- 5.9.3.4. Figures 5-9-1, 5-9-2, 5-9-3, and 5-9-4 show the concentrations of cations, anions, metals, and organic compounds that were detected in the Sewage Lagoon surface water, sediment, and two rounds of groundwater samples. In addition, Figure 5-9-5 shows Stiff diagrams for sewage lagoon surface water and groundwater that are representative of water chemistry based on the July, 1992 and February, 1993 sampling results. Analytical results

of the Sewage Lagoon surface water identified one organic compound (chloroform), and elevated levels of cations and anions. None of these compounds exceeded maximum contaminant levels (MCLs) for drinking water. Sewage Lagoon sediment sample analyses contained two tentatively identified SVOCs, elevated cations and anions, and detectable concentrations of heavy metals. Metals detected in the sediment samples included barium, cadmium, lead, mercury, chromium, selenium, silver, nickel, zinc, and copper. Both upgradient and downgradient groundwater samples contained organic compounds, elevated anions and cations, and detecatable concentrations of metals, including arsenic, barium, chromium, lead, and selenium. Table 5-9, included at the end of Section 5.0, contains a summary of the contaminants that were detected.

5.9.4. Contaminant Assessment

5.9.4.1. Based on the results of the Phase I RFI sampling program, it is apparent from the Stiff diagrams (which represent water chemistry), groundwater here is a calcium chloride type, whereas Sewage Lagoon surface water is of a sodium chloride type. Groundwater from wells adjacent to the Sewage Lagoons (N-135-90 and B-1) has been slightly affected by an increase in sodium content as compared to the other groundwater from upgradient wells (Figure 5-9-5). With the exception of well N-134-90, the concentrations of the major cations and anions showed a slight increase from July, 1992 to February, 1993.

5.9.4.2. Sewage Lagoon wastewater does not appear to be a contributing source of organic compounds to groundwater. Chloroform was detected at or near the detection limit in sewage wastewater but was not detected in sediments. Well N-135-90 (adjacent to the Sewage Lagoons) contained 1 µg/L chloroform in July, 1992, but none during the February, 1993 sampling. Heptadecane was tentatively identified as a SVOC in both the Sewage Lagoon wastewater and sediment but was not identified in any of the groundwater samples. Cyclohexane was also tentatively identified as a SVOC in one of the sediment samples. Other organic compounds detected in groundwater in July, 1992 include the VOCs 1,2-dichloroethylene, trichloroethylene, and EVOCs bis (2-ethylhexyl) phthalate, none of which were identified in any of the Sewage Lagoon surface water or sediment samples at that time. The same VOCs were detected during the second sampling round but, except for well A-3, in lesser concentrations. The presence of these VOCs, specifically trichloroethylene and chloroform, in the upgradient wells (N-136-90 and N-135-90) and cross-gradient well (Well A-3) in equal or greater concentrations than the downgradient wells (B-1 and N-134-90) implies that the source of these VOCs is upgradient of the Sewage Lagoons, possibly the landfill.

5.9.4.3. The metals barium (up to 215 µg/L) and selenium (up to 14.2 µg/L) were found in most of the sampled wells, both in July, 1992 and in February, 1993. Their even concentration distribution ground the Sewage Lagoons (i.e., both upgradient and downgradient) also implies another source. Several metals (see Figure 5-9-2) were found in three of four collected sediment samples, though these metals do not appear to be impacting the local groundwater at this time. The downgradient well N-134-90 showed elevated levels of arsenic, barium, lead, and chromium, which was anomalously high at 2,760 µg/L, during the July, 1992 sampling round. These metals concentrations were not detected during the February, 1993 sampling, however.

5.9.5. Recommendation

5.9.5.1. Based on the results of the Phase I RFI sampling, there is evidence that the groundwater chemistry is being affected by recharging wastewater, although the Sewage Lagoons do not appear to be contributing organic compounds or elevated metals to groundwater. Metals in the lagoon sediments may migrate into underlying soils or groundwater. Since the soils underlying the Sewage Lagoons were not investigated during Phase I activities, it is recommended that SWMU 14 be included in future Phase II investigations, including additional sampling, with a focus on the soils under the lagoon liner. Specific recommendations are included in Section 6.0.

5.10 AED DEMILITARIZATION TEST FACILITY (SWMU 19)

5.10.1. Site Description and Waste Generation

5.10.1.1. The Ammunition and Engineering Directorate (AED) Demilitarization Test Facility is located southwest of the ordnance area in a relatively undeveloped portion of TEAD-N. The facility was constructed in 1973 and is composed of several small buildings, sheds, and a series of protective revetments behind which tests are conducted.

5.10.1.2. Operations conducted at the facility include experimental or pilot plant-type tests intended to determine if new design demilitarization equipment is functional and to develop procedures, techniques, or additional equipment to implement the new design equipment (EA, 1988). Live ammunition and propellants are frequently used during the testing. In addition to demilitarization equipment tests, propagation tests, barricade testing for

explosive lines, and open burning in pans have been conducted at this facility (E. C. Jordan, 1989). Actual tests are conducted intermittently during approximately 30 days each year (EA, 1988).

5.10.2. Site Conditions

5.10.2.1. Soils underlying the facility consist of sands and silty sands of the Berent-Hiko Peak Complex (USSCS, 1991). The approximate depth to bedrock is 250 feet bgs (ERTEC, 1982). The approximate depth of the water table is 630 feet bgs, and the direction of groundwater flow is toward the north northwest (JMM, 1988).

5.10.3. Previous Sampling and Phase I RFI Sampling and Results

5.10.3.1. Because there were no previous investigations conducted at the AED Demilitarization Test Facility, analytical data regarding this facility are limited to those generated during the Phase I RFI. Twelve surface soil samples were sited to provide general coverage of the facility and focus on the active areas. All samples were analyzed for total metals, explosives, VOCs, SVOCs, and anions. In addition, two samples were analyzed for explosive reactivity. The results of these analyses are included in Figure 5-10-1. Table 5-10, included at the end of this section, also summarizes these results.

5.10.4. Contaminant Assessment

5.10.4.1. Based on the results of the Phase I RFI sampling program, it appears that there has been a release of metals, the explosive compound RDX, and several SVOCs. Also, elevated levels of nitrate are present in the surface soils. Minor amounts of phthalates and TCF were found in three of the soil samples, but these are probably a result of lab contamination, and have not been included in the contamination assessment for SWMU 19. None of the detected analytes exceeded applicable draft Subpart S action levels, though several do not have action levels proposed at this time. The levels of metals and nitrate contamination found are low compared to RFI background threshold values with many detections less than two times the established threshold value. The detections of SVOCs are all 1 μ g/g or less.

PROJECT NO. 2942.0140

5.10.5. Recommendation

5.10.5.1. Because there is evidence that the testing operations at this SWMU have released contaminants to the environment, it is recommended that SWMU 19 be included in future Phase II evaluation activities. Specific recommendations are included in Section 6.0.

5.11 AED DEACTIVATION FURNACE SITE (SWMU 20)

5.11.1. Site Description and Waste Generation

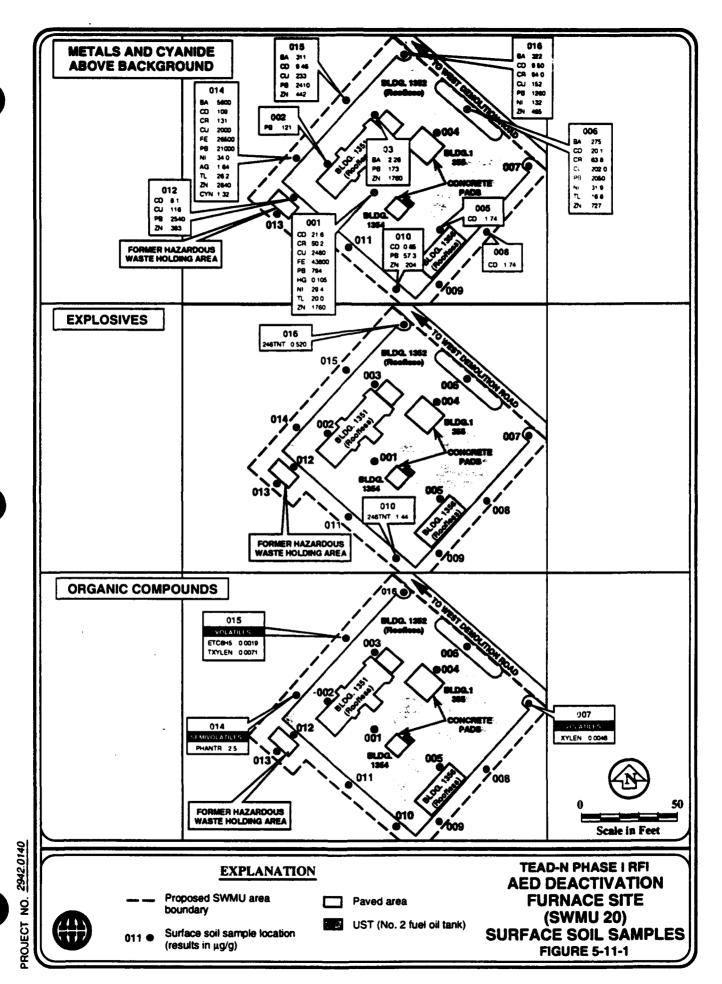
5.11.1.1. The AED Deactivation Furnace Site is located southwest of the ordnance area along the road that links the AED Demilitarization Test Facility (SWMU 19) and the Bomb and Shell Reconditioning Building (SWMU 23). This site is used to test demilitarization procedures for various munitions and is not used as a production facility (Rhea. 1990). The facility has been active since about 1970, and is composed of two furnaces, a large air pollution control system, and a small storage building. The deactivation furnace in Building 1351 is a rotary kiln type that has been used for destruction of high explosive-filled projectiles (up to 155 mm), grenades, propellants, boosters, fuses, white phosphorus rockets, and bulk explosives (EA, 1988). The flashing furnace was added to the AED Deactivation Furnace Site in 1976 and is used for burning residuals remaining in munition shell casings after initial treatment in the deactivation furnace. During an upgrade in 1976, a shared air pollution control system was installed to treat stack emissions from both the deactivation and the flashing furnace (RHEA, 1990). The air pollution control equipment includes duct work from the two furnaces, an after burner, cyclone, gas cooler, baghouse, and wet scrubber.

5.11.1.2. After deactivation, all residual metal parts are certified as clean and sent to the Defense Reutilization and Marketing Office (DRMO) for salvage (EA, 1988). Baghouse dust and ash are collected in 55-gallon drums which are sealed and sent to the 90-Day Storage Yard (SWMU 28) pending analysis and disposal.

5.11.2. Site Conditions

5.11.2.1. Soils underlying the AED deactivation furnace are composed of sands and gravely sands of the Hiko Peak series (USSCS, 1991). The surface around both furnaces and support facilities are paved, and surface water drainage is toward the northeast. The approximate depth of groundwater is 620 feet bgs, and the direction of groundwater flow is toward the northeast (JMM, 1988).

5.11.3. Previous Sampling and Phase I RFI Sampling and Results


5.11.3.1. Previous Investigations. Previous investigations of the AED deactivation furnace site were limited to analysis of samples of baghouse dust and furnace residue. Although the baghouse dust was determined not to be a reactive waste, concentrations of lead, barium, and cadmium have been detected above the thresholds for characterizing a waste as hazardous based on EP Toxicity (AEHA, 1985). EP Toxicity concentrations of cadmium (206 mg/L) were detected in baghouse dust after an incineration test of 20 mm cartridges. Concentrations of lead in baghouse dust sampled after performing incineration tests of 4.62 mm and 30 caliber cartridges resulted in concentrations of 5.2 mg/L and 4.7 mg/L lead, respectively, in the EP Toxicity extract (the hazardous waste threshold is 5.0 mg/L). In addition to the elevated concentrations of lead and cadmium, one sample of furnace residue also contained 440 µg/g total thallium.

5.11.3.2. Phase I RFI Sampling and Results. Sixteen surface soil samples were collected from beneath the parking lot and around the perimeter of the AED Deactivation Furnace Site. All samples were analyzed for total metals, explosives, VOCs, and SVOCs. A visual summary of the analytical results is presented in Figure 5-11-1. A tabular summary is included in Table 5-11 at the end of this Section 5.0.

5.11.4. Contaminant Assessment

5.11.4.1. Based on the results of the Phase I RFI sampling, it appears that there has been a release of metals to the surface soils in the vicinity of the AED Deactivation Furnace Site. Concentrations of metals above the RFI background levels were detected in 10 of the 16 samples collected. Proposed Subpart S action levels were exceeded for the analytes cadmium, barium, and possibly certain thallium compounds. Lead, which is usually regulated on a site-by-site basis, was detected in concentrations up to 21,000 µg/g.

5.11.4.2. Detectable concentrations of explosives were present in two samples. These concentrations ranged up to 1.44 μ g/g of 2,4,6-trinitrotoluene. Detectable concentrations of VOCs were limited to xylene, ethylbenzene and trichlorofluoromethane (TCF) which were detected at concentrations less than 0.010 μ g/g in two samples and are below the proposed Subpart S action levels. Detections of TCF, as well as small amounts of toluene and dimethyl phthalate in two samples, are probably due to lab contamination, and have not been shown on Figure 5-11-1. Only one sample contained a detectable concentration of the SVOC

phenanthrene, which is a polycyclic aromatic hydrocarbon whose presence is expected in burn residues. Principal contaminants at this site appear to be metals, which are probably due to stack emissions or spillage of baghouse dust or furnace ash.

5.11.5. Recommendation

5.11.5.1. Based on the results of the Phase I RFI sampling, it appears that the demilitarization test activities conducted at this SWMU have released contaminants to the environment. For this reason, it is recommended that this SWMU be included in future Phase II evaluation activities. Specific Phase II recommendations are included in Section 6.0 of this report.

5.12 DEACTIVATION FURNACE BUILDING (SWMU 21)

5.12.1. Site Description and Waste Generation

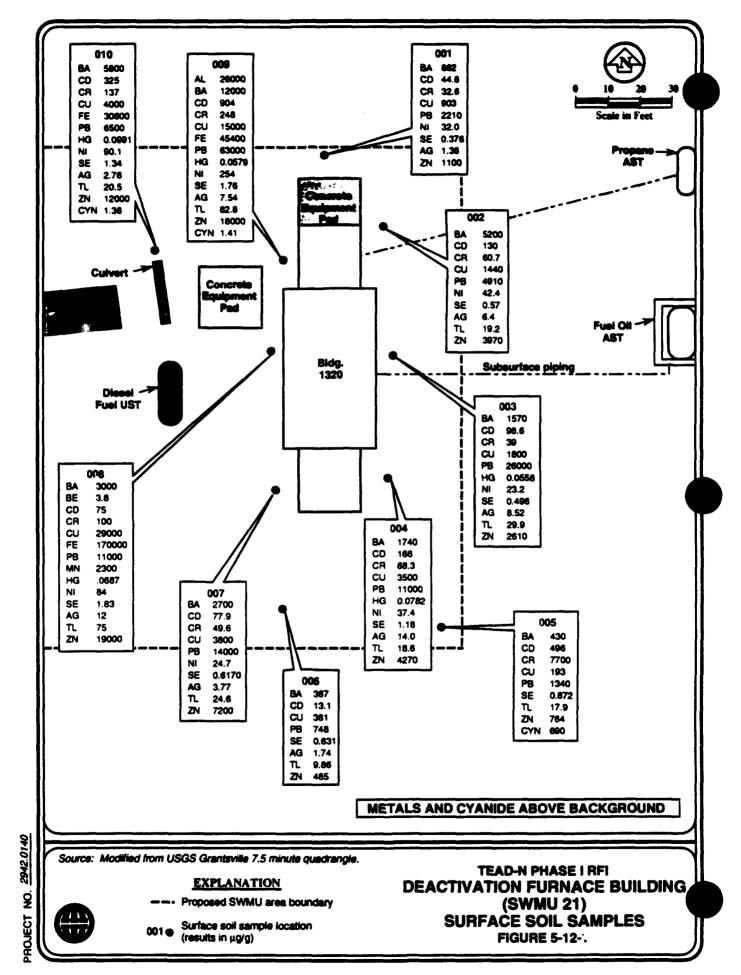
5.12.1.1. The Deactivation Furnace Building (Building 1320) is located in the southwestern portion of TEAD-N, near the southwestern perimeter of the igloo storage area, as shown in Figure 3-1 in Section 3.0. This site is an ammunition demilitarization production facility constructed about 1955. The facility consists of Building 1320, which contains a rotary kiln, and open staging areas around the outside of the building. The kiln, which is an auger-type feed, was installed in 1955 (NUS, 1987). The staging areas are partially asphalt-covered and partially covered with gravely soils. The facility is used for deactivating small arms ammunition (up to 20 millimeter), primers and fuses (RHEA, 1990). Air pollution control equipment, including a cyclone, gas cooler, and baghouse, was installed in approximately 1975 to treat emissions from the furnace (RHEA, 1990). Incinerator residue, which consists of ash and metal debris from the demilitarized munitions, collects at the south end of the furnace where it is loaded into 55-gallon drums that are placed on a concrete pad.

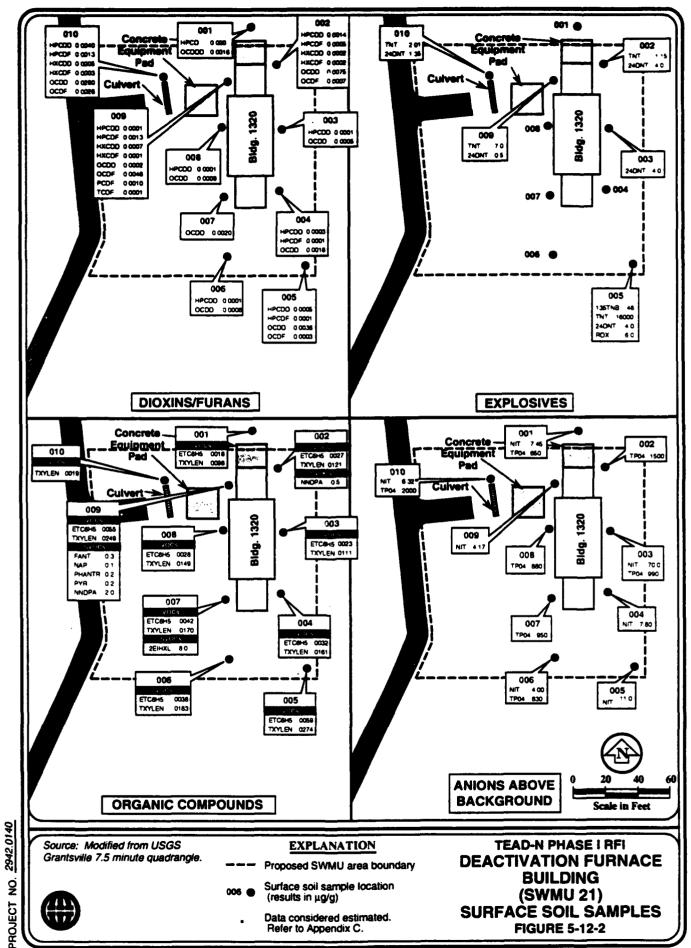
5.12.2. Site Conditions

5.12.2.1. Soils on which the Deactivation Furnace Building is located are composed of sands and silty sands of the Berent-Hiko Peak Complex (USSCS, 1991). The approximate depth to the groundwater table is 320 feet bgs, and the direction of groundwater flow is toward the north/northeast (JMM, 1988). The depth of the bedrock is approximately 500 feet bgs (ERTEC, 1982). The Deactivation Furnace Building is located approximately 1,200 feet

northwest of Box Elder Wash and surface water run-off from the site drains toward the northeast.

5.12.3. Previous Sampling and Phase I RFI Sampling and Results


5.12.3.1. Previous Investigations. Previous investigations at the Deactivation Furnace Building were limited to analysis of baghouse dust and dust from the floor of the facility. Samples were analyzed for toxic characteristics according to TCLP, and the results indicated that the baghouse dust did exhibit the characteristics of a hazardous waste due to elevated levels of cadmium at 60 mg/L and lead at 69 mg/L. The sample also contained elevated levels of cresols and total metals including barium, cadmium, lead, chromium, and nickel (Rasmussen, 1991). The sample of dust from the floor of the facility contained detectable concentrations of lead, barium, and cadmium, but all were below the EP Toxicity limits (Bishop, 1990).


5.12.3.2. Phase I RFI Sampling and Results. Phase I RFI sampling involved collecting 10 samples of surface soils from locations around the outside of the facility and beneath the staging areas. All samples were analyzed for metals, VOCs, SVOC, dioxins/furans, explosives, and selected anions.

5.12.3.3. Contaminants detected in the samples include elevated metals, cyanide, organic compounds (VOCs and SVOCs), dioxins/furans, explosive compounds, and elevated anions. Figure 5-12-1 shows the concentrations of metals and cyanide that were detected above background levels. Figure 5-12-2 summarizes the dioxins/furans, explosives, VOCs, SVOCs and elevated anions that were detected. Table 5-12, at the end of Section 5.0, contains a summary of the analyses.

5.12.4. Contamination Assessment

5.12.4.1. Based on the results of the Phase I RFI sampling program, it is apparent that various types of contaminants have been released to the surface soils at SWMU 21. As shown in Figure 5-12-1, elevated levels of numerous metals were detected in all of the soil samples collected. Concentrations of lead ranged up to $26,000 \,\mu\text{g/g}$, or $2.6 \, \text{percent}$. Cyanide was also detected in three soil samples with one concentration at $690 \, \mu\text{g/g}$. Proposed Subpart S soil action levels were exceeded for barium (three samples), cadmium (nine samples), beryllium (one sample), and possibly various thallium compounds (nine samples).

5.12.4.2. Detectable levels of dioxins/furans were also present in all surface soil samples taken from this SWMU. Sample 010 contained the highest levels of three isomers of both dioxins and furans. Although several of these compounds were detected at concentrations above the one µg/kg benchmark, none of the most toxic isomer, 2,3,7,8-TCDD, was detected. The hexachlorodibenzo-dioxin (HXCDD) isomer was detected in three of the soil samples. All three detections exceeded the draft Subpart S action level for HXCDD of 0.1 µg/kg.

5.12.4.3. Detectable quantities of several explosives were present in five of the ten samples collected. Although most of these compounds were in the one to ten $\mu g/g$ range, one sample from a staging area southwest of the facility, contained 16,000 $\mu g/g$, or 1.6 percent, TNT. Concentrations of 2.4-DNT and 1,3,5-TNB exceeded the proposed health-based criteria of 2.27 $\mu g/g$ and 3.5 $\mu g/g$ for these compounds in three of the soil samples from this SWMU.

5.12.4.4. Both VOCs and SVOCs were also detected in the surface soils at SWMU 21. Ethylbenzene and total xylene were found in all 10 samples, in concentrations below $0.1 \,\mu\text{g/g}$. While Table 5-12 indicates that toluene was also present, the data evaluation has concluded that this compound is a likely laboratory contaminant (see Appendix C). The ethylbenzene and xylenes are a component in many types of fuel. Since the kiln is fired by fuel oil, their presence is probably related to fuel spills or incomplete combustion. Three samples contained detectable concentrations of SVOCs. One of these samples contained six SVOCs ranging from 0.1 to 2.0 $\mu\text{g/g}$, while the other contained 8 $\mu\text{g/g}$ of only one SVOC. The SVOCs detected are polycyclic aromatic hydrocarbons (PAHs) which are typical components of burn residue.

5.12.4.5. Elevated levels of nitrates and/or total phosphates were found in all soil samples. These compounds may be naturally occurring or are possibly present as combustion products from the incineration of explosives.

5.12.5. Recommendation

5.12.5.1. Based on the results of the Phase I RFI sampling, there is evidence that demilitarization activities at SWMU 21 have released numerous types of contaminants to the environment. For this reason, it is recommended that this SWMU be included in the Phase II activities. Specific recommendations are included in Section 6.0.

5.13 DRMO STORAGE YARD (SWMU 26)

5.13.1. Site Description and Waste Generation

5.13.1.1. The Defense Reutilization and Marketing Office (DRMO) primarily coordinates the sale, recycling, and disposal of TEAD-N refuse, and handles the contractual aspects of hazardous waste disposal for TEAD. The DRMO is contained in a fenced yard that covers 60 acres in the eastern section of the Maintenance Area (Figure 3-1). Several corrugated steel storage buildings occupy portions of the site. Storage times vary according to waste types and range from a few months to several years (NUS, 1987).

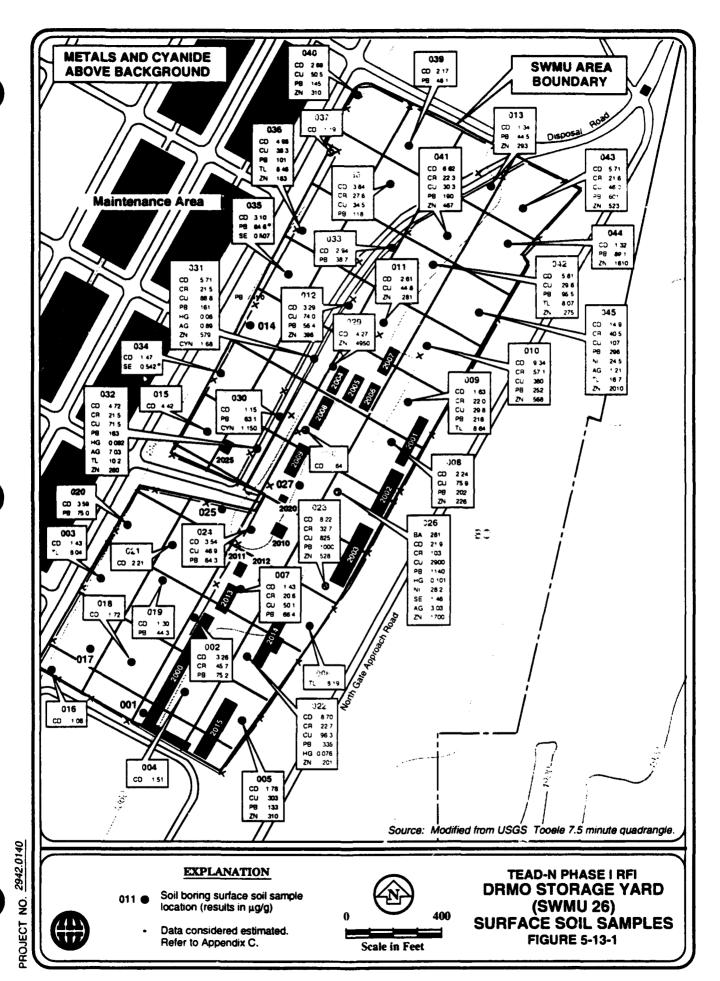
5.13.1.2. According to EPIC aerial photographs, this site became active sometime between 1953 and 1959 (USEPA. 1982). Interpretation of a 1959 photograph describes the site as a storage yard, with noticeable ground staining, debris piles, and container storage. In 1966, the site had been graded and drum storage and ground staining were observed. In a 1981 photograph, a large area of ground staining, as well as drum storage and debris piles, were noted (USEPA, 1982). NUS (1987) reported three ruptured drums during a site inspection.

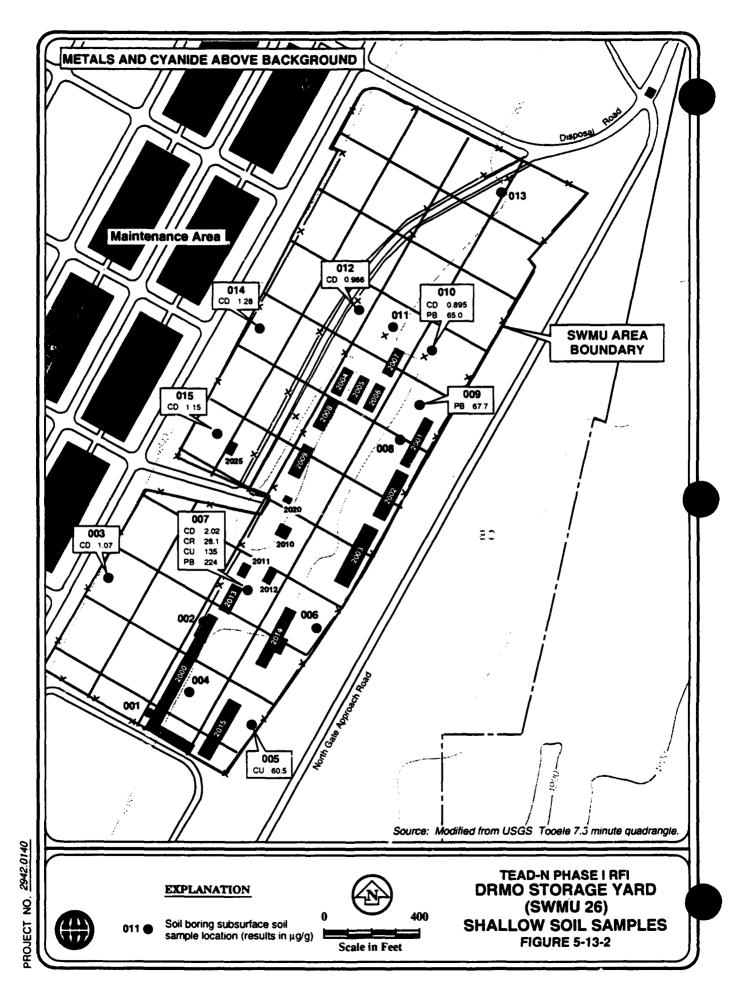
5.13.2. Site Conditions

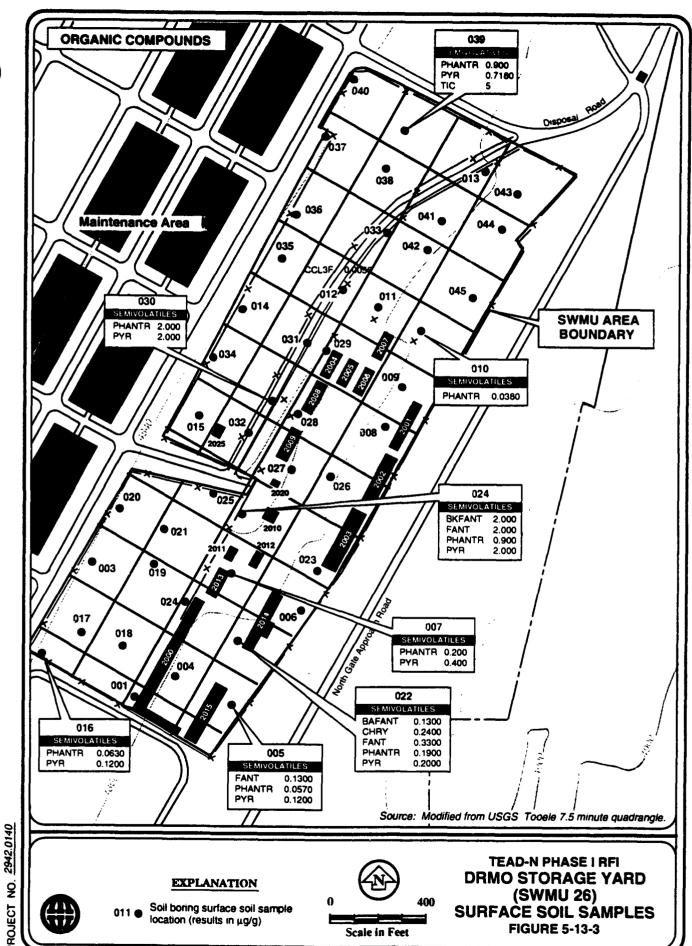
5.13.2.1. The DRMO Storage Yard is flat and unpaved, and the surface has been reworked and leveled. Soils beneath the site consist of interlayered fine-grained silts and clays and coarse-grained gravels and sands assigned to the Abela Soil Series (USSCS. 1991). Bedrock is approximately 700 feet bgs (ERTEC, 1982). The regional water table is approximately 370 feet bgs, and the groundwater flow is to the northwest (JMM, 1988).

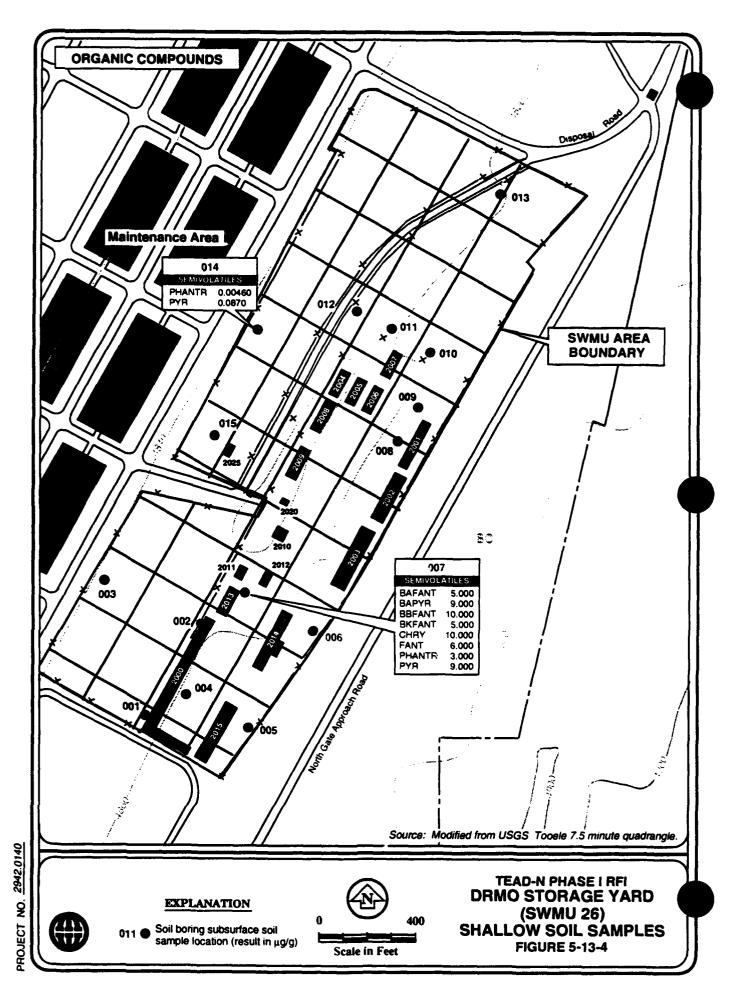
5.13.3. Previous Sampling and Phase I RFI Sampling and Results

5.13.3.1. Previous Sampling. Previous investigations conducted at the DRMO Storage Yard are limited to pre-construction sampling for hazardous waste characteristics according to the TCLP method for metals and VOCs. Five locations were sampled from 0 to 2 feet bgs and two samples from each location were analyzed. Barium, cadmium, silver, and 1,1,2-dichloroethene were detected in the sample leachate. Except for one sample which produced 1.04 mg/L of cadmium in leachate (slightly above the RCRA threshold of 1.0 mg/L for cadmium), none of the soils exhibited the characteristics of a hazardous waste.


5.13.3.2. Phase I RFI Sampling and Results. The RFI sampling program conducted at the DRMO yard consisted of collecting 45 surface soil samples and 15 shallow soil samples (from 1 to 3 feet bgs) from random cells in a sampling grid that covered the area. All samples were analyzed for VOCs, SVOCs, metals, and cyanide.


5.13.3.3. Contaminants detected include metals and cyanide, which were elevated above background in some surface and shallow soil samples, and organic compounds. Figures 5-13-1 and 5-13-2 show metals and cyanide concentrations above background for surface and shallow soils, respectively. Figures 5-13-3 and 5-13-4 summarize VOCs and SVOCs that were detected.


5.13.4. Contaminant Assessment


5.13.4.1. Based on the results of the Phase I RFI sampling program, it appears that various contaminants have been released to the surface and shallow soils at SWMU 26. Figures 5-13-1 and 5-13-2 show metals concentrations that were above background in surface soil and shallow soil samples, respectively. Cyanide was present in surface soil samples SS-26-030 and SS-26-031, but only at concentrations of 1.15 and 1.68 µg/g, respectively. These concentrations are far below the proposed Subpart S action level of 2000 µg/g for this compound. Cadmium and lead were also detected frequently at concentrations which exceed the upper thresholds for background. However, these and all concentrations of metals were found to be below proposed Subpart S action levels for those analytes having published thresholds. Lead, which is generally regulated on a case-by-case basis, was frequently detected at levels above 100 µg/g and was detected at 1000 and 1140 µg/g in two of the 45 surface soil samples.

5.13.4.2. VOC and SVOC concentrations for surface soil and shallow soil samples are shown on Figures 5-13-3 and 5-13-4. VOCs detected include comparatively low concentrations of acetone and trichlorofluoromethane, but because these compounds were identified as laboratory contaminants by the data evaluation (see Appendix C), they are not included in the contamination assessment. SVOCs detected include benzo [a] anthracene, benzo [a] pyrene, benzo [b] fluoranthene, benzo [k] fluoranthene, bis (2-ethylhexyl) phthalate, chrysene, fluoranthene, phenanthrene, and pyrene, all at concentrations less than 10 µg/g. The majority of contamination appears to be present only in the surface soils, and, with the exception of soil boring 007 (near Building 2013), does not persist to depth. None of these SVOCs detected at this SWMU have action levels established for soil concentrations.

5.13.5. Recommendation

5.13.5.1. Based on the results of the Phase I RFI sampling, it appears that the storage and recycling activities at SWMU 26 have released several types of contaminants to the environment. For this reason, it is recommended that additional evaluations of this SWMU are conducted under a Phase II investigation. Specific recommendations are included in Section 6.0.

5.14 RCRA CONTAINER STORAGE (SWMU 27)

5.14.1. Site Description and Waste Generation

5.14.1.1. The RCRA Container Storage Area is a locked building (Building 528) that is completely surrounded by a perimeter chain-link fence, and is located in the TEAD-N Administration Area. The floor slab was constructed in 1980 on granular imported fill with a coarse gravel surface, and the building was added in 1986. This facility is currently regulated under interim status for long-term storage of hazardous waste generated at TEAD-N while the RCRA part B application is being reviewed by various regulatory agencies.

5.14.1.2. Wastes are stored in this building that require treatment before disposal. The containerized wastes are segregated according to chemical characteristics by an "x"-shaped concrete berm that divides the building into four parts. During a site visit in 1989, approximately 900 55-gallon drums containing a variety of wastes were stored in the building (JMM, 1989). During a fall 1989 E. C. Jordan visit, approximately 30 to 40 full drums were stored outside the fenced area of Building 528 awaiting transport for off-site disposal. The drums were staged on pallets and labeled according to their contents, which included industrial wastewater sludge, fuels, solvents, detergents, paint sludges, fiberglass filters, used polyurethane, 1,1,1-trichloroethane, oil coolant, and thinners (E. C. Jordan, 1989).

5.14.1.3. Inside the building, bermed areas 1 and 3 contain ignitable wastes such as solvents, oils, paints, thinners, and enamels; area 2 contains ash from the heating plant furnace and plating solutions from metal plating shops; and area 4 contains corrosives (acids and bases).

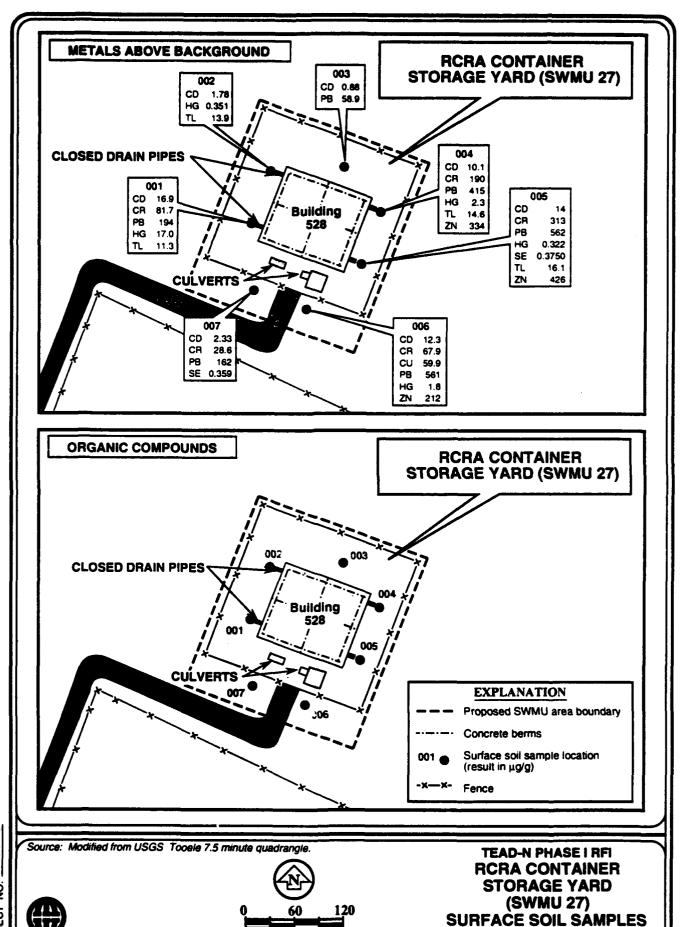
5.14.1.4. The concrete floor in Building 528 is frequently inspected and maintained to prevent cracks through which spillage could leak. Each of the four bermed storage areas are

connected to separate PVC drain lines that extend to outside the building. If a spill occurs, these pipes drain the liquid through the perimeter wall where they can be uncapped and the material can be containerized. Spill response at this facility is provided in the TEAD-N Spill Prevention Control and Countermeasures Plan (SPCCP) and Hazardous Waste Contingency Plan (HWCP) (TEAD-N. 1991a,b). Spill control equipment and supplies are maintained at the site.

5.14.2. Site Conditions

5.14.2.1. Surface water runoff in the vicinity of SWMU 27 generally flows in a westerly direction. The soils in the area are silty gravels of the Abela Series (USSCS, 1991), and the depth to groundwater is approximately 380 feet bgs (JMM, 1988). The depth to bedrock is approximately 1,500 feet bgs (ERTEC, 1982).

5.14.3. Previous Sampling and Phase I RFI Sampling and Results


5.14.3.1. Previous Investigation. No previous environmental field investigations had been conducted at the RCRA Container Storage Area prior to the Phase I RFI. Although three ruptured drums were observed inside the building during a site inspection in 1986, no evidence existed to indicate a hazardous materials release to the environment (NUS, 1987).

5.14.3.2. Phase I RFI Sampling and Results. Seven surface soil samples were collected from the RCRA container storage yard. One sample was taken beneath each of the four drain pipes and three from open areas inside the fence where drums were stored. All samples were analyzed for VOCs, SVOCs, and metals.

5.14.3.3. Analytes detected during the Phase I RFI include heavy metals and the VOC hexane. Figure 5-14-1 shows concentrations of metals detected above the RFI background levels. The analysis results are summarized in Table 5-14. Hexane, although reported in the sample results table, is suspect because it was detected consistently in all samples and is a known laboratory solvent. As a result, hexane is not included in Figure 5-14-1 and is not included in the contamination assessment. No other organic compounds were detected.

5.14.4. Contamination Assessment

5.14.4.1. Based on the results of the Phase I RFI sampling program, it appears that some elevated levels of metals are present in SWMU 27 soils. Above-background concentrations of

FIGURE 5-14-1

Scale in Feet

cadmium, chromium, zinc, lead, mercury, and thallium were detected at 16.9, 313.0, 426.0, 562.0, 17.0, and 16.1 μ g/g, respectively. The levels of thallium detected may exceed proposed Subpart S concentrations, which are compound-specific. No other metals concentrations exceeded any present or proposed health-based clean-up or action level criteria, though lead levels, which have no established action level, may be considered to pose a hazard. However, since all soil samples at SWMU 27 were collected from the imported granular fill material underlying the facility, it is possible that these metals could be naturally-occurring in this fill, rather than a result of a contaminant release. The source of this fill is currently not known.

5.14.5. Recommendation and Interim Health Risk Evaluation

5.14.5.1. Based on the above results, it appears that waste storage activities at SWMU 27 may have released metals to the environment. However, at the appropriate time, the RCRA Container Storage Area will be closed under the applicable RCRA requirements, which will involve additional environmental sampling activities. Because of this, no further RFI activities are recommended at SWMU 27 at this time under the existing Corrective Action Permit. In the interim, potential risks to site workers are expected to be low due to the limited exposure potential. The following paragraphs discuss this issue.

5.14.5.2. Cadmium, chromium, lead, mercury, selenium, thallium, and zinc were observed in samples from within the fenced area at levels as high or higher than outside the fence and, as such, the greatest potential risks might be thought to be derived from this area. However, the area within the fence is covered with gravel and the potential for dust to be generated is reduced. Therefore, the potential for exposure to occur is minimal.

5.14.5.3. The area outside the fence is soil partially covered with vegetation, and dust can be generated by wind from this area. However, the overall exposure potential is still expected to be low. Personnel work only intermittently at this facility, with personnel generally present less than one week per month. Due to weather conditions, the ground is frozen and/or covered with snow approximately six months of the year. Because the work is performed inside, dust levels would be expected to be less than outdoors (excluding any dust generated by the work activities inside the building that is characterizable as an occupational, rather than an environmental, exposure). If one assumes the maximum detected concentrations of metals outside the fence correspond to average concentrations in soil, that 70-kilogram workers are present one week in four (which approximates current conditions) for 25 years and inhale 20 cubic meters of air per workday, the dust levels are 50 µg/m³ (which corresponds to the National Ambient Air Quality Standard for PM10), and that half of the particulates are from the soil immediately surrounding the facility, then the cancer risk

would be estimated to equal 1×10^{-6} , which is considered a de minimus risk. This value is primarily from chromium (under the worst case assumption that it is present entirely as CR(VI)), with cadmium also having a small contribution.

5.14.5.4. Lead is generally considered a hazard at industrial sites at 1,000 mg/kg, with exposure occurring every day. Because the maximum concentration is 561 mg/kg and because workers are present only intermittently, this site should not cause a significant risk. Noncarcinogenic effects are not expected because (making the same exposure assumptions as above) chronic daily intakes are on the order of 10⁻⁷ mg/kg/day, and noncarcinogenic toxicity is generally not associated with doses of this magnitude.

5.15 90-DAY DRUM STORAGE AREA (SWMU 28)

5.15.1. Site Description and Waste Generation

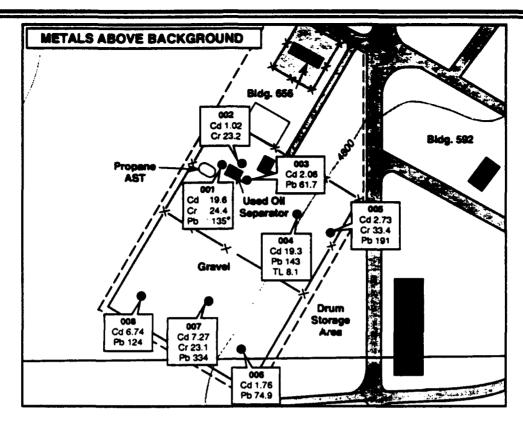
5.15.1.1. The 90-Day Drum Storage Area is a 3.4-acre fenced lot located near the southern end of the Maintenance Area. It is located adjacent to the northern region of the Drum Storage Area (SWMU 29) and immediately east of the Sanitary Landfill (SWMU 15). EPIC photographs (from 1953, 1959, 1966, and 1981) indicate that until approximately 1983, when the facility was constructed, drums were never stored within the perimeter of the 90-Day Storage Area (USEPA, 1982). EPIC photographs from 1953 show that the site was previously used for vehicle storage. No ground staining or standing liquid is evident on any of the available EPIC photographs.

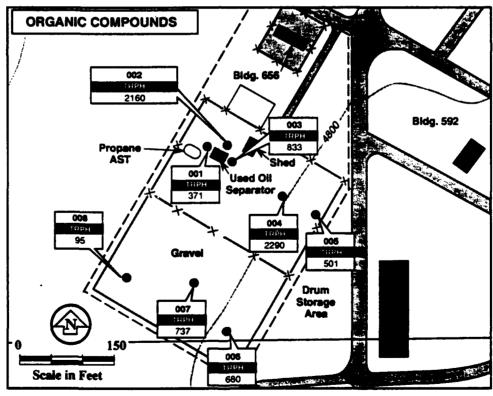
5.15.1.2. Currently, drummed wastes including gasoline, phosphoric acid, sodium hydroxide, paint wastes, thinners, solvents, paint filters, blast grit, used oil, and antifreeze are stored above ground on pallets in this area. Drums remain sealed and are stored up to 90 days before being transported off the Depot to a hazardous waste management facility by a contractor or to the permanent storage facility in Building 528. This site is not included in the TEAD-N RCRA permit because 90-day storage areas are not required to obtain interim status operating permits.

5.15.1.3. Spill response at the 90-Day Drum Storage Area is provided in the TEAD-N SPCCP, ISCP (1991a), and HWCP (1991b). Spill control equipment and supplies are maintained at the site to aid in cleanup of any spills. According to TEAD-N (1991a), the largest expected spill would be equal to the largest container at the facility (55 gallons).

5.15.2. Site Conditions

5.15.2.1. Soils beneath the 90-Day Storage Area consist of silty and sandy gravel of the Abela Series (USSCS, 1991). The ground surface is covered by imported gravel (Mander, 1989). The approximate depth to the to the regional groundwater table is 300 feet bgs, and the direction of groundwater flow is toward the northwest (JMM, 1988). The depth to bedrock is approximately 1,250 feet bgs (ERTEC, 1982).


5.15.3. Previous Sampling and Phase I RFI Sampling and Results


5.15.3.1. Other than the aerial photographic information, no previous environmental field investigations had been conducted at the 90-Day Drum Storage Area prior to Phase I RFI sampling. Sampling at the 90-Day Drum Storage Area consisted of collecting eight samples of surface soils from areas where ground staining was observed. Samples were analyzed for total metals, VOCs, SVOCs, and TRPH.

5.15.3.2. Contaminants detected during the Phase I RFI sampling included heavy metals, volatile and semi-volatile organic compounds and total petroleum hydrocarbons. Figure 5-15-1 shows analyte concentrations and Table 5-15, included at the end of Section 5.0, contains a summary of the contaminants detected.

5.15.4. Contamination Assessment

5.15.4.1. Based on the results of the Phase I RFI sampling program, it is apparent that metals and organic compounds have been released to the surface soils of SWMU 28 although, due to the sampling approach (to sample isolated stained areas), there is no evidence of widespread contamination. Concentrations of cadmium, lead, and zinc, ranged up to 19.6, 334, and 129 µg/g, respectively. Of these metals, only cadmium has a proposed Subpart S action level at 40 µg/g. One VOC, one SVOC, and total petroleum hydrocarbons were detected in the surface soils at SWMU 28. Acetone was detected at 0.099 µg/g in sample SS-28-002, adjacent to the used oil separator, and the semi-volatile compound butylbenzyl phthalate was also detected at 2 µg/g in this same sample. These concentrations are extremely low compared to the proposed Subpart S action levels, which are 8,000 µg/g and 20,000 µg/g for acetone and butyl benzyl phthalate, respectively. These compounds are not included as contaminants here due to their being common lab contaminants, especially at these low levels. All samples contained TRPH, with the highest concentration at 2290 µg/g. The highest TRPH values are in the area near the used oil separator and probably result from small spills while downloading waste liquid into the oil separator.

Source: Modified from USGS Tooele 7.5 minute quadrangle.

Note: All results in µg/g.

EXPLANATION

003 Surface soil sample location

x-x Fence

Aboveground storage tank

Data considered estimated. Refer to Appendix C. TEAD-N PHASE I RFI
90-DAY DRUM STORAGE AREA
(SWMU 28)
SURFACE SOIL SAMPLES
FIGURE 5-15-1

5.15.5. Recommendation

5.15.5.1. Based on the results of the Phase I RFI sampling, it appears that activities at this SWMU have released contaminants, mainly metals and heavier petroleum hydrocarbons, to the environment. For this reason, it is recommended that this SWMU be included in the Phase II activities. Specific Phase II activities recommended for this SWMU are included in Section 6.0.

5.16 Drum Storage Areas (SWMU 29)

5.16.1. Site Description and Waste Generation

5.16.1.1. SWMU 29 consists of two Drum Storage Areas (northern and southern) located near the southern end of the Maintenance Area (Figure 3-1). The two areas are separated by the Maintenance and Supply Road. The southern area (also known as the old lumber yard) is a fenced, 25-acre expanse of gravel and broken asphalt surface with a single warehouse (Building 576) and two smaller associated office facilities (Buildings 589 and 591). Currently, Building 576 stores hazardous materials used at TEAD-N, while numerous U.S. Army Hemmet vehicles are parked outside the building. Historical aerial photographs show that the southern part of SWMU 29 has been used for the storage of drums, as well as cylinders, tanker trucks, and lumber (USEPA, 1982). SWMU 29 is located in the vicinity of SWMU 28 (the 90-Day Drum Storage Area), and SWMUs 12 and 15 (the Sanitary Landfill, and the Pesticide Disposal Area within the Sanitary Landfill).

5.16.1.2. The northern area is a triangular-shaped, sparsely-vegetated, open area of approximately five acres. A 1953 aerial photograph shows drums stored in this area while aerial photographs taken in 1959 and 1966 indicate that the drums were removed and that the area was unoccupied. In 1981, an aerial photograph shows debilitated vehicles stored in the western part of the northern area (EPIC, 1986).

5.16.1.3. The Drum Storage Areas were used to store empty drums before they were returned to the originating contractor. Empty drums were reported to have been stored upside down to allow residual contents to drain and to keep precipitation out, and chemicals that may have been released include solvents, degreasers, and oils (EA, 1988). The 1959 and 1966 EPIC aerial photographs identify a portion of the southern area as a "pesticide storage lot."

5.16.2. Site Conditions

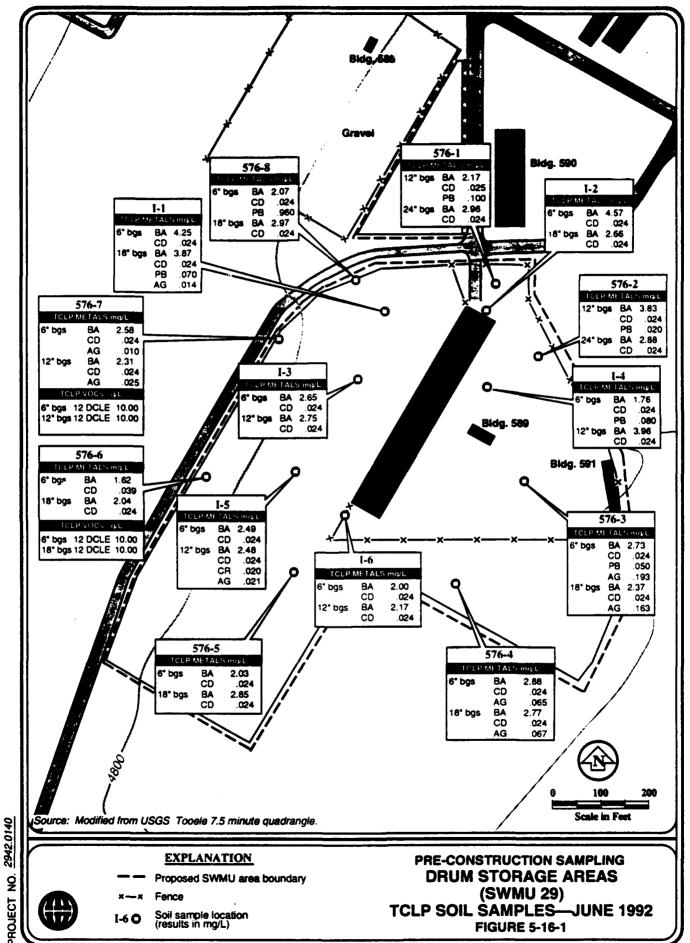
5.16.2.1. The surface of most of the southern region of this SWMU is covered by deteriorating asphalt, which slopes gently to the west toward a ditch that runs parallel to the Maintenance and Supply Road. In the northern region, natural vegetation is present and the surface slopes gently northwest. In the Drum Storage Areas, soils consist of silty and sandy gravels of the Abela Series (USSCS, 1991). The approximate depth to the regional water table is 300 feet bgs, and the direction of groundwater flow is to the northwest (JMM, 1988). The depth to bedrock is approximately 1,250 feet (ERTEC, 1982).

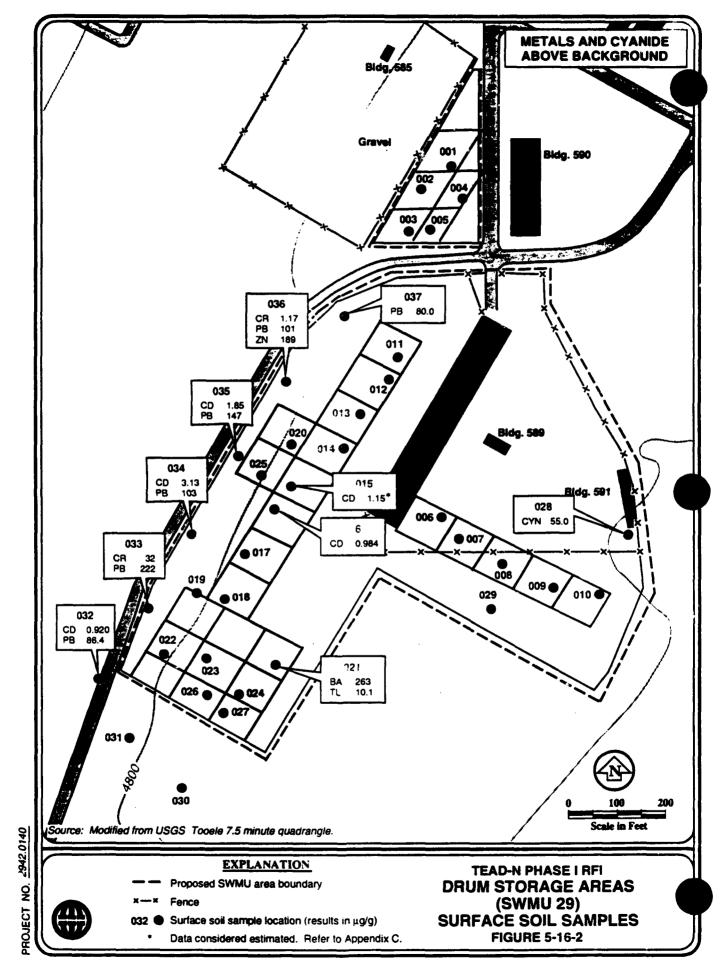
5.16.3. Previous Sampling and Phase I RFI Sampling and Results

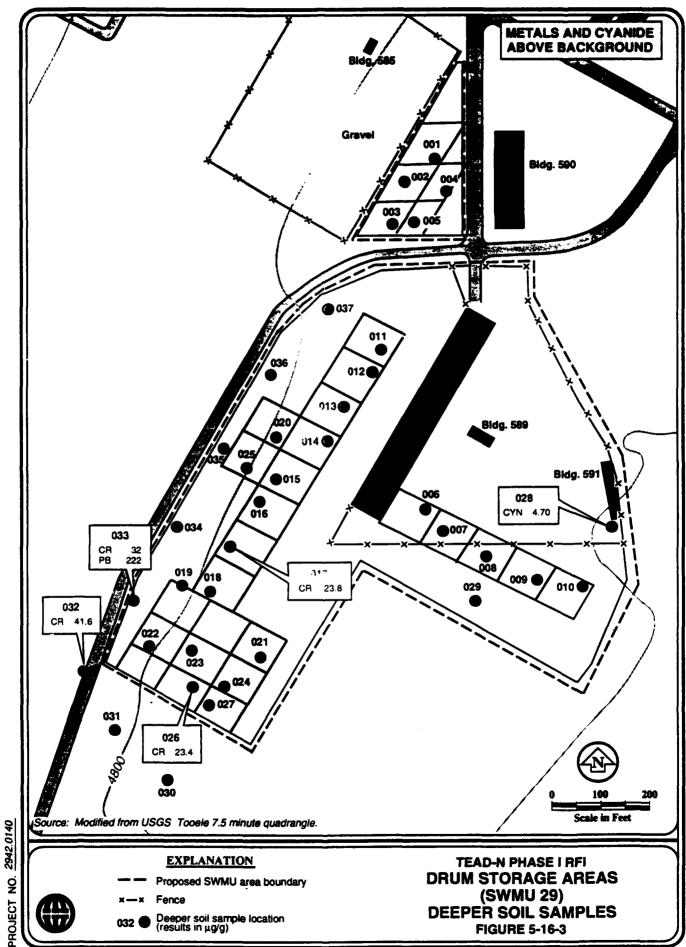
5.16.3.1. Previous Investigations. In 1989, Weston conducted a Remedial Investigation (RI) at the Drum Storage Areas (Weston, 1990). Prior to the Weston study, no environmental investigations had been conducted at this site. The Weston RI included soil sampling at eight locations at depths of 0 to 0.5 feet, 0.5 to 1.0 feet, and 1.0 to 2.0 feet, and the installation and sampling of three monitoring wells. The samples were analyzed for VOCs, SVOCs, explosives, metals, pesticides, PCBs, and selected anions.

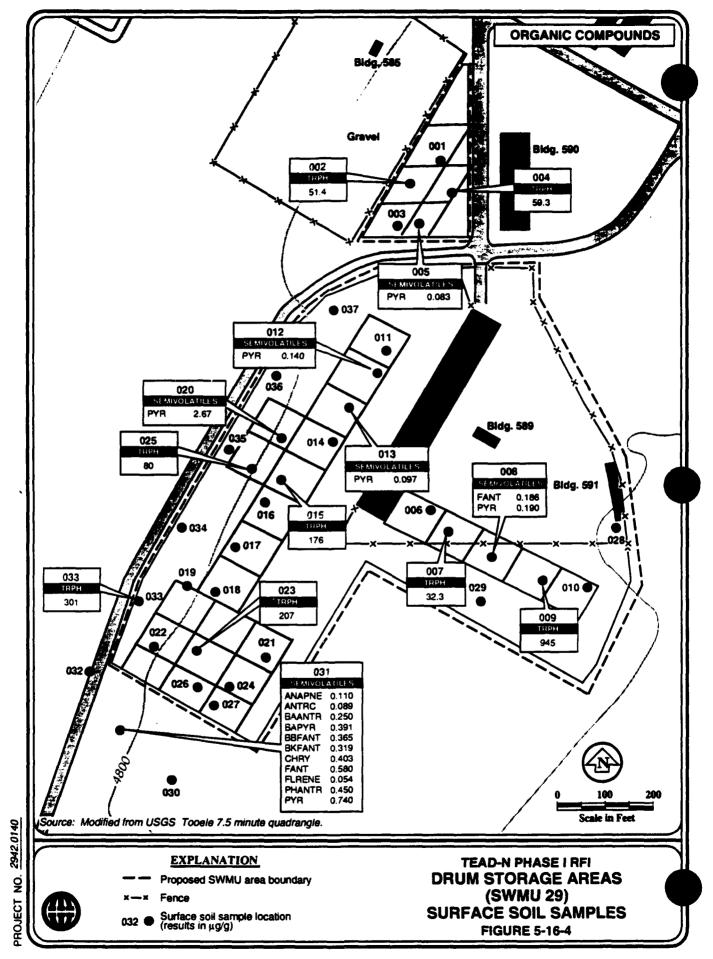
5.16.3.2. Sampling results indicated that surface soils were not widely contaminated. Volatile organic compounds, pesticides, PCBs, or explosives were not detected in any of the samples. Polynuclear aromatic hydrocarbons (PAHs) were detected in all of the samples and detectable levels of arsenic, cadmium, chromium, copper, sodium, nickel, lead, and zinc were observed in a number of samples. Weston concluded that the PAHs probably resulted from the asphalt covering. Not enough information was available to determine if metals levels were significantly above background levels.

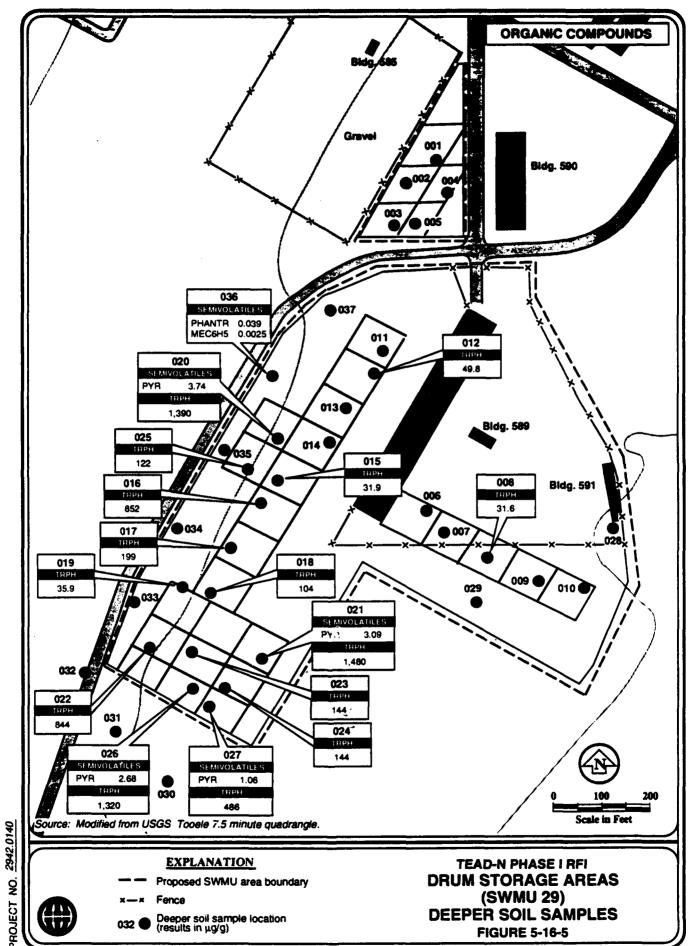
5.16.3.3. Three wells were installed by Weston downgradient of the Drum Storage Areas, and subsurface soil samples were collected from each of the three borings for chemical analyses. Two wells were sampled and one well was dry. Potential chemicals of concern in subsurface soils were identified as bis (2-ethylhexyl) phthalate (SVOC), and the metals mercury and selenium. Potential groundwater contaminants were bis (2-ethylhexyl) phthalate, and the metals silver, arsenic, beryllium, chromium, copper, nickel, lead, and zinc. A volatile organic compound, trichloroethylene, was also included in the groundwater list because it was detected in well N-120-88, which is located downgradient of the Drum Storage Areas. However, this well lies within 700 feet of the closed Industrial Wastewater Lagoon Outfall Ditch B, which is a known historical source of trichloroethylene.

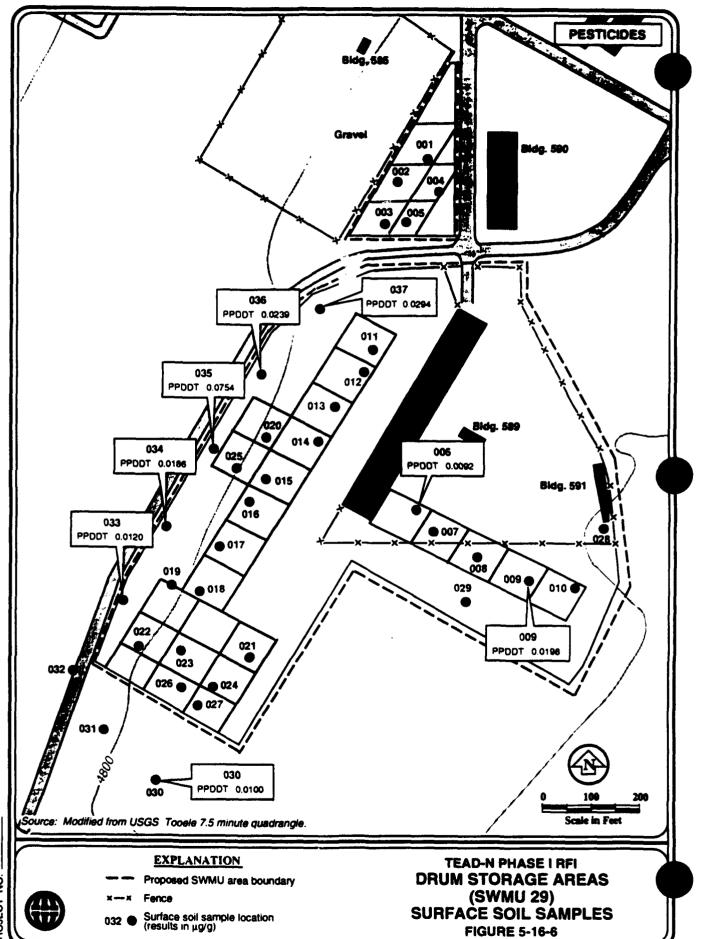

5.16.3.4. Because construction in this area is planned, a pre-construction investigation was conducted by Tetra Tech, Inc. in June. 1992. Soil sample results revealed arsenic, barium, chromium, lead, and silver at detectable concentrations in TCLP extract. In addition, the volatile organic compound 1,1,2-dichloroethane was also detected in two samples. Although these chemicals were present in the sample leachate, none of the samples contained high enough concentrations to exhibit the characteristic of a hazardous waste. Figure 5-16-1 shows the approximate sampling locations and the detections of metals and organic compounds found in the TCLP leachate for each sample.

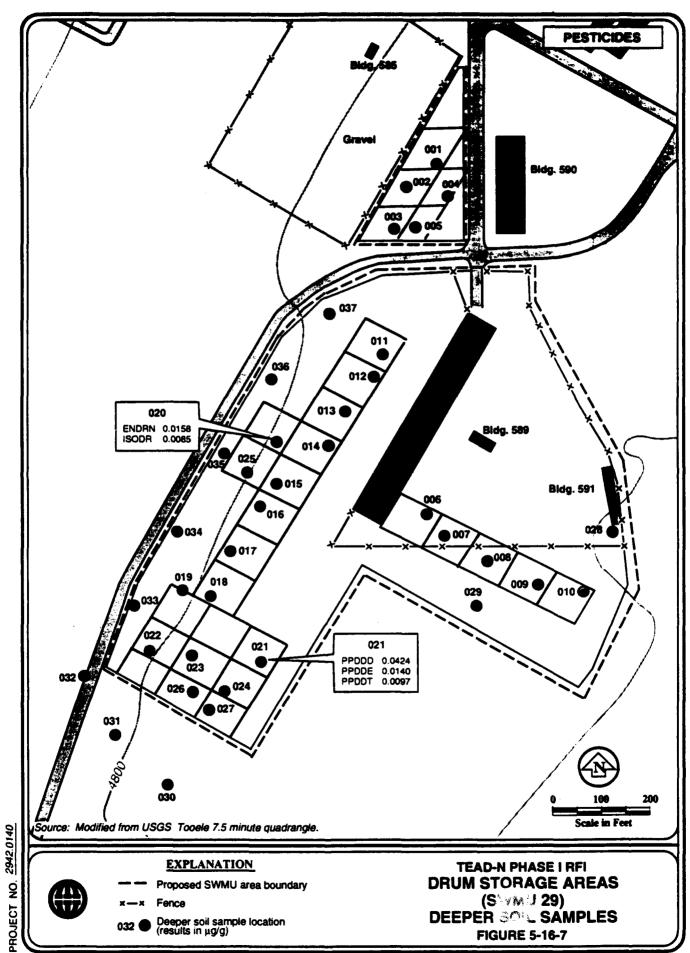

5.16.3.5. Phase I RFI Sampling and Results. Soils at this SWMU were investigated through 37 shallow soil borings to 5 feet bgs. Borings were located in areas where aerial photographs indicated drums were once stored and in surface water runoff pathways. Two samples were collected from each boring. Surface soil samples were analyzed for metals and pesticides, and several were selected for additional analyses of VOCs, SVOCs, explosives, and TRPH. All of the deeper samples were analyzed for metals, pesticides, VOCs, SVOCs, and TRPH.


5.16.3.6. Contaminants detected include metals and cyanide, VOCs, SVOCs, pesticides, and TRPH. Figures 5-16-2 and 5-16-3 show the concentrations of metals and cyanide that are above background concentrations in surface and shallow soil samples, respectively. Figures 5-16-4 and 5-16-5 show VOCs, SVOCs, and TRPH concentrations in the surface and shallow soil samples. and Figures 5-16-6 and 5-16-7 summarize the pesticides results. Table 5-16, at the end of this section, contains a summary of the analyses.


5.16.4. Contamination Assessment


5.16.4.1. Based on the results of the Phase I RFI sampling program, it is apparent that various types of contaminants have been released to the surface and shallow sub-surface soils at SWMU 29. Contamination seems to be consistently present in samples from the ditch area that parallels the Maintenance and Supply Road (SB-29-33 through SB-29-37) in the south area of SWMU 29. As shown in Figure 5-16-2, various metals were detected above the thresholds for background. Thallium, barium, zinc, cadmium, chromium, and lead were detected at concentrations of 10.1, 263, 134, 3.13, 41.6, and 222 μg/g, respectively. Cyanide was detected at 55 μg/g in one surface soil sample (SB-29-028) where a small area of isolated staining is present. None of these analytes exceeded proposed Subpart S soil action levels, though certain specific thallium compounds have action levels proposed as low as 6.0 μg/g.





5.16.4.2. VOCs detected in soils include hexane and toluene. The numerous hexane detections are likely laboratory contaminants and are not included in this contamination assessment. Also, detections of TRPH in deeper soils in soil borings SB-29-030 through SB-29-037 have been a qualified as "not detected" (ND) due to associated method blank contamination. SVOCs and TRPH concentrations are shown in Figures 5-16-4 and 5-16-5, respectively, for surface and shallow soil samples.

5.16.4.3. Five different pesticide compounds were identified in various surface and shallow soil samples as shown in Figures 5-16-6 and 5-16-7. None of the pesticide concentrations exceed the proposed Subpart S action levels of 2 to 3 μ g/g for these compounds. All the surface soil samples collected from the area of the Maintenance and Supply Road ditch along the west side of the southern Drum Storage Area show detectable levels of DDT.

5.16.5. Recommendation

5.16.5.1. Based on the results of the Phase I RFI sampling, there is evidence that activities at the Drum Storage Yards have released contaminants to the environment. Therefore, it is recommended that this SWMU be included in the Phase II evaluations. See Section 6.0 for specific Phase II activities recommended for this SWMU.

5.17 PESTICIDE HANDLING AND STORAGE AREA (SWMU 34)

5.17.1. Site Description and Waste Generation

5.17.1.1. The Pesticide Handling and Storage Area is located in Building 518 in the Administration Area, in the southeastern portion of TEAD-N, and has been used for storing and handling pesticides since about 1942 (Smith, 1990). This facility is constructed of flame retardant material and has bermed, sealed, concrete floors. Pesticides, herbicides, and other poisons are stored in separate, vented, locked rooms. The mixing/formulation area is located in the building but separated from the storage area by bermed concrete. The facility is vented and equipped with backflow prevention devices on the water lines which feed the facility. In recent years, a bermed concrete pad for loading sprayer trucks has been added to the south side of the building. This facility is labeled and secured with a chain-linked fence (E. C. Jordan, 1989).

5.17.1.2. Activities associated with the building include storage and mixing/formulation of pesticides, filling tanks with pesticides, and rinsing containers. Pesticides and herbicides stored at this facility in the past included DDT, 2,4-D, and Roundup (NUS, 1987).

5.17.1.3. Drains from the building originally discharged via an 8-inch diameter underground pipe to the Stormwater Discharge Area (SWMU 45) located approximately 4,000 feet northwest of the building (Smith, 1990). Investigation of SWMU 45 is included as a separate task in this RFI. Currently there are no discharges from the Pesticide Handling and Storage Area. All drains have been blocked, and wash water is contained in a catch tank located on the north side of the building (Nichols, 1991).

5.17.2. Site Conditions

5.17.2.1. Soils beneath the Administration Area that contains the Pesticide Handling and Storage Area are composed of the silty and sandy gravels of the Abela Series (USSCS, 1991). The approximate depth to the regional water table is about 300 feet, and groundwater flows to the northwest (JMM, 1988). The depth of bedrock is approximately 1,300 feet bgs (ERTEC, 1982). Gravely fill has been imported to cover the surface soils that surround the facility.

5.17.3. Previous Sampling and Phase I RFI Sampling and Results

5.17.3.1. Because no previous investigations have been conducted at this SWMU, available data are limited to those collected during the Phase I RFI sampling program. During this program, six surface soil samples were collected from beneath discharge pipes on the fuel storage tank, mixing sink catch-tank, and from the concrete pad loading area. In addition, three samples were collected from other locations around the building. All samples were analyzed for pesticides, herbicides, cyanide, and metals. Contaminants detected during the Phase I RFI include elevated levels of all these analytes. Figure 5-17-1 presents a visual summary of the concentrations of these contaminants. Table 5-17, at the end of Section 5.0, is a summary in tabular form.

5.17.4. Contamination Assessment

5.17.4.1. Based on the results of the Phase I RFI sampling program, the pesticide and herbicide handling and storage at this facility has resulted in a release of contaminants to the nearby surface soils. Five of six soil samples contained elevated levels of metals, one

EXPLANATION

- Proposed SWMU area boundary
- Surface soil sample focation
 - Aboveground storage tank
- Data considered estimated. Refer to Appendix C.

Scale in First

PESTICIDE HANDLING AND SURFACE SOIL SAMPLES TEAD-N PHASE I RFI STORAGE AREA FIGURE 5-17-1 (SWMU 34)

PROJECT NO. 2942.0140

contained an elevated level of cyanide, all six samples contained detectable concentrations of pesticides, and five of six samples contained elevated levels of the herbicide 2.4-D.

5.17.4.2. Elevated levels of metals included a concentration of lead at 1,120 μ g/g. Ten different pesticides were detected at concentrations ranging from less than 0.1 μ g/g to 54 μ g/g. The highest concentrations of five of these pesticides were detected in one sample taken from beneath the mixing sink catch tank. In this sample, DDT was present at 9.0 μ g/g. Herbicides detected were limited to 2,4-D, which was present in concentrations generally less than 1 μ g/g. However, one sample collected from beneath a discharge pipe leading from the concrete pad loading area contained 99 μ g/g of 2,4-D. For comparision, the proposed Subpart S action level for this compound is 800 μ g/g.

5.17.4.3. Draft Subpart S action levels ranging from 0.2 to 2 μ g/g were exceeded at SWMU 34 by detections of chlordane, heptachlor, DDT, and DDE. The sample containing the highest levels of pesticides was collected from next to the mixing sink catch tank along the north side of the building.

5.17.5. Recommendation

5.17.5.1. Based on the results of the Phase I RFI sampling, a release of contaminants from the Pesticide Handling and Storage Area has occurred. For this reason, it is recommended that this SWMU be included in the Phase II activities. Specific recommendations for Phase II activities at this SWMU are presented in Section 6.0 of this report.

5.18 CONTAMINATED WASTE PROCESSING PLANT (SWMU 37)

5.18.1. Site Description and Waste Generation

5.18.1.1. The Contaminated Waste Processing Plant (CWP) is an incinerator located in the southwestern portion of TEAD-N, southwest of the ordnance area. The CWP consists of one large building (Building 1325), another smaller storage building, and adjacent staging and storage areas. The furnace is fired by diesel oil from an underground storage tank located south of the building. Since its installation in approximately 1980, the CWP has been used primarily for flashing scrap metal and incinerating PCP-treated wooden crates, general packaging materials (dunnage), scrap resins, and fabric contaminated with explosives (Bishop, 1990). This furnace differs from the furnaces at the AED Deactivation Furnace (SWMU 20) and the Deactivation Furnace Building (SWMU 21) in that it is a batch-type

basket furnace rather than a rotary kiln. In addition, the CWP is not used for deactivating munitions. Air pollution control equipment, installed during construction of the furnace, consists of a cyclone, gas cooler, and baghouse.

5.18.1.2. When the CWP is operating, all metal debris are certified as clean and sent to the DRMO Storage Yard (SWMU 26) for salvage. Incinerator ash, cyclone dust, and baghouse dust are drummed as hazardous waste and sent to the 90-day Storage Yard (SWMU 28) pending analysis and disposal.

5.18.2. Site Conditions

5.18.2.1. The soils which underlie the CWP are composed of sands and silty sands (Jordan, 1989) and are believed to be of the Berent-Hiko Peak Complex. Much of the ground surface around the CWP is paved and surface water runs off toward the northeast. The depth of bedrock is approximately 500 feet bgs (ERTEC, 1982). The depth to groundwater is approximately 350 feet, and the direction of flow is toward the northeast (JMM, 1988).

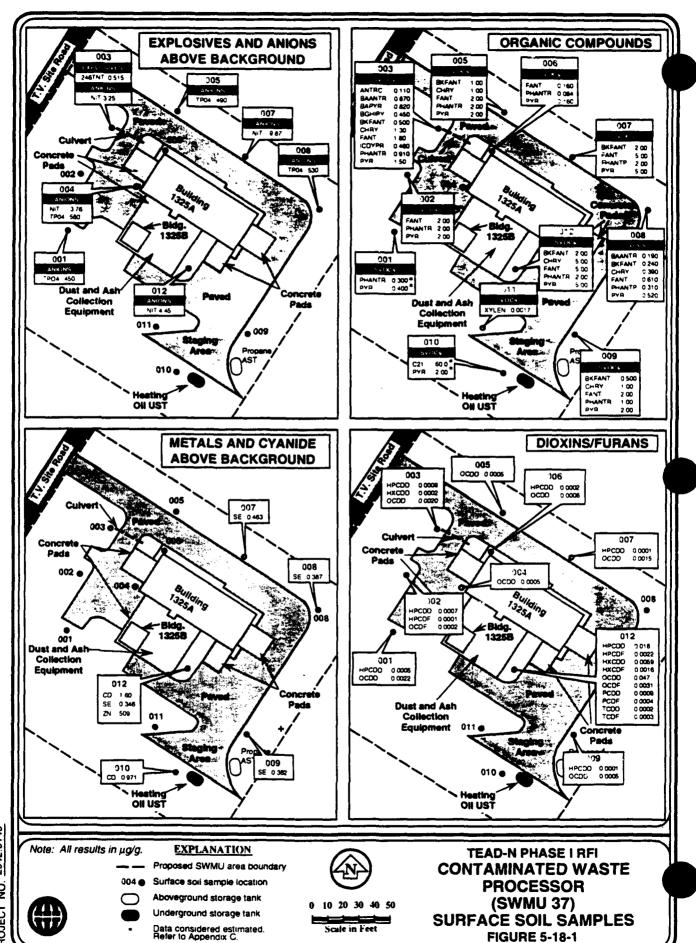
5.18.3. Previous Sampling and Phase I RFI Sampling and Results

5.18.3.1. Previous Investigations. Previous investigations at the CWP were limited to analysis of cyclone/baghouse dust and/or incinerator ash. Analyses of these wastes indicated that concentrations of lead and cadmium both exceeded the threshold for characterizing a wayte as hazardous based on toxicity (Bishop, 1990). In addition to the metals, dioxins and furans were found in ash and dust in the air pollution control system after burning PCP-treated wood (AEHA, 1989). Pentachlorophenol (PCP) was detected in all samples of baghouse dust but not in the furnace ash. Although the presence of dioxins and furans has been confirmed in the PCP-treated wood prior to incineration, it appears that the incineration process produces dioxins and furans. While the total levels of PCPs were high in the ash and dust, there were no detectable concentrations of PCP in the TCLP extracts (AEHA, 1989).

5.18.3.2. Phase I RFI Sampling and Results. The Phase I RFI sampling program consisted of collecting 12 surface soil samples from locations around the outside perimeter of the CWP and from areas with exposed soil immediately adjacent to the building. All samples were analyzed for metals, VOCs, SVOCs, explosives, and dioxins/furans.

5.18.3.3. Contaminants detected by the Phase I RFI sampling program include elevated levels of several metals, dioxins/furans, SVOCs, xylene, TNT, and nitrate and total phosphate. Figure 5-18-1 presents a visual summary of these contaminants. These data are also presented in Table 5-18 at the end of Section 5.0, which is a summary of all the analyses.

5.18.4. Contamination Assessment


5.18.4.1. Based on the results of the Phase I RFI sampling program, it is apparent that various types of contaminants have been released to the surface soils from SWMU 37. One sample contained a detectable concentration of the explosive 2,4,6-TNT, while seven samples contained elevated levels of anions including nitrate and phosphates. Numerous SVOCs were detected in 11 of the 12 surface soil samples ranging in concentrations from about 0.1 µg/g to 5.0 µg/g. The SVOCs detected were PAHs which are commonly found in incinerator ash. One sample contained a detectable level of xylene and another heneicosane. Both of these samples were collected from the southern end of the facility in the vicinity of the underground fuel storage tank and their presence is likely to be related to fuel spills in this area.

5.18.4.2. Elevated levels of metals were generally low (less than two times the background thresholds established for Phase I) and detected in only five of 12 samples taken from the facility. Elevated metals detected include cadmium, lead, selenium, and zinc.

5.18.4.3. Detectable levels of PCDDs/PCDFs were also present in nine of the 12 surface soil samples collected. Concentrations of the dioxins and furans detected were generally low (less than one ppb) with several exceptions, which ranged up to 47 ppb for the OCDD isomer. Only one sample contained a detectable concentration $(0.0002 \,\mu\text{g/g})$ of the most toxic 2, 3, 7, 8-TCDD isomer, which was well below the one ppb level. One dioxin isomer, hexachlorodibenzo-p-dioxin (HXCDD), is included in the draft Subpart S action levels, with the action level proposed for this compound in soil set at 1 x 10^{-4} (.0001) mg/kg, or 0.1 ppb. Two soil samples from SWMU 37 showed concentrations of HXCDD greater than this level.

5.18.5. Recommendation

5.18.5.1. Based on the results of the Phase I RFI sampling, it appears that the incineration activities at SWMU 37 have released contaminants to the environment. Contaminants of concern at this SWMU include PCDDs/PCDFs and SVOCs. For this reason, it is

recommended that SWMU 37 be included in the Phase II activities. Specific recommendations for Phase II activities are included in Section 6.0.

5.19 INDUSTRIAL WASTEWATER TREATMENT PLANT (SWMU 38)

5.19.1. Site Description and Waste Generation

5.19.1.1. Operation of the Industrial Wastewater Treatment Plant (IWTP) began in November 1988. This facility handles an average of about 116,000 gallons of wastewater daily (gpd). Of this total, an average of 103,000 gpd of wastewater is recycled, and the remaining wastewater is discharged to the Tooele publicly-owned treatment works (Kinsinger, 1989). Treatment at the IWTP includes air strippers for VOCs, a flocculator and clarifier for settling out metals, sand filters for filtering solids, and granular activated carbon (GAC) to remove VOCs and SVOCs. During about a one-year period when the facility first opened, shipping containers in which spent GAC was stored were left uncovered, and it was blown onto nearby surface soils along the west side of the facility.

5.19.2. Site Conditions

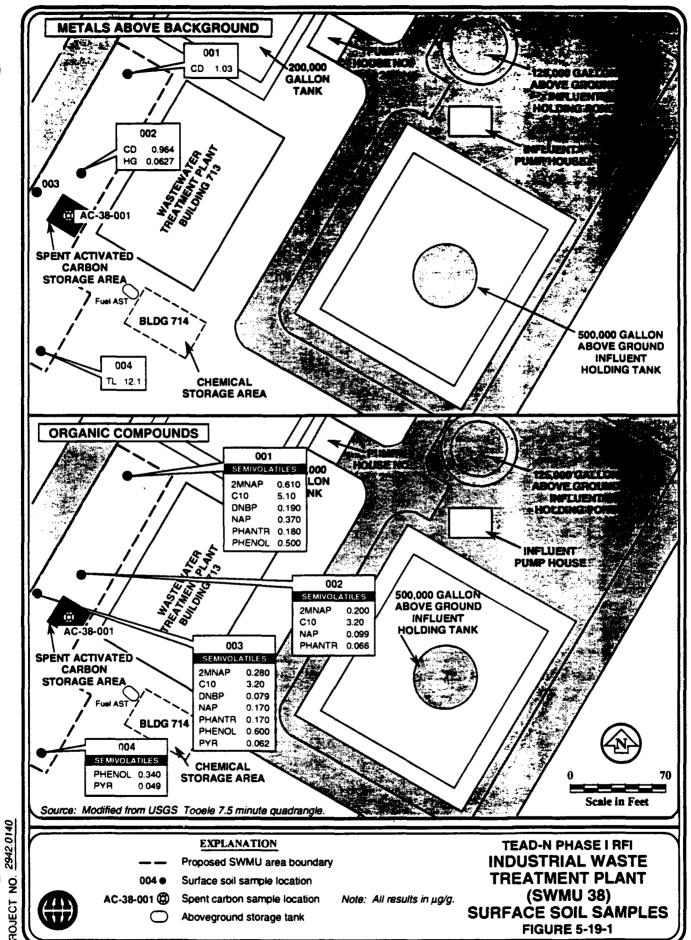
5.19.2.1. Soils that underlie the IWTP are composed of the silty and sandy gravels of the Abela Series (USSCS, 1991). Bedrock is estimated to be greater than 1,000 feet bgs (ERTEC, 1982). The regional water table is estimated to be about 280 feet bgs, and the direction of groundwater flow is toward the northwest (JMM, 1988).

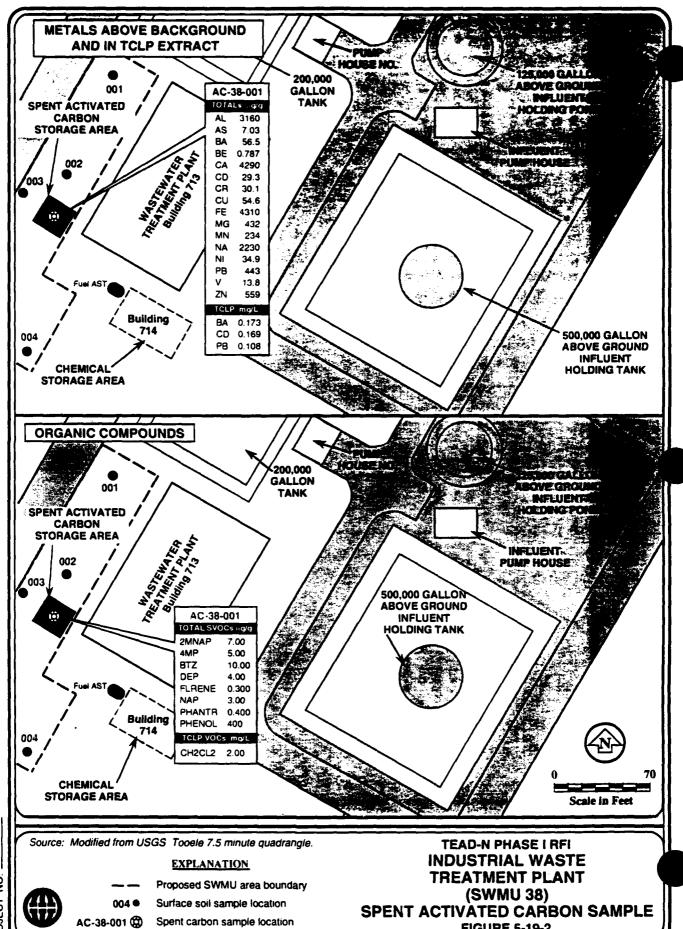
5.19.3. Previous Sampling and Phase I RFI Sampling and Results

5.19.3.1. Previous Investigations. Previous investigations at this SWMU were limited to analyses of the spent GAC from storage containers. These analyses showed elevated levels of VOCs, including 1,1,1-trichloroethane, methylene chloride, and 1,2-dichlorobenzene. SVOCs detected included 2,4,6-trichlorophenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, and bis(2-ethylhexyl) phthalate. In addition, leachable concentrations of barium and cadmium were detected according to the EP Toxicity analysis (EMO, 1989).

5.19.3.2. Phase I RFI Sampling and Results. Five samples were collected from the IWTP. Four of these were taken from surface soils on the west side of the plant, and the remaining sample was of spent GAC collected from a shipping container stored in the area. The soil and GAC samples were analyzed for metals, VOCs, and SVOCs. The sample of GAC

was also analyzed for toxicity characteristics for metals, VOCs, and SVOCs according to the TCLP method.


5.19.3.3. Contaminants detected in the surface soils around the west side of the IWTP included VOCs, SVOCs, and three metals. These results are shown in Figure 5-19-1. Small amounts of two Freon (TCF) compounds detected in soil sample 001 have not been included in the contamination assessment, as they are probably a result of lab contamination. Figure 5-19-2 presents the results of analyses of the spent GAC stored at the site. Analysis of the GAC by TCLP revealed detectable concentrations of barium, cadmium, and lead; one SVOC and one VOC were a'no present in extract from the sample. However, all concentrations are below the regulatory limits for a characteristic hazardous waste. Results of analyses of the GAC for total metals, VOCs and SVOCs confirmed the presence of numerous metals and organic compounds. Table 5-19, at the end of Section 5.0, contains a summary of the analytes detected in the four surface soil samples and the one sample of GAC.


5.19.4. Contamination Assessment

5.19.4.1. Based on the results of the Phase I RFI sampling program, it appears that low levels of several metals and SVOCs have been released to the surface soils on the west side of SWMU 38. Metals detected include cadmium, lead, and mercury. SVOCs detected include several phenols, dodecane, several PAHs, and numerous tentatively identified compounds. The presence of these compounds is consistent with those present in the spent GAC, which is the most likely source of the contamination in the nearby surface soils. None of the detected analytes in the soil samples exceed proposed Subpart S soil action levels where they have been established.

5.19.5. Recommendation

5.19.5.1. Based on the results of the Phase I RFI sampling, it appears that several contaminants, mainly semi-volatile organic compounds, here been released to the surface soils in the vicinity of the spent GAC containers. For this reason, it is recommended that this SWMU be included in the Phase II evaluations. Specific recommendations are included in Section 6.0.

FIGURE 5-19-2

5.20 SOLVENT RECOVERY FACILITY (SWINU 39)

5.20.1. Site Description and Waste Generation

5.20.1.1. The solvent recovery facility (Building 600c), is located on the west side of the TEAD-N Maintenance area. The facility was built in October 1988 and formerly received up to 10,500 gallons of waste solvents for processing, with a certain percentage of waste solvents rejected due to potential processing problems. Of this, approximately 7,100 gallons of solvents were recovered while 2,100 to 2,250 gallons of waste were generated. Solvents that are currently recycled include: 1,1,1-trichloroethane, Stoddard solvent, polyurethane thinner, and lacquer thinner. Due to a reduced work load and waste minimization procedures, a total of 1,573 gallons of waste solvent were processed in 1992, with 1,294 gallons recovered and only 279 gallons of waste generated (Fisher, 1993).

5.20.1.2. The facility contains pumps, a distillation unit, a condenser, and associated equipment for pumping waste solvents from drums and separating solvent from sludge (still bottoms). The building has explosion protection and is bermed on the inside to contain spills. The floor is equipped with drains that would direct spills to the IWTP.

5.20.1.3. According to TEAD-N and employees, solvents treated at this facility are first taken to the 90-Day Storage Area (SWMU 28) for inspection to determine if they are suitable for recycling (Nash, 1992). Drums containing recyclable solvents are transported to the Solvent Recovery Facility for treatment. Recyclable solvents are passed through a filter system followed by a distillation unit. The still bottoms are drummed and temporarily stored in a fenced satellite area which is a bermed concrete pad outside the building. The stored still bottoms are collected and disposed of by a hazardous waste contractor. There have been no spills of reportable quantities at this facility.

5.20.2. Site Conditions

5.20.2.1. Soils beneath the solvent recovery facility are of the Abela Series consisting of silty and sandy gravels and coarse gravels. The depth to bedrock is approximately 1,000 feet bgs (ERTEC, 1982). The depth to groundwater is estimated to be about 300 feet bgs, and the direction of groundwater flow is toward the northwest (JMM, 1988).

5.20.3. Contamination Assessment and Recommendation

5.20.3.1. Because this facility is new, equipped with adequate containment features, and there have been no spills of reportable quantities it is very unlikely that there is any environmental contamination resulting from waste handling or storage practices at this facility. For this reason, no sampling was conducted and, unless the waste handling practices change, no further actions are recommended at this SWMU.

5.21 BOMB WASHOUT BUILDING (SWMU 42)

5.21.1. Site Description and Waste Generation

5.21.1.1. The Bomb Washout Building (Building 539) is located in the southeastern portion of TEAD-N, between the Maintenance Area and the Administration Area. The history and description of this facility were compiled from communications with TEAD-N personnel (Mascarenas, 1990, and Clark, 1990). Building 539 has recently been renovated and now serves as a vehicle wash facility. Between the early 1940s and early 1960s, projectiles from small arms munitions (30 and 50 caliber) were burned in a retort furnace located in this building. Molten lead was reclaimed during the process from beneath the furnace.

5.21.1.2. During the operation, waste from the incineration and lead reclamation process consisted of smoke and ash from the furnace and spilled molten lead. When the building was cleaned, wash water discharged via a steel-lined concrete flume which extended from the northeast corner of the building. The flume ran east-west about 10 feet north of the building and discharged into an open ditch. Although the building has recently been renovated, the ditch is still present and extends approximately 600 feet west into an unlined holding pond, which is also still present.

5.21.1.3. During operation, the furnace generated significant concentrations of visible smoke (Mascarenas, 1990). Because no air emission control devices were installed on the smoke stack, heavy particulates from the smoke settled out onto a "drop-out box" located on the roof of the building. This process also released airborne contaminants to the air during the operation of this furnace. The furnace was dismantled around 1960, and the building used for storage until recently. The area around the building is paved, although the pavement is broken in places and its age is unknown. There was a second furnace located approximately 225 feet north of Building 539. This furnace, not enclosed inside a building or covered, was used to incinerate fuses and other small munitions. This furnace was reportedly about the

same size as the one in Building 539, and operated during the same time period (early 1940s to early 1960s)(Mascarenas, 1990).

5.21.2. Site Conditions

5.21.2.1. Surface soils present in the vicinity of SWMU 42 are silty sands and sandy silts of the Medburn Series (USSCS, 1991). Bedrock is approximately 1,500 feet bgs in this area (ERTEC, 1982). Based on water levels in the area, the depth to groundwater is expected to be approximately 385 feet bgs, and the direction of flow is toward the northwest (Jordan, 1990). Surface water run-off from the vicinity discharges to the open areas west of SWMU 42.

5.21.3. Previous Sampling and Phase I RFI Sampling and Results

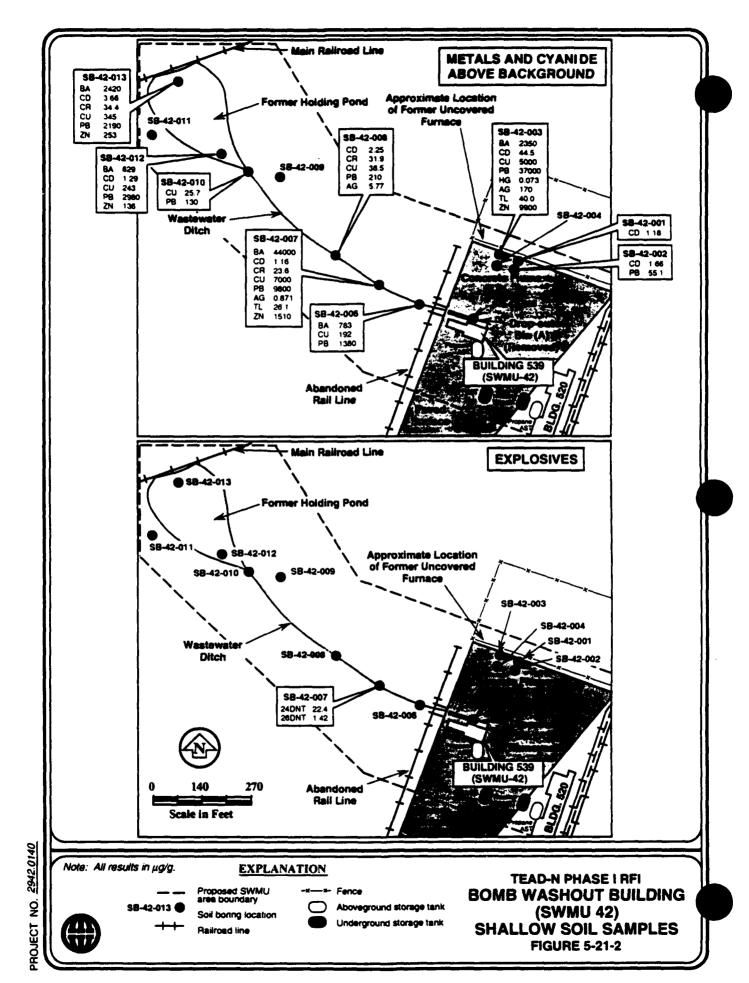
5.21.3.1. Previous Investigations. On March 2, 1990, the TEAD environmental office (EMO) collected six samples of soil and one of waste from Building 539 and the associated ditch and evaporation pond area. All the samples were analyzed for total metals, total organic halogens, VOCs and RCRA characteristics for toxicity, reactivity, corrosivity (pH), and ignitability.

5.21.3.2. None of the samples contained detectable levels of total organic halogens nor VOCs. Several metals including barium, cadmium, chromium, lead, mercury, nickel, and silver were detected at concentrations that exceeded a background sample by an order of magnitude or more. A sample of waste from the "drop-out box" contained high concentrations of barium, cadmium, chromium, lead, mercury, nickel, and silver. Of these, the lead was present at nearly seven percent. All samples collected from the ditch and holding pond areas contained elevated levels of metals exceeding those in a background soil sample collected nearby. Four samples taken from the holding pond and ditch areas exhibited the characteristics of a hazardous waste based on barium and lead concentrations.

5.21.3.3. Phase I RFI Sampling and Results. An extensive surface and shallow soil sampling program was conducted in the vicinity of the Bomb Washout Building. During this program, thirteen 5-foot deep soil borings were drilled and sampled at two intervals each, and eight surface soil samples were collected. Soil samples collected from the 5-foot borings were taken from the ground surface and from the total depth (5 feet). All samples were analyzed for metals and explosives compounds.

5.21.3.4. The results of the surface soil sampling are illustrated in Figure 5-21-1, which shows that all the surface soil samples in the vicinity of SWMU 21 contained elevated levels of one or more metals. In addition, elevated levels of cyanide were present at three locations and detectable concentrations of two dinitrotoluene (DNT) isomers were also present. The results of shallow soil samples collected from the same area are illustrated in Figure 5-21-2. These show that elevated levels of metals were also present at 5 feet bgs. While no cyanide was detected above background levels, one sample did contain detectable concentrations of two DNT isomers. The analytical results from this SWMU are also presented in Table 5-21, at the end of Section 5.0.

5.21.4. Contamination Assessment


5.21.4.1. Surface Soils. Based on the results of the previous sampling conducted by TEAD and the Phase I RFI sampling program, it is apparent that both metals and explosives have been released to the soils in the vicinity of SWMU 42. As shown in Figure 5-21-1, elevated metals in surface soils range up to $100,000 \,\mu\text{g/g}$ (10 percent) for lead and $18,000 \, (1.8 \, \text{percent})$ for barium. The highest concentration of cadmium detected was 41.3 $\,\mu\text{g/g}$ while chromium ranged up to 298 $\,\mu\text{g/g}$. Elevated concentrations of numerous other metals were also present.

5.21.4.2. The concentrations of explosives detected were limited to two isomers of dinitrotoluene. Concentrations of 2,4-DNT ranged up to 53 μ g/g while the less common 2,6-DNT ranged up to 3.48 μ g/g.

5.21.4.3. Shallow Soils. Concentrations of contaminants detected in shallow soil samples (5 feet deep), as illustrated in Figure 5-21-2, show that elevated levels of metals were present at this depth. The metals concentrations at 5 feet are generally less than those in the surface soils and appear to be limited to beneath the ditch and former evaporation pond and beneath the former location of the second furnace. While no elevated concentrations for cyanide were present at depth, one sample did contain elevated levels of the two DNT isomers at 5 feet. These results imply that water has caused metals to infiltrate beyond the depths investigated during the Phase I study.

5.21.4.4. Action levels proposed in the draft Subpart S regulations were exceeded by detections of cadmium, barium, and 2,6-dinitrotoluene (40 µg/g, 4000 µg/g and 1.0 µg/g, respectively) in both surface and subsurface samples. In addition, concentrations of 2,4-dinitrotoluene exceeded the health-based criteria of 1.0 µg/g for this compound. The high levels of lead in surface and sub-surface soils here may also pose a potential risk to human and environmental health.

5.21.5. Recommendation

5.21.5.1. Based on the preceding discussions, it appears that a release of contaminants has occurred from SWMU 42, and it is recommended that this SWMU be included in the Phase II activities. Specific recommendations for Phase II are included in Section 6.0.

5.22 CONTAINER STORAGE AREAS FOR P999 AND MUSTARD AGENT-FILLED MORTAR ROUNDS (SWMU 43)

5.22.1. Site Description and Waste Generation

5.22.1.1. Eighteen storage igloos located in the ammunition storage area are included in this SWMU. Twelve of these igloos were used between 1953 and 1977 to store eight lots of mustard agent-filled 4.2 inch mortar rounds. The other six storage igloos were used between 1985 and 1989 to store M55 rocket parts and fuses for rocket assessment tests. Because the M55 rockets are the type used to transport chemical warfare agents, concern regarding the potential for environmental contamination from these rockets as well as the mortar rounds caused the associated storage igloos to be classified as a SWMU.

5.22.1.2. Each storage igloo measures approximately 60 feet x 26 feet and is constructed from concrete and steel with a soil and grass covering. Roads servicing the igloos and the driveways leading up to the entrances are paved. Inside the igloos, troughs (one along each wall) empty into floor drains. The drains discharge to the soils beneath and are not connected to any treatment system, although no liquids have been used in the igloos.

5.22.2. Site Conditions

5.22.2.1. Soils beneath the ammunition storage igloos are composed of silty sands and sandy silts of the Medburn Soil Series (USSCS, 1991). The depth of bedrock is estimated to be approximately 1,500 feet bgs in this area (ERTEC, 1982). Based on groundwater elevations available in the vicinity of the storage igloos, groundwater is approximately 350 to 450 feet bgs and flows toward the north (JMM, 1988).

5.22.3. Contamination Assessment and Recommendation

5.22.3.1. No environmental sampling was conducted in the vicinity of the storage igloos included in SWMU 43 because a review of available records and an interview with

knowledgeable personnel (Serreyn, 1992) found no indications that mustard agent leaked from any of the 4.2-inch mortar rounds while stored in the north area. In addition, because the M55 rocket components stored in the other igloos did not contain or contact chemical agents or warheads, there is no reason to believe that contaminants have been released to the environment from these storage facilities. Consequently, no further action is recommended for this SWMU.

5.23 TANK STORAGE FOR TRICHLOROETHYLENE (SWMU 44)

5.23.1. Site Description and Waste Generation

5.23.1.1. From 1971 to 1984, the southern end of Building 620 in the Maintenance Area contained an above-ground 500-gallon trichloroethylene storage tank. The trichloroethylene was used as a degreaser to clean small arms, ammunition, gears, and small metal parts. The tank was emptied about once a week during its heaviest usage (in the 1970s) and drained into the industrial sewers connected to the Industrial Wastewater Lagoon (IWL). In 1984, usage of the tank was discontinued but it was left in the building. In April 1991, the tank was turned over to the DRMO yard for salvage (Siniscalchi, 1991).

5.23.2. Site Conditions

5.23.2.1. Soils beneath the maintenance area are the silty gravels of the Abela Series (USSCS, 1991). Depth to bedrock is estimated to be between 300 to 500 feet bgs and the depth of groundwater is estimated to be about 300 feet bgs (JMM, 1988). Groundwater flow beneath the maintenance areas is toward the northwest.

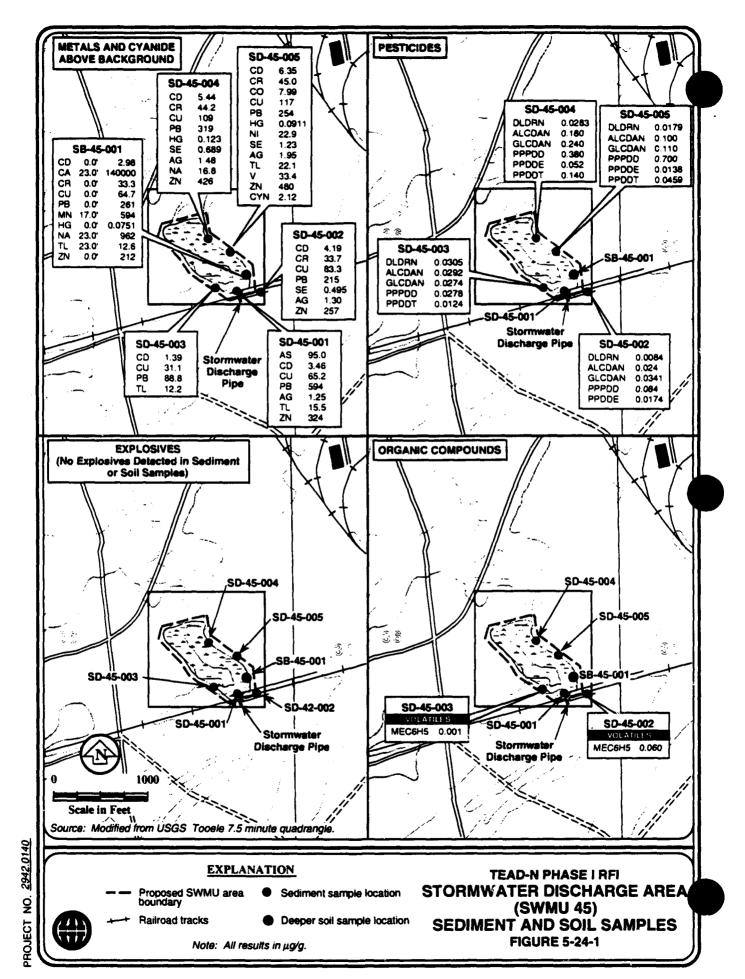
5.23.3. Contamination Assessment and Recommendation

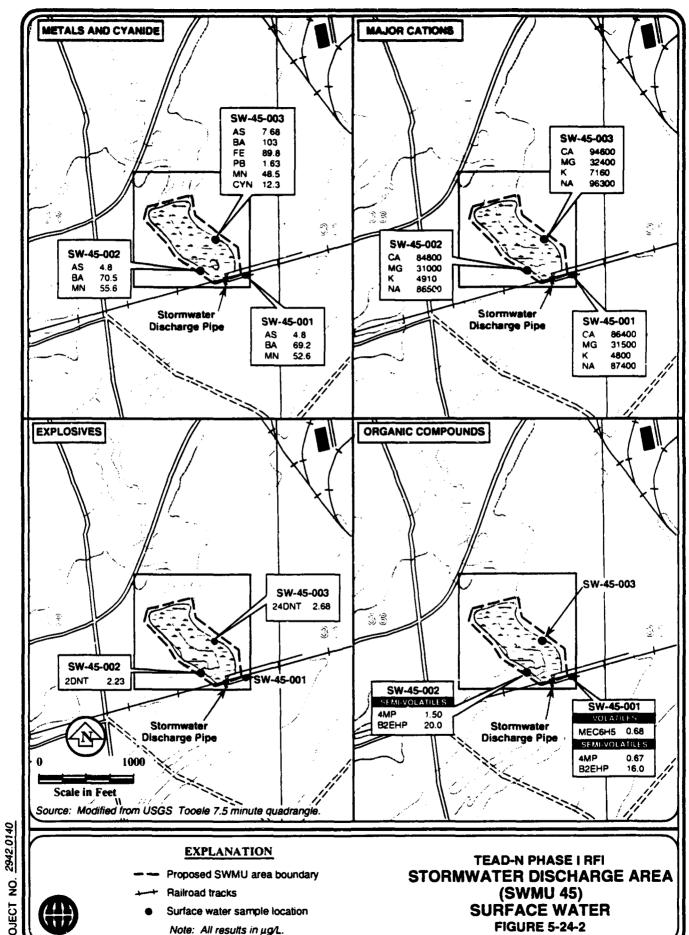
5.23.3.1. Waste from the TCE storage tank was emptied into the IWL outfall ditches and lagoon, which have been excavated and capped. Remediation of the contaminated groundwater associated with the IWL is underway. Because neither the tank nor contamination originating from the tank remains at the site, no further action is recommended for this SWMU.

5.24 STORMWATER DISCHARGE AREA (SWMU 45)

5.24.1. Site Description and Waste Generation

5.24.1.1. The Stormwater Discharge Area is located midway between the Maintenance and Administration Areas immediately north of a set of railroad tracks. Stormwater from the Administration Area drains via an underground concrete piping system to a depression in a dry wash, where it discharges to form a small pond. The presence of phreatophytes around the pond indicates saturated soil conditions exist throughout the year.


5.24.2. Site Conditions


5.24.2.1. Surface soils in the Stormwater Discharge Area consist of the silty and sandy gravels assigned to the Abela Series (USSCS, 1991). Depth of bedrock is unknown, although based on information from nearby monitoring wells it is probably greater than 500 feet bgs. Depth to groundwater is approximately 300 feet bgs, and it flows toward the northwest.

5.24.3. Previous Sampling and Phase I RFI Sampling and Results

5.24.3.1. Previous Investigations. Surface water and sediment samples were collected in July 1990 by the TEAD environmental office. The surface water contained 10 μ g/L of methylene chloride, and the sediment sample contained 40 μ g/kg of methylethyl ketone, 350 μ g/kg of methylisobutyl ketone, and 1,175 μ g/kg methylene chloride. Potential sources of these contaminants include the carpenter shop, sign shop, motor pool, rail shop, and Pesticide Handling and Storage Area (SWMU 34) located in the Administration Area.

5.24.3.2. Phase I RFI Sampling and Results. Three surface water samples and five sediment samples were collected from the area where ponded water was present. Surface water samples were analyzed for VOCs, SVOCs, metals (including major cations and cyanide), and explosives. The sediment samples were analyzed for the same constituents as well as pesticides. In addition, to evaluate the potential for vertical contaminant migration, a 25-foot deep soil boring was drilled and sampled as close to the ponded water as possible. Seven samples from the boring were analyzed for VOCs, SVOCs, metals, and explosives. The results of the sediment and soil sampling are presented in Figure 5-24-1 and results of the surface water sampling are presented in Figure 5-24-2. A tabular summary of the analytical results is also included at the end of Section 5.0 in Table 5-24.

5.24.4. Contamination Assessment

5.24.4.1. Based on the results of both the previous investigation and the Phase I RFI sampling program, it appears that contaminants have been released to both the surface water and sediment in the Stormwater Discharge Area. In the sediments, slightly elevated concentrations of numerous metals were present when compared to the background thresholds for soils. In addition, a detectable concentration of numerous pesticides, including DDT, and degradation products of pesticides were present. Concentrations of volatile organics and semi-volatile organics were limited to two low concentrations of toluene. No explosives were detected in the sediment samples. Samples collected from the soil boring indicated that the greatest concentrations of metals were present in the surface soils and concentrations generally decreased with depth with several exceptions. These exceptions included both sodium and thallium, which were detected at the greatest concentrations at the total depth (25 feet) of the borehole. Reported detections of two phthalate compounds in soil samples from the borehole are considered lab contaminants, and not included in this contamination assessment. None of the analytes detected in the sediment exceeded the proposed Subpart S action levels for soils.

5.24.4.2. Concentrations of contaminants in the three surface water samples were below MCLs for the respective analytes, although cyanide, 2,4-dinitrotoluene, and several SVOCs were detected. Concentrations of the major cationic species were unremarkable.

5.24.5. Recommendation

5.24.5.1. Based on the results of both previous and the Phase I RFI sampling, it appears that the stormwater discharges at this SWMU have released contaminants to the environment. For this reason, it is recommended that this SWMU be included in Phase II activities. Specific recommendations are included in Section 6.0.

5.25 USED OIL DUMPSTERS (SWMU 46)

5.25.1. Site Description and Waste Generation

5.25.1.1. Used oil dumpsters are present at 17 locations in the Administration and Maintenance areas of TEAD-N. These locations include buildings 507, 510, 511, 522, 600, 602, 607, 611, 619, 620, 637, and 691. Used oil from vehicle maintenance operations in these buildings is stored in dumpsters at each of these buildings. The used oil is routinely pumped

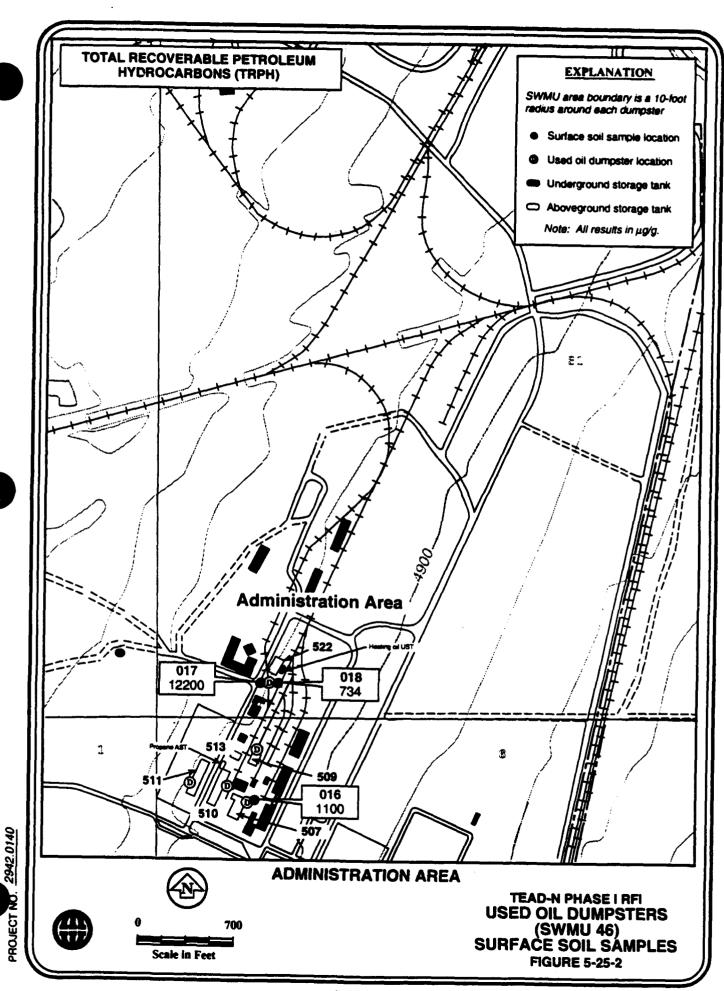
from the dumpsters for off-site disposal by an oil recycling contractor. In addition to the used oil dumpsters, an interview with a former TEAD-N employee (Chamberland, 1992), indicated that a large diesel oil spill occurred in the vicinity of the southeast corner of Building 637. This spill area is included in SWMU 46, resulting in a total of 18 individual locations which were investigated.

5.25.2. Site Conditions

5.25.2.1. The soils which lie beneath the Administration and Maintenance Areas of TEAD-N consist of the silty and sandy gravels of the Abela Series (USSCS, 1991). The depth of bedrock beneath these areas is estimated to be between 300 to 500 feet bgs. The depth of groundwater varies, but is approximately 300 feet bgs, and groundwater flow beneath these areas is toward the northwest.

5.25.3. Previous Sampling and Phase I RFI Sampling and Results

5.25.3.1. Previous Investigations. Sampling and analysis of used oil indicates that detectable concentrations of benzene and other VOCs that are F-listed hazardous wastes are present in the used oil.

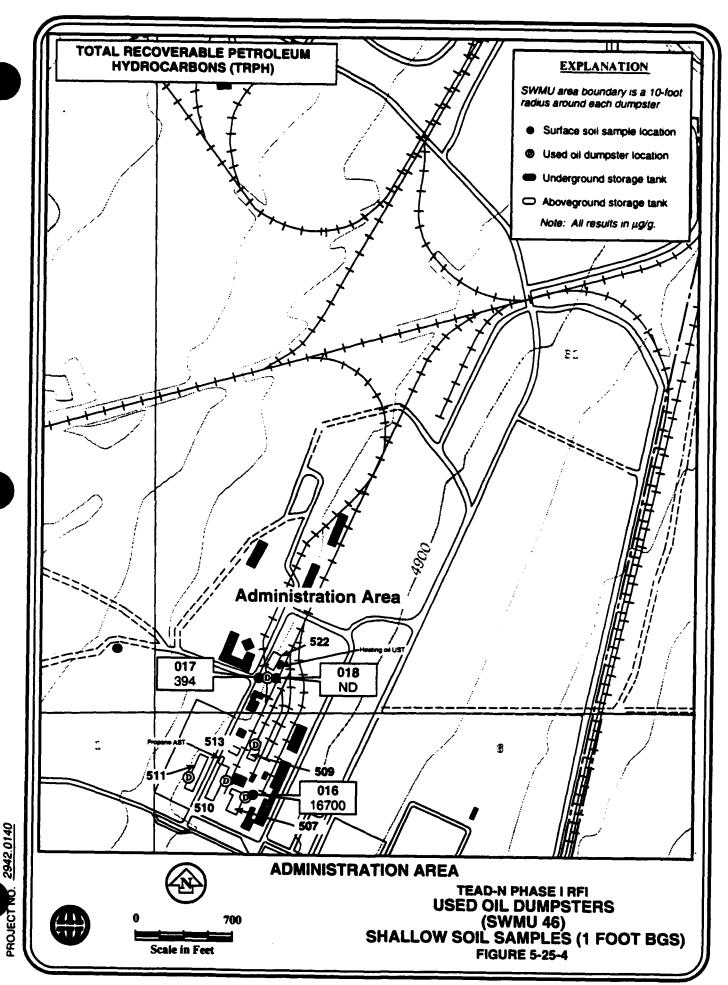

5.25.3.2. Phase I RFI Sampling and Results. Eighteen surface soil samples and eighteen shallow soil samples (1 foot bgs) were analyzed for total recoverable petroleum hydrocarbons (TRPH) at the used oil dumpster locations. The results of these analyses for the surface soils in the Maintenance area and Administration area are presented in Figures 5-25-1 and 5-25-2, respectively. Analytical results for the shallow soils in these areas are presented in Figures 5-25-3 and 5-25-4. From a total of 17 dumpster sites found, 11 sites were sampled as well as the reported diesel fuel spill. Six dumpster locations were not sampled due to the absence of exposed soil in their vicinity.

5.25.4. Contamination Assessment

5.25.4.1. Based on the results of the Phase I RFI sampling program, it appears that TRPH has been released to the surface and shallow soils at virtually all of the used oil dumpster locations sampled. Concentrations of TRPH in the surface soil samples ranged from 32.3 to $26,600 \,\mu\text{g/g}$. The results of samples collected from 1 foot were similar, with concentrations of TRPH being present in all samples and ranging from 35 to $50,700 \,\mu\text{g/g}$. No Subpart S action levels have been proposed to regulate TRPH in soil.

001 39100

TOTAL RECOVERABLE PETROLEUM **HYDROCARBONS (TRPH)**


5-99

001

4740

TOTAL RECOVERABLE PETROLEUM

HYDROCARBONS (TRPH)

5.25.5. Recommendation

5.25.5.1. Based on the results of the Phase I RFI sampling, it is apparent that waste oil handling practices at the used oil dumpsters have released petroleum hydrocarbons to the nearby surface and shallow subsurface soils. For this reason, it is recommended that this SWMU be included in the Phase II activities to characterize the extent of this contamination and evaluate the potential health risks it poses to humans and the environment. Specific recommendations for Phase II evaluations are included in Section 6.0.

5.26 BOILER BLOWDOWN AREAS (SWMU 47)

5.26.1. Site Description and Waste Generation

5.26.1.1. This SWMU has four locations in the Maintenance Area, and includes buildings 606, 610, 637, and 691. Each of these buildings contains a boiler that generates steam. During boiler plant maintenance, the boiler is back-flushed during a blowdown which produces small concentrations of blowdown water. Tannic acid, an organic compound, is used to reduce scale buildup inside the boiler during this process and gives the blowdown water a reddish color. These boilers and their associated blowdown systems have been in operation since the initial construction of the buildings, most of which were built during World War II. The boiler blowdown water was previously discharged from the boilers inside the buildings onto the ground. All boiler effluent is now discharged to a drain system leading to the IWTP (Ware, 1993). At Building 691, however, effluent from multiple sources including the building boiler, paint booth area(s), and interior and exterior drains is discharged through a culvert to a point approximately 1,000 to 1,200 feet west of the building. From here it flows along a small open ditch westward, and most likely infiltrates into the surface soil (Lopez, 1993).

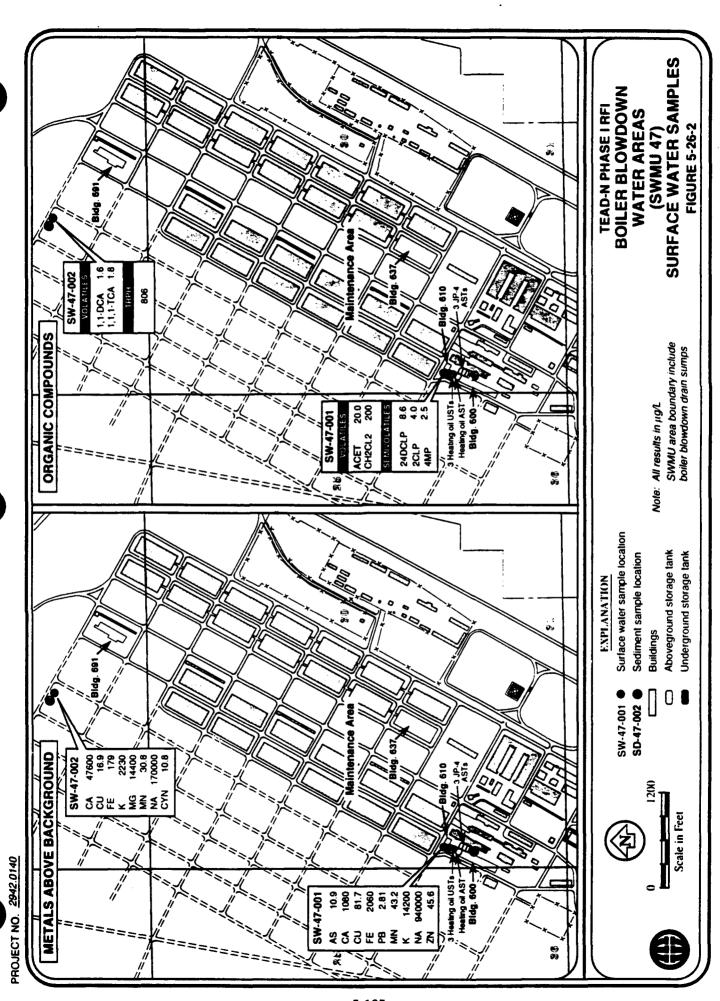
5.26.2. Site Conditions

5.26.2.1. Soils beneath the Maintenance Area consist of silty and sandy gravels of the Abela Series (USSCS, 1991). Depth to groundwater varies but is expected to be about 300 feet bgs. The groundwater flow beneath the Maintenance Area is toward the northwest. Although the depth of bedrock is unknown, it probably ranges from between 300 to 500 feet bgs.

5.26.3. Previous Sampling and Phase I RFI Sampling and Results

5.26.3.1. Because no previous sampling of this SWMU has been conducted, the analytical results are limited to those collected during the Phase I RFI sampling program. Samples

collected include a sample of surface water from a boiler blowdown water sump outside Building 610, a surface soil sample (designated a sediment sample) from adjacent to this sump, a sample of sediment from a boiler blowdown water discharge area outside Building 600, and a sediment sample and surface water sample from a discharge area west of Building 691. Surface water and sediment samples were analyzed for VOCs, SVOCs, metals and TRPH. The results of the analysis of sediment samples are presented in Figure 5-26-1, and the results of the surface water analyses are presented in Figure 5-26-2. These analytical results are also contained in Table 5-26 at the end of Section 5.0.


5.26.3.2. Surface water samples showed detections of VOCs and SVOCs, as well as a small amount of cyanide in the sample collected west of Building 691. The surface water sample collected from the Building 610 sump contained 200 μ g/L methylene chloride. The sediment samples contained TRPH concentrations up to 3,110 μ g/g, as well as several metallic analytes.

5.26.4. Contamination Assessment

5.26.4.1. For the contamination assessment discussion of SWMU 47, a differentiation between analytical results for those samples contained within a "closed" system (i.e., the blowdown sump) and those results found in the environment should be made. The presence of contamination in a holding sump does not necessarily mean that a release of contaminants has occurred, whereas a discovery of contaminants outside the closed system would imply such a release.

5.26.4.2. Closed System Assessment. Only one sample was collected from within a closed sump. Surface water sample SW-47-001 was obtained from the blowdown sump outside Building 610, and showed the presence of arsenic, copper, iron, lead, manganese, and zinc, none of which are above proposed health-based action levels or promulgated drinking water standards. Concentrations of the VOCs acetone and methylene chloride and three SVOC phenol compounds were also detected in this water sample. Of these organic compounds, methylene chloride in SW-47-001, detected at 200 µg/L, exceeded the proposed regulatory action level for water of 5 µg/L..

5.26.4.3. Environmental Assessment. The remainder of the samples collected at SWMU 47 (one surface water and three soil/sediment samples) were obtained from outside any collection sump(s), generally from nearby soils where blowdown water runoff occurred. Elevated levels of several metals were found, though none exceeded any established health-

based action criteria. However, the concentration of lead in sample SD-47-001 (647 $\mu g/g$) could pose a risk to human or environmental health depending upon exposure scenarios Total residual petroleum hydrocarbons (TRPH) were found in all three soil/sediment samples collected at SWMU 47.

5.26.5. Recommendation

5.26.5.1. Based on the Phase I RFI data, there is evidence that the boiler blowdown activities have released metals and petroleum compounds to the environment. For this reason, it is recommended that this SWMU be included in Phase II evaluation activities, including additional sampling. Specific recommendations are included in Section 6.0 of this report.

Table 5-2

TABLE 5-2

MAIN DEMOLITION AREA (SWMU 1) ANALYTICAL RESULTS

	SB-01-001	SB-01-001	SB · 01 · 001	SB · 01 · 001	SB · 01 · 001	SB -01-001	SB-01-001	SB - 01 - 002
	01110250	011 1*260	011.10261	0111*262	011.1*263	0111*264	0111*265	0111*266
	0272700	07/24/02	07/23/92	07/23/92	07/24/92	07/24/92	07/24/92	07/27/92
Depth (1t)	5.000 ft	10.000 ft	20.000 ft	30.000 ft	40.000 ft	75.000 ft	80.000 ft	5.000 ft
Metals and Cyanide (ug/g)								
Aluminum	2640.0000	7490.0000	8890.0000	5350.0000	4980.0000	11000.0000	4050.0000	1620.0000
Antimote	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	8.5200	< 7.1400
Arsenic	10.4000	8.4800**	11.9000**	5.0100	4.4400	11.2000**	6.7300	4.1400
	68.7000	90.3000	155.0000	45.0000	59.2000	99.4000	36.1000	45.3000
	0.6520	0.8770	1.0100	0.5380	0.5950	1.1200	0.6540	< 0.5000
Cachina	002.0	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	1.0600**
	34800.0000	39500.0000	40800.0000	100000.00001	41100.0000	94000.0000	150000.0000	23800.0000
Chronica	8.5600	12.0000	13.8000	10.5000	8.3300	13.6000	9.3000	4.0500
Cobalt	3.8700	4.6700	4.5700	2.6000	3.4000	5.8100	1.9800	< 1.4200
Cooper	7.4000	8.5600	9.2500	9.4400	5.3700	11.7000	5.0200	111.0000**
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
003	8750,0000	10900.0000	11800.0000	7760.0000	7390.0000	14000.0000	6570.0000	2650.0000
	6.4000	7.6300	2.6400	2.4400	6.4200	10.5000	9.0000	19.0000
Regnesica	6360.0000	6760.0000	7030.0000	12800.0000	9590.0000	13700.0000	9050.0000	2730.0000
Kandahese	159.0000	146.0000	130.000	228.0000	245.0000	408.0000	191.0000	78.1000
Mercury	< 0.0500	< 0.0500	0.0589**	< 0.0500	< 0.0500 <	0.0617**	< 0.0500 <	0.0976**
	8.3500	10.1000	11.0000	10.6000	8.8400	16.0000	9.2300	3.6300
Potassium	1220.0000	1630.0000	1830.0000	1170.0000	977.0000	2090.0000	807.0000	512.0000
Selenjus -	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 <	< 0.2500	< 0.2500	< 0.2500
	◆ 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
	1440.0000**	24.70.0000**	2650.0000**	868.0000	460.0000	317.0000	277.0000	216.0000
That	< 6.6200	6.6200	< 6.6200	6.6200	< 6.6200	6.6200	< 6.6200	< 6.6200
	20.2000	24.1000	25.8000	15.8000	16.5000	23.8000	15.0000	5.3200
3,000	0007 76	41 VUUU	12 BOOD	24, 2000	26, 1000	59,1000	37,6000	161,0000**

5-2-1

Notes: ** = .

Page No. 1 12/18/92

TOOELE AD-NORTH AREA: SUAS. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

								-00 10 10
Sample 1D	SB-01-002	SB - 01 - 002	SB · 01 · 002	SB-01-002	200-10-95	SB - 01 - 002	58-01-003	28-01-063
=	011.1*267	0111*268	011.1*269	011.1*270	011.1*271	011.1*272	011.1*273	0111*274
	2012770	07/2//02	05/22/00	07/27/92	07/27/92	07/27/92	07/26/92	07/26/92
	3//3/13	35 000 64	37 (12 (12		** 000 00	19 000 001	5 000 5	15 000 41
Depth (ft)	11 000.61	11 000.00	11 000.00	90.000	30.000	20.001		
Metals and Cyanide (ug/g)								
Atuminum	1430.0000	6730.0000	2520.0000	12500.0000	5560.0000	1870.0000	8240.0000	7040.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	11.7000	< 7.1400	< 7.1400
Arsenic	3.4800	18.0000**	5.7600	6.7500	8.4200**	6.4700	9.3000	9.5900
	28.7000	126.0000	75.3000	124.0000	68.2000	30.4000	194.0000	37.4000
	< 0.5000	1.3600	< 0.5000	1.1800	1.1300	0.6260	1.2600	< 0.5000
	< 0.7000	0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000
	17800,0000	42900.0000	24100.0000	56000.0000	77000.0000	130000.0000	42900.0000	20600.0000
Chronical	22.1000	13.5000	5.6600	14.1000	27.4000**	5.4700	11.2000	6.5200
i eqoj	< 1.4200	3.0400	2.6000	5.4500	4.3100	< 1.4200	9.6000	3.9900
1000	12.5000	10.8000	5.2700	0097.6	6.8200	2.6800	13.0000	9.8600
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
5-	5290.0000	13100.0000	5300.0000	13600.0000	10600.0000	3760.0000	10300.0000	7780.0000
2-:	7.1900	10.6000	6.7400	8.9800	9.1600	6.5000	14.0000	10.1000
	1760.0000	8460.0000	3140.0000	11100.0000	16000.0000	23400.0000	8370.0000	3880.0000
Kanaanese	29.0000	105.0000	90.2000	377.0000	345.0000	240.0000	760.0000	109.0000
Mercury	0.0585**	0.0677**	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 ×	< 0.0500 ×
Zicke	3.1200	10.3000	4.7100	15.8000	10.9000	5.4200	15.5000	7.5300
Potassica	768.0000	1560.0000	641.0000	2530.0000	1140.0000	464.0000	2710.0000	764.0000
Selenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	0.8850**	0.4200**
	< 0.5890	< 0.5890	× 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	247.0000	903.0000	418.0000	879.0000	\$64.0000	339.0000	2160.0000**	1750.0000
That Live	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	· 6.6200
Vanadius	5.1800	31.3000	11.3000	25.1000	17.2000	11.6000	23.7000	16.1000
2 inc	23.1000	39.1000	14.8000	48.6000	36.5000	22.5000	49.3000	25.1000
!								

Sample 10 Lab 10 Date Sampled				50.01.00£	CB.01.003	CB.D1.D01	FD-01-00	FP-01-001
Lab ID Date Sampled	100.500 ID-86	500.00	500-10-85	600 -0 -05				
Date Sampled	01110295	0111-275	0111*276	011.1*277	0111*278	011.1*279	MSOIL 1*1	2-L 7105#
	07/26/92	07/26/92	26/92/10	07/26/92	26/92/10	07/26/92	26/62/50	26/62/50
Depth (11)	15.000 ft	25.000 ft	35.000 ft	45.000 ft	70.000 ft	100.000 ft	2.000 ft	4.000 ft
Metals and Cyanide (ug/g)								
Atumirum	5220.0000	3390.0000	8500.0000	7730.0000	7180.0000	2030.0000	10100.0000	3440.0000
Ant imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	21.4000**	< 7.1400
Arsenic	7.2900	7.2700	5.6700	2.4400	4.9000	5.8300	10.000	4.1600
Berius	55.3000	54.7000	146.0000	113.0000	95.9000	35.1000	445.0000**	79.6000
Beryltion	0.6420	< 0.5000	0.8660	1.0900	0.6510	< 0.5000	0.6840	< 0.5000 <
Cadhium	< 0.7000	< 0.7000	< 0.7000	< 0.700@	< 0.7000	< 0.7000	1.4100**	• 0.7000
Calcium	19900.0000	28900.0000	73000.0000	47500.0000	73000.0000	104000.0000	13700.0000	25600.0000
Chronica	8.5000	5.9000	10.1000	10.3000	8.0700	8.5500	34.1000**	6.9600
Cobelt	4.0500	3.9100	5.2100	2.6400	4.9100	3.5500	6.7700	3.1300
Copper	6.7100	6.1000	8.6700	8.6500	8.2700	4.0300	106.0000**	6.0500
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 <
	8340.0000	6370.0000	9840.0000	9740.0000	8780.0000	6700.0000	34000.0000**	9350.0000
read	10.3000	8.4300	10.5000	11.4000	9.5900	9.0000	386.0000**	10.7000
Magnes fun	3930.0000	4820.0000	12300.0000	7690.0000	11400.0000	8690.0000	4350.0000	3810.0000
Manganese	140.000	106.0000	394.0000	400.000	359.0000	223.0000	421.0000	9004.89
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	\$	< 0.0500	· 0.0500
Nickel	7.9500	7.4700	12.7000	12.8000	12.4000	2.9600	20.1000**	6.7000
Potessium	0001.000	801.0000	2290.0000	1780.0000	2150.0000	590.0000	2300.0000	574.0000
Selenium	0.4540**	0.4920**	1.1300**	0.9080**	1.0600**	1.3700**	< 0.2500 <	◆ 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	2.6200**	< 0.5890
Sodium	1700.0000	932.0000	1390.0000	1050.0000	728.0000	423.0000	478.0000	320.0000
Thelifum	< 6.6 200	< 6.6200	< 6.6200	< 6.6200	6.6200	6.6200	< 6.6200	< 6.6200
Variation	17.0000	15.0000	17.4000	17.3000	17.3000	9.4200	15.7000	13.0000
2 inc	25.9000	22.6000	43.5000	39.7000	36.6000	22.3000	380.0000**	31.2000

5-2-3

is above the background concentration for the depth shown, < = No

Notes: ** * V

ected at the value shown, NA = Not analyzed

Page No. 1 12/18/92

100ELE AD-NORTH AREA: SM. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

	50.01.005	FP-01-002	EP-01-003	EP-01-003	EP-01-004	EP-01-004	EP-01-005	EP-01-005
Sarpie 10	N + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	70111037	A 1 1 1 0 3 M	A+1 1103M	WS011 1+7	MS011.1*8	MSOIL 1*9	SOIL 1*10
1eb 10	S-L TIOSN	WEGIT 14	CHIDSM	Madic II o	acide.		06,30,00	06,110,103
Date Sampled	29/52/50	05/59/92	05/30/92	05/30/65	26/28/50	05/30/92	7A/ns/cn	3A/nc/cn
Depth (ft)	2.000 ft	3.000 ft	2.000 ft	5.000 ft	3.000 ft	5.000 ft	3.000 ft	7.000 41
Metals and Cyanide (10/0)								
	7570.0000	4380.0000	8900.0000	13000.0000	12400.0000	10000.0000	15400.0000	10600.0000
	0071.2 > .	< 7.1400	< 7.1400	280.0000**	< 7.1400	< 14.0000	< 7.1400	37.5000**
A COUNTY	0007 1	3.0600	12.0000	23.0000	4.7800	2.2400	8.4800	7.1600
	0000 351	70.7000	198,0000	2790.0000**	199.0000	155.0000	309.0000**	268.0000**
	0.5000	< 0.5000	< 0.5000	4 1.0000	1.0600	1.6000	1.0200	0.6070
	0002:0 >	< 0.7000	< 0.7000	4.8000**	< 0.7000	< 1.4000	16.8000**	0.9020**
	8650.0000	13400.0000	25400,0000	20900.0000	36700.0000	27700.0000	32200.0000	36800.0000
	0777.6	6.9100	25.5000**	480.0000**	17.5000	17.0000	23.4000**	194, 0000**
	7.2400	3.2700	2.9600	61.0000**	4.8300	11.0000**	6.4700	6.7200
	12.0000	2.4400	90.9000**	2800.0000**	32.9000**	43.0000**	91.7000**	1450.0000**
	0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	0.9200
	9160.0000	6430,0000	19200.0000	83000.0000**	12400.0000	110000.0000**	20600.0000	35500.0000
2-4	5.9600	4.7200	151,0000**	\$400.0000**	45.9000	390,0000**	192.0000**	366.0000**
	3670,0000	2120.0000	2690.0000	8100.0000	7480.0000	6300.0000	7650.0000	2020.0000
	268,0000	153.0000	331,0000	**0000.0%	232.0000	440.0000	420.0000	414.0000
	0.050	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 ×	< 0.0500	< 0.0500
	8.1800	5.7700	15.4000	72.0000**	11.9000	30.0000**	17.9000**	22.5000**
	2320 0000	1070.0000	2480.0000	3460.0000	3310.0000	2670.0000	3910.0000	3120.0000
	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
	0.5890	< 0.5890	< 0.5890	2.6000**	< 0.5890	< 1.2000	0.8170**	< 0.5890
1:170	0000 978	314.0000	440.0000	1970.0000**	2260.0000**	2020.0000**	1230.0000	1710.0000**
	6.6200	< 6.6200	< 6.6200	< 13.0000	< 6.6200	< 13.0000	· 6.6200	6.6200
	0005.31	10.2000	21.4000	20.0000	25.4000	12.0000	28.8000	20.5000
	0008 07	24.6000	294,0000**	12000.0000**	74.7000	270.0000**	614.0000**	1770.0000**
	111111111111111111111111111111111111111))) •	1					

	EP-01-006	EP-01-006	EP-01-007	EP-01-007	EP-01-008	EP-01-008	EP-01-009	EF-01-004
	\$100	5011 1012	5011.1013	\$011.114	SOIL 1*15	\$011.10	\$01L1*17	SOIL 1*16
	0/01/00	75/11/02	05/30/02	05/30/92	05/31/92	05/31/92	05/31/92	05/31/92
Date Sampled	24/06/60	00/06/06	1 000	47 000 3	**	, 000	1 500 6	4 COS 7
Depth (ft)	3.000 ft	5.000 ft	3.000 11	3.000 11	3.000 11	31,000.7	36:-	
Metals and Complete (1979)								
	DOOD GOOD!	0000 0587	11100.0000	8040.0000	19000.00001	7970.0000	13600.0000	9270.0000
	> 1400	0071.2 >	< 7.1400	< 7.1400	27.0000**	17.2000**	< 7.1400	< 7.1400
ALL CHANGE	4. 1800	0077-5	9.2200	5.6700	14.0000	9.2100	4.2600	3.6200
	0000 Y71	102 0000	228,0000	109.0000	745.0000**	164.0000	190.000	155.0000
		0 5000	0.7710	< 0.5000	< 1.5000	< 0.5000	0.8310	< 0.5000
	0007.6 >	V 0 2000	< D.7000	< 0.7000	18.0000**	< 0.7000	16.5000**	2.7800**
	COOL POORC		62000,0000	34400.0000	33800.0000	35400.0000	22100.0000	12300.0000
	13 2000	7, 2200	13.8000	11.8000	91.0000**	13.6000	24.3000**	16.3000
	0007:5	4.4100	4.9800	3.9500	22.0000**	4.4200	7.3900**	5.8100
) legger	16.7000	5.8000	9.5600	8.0600	860.0000**	25.4000**	551.0000**	••0009-69
	0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
	12000.0000	~	12000.0000	9780.0000	130000.0000**	12800.0000	22200.0000	16200.0000
3 4	13.0000	6.7100	9.0400	9.9600	1900.000**	1360.0000**	\$86.0000**	2470.0000**
	0000.000	4680.0000	10500,0000	7390.0000	9800.0000	8170.0000	7560.0000	4900.0000
	310.0000	235.0000	132,0000	161.0000	1500.0000**	240.0000	424.0000	341.0000
	0.0577**	0.1260	• 0.0500	< 0.0500	0.0553**	< 0.0500	· 0.0500	0.0500
	11.5000	9.3400	11.5000	9.5000	100.0000	10.6000	19.6000**	11.6000
	3460.0000	1010.0000	2720.0000	1720.0000	2200.0000	2090.0000	4360.0000	2720.0000
	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 <	• 0.2500
	0.5890	< 0.5890	< 0.5890	< 0.5890	4.2000**	< 0.5890	0.6710**	< 0.5890
	626.0000	964.0000	1300.0000	1360.0000	2610.0000**	2310.0000**	9000 . 599	1050.0000
1,1	6.0500	< 6.6 200	6.6200	< 6.6200	< 20.0000	· 6.6200	• 6.6200	6.6200
	20.4000	16.7000	34.3000**	23.8000	24.0000	26.5000	22.6000	18.4000
				0000	******	DUOC 77	262 600066	104 00000

Notes: ** = V

Page No. 1 12/18/92

TOOFLE AD-NORTH AREA: SUML .. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

	6P-010-010	EP-010-010	EP-01-011	EP-01-017-0UP		EP-01-012	EP-01-012	
						1000	/601100	X • • • • • •
1.0b 10	8011101	2011 1450	0111-218	2011103	22.11105	8011168	3011 1.C	C-LIES
Date Sampled	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	06/01/92
Depth (ft)	2.500 ft	5.500 ft	3.000 ft	3.000 ft	6.000 ft	2.000 ft	4.000 ft	1.000 ft
Hetals and Cyanide (ug/g)								
Atumitum	11700.0000	8450.0000	110000.0000**	120000.0000**	5560.0000	20600.0000**	8450.0000	7690.000
Antimony	< 7.1400	< 7.1400	9.2900**	22.0000**	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	5.2400	3.4200	13.0000	9.5000	5.1900	3.9000	6.9400	2.6700
	150.0000	138.0000	552.0000**	828.0000**	98.0000	143.0000	144.0000	157.0000
(1) - 1 > Lag	1.0200	0.7260	0.8200	1.0000	< 0.5000	0.6900	< 0.5000	< 0.5000
Cadalus	< 0.7000	< 0.7000	54.2000**	••0000.69	< 0.7000	1.6000**	< 0.7000	27.5000**
Catcium	41000.0000	18100.0000	10600.0000	16500.0000	37200.0000	21500.0000	51000.0000	37000.0000
Chronica	13.1000	12.9000	30.4000**	\$7.0000**	8.5000	19.3000	11.4000	13.9000
Cobalt	5.3300	5.2300	6.0100	6.6000	4.0400	9.4500	4.6500	3.8000
Copper	88.7000**	10.5000	11000.00011	11000.0000**	16.7000	373.0000**	10.7000	84.1000**
Cvanide	< 0.9200	< 0.9200	1.9800**	2.3400**	< 0.9200	< 0.9200	< 0.9200	° 0.9200
5-1	12200.0000	11500.0000	32900.0000	82000.0000*	8350.0000	19000.00001	10900.0000	12000.0000
peal 6	27.4000	7.0600	••0000.996	1200.0000**	9.8600	93.8000**	9.7500	••0005.79
Pagnesics	8150.0000	4850.0000	1850.0000	3200.0000	6530.0000	7140.0000	8220.0000	5210.0000
Handanese	291.0000	213.0000	507.0000	**0000.064	172.0000	434.0000	156.0000	220.0000
Mercury	0.0538**	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	0.3000**
Nickel.	13.3000	11.2000	175.0000**	220.0000**	8.4000	23.0000**	11.8000	10.3000
Potassica	3790.0000	2760.0000	920.0000	1500.0000	1880.0000	3930.0000	1690.0000	1800.0000
Setenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×	· 0.2500
Silver	< 0.5890	< 0.5890	3.8400**	5.1000**	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	0000 .679	2590.0000**	1570.0000	2460.0000**	298.0000	454.0000	2130.0000**	970.000
Thattium	< 6.6 200	< 6.6200	< 6.6200	< 13.0000	< 6.6200	6 .6900**	• 6.6200	9.9 • •
Vanadium	20.7000	20.0000	25.6000	45.0000**	17.6000	22.7000	23.8000	17.7000
2 inc	752.0000**	45.8000	7000.0000	0000.0006	30.1000	236.0000**	34.6000	278.0000**

TODELE AD-WORTH AREA: SIMU NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

Page No. 1 12/16/92

EP-01-017 SOIL1*33 06/02/92 0.000 ft
EP-01-016 \$0111*32 06/01/92 4.500 ft
EP-01-016 \$0111*31 06/01/92 0.000 ft
EP-01-015 \$011.1°29 06/01/92 6.500 ft
EP-01-015 \$011.1°30 06/01/92 3.500 ft
EP-01-014 SOIL 1*27 06/01/92 7.000 ft
EP-01-014 S01L1*26 06/01/92 3.000 ft
EP-01-013 \$011.1°26 06/01/92 4.500 ft
Sample 10 Lab 10 Date Sampled Depth (1t)

Hetals and Cyanide (ug/g)					0000	7540 0000	0000 0717	A110 0000
	0000 0107	11500.0000	. 19000.0000**	0000.0609	4450.0000	4360.0000	2000	
	9074	W *	0071 7 7	V 7 1400	< 7.1400	< 7.1400	· 7.1400	× 7.1400
Antimony	W. 7. 5		2011			9010	00000	A 2000
	0079.7	5.9900	10.000	2.7800	14.0000	20.00		30.0
		Ann Ann	270,0000**	144.0000	85.9000	123.0000	506.0000	200.000
	0000.031	0000	- 080	0000	0.5000	< 0.5000	< 0.5000	· 0.5000
Beryllium	× 0.5000	0.070	966.	9006	** 2000 or	0000	0002.0	0.9490**
Cartaina	< 0.7000	12.7000**	12.6000	- 1.700				9000
	0000 00776	7000 0000	36800.0000	26200.0000	45000.0000	33900.0000	55500.0000	37/00.0000
		15 0000	21.4000**	8.9700	9.5700	7.1200	8. 7 4 0	9.3600
Chronium	9.5.00	7 470044	A TONNO	0020 5	5.2600	3.9500	4.2700	4.3500
Cobalt	0.50.	-00/0.7	************	12 4000	**0009 11	42,2000**	9.4300	62.9000**
Copper	9.6 200		-0000.0301	9900	9000	0000	A 0 0200	0000
Conside	< 0.9200	v 0.9200	4 0.9200	90%.n	4 U.VEU	0.7666	90.4	
	A200 0000	16400,0000	18600.0000	12700.0000	14500.0000	7270.0000	9270.0000	9590.0000
Lon	0000	417 00004	203.0000**	16,0000	242.0000**	14.0000	9.1700	193.0000**
Lead	9.0500	9000.110	0000 0000	72.00 0000	UUUU US07	0000,0644	94.10.0000	0000.0699
Maanesium	3720.0000	9720.0000	10500.0000	7470	200.064		9000	707
	181,0000	602.0000	**0000.919	204.0000	232.0000	192.0000	147.000	CN0.000
	*******	1000	< 0.0500	< 0.0500	< 0.0500 <	· 0.0500	· 0.990	· 0.0500
Mercury	25.0	10 0000	24. SOOn**	10.7000	12.4000	8.1100	10.2000	10.5000
Mickel	0000	17.000	0000 0007	1490,0000	1210,0000	1820.0000	1670.0000	2580.0000
Potessium	1720.0000	3730.000	0 25.00	0 2500	0 2500	< 0.2500	< 0.2500	• 0.2500
Selenium	< 0.2500	onc2.0 >	0.530	00000		0000	A C .	. A CBO
	< 0.5890	< 0.5890	< 0.5890 <	< 0.5890 • 0.5890	< 0.5890	< 0.38%	C 0.30%	4 0.30M
i Aile	C12 0000	1810 0000**	1910.0000**	1710.0000**	968.0000	178.0000	3320.0000**	9000.799
un pos	0000.315	0000	11.9000**	9.5900	6.6200	6.6200	· 6.6200	9.6500**
	. 6.6500	23 0000	24.6000	19.3000	23.9000	13.6000	24.4000	16.8000
Venedium	9000	1170 00001	**0000 0722	92 4000	157.0000**	24.8000	27.8000	116.0000**
2inc	0004.72	000.0		•				

5-2-7

is above the background concentration for the depth shown, < * 1/4

ected at the value shown, MA = Not analyzed

Hotes: ** #

Page No. 1 12/18/92

IODELE AD-NORTH AREA: SUM. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR NETALS

			970 00 00	50.01-010	60.01.010	FP-01-020	EP-01-020	EP-01-021
Sample 10	EP-01-018	EP-01-018	EF-01-018-00F					• / • • • • • • •
	5011 1-36	011.1*219	50111*35	50111*37	SO11 1•38	2011.1.39	05.1.105	
ni og i	07 (07)00	04,007	04/07/05	06/03/92	06/03/92	06/03/92	06/03/92	06/03/92
Date Sampled	34/30/00	76 76 76	7 20 7	1 600 4	7 500 60	1 500 ft	4.500 ft	2.000 ft
Depth (ft)	4.000 11	6.500 11	0.500 11					
Metals and Cyanide (ug/g)			4 3000	0000	777 0000	2040 0000	3910,0000	15300.0000
Atuminum	19000.00001	14800.0000	17000.0000	0000.00001	1000	900	60.7	W71 2 7
Antimony	1100.0000	2160.0000**	2200.0000*	22.2000**	< 7.1400	24.7 ×	2 7.1400	99.7
	29.0000	24.0000	24.0000	8.8000	6.8100	5.1200	14.0000	7.4000
	12000 0000+	22000,0000**	21000.0000**	594.0000	0007.69	151,0000	119.0000	126.0000
	**0000 C	1 3500	1.2000	1.5600	0.6900	1.100	0.7470	0.6090
Beryllica	110 0000+	10 2000**	13.0000**	2.6600**	0.7000	1.5700**	< 0.7000	2.4000**
Cachium	18800 0000	0000 00751	16000.0000	28600.0000	32200.0000	22400.0000	45100.0000	13000.0000
Catcium	61 0000	124 0000**	250 0000**	21.5000**	5.9800	11.3000	2.6200	14.3000
Chromium	11,0000	12000	A 4000*	8.2500**	3.3100	5.3700	4.3600	4.2300
Cobalt	13.0000	5 1000 0000 s	20000 0000	276 0000	**000**89	70.7000**	7.4700	414.0000**
Copper	0000.0000	000.000	A D 9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 <
Cyanide	***************************************	20.34.0	2000 0000¢	**0000.0004*	6440,0000	16700.0000	7260.0000	16200.0000
tor! s.	120000,000000	26000 0000	2000 00075	2230,0000**	34,1000	30.7000	11.9000	58.0000*
is Lead	27000.0000.0	26100 0000=	33000 0000**	0000.0699	5710,0000	5980.0000	7610.0000	2060.0000
Magnes ium	000.000/2	100 0000	510 0000	628,0000**	145.0000	341.0000	168.0000	381.0000
Manganese	10000	000.075	0.0500	< 0.0500	< 0.0500	0.1380**	< 0.0500 ×	0.3720**
Hercury	120 0000**	110 0000**	110,0000**	33.4000**	6.5500	16.4000	8.3900	26.2000**
	0000.031	0000 040	1100.0000	2790.0000	1020.0000	2920.0000	1080.0000	2670.0000
Potassium	034.000	0 2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500
Selection	2 1000**	\$ 4000*	**0002 7	1.5100**	< 0.5890	< 0.5890	< 0.5890	< 0.5890
	31.000	208.000	0000 0101	1500,0000**	1070,0000	279.0000	1500.0000**	257.0000
unipos	110 0000	A2 1000**	**0000.00	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200
	0000.01.	4 5500	0000 9 >	26.2000	13,9000	13.8000	18.0000	14.6000
Versedium	9999.91	000000	5200 0000**	1270.0000**	72.6000	93.5000	25.3000	166.0000**
Zinc	0000.0000	44/0.0000-	2500.0000					

Sample 10	EP-01-021	EP-01-022	EP-01-022	EP-01-023	EP-01-023	EP-01-024	EP-01-024	EP-01-025
	5011.1°42	5011.1*43	\$517105	\$011.1*45	SOIL 1*46	25-17105	\$011.108	67-17105
Date Sampled	06/03/92	06/04/92	06/04/92	06/04/92	06/04/92	26/06/90	06/04/92	26/07/95
Depth (ft)	4.500 ft	4.000 ft	5.000 ft	4.000 ft	5.500 ft	0.000 ft	4.500 ft	4.500 ft
Manage and Complete Contact								
	2440.0000	\$9000.0000**	5070.0000	5970.0000	2490.0000	10400.0000	7090.0000	84000.0000*
Antimony	< 7.1400	12.3000**	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	13.5000**
Arsenic	3.7500	7.3000	6.9900	5.5300	11.6000	7.1600	00%6.9	4.2000
	0008.96	116.0000	109.0000	101.0000	63.7000	194.0000	174.0000	276.0000**
Beryllium	< 0.5000	0.9640	< 0.5000	< 0.5000	< 0.5000	0.9650	< 0.5000	1.5200
Cadaine	< 0.7000	2.1100**	< 0.7000	< 0.7000	< 0.7000	1.4700**	< 0.7000	32.5000**
Catcha	15700.0000	51400.0000	49700.0000	33500.0000	32800.0000	20900.0000	20500.0000	22800.0000
Chronium	B. 1500	47.4000**	9.9600	8.6000	7.3000	13.7000	10.6000	33.6000**
Cobeli	4.5300	3.4600	3.7400	4.2400	3.6400	7.2800	6.3100	6.2700
Jacob	8.2300	2070.0000	10.1000	15.9000	7.0400	147.0000**	9.5300	3400.0000**
Cyanide	< 0.9 200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 <	< 0.9200
5.5	8180.0000	6620.0000	7860.0000	10500.0000	7850.0000	11700.0000	10500.0000	42500.0000 **
	9.7200	**0000.695	10.6000	8.7300	8.2200	53.6000	13.0000	50.3000
Hacres	0000.0007	17500.0000**	7150.0000	4790.0000	6640.0000	4960.0000	4800.0000	4970.0000
	223.0000	447.0000	143.0000	159.0000	114.0000	328.0000	479.0000	9 46.0000**
Hercury	0.0694	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.0500**	< 0.0500 <	< 0.0500 <
Mickel	7.6100	14.2000	7.5100	0.2200	7.3200	12.4000	12.2000	0007.82
Potassium	2230.0000	1580.0000	1020.0000	1910.0000	1540.0000	2690.0000	2190.0000	2020.0000
Selenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×	< 0.2500	< 0.2500 ×
Silver	< 0.5890	2.1900**	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	8.6700**
Sodium	756.0000	2800.0000**	1930.0000**	381.0000	702.0000	361.0000	1450.0000**	971.0000
That is	< 6.6200	11.4000**	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200
Vacadiu	13.6000	22.1000	17.7000	16.4000	21.9000	16.2000	23.8000	16.2000
2 inc	32.2000	766.0000**	21.9000	45.6000	21.3000	238.0000**	38.6000	12000.0000**

5-2-9

is above the background concentration for the depth shown, < = No

Notes: ** = V

cted at the value shown, MA = Not analyzed

Page No. 1 12/16/92

TOOELE AD-NORTH AREA: SUM. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

Sample 10	EP-01-025	EP-01-056	EP-01-026	EP-01-027	EP-01-027	EP-01-028	EP-01-028	EP-01-029
	6011 1050	50111451	SOIL 1452	5011.1+53	SOLUTES	SO11.1*55	SOIL 1*56	50111+57
1 ap 10	00.13100	10.000.70	20,000,70	20,000,00	60,00,00	20/00/70	04,00,00	06/00/00
Date Sampled	76/50/00	74/40/00	74/40/00	74/40/00	74/40/00	76/04/45	3/ / / / /	3 60 5
Depth (ft)	6.500 ft	4.500 ft	7.000 ft	3.500 ft	5.000 ft	4.500 ft	7.000 11	3.300 10
tetals and Evanide (110/0)								
Alcaicus	2980.0000	6300.0000	5510.0000	24000.0000**	5680.0000	57000.0000**	4630.0000	\$2000.00009
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	27.9000**
Arsenic	5.2200	5.8800	8.2400	7.4000	5.5200	7.5000	7.2200	< 2.5000
	92.7000	2440.0000	870.0000**	143.0000	122.0000	111.0000	104.0000	158.0000
Beryllius	< 0.5000	0.7510	0.9860	< 0.5000	< 0.5000	1.1800	< 0.5000	< 0.5000
Cadmium	< 0.7000	11.8000**	< 0.7000	\$.6900	< 0.7000	7.5000**	< 0.7000	13.9000**
Catcius	31700.0000	23300.0000	35500.0000	73000.0000*	47400.0000	19300.0000	54700.0000	10400.0000
Chronica	< 4.0500	12.0000	9.0200	31.6000**	7.7200	78.9000**	7.1800	54.4000**
Cobalt	3.5200	4.6500	4.4700	4.0000	4.2100	7.8400	4.3000	3.6200
Coper	0006.6	244.0000**	95.7000**	723.0000**	8.2600	1950.0000**	11.3000	2150.0000**
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	· 0.9200
5-1	5800.0000	17800.0000	12300.0000	8510.0000	8150.0000	17300.0000	8390.0000	7460.0000
pes 1 2 - 1	8.5000	\$8.0000**	18.0000	74.6000**	10.4000	181.0000**	19.0000	1560.0000**
Regnesica	6300.0000	7110.0000	8530.0000	11700.0000	8580.0000	18700.0000**	0000 . 0009	37800.0000**
Manganese	159.0000	258.0000	165.0000	228.0000	143.0000	643.0000**	144.0000	214 0000
Mercury	< 0.0500	0.1320**	< 0.0500	0.1020**	0.0527**	0.1160**	< 0.0500	< 0.0500
zickel	6.3700	15.8000	10.0000	13.1000	8.3300	33.9000**	8.1600	24.2000**
Potassium	878.0000	1990.0000	1940.0000	1600.0000	1720.0000	2540.0000	1220.0000	1480.0000
Selenius	< 0.2500	< 0.2500	< 0.2500	2.4200**	< 0.2500	< 0.2500	< 0.2500	0.6440**
Site	< 0.5890	0.7630**	< 0.5890	4.9400*	< 0.5890	1.7400**	< 0.5890	1.9900**
Sodius	199.0000	314.0000	322.0000	431.0000	290.0000	838.0000	986.0000	259.0000
That Live	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6 200	< 6.6200	< 6.6200
Vanadium	10.8000	12.8000	18.2000	19.3000	18,1000	19.1000	20.1000	17.6000
	24 ROOD	**0000 0050	112,0000**	**0000.303	24.7000	**0000**	25.8000	626.0000**

Serole 10	EP-01-029	EP-01-029-DUP	EP-01-030	EP-01-030	EP-01-031	EP-01-031	EP-01-032	EP-01-03
	011 1+220	SO11 1+58	\$011.1*59	80111.60	\$011.1*62	5011106	SOIL 1*63	2011.108
	207 017	06/00/95	06/10/92	06/10/92	06/10/92	06/10/92	06/10/92	26/10/95
Depth (ft)	5.000 ft	5.000 ft	3.000 ft	6.500 ft	0.000 ft	5.500 ft	0.500 ft	5.000 ft
Metals and Cyanide (ug/g)								
Atmina	6820.0000	6570.0000	18600.0000**	4320.0000	4150.0000	20400.0000**	0000.0066	20300.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	6.0600	6.0500	2.4000	7.2300	2.7900	4.7000	4.1800	9.6000
	120.0000	118.0000	147.0000	97.8000	264.0000	203.0000	117.0000	206.0000
	0.6180	< 0.5000	< 0.5000	< 0.5000	< 0.5000	1.4000	0.7250	1.2100
Cachina	< 0.7000	< 0.7000	2.2100**	< 0.7000	1.9600**	< 0.7000	1.0500**	· 0.7000
Calcium	26900.0000	30100.0000	27200.0000	17200.0000	27500.0000	26600.0000	33000.0000	53800.0000
Chronium	8.4000	7.9500	23.1000**	7.4800	8.0600	22.2000**	13.5000	23.7000
Cobeit	3.9100	3.9500	5.2800	3.7000	2.1400	8.6600**	5.3000	8.4300
Jacob	115.0000**	104.0000**	294.0000**	7.5000	290.0000**	20.2000	111.0000**	20.1000
Cvanide	< 0.9200	< 0.9200	< 0.9200	< C.9200	< 0.9200	< 0.9200 ×	< 0.9200 ×	· 0.9200
	9420.0000	7480.0000	14300.0000	8090.0000	9000.0009	20400.0000	12200.0000	20300.0000
	27.8000	19.0000	130.0000**	9.3300	22.0000	16.0000	26.7000	17.0000
Meanesium	5300.0000	5900.0000	8220.0000	3820.0000	3400.0000	12900.0000	8240.0000	12100.0000
Managerese	161.0000	164.0000	441.0000	170.0000	113.0000	657.0000**	345.0000	765.0000
Mercury	< 0.0500	· 0.0500	< 0.0500	< 0.0500	0.2040**	< 0.0500	0.1160**	< 0.0500
	8.3400	8.0600	18.2000**	8.1100	7.2500	22.4000**	11.9000	24.2000
Potassica	1660.0000	1870.0000	3350.0000	1230.0000	1160.0000	7050.0000**	3220.0000	6040.0000
Selenius	2.0100**	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Spice	250.0000	269.0000	814.0000	614.0000	228.0000	1310.0000	294.0000	1570.0000
Theilium	8.5200	< 6.6200	< 6.6200	< 6.6200	• 6.6200	< 6.6200	6.6200	6.6200
an (peve)	14.8000	15.3000	20.3000	18.3000	9.5400	**0006.62	20.9000	30.5000
2 inc	53.9000	61.3000	163.0000**	22.2000	174.0000**	87.3000	101.0000	85.4000

5-2-11

tue is above the background concentration for the depth shown, <

detected at the value shown, MA = Not analyzed

Sample 10			*CO. TO. L3					9
S 4								
	\$9+1 1108	SOIL 1*66	SOIL 1*67	89.1 110S	SOIL 1*70	SOIL 1*69	SOIL 1•71	2011 1-72
Date Sampled	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92
Depth (ft)	4.000 ft	6.500 ft	3.500 ft	6.000 ft	0.500 ft	6.000 ft	0.000 ft	5.000 ft
Hetals and Cyanide (ug/g)								
Atunian	210000.00000**	20700.0000*	120000.0000**	11700.0000	4710.0000	14600.0000	2820.0000	18600.0000**
Antimony	. < 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	< 2.5000	9.7000	5.5000	8.6000	3.7600	7.4000	3.3200	9.5000
	99. 7000	236.0000	108.0000	250.0000**	78.6000	213.0000	199.0000	226.0000
	1,1300	1.0700	1.1300	1.1400	< 0.5000	1.4200	< 0.5000	1.2300
	< 0.7000	< 0.7000	< 0.7000	< 0.7000	1.5400**	< 0.7000	1.1100**	· 0.7000
Calcium	15500.0000	43100.0000	26200.0000	37800.0000	25100.0000	70600.0000	19900.0000	24900.0000
Chronium	36.6000**	24.7000**	21.0000**	15.5000	9.4900	18.9000	< 4.0500	19.8000
Cobalt	9.9000	8.9000**	7.7800**	6.7800	2.5000	8.2400**	2.0300	8.4900**
Comer	91.8000**	18.5000	175.0000**	14.1000	221.0000**	19.8000	163.0000**	18.7000
Cvanide	< 0.9200	< 0.9200 ×	1.2700**	< 0.9200	< 0.9200	< 0.9200	1.5500**	< 0.9200 ×
ron	35000.0000**	21200.0000	33700.0000**	13900.0000	7240.0000	17000.0000	5180.0000	18600.0000
7000	29.1000	19.0000	82.8000**	16.0000	31.9000	20.0000	23.6000	17.0000
Magnesium	3530,0000	11700.0000	9440.0000	8120.0000	3810.0000	11400.0000	3060.0000	12200.0000
Racesan	518.0000	639.0000**	662.0000**	441.0000	154.0000	\$64.0000**	99.0000	540.0000
Mercer	< 0.0500	< 0.0500	< 0.0500 ×	< 0.0500	0.1770**	< 0.0500	0.1790**	< 0.0500 <
	25.7000**	24.7000**	23.2000**	17.5000**	6.3300	22.0000**	5.4300	22.0000**
	1250.0000	4400.0000	2300.0000	3050.0000	1380.0000	4130.0000	1160.0000	5680.0000
Seicola	< 2.5000	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
re-Xis	2.1000**	< 0.5890	1.1100**	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	294.0000	383.0000	778.0000	1070.0000	220.0000	1980.0000**	209.0000	2700.0000**
	14.1000**	10.2000**	15.5000**	12.3000**	< 6.6200	13.7000**	< 6.6200	< 6.6200
Variation	23.9000	39.7000**	22.0000	28.9000	10.8000	28.7000	7.9600	28.6000
Zinc	32.4000	88.2000	53.6000	62.3000	145.0000**	77.6000	130.0000**	79.6000

E.7.47

is above the background concentration for the depth shown, < = Not ***ected at the value shown, NA = Not analyzed Notes: ** = VP'

Page No. 1 12/18/92

TOOELE AD-NORTH AREA: SUA. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

							0.0 00 00	0,0
Sample 10	EP-01-037	EP-01-03/	EP-01-038	EP-01-038	EP-01-039	EV-01-039	050-10-43	
01 qa1	S011.1*73	S011.1*74	5011.1*75	SOIL 1•76	S011.1*77	S011.1*78	80111479	SOIL 1*80
Date Sampled	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92
Depth (ft)	0.500 ft	6.500 ft	0.500 ft	7.000 ft	0.000 ft	7.500 ft	0.000 ft	8.500 ft
Hetais and Cyanide (ug/g)								
Aluminum	3520.0000	17000.0000	4200.0000	20800.0000**	2920.0000	19600.0000**	2870.0000	19400.0000**
Antimony	< 7.1400	< 7.1400	< 29.0000	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	3.1500	5.7000	2.6900	6.4000	2.2900	8.3000	2.4600	7.3000
en i ce	83.5000	208.0000	168.0000	221.0000	287.0000**	213.0000	307.0000**	205.0000
Bery! Liu	< 0.5000	1.1800	< 2.0000	1.0400	< 0.5000	1.1800	< 0.5000	1.4500
Codhiun	2.5100**	< 0.7000	< 2.8000	< 0.7000	1.1700**	< 0.7000	1.5400**	< 0.7000
Calcius	21000.0000	41800.0000	11600.0000	45400.0000	21500.0000	38000.0000	21700.0000	38300.0000
Chronica	6.4300	18.9000	< 16.0000	24.5000**	5.6000	24.7000**	5.0800	23.0000**
Cobett	5.4200	7.7600**	13.0000**	8.0300**	< 1.4200	8.2500**	< 1.4200	8.6700**
Cooper	219.0000**	21.0000	4500.0000**	20.3000	9100.0000**	30.1000**	170.0000**	23.3000
Cyenide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200.	< 0.9200	< 0.9200	1.6100**
to I S	7390.0000	17800.0000	160000.0000**	19400.0000	5070.0000	19100.0000	5150.0000	19500.0000
pear.	40.9000	17.0000	140.0000**	16.0000	33.1000	15.0000	22.0000	17.0000
Magnes i un	3280.0000	11700.0000	1700.0000	12200.0000	2710.0000	11500.0000	3010.0000	12100.0000
Manganese	160.0000	574.0000**	650.0000**	525.0000	77.9000	518.0000	83.0000	240.0000
Mercury	0.1180**	< 0.0500	0.1350**	< 0.0500	0.1720**	< 0.0500	0.2100**	< 0.0500
Nickel	6.3300	20.3000**	38.0000**	22.8000**	5.2800	22.7000**	4.2400	23.1000**
Potassica	1530.0000	5880.0000**	571.0000	5290.0000	942.0000	4860.0000	663.0000	2440.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 2.4000	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	236.0000	2510.0000**	186.0000	1070.0000	216.0000	2070.0000**	221.0000	1560.0000**
Thattium	< 6.6200	< 6.6200	< 26.0000	< 6.6 200	< 6 .6200	< 6.6200	< 6.6200	< 6.6200
Vanadium	8.8200	28.2000	< 14.0000	32.6000**	8.0600	36.6000**	7.8400	33.6000**
2 inc	198.0000**	82.7000	1600.0000**	86.7000	3580.0000**	83.1000	124.0000**	85.2000

Semile 10	EP-01-041	EP-01-041	EP-01-042	EP-01-042-DUP	EP-01-042	EP-01-043	EP-01-043	EP-01-044
	18-1 1108	SOIL 1+82	011.1*227	5011.1-63	5011.1-84	SOIL 1*85	5011.1*86	SOIL 1-87
Sales Sampled	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92
Depth (ft)	0.000 ft	9.000 ft	2.000 ft	2.000 ft	5.000 ft	0.000 ft	5.000 ft	0.000 ft
Metals and Cyanide (ug/g)								
Atumica	2910.0000	21300.0000**	240000.0000**	260000.0000**	23600.0000**	9630.0000	20800.0000**	11600.0000
Ant imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1400
Arsenic	2.4900	9.8000	< 5.0000	< 5.0000	9.7000	2.0000	12.0000	9.4000
	278.0000**	213.0000	53.3000	69.9000	201.0000	136.0000	242.0000	192.0000
Beryllium	< 0.5000	0.9180	< 0.5000	< 0.5000	1.1200	0.8090	1.0200	0.0070
Cadaica	1.7400**	< 0.7000	< 0.7000	< 0.7000	< 0.7000	1.1000**	< 0.7000	1.0400**
Cotoine	23700.0000	45700.0000	7470.0000	8520.0000	33900.0000	27100.0000	47800.0000	31400.0000
Chronium	6.6100	24.0000**	26.3000**	29.7000**	27.7000**	13.3000	24.6000**	15.6000
Cobalt	1.8200	8.0300**	3.7100	4.1300	6.0200	4.4500	8.2300**	2.6500
Copper	142.0000**	33.0000**	252.0000**	337.0000**	20.9000	145.0000**	20.5000	157.0000**
Cyanide	4.5500**	< 0.9200	1.8700**	< 0.9200	< 0.9200	< 0.9200	< 0.9200 <	× 0.9200
Iron	5570.0000	19900.0000	16000.00001	20000.00002	21200.0000	11600.0000	19900.0000	13200.0000
Lead	33.6000	18.0000	762.0000**	932.0000**	18.0000	26.6000	18.0000	24.0000
Magnesium	3220.0000	12500.0000	1830,0000	2430.0000	10600.0000	6760.0000	11300.0000	8450.0000
Kangarese	106.0000	524.0000	287.0000	430.0000	543.0000	321.0000	537.0000	431.0000
Mercur	0.1230**	0.0770**	< 0.0500 ×	< 0.0500	< 0.0500	0.1100**	< 0.0500	0.1030**
	9.4900	21.6000**	14.9000	17.0000**	22.8000**	11.2000	23.4030**	13.4000
Potessium	648.0000	**0000.0699	722.0000	1050.0000	5020.0000	3060.0000	7420 5000	4300.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 2.5000	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×
Sitver	< 0.5890	< 0.5890	1.2700**	1.0800**	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodice	275.0000	944.0000	207.0000	339.0000	1800.0000**	380.0000	2850.0000**	313.0000
Thetries	< 6.6200	11.9000**	< 6.6200	16.6000**	< 6.6200	< 6.6200	17.2000**	10.6000**
Vanadium	9.0500	32.9000**	25.7000	29.3000	37.7000**	18.8000	37.2000**	23.8000
Zinc	114.0000**	102.0000	107.0000**	131.0000**	96.6000	115.0000**	95.4000	120.0000**

Page No. 1 12/18/92

TOOEIE AD-NORTH AREA: SUML .. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

	10000	20.01.075	50.01.025	6P-01-045	FP-01-045-01P	EP-01-045	EP-01-046	EP-01-046-DUP
Sample 10	**0 - 10 - A4	70.10.13	50 IS 13			0000	011 14333	5011 1401
4	SO11.1.88	011 1*223	011.1*222	011.1*221	2011 1-69	201112	777-1110	14 17106
מר זמ	04.11.00	16/14/92	76/17/90	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Date Sampled	20012175	1 000 6	1 000 1	1,500 ft	3.500 ft	5.500 ft	3.000 ft	3.000 ft
Depth (ft)	3.000 10	1 000.1	30.5					
Metals and Cyanide (ug/g)						**0000	1	***************************************
	26400.0000**	15500.0000	\$0000 · 00009	26900.0000**	30400.0000	0000.00262	£	0000
	071 7 >	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	¥	× 7.1400
Antimony	0 4000	4	¥	5.3000	4.8000	10.000	9.000	7.4000
Arsenic	30000 100	101	154, 0000	197.0000	188.0000	596.0000**	4	152.0000
Barica		0.27.0	0 2000	× 0.5000	< 0.5000	1.1800	¥	0.9140
Beryllium	0000	0.007 0	2000	4 7700**	3.0000**	< 0.7000	48	< 0.7000
Cadaium	0.7.00	2007.0	0001.0	0000 00261	44400.0000	53400.0000	*	36800.0000
Calcium	54 300 . 0000	0000.00000	20100.0000	30 1000	37. 2000**	20 6000**	**	24.7000**
Chromium	28.8000**	18.5000	23.0000**	000	0003.85	900000	1	A 1000**
Cobalt	8.4300**	6.9200	7.3800**	9.2300	0.4200	7. CUUD	E :	
	20.5000	23.8000	47.5000*	75.4000**	69.1000**	22.2000	¥	28.5000
arkon 5	**0000 6	**	¥.	< 0.9200	< 0.9200	< 0.9200 <	3.0500**	1.3600**
Cyanide	0000 00802	15400 0000	24100.0000**	18100.0000	25100.0000**	21200.0000	4	56400,0000**
16	17 000	4	25,0000	331.0000**	218.0000**	17.0000	X	19.000
read	0000.71	סטטט טטטט	A500.0000	8700.0000	8900.0000	12600.0000	W	8820.0000
Magnesium	0000.0022	542 0000	\$40 DOOU**	714,0000**	720.0000**	537.0000	¥#	**0000.009
Manganese	0000.010		4	< 0.0500	0.0691**	< 0.0500	< 0.0500	< 0.0500 <
Mercury	20,000	18 3000*	20.0000**	18,1000**	20.5000**	25.0000**	42	23.4000**
Hickel .	2000: 22	9000 0077	3620.0000	4100.0000	7460.0000	2470.0000	4	3770.0000
Potassium	0000:000	7	N.	< 0.2500	· 0.2500	< 0.2500	< 0.2500	< 0.2500
Selenium	0003.0	0880	. n 580n	< 0.5890	< 0.5890	< 0.5890	X	< 0.5890
Silver	0485.0	440 0000	1020 0000	1690,0000**	1450.0000**	3130.0000**	¥	1070.0000
Sodium	-0000.040	6 6 6200	0029.5	< 6.6200	13.8000**	13.5000**	±	18.1000**
	71 4000	26.3000	25.6000	20.6000	23.6000	48.4000**	4	26.9000
Vanadium	41.5000	20 2000	20.3000	224.0000**	278.0000**	87.0000	¥	61.8000
Zinc	0000.20							

	470-10-63	FP-01-047	EP-01-047-01P	69-01-047	EP-01-048	EP-01-048	EP-01-049	EP-01-049
					3040	7044 104	4011 1407	9011 1109
1sb 10	2011 1-92	011.1*223	SOIL 1*93	2011.1.64	201112	2011.1.70	X-113	2
Date Sampled	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Depth (ft)	4.500 ft	1.000 ft	1.000 ft	5.000 ft	0.000 ft	4.500 ft	0.000 ft	4.500 ft
Metals and Cyanide (ug/g)								
Aluminum	18100.0000**	¥	14900.0000	19700.0000**	8060.0000	16800.0000	4870.0000	19900.0000**
Antimony	< 7.1400	M	< 7.1400	< 7.1400	< 7.1400	< 7.1400	162.0000**	< 7.1400
Arsenic	7.0000	7.4900	9.6000	9.4000	6.7600	7.2600	4.8600	9.8600
Borica	201.0000	H	296.0000**	228.0000	164.0000	155.0000	188.0000	243.0000
Beryllfus	1.1900	K	1.3000	1.0900	< 0.5000	1.1300	• 0.5000	0.9490
Cadmium	< 0.7000	¥¥	< 0.7000	< 0.7000	0.8360	< 0.7000	2.0400**	· 0.7000
Colcius	54,700.0000	¥ N	36000,0000	41100.0000	24100.0000	51600.0000	20800.0000	58000.0000
Chronium	20.9000	¥	53.3000**	21.3000**	14.3000	21.4000**	9.4700	24.4000**
Cobelt	8.6600**	¥	7.4500**	8.4500**	4.0000	7.1600**	2.1500	6.0600**
Copper	18.4000	¥	25.2000	19.4000	113.0000**	17.4000	100000.0000**	56.6000**
Cyanide	2.5200**	< 0.9200	< 0.9200	< 0.9200	< 0.9200	1.5300**	< 0.9200	< 0.9200
Lon	17900.0000	¥	16600.0000	19400.0000	9040.0000	16500.0000	0000.0%9	19000.0000
read	16.0000	23.0000	24.0000	18.0000	31.0000	14.0000	35.4000	14.0000
Kagresius	11300.0000	W	10100,0000	12200.0000	5740.0000	9760.0000	3520.0000	10900.0000
Manganese	478.0000	42	\$57.0000**	618.0000**	282.0000	456.0000	180.000	0000.699
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.0566**	< 0.0500 <	0.0637**	< 0.0500 <
Mickel	21.8000**	42	19.4000**	21.4000**	9.1100	20.0000	14.9000	22.4000**
Potassica	4750.0000	4	4840.0000	5520.0000	2580.0000	3970.0000	1560.0000	5120.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×	◆ 0.2500
Silver	< 0.5890	₹Z	< 0.5890	< 0.5890	< 0.5890	< 0.5890	**0006.7	< 0.5890
Sodius	2560.0000**	4 2	708.0000	2220.0000**	278.0000	1930,0000**	223.0000	2840.0000**
Thailie	14.9000**	¥ Z	11.4000**	12.3000**	< 6.6200	< 6.6200	24.B000**	< 6.6200
Vanadius	29.8000**	HA.	25.3000	29.7000**	14.2000	27.5000	9.7300	29.7000**
Zinc	77.1000	≨	77.7000	84.6000	98.9000	69.4000	42000.000Q+	97.0000

Page No. 1 12/18/92

TOOELE AD NORTH AREA: SWA. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

	030.10.07	20.01.050	ED. 01.051	CD. 01.051.0410	50.01.051	59-01-052	50-01-052	EP-01-053
Sample 10	000.10.43	00-10-13						
1 db 10	SO11 1+99	0111*100	01.1*101	0111*224	0111102	011.1*103	0111-104	01110
Date Sampled	06/15/92	06/15/92	06/15/92	06/15/92	06/15/92	06/15/92	06/15/92	06/16/92
Depth (ft)	2.500 ft	4.500 ft	2.500 ft	2.500 ft	5.000 ft	2.500 ft	7.000 ft	3.500 ft
Hetals and Cyanide (ug/g)								
Atmind	14400.0000	20300.0000**	14600.0000	4 3	15000.0000	14100.0000	15900.0000	17000.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	¥	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	5.8700	11.1000	7.7600	5.8300	6.7100	7.4000	7.8600	2.9800
	144.0000	258.0000**	217,0000	¥.	207.0000	160.0000	158.0000	168.0000
	0.6040	0.8170	0.6220	¥	0.7630	0.6490	0.6890	1.4800
Cadmium	1.1600**	< 0.7000	20.3000**	M	< 0.7000	< 0.7000	< 0.7000	< 0.7000
Calcium	33500.0000	38200.0000	31300.0000	¥	32800.0000	41900.0000	40700.0000	35700.0000
Chromium	19.6000	23.8000**	19.8000	¥	19.4000	16.4000	18.1000	21.4000**
Cobalt	6.2500	8.2400**	5.6100	¥	7.3700**	9.8600	7.1300**	7.5800**
Comper	48.4000**	17.0000	130.0000**	4	15.1000	17.2000	17.6000	19.9000
Cyanide	< 0.9200	< 0.9200	2.7500**	< 0.9200	0.9200	1.8000**	< 0.9200	< 0.9200 ×
2-1	15700.0000	19000.0000	16200.0000	4	15800.0000	14600.0000	15400.0000	17900.0000
esd esd	25.1000	15.0000	130.0000**	¥	200.0000**	17.0000	16.0000	22.0000
Magnesius	9050.0000	10000.00001	7390.0000	¥	8110.0000	10100.0000	9600.0000	11200.0000
Managerese	491.0000	243.0000	553.0000**	Y.	245.0000	507.0000	498.0000	\$62.0000**
X-norm	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <
Rickel	17.3000**	20.8000**	13.4000	¥#	19.5000**	16.9000**	17.8000**	18.7000**
Potessium	7080.0000	4250.0000	4110.0000	4	3100.0000	3960.0000	4200.0000	4900.0000
Selenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Sicer	< 0.5890	< 0.5890	< 0.5890	*	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodies	1590.0000**	3910.0000**	615.0000	X	1120.0000	1680.0000**	245.0000	1780.0000**
That i ium	< 6.6200	< 6.6200	< 6.6200	4	< 6.6200	< 6.6200	6.6200	· 6.6200
Vanadium	23.7000	35.9000**	19.4000	4 2	27.1000	23.6000	25.9000	31.3000**
Zinc	◆+0000-+	77.4000	791.0000**	¥	78.4000	99.3000	68 .6000	78.5000

Sample 10	EP-01-053-0UP	EP-01-053	EP-01-054	EP-01-054-0UP	EP-01-054	EP-01-054	EP-01-054	EP-01-055
	711 14225		7011110	011 14226	10111026	011.1*225	011.1-106	011110
	772-1110	31.10		27 170				
Date Sampled	06/16/92	06/16/92	06/16/92	06/16/92	06/15/92	06/16/92	06/16/92	06/11/95
Depth (ft)	3.500 ft	6.500 ft	2.000 ft	2.000 ft	2.500 ft	3.500 ft	4.500 ft	2.000 ft
Hetais and Cyanide (ug/g)								
Atuntum	¥	21500.0000**	5260.0000	5530.0000	14200.0000	13500.0000	11500.0000	2310.0000
Ant Imony	*	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	7.4700	9.5000	3.1200	3.5400	≨	¥	3.3300	2.5900
	\$	131.0000	114.0000	169.0000	208.0000	192.0000	105.0000	100.000
Beryl Com	\$	1.4300	< 0.5000	0.5000	< 0.5000	0.6280	< 0.500 d	· 0.5000
	4	< 0.7000	27.0000**	25.7000**	26.1000**	< 0.7000	28.7000**	< 0.700
Catchus	\$	36100.0000	14200.0000	17200.0000	31200.0000	35600.0000	18800.0000	13800.0000
Chronium	4	24.4000**	36.8000**	33.6000**	21.2000**	39.7000**	**0007.77	7.8900
Cobalt	4	6.4600**	2.3700	2.7200	5.7900	7.2500**	2.5100	1.8300
Coper	*	17.9000	162.0000**	152.0000**	186.0000**	17.5000	471.0000**	57.7000**
Cvanide	< 0.9200	1.9800**	2.0900**	< 0.9200	\$	4	1.7000**	· 0.9200
5	¥#	21400.0000	7300.0000	7610.0000	17800.0000	14300.0000	7450.0000	6260.0000
Pead	¥8	22.0000	21.0000	17.0000	\$05.0000**	113.0000**	23.0000	9.8200
Magnes Lus	\$	10800.0000	2570.0000	2980.0000	7440.0000	10300.0000	2770.0000	1670.0000
Kandanese	48	622.0000**	136.0000	142.0000	586.0000**	\$54.0000**	182.0000	62.9000
Mercury	< 0.0500	< 0.0500	0.2160**	0.1930**	≦	£	0.2140**	0.1480**
Zickel	**	23.6000**	20.3000**	19.0000**	15.5000	16.9000**	53.6000	4.3800
Potessium	*	4400.0000	1050.0000	1160.0000	3970.0000	4230.0000	1060.0000	603.0000
Selector	< 0.2500	< 0.2500	< 0.2500	< 0.2500	4	≨	• 0.2500	· 0.2500
	**	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	₹ 2	4230.0000**	265.0000	319.0000	608.0000	1780.0000**	292.0000	181.0000
That I ium	K	6.6 200	< 6.6200	6.6200	6.6200	6.6200	· 6.6200	· 6.6200
En peue A	KH	36.0000**	11.5000	11.0000	18.6000	22.7000	11.8000	9.0600
Zinc	¥2	90.9000	187.0000**	188.0000**	704.0000**	70.8000	238.0000**	41.0000

Notes: ** = 1

Page No. 1 12/18/92

TOOELE AD-NORTH AREA: SIMP. , 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

	230 00 00	30 10 44	730 10 02	01 054 AB	ED. 01.054	20.01.057	50-01-057	50.01.058
Sample 10	CC0-10-43	EP-01-022-00F	64.01.020	-00-00-10-43	900-10-13	10-10-13		
01 de -	0111110	011.1*239	0111111	01111240	0111112	0111*113	0111114	011.115
Jaco Samiled	06/11/92	06/17/92	06/11/92	06/17/92	06/17/92	06/17/92	06/17/92	06/18/92
	5,000 ft	5.000 ft	2.000 ft	2.000 ft	4.500 ft	2.500 ft	5.000 ft	3.000 ft
totals and Francisco tracks								
	2220.0000	1600,0000	1670.0000	1540.0000	1310.0000	3290.0000	2580.0000	1600.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Asserie	2.2300	2.1800	2.7900	2.8500	2.6800	3.2100	1.8900	2.5000
	97.1000	92.9000	58.2000	26.5000	48.2000	187.0000	307.0000**	28.6000
	0.5000	0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
Cadaius	1.3200**	0.8480**	1.5000**	1.7400**	0.8500**	3.3900**	< 0.7000	1.6900**
Catcium	13000.0000	32800.0000	18000.0000	22600.0000	27200.0000	22300.0000	24300.0000	21000.0000
Chronium	× 4.0500	< 4.0500	< 4.0500	< 4.0500	< 4.0500	23.1000**	< 4.0500	× 4.0500
Cohalt	< 1.4200	< 1.4200	< 1.4200	< 1.4200	< 1.4200	1.9200	< 1.4200	< 1.4200
Compe	2340.0000**	74.5000**	88.4000**	105.0000**	74.5000**	132.0000**	24.4000	115.0000**
SCVanide	< 0.9200	< 0.9200	2.2700**	< 0.9200	< 0.9200	< 0.9200	< 0.9200	1.0600**
82.2	7640.00b0	3750.0000	5290.0000	4610.0000	3760.0000	6910.0000	3900.0000	7660.0000
20	108.0000**	12.0000	8.5800	8.3000	2.2000	57.9800**	8.8200	2.6900
Magaes in	2250.0000	2300.0000	2040.0000	2300.0000	2240.0000	3480.0800	2310.0000	3090.0000
	69.3000	75.5000	72.0000	78.8000	56.1000	112.0000	70.5000	77.1000
Mercur	· 0.0500	0.0636**	0.0500	< 0.0500	< 0.0500 <	0.1260**	0.0706**	· 0.0500
Sickel	4.5000	2.3200	3.6000	3.3800	2.7000	17.0000**	2.7700	3.2300
Potestia	508.0000	397.0000	589.0000	245.0000	761.0000	402.0000	0000. 787	9000.379
	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
	< 0.5890	0.5890	0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodius	222.0000	212.0000	729.0000	765.0000	1800.0000**	202.0000	282.0000	275.0000
Thatties	× 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200	< 6.6200	< 6.6200	< 6.6200
Vanadium	6.1200	5.6700	6.3100	5.0400	5.1500	9.0000	6.8200	5.2400
Zine	1260.0000**	9005.09	50.0000	51.9000	37.2000	91.8000	62.8000	51.2000

Lab 10 Date Sampled	EP-01-058	EP-01-059	EP-01-059-DUP	EP-01-059	EP-01-060	EP-01-060	EP-01-061	EP-01-061-0UP
Date Sampled	011.1-116	0111117	0111*241	011.1*118	0111119	0111*120	011.121	011 1°242
	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92
Depth (ft)	5.000 ft	0.000 ft	0.000 ft	5.000 ft	2.500 ft	5.500 ft	4.500 ft	4.500 ft
Manage And Property Associated								
	1860,0000	8090,0000	7390,0000	0000.0099	7890.0000	9700.0000	\$720.0000	8250.0000
Antient	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	2.6400	4.0500	3.9100	7.0500	6.6200	4.9800	4.0200	9.6500
	67.900	104.0000	95.0000	146.0000	106.0000	133.0000	90.5000	95.9000
Per Cilia	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.6250	0.7420	< 0.5000	0.8650
Cadaius	1.8600**	3.5400**	3.7200**	< 0.7000	< 0.7000	< 0.7000	1.6000**	1.9800**
Catcha	24300.0000	26800.0000	31000.0000	74000.0000**	27300.0000	43000.0000	22300.0000	23000.0000
Chronium	7.1200	11.6000	9.9000	9.1800	12.9000	13.0000	8.9900	11.2000
Cobali	< 1,4200	2.8400	2.0500	4.1700	00%6.7	9.0000	3.5400	3.2300
Conser	133.000**	59.8000**	••000.	7.7000	39.8000**	9.9100	137.0000**	199.0000**
Cvanide	1.9200**	2.5800**	6.2900**	1.3800**	< 0.9200	< 0.9200	< 0.9200	1.6000*
85	7020.0000	9370.0000	7650.0000	9670.0000	11600.0000	12000.0000	10000.00001	14100.0000
	7.0100	40.1000	42.2000	13.0000	19.0000	14.0000	30.4000	30.1000
Harnesium	2450.0000	4490.0000	5530.0000	7760.0000	9900.0299	9130.0000	4500.0000	5150.0000
Kananese	93,2000	157.0000	157.0000	219.0000	360.000	459.0000	223.0000	259.0000
	< 0.0500	• 0.0500	0.0500	0.0596**	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <
Rickel	5.1600	8.1400	7.1300	11.2000	14.4000	14.2000	9.6100	13.1000
Potessium	661.0000	1870.0000	1800.0000	1450.0000	2920.0000	2790.0000	1800.0000	1930.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 <
	◆ 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	321.0000	324.0000	309.0000	4140.0000**	270.0000	369.0000	227.0000	263.0000
	< 6.6200	< 6.6200	6.6200	< 6.6200	< 6.6200	< 6.6200	• 6.6200	6.6200
Vacadium	5.8700	11.9000	11.9000	24.1000	17.3000	22.0000	11.7000	13.3000
2 2 2	53.4000	254.0000**	194.0000**	30.1000	77.5000	51.7000	170.0000**	245.0000**

5-2-21

Page No. 12/18/92

TOOGLE AD NORTH AREA: SUN. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	470 00 00	770 00 00
Sample 10	EP-01-061	EP - 01 - 062	EP-01-062	EP-01-065	EP-01-003	EP-01-004		
9 9	011.1*122	0111123	011.1-124	0111-126	011.125	011.1-127	0111*243	0111126
Date Sampled	06/18/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	26/52/90
Depth (ft)	7.000 ft	2.500 ft	6.000 ft	1,000 ft	5.000 ft	0.500 ft	0.500 ft	5.000 ft
Metals and Cyanide (ug/g)								
Atumina	10400.0000	9000 0009	19300.0000**	3140.0000	15400.0000	2620.0000	4150.0000	21200.0000**
Ant imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	5.1000	3.0700	5.5900	2.9100	6.0700	7.0000	7.4800	10.000
Barica	147.0000	76.4000	220.0000	471.0000**	178.0000	123.0000	119.0000	235.0000
Bervillia	0.8890	< 0.5000	2.0900**	0.9070	1.8000**	< 0.5000	0.8400	1.6000
Cadalus	< 0.7000	1.9600**	< 0.7000	0.8400	< 0.7000	3.9100**	3.3800**	· 0.7000
Catcium	41000.0000	26800.0000	37600.0000	27700.0000	45600.0000	27000.0000	16900.0000	45200.0000
Chronium	12.9000	9.6300	20.4000	8 .0500	18.1000	12.4000	9.6700	24.8000**
Cobatt	6.0800	2.6400	8.4300**	2.0800	7.2900	2.4500	2.1700	8.3400**
Copper	12.3000	215.0000**	19.8000	196.0000**	16.1000	52.5000**	53.2000**	17.9000
S Cvanide	< 0.9200	< 0.9200	< 0.9200	1.4500**	1.4400**	< 0.9200	• 0.9200	< 0.9200
-2-	12100.0000	8200.0000	19500.0000	16600.0000	17200.0000	8400.0000	5380.0000	20700.0000
22 Pes 1	14.0000	40.3000	21.0000	13.0000	20.0000	399.0000**	418.0000**	21.0000
Magaes in Ca	8990.0000	4010.0000	12200.0000	3850.0000	13500.0000**	4200.0000	3360.0000	11000.0000
The second secon	797.0000	174.0000	691.0000	128.0000	\$77.0000*	190.0000	162.0000	510.0000
Mercury	< 0.0500	0.0500	< 0.0500	0.0808**	< 0.0500	< 0.0500	• 0.0500	· 0.0500
Nickel	13.5000	7.0000	20.8000**	12.0000	18.3000**	6.3000	2.4400	23.2000**
Potassium	3120.0000	1460.0000	6930.0000**	747.0000	4230.0000	2110.0000	1730.0000	4630.0000
Setenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500	< 0.2500 <
Silver	× 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	453.0000	269.0000	584.0000	246.0000	477.0000	308.0000	260.0000	2080.0000
That Lium	< 6.6200	< 6.6200	10.7000**	< 6.6200	15.8000**	< 6.6200	6.6200	12.9000**
Vanadium	22.3000	11.6000	30.6000**	7.1900	28.8000	12.4000	8.0500	38.6000**
Zinc	53.8000	328.0000**	82.3000	168.0000**	72.0000	94.0000	95.1000	96.1000

44 - 1	50.01.045	50-01-045	59-01-066	69-01-066	EP-01-067	EP-01-067	EP-01-068	EP-01-068
					22.00.10	721-11-110	72141 110	25141110
9 9	621-1110	011.1.20	011.1.131	0111152	011110	\$1.110	61-130	
Date Sampled	06/23/92	06/23/92	06/24/92	26/52/90	26/57/90	06/24/92	06/24/92	26/52/90
Depth (ft)	0.000 ft	4.500 ft	3.000 ft	5.000 ft	0.000 ft	4.500 ft	3.000 ft	5.000 ft
Hetals and Cyanide (ug/g)								
Aluminum	9780.0000	17300.0000	2720.0000	2050.0000	1770.0000	2600.0000	2230.0000	2060.0000
Antheony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	4.2300	7.8700	2.7400	6.3400	2.6700	2.6000	2.9200	9.3700
	209,0000	200,0000	90.2000	68.1000	97.8000	72.2000	69.3000	72.5000
	1.2600	2.0100**	0.5000	1.9100**	< 0.5000	0.5720	0.6460	0.6110
Codelina	2.0700**	0.7000	2.1800**	1.9200**	1.2400**	1.5100**	1.9000**	1.7700**
Calchia	29400.0000	51200.0000	24400.0000	27500.0000	23600.0000	23800.0000	25200.0000	32100.0000
	16.3000	22.4000**	7.6300	71.7000**	2.6000	7.9100	7.3900	6.6500
Coheli	3.8300	6.0200**	1.9000	4.8900	< 1.4200	1.8700	2.0700	· 1.4200
Coner	••0006.46	16.2000	191.0000**	140.0000**	85.1000**	213.0000**	142.0000**	122.0000**
Cvanide	< 0.9200	< 0.9200	< 0.9200	2.0300**	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200
5	12100.0000	18100.0000	5630.0000	67000.0000**	4380.0000	5160.0000	5110.0000	5370.0000
	169.0000**	¥	6.3400	2.6600	9.4000	4.7000	7.1300	6.7200
Monesium	7850.0000	10200.0000	2750.0000	3120.0000	2660.0000	3270.0000	3970.0000	2580.0000
a secretary	367.0000	479.0000	84.3000	626.0000**	9007.09	76.3000	78.1000	63.7000
	× 0.0500	< 0.0500	0.0563**	0.0570**	< 0.0500 <	< 0.0500 <	< 0.0500	· 0.0500
	12.7000	21.7000**	5.2700	38.2000**	7.4000	5.7500	4.7300	2.6000
Potassium	4290.0000	3510.0000	797.0000	577.0000	550.0000	944.0000	607.0000	558.0000
Selection	× 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
	356.0000	3010.0000**	303.0000	289.0000	261.0000	323.0000	319.0000	325.0000
Theilin	8.1800	14.6000**	< 6.6200	33.0000**	< 6.6200	< 6.6200	< 6.6200	< 6.6 200
- Space	20.0000	32.8000**	9.6100	< 3.3900	6.5100	7.8100	9.8700	6.2300
Zinc	117.0000**	84.0000	77.3000	99.600	44.9000	72.7000	55.5000	61.0000

6-2-23

's above the background concentration for the depth shown, < = No

Notes: ** = V

scred at the value shown, MA = Not analyzed

Page No. 12/18/92

TOOELE AD-NORTH AREA: SUA. .. 1 - MAIN DEMOLITION AREA SOLL ANALYTICAL RESULTS FOR METALS

	970 00 00	070 10 03	60.01.060	PP-01-040-DIP	FP-01-070	EP-01-070-DUP	EP-01-070	EP-01-071
Sample 10	FP: 01: 009: 004	100.10.13				09041.10	6/141	171110
- 4-	011.1*248	011.1*137	011.1*138	0111.549	011.1.159	001110		
	04.74.00	26/5//90	06/24/92	06/24/92	06/22/95	26/52/90	26/52/90	06/25/92
Date sampled	2000 \$4	3.500 fr	5.500 ft	5.500 ft	3.000 ft	3.000 ft	5.000 ft	2.500 ft
Depth (Tt)	1 000.0							
Metals and Cyanide (ug/g)						0000 0111	0000	0000 0516
Atunina	1420.0000	1830.0000	1910.0000	1810.0000	1660.0000	1/0.000	2440.0000	2300.0000
	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1400	· 7.1400	× 7.1400
A-0-1	0090	2.7500	2.1000	2.6900	2.7300	2.7100	2.4100	2.1000
	0008 69	94.6000	68.2000	73.8000	92.2000	89.9000	60.1000	101.0000
	0005.0 >	0.5820	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.5900	· 0.5000
	1 5,000	1.4900**	1.1800**	1.1400**	1.8400**	1.5100**	3.0700**	3.8400**
	0000 00421	26100.0000	26500.0000	26200.0000	30200.0000	23300.0000	21800.0000	31200.0000
	0000 7	6.0100	4.8400	4.9300	4.9400	14.3000	8.4000	8.2800
Chromium	0027:	× 1.4200	< 1.4200	< 1.4200	< 1.4200	2.5300	< 1.4200	• 1.4200
	180 0000 **	108.0000**	97.8000**	₩0000.96	77.4000**	**0000.66	114.0000**	154.0000**
	× 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
	0000 0257	7790.0000	4220.0000	3640.0000	3540.0000	22000.0000	4640.0000	5350.0000
Loui-	0081 4	9057.9	3.4400	0006.4	7.1000	9.8900	5.7500	10.1000
24	1960 0000	2700.0000	3600,0000	3230.0000	2630.0000	3110.0000	3130.0000	3060.0000
Hagness Lan	A\$ 6000	72.5000	72.4000	72.3000	74.7000	251.0000	24.9000	95.2000
Tanganese	**1080	× 0.0500	0.0572**	0.0928**	0.0902**	¥	0.0638**	0.0679**
Mercury	7 2000	2.0400	4.2700	4.3600	4.4600	8.2100	2.6200	5.9600
	252	513,0000	579,0000	492.0000	395.0000	431.0000	622.0000	999 . 0000
	2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×
		0 5800	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	× 0.5890
	2000 100	268 0000	268,0000	255.0000	214.0000	214.0000	297.0000	281.0000
Sodium S	c A 6200		< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200
	0000 F >	2, 7900	6.5800	5.0000	5.2400	4.2500	7.6900	6.1500
Vanadium	27 87 78	000 400	55, 5000	(.) 95	59.5000	63.6000	75.0000	24.4000
24.7								

	ED-01-071-0410	FP-01-071	EP-01-072	EP-01-072	EP-01-073	EP-01-073	EP-01-074	EP-01-074
			1714110	77101110	27101110	971110	011.1*147	0111110
01 401	011 1*251	251-1710						60, 20, 20
Sate Complete	06/22/65	06/52/92	26/92/90	26/92/90	06/26/92	26/92/90	26/92/90	7A/97/on
Depth (ft)	2.500 ft	5.500 ft	0.000 ft	4.500 ft	0.000 ft	5.500 ft	2.500 ft	9.500 ft
Motes and Frankly (1970)								
	42	2290 0000	13100,0000	19600.0000**	\$200.0000	15900.0000	11400.0000	14500.0000
ALGERTA		0071 2 >	62.5000**	< 7.1400	28.1000**	< 7.1400	< 7.1400	< 7.1400
Ancient		0017 1	0006 7	7.4700	4.5400	3.9900	2.4500	9.4900
Arsenic	. 4	0005 AR	1730,0000**	190,000	924.0000**	177.0000	222.0000	572.0000**
		2360	1 2300	1 5200	0.8650	1.9600**	1.6800	1.3600
Beryllica		2007	90000	. 9 2000	10 2000+	0002 0 >	**00SB.9	2.8900**
Cachium	Y X	1.7600-	**. £000	0007.0	37.50	9000	3800 0000	OUTPO DOLL
Calcium	#	24200.0000	24600.0000	45000.0000	24100.0000	41100.0000	3/300.0000	2000.0000
	4	5.1000	19.7000	22.1000**	13.3000	17.9000	21.3000**	50.5000**
	*	< 1,4200	5.1500	7.4500**	3.7100	7.3500**	2.5900	4.8100
11600		**0000.19	191,0000	22.8000	319.0000**	16.8000	\$9.5000**	1620.0000**
ropper		0.9200	1.3800**	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
		0000 0227	12500.0000	17700.0000	16200.0000	16000.0000	12700.0000	18700.0000
		130 0000	48000 0000+	165.0000**	26000,0000**	63.7000**	5860.0000**	345.0000**
		266.000	6160 0000	11700.0000	2800,0000	11200.0000	9050.0000	5570.0000
Hagnestun		20 2000	326,0000	515.0000	231.0000	\$13.0000	429.0000	421.0000
Ranganese		0.1020**	0.2040**	< 0.0500	0.1180**	< 0.0500	< 0.0500	< 0.0500
Mercury		3,7900	17,7000**	18.9000**	15.4000	19.1000**	15.1000	17.9000**
	. 3	217,000	3090,0000	6160.0000**	1300.0000	5220.0000	3840,0000	2650.0000
		< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	0.2500
	: 4	0.5890	0.9680**	< 0.5890	0.8230**	< 0.5890	< 0.5890	0.7830**
		334,0000	412.0000	1320.0000	419.0000	1770.0000	631.0000	938.0000
		6.6200	77.0000**	12.1000**	35.8000**	19.5000**	14.9000**	14.0000**
		6.9700	19.2000	32.0000**	8.8700	26.0000	22.3000	24.8000
an i beue		0007 75	**0000 00004	209,0000	24000,0000**	134.0000**	2930.0000**	1130.0000**
2inc	¥.							

's above the background concentration for the depth shown, < = Not

octed at the value shown, NA = Not analyzed

TOOELE AD-NORTH AREA: SIA. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

41 -1	50.01.075	FP-01-075	EP-01-076	EP-01-076	EP-01-077	EP-01-077	EP-01-078	EP-01-078
Sample 10	(10 10 13			6314140	23141.10	75191 110	7111110	521-1110
1ab 10	671-110	0111110	151.110	761-1710	661-1310	100	0111	
Date Sampled	06/26/92	06/56/92	06/28/92	06/28/92	26/52/90	26/52/90	26/62/90	26/62/90
Depth (ft)	0.500 ft	5.000 ft	0.000 ft	5.500 ft	0.000 ft	4.500 ft	0.000 ft	5.000 ft
Metals and Cvanide (us/s)								
	9420.0000	22700.0000**	3470.0000	4060.0000	4900.0000	17200.0000	7,990.0000	16500.0000
	20.8000**	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1600
1000	0007.5	5.6500	3.2000	3.9100	2.3700	7.9200	3.7500	7.8700
	165.0000	245.0000	0009.76	94.7000	67.0000	167.0000	70.2000	185.0000
	1.0200	1.8700**	0.5960	0.6860	0.7420	1.6900	0.6770	1.7200**
	203.0000**	1.0800**	2.9200**	0.8970**	< 0.7000	< 0.7000	< 0.7000 <	· 0.7000
	31400.0000	39300,0000	25300.0000	33200.0000	19400.0000	42700.0000	17800.0000	28400.0000
	17,9000	24. 7000**	8.8600	6.1600	7.3400	25.2000**	6.5200	21.9000**
	3.4300	7.8400**	< 1.4200	1.8700	1.9900	7.3000**	2.6300	7.7300**
	000E-06	20.6000	248.0000	160.0000**	17.9000	17.8000	9.2600	16.5000
	2.0000**	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	0.9200
Ico	14100.0000	20000.0000	5790.0000	2990.0000	5810.0000	18300.0000	0000.0269	17400.0000
5-	71.4000**	15.0000	7.8600	25.0000	6.6700	16.0000	6.2700	14.0000
	5700.0000	12600.0000	2580.0000	5570.0000	4120.0000	11900.0000	3640.0000	6820.0000
	313.0000	588.0000**	0007.40	119.0000	181.0000	372.0000	174.0000	\$75.0000**
)??!!!!!!	< 0.0500	< 0.0500	0.1070**	0.1030**	< 0.0500	< 0.0500	< 0.0500 ×	< 0.0500 <
	11.2000	20.7000**	6.1000	2.4600	5.8800	25.6000**	6.5400	20. 8000**
1:000	3070.0000	7160.0000**	544.0000	1130.0000	1640.0000	2950.0000	1530.0000	3590.0000
# : CO CO CO CO CO CO CO CO	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
	509.0000	2090.0000**	233.0000	294.0000	243.0000	2920.0000**	255.0000	3240.0000**
	10.1000**	23.0000**	< 6.6200	< 6.6200	< 6.6200	26.9000**	< 6.6200	21.0000**
	18.5000	36.2000**	6.0200	11.2000	11.1000	36.4000**	11.5000	32.0000**
7 ire	206.0000**	101,0000	94.8000	117.0000**	30.6000	96.9000	25.6000	78.4000
<u> </u>								

EP-01-079	EP-01-079	EP-01-080	EP-01-080	EP-01-081	EP-01-081	EP-01-082	EP-01-062
0111-157	0111*158	0111*159	01111160	011.1*161	011.1*162	011.1*163	011116
06/29/92	26/52/90	06/59/92	06/59/92	06/30/92	06/30/92	06/30/92	26/30/95
0.000 ft	5.500 ft	0.000 ft	6.000 ft	0.000 ft	5.500 ft	1.000 ft	5.000 ft
4420.0000	18800.0000**	6540.0000	19100.0000**	19500.0000**	9120.0000	180000.0000**	7990.0000
< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
3.5700	8.8300	4.0700	25.0000	9.5000	9.2300	< 5.0000	5.8900
66.1000	213.0000	79.2000	217.0000	244.0000	96.1000	230.0000	144.0000
0.6970	1.7300**	0.8450	1.8500**	1.7000	1.4900	0.7130	1.1700
◆ 0.7000	< 0.7000	< 0.7000	< 0.7000	0.9520**	< 0.7000	3.4900**	< 0.7000
19100.0000	20300.0000	28400.0000	40700.0000	27200.0000	73000.0000**	19100.0000	57600.0000
9.4400	28.2000**	10.0000	22.6000**	20.5000	14.4000	12.5000	10.6000
2.4900	7.3200**	3.2900	8.1100**	7.3700**	5.0500	1.9100	4.5100
16.3000	18.0000	13.6000	18.1000	82.3000**	10.2000	314.0000**	9.6800
< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	4.9200**	< 0.9200
2990.0000	19100.0000	7690.0000	19200.0000	17600.0000	11600.0000	5230.0000	9850.0000
7.6300	14.0000	8.5100	14.0000	21.0000	12.0000	62.5000 **	6.6400
3550.0000	7520.0000	4690.0000	11200.0000	11200.0000	20700.0000**	3550.0000	8330.0000
164.0000	589.0000**	182.0000	\$68.0000**	583.0000**	463.0000	148.0000	219.0000
◆ 0.0500	0.0558**	< 0.0500	◆ 0.0500	< 0.0500	< 0.0500	· 0.0500	< 0.0500
5.7600	20.9000	6.9600	20.8000**	20.1000**	17.2000**	8.3200	11.2000
1510.0000	4190.0000	2060.0000	4600.0000	7010.0000**	1280.0000	1090.0000	2870.0000
< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
211.0000	2700.0000**	285.0000	3970.0000**	422.0000	1220.0000	273.0000	372.0000
< 6.6200	20.6000**	9.3100	22.5000**	19.6000**	17.9000**	14.6000**	14.0000**
10.8000	41.4000**	16.2000	35.7000**	28.6000	26.4000	17.3000	20.3000
27.3000	98.7000	30.3000	79.6000	104.0000	53.4000	382.0000**	34.1000
	4420.0000 4420.0000 77.1400 3.5700 66.1000 0.8970 4.0.7000 19100.0000 6.4400 2.4900 16.3000 7.6300 164.0000 7.6300 1510.0000 4.0.2500 4.0.2500 4.0.2500 4.0.2500 4.0.2500 4.0.2500 4.0.2500 4.0.2500 7.6200 1510.0000 7.6200 1510.0000 7.6200 1510.0000 7.6200	1910 1910 1910 1910 1910 1910 1910 1910	5.500 ft 0 18800.0000** 654 7.1400 6 8.8300 213.0000 213.0000 213.0000 284, 20.2000** 18.0000 7520.0000	5.500 ft 0.000 ft 6 18500.0000** 6540.0000 191 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.1400 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000 < 7.14000	5.500 ft 0.000 ft 6.000 ft 18600.0000** 6540.0000 19100.0000** 19 4.7.1400 4.0700 27.1400 213.0000 79.2000 217.0000 213.0000 4.0700 217.0000 20300.0000 28400.0000 40700.0000 27 28.200** 10.0000 22.6000** 18.0000 40.9200 40.9200 19.100.0000 7690.0000 11200.0000 14.0000 8.5100 14.0000 20.9200 4.0500 4.0000 11200.0000 11200.0000 20.9200 4.0500 4.00500 20.9200 4.0500 4.0500 20.9200 20.0500 4.00500 20.9200 4.0500 4.00500 20.9200 4.00500 11200.0000 20.9200 4.00500 4.00500 20.9200 4.00500 4.00500 20.9200 4.00500 4.00500 20.9200 4.00500 4.00500 20.9200 4.00500 4.00500 20.9200 4.00500 4.00500 20.9200 8.5100 52500 20.9000** 182.0000 192.0000** 20.6000** 16.2000 192.0000** 20.6000** 16.2000 192.0000** 20.6000** 16.2000 192.0000** 20.6000** 16.2000 192.0000** 20.6000** 16.2000 192.0000** 20.6000** 16.2000 192.0000**	5.500 ft 0.000 ft 6.000 ft 0.000 ft co.000 ft co.000 ft co.000 ft co.000 ft co.000 ft co.000 ft co.0000 ft co.0000 ft co.0000 ft co.0000 ft co.0000 ft co.0000 co.00000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co.00000 co.0000 co.00000 co.00000 co.00000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co.0000 co	5.500 ft 0.000 ft 6.000 ft 6.000 ft 5.500 ft 18800.0000** 6540.0000 19100.0000** 18500.0000** 9120.0000 1800 4.71400 4.71400 4.71400 4.71400 4.71400 213.0000 79.2000 217.0000 6.5000 9.2300 213.0000 79.2000 217.0000 244.0000 96.1000 223.0000** 0.8450 1.8500** 17.7000 1.4500 223.0000** 0.8450 1.8500** 20.5000 14.4000 223.2000** 13.6000 18.100** 7.3700** 5.0500 18.0000 13.6000 19200.0000 17.200.0000 180.000** 19.2000 18.0000 13.6000 19200.0000 11200.0000 112.0000 259.0000** 13.6000 19200.0000 11200.0000 112.0000 259.0000** 18.5000 112.00000 112.0000 20.9200 4.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 6.9500 4.0.9200 4.0.9200 4.0.9200 20.9000** 6.9500 4.0.9200 4.0.9200 4.0.9200 20.9000** 6.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 6.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 1.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 1.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 1.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 1.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 1.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 1.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 1.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.90000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.90000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.90000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.90000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.90000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 2.92000 4.0.9200 4.0.9200 4.0.9200 4.0.9200 20.9000** 2.92000 8.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9200 4.0.9000 4.0.920

is above the background concentration for the depth shown, < * No'

scted at the value shown, MA = Not analyzed

TOOELE AD-NORTH AREA: SUMD 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR METALS

	1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Sample 10	EP-01-082-00P
Lab 10	0111*247
Date Sampled	06/30/92
Depth (ft)	5.000 ft
Hetals and Cyanide (ug/g)	
Aluminum	6350.0000
Antimony	< 7.1400
Arsenic	5.9200
Barium	133.0000
Beryllium	0.7210
Cacinium	< 0.7000
Catcium	63000.0000
Chromium	8.1800
Cobalt	4.2000
Copper	8.6100
Cyanide	< 0.9200
Iron	8260.0000
	10.3000
7 Hagnesium	7650.0000
Manganese	187.0000
Mercury	0.0500
Nickel	9.3400
Potassium	2300.0000
Setenium	< 0.2500
Silver	< 0.5890
Sodium	376.0000
Thattiem	< 6.6200
Vanadium	16.4000
Jine	מטטו טצ

Sample 10	SB · 01 · 001	SB-01-001	SB-01-001	SB -01-001	SB-01-001	58 -01-001	58 -01-001	SB -01-002
1 4 T	011.1*259	011.1*260	0111*261	011 1*262	011.1*263	011.1*264	011.1*265	011.1*266
Date Semiled	07/23/92	07/23/92	07/23/92	07/23/92	07/24/92	26/52/10	26/72/10	07/27/92
Depth (ft)	5.000 ft	10.000 ft	20.000 ft	30.000 ft	40.000 ft	75.000 ft	80.000 ft	5.000 ft
Volatile Granic Compounds (ug/g)								
Aretone	*	×	4	*	¥#	¥	¥	ş
Ethylbenzene	4	¥	4	¥#	#A	\$	¥	\$
Methylene chloride	4	¥2	Y#	*	¥	¥	4	*
Trichlorofluoromethene	X	¥ N	\$	48	¥#	≦	¥	≨
X = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	¥	*	\$	4 2	¥N	¥	¥	\$
terrachloroethene	× X	¥8	4	42	KN	¥	¥	≦
Toluene	4 .	K	Y.	¥	*	¥	¥ B	¥
Seminalatile Organic Compands (ud/g)								
1-Phenylnachthalene	¥	¥	\$	¥#	¥#	\$	4	\$
2.6.10.14-Tetramethylpentadecane (11C)	¥#	¥	\$	ZH.	4		1	₹
2-(1-Methylethyl) nachthalene	¥ X	¥	4	ZH.	¥	≨	£	1
2. Hethyl nachthatene	KX KX	¥	4 2	X	X	≦	¥	¥
Acenaphthere	RA	M	42	4 8	X	4	¥	MA
Bis (2-ethylhexyl) phthalate	¥N	¥N	YN.	¥ X	¥#	¥	¥	¥
Eicosane (11C)	NA	¥	¥N	¥X	KA	K	4	¥
Fluorene	NA	¥	4	¥ X	¥	4	¥	¥
Heneicosane	MA	¥	*	KX	MA	Y	¥	≦
Heptadecane (11C)	MA	¥	4	KA	¥ N	¥	\$	≦
Hexadecane (11C)	¥¥	¥	¥	K H	¥	¥	1	\$
Hexamethylcyclotrisiloxane (11C)	KN	¥	4 2	KX	X	W	4	¥
Hesityl oxide / 4-Hethyl-3-penten-2-one	NA NA	¥	KA	¥	K	42	£	≨
Napthalene	¥.	¥	4	¥#	K R	4	4	≦
Octadecane (TIC)	W.	¥	X	₹	ž	42	≦	≨
Pentacosane	KN	¥	YH.	¥	¥.	S	4	≦
Phenanthrene	N N	¥	₹	ž	Z Z	*	\$	≦
Pyrene	¥	≨	¥¥	¥#	¥	*	4	≦
Tetradecane (TIC)	NA NA	¥8	KN	MA	¥	4	4	4
Tridecane (11C)	¥X	¥	X	W	¥	¥	4	£
n-Nitrosodiphenylamine	KX	₹2	4	KX	K	¥	£	4
	•	4	4	3	1	\$	3	7
Pesticides (ug/g)	¥	Š	\$	É	£	•	į	Ē
And the second s	47	XX	4 2	4 %	¥	¥	4	**

5-2-29

e was detected at the conentration shown < = Not detected at the v

shown, MA = Not analyzed

Page No. 2 12/19/92

TOOELE AD-NORTH AREA: SUM. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	SB-01-001	58-01-001	SB · 01 · 001	SB-01-001	SB-01-001	\$8-01-001	SR-01-001	SB.01.002
OI qe 1	0111*259	0111*260	011.1*261	011 14262	74241	011 14266	011 14 345	776.00
Date Counted	10, 21, 20	20, 20, 40				100	797-1710	007-1710
	24/52/10	26/52/10	26/52//0	07/23/92	07/24/92	07/24/92	26/57/20	07/27/92
Depth (ft)	5.000 ft	10.000 ft	20.000 ft	30.000 ft	40.000 ft	75.000 ft	80.000 ft	5.000 ft
fotal Petroleum Hydrocarbons (ug/g)	AN.	¥¥	¥.	NA	NA	V.	VN.	4
Explosives (ug/g)								
1,3,5.Irinitrobenzene	< 0.4860	< 0.4880	< 0.4880	< 0.4880	0.4880	0.4840	0 4ARO	0007 0 >
1,3-Dinitrobenzene	< 0.4960	0965.0 >	0967.0 >	0967.0 >	0967.0 >	0967 U ×	907 0	987.0
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	0957:0 >	064.0 >	0044.0
2,4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	0.4240	07670 >	9867.0
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	0725.0 >	0.5240
2-Nitrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	0.070	20.00
Cyclonite (RDX)	< 0.5870 ×	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	0.5670	
Cyclotetramethylenetetranitramine (HMX)	0.6660	0.6660	0.6660	0.6660	0999.0 >	0.6660	0999 0	0.000
Hitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	0.7310	0 7410	200.0
Nitrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
w Macxins/furans (ug/g) 6 6	\$	¥	4	ž	¥	¥.	ž	ş

					600 00	ca.01.002	\$00-01-003	se-01-003
Sample 10	200-10-005	SB · 01 · 002	200 - 10 - 85	700 - 10 - 95	300 ID 88		22.00	7601 100
	011.1*267	011.1*268	011.1•269	01114270	0111*271	0111.572	0111-6/3	12-110
	0375370	07/2/07	07/27/02	07/27/92	07/27/92	07/27/92	07/26/92	07/26/92
Date Sampled	15,000 ft	35.000 ft	50.000 ft	80.000 ft	90.000 ft	100.000 ft	5.000 ft	15.000 ft
Depth (10)								
Volatile Organic Compounds (ug/g)	:	;	4	47	7	4	¥#	±
Acetone	₹	¥ #	S	S				•
Ethylbenzene	¥ H	¥	4	¥	S	S	S :	
the state of the second	¥¥	¥	≨	¥	¥	*	X	1
	1	43	*	42	₹	¥	¥	\$
		3	\$	×	\\ \	¥	\$	1
XYIEDES	£ ;	£ 1	1	¥ A	¥	¥ R	*	\$
Tetrachioroethene	:	£ 3	X 3	.	*	\$	\$	42
Toluene	Š	Š	Ē	•				
(0/mi) spennent (manufer)								
	47	¥#	\$	₹	4	*	¥	¥
	i 1	*	4	¥	4	¥	1	\$
C, D, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	1	4	*	¥X	¥	¥	¥	4
Z-(1-Methylethyl) naphthalene	1	1	*	¥	¥	\$	4	≦
		4	*	¥#	¥	¥	ĭ	≨
Acenephtnehe	2	.	¥	¥	¥	¥	≨	A
DIS (Z-ethylnexyl) pathologic	[]		1	#	*	*	¥	£
Elcosane (11C)	¥ ;	E 4	 	4	¥	¥	≦	*
fluorene	£ :	E :		1	4	*	¥	≦
Heneicosane	¥ :	£ 3	£ \$	=	*	. ≦	≦	£
Heptadecane (TIC)	X		E 2	*	¥	¥	≦	\$
Hexadecare (11C)	E 3			.	¥	*	\$	¥
Hexamethylcyclotrisiloxane (TIC)	K 2	C 4	.	¥	\$	¥	4	*
Mesity oxide / 4-Methyl-3-penten-2-one	£ 3	E a	*	¥	¥	1	\$	\$
Kapthalene	E 3	£ 3	X	¥	M	¥	4	*
Octadecane (11C)		1	1	¥	*	K	¥	.W
Pentacosane	: ;		1	X	£	≦	4	*
Phenanthrene	:		3	* *	ž	¥	¥	*
Pyrene	E 3	£ 3	S	×	¥	1	4	¥
Tetradecane (TIC)	E :	:	4	1	**	*	¥	1
Tridecane (TIC)	¥	*	E \$			•	X	1
n.Nitrosodiphenylamine	4	¥	Ĭ	Š	E	•	Ę	•
Pesticides (ug/g)	¥	¥	4	₹	KA	£	\$	\$
		;	*	3	4	4	4	4
Nerbicides (ug/g)	4	4	Ě	£	Ē	•	\$	Ĭ

K-9-31

· was detected at the comentration shown < = Not detected at the

shown, NA = Not analyzed

Page No. 2 12/19/92

TOOELE AD-NORTH AREA: SIA 1 - MAIN DENOLITION AREA SOIL ANALYTICAL RESULIS FOR ORGANIC COMPOUNDS

	1111	200 10 00	700.10.00	200 - 10 - 15	SR-01-002	CO. 10. 63	F.D. 0.1	*** ***
	43636	47040			300	300-10-85	COO. 10-80	500-10-95
	107-1310	0111-688	0111-269	0111-270	0111*271	011.1*272	011.1*273	011 1+274
Date Sampled	07/27/92	26/12//0	07/27/92	07/27/02	07/2/02	07/27/03	03777	
Depth (ft)	** 000 \$*	25 000 35			7//17/10	34/13/10	74/97/10	26/97//0
	37.000.51	33.000 16	30.000 ft	80.000 ft	90.000 ft	100.000 ft	5.000 ft	15.000 ft
lotal Petroleum Hydrocarbons (ug/g)	YY	NA	¥.	NA NA	Y.	Y.	NA	5
Explosives (ug/g)								
1, 3, 5. Trinitrobenzene	< 0.4880	< 0.4880	0 4 A A	0007	700			
1 3.0 in trabanzana	0707		00000	0005.0	0.400	0.4880	< 0.4880	· 0.4880
	0044.0	0.4960	< 0.4960 <	× 0.4960	< 0.4960	0967.0 >	0969.0	9707 0 7
Z, 4, 0 · Ir initrotoluene	< 0.4560	< 0.4560	< 0.4560	· 0.4560	< 0.4560	0 4540	0757 U 7	977.0
2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	0727 0 >	U7C7 U >	9767 0 1	96,0	00000
2,6-Dinitrotoluene	< 0.5240	0765 0 >	0 63/0		0,41,0	0.95.0	0.4240	0.4240
2. Witrotolians (TIC)	1030	0.5540	0.3540	v 0.3240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
	< 0.30/0	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	M 07 0 >
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	A 0 5870	0 6870	
Cyclotetramethylenetetranitramine (HHX)	0.6660	0.6660	C 0 4440	0777 0 7	9777	0.000	0.30/0	v 0.38/0
Mitratice (Tetrol)				00000	0.000	0.000	< 0.6660	× 0.6660
	0.7310	0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
N I I ODENZEDE	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
on Novins/Furans (ug/g)	42	á	•	;	;			
-31	Ē	S	¥	Z	*	. Y	¥	*

	010 700 10 03	\$01.00\$	CR.01.007	SB-01-003	\$8-01-003	\$8-01-003	EP-01-001	EP-01-001
Sample ID	100. F00. 10. 88		72.00	011110777	A11 1427B	011 1+270	1.1051	2-11105#
01 441	262+1710	0111.50	017.130	0111-611	0/2-1310	100		60,06,30
	07/26/92	07/26/92	07/26/92	07/26/92	07/26/92	07/26/92	26/62/50	24/42/50
Decth (ft)	15.000 ft	25.000 ft	35.000 ft	45.000 ft	70.000 ft	100.000 ft	2.000 ft	4.000 ft
(a) and about the state of a line of the state of the sta								
Valetile Urgenic Compounds (19/8)	4	4	¥#	¥#	4	¥	¥	¥
Acetone		.	1	4	4	4	ă	1
Ethylbenzene	• ;	K 4		1	***************************************	*	¥	\$
Hethylene chloride	₹	E	= :	E :		1	. 4	\$
Trichlorofluoromethane	4	¥	¥	S	£ :			1
Xylenes	¥	¥	¥	¥	*	:	1	1 1
Tetrach orgethere	4	4	4	*	£	= :	E :	1 1
Toluene	YR.	\$	4	4	Ĭ	≦	≦ .	£
Semivolatile Organic Compounds (ug/g)					;	;	1	1
1. Dhenvinachthaiene	¥X	¥	4	¥	₹	₹	Ĭ	S :
2 4 40 14 Petromethylpentaderace (110)	¥	N N	¥	42	4	4	\$	≦
		*	¥	*	¥	4	₹	≦
Z-(1-Methyletnyl) naphthalene	¥ 4	¥	₹.	M	**	¥	¥	1
Z-Retnylnaphtnatene		2	¥	~	≦	\$	K	4
Aceragn there	.	¥ X	4	×	¥8	YH.	W.	\$
118 (2.etu)inexyl) patualate	: =	E N	*	¥	¥	¥	4	4
	* *	*	¥	¥	*	4	#	*
Fluorene	.	**	¥	42	≨	4	¥	1
Henelcosane		4	*	¥	¥	¥	¥	\$
Heptadecare (TIC)	X 4	1	*	¥	~	¥	¥	*
Mexadecane (TIC)	£ 1	1	***	**	≦	4	4	≦
Hexamethylcyclotrisiloxane (11c)	₹	.	\$	*	48	¥#	¥	≨
Mesityl oxide / 4-nethyl-3-penten's ove	*		≦ ≦	MA	*	¥	¥	4
		*	£	W.	ZH.	¥	¥	£
Octoberane (13c)	*	X	*	\$	¥	≦	X	≦
	.	*	**	*	¥	*	*	1
Phenanthrene	: 4	X	¥	×	¥	¥	¥	4
Pyrene	*	××	\frac{4}{2}	4	X	*	¥#	£
Tetradecare (TIC)	 	4 2	¥	¥	¥	¥	\$	≦
Tridecane (TIC)		1	1	S	¥	¥	*	*
n·Nítrosodíphenylamine	Š	Ē	•	Ē				
Pesticides (ug/g)	¥	¥	¥.	¥.	¥	¥	¥	\$
	3	¥X	¥	W	≨	4	¥	≦
Herbicides (ug/g)	\$	į						
-						ı		

· shown, NA = Not analyzed te was detected at the conentration shown < = Not detected at the

Page No. 2 12/19/92

TOOELE AD-NORTH AREA: SIA 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESUL FOR ORGANIC COMPOUNDS

Sample 1D Lob 1D Date Sampled Depth (ft)	58 - 01 - 003 - 504 011 1*295 07/26/92 15.000 ft	\$8-01-003 011.1*275 07/26/92 25.000 ft	\$6.01.003 011.1*276 07/26/92 35.000 ft	\$8.01.003 01.11.277 07/26/92 45.000 ft	\$8.01.003 0111*278 07/26/92 70.000 ft	\$0.01.003 0111*279 07/26/92 100.000 ft	EP-01-001 WS01L1*1 05/29/92 2.000 ft	EP-01-001 HSOIL1°2 05/29/92 4.000 ft
lotal Petroleum Mydrocarbons (ug/g)	VN.	Y.	MA	48	Y Z	VN	N N	N.
Explosives (ug/g)								
1,3,5-Trinitrobenzene	0.4880	0.4880	0 4880	0007 0 7	,			,
1, 3-Dinitrobenzene	0707 0 7	0707 0 7		000.0	0004.0	0.4550	× 0.4880	· 0.4880
2 6 4.70 (2.10 - 2.10 -	0064:0	0.4400	0 . 4 ¥60	× 0.4960	0967.0 >	0.4960	0967.0	× 0.4968
	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	0989.0 >	9757 0 7
Z,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	0727 0 >	U7C7 U >	0767 0 7	977.0
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	V 0 5240	0 63/0		0.55.0	0.9240
2-Nitrotoluene (71C)	< 0.3070	0 4070	0.010	0.36.0	0.36.0	0.5240	< 0.5240	< 0.5240
Cyclonite (#0x)	0.620	0.500	0.3070	0.3070	< 0.30/0	< 0.3070	< 0.3070	< 0.30₹
Evelotetramethylenetermisermine (max)		0.3870	0.25/0	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870
Miteralian Africania	00000	0.6660	× 0.6660	• 0.6660	0.6660	× 0.6660	0.6660	0999.0 >
	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	c 0. 7310	9122 0 7
Witrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Poxins/furans (ug/g)	¥	¥	¥	ş	ă	4	\$	\$

9	MS011.1*3	MSOIL 1*4	#SOIL 1*5	30111°6	011.1*365	NSOIL 1*7	H\$0111•8	#\$011.0\$#
Date Semice	05/29/92	05/59/92	05/30/92	05/30/92	07/02/92	26/30/65	05/30/92	65/36/92
Depth (ft)	2.000 ft	3.000 ft	2.000 ft	5.000 ft	6.000 ft	3.000 ft	5.000 ft	3.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	¥#	¥¥	¥	4	< 0.0170	¥	≦	48
Ethylbenzene	¥#	W.	4	4	0.0048**	¥	1	4
Methylene chloride	¥	¥	±	¥	< 0.0120	¥	1	≦
Trichtorof Lucramethane	≦	¥	¥#	¥	< 0.0059	¥	≦	1
X-i enes	¥ N	¥ N	¥2	¥	0.0290**	¥#	ī	1
Tet rach loroe thene	4	¥	RA	*	* 0.000	#	1	¥
10 uene	¥	¥	¥	¥.	0.0014**	¥.	≨	1
Semivolatile Oreanic Compounds (up/g)								
1-Pheny Inachthal ene	¥	¥	¥	¥2	\$	¥	1	≨
<.6.10, 14-Tetramethylpentadecane (11C)	¥	4	\$	YH	¥	\$	≦	1
2.(1.Methylethyl) nachthalene	¥	¥	¥	¥ H	¥	4	≦	1
2-Nethylnachthalene	\$	¥#	ž	¥	· 0.0490	4	\$	1
Acenaphthene	YH.	¥	¥#	¥	< 0.0360	¥	4	1
Bis (2-ethylhexyl) phthalate	¥	*	¥	4	< 0.6200	¥	1	¥
Eicosane (TIC)	4	4	¥	¥3	4	¥	*	1
fluorene	¥	≦	¥ H	¥ H	< 0.0330	¥	\$	≦
Heneicosane	£	≨	¥#	4 2	≦	≦	1	1
Heptadecame (TIC)	₹	≦	¥	¥ N	¥	¥	4	≦
Hexadecane (TIC)	¥	4	¥#	¥	4	£	4	1
Mexamethylcyclotrisiloxane (TIC)	\$	¥	¥	X	¥	¥	\$	1
Hesityl oxide / 4-Methyl-3.penten-2-one	42	Y	¥	¥ E	V	4	4	S
Napthalene	¥	4	\	4	< 0.0370	¥	4	4
Octadecane (TIC)	¥	4	4	¥	≦	≦	4	\$
Pentacosane	4	¥	\frac{1}{2}	4	£	¥	4	1
Phenanthrene	4	¥X	¥	¥.	< 0.0330	1	¥	1
Pyrene	*	¥	¥	W W	< 0.0330	4	¥	≦
Tetradecane (TIC)	¥8	42	¥	MA	¥#	1	¥	≦
Tridecane (11C)	¥#	4	¥ H	YN.	\$	£	¥	1
n-Nitrosodiphenylamine	\$	*	E	Ş	< 0.1900	₹	ž	¥
Pesticides (ug/g)	4	¥	≦	£	9	*	¥	\$
Herbicides (ug/g)	¥	¥	4	¥	¥	¥	\$	1

e was detected at the conentration shown < = Not detected at the ve Notes: ** = Ar

shown, MA = Not analyzed

Page No. 2 12/19/92

TOCELE AD-WORTH AREA: SUND MU. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-002	EP-01-002	EP-01-003	EP-01-003	EP-01-003	EP-01-004	FP-01-004	ED. 01. 00K
01 Q8 1	F-1 1103M	MCO11 184	344 -1034	740				
			Callogu		011.1*365	NSOIL 1°7	8-1 110SH	2
Date sampled	05/59/92	05/29/92	05/30/92	05/30/92	07/02/92	65/30/92	05/30/92	C5/27/20
Depth (ft)	2.000 ft	3.000 ft	2.000 ft	5.000 ft	6.000 fr	3.000 ft	5.000 ft	3.000 ft
Total Petroleum Hydrocarbons (ug/g)	YN.	*	¥H	NA NA	4	V.	YH.	75
Explosives (ug/g)								
1, 3, 5-1 rinitrobenzene	< 0.4880	< 0.4880	< 0.4880	0.4800	1	0007 0 7	900	
1, 3.0 initrobenzene	0967°0 >	0967 0 >	0 4040	0767 0 7	£ 3	000,0	0.4000	0.000
2.4.6.Trinitrotolium	0737 0 7	0747 0 7	934.0	0.440	4	24.0	× 0.4900	0.4960 ×
	0004.0	0.430n	× 0.4360	< 0.4560	¥	< 0.4560<	< 0.4560 <	· 0.4540
Z,4.Dinitrotoluene	< 0.4540	< 0.4240	< 0.4240	< 0.4240	< 0.1400	< 0.4240	< 0.4240	******
2,6-0initrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.0850	0765 0 >	U7C3 U /	6763 6 7
2-Nitrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	0 4070		0.02.0	0.3640	0.3640
Cyclonite (RDX)	< 0.5870	< 0.5870	c 0.5870	A 5870		0.300		
Cyclotetramethylenetetranitramine (1883)	. 0 4440	0 4440		0.000	¥ :	0.36/0	0.7060	× 0.5678
	00000	0000	0.000	- 0.000 - 0.000	*	• 0.666 • 0.	0999.0	• 0.6660
	< 0.7310	. 0.7310	< 0.7310	< 0.7310	¥	< 0.7310	< 0.7310	< 0.7310
Ni trobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 0.0450	< 2.4100	< 2.4100	< 2.4100
y Yoxins/Furans (ug/g) S	4	¥	\$	¥¥	¥¥	¥	¥	\$

Page No. 1 12/19/92

. TOCELE AD-NORTH AREA: SM . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	FP-01-005	FP-01-00A	EP-01-006	£9-01-007	EP-01-007	EP-01-008	EP-01-008	EP-01-008-DUP
Sample 10						2011 1100	011 10160	97846
Cab 10	SOIL 1*10	SOIL 1*11	S011.12	\$011.13	\$1.1105	5011.105	200	495-1110
Date Sampled	05/30/92	05/30/92	05/30/92	05/30/92	05/30/92	05/31/92	26/20/20	07/02/92
Depth (ft)	7.000 ft	3.000 ft	5.000 ft	3.000 ft	5.000 ft	3.000 ft	6.000 ft	6.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	¥N	¥	¥	£	≨	¥	< 0.0170	ī
Ethylbenzene	¥#	¥	¥	48	¥	≦	< 0.0017	₹
Methylene chloride	¥	42	¥	**	≨	≦	< 0.0120	¥
Trichlorofluoromethane	¥	42	4	**	*	4	< 0.0059	≦
Well-state 1	A	4 2	¥	YN	¥	4	< 0.0015	¥
Tetrachlocoethene	*	*	*	¥2	*	\	9.0008	\$
Toluene	¥ H	¥N.	¥ W	×	¥	4	€ 0.0008	*
Cominging to Organic Communds (1970)								
1. Pheny Lyaphthalene	*	**	**	**	*	**	¥	¥
2 6 10 14-Terramethylpentadecane (TIC)	*	¥	¥	¥	¥ X	4	S	\$
2.cl-Methylethyl) nachthalene	× ×	¥	×	¥	¥	X	1	\$
9 2-Herbyl caphthalene	.	×	¥	¥	¥	AM	4	· 0.0490
is Account thene	42	¥	K	¥N	¥	4	¥	< 0.0360
Bis (2-ethylhexyl) phthalate	¥	¥	KN	Y.	Y#	¥#	¥	< 0.6200
Eicosane (11C)	¥	Y X	VH.	KA	¥	MA	¥2	. ***
fluorene	Y.	¥	¥	4	¥#	¥2	X	< 0.0330
Keneicosane	¥	¥	KM	¥	K	MA	¥¥	2
Neptadecane (TIC)	Y X	¥	¥	¥	YH.	MA	KH KH	\$
Hexadecane (TIC)	NA	¥	¥	¥	¥	MA M	MA	*
Hexamethylcyclotrisiloxane (TIC)	¥	¥.	MA	MA	¥N	¥ B	V	\$
Hesityl oxide / 4-Hethyl-3-penten-2-one	¥	¥	¥#	¥	4	¥	¥	ī
Napthalene	¥	Y.	¥.	¥	NA NA	¥	¥	< 0.0370
Octadecene (11C)	4	¥	¥	¥	MA	¥ Z	¥	≦
Pentacosane	X	¥	¥	¥	¥	¥.	\$	48
Phenanthrene	¥¥	¥	¥ N	¥	¥	¥	\$	< 0.0330
Pyrene	XX	¥	¥ N	¥	NA	¥	4	< 0.0330
Tetradecane (11C)	K	¥¥	W.	¥	¥	M	4	4
Tridecane (TIC)	¥	¥	N	\$	MA	¥	43	¥
n-Nitrosodiohenylamine	¥	K	YN	*	¥	¥	¥	< 0.1900
esticides (ug/g)	¥	A	¥#	¥	≨	≦	¥	2
orbicides (ug/g)	K	N A	¥	M	M	¥ M	4	\$

ites: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, MA = Not analyzed

Sample 10	EP-01-005	EP-01-006	EP-01-006	EP-01-007	EP-01-007	EP-01-008	EP-01-008	EP-01-008-DU
01 qe1	SO11.1*10	5011.1•11	5011.1-12	SOIL 1*13	\$011.104	\$011.1*15	0111*360	0111-369
Date Sampled	05/30/92	05/30/92	05/30/92	05/30/92	05/30/92	05/31/92	07/02/92	07/02/92
Depth (ft)	7.000 ft	3.000 ft	5.000 ft	3.000 ft	5.000 ft	3.000 ft	6.000 ft	6.000 ft
Total Petroleum Hydrocarbons (ug/g)	¥¥	YN .	¥8	4z	W.	MA	NA NA	*
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	0.4880	0985.0 >	< 0.4880	< 0.4880	· 0.4680	¥	\$
1,3-Dinitrobenzene	0967.0 >	0967.0 >	0967.0 >	0967.0 >	0967.0 >	· 0.4960	*	\$
2,4,6.Trinitrotaluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	*	\$
2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	4	< 0.1400
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	4	< 0.0850
2-Nitrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	M	¥
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	4.4700**	¥	4
Cyclotetramethylenetetranitramine (HHX)	• 0.6660	< 0.6660 ×	< 0.6660	< 0.6660	· 0.6660	0999.0 >	¥	\$
Mitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	1	\$
Witrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	¥#	< 0.0450
Dioxins/furans (ug/g)	*	¥	¥	¥	¥	¥	· 1	¥

Page No. 1 12/19/92

TODELE AD-NORTH AREA: SIMA. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	600 00 61	000 00	900 10 02	60.01.010	26.01.010	50.01.011	CD. 01-011-NID	50-01-011
Sample 10	EF-U1-008	400.10.43	100.10.00	010-10-13		10-10-13	5011 1631	011 18357
1 ab 10	\$0111*16	2011101	2011102	8011121	2011120	917-1110	2-1108	166-110
Date Sampled	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	07/01/92
Depth (ft)	7.000 ft	1.500 ft	4.500 ft	2.500 ft	5.500 ft	3.000 ft	3.000 ft	4.000 ft
Volatile Organic Compounds (ug/9)								
Acetone	YN.	K	¥	K K	K K	₹#	¥	¥
Ethylbenzene	YN .	XX	4 2	KH	¥	4	*	1
Methylene chloride	42	¥ X	¥3	¥	¥	¥	W.	\$
Trichlorofluoromethane	4 2	4	K *	¥¥	¥	¥	KX	£
X C e c e c e c e c e c e c e c e c e c e	¥	¥¥	¥3	¥.	¥¥	KA	W.	¥
Tetrachloroethene	ZZ.	KN	KX	YN	¥	KA	¥	¥
Toluene	¥	*	4	Y H	43	≨	4	¥
Seminolatile Organic Compands (19/9)								
1-Phenylnanhthalene	*	¥	¥	¥	\$	*	4 2	₹#
2.6.10.14-Tetramethylpentadecane (TIC)	**	¥.	¥	\$	4	4	3.0000**	4
	\$	Y.	XX	¥	4	42	MA	¥
2-Methylnaphthalenc	MA	NA NA	Y N	¥	4	43	0.7000**	ž
	K X	¥	NA A	¥	¥	¥N	0.4000	¥N
Bis (2-ethylhexyl) phthalate	¥8	¥	¥#	*	4	¥8	• 6.0000	4
Eicosane (TIC)	K K	¥	¥8	¥8	¥X	¥2	¥	4
Fluorene	. AN	¥	¥	¥	¥	¥#	< 0.3000	¥#
Heneicosane	KN N	¥	¥	4	#¥	¥	4	¥
Heptadecone (11C)	¥	¥	¥	¥N	¥¥	¥ N	4	¥
Hexadecane (11C)	¥	¥.	¥	4	¥3	KN KN	¥	¥
Hexamethylcyclotrisiloxane (11C)	KM	4	¥¥	*	KN	K X	¥	¥
Mesityl oxide / 4-Nethyl-3-penten-2-one	¥	¥2	MA	¥	NA NA	V	*	HA
Napthalene	¥2	≨	KX	¥	¥8	4	0007:0 >	¥
Octadecane (TIC)	4 2	¥	¥	4	₹2	¥¥	¥	MA
Pentacosane	¥	¥	¥	¥	NA	4 2	4	¥
Phenanthrene	K	¥	M	≦	≨	×	2.0000**	¥
Pyrene	*	¥	¥¥	*	NA NA	¥ X	< 0.3000	4
Tetradecane (11C)	K	¥	KA KA	M	Y2	4	¥	¥
Tridecane (11C)	NA NA	4	YN	KA	KN	¥3	4	W.
n-Nitrosodiphenylamine	W.	NA	¥	K R	K K	ž	< 2.0000	4
sticides (ug/g)	¥ X	¥	¥	≦	4	K	3	¥
erbicides (ug/g)	4	K	N	*	Y Y	¥2	¥	4 2

stes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Serole 10	EP-01-008	EP-01-009	EP-01-009	EF-01-010	EP-01-010	EP-01-011	EP-01-011-DUP	EP-01-011
01 947	SOIL 1 • 16	SOIL 1-17	SO11.1*18	S011.1°19	50111-20	011.1*218	SOIL 1*21	0111+357
Date Saroled	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	65/31/92	07/01/92
Depth (ft)	7.000 ft	1.500 ft	4.500 ft	2.500 ft	5.500 ft	3.000 ft	3.000 ft	4.000 ft
					:	•	\$	4

) i			
0. q a	SOIL 1*16	SOIL 1*17	5011.1*18	\$011.19	5011150	011.1*218	SOIL 1*21	0111-357
Date Sampled	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	05/31/92	07/01/92
Depth (1t)	7.000 ft	1.500 ft	4.500 ft	2.500 ft	5.500 ft	3.000 ft	3.000 ft	4.000 ft
Total Petroleum Nydrocarbons (ug/g)	NA	VN	WA	¥H	YH.	NA NA	NA NA	¥
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	× 0.4880	< 0.4880 <	· 0.4880	< 0.4880	· 0.4880	· 0.4880	\$
1,3-binitrobenzene	< 0.4960	0967.0 >	< 0.4960	0969.0 >	0969'0 >	· 0.4960	0.4960	¥
2, 4, 6- Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	c 0.4560	< 0.4560	· 0.4560	¥
2.4-Dinitrotoluene	< 0.4240	< 0.4540	< 0.4240	0,4540	< 0.4240	< 0.4240	. 1.0000	¥
2.6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	4.0029.	· 0.8000	¥
2-Witrotoluene (TC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	*
Cyclonite (ADX)	< 0.5870	1.210042	< 0.5870	< 0.5270	< 0.5870	< 0.5870	< 0.5870	1
Cyclotetramethylenetetranitramine (HMX)	0,6660	0999.0 >	< 0.6660	₹ 0.666	< 0.6660	0.666 0	• 0.6660	4
Mitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	• 0.7310	• 0.7310	< 0.7310	4
	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	· 0.4000	1
ns 1. Dioxins/furans (ug/g)	¥	YH.	≦	4	\$	4	4	9

, was detected at the conentration shown < = Not detected at the $v_{\rm F}$ Hotes: ** = A

houn, MA = Not analyzed

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: SNA. . 1 - MAIN DEL-DLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.0	50-01-03	50.01.011
Sample 10	EP-01-011	EP-01-011	EP-01-011-DOP	EP-01-011	EP-01-011-00P	210-10-43	210-10-13	36 10 10
9. 98.	011.1•361	S08K1*21	2011.102	0111*358	0111*371	SOIL 1"25	32.1.108	C2-11106
to complete the co	07/02/92	05/31/92	05/31/92	07/02/92	07/02/92	05/31/92	05/31/92	06/01/92
Depth (41)	5.500 ft	6.000 11	6.000 ft	7.500 ft	7.500 ft	2.000 ft	4.000 ft	1.000 ft
Volatile Organic Compounds (ug/g)							:	;
Acetone	< 0.0170	< 13.0000	0.0170	K	¥.	¥X	X	\$
Fthylbenzene	0.0036**	< 0.5000	< 0.0017	¥	¥.	¥	≦	\$
Mark Sept 10 Part of the Part	< 0.0120	< 2.3000	< 0.0120	¥	¥¥	HA H	X X	≦
Trichlorofluoromethane	< 0.0059	< 1.4000	< 0.0059	M	¥	¥.	¥	1
Z = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	0.0190**	< 0.8400 ×	< 0.0015	N.	¥	W.	¥	4
Tetrachloroethere	0.0018**	1.6000	< 0.0008	¥	¥	NA	¥	4
Toluene	0.0030**	< 0.5000	< 0.0008	¥	YH.	¥	«	¥
(a) and a share of a last								
Semivolatific organic compounds (SE)	¥	W	¥	¥	¥	KA	¥	≨
1.Presigninghiculatera 2 4 10 14.Intramethylpantacherane (III)	\$	¥	20.0000**	0.8100**	0.6900**	¥#	4	*
	1	X	20,0000**	¥	¥	4 %	¥	≦
S. 2-weeks and the lane	X	¥	< 0.5000	< 0.0490	0.0490	¥N	¥	¥
	¥	W.	\$.0000	< 0.0360	0.0360	**	*	4
	**	NA	< 6.0000	< 0.6200	< 0.6200	W	¥	¥
Ficosane (11C)	¥	K	70.0000**	1.2000**	¥	K R	¥	\$
Fluctere	4	¥N	5.0000**	< 0.0330	< 0.0330	W.	ž	\$
Zene icos ane	*	K#	**0000.07	¥	¥	¥¥	≨	4
Hentadecane (11C)	4	NA	₹0.0000*	1.2000**	1.1000**	¥.	¥	\$
# padecade (110)	*	K	30.0000**	0.8100**	0.8000**	W.	¥	1
Hexamethylovototrisiloxane (IIC)	*	*	¥	¥	KA	¥	¥	\$
Mesityl oxide / 4-Methyl-3-penten-2-one	¥2	¥	¥	*	¥	¥	¥	₹.
Rapthatene	¥#	X	< 0.4000	< 0.0370	< 0.0370	¥	¥	\$
Octodecane (TIC)	¥	W	Y2	KN	1.1000**	¥	M	≦
Pentacosane	¥	N	¥¥	¥.	Y.	¥ N	¥	S
Phonenthrene	KN	¥2	10.0000**	< 0.0330	< 0.0330	¥R	W.	£
60	*	¥	< 0.3000	< 0.0330	< 0.0330	¥	X	4
Tetraderane (TIC)	¥	NA NA	30.0000**	W.	¥	××	¥	*
Triverse (TIT)	¥	¥	20.0000*	¥	¥	¥	ž	4
o.witrosodiohenvlægine	¥2	K	< 2.0000	< 0.1900	0.1900	¥	¥	¥
sticides (ug/g)	Y.	¥.	€	9	2	¥.	¥.	4
rbicides (uq/a)	K K	K	*	42	4	¥.	4	¥

ites: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

TODELE AD-NORTH AREA: SUMU MO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-011	EP-01-011	EP-01-011-DUP	EP-01-011	EP-01-011-0UP	EP-01-012	EP-01-012	EP-01-013
1ab to	011.1*361	\$08K1*21	SO11.1°22	0111*358	0111*371	SOIL1*23	SOIL 1*24	X-1.108
Date Sampled	07/02/92	05/31/92	05/31/92	07/02/92	07/02/92	05/31/92	05/31/92	06/01/92
Depth (ft)	5.500 ft	6.000 ft	6.000 ft	7.500 ft	7.500 ft	2.000 ft	4.000 ft	1.000 ft
lotal Petroleum Mydrocarbons (ug/g)	¥	YN.	AN AN	MA	YN.	VA	V.	¥.
Explosives (ug/g)				-				
1,3,5-Trinitrobenzene	4	4	0.4880	*	¥	< 0.4880	0.4880	22 4000**
1, 3.0 initrobenzene	¥	¥	0.4960	Z Z	*	0967.0 >	× 0.4960	0967 0 ×
2,4,6-Trinitrotoluene	K X	¥	3.8400**	¥	*	< 0.4560	< 0.4560	700 0000**
2,4-Dinitrotoluene	4	¥	. 1.0000	< 0.1400	< 0.1400	< 0.4240	< 0.4240	8.3000**
2,6-Dinitrotoluene	4	¥	< 0.8000	< 0.0850	< 0.0850	< 0.5240	< 0.5240	< 0.5240
2-Mitrotoluene (71C)	XX	KX	< 0.3070	¥	*	< 0.3070	< 0.3070	× 0.3070
Cyclonite (RDX)	¥ B	4	< 0.5870	¥	¥#	< 0.5870	< 0.5670	130.000**
Cyclotetramethylenetetranitramine (HMX)	X	X	0.6660	¥	E A	0.6660	0.6660	0,6660
Hitramine (Tetryl)	NA NA	¥#	0.7310	¥#	W.	< 0.7310	< 0.7310	< 0.7310
Nitrobenzene	¥2	¥	< 0.4000	< 0.0450	< 0.0450	< 2.4100	< 2.4100	< 2.4100
Dioxins/furans (ug/g)	Ş	\$	¥ X	¥	¥	¥	¥	¥

5.7.47

Notes: ** = Arr'vte was detected at the conentration shown < = Not detected at the valve shown, NA = Not analyzed

Page No. 1 12/19/92

TOOFLE AD-NORTH AREA: SM. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

				3.0	3.0 .0	1000	7,0 ,0 45	20 01 017
Sample 10	EP-01-013	EP-01-014	*10-01*	610-10-43	EP-01-015	CF-01-010	EF-01-010	
1 eb 10	SO11.1*26	SOIL 1*28	2011.1-27	SOIL 1*30	20111-29	SOIL 1*31	2011 1-32	2011.33
Date Sampled	06/01/92	06/01/92	06/01/92	06/01/92	06/01/92	06/01/92	06/01/92	06/02/92
Depth (ft)	4.500 ft	3.000 ft	7.000 ft	3.500 ft	6.500 ft	0.000 ft	4.500 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	¥	KA	¥N	4 2	4	¥	¥	¥
Ethylbenzene	X	KX	¥	4	4 2	4	4	\$
Hethylene chloride	42	NA A	¥	X	¥N	4	42	1
Trichlorofluoromethane	¥	K.K	¥¥	¥#	KN KN	4	¥	¥
Xvlenes	¥	KA	×	¥2	¥	4	¥	\$
Tetrachloroethene	\$	¥	\$	¥¥	¥	4 8	≨	1
Totuene	¥	YN	¥	¥	M	\$	4	ş
Semivolatile Organic Compounds (ug/g)								
1-Pheny (naphthalene	NA	¥	¥	¥	¥	M	KN	Y
2,6,10,14-Tetramethylpentadecane (TIC)	NA AN	¥.	¥2	¥	¥	¥ X	NA NA	\$
	AN.	N	YX	¥¥	*	42	KA	*
N 2 Methylnaphthalene	KX.	N	¥¥	¥¥	Y.	KX.	MA	4
	KX	¥.	¥	Y Y	M	NA	NA A	4
Bis (2-ethylhexyl) phthalate	N.	Y N	¥8	NA NA	¥#	KM	¥.	¥ 2
Eicosane (11C)	¥2	¥	¥2	K	¥¥	¥#	¥¥	¥
Fluorene	¥X	¥	M	¥	¥	KN KN	¥	\$
Heneicosane	NA NA	¥	KN N	¥	¥	¥	¥	¥
Heptadecane (IIC)	¥2	¥	4	V N	¥	¥#	¥2	4
Hexadecane (TIC)	AN.	¥	KA	¥	¥	¥	¥	¥
Hexamethylcyclotrisiloxane (TIC)	KN	¥	Y2	¥	¥	¥	¥	¥
Mesityl oxide / 4-Methyl-3-penten-2-one	W.	¥	¥	¥	¥	¥	KX	4
Napthalene	¥¥	¥	¥	¥	¥	¥	¥	¥
Octadecane (71C)	¥	¥	¥	¥	¥	4	4	\$
Pentacosane	4 2	4	4 2	¥	X	ž	¥	4
Phenanthrene	NA	¥	MA	Y.	¥	¥	¥	¥
Pyrene	¥	¥	4	Y X	¥	¥ z	¥	≦
Tetradecane (TIC)	××	¥	¥2	¥	¥	¥	M	₹
Tridecane (TIC)	¥¥	4	¥#	≨	4	¥	MA	4
n Nitrosodiphenylamine	¥	NA	Y Z	YN	Y N	4	4	ĭ
'esticides (ug/g)	¥.	¥	¥	¥ X	K	<u> </u>	K	ī
erbicides (ug/g)	4	Y X	£	Z Z	W.	KA	¥	4

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Lab 10 Date Sampled 06/01/92 Depth (ft) 4.500 ft Total Petroleum Hydrocarbons (ug/g) NA Explosives (ug/g) 0.4880 1,3.5-Trinitrobenzene 0.4960 2,4,6-Trinitrotoluene 0.4560	SOIL1*28 06/01/92 3.000 ft	SOIL 1*27	6000				
06/01/92 4.500 ft 4.500 ft hydrocarbons (ug/g) benzene < 0.4880 cene < 0.4860 coluene < 0.4560	3,000 ft	06/01/02	2011.120	\$011105	50111*31	50111*32	501.1*33
4.500 ft ydrocarbons (ug/g) benzene < 0.4880 cene < 0.4960 toluene < 0.4560	5.000 ft		06/01/92	06/01/92	06/01/92	06/01/92	06/02/92
ydrocarbons (ug/g) benzene < 0.48 coluene < 0.45	¥¥	7.000 ft	3.500 ft	6.500 ft	0.000 ft	4.500 ft	0.000 ft
benzene cene cene cene cene cene cene cen		YA .	VN	Y2	W.	S.	4
	0.4880	< 0.4880	0.4880	< 0.4880	< 0.4880	< 0.4880	0997.0 >
	0.4960	< 0.4960	0967.0 >	× 0.4960	· 0.4960	0967.0 >	0967.0 >
	0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560
2,4-Dinitrotoluene c 0.4240	0.4240	< 0.4240	< 0.4240	0.8480**	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene c 0.5240	. 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Witrotoluene (11C) < 0.3070	: 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3079
Cyclonite (#DX) < 0.5870	1.4400**	< 0.5870	**0066.0	1.7800**	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (HMX) < 0.6660	0,6660	< 0.6660	< 0.6660	0,6660	< 0.6660	· 0.6660	0999.0 ×
Mitramine (Tetryl) < 0.7310	0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Witrobenzene < 2.4100	2,4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/Furans (ug/g)	¥	¥	YN.	¥	ş	4	\$

Page No. 1 12/19/92

TOOFIE AD-NORTH AREA: SIA .. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

				0.0	00000	000-10-03	60.01.020	FP-01-021
Sample 10	EP-01-018	EP-01-018	EP-01-018-DOP	EP-01-019	410.10.43	070-10-13	200 10 12	
51 44	SO11.1•36	011.1*219	SOIL 1*35	SOIL 1*37	2011 1•38	SOIL 1*39	2011.140	
	04/02/02	06/02/92	06/02/92	06/03/92	06/03/92	06/03/92	26/03/95	06/03/92
Date sampled Depth (ft)	4.000 ft	6.500 ft	6.500 ft	1.500 ft	7.500 ft	1.500 ft	4.500 ft	2.000 ft
Volstile Organic Compounds (ug/g)								;
Acetone	K	< 0.0170	< 0.0170	¥	¥	≨	¥ X	*
Ethalben and	¥		< 0.0017	¥¥	X	*	¥	1
	**	0.0140**	< 0.0120	¥	¥	4	≨	*
	4	0.00800	0.0066**	X	¥	¥	4	\$
irientorortuoromethere	* 3	0 0015	< 0.0015	₹	*	4 2	4	\$
XYLenes	£ 3			¥	42	¥8	ž	\$
Tetrachioroetheme	X X	0.3300**		YN.	K	¥#	¥	¥
Semiyolatile Organic Compounds (ug/g)							:	i
1. Pheny that halene	K	0.7710**	0.3300**	ž	S	¥	4	S :
2 6 10 14-1erramethylpentadecane (11C)	¥	¥ X	£	MA	¥	4	4	₹
2.(1.weth>leth>() machthalene	¥	¥	¥¥	¥	¥¥	4	X	≨
	¥	< 0.0490	< 0.0490	¥¥	¥	*	¥	\$
S Arenachthana.	¥	< 0.0360	< 0.0360	¥X	KA	*	¥	¥
	¥ X	3.0500**	< 0.6200	¥N	YN N	¥	¥#	W.
	¥2	4	42	¥N	¥X	KX	¥ N	¥
	Y.	< 0.0330	< 0.0330	MA	¥	42	*	≦
	*	¥	4 2	YN Y	42	4	¥ X	\$
	*	0.3300**	4 3	¥¥	48	4#	4	1
	*	¥2	M	¥#	¥¥	ZH.	KN K	1
merandecene (11c)	¥ Z	¥	KX	M	Y2	KX	¥#	1
Manipul Daids / 4-Methyl-3-Denten-2-One	\$	¥	*	4 2	¥8	4	48	ĭ
Mapthalene	\$	0.1220**	0.0806**	H	48	K R	¥	1
Octadecase (110)	¥ Z	¥	NA NA	¥X	₹	4	4	42
Destantant	¥	KH	0.3300**	4	48	4	¥	\$
	*	0.1480**	0.0908**	**	MA.	¥	¥	≨
	W.	< 0.0330	< 0.0330	¥N	¥	*	4	¥8
	¥	¥	*	MA	4	4	≦	\$
	¥ #	¥	*	MA	MA	¥2	KN KN	¥
S. E. Contract Contract Series	¥	0.4420**	< 0.1900	¥	4 3	¥ X	X	¥
esticides (ug/g)	Y	Q	₩	¥ H	¥	¥8	¥	≦
inthicides (1979)	¥	KH	K	¥	¥	¥	¥8	£

otes: ** * Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-018	EP-01-018	EP-01-018-0UP	EP-01-019	EP-01-019	EP-01-020	EP-01-020	EP-01-021
01 981	501.1*36	011.1*219	50111+35	S01L1*37	SOIL 1*38	SOIL 1•39	07-17105	17-17108
Date Sampled	26/20/90	26/20/90	26/20/90	06/03/92	06/03/92	06/03/92	06/03/92	06/03/92
Depth (ft)	4.000 ft	6.500 ft	6.500 ft	1.500 ft	7.500 ft	1.500 fc	4.500 ft	2.000 ft
Total Petroleum Mydrocarbons (ug/g)	V.	¥8	VA.	NA NA	NA	NA	Y.	\$
Explosives (ug/g)								
1,3,5-Trinitrobenzene	· 0.4880	< 0.4880	< 0.4880	< 0.4880	· 0.4680	4.2100**	< 0.4880	0.4880
1,3-Dinitrobenzene	0969.0 >	0.4960	< 0.4960	< 0.4960	· 0.4960	0967.0 >	× 0.4960	· 0.4960
2,4,6.Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	450.0000**	< 0.4560	< 0.4560
2,4.0initrotoluene	3.3100**	2.9400**	< 0.1400	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotaluene	< 0.5240	0.1960**	< 0.0850	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Witrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5670	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (MMX)	< 0.6660	• 0.6660	< 0.6660	< 0.6660	0.6660	0.6660	· 0.6660	· 0.6660
Hitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Witrobenzene	< 2.4100	< 0.0450	< 0.0450	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100

ş

≨

≨

≦

≨

ĭ

¥

ž

Dioxins/Furans (ug/g)

5-2-47

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: SIA . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

		200 10 22	60 00 00	100.04.03	50.01.03	50-01-026	60.01.024	EP-01-025
Sample 10	170-10-43	770-10-43	220-10-42	67-01-06		20 10 13	#7+1 1103	07-1 1105
1. de 10	2011 1042	SO111043	\$5.1.110S	20111-43	2011 1105	1108		
Date Samled	06/03/92	26/0//90	26/0/90	26/90/90	26/0//90	06/04/92	26/06/06	76/90/90
Depth (ft)	4.500 ft	4.000 ft	5.000 ft	4.000 ft	5.500 ft	0.000 ft	4.500 ft	4.500 ft
Voletile Organic Compounds (ug/g)								;
Acetone	¥	¥#	¥	¥	¥ N	4	*	ž
Ethy then sone	¥	42	¥#	¥3	¥8	¥	4	1
Bethin one objective	**	2	42	K#	4 %	4	≨	≨
To late on the control of	*	¥	*	¥#	W.	*	*	¥
	£ \$	1	.	*	4	1	4	*
Aytenes	4	¥ \$	€ ≨	¥	*	¥	42	1
	.	4	\$	¥	¥	¥	\$	\$
Semivolatile Draanic Compounds (ug/g)								
1-Phenylnachthalene	¥	¥	¥	Y N	¥#	¥	4	¥
2 4 10 14-Tetramethylpentadecane (11C)	¥	**	¥	4	X	¥	4	\$
2.41.Machal achul a machabalana	¥	**	¥#	4	*	4	\$	\$
	4	K	YN	42	¥ X	*	4	¥
	¥	¥	4	KA K	4	*	1	¥
The state of the s	¥	KA	¥#	¥.	¥ X	X	4	¥
	*	Ā	¥	¥2	¥#	48	¥	¥
Fluorene	¥	NA	¥	M	4	*	≦	≦
Keneicosane	*	¥	¥	HA.	4	¥#	¥	1
Heptadecane (11C)	4	MA	¥	¥	¥	4	1	≦
Hexadecone (110)	42	¥	¥	¥	M	*	A M	\$
Mexamethologicaloxane (11C)	\$	K	YN	¥ H	4	₹	4	¥
Mesity oxide / 4-Methyl-3-Denten-2-one	\$	¥2	¥	YM .	*	*	42	≨
Zaothalene	\$	¥	¥	MA	¥	¥	¥	≦
Octadecane (110)	¥	¥	¥ N	¥	4	42	\$	¥
Pentacosane	¥	¥	W.	¥	*	*	4	1
Phenanthrene	¥	4 2	¥8	4	Y #	≦	\$	≦
604220	K	V N	¥	MA	48	\$	4	\$
Tetradecase (TIC)	¥	4	¥	¥	¥	¥	≦	\$
Tridecane (TIC)	¥	M	MA	¥	YM	₹#	4	¥
n.Nitrosodiphenylamine	¥	*	¥#	¥	¥	¥	Y	\$
								;
esticides (ug/g)	4	¥	¥	¥	\$	¥	£	≨
rbicides (ug/g)	¥	4 2	¥#	\$	≨	1	\$	¥

ites: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-021	EP-01-022	EP-01-022	EP-01-023	EP-01-023	EP-01-024	EP-01-024	EP-01-025
1. de 10	SO11.1*42	SO11.1-43	\$011.104	\$5.1.1105	97-17105	25-17108	87-11105	67-11106
Date Sampled	26/00/90	06/04/92	06/04/92	06/04/92	06/04/92	06/04/92	06/04/92	06/04/92
Depth (ft)	4.500 ft	4.000 ft	5.000 ft	4.000 ft	5.500 ft	0.000 ft	4.500 ft	4.500 ft
lotal Petroleum Nydrocarbons (ug/g)	Y.	VR.	V	Ya.	S.	VII	\$	**
Explosives (ug/g)								
1,3,5-Trinitrobenzene	0997.0 >	< 0.4880	· 0.4660	< 0.4680	· 0.4880	· 0.4880	· 0.4880	· 0.4880
1,3-Dinitrobenzene	0967.0 >	0967.0 >	< 0.4960	· 0.4960	× 0.4960	· 0.4960	0969'0 >	0.4960
2,4,6-Trinitrotoluene	< 0.4560 ×	< 0.4560	< 0.4560	< 0.4560	< 0.4560	× 0.4560	< 0.4560	< 0.4560
2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	. < 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Hitrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	× 0.303
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5670	3.2800**	< 0.5670	· 0.5878
Cyclotetramethylenetetranitramine (HHX)	• 0.6660	· 0.6660	< 0.6660	< 0.6660	< 0.6660	· 0.6660	· 0.6660	· 0.6660
Mitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Mitrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
(a) min (final day)	42	4	1	3	\$	\$	2	1

5.2.40

Page No. 1 12/19/92

TOCELE AD-WORTH AREA: SW. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR CRGANIC COMPOUNDS

41 11 11 11	FD. 61. 636		֡					
	EF-01-023	EP-01-025	EP-01-025-DUP	EP · 01 · 026	EP-01-026	FP-01-05/	720-10-43	20.10.43
01 qe1	\$011.1*50	0111*364	011.1*372	SOIL1*51	SOIL 1*52	SOIL 1*53	\$011.1*54	2011.25
Date Sampled	06/04/92	07/02/92	07/02/92	26/60/90	26/60/90	26/60/90	26/60/90	26/60/90
Depth (ft)	6.500 ft	8.000 ft	8.000 ft	4.500 ft	7.000 ft	3.500 ft	5.000 ft	4.500 ft
Votatile Urgenic Lumpourus (19/8/	;		:	•			•	4
Acetone	¥	0.01/0	₹	S		* :	¥ :	
Ethylbenzene	*	< 0.0017	¥	4	< 0.0017	≦	¥	\$
Hethylene chloride	¥3	< 0.0120	¥	¥.	< 0.0120	¥	¥	\$
Trichlorofluoromethane	××	< 0.0059	¥	¥N	< 0.0059	≦	*	ş
XVIenes	¥ X	< 0.0015	¥	K.	< 0.0015	¥	¥#	\$
Tetrachloroethene	¥	< 0.0008	*	¥	< 0.0008	¥#	\$	1
Toluene	4	< 0.0008	¥	¥	< 0.0008	¥	¥#	\$
•								
Semivolatile Organic Compounds (ug/g)			:	;	:	;	:	;
1 - Pheny Inaphthal ene	¥	4	≨	K	4	Y	¥	≦
2,6,10,14-Tetramethylpentadecane (TIC)	¥	M	4	¥	¥R	4	4	1
	¥.	¥,	4	MA	¥	¥#	¥	≨
N 2-Methylnachthalene	¥#	¥	< 0.0490 <	¥N	0.0490	4	≦	ī
	¥ N	K	< 0.0360	¥.	< 0.0360	*	≦	≦
	¥	K N	< 0.6200	K	< 0.6200	#A	≨	\$
Eicasone (71C)	\$	W.	Z Z	¥	4	A A	4	1
Fluorene	· ·	K	< 0.0330	M	< 0.0330	4	48	1
Meneicosane	X	YN .	¥	1	X	¥	¥	1
Heptadecane (TIC)	\$	M	MA	¥	¥¥	¥¥	4	¥
Hexadecare (TIC)	*	W	¥#	₹	¥	¥	*	1
Nexamethylcyclotrisitoxame (IIC)	4	¥	¥3	¥	¥#	¥ 2	¥	¥
Hesityl oxide / 4-Hethyl-3-penten-2-one	1	¥	¥#	¥	¥	4	4	¥
Kapthalene	\$	¥	< 0.0370	£	< 0.0370	¥	ī	¥
Octadecane (11C)	¥	¥#	4 3	¥	K	4	4	¥
Pentacosane	4	¥	KX	ž	KH.	M	¥	¥
Phenanthrene	¥	¥	< 0.0330	\$	< 0.0330	¥ H	*	¥
Pyrene	4	¥	< 0.0330	£	< 0.0330	¥	4	1
Tetradecane (TIC)	¥	¥	Y N	¥	¥#	¥	¥ x	\$
Tridecane (11C)	4	¥	¥	£	¥	¥	4	≦
n-Witrosodiahenviamine	~	¥	< 0.1900	¥	< 0.1900	{	¥	1
sticides (ug/g)	4	¥	2	Š	₽	4	¥	1
rbicides (ug/a)	¥	Y.	¥	¥N	K	¥#	\$	¥
i i								

ites: ** = Analyte was detected at the comentration shown < = Not detected at the value shown, MA = Not analyzed

1eb 10	EP-01-025	EP-01-025	EP-01-025-DUP	EP-01-026	EP-01-026	EP-01-027	EP-01-027	EP-01-028
	5011.1*50	0111-364	0111-372	SOIL 1*51	\$011.1*52	\$01110\$	\$011108	SOIL 1*55
Date Sampled	06/04/92	07/02/92	07/02/92	26/00/90	06/09/92	26/00/90	26/60/90	26/60/90
Depth (ft)	6.500 ft	8.000 ft	8.000 ft	4.500 ft	7.000 ft	3.500 ft	5.000 ft	4.500 ft
lotal Petroleum Hydrocarbons (ug/g)	VH.	W.	*	*	Va.	\$	¥.	¥
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	¥H	4	< 0.4880	· 0.4860	0.4860	< 0.4880	< 0.4880
1, 3.0 initrobenzene	0967.0 >	¥	NA NA	0967.0 >	× 0.4960	0969'0 >	· 0.4960	· 0.4960
2,4,6.Trinitrotoluene	< 0.4560	¥	NA NA	< 0.4560	< 0.4560	1.8400**	< 0.4560	< 0.4560
2,4.Dinitrotoluene	< 0.4240	M	< 0.1400	< 0.4240	< 0.1400	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	¥	< 0.0850	< 0.5240	< 0.0850	< 0.5240	< 0.5240	< 0.5240
2-Witrotoluene (TIC)	< 0.3070	¥	¥	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	< 0.5870	¥	¥	< 0.5870	< 0.5870	< 0.5870	< 0.5870	· 0.5870
Cyclotetramethylenetetranitramine (HMX)	0999.0 >	4	≨	< 0.6660	< 0.6660	· 0.6660	· 0.6660	· 0.6660
Hitramine (Tetryl)	< 0.7310	¥	¥#	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Ni trobenzene	< 2.4100	¥.	< 0.0450	< 2.4100	< 0.0450	< 2.4100	< 2.4100	< 2.4100
o N. Dioxins/furans (ug/g)	¥	4	×	¥	\$	¥	¥	ž

was detected at the conentration shown < = Not detected at the va-

Hotes: ** = Ar

houn, MA = Not analyzed

Page No. 1 12/19/92

TODELE AD-WORTH AREA: SI 1. 1 - WATH DEWOLTTION AREA SOIL ANALYTICAL RESULIS FOR ORGANIC COMPOUNDS

	E0.01.028	FP.01-020	FP-01-029	EP-01-029-DUP	EP-01-030	EP-01-030	EP-01-031	EP-01-031
	20-10-13	5011 1057	01114220	S011105	8011 1480	50111460	5011.1*62	50111-61
1ab 10	9C-1-10S	/C-1 110s	011.1560	00.000	20,00,00	20,44,40	04,14,00	04/10/02
Date Sampled	26/00/90	26/60/90	26/60/90	26/60/90	2/01/00	26/10/70	00/10/96	
Depth (ft)	7.000 ft	3.500 ft	5.000 ft	5.000 ft	3.000 ft	6.500 ft	0.000 11	3.360 16
Volatile Organic Compounds (ug/g)		;	1	1	47	3	4	4
Acetone	4	4	S :	≦ :	:	:		.
Ethylbenzene	₹	¥	\$	≦ :		¥ ;	E 3	i s
Methylene chloride	4	¥#	¥	4	*	S	S :	S :
Trichlorofluoromethane	42	4 2	*	*	K Z	X	4	≨ :
X	¥	4	¥	NA NA	X	¥	S	*
Tetrachloroethene	¥8	W.	¥ Z	Z Z	KA KA	¥	¥	¥
Toluene	HA.	¥	¥	¥.	¥	¥	• •	
seminolatile Organic Community (1970)								
1. Observe Company of the Company of	4	¥	¥	*	¥	¥ 2	¥#	#
2 & 10 16-Tetramethyloentedecade (TIC)	*	N.	42	K	¥#	KA	¥	¥
2.11. Mark Jacks J. Sackthalone	X	¥	42	KA	M	V	¥X	¥
		* *	**	KX	¥¥	4	¥	¥
	X	*	42	KH	W.	¥#	¥¥	1
S Die (2-ethylbew) phthalete	*	¥2	¥3	XX	¥	₹2	¥	¥
	¥.	¥2	42	8	¥¥	¥#	¥	≦
	×	K	*	K	¥	M	¥#	≦
#POP COSTO	±	KX.	₹	¥	¥	M	4	\$
Hentadecare (710)	¥	N	W.	¥8	¥	¥	¥	≦
Hexadecane (TC)	¥	KA	¥#	4	MA	¥¥	¥	¥
Hexamethylcvclotrisiloxene (110)	¥	KX	4	×	¥ X	¥	¥	¥
Mesity oxide / 4-Methyl-3-penten-2-one	¥	KN N	4 2	MA.	≨	¥#	¥	¥
Kapitalene	¥2	MA	42	¥8	¥	¥#	Ĭ	¥
Octoberace (11C)	¥ #	K M	*	XX	W.	4	1	≨
Pentanosane	M	×	*	NA NA	¥	4 2	¥	¥
Phenanthrene	KX	*	4	≨	¥¥	¥	¥#	4
	*	¥¥	*	KA	K X	4	Ä.	≨
Tetradecane (TIC)	4 2	NA	*	¥	¥	¥2	¥	¥
	42	¥	K.	\$	W.	¥	₹#	\$
	E :		4	4	4	4		4
n-Nitrosodiphenylamine	4	É	£	Ē	£	•	•	Ĭ
Pesticides (ug/g)	X X	4	4	¥	¥	E	£	≨
lechicides (ug/a)	¥H.	¥.	*	4	4	4	¥	48

lotes: ** * Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-028	EP-01-029	EP-01-029	EP-01-029-DUP	EP-01-030	EP-01-030	EP-01-031	EP-01-031
01 qe1	95-17108	5011105	0111*220	8511105	5011105	2011.1.60	29-17108	19-1-1105
Date Sampled	06/09/92	06/09/92	06/09/92	26/00/90	06/10/92	06/10/92	06/10/02	06/10/02
Depth (ft)	7.000 ft	3.500 ft	5.000 ft	5.000 ft	3.000 ft	6.500 ft	0.000 ft	5.500 ft
Total Petroleum Mydrocarbons (ug/g)	NA NA	NA NA	**	VN	MA	WA	\$	\$
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	· 0.4880	< 0.4880	0.4880	0.4.0.	0.4880
1,3-Dinitrobenzene	0.4960	0969.0 >	< 0.4960	· 0.4960	0969.0 >	0969.0 >	0.69.0	0969.0
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	· 0.4560	< 0.4560	× 0.4560	< 0.4560	· 0.4560
2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Hitrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	0.9930
Cyclotetramethylenetetranitramine (HHX)	0.6660	0.6660	0.6660	0.6660	· 0.6660	0,6660	0999.0 >	< 0.6660
Hitramine (Tetryl)	< 0.73 10	< 0.7310	. 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Witrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/furans (ug/g)	Ä	4	4	47	\$	1	1	1

te was detected at the conentration shown < = Not detected at the v

shown, MA = Not analyzed

Motes: ...

TODELE AD-NORTH AREA: SIM, NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

			2000	50 01.017	50.01.017	FD-01-036	EP-01-035	EP-01-035
Sample 10	EP-01-032	EP-01-056	EF-01-033	66-01-033	5011 1847	ED11 1468	02-11105	89.17105
	2011 1463	\$911.108	SOIL 1*65	2011100	20-1-105	00-1-100		
he lone a second	06/10/92	06/10/92	06/11/92	06/11/92	06/11/92	06/11/92	26/11/90	24/11/90
Depth (ft)	0.500 ft	5.000 ft	4.000 ft	6.500 ft	3.500 ft	6.000 ft	0.500 ft	6.000 ft
volatile Organic Compounds (149/0)								
	4	47	*	*	*	4	₹#	*
Acetone			• •	3	4	4	£	#
Ethylbenzene	£ ;			• •	4	**	¥	\$
Methylene chloride	K	₹	S :	<u> </u>			1	*
Trichlorofluoromethane	KN	4 %	4	4	E	S :		: :
966	₹ %	¥	4	¥	4	4 2	₹	1
	¥	4	X	≦	¥ X	YH	\$	¥
	4	N	K	ž	¥.	4	¥ N	ş
Comission of Compounds (ug/g)								
	*	¥	*	W.	*	¥	≦	₹
	3	42	*	¥#	K	¥	¥	1
	: 3	.	¥ R	¥	**	¥	≨	1
2 (1-Methylethyl) naphthalene	E 3		: 1	N.	W.	¥	\$	48
G 2-Hethylnaphthalene	E :	¥ :	•	1	1	TN T	=	4
Acenaphthene	*	4	≦ :	¥ :	E 3	* *	1	4
Bis (2-ethylhexyl) phthalate	¥	4	4	₹	S		E 3	.
Eicosane (11C)	¥	4	¥	\$	Z Z	£	S :	S :
Fluctor	*	¥N	¥X	¥	¥	¥	4	≦ :
	¥	*	4	¥	4	¥	₹	≨
	\$	¥#	¥	*	₹	≨	¥	*
Hepteoeceare (110)	•	4	= =	≨	K	4	≨	\$
Rexadecane (11C)	\$ \$		4	ž	XX	4	¥	\$
Hexamethylcyclotrisitoxane (TLC)	£ \$: a	*	*	K	¥	¥	¥#
Mesityl oxide / 4-Hethyl-3-penten-2-one	₹ ₹		A	W	*	×	*	\frac{1}{2}
Kapthalene	<u> </u>	. 3	4	*	¥	*	4	\$
Octadecane (TIC)			4	***	4	¥	¥	\$
Pentacosane	≦ :	£ ;		1	1	¥	\$	\(\)
Phenanthrene	* :	¥ :			.	1	V #	\$
Pyrene	≨ :	¥ :	S 3	: 3	£ \$	i 3	≨	**
Tetradecane (TIC)	*	4 x	S	S :	E :	:	: 3	•
Tridecane (11C)	¥	¥	4	¥	≦ :	¥ :	:	E :
n-Mitrosodiobenvlamine	¥	¥	¥	¥	X X	¥	≨	\
Pesticides (ug/g)	¥	¥	¥	ş	NA NA	¥	¥	ş
		43	43	×	*	4 2	**	4
Herbicides (ug/g)	£	Š	•					

lotes: ** * Analyte was detected at the conentration shown < = Not detected at the value shown, MA = Not analyzed

Sample 1D	EP-01-032	EP-01-032	EP-01-033	EP-01-033	EP-01-034	EP-01-034	EP-01-035	EP-01-035
01 de 1	SO11.1*63	2011 1-64	5011.105	99-11108	2011 1-67	SOIL 1*68	\$011.10	99-11105
Date Sampled	26/10/90	06/10/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92
Depth (ft)	0.500 ft	5.000 ft	4.000 ft	6.500 ft	3.500 ft	6.000 ft	0.500 ft	6.000 ft
iotal Petroleum Hydrocarbons (ug/g)	NA	V.	¥#	NA NA	Y.	NA NA	YN.	SE SE
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	0.4880
1,3-Dinitrobenzene	0967.0 >	0967.0 >	< 0.4960	0967.0 >	0967.0 >	· 0.4960	0967.0 >	0969.0 >
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560
2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Nitrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	· 0.3070
Cyclonite (RDX)	1.6300**	< 0.5870	7.0800**	2.6500**	240.0000**	2.7000**	< 0.5870	••0060••
Cyclotetramethylenetetranitramine (MMX)	< 0.6660	< 0.6660	1.2700**	0.6660	18.0000**	0.6660	< 0.6660	· 0.6660
Nitromine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Nitrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/Furans (ug/g)	¥	¥	¥	¥	MA	¥	*	ž

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: Sh. AO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

				110 00	600 00 01	610.04	ED. 01.030	50.01.030
Sample 10	EP-01-036	EP-01-036	EP-01-03/	EP-01-03/	EV-01-038	000.10.43	10-10-13	
	5011.1*71	SOIL 1•72	SOIL 1*73	SOIL 1•74	S011.1*.75	SOIL 1 • 76	2011.1	
	06/11/92	06/11/92	06/12/92	06/12/92	n6/12/92	06/12/92	06/12/92	06/12/92
Depth (ft)	0.000 ft	5.000 ft	0.500 ft	6.500 ft	0.500 ft	7.000 ft	0.000 ft	7.500 ft
Volatile Organic Compounds (ug/g)						:	;	;
Acetone	YN	¥ N	¥	4	¥	₹	Š.	S :
Ethylbenzene	Y.	¥N	*	Y2	£	4 2	X	S
Methylene chickide	¥	¥	4 2	¥	4 2	4 2	¥ N	42
Trichlorofluoromethane	¥	\$	K	4 2	¥	¥X	¥	≦
	¥	¥	*	42	¥2	Y.	¥¥	₹
Terror Disables	*	¥	43	4 2	¥	Y _R	¥.	4
	X	K X	K	K X	¥¥	¥¥	4	¥
2 7								
(a) abunaman Junean elitelations								
	Ä	¥X	*	4	¥.	MA	¥	¥
- Phenylnaphinalene	*	*	4	*	K.	¥	¥	ĭ
	 	1	3	**	×	X	KX KX	¥
	£ 3	£ 1		**	×	¥	¥	*
S Rethylnaphthalene		< =	Z 7	4	×	¥	¥	*
	E 3	K 4	1	* *	3	**	*	¥
Bis (2-ethylhexyl) puthalate	¥ =			: 3	*	3	*	*
Ficosane (11C)	S :	:			¥ 7	: 4	T M	×
Fluorene	\$:	¥ :	X :	E :			£ 4	1
Henelcosane	¥	¥	₹ :	K	¥ :		: 4	E 3
Heptadecane (TIC)	X	X	X	¥ ;	* :	: :	: :	
Hexadecane (110)	¥	NA NA	¥	₹	₹	¥ ;	<u> </u>	r i
Hexamethylcyclotrisiloxane (IIC)	¥	¥ :	₹ :	* :	4 ;	¥ ;	4 :	E 3
Mesityl oxide / 4-Nethyl-3-penten-2-one	¥	¥	X	≦ :	¥ :	E :		[]
Napthalene	¥	¥	¥ X	4	X :	¥ :	<u> </u>	E :
Octadecane (TIC)	Š	₹	4	¥	S	S	* :	S :
Pentacosane	W.	Y.	¥	¥	YX	S :	≰ :	\$:
Phenanthrene	¥	Y.	¥	¥	ş	X	Z Z	₹
Perent	¥	¥	4	4	42	NA.	¥	4
(CII) econoparate	N.	¥.	KX X	≨	¥	4 2	¥	¥
	¥	¥	K	X	XX	¥	¥	4
n-Nitrosodiohenvlamine	¥	*	¥	₹2	NA	ž	¥	£
Pesticides (ug/g)	NA NA	Y.	¥	¥.	¥	NA NA	¥	\$
and of the control of	¥	¥Z	¥	¥	NA NA	¥	ž	W.

lotes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

TOCELE AD-NORTH AREA: SUMU NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-036	EP-01-036	EP-01-037	EP-01-037	EP-01-038	EP-01-038	EP-01-039	EP-01-039
(ab 10	SOIL 1*71	5011.1.72	SOIL 1*73	SOIL 1-74	5011105	SO11.1*76	SOIL 1-77	SOIL 1*78
Date Sampled	06/11/92	06/11/92	06/12/92	06/12/92	26/15/90	06/12/92	06/12/92	06/12/92
Depth (ft)	0.000 ft	5.000 ft	0.500 ft	6.500 ft	0.500 ft	7.000 ft	0.000 ft	7.500 ft
Total Petroleum Hydrocarbons (ug/g)	NA	NA NA	¥#	NA	VH.	¥	\$	VIII
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	0997.0 >	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	0.4880
1,3-Dinitrobenzene	0967.0 >	0965.0 >	0967.0 >	< 0.4960	< 0.4960	0967.0 >	0965.0 >	0.4960
2, 4, 6. Irinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560
2,4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Witrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	< 0.5870	0.8490**	0.8000**	< 0.5870	< 0.5870	1.4500**	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (MMX)	< 0.6660	0.6660	0999.0 >	< 0.6660	· 0.6660	0.6660	< 0.6660	0.6660
Mitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Witrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/furans (ug/g)	¥.	¥	4	Z Z	¥	Ę	¥	H

5-2-57

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: S. .O. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

						4.0	2.0	
Sample 10	EP-01-040	EP-01-040	EP-01-041	150-11-41	250-10-43	100.2*0.10.43	750.10.43	CD-10-13
1ab 10	S011.1*79	SO11.1*80	S011.1*81	SOIL 1*82	011.1•227	SO11.1*83	SOIL 1*84	2011 1-85
Date Sampled	06/12/92	06/12/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92
Depth (ft)	0.000 ft	8.500 ft	0.000 ft	9.000 ft	2.000 ft	2.000 ft	5.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	*	42	¥	42	¥	¥	¥	\$
Ethylbenzene	¥.	M	¥	W.	¥.	*	4	*
Nethylene chloride	MA	¥	*	MA	YN	¥.	4	48
Trichlorofluoromethane	YN.	¥	4	¥¥	4	**	4	4
X<(enes	NA.	¥	¥	NA NA	¥	¥¥	Y.	X
Tetrachloroethere	N.	¥	42	NA NA	KN	¥#	¥#	¥#
Totuene	Y.	KX KA	¥ N	¥	¥2	¥	¥	*
(a) and abstract of annual and an income								
1. Descripanting of general control of the control	W.	¥2	*	¥	*	NA V	K N	¥
2 & 10 14-Tetramethylpentadecane (110)	X	¥2	X	¥	¥	X	K N	¥
	¥	**	**	¥	X	XX	**	ž
2 2-Methylnachthalene	*	X	¥2	¥	¥¥	NA	MA	¥
	¥.	4	RA	¥ N	¥	X	¥#	¥#
Bis (2-ethylhexyl) phthalate	KA	¥¥	MA	¥	X	¥	¥	¥
Eicosane (11C)	KA	NA	¥#	¥	KN	XX	¥	¥
fluorene	¥¥	42	¥ X	YN.	X	Y.	H.	¥
Heneicosane	¥	42	NA NA	¥	K K	MA	W.	1
Heptadecane (TIC)	¥	4 2	MA	¥	NA	¥	¥#	≦
Hexadecane (11C)	¥	43	¥¥	¥	KX X	¥X	¥	¥
Hexamethylcyclotrisiloxane (TIC)	¥	KA	NA NA	¥	MA	Y X	¥ R	¥
Hesityl oxide / 4-Methyl-3-penten-2-one	¥	4	¥	¥	¥	¥	¥	1
Napthalene	¥	4	KA	¥¥	¥#	¥	¥	1
Octadecane (11C)	¥	48	4	¥	¥	¥	¥ R	4
Pentacosane	¥	4 2	NA NA	¥	¥	K	¥¥	¥
Phenanthrene	¥¥	4 2	Y2	≨	¥	KN	¥	4
Pyrene	¥¥	4 2	K X	¥	NA NA	M	¥	1
Tetradecane (TIC)	¥	42	¥X	¥	X	¥	¥	≦
Tridecane (11C)	¥	KA KA	¥3	4	X	¥	4	£
n-Nitrosodiphenylamine	YN	¥	NA	YN Y	¥X	¥2	K	4
Pesticides (ug/g)	YN	¥.	X	₹	K	¥	¥ n	₹
Herbicides (ug/g)	¥	4	4	MA	××	M	48	*

Notes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-040	EP-01-040	EP-01-041	EP-01-041	EP-01-042	EP-01-042-DUP	EP-01-042	EP-01-043
1ab 10	5011.14.79	SOIL 1*80	SOIL 1*81	SO11.1*62	0111*227	5011 1-63	SO11.1-84	50-17105
Date Sampled	06/12/92	06/12/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92
Depth (ft)	0.000 ft	6.500 ft	0.000 ft	9.000 ft	2.000 ft	2.000 ft	5.000 ft	0.000 ft
fotal Petroleum Mydrocarbons (ug/g)	NA NA	YN .	VN.	VN.	KM	YH.	\$	*
Explosives (ug/g)								
1,3,5-Trinitrobenzene	0.4880	< 0.4880	< 0.4880	< 0.4880	0.4880	< 0.4880	< 0.4880	72.0000**
1,3-Dinitrobenzene	0969.0 >	× 0.4960	0969.0 >	< 0.4960	0967.0 >	< 0.4960	< 0.4960	0967.0 >
2,4,6.Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	11000.0000**
2,4.0initrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	15.2000**
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Witrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	• . \$600**
Cyclonite (RDX)	< 0.5870	0.7040**	< 0.5870	2.0300**	4.2700**	0.7860**	< 0.5870	6.8100**
Cyclotetramethylenetetranitramine (HMX)	· 0.6660	< 0.6660	< 0.6660	· 0.6660	· 0.6660	0,6660	0,6660	· 0.6660
Mitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Witrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	26.6000**
Dioxins/Furans (ug/g)	Y2	4	Ş	¥	¥	\\	\$	₹

5-2-59

Notes: ** = /

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: St. J. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

				270 00 45	970 40 45	50.01.075	ED.01.04A	ED-01-046-010
Sample 1D	EP-01-043	EP-01-044	EP-01-044	C\$0.10-43	100-Can-10-43	C 10-13	200	1946 1104
1 de 1	50111.86	SO11.1•87	SOIL 1-88	0111*221	SOIL 1*89	D6.1.110s	777_1710	
	06/13/92	06/13/92	06/13/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Described to the contract of t	5.000 ft	0.000 ft	5.000 ft	3.500 ft	3.500 ft	5.500 ft	3.000 ft	3.000 ft
(a) and absence of all and a line of a								
A CAN STAND OF THE PROPERTY OF		4	4	*	¥	××	*	¥
Acetone	¥	E :	E 3			4	***	4
Ethylbenzene	¥	₹2	S	E :	S :	£ :		1 1
Methylene chloride	¥¥	X	4	₹	*	ď	Y :	
Trichtorofluoromethane	¥	NA NA	¥.	X	4	¥	¥ X	E
V. C. Barber	*	N.A.	¥¥	¥X	*	¥	X	¥
A Control Control	*	¥	¥¥	¥	K	£	¥#	\$
\$0 uene	NA	NA NA	M	¥ N	W	4	¥	\$
Semivolatile Organic Compounds (ug/g)						;	;	•
1-Phenylnachthalene	¥	¥¥	¥¥	¥	X	¥	¥	\$
2 & 10 14-letramethylpentadecane (11C)	\$	NA	¥	¥	¥H	¥	¥	=
3.41. Both Lather Landstone	*	K.A.	4 *	A.	*	4	₹	#
	¥	¥	¥	AM.	¥,	¥.	¥ N	¥
2 c. Hetinytingleine	*	X	*	Z.	×	¥	W.	¥
	₹ \$.	¥	¥	4	¥	¥	¥
BIS (C. Ethythexyl) puthatote	₹ 3	*	*	¥	4 2	¥	¥.	¥
Elcosane (11c)		. .	4	¥#	××	¥	¥	
Fluorene		£ 3	.	1	*	¥	¥	≦
Henelicosane	E 3			1	***	¥	¥	\$
Neptadecane (TIC)	2 2	E 3	 	* **	*	¥	¥	\$
Texadecane (11C)	£ ;	E 3	¥ \$	×	*	¥	\$	\$
Hexamethylcyclotrisiloxane (TIC)	£ 3	£ 3	X 3	¥	**	¥	¥	1
Hesity oxide / 4-Hethyl-3-penten-2-ore	¥ \$	£ \$	4	¥	4	¥	¥	≦
A SOUTH OF THE PARTY OF THE PAR	T	.	*	¥¥	¥#	W.	¥#	\$
octadecene (11c)	£ \$	1	***	¥	¥	¥	¥	¥
Pentacosane	E S	.	1	*	**	4	₹	¥
Phenantintene	£ :			3	¥	**	¥#	\$
Pyrene	E :	£ 3	S S	= =	1	W W	*	¥
Tetradecane (TIC)	S	¥ :	E	{ ;		1	1	1
Iridecame (11C)	4	4	4	S		£ :	i i	ŧ :
n-Nitrosodiphenylamine	KX K	¥.	\$	*	<u> </u>	*	\$	£
	42	4	¥¥	×	42	¥	¥	4
'esticides (ug/g)	E	•	į					
erbicides (ug/g)	42	KN	MA	4	W.	¥	ž	£

lotes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-043	EP-01-044	EP-01-044	EP-01-045	EP-01-045-DUP	EP-01-045	EP-01-046	EP-01-0%6-DUP
01 Qe 1	\$011.1-86	SOIL 1*87	SOIL 1-88	011.1-221	SOIL 1*89	SOIL 1*90	011.1*222	16-11108
Date Sampled	06/13/92	06/13/92	06/13/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Depth (ft)	5.000 ft	0.000 ft	5.000 ft	3.500 ft	3.500 ft	5.500 ft	3.000 ft	3.000 ft
lotal Petroleum Hydrocarbons (ug/g)	V.	W.	4	SA .	¥	¥#	4	4
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	0.4880
1, 3-Dinitrobenzene	< 0.4960	< 0.4960	0967.0 >	0967.0 >	· 0.4960	0967.0 >	· 0.4960	0969.0 >
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	0.5800**	< 0.4560	< 0.4560	< 0.4560
2,4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6.Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Nitrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	7.0900**	8.0800**	2.1000**	3.9600**	< 0.5870
Cyclotetramethylenetetranitramine (HHX)	< 0.6660	< 0.6660	< 0.6660	1.1800**	1.6000**	· 0.6660	· 0.6660	0.6660
Hitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Nitrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/Furans (ug/g)	¥	K	\$	¥	¥	¥	¥	¥

Page No. 1 12/19/92

TOOFIE AD-NORTH AREA: SLAN. J. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	770 70	2000	010 170 00	7 70 01 07	6.01.0.02	ED.01.04	60.01.040	60-01-070
Sample 10	FP-01-040	FP-01-047	100.7%0-10.43	10.10.13	20.10.12			
tab 10	SOIL 1*92	0111*223	\$011.1*93	S011.1*94	2011 1-95	2011128	/6.1110S	201:105
Date Sampled	26/17/90	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Depth (ft)	4.500 ft	1.000 ft	1.000 ft	5.000 ft	0.000 ft	4.500 ft	0.000 ft	4.500 ft
Volatile Organic Compounds (ug/g)								
Acetone	¥	¥	≨	¥	HA	¥	X	3
Ethylbenzene	V#	Y.	¥	¥	*	*	¥#	\$
Methylene chloride	¥	¥	*	¥	KX	¥	4	\$
Trichlorofluoromethane	*	¥	Y.	¥	4	¥.	Y2	≦
##C##>X	*	¥2	4	4	¥	¥	¥¥	1
Tetrachloroethere	*	¥8	*	¥	¥	¥	¥	¥
Toluene	M	¥	¥	NA NA	¥	¥8	\$	1
Semivolatile Organic Compounds (ug/g)	:	;	•		3	4	42	4
1 - Pheny inaphthal ene	¥	*	¥	*	¥ :		¥ :	S :
2,6,10,14-Tetramethylpentadecane (TIC)	¥	4	4	¥	¥	*	₹	
	4	¥3	*	4	4 2	S	4	≨
2-Methylnaphthalene	4 2	4 2	£	\$	¥H	¥	¥	4
	4	K	¥¥	¥	43	NA NA	X	≦
Bis (2-ethylhexyl) phthalate	*	KN	¥#	¥	¥	¥	4	\$
Elcosane (11C)	4	**	¥	¥	¥	¥	¥	1
fluorene	\$	X	**	£	K	¥ X	¥	1
Keneicosane	\$	KA	¥	¥	¥	¥	¥	1
Neotadecare (13C)	*	**	*	4	¥#	¥	HA	\$
Hexadecane (11C)	\$	V N	*	Y Z	¥	¥	₹	\$
Hexamethylcyclotrisiloxane (TIC)	£	KA	¥#	¥	¥	¥	₹	1
Hesityl oxide / 4-Methyl-3-penten-2-one	×	¥	KA KA	¥	VN	¥	£	\$
Napthalene	K	KN	MA	4	¥	¥	\$	1
Octadecane (11C)	**	₹	*	4	K X	£	¥	=
Pentacosane	¥	Y.	K	Z Z	¥	≦	¥	ş
Phenanthrene	*	¥ N	¥8	4 2	HA	¥	¥	4
Pyrene	Z.	KA	KA	4 2	¥	¥	\$	ī
Tetradecane (TIC)	K	KN	KA	K	¥#	¥	¥#	¥
Tridecame (11C)	K	¥	¥	*	¥	*	¥#	¥
o. History of change in	**	¥N	XX	X	¥	¥	≦	*
II. N. I. I. OSOOI DIRECHA COMITIC	£	\$	•					
esticides (ug/g)	Y 2	4	¥ H	¥	¥	¥	#	\$
irbicides (ug/g)	¥	MA	¥	ž	4	¥#	W.	4

stes: ** * Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

TODELE AD-NORTH AREA: SUMU NO. 1 - MAIN DENOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-046	EP-01-047	EP-01-047-0UP	EP-01-047	EP-01-048	EP-01-048	EP-01-049	69-01-049
01 qe1	SOIL 1*92	0111-223	SOIL 1*93	301L1°94	\$011.1*95	SOIL 1-96	26-17105	96-17105
Date Sampled	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Depth (ft)	4.500 ft	1.000 ft	1.000 ft	5.000 ft	0.000 ft	4.500 ft	0.000 ft	4.500 ft
Total Petroleum Mydrocarbons (ug/g)	NA NA	¥	\$	YN.	Ya	¥#	4	\$
Explosives (ug/g)								
1, 3, 5- Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	< 0.4880	0.4880	< 0.4880	< 0.4880	0.4880
1,3.0initrobenzene	0969.0 >	< 0.4960	· 0.4960	0967.0 >	< 0.4960	· 0.4960	· 0.4960	969.0 >
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560
2,4-Dinitrotoluene	< 0.4240	< 0.4240	0,4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6.Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Witrotoluene (71C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3076	· 0.3678
Cyclonite (RDX)	< 0.5870	33.0000**	55.0000**	< 0.5870	2.7700**	< 0.5870	18.3000**	· 0.5670
Cyclotetramethylenetetranitramine (HMX)	< 0.6660	5.3200**	4.8100**	< 0.6660	< 0.6660	0.6660	2.7800**	• 0.6660
Nitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	. 0.7310	< 0.7310	4 0.7318
Ni trobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/Furans (ug/g)	4	¥.	¥	¥	42	¥	\$	\

shown, MA = Not analyzed

's was detected at the conentration shown < = Not detected at the .

TOCELE AD-NORTH AREA: SIA. .. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	60.01.050	ED. 01.050	50-01-051	EP-01-051-0UP	EP-01-051	EP-01-052	EP-01-052	EP-01-053
Semple 10	60113400	0019110	10101	011 1*224	0111-102	0111-103	0111-104	0111-105
0 qe 1	86.11.08	201-1210	077170	04.15.02	04/15/02	06/15/92	06/15/92	26/19/0
Date Sampled	20/12/00	26/61/00	26/61/26	34 /51 /55	2, 600 5	2 500 61	7 000 5	3,500 ft
Depth (ft)	2.500 ft	4.500 ft	2.500 11	2.300 11	3.000 11	21 000.3		
Volatile Organic Compounds (ug/g)				•	•	43	3	1
Acetone	¥¥	Y 3	≦	¥ :	¥ ;	: :	1 1	1
Ethylbenzene	¥# .	¥	4	¥	₹	S	S :	i :
Methylene chloride	¥	4	X	¥	¥	4	*	1
Trichloroft words than	*	¥X	¥	¥	¥¥	\frac{1}{2}	¥	#
	*	*	4	W.	¥#	4	£	4
Tetrack organizations	\$	¥¥	\$	¥¥	¥	¥	1	\$
Tol uene	4	¥	¥8	£	¥¥	¥	ž	1
Semivolatina organic compounds (19/8)	M	×	\$	4	¥	¥	≦	1
2 4 10 14. Increases by contraderate (IIIC)	¥	**	≦	*	¥	¥	4	4
	¥	¥	\$	¥	¥¥	*	¥#	£
S 2-Methylosphthalene	4 2	X	¥	¥	¥.	¥#	¥	\$
	¥	X	¥	¥	MA	¥	\$	1
	*	K	¥	≨	¥	¥	≦	1
Ficosare (13C)	¥	¥	≨	\$	W.	ī	4	1
	4	¥	¥	\$	¥	\$	¥	≦
Hereicosane	*	¥	₹	£	¥	\$	1	≦
Mentadecane (710)	4	¥	≨	*	4	¥	≦	≦
Hexadecane (11C)	\$	8	¥	£	4	¥	≦	1
Rexamethy[cyclotrisiloxene (11C)	*	¥N	¥	*	¥	4	4	1
Mesityl oxide / 4-Methyl-3-penten-2-one	*	X	¥	£	¥	¥	#	4
Kapthalene	4	M	¥	¥	¥	4	4 :	# :
Octadecane (11C)	¥	ž	₹	¥	₹	*	\frac{1}{2}	S
Pentacosane	4	NA	¥	¥	¥	4 :	X :	3 ;
Phenanthrene	¥	≨	*	*	*	\$	4	£
	¥#	**	¥	4	¥	¥	Y R	\$
Tetradecase (TIC)	¥¥	¥	4	¥	ž	≦	4	£
Tridecase (TE)	¥	NA	¥	Y.V	K K	4	4	≦
	43	*	**	**	43	4	£	≨
n. N. Crosodipheny Lemine								
esticides (ug/g)	4	Y #	¥	4	ž	¥	£	1
(25/2) interest	42	¥.	YM	**	≨	4	4	\$

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, MA = Not analyzed

	EP-01-050	EP-01-050	EP-01-051	EP-01-051-DUP	EP-01-051	EP-01-052	EP-01-052	EP-01-053
2 42	8011106	0111*100	0111-101	0111*224	011.1-102	011.1*103	0111-104	0111-105
Date Sampled	06/15/92	06/15/92	06/15/92	06/15/92	06/15/92	06/15/92	06/15/92	06/16/92
Depth (ft)	2.500 ft	4.500 ft	2.500 ft	2.500 ft	5.000 ft	2.500 ft	7.000 ft	3.500 ft
Total Petroleum Mydrocarbons (ug/g)	VR.	4	VR.	48	NA	V#	NA NA	4
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	0997.0 >	· 0.4880	0.4880	0.4880	· 0.4880	11.0000**	× 0.4880
t, 3-0 in trobenzene	0967.0 >	0967.0 >	0967.0 >	< 0.4960	0967.0 >	· 0.4960	0969.0 >	0969.0 >
2,4,6-Trinitrotoluene	1.3800**	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	170.0000**	· 0.4560
2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Hitrotoluene (11C)	< 0.30 <i>7</i> 0	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	· 0.3678
Cyclonite (RDX)	< 0.5870	< 0.5870	12.3000**	8.2600**	< 0.5870	< 0.5870	< 0.5870	· 0.5870
Cyclotetramethylenetetranitramine (HHX)	< 0.6660	< 0.6660	· 0.6660	0.8580**	0999'0 >	· 0.6660	· 0.6660	0.6660
Hitramine (Tetryl)	< 0.7310	< 0.7310	. 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Witrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/Furans (ug/g)	4	¥	ž	¥	4	\$	\$	ă

TOOFIE AD-NORTH AREA: SM . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULES FOR ORGANIC COMPOUNDS

See 10	FP-01-053-DUP	EP 01-053	EP-01-054	EP-01-054-0UP	EP-01-054	EP-01-055	EP-01-055	EP-01-055-DUP
	011 14225	_	7011 1107	011 1*226	0111108	0111100	011.1.110	01L1*239
	(37 (37)	20, 17, 10	60,44,40	04/14/02	04.14.00	04717/02	04/17/02	04/17/92
Date Sampled	3 500 4s	00/16/92 6 500 ft	2 000 6	2 000 61	24 18) 180 4. 500 ft	2,000 ft	5.000 ft	5.000 ft
Depth (TC)	31.000.5							
Asian is a supportion of the support		0,100	4	4	0.041000	4	4	*
Acetone	S	0.0170	E :			E 1	1	: :
Ethylbenzene	¥	< 0.001/	4	₹	× 0.001/	S	\	S
Methylene chloride	4		¥	YN.	< 0.0120	¥	4	≦
Trichlorofluoromethane	¥#	< 0.0059	ž	4	< 0.0059	*	MA	*
Xylenes	¥	< 0.0015	Y#	4 2	< 0.0015	4 8	¥	£
Tetrachloroethene	¥#	< 0.0008	¥	¥	< 0.0008	4	W.	**
Toluene	V,	< 0.000 8	M	¥	< 0.0008	4	MA	*
Semivolatile Urganic Compounds (ug/g)	41	4	4	4	4	3	1	***
I - Pheny I man that ene	S	£ ;	E :	£ ;		1		1 1
2,6,10,14-Tetramethylpentadecane (TIC)	X	S	₹	\$	*	S :	S	1
g 2.(1-Methylethyl) naphthalene	¥	¥2	ž	¥2	4	4	4	S
2 - Hethylnaphthalene	¥	0.0490	¥	¥	0.0490	¥	¥	4
	W	< 0.0360	¥	¥	< 0.0360	*	≦	\$
Bis (2-ethylhexyl) phthalate	¥	< 0.6200	4	¥	< 0.6200	42	≨	*
Elcosane (11C)	¥	K	XX	¥#	¥2	¥	¥	\$
fluorene	*	< 0.0330	¥	¥	< 0.0330	MA	4	\$
Keneicosane	4	¥¥	¥	NA	¥	MA	\$	¥
Meptadecane (11C)	¥	¥	¥	¥	4	¥	4	\$
Hexadecane (TIC)	¥	K	4	HA	M	¥#	\$	1
Nexamethylcyclotrisiloxane (TIC)	¥	42	4	K K	0.7580**	4	£	\$
Mesityl oxide / 4.Nethyl-3-penten-2-one	¥	¥¥	4	¥.	¥#	K	*	Ξ
Napthalene	¥	< 0.0370	K	MA	0.1510**	¥#	YH.	¥
Octadecane (TIC)	¥	MA	4	XX	¥2	¥	¥	≨
Pentacosane	¥	X	¥	¥	4	4	*	£
Phenanthrene	¥	< 0.0330	K	*	0.0871**	4	£	*
Pyrene	¥¥	< 0.0330	¥2	¥	0.1410**	MA.	X	¥
Tetradecane (TIC)	¥#	¥	4	¥	**	¥#	4	*
Tridecane (TIC)	¥.	KX	*	¥.	*	MA	4	≦
n-Nitrosodiphenylamine	¥¥	< 0.1900	4	4	< 0.1900	4	¥	\$
esticides (ug/g)	4	2	MA	¥ 2	9	Y	¥	4
erbicides (ug/g)	¥2	4	\$	¥1	4	4	\$	¥#

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not snalyzed

TOCELE AD-NORTH AREA: SUMU NO. 1 - MAIN DENOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPCUNDS

Sample 10	EP-01-053-DUP	EP-01-053	EP-01-054	EP-01-054-DUP	EP-01-054	EP-01-055	EP-01-055	EP-01-055-DUP
01 qe1	011 1*225	011.1*106	011.1*107	0111*226	0111-106	0111-109	011-110	011.1*239
Date Sampled	06/16/92	06/16/92	06/16/92	06/16/92	06/16/92	06/17/92	06/17/92	06/17/92
Depth (ft)	3.500 ft	6.500 ft	2.000 ft	2.000 ft	4.500 ft	2.000 ft	5.000 ft	5.000 ft
Total Petroleum Mydrocarbons (ug/g)	A.A.	YN.	VR	Y2	NA NA	4	YN .	\$
Explosives (ug/g)								
1, 3, 5 - Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	· 0.4880	· 0.4880
1,3-Dinitrobenzene	0967.0 >	0967.0 >	< 0.4960	× 0.4960	0967.0 >	× 0.4960	· 0.4960	0967.0 >
2, 4, 6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560
2, 4-Dinitrotoluene	< 0.4240	< 0.1400	< 0.4240	< 0.4240	< 0.1400	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.0850	< 0.5240	< 0.5240	< 0.0850	< 0.5240	< 0.5240	< 0.5240
2-Hitrotoluene (71C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	· 0.5870	· 0.5870
Cyclotetramethylenetetranitramine (MMX)	< 0.6660	0,6660	< 0.6660	< 0.6660	0999.0 >	· 0.6660	• 0.6660	· 0.6660
Hitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Mitrobenzene	< 2.4100	< 0.0450	< 2.4100	< 2.4100	< 0.0450	< 2.4100	< 2.4100	< 2.4100

≨

ž

≨

≨

ĭ

≨

¥

4

 \cdot e was detected at the conentration shown < \pm Not detected at the vr

shown, MA = Not enelyzed

Hotes: ** = #

TOOELE AD-NORTH AREA: SIA . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESUL: 5 FOR ORGANIC COMPOUNDS

		2000	730 10 42	20 00 00	60.01.057	90.00	60.01.050	60.01.060
Sample ID	EP-01-036	400-000-10-43	EV-01-020	EF-01-03/	/cn.10.43	66.10.43	00-10-13	100-10-13
1ab 10	011111	0111-240	011.1*112	01.1*113	0111114	0111115	0111116	01.1.117
Date Sampled	06/11/92	06/11/92	06/17/92	06/11/92	06/17/92	06/18/92	06/18/92	06/18/92
Depth (ft)	2.000 ft	2.000 ft	4.500 ft	2.500 11	5.000 ft	3.000 ft	5.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	¥¥	¥¥	¥	KY	¥	K K	4	\$
Ethylbenzene	KA	¥	¥	NA NA	KA	MA	¥ N	¥
Methylene chloride	NA	¥8	¥	¥	MA	¥¥	¥8	¥
Trichlorofluoromethane	4X	¥	¥	¥	ž	ž	ž	¥
X<1enes	¥.	¥	¥	A.	¥¥	¥	W.	¥
Tetrachtoroethene	¥8	*	¥	¥	¥¥	¥	¥	¥
Totuene	M	NA NA	YN	¥	Y.	\$	¥	≦
Semivotatite Urganic Compounds (Ug/g)	;			44	•	41	42	3
1.Pheny (naphthalene	* :	¥ ;	S :	:		E 2	: :	: :
2,6,10,14-Tetramethylpentadecane (TIC)	K	K	¥.	₹	X	*	≦ :	S :
2.(1-Methylethyl) naphthalene	\$ _	X	4	¥	4	₹	¥#	≨
2. 2-Methylnaphthalene	N.	MA	YN	¥	43	NA.	¥ R	X
& Acenaphthene	¥¥	¥	¥	YN.	NA NA	¥	¥	¥
Bis (2-ethylhexyl) phthalate	¥	¥	¥	V #	¥	¥	¥	≨
Eicosane (71C)	¥	¥	¥	¥	¥	¥	¥	4
Fluorene	M	48	¥	¥	¥.	¥	¥¥	¥
Heneicosane	¥¥	42	¥	¥	MA	¥	¥	*
Heptadecane (TIC)	¥	¥3	ž	¥	¥ X	¥	4	≨
Hexadecare (11C)	¥	¥	¥	¥	¥¥	≨	¥	£
Hexamethylcyclotrisiloxane (TIC)	¥	KN	¥	¥ N	¥ X	¥	¥	1
Hesityl oxide / 4-Nethyl-3-penten-2-one	¥	4	4	¥	¥2	¥	¥¥	¥
Napthalene	¥	¥	¥	¥	¥¥	¥	¥	4
Octadecane (11C)	¥	¥	¥	¥	KN M	¥	¥	¥
Pentacosane	¥	4	4	¥	¥	¥	¥	4
Phenanthrene	≨	KA	¥¥	¥	¥	¥	¥	#
Pyrene	¥	NA	**	¥	¥	\$	4	*
Tetradecane (TIC)	¥	ZZ.	¥ X	\$	¥	¥	\$	₹
Tridecane (TIC)	¥	KX	43	*	₹	¥	4	₹.
n-Nitrosodiphenylamine	¥	YH.	¥	¥	¥ Z	¥ #	ş	ŧ
sticides (ug/g)	¥	¥	¥	ş	¥	#	¥	4
rbicides (ug/g)	¥	¥	¥	¥2	YN.	¥	¥	¥

ites: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

	EP-01-026	EP-01-056-DUP	EP-01-056	EP-01-057	EP-01-057	EP-01-058	EP-01-058	EP-01-059
0 00	0111111	0111*240	0111112	0111113	0111114	01.1*115	011.1*116	011.1-117
Date Sampled	06/17/92	06/17/92	06/17/92	06/17/92	06/17/92	06/18/92	06/18/92	06/18/92
Depth (ft)	2.000 ft	2.000 ft	4.500 ft	2.500 ft	5.000 ft	3.000 ft	5.000 ft	0.000 ft
Total Petroleum Mydrocarbons (ug/g)	AN .	NA NA	NA NA	¥¥	¥.	YH.	MA	Y#
Explosives (ug/g)								
1, 3, 5-1 rinitrobenzene	< 0.4880	< 0.4880	< 0.4880	0.4880	· 0.4880	0.4880	· 0.4880	29.0000
1,3-Dinitrobenzene	0969.0 >	0.4960	0967.0 >	0967.0 >	0967.0 >	0969.0 >	0969.0 >	0.6420**
2, 4, 6- Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	820.0000**
2, 4-Dinitrotoluene	< 0.4240	< 0.4540	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	3.5000**
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	* . 9600
2-Witrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (MDX)	< 0.5870	< 0.5870	< 0.5870	1.1400**	< 0.5870	< 0.5870	< 0.5870	76.0000**
Cyclotetramethylenetetranitramine (HMX)	· 0.6660	< 0.6660	0.6660	0999.0 >	· 0.6660	0 0.6660	< 0.6660	22.7000**
Mitrative (Tetry!)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Nitrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.410P
Dioxins/furans (ug/g)	ž	42	4	¥.	YN	8	¥	¥

=) ** Not detected at the conentration shown < = Not detected at the .

shown, NA = Not analyzed

TOOELE AD-NORTH AREA: Sh. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULIS FOR ORGANIC COMPOUNDS

					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00 00 00	50.01.041	50.01.042
Sample 10	EP-01-059-0UP	EP-01-059	EP-01-090	EP-01-000	100-10-43	EP-101-001	200 10 13	2000
1 45 10	0111*241	01.1*118	0111119	011.1*120	0111*121	252.1110	חורו-וככ	חורוי
Part Committee	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/23/92
Deoth (ft)	0.000 ft	5.000 ft	2.500 ft	5.500 ft	4.500 ft	4.500 ft	7.000 ft	2.500 ft
Volatile Organic Compounds (ug/9)						:	:	:
Acetone	42	< 0.01/0	M	¥I	¥	K	X	* :
Ethylbenzene	¥	< 0.0017	¥#	4	¥	K K	4	Ž
Methylene chloride	K X	< 0.0120	MA	¥	¥	¥¥	4	Z Z
Trichlocofisocomethane	¥		¥	K	¥	W.	4 2	¥
	¥	< 0.0015	¥	4	¥	KN.	**	¥
Terrorial properties	X X		\$	N.	¥	NA	KA	¥
Toluene	¥8		£	¥	¥	YH.	*	¥ =
(a) and about the state of the last last last last last last last last								
Semivorative Organic Compounds (ug/s)	42	72	×	¥	¥	NA	NA	KA
1-phenythaphthatene	£ =	£ \$	1	×	¥	KX	¥#	¥#
2,6,10,14-Tetramethylpentadecane (11c)	£ =	X 2	i 1	X	¥	¥	××	MA
	¥ 3	č	: 3	*	¥	¥	K	¥
	¥ ;		£ \$.	***	3	4 2	¥
2. Acenaphthene	¥ ;		£ :	£ 5	£ \$	2		4
O Bis (2-ethylhexyl) phthalate	4 %	0.6200	*	S :	£ :		£ 3	
Eicosane (71C)	4 2	4	¥	£ :	¥ :	ď.	£ ;	ž i
Fluorene	¥	< 0.0330	¥	X	š :	S :	E :	= ;
Heneicosane	NA NA	¥H	¥	4	¥	* :	X :	¥ :
Mentadecane (11C)	¥	KX	¥	₹	¥	¥ X	₹	S :
Hexadecane (11C)	¥	¥	¥	Y X	X	Y Z	4	X
Hexamethylovolotrisiloxane (710)	¥	¥N	¥	¥	¥	¥	4 2	¥
Masist oxide / 6-Methyl-3-penten-2-one	**	0.4400**	¥	¥X	Y.	X	X	¥
Naothalene	M	< 0.0370	¥	¥2	42	4	ZX.	\$:
Octadecade (110)	NA	¥.	¥	¥.	¥	X	X	¥
	**	NA NA	¥	YN	¥#	¥	4 2	¥
	××	< 0.0330	NA NA	¥	¥N	¥¥	42	
	×		¥	4	¥	YX	X	¥
	* *	*	¥	Y.	¥	KX KX	X	¥
	X X	×	¥	¥¥	¥	KN KN	¥	¥
Inidecane (IIC)		9	43	43	**	X 2	*	*
n-Nitrosodiphenylamine	Š.	0.1400	<u> </u>	•	į			
esticides (ug/g)	¥	Q	NA V	¥	¥ X	¥	¥	¥
	¥	¥	¥	**	NA NA	¥	42	4

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-059-0UP	EP-01-059	EP-01-060	EP-01-060	EP-01-061	EP-01-061-DUP	EP-0' J61	EP-01-062
tab tū	0111*241	011.1-118	0111*119	0111120	011.1-121	011 1*242	011.1*122	0111-123
Date Sampled	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/23/92
Depth (ft)	0.000 ft	5.000 ft	2.500 ft	5.500 ft	4.500 ft	4.500 ft	7.000 ft	2.500 ft
Total Petroleum Mydrocarbons (ug/g)	VH.	NA NA	Y2	NA NA	4X	¥8	¥.	Y.
Explosives (ug/g)								
1,3,5-Trinitrobenzene	\$7.0000**	< 0.4880	< 0.4880	< 0.4880	1.0500**	0.8120**	< 0.4880	0.4880
1, 3.0 initrobenzene	0.6010**	< 0.4960	0967.0 >	< 0.4960	0967.0 >	0967.0 >	< 0.4960	0967.0 >
2,4,6-Trinitrotoluene	**0000.064	< 0.4560	< 0.4560	< 0.4560	11.9000**	4.0300**	< 0.4560	< 0.4560
2,4.Dinitrotoluene	< 0.4240	< 0.1400	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4320
2,6.0 initrotoluene	2.4800**	< 0.0850	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Nitrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	180.0000**	< 0.5870	33.0000**	1.9500**	6.1700**	28.0000**	6.7800**	0.8840**
Cyclotetramethylenetetranitramine (HMX)	25.7000**	< 0.6660	3.0700**	< 0.6660	0.9720**	1.1800**	1.0600**	0.6660
Witramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	0.8140**	< 0.7310	< 0.7310
Nitrobenzene	< 2.4100	< 0.0450	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/furans (ug/g)	4	¥	42	4	¥	¥.	¥	W.

TOOGLE AD-NORTH AREA: SIA J. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	ED.01.062	FP . 01 . 043	FP.01.061	FP-01-064	FP-01-064-Dup	FP-01-064	EP-01-065	EP-01-065
					2/240	•	00,44,10	6214110
1ab 10	011.1*124	011.1*126	011112	771-1710	011.1=24.5	0111-170	011.179	20112
Date Sampled	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92
Depth (ft)	6.000 ft	1.000 ft	5.000 ft	0.500 ft	0.500 ft	5.000 ft	0.000 ft	4.500 ft
Volatile Organic Compounds (ug/g)								
Acetone	¥#	¥X	< 0.0170	N.	42	< 0.0170	¥	¥
Ethylbenzene	NA NA	¥	< 0.0017	¥	44	< 0.0017	NA	¥#
Methylene chloride	¥	4	< 0.0120	¥¥	KN	< 0.0120	¥	\$
Trichtorofluoromethane	X	¥	< 0.0059	K K	¥3	< 0.0059	*	¥
Xylenes	X	¥	< 0.0015	NA	K	< 0.0015	KA	¥
Tetrachloroethene	NA NA	*	< 0.000 8	YN	NA	< 0.0008	W.	M
Toluene	K	Y.	< 0.0008	Y.	NA NA	< 0.000 8	4	4
Semivorante organic compounds (1979)	4	47	4	4	42	4	4	***************************************
I -Phenylnaphtnatene	E :	:	E 3	:			£ 3	E 3
2,6,10,14-Tetramethylpentadecane (TIC)	¥ :	¥ ;	¥ ;	\$:	E :	.	E 2	E
	¥	¥	¥ ;	* :	S	4	¥ :	
. 2-Methylnaphthalene	4	¥	< 0.0490	¥	X	× 0.0490	¥	≨
2. Acenaphthene	KN	¥2	< 0.0360	¥	42	< 0.0360	4	4
	K	KA	< 0.6200	¥	4 2	< 0.6200	¥	¥
Eicosane (TIC)	¥¥	¥2	¥2	¥¥	KA	¥.	K M	¥
fluorene	¥	K	< 0.0330	4	4 2	< 0.0330	¥	¥
Heneicosane	Y.	NA	KN KN	¥2	¥¥	¥8	¥	¥
Heptadecane (TIC)	¥¥	¥X	KX	¥	HA	KN	¥ X	¥
Hexadecane (TIC)	KH	KN	¥	¥	¥	4	¥X	¥
Hexamethylcyclotrisiloxane (TIC)	Y.	XX	N	¥	Y.	¥¥	MA	¥
Mesityl oxide / 4-Methyl-3-penten-2-one	¥	¥N	¥#	¥	NA NA	NA NA	Z.	¥#
Napthalene	¥	¥N	< 0.0370	¥	¥¥	< 0.0370		¥
Octadecane (TIC)	¥	NA A	NA	¥H	K	KN N	¥¥	¥#
Pentacosane	K.	X	¥2	4	W.	*	¥	YH
Phenanthrene	N	W.	< 0.0330	¥	¥¥	< 0.0330	¥	¥
Pyrene	N	¥ N	< 0.0330	¥	¥	< 0.0330	¥¥	≨
Tetradecane (TIC)	Z Z	NA AN	¥¥	42	Y.	¥¥	¥ X	£
Tridecane (TIC)	KN	NA	AN A	Z	¥	¥	¥	≦
n-Nitrosodiphenylamine	Z Z	¥	< 0.1900	KX	¥	< 0.1900	4 *	¥
esticides (ug/g)	N.	¥.	2	X	¥	욡	¥	ī
erbicides (ug/g)	¥X	NA NA	W	NA NA	KN	¥	W.	KA
i								

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-062	EP-01-063	EP-01-063	EP-01-064	EP-01-064-DUP	EP-01-064	EP-01-065	EP-01-065
Leb 10	0111-124	011.1*126	0111-125	011.127	0111-243	0111*128	0111129	0111*130
Date Sampled	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92
Depth (ft)	6.000 ft	1.000 ft	5.000 ft	0.500 ft	0.500 ft	5.000 ft	0.000 ft	4.500 ft
Total Petroleum Mydrocarbons (ug/g)	NA .	42	VN.	YZ	NA	NA	NA NA	¥
Explosives (ug/g)								
1,3,5-Trinitrobenzene	09970 >	< 0.4880	< 0.4880	20.5000**	18.4000**	0.4880	0.4880	< 0.4880
1, 3-Dinitrobenzene	0967.0 >	0967.0 >	· 0.4960	< 0.4960	0967.0 >	0.4960	· 0.4960	0967.0 >
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	280.0000**	230.0000**	0.6180**	0.7350**	· 0.4560
2,4.Dinitrotoluene	< 0.4320	< 0.4320	< 0.1400	< 0.4320	< 0.4320	< 0.1400	< 0.4320	< 0.4320
2,6.Dinitrotoluene	< 0.5240	< 0.5240	< 0.0850	< 0.5240	< 0.5240	< 0.0850	< 0.5240	< 0.5240
2-Hitrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	3.3800**	< 0.5870	< 0.5870	2.7500**	< 0.5870	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (HMX)	× 0.6660	0.6660	< 0.6660	< 0.6660	0.6660	0.6660	• 0.6660	0.6660
Hitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Nitrobenzene	< 2.4100	< 2.4100	< 0.0450	8.3400**	8.2900**	< 0.0450	< 2.4100	< 2.4100
Dioxins/furans (ug/g)	×	¥	¥	¥	¥	¥	4	*

5-2-73

TOOFIE AD-NORTH AREA: Sh. J. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

				170 00 04	870 10 05	50.01.048	ED. 01. 0AR-0410	FP-01-060
Sample 10	EP-01-066	EP-01-086	FP-01-00/	700.IO.	000.10.43	72.00	011 40 27.0	73101010
1 ab 10	0111*131	0111*132	0111*133	0111-134	011.1-135	011110	017-170	
Date Samiled	06/24/92	06/24/92	26/52/90	06/24/92	06/24/92	06/54/95	26/57/90	26/57/90
Depth (ft)	3.000 ft	5.000 ft	0.000 ft	4.500 ft	3.000 ft	5.000 ft	5.000 ft	3.500 ft
Volatile Organic Compounds (ug/g)						:	:	•
Acetore	¥	¥	NA	¥¥	¥ Z	¥ *	*	¥ :
Ethylbenzene	N.	¥	KX	¥ Z	₹2	¥	¥ X	S
Spire in and states	¥#	¥#	*	4 2	4 2	¥	**	₹
Trichloroft promothere	4	¥¥	¥	A N	K R	¥.	¥	\(\)
	V 2	¥X	¥	42	¥	¥	×	4
	*	¥	¥	×	¥¥	YH.	¥ X	¥
foluene	N	Y.	¥4	Ä	¥	NA	¥	¥
Semivolatile Organic Compounds (ug/g)					;	:	1	1
1 · Pheny Laph that ene	¥ N	¥	4	₹	¥	ž	*	E
2.6.10.14-Tetramethylpentadecane (11C)	¥	¥	¥X	KH	4	4	4	S
2.1.Methylethyl) nachthalene	¥	KA	4	ş	**	¥	4	\$
2 - Marky Inschipts one	¥	N.	¥¥	YH.	¥	¥	4 2	¥
	Z Z	*	*	*	¥	¥ #	₹	ž
	¥	¥	¥¥	4	₹2	¥	KA	¥
	X	¥	*	4	4	¥	XX	*
	¥.	¥	××	4	4	¥	¥ N	¥
	*	*	¥	¥ X	42	¥	¥	≨
	· •	4 2	¥	Z X	4	¥#	¥ 2	a
	* *	₹	¥	*	4 2	¥	¥	1
Reversed (1.10)	.	¥.	¥	4 2	NA NA	¥	W	\$
mexameligicyclos (silosans (110)	.	*	*	*	¥X	¥	4	¥
Health Dalos / Thermy - J. Perice & Cit.	.	*	¥	42	¥X	*	¥	₹
	*	*	¥	4 2	¥2	*	ž	¥
		¥.	*	X	\$	¥	ž	¥
			4	**	42	¥	¥#	¥
Phenanthrene	£ \$		4	*	2	*	*	¥
Pyrene	E :	E S			.	=	*	¥#
Tetradecane (TIC)	S	£ :	E :	£ ;	: :		. ·	•
fridecane (11C)	¥	¥	*	S	¥ ;	E :		:
n-Nitrosodiphenylamine	KX	¥	¥	¥ #	4	Z R	S	\$
	¥.	¥4	¥	¥	4	¥ X	4	į
terbicides (ug/g)	NA	KN	4	¥.	¥	¥ H	4	\$

'otes: ** * Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-066	EP-01-066	EP-01-067	EP-01-067	EP-01-068	EP-01-068	EP-01-068-DUP	EP-01-069
01 qa1	011.1*131	0111-132	0111+133	0111*134	0111-135	0111136	0111*248	0111137
Date Sampled	06/24/92	06/24/92	26/52/90	06/24/92	06/24/92	06/24/92	06/24/92	06/24/92
Depth (1t)	3.000 ft	5.000 ft	0.000 fr	4.500 ft	3.000 ft	5.000 ft	5.000 ft	3.500 ft
Total Petroleum Mydrocarbons (ug/g)	42	¥ X	NA NA	YH.	HA	YN	VIII	*
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	0.4880	· 0.4880	< 0.4880
1,3-0 initrobenzene	0967.0 >	0967.0 >	< 0.4960	0967.0 >	0969'0 >	0965.0 >	0969.0 >	0967.0 >
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	12.6000**	< 0.4560	< 0.4560	0.5320**
2,4-Dinitrotoluene	< 0.4320	< 0.4320	< 0.4320	< 0.4320	< 0.4320	< 0.4320	c 0.4240	< 0.4320 ×
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Hitrotoluene (715)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDK)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	0000-8 2	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (HHX)	• 0.6660	· 0.6660	< 0.6660	< 0.6660	3.7000**	· 0.6660	× 0.6660	0.6660
Hitramine (Tetryl)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Witrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100

ş

¥

≨

¥

≦

ž

¥

≨

9 Dioxins/Furans (ug/g) 24.

Motes: **

TOOFIE AD-NORTH AREA: Sh. JO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Service 10	EP-01-069	EP - 01 - 069 - DUP	EP-01-069-0UP	EP-01-070	EP-01-070-DUP	£P-01-070	EP-01-071	EP-01-071-0UP
	91110	21.14.216	011 14260	011110	011 14250	071 10 100	14141	15241
	0111-130	0111-033	457.1.10	01.11.	007-1-10	041 140		163 1310
Date Sampled	26/52/90	06/24/92	06/24/92	06;25/92	06/25/92	06/22/92	26/52/90	06/25/92
Depth (1t)	5.500 ft	5.500 ft	5.500 ft	3.000 ft	3.000 ft	5.000 ft	2.500 ft	2.500 ft
Votatile Organic Compounds (ug/g)								
Acetone	₹	< 0.0170	4	¥	¥.	W	¥	£
Ethylbenzene	*	< 0.0017	XX	4	¥	¥	¥	¥#
Methylene chloride	*	< 0.0120	¥ X	*	*	¥	X	\$
Trichloroftworethane	X	< 0.0059	××	**	¥	*	¥	\$
3	¥.	< 0.0015	W.	42	ž	\$	¥	*
Tetrachionethene	*	< 0.0308	¥	*	¥	4	*	¥#
foluene	VN.	< 0.0008	K	N	M	¥	MA	YM
Colonias Organic Communication								
1. Phenylnaththalene	¥.	×	¥	Š	×	42	*	\$
2 & 10 14-Tetramethylpentadecane (110)	**	**	¥	W.	¥	¥2	4	\(\)
	**	₹	¥#	**	*	42	≦	\$
2. 2-wethylnachthalene	¥2	¥2	5	¥	*	KA	\$	× 0.0490
	¥3	42	\$	N	¥	42	*	< 0.0360
	××	**	*	ž	*	48	¥ R	< 0.6200
Eicosane (TIC)	NA NA	4 2	M	¥	¥N	4	4	\$
Fluorene	¥ Z	4 %	¥#	4	NA NA	¥	42	< 0.0330
Heneicosane	4	¥	¥	¥	¥8	M	4	*
Heptadecane (TIC)	¥#	¥¥	W.	¥	4	¥	4	¥
Hexadecane (TIC)	KN KN	¥ x	¥	¥	4 2	¥#	\$	≦
Nexamethylcyclotrisiloxane (TIC)	4	¥¥	¥2	¥	4	MA	42	¥
Mesityl oxide / 4-Methyl-3-penten-2-one	¥.	¥N	¥	XX	4	¥	*	¥
Napthalene	KN KN	NA NA	NA NA	*	X	¥ N	¥	< 0.0370
Octadecane (71C)	¥¥	NA NA	*	W.	*	¥	¥	1
Pentacosane	¥	KN KN	¥	¥	*	K X	4 2	\$
Phenanthrene	¥	X	¥	¥	¥8	¥ B	ž	< 0.0330
Pyrene	¥.	*	MA	¥	KN KN	*	¥	0.1100**
Tetradecane (TIC)	N.	¥	¥¥	4	4 2	¥2	4 2	£
Tridecane (11C)	Y.	¥ X	KA	¥	4 #	¥	¥2	*
n-Nitrosodiphenylamine	NA NA	Y.	NA NA	¥2	¥	¥	¥ Z	< 0.1900
Pesticides (ug/g)	4	¥	¥	¥	YN	¥ Z	\	9
terbicides (ug/g)	W	N N	¥ X	¥2	N	K	K	¥#

lotes: ** * Analyte was detected at the conentration shown < * Not detected at the value shown, MA * Not analyzed

TOOELE AD-WORTH AREA: SUMU NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	EP-01-069	EP-01-069-DUP	EP-01-069-DUP	EP-01-070	EP-01-070-DUP	EP-01-070	EP-01-071	EP-01-071-0U
01 de 10	0111-138	0111*235	0111-249	011.1-139	0111*250	0111-140	011.1*141	0111-251
Date Sampled	26/57/90	06/24/92	26/52/90	06/25/92	26/52/90	26/52/90	06/25/92	26/52/90
Depth (ft)	5.500 ft	5.500 ft	5.500 ft	3.000 ft	3.000 ft	5.000 ft	2.500 ft	2.500 ft
lotal Petroleum Mydrocarbons (ug/g)	VX	VR.	VX	NA NA	4	VX	¥#	*
Explosives (ug/g)		1	900	•	9		•	
1, 3, 2 · 1 in it consists at	0.4860	 	0.4960	0.4960	084.0	984.0	987.0	1 1
2,4,6-Trinitrotoluene	< 0.4560	4	< 0.4560	< 0.4560	< 0.4560	· 0.4560	2.0300**	1 1
2,4.Dinitrotoluene	< 0.4320	¥#	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.1400
2,6-Dinitrotoluene	< 0.5240	¥	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.0 65 0
2-Hitrotoluene (11C)	< 0.3070	\$	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	₹
Cyclonite (RDX)	< 0.5870	¥	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	4
Cyclotetramethylenetetranitramine (MXX)	< 0.6660	¥	0.6660	0.6660	· 0.6660	0.6660	0.6660	\$
Hitramine (Tetryl)	< 0.7310	¥#	< 0.7310	< 0.7310	< 0.7310	c 0.7310	< 0.7310	¥
Nitrobenzone	< 2.4100	¥	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 0.0450
Dioxins/furans (ug/g)	4	YN	VA.	A A	¥#	4	\$	¥

Hotes: ** # A

e was detected at the conentration shown < = Not detected at the v

thoun, NA = Not analyzed

Page No. 12/19/92

100ELE AD MORTH AREA: SIL. J. 1 - MAIN DEMOLITION AREA SOIL ANALTTICAL RESULTS FOR ORGANIC COMPOUNDS

						720 10 12	70 00 02	WO.10.07
Sample 10	EP-01-071	EP-01-072	EP-01-072	EP-01-0/5	EP-01-0/3	FP-01-074	*/0.10.43	CJA.10.42
01 99 10	011.1*142	0111-143	0111-144	011.1*145	0111*146	0111*147	0111-148	0111-149
Date Sampled	06/25/92	26/92/90	26/97/90	26/92/90	06/26/92	06/56/92	26/92/90	26/97/90
Depth (ft)	5.500 ft	0.000 ft	4.500 ft	0.000 ft	5.500 ft	2.500 ft	9.500 ft	0.500 ft
Volatile Organic Compounds (ug/g)								
Acetone	48	£	¥¥	¥	YN	< 0.0170	WA	≦
Ethylbenzene	¥	¥#	4	¥3	NA NA	< 0.0017	¥	\$
Methylene chloride	¥	4 2	\$	¥	W.	< 0.0120	¥	4
Trichlorofluoromethane	4	NA NA	¥	KN N	4	< 0.0059	¥	4
Xylenes	4	¥X	¥3	¥8	K K	< 0.0015	¥	4
Tetrachloroethene	¥#	A N	Y#	43	¥¥	₹ 0.0008	¥	\$
foluene	KW KW	¥	K N	4	4 2	• 0.000 0	¥ X	\$
Comittee in Ordenie Communication								
1-Phenylpachthalene	*	¥	YN.	43	MA	\$	4	ş
4. 2.6.10.14-Tetramethylpentadecane (TIC)	4	¥¥	K	4#	4%	4	1	ž
	A 8	MA	YX	¥	¥#	W.	£	4
	4	¥8	MA	¥#	¥ Z	< 0.0490 <	¥	4
Acenaphthene	4	42	¥¥	4	¥2	< 0.0360	≨	¥
Bis (2-ethylhexyl) phthalate	*	¥N	KM	¥x	×	1.2400**	4	≦
Eicosane (71C)	¥8	Z Z	NA NA	×	KA	*	4	MA
fluorene	KN	KN KN	42	¥	MA	< 0.0330	¥	¥#
Meneicosane	KM.	¥	4	¥	NA NA	₹#	4	¥
Neptadecane (11C)	42	¥.	• < x	KX	¥#	\$	₹2	¥
Hexadecane (11C)	42	NA A	42	HA	KA	*	48	ī
Hexamethylcyclotrisiloxane (11C)	4	¥¥	K 2	¥ X	¥	¥	4	¥
Mesityl oxide / 4-Methyl-3-penten-2-one	¥2	MA	MA	¥¥	K M	4 #	4	¥
Napthalene	¥2	KN	E	MA	¥	< 0.0370	4 8	¥
Octadecane (11C)	4	NA NA	KA	W.	MA	HA	¥3	¥
Pentacosane	XX	¥#	K X	¥#	ž	¥2	¥#	¥
Phenanthrene	4	NA NA	*	¥ N	¥	< 0.0330	Y #	¥
Pyrene	¥¥	¥	¥	NA NA	NA NA	< 0.0330	8	1
Jetradecane (11C)	¥	¥	¥¥	Y.	¥	¥ N	*	1
Tridecane (TIC)	XX	¥	¥	¥	¥	4	4	£
n-Witrosodiphenylamine	¥	¥	¥	¥	¥8	< 0.1900	¥	MA
esticides (ug/g)	*	¥	ž	¥	¥	윷	4	≨
erbicides (ug/g)	W	KA	W	W.	M	₹.	\$	¥

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-071	EP-01-072	EP-01-072	EP-01-073	EP-01-073	EP-01-074	EP-01-074	EP-01-075
0: qe1	0111-142	0111-143	14144	0111+145	971-1110	0111-147	0111*148	0111-149
Date Sampled	06/25/92	26/92/90	06/26/92	06/26/92	06/26/92	06/26/92	06/26/92	26/92/00
Depth (ft)	5.500 ft	0.000 ft	4.500 ft	0.000 ft	5.500 ft	2.500 ft	9.500 ft	0.500 ft
Total Petroleum Hydrocarbons (ug/g)	V.	Y.	YH.	NA NA	NA	¥.	YH.	YH.
Explosives (ug/g)								
1, 3, 5 - Trinitrobenzene	· 0.4880	< 0.4880	< 0.4880	· 0.4880	< 0.4880	0.4880	< 0.4880	110.0000**
1, 3.0 initrobenzene	· 0.4960	0969.0 >	0969.0 >	< 0.4960	0967.0 >	0967.0 >	0.4960	1.5800**
2,4,6-Trinitrotoluene	0.4730**	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	0.4560	e400.0009e
2,4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.1400	< 0.4240	< 0.4240
2,6-binitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.0850	< 0.5240	< 0.5240
2-Witrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	· 0.3070
Cyclonite (RDX)	< 0.5870	3.1600**	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	810.0000**
Cyclotetramethylenetetranitramine (MMX)	· 0.6660	0.6660	0999.0 >	0999.0 >	< 0.6660	0.6660	0.6660	190.0000**
Nitramine (Tetryl)	0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Mitrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 0.0450	< 2.4100	78.0000**
5. Dioxins/furans (ug/g)	¥	W	¥	¥	4	\$	¥	ž

Notes: **

Page No. 12/19/92

TOCELE AD NORTH AREA: Sh. J. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	***	20 00 03	760 00 43	50 01 077	ED 01.077	50.01.078	EB.01.078	50.01.070
Sample 10	EP-01-075	EP-01-070	EF-UI-U/O	//0.10.43	01, 1415,	010-10-10	010-10-0	10.10.13
0. 0. 0.	011.1.00	0111131	261-1310	0111-133	10.11.10	661-110	001-130	0111-137
Date Sampled	06/26/92	06/28/92	26/52/90	06/29/92	26/62/90	26/62/90	26/62/90	06/29/92
Depth (ft)	5.000 ft	0.000 ft	5.500 ft	0.000 ft	4.500 ft	0.000 ft	5.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)							:	:
Acetone	¥	4	4	¥	¥	¥	4 2	4
Ethylbenzene	YN.	¥¥	¥¥	¥	¥	X	4	≦
Methylene chloride	YN.	¥	¥	4	¥	K N	¥ R	≨
Trichlorofluoromethane	¥#	¥	¥	¥	42	M	NA NA	\$
XX	XX	K	¥	X	4	××	¥ X	4
Tetrachloroethene	48	¥	¥	¥	4	KA	¥N	4
loluene	¥ X	Y.	YH.	¥.	¥	¥	¥#	4
Semivolatile Drasnic Compounds (us/a)								
1-Phenyl nachthal ene	¥	¥	¥	YN	**	NA NA	¥	YN.
2.6,10,14-Tetramethylpentadecane (TIC)	KN	¥¥	¥	YN	¥	¥	¥	₹
	¥	W.	¥	¥¥	MA	¥	¥	8
is 2-Hethylnaphthalene	¥	ď Z	¥	4 2	MA	¥	¥	W.
	¥	¥	¥	NA	MA	¥	¥8	¥
	£	4 2	4	KX	YN N	W.	YN	≨
Eicosane (TIC)	¥	4	X	NA NA	¥N	NA	48	¥
Fluorene	¥	4 2	*	¥ X	¥	4 2	V 2	¥
Heneicosane	YN	K	NA NA	¥#	¥¥	M	4	4 2
Heptadecane (11C)	4 3	4	K X	¥#	¥	4	4	*
Hexadecane (TIC)	S	¥8	YN	W.	¥	4	*	MA
Hexamethylcyclotrisiloxane (TIC)	4 2	4 2	4 2	KH KH	¥ Z	K	4	*
Hesityl oxide / 4-Methyl-3-penten-2-one	KN	¥8	V #	¥.	¥	4	4	¥
Kapthalene	4 2	4 2	4	¥#	¥	4	4	4
Octadecane (11C)	¥#	Y.	Y #	4	¥	≦	4	1
Pentacosane	K X	4	4	K X	¥	4	*	¥
Phenanthrene	¥x	¥	₹	¥#	K N	¥	42	\$
Pyrene	¥	4 2	4 2	*	¥	4	4	£
Tetradecane (TIC)	4	K X	4 2	₹ 2	¥	4 2	4	4
Tridecane (11C)	£	44	43	¥ X	4	4	4 #	4
n-Nitrosodiphenylamine	¥	¥2	¥¥	4	¥X	¥¥	¥ x	¥
'esticides (ug/g)	¥	Y	¥	¥	Z	¥	¥.	*
(erbicides (ug/g)	Y Z	₹	¥ z	4	4	<u> </u>	4	*

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-075	EP-01-076	EP-01-076	EP-01-077	EP-01-077	EP-01-078	EP-01-078	EP-01-079
01 qe1	011.1*150	01114151	0111*152	0111*153	0111*154	0111*155	011.1*156	011 1*157
Date Sampled	26/92/90	06/28/92	06/28/92	06/29/92	26/52/90	06/59/92	06/29/92	26/62/90
Depth (ft)	5.000 ft	0.000 ft	5.500 ft	0.000 ft	4.500 ft	0.000 ft	5.000 ft	0.000 ft
lotal Petroleum Mydrocarbons (ug/g)	YN .	NA NA	V.	NA	NA	YH.	NA .	Y#
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	< 0.4880	< 0.4880	0.4880	0.4880	0.4880
1, 3.0 initrobenzene	· 0.4960	0967.0 >	0967.0 >	< 0.4960	0965.0 >	· 0.4960	0.4960	0969.0 >
2,4,6-Trinitrotoluene	0.6370**	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	0.4560
2,4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
2-Nitrotoluene (TIC)	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070	< 0.3070
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (HMX)	< 0.6660	< 0.6660	0,6660	< 0.6660	0.6660	< 0.6660	· 0.6660	· 0.6660
Hitramine (Tetryi)	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Nitrobenzene	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100	< 2.4100
Dioxins/furans (ug/g)	¥N	¥	¥#	¥	¥	*	*	*

was detected at the conentration shown < = Not detected at the ve

hown, MA = Not analyzed

Notes: ** = A.

TODELE AD-NORTH AREA: Sh. . 1 - MAIN DEMOLITION AREA SOLL ANALYTICAL RESULIS FOR ORGANIC COMPOUNDS

	60.01.070	080-01-030	FD.01.080	60-01-080-010	FP-01-081	EP-01-081	EP-01-082	EP-01-082
						67141.10	27746110	77101 110
1ab 10	0111+128	0111-159	011.1.160	011.1*246	011.1*161	291_1110	011.1-165	21-110
Date Sampled	26/62/90	06/59/92	26/62/90	26/52/90	06/30/92	06/30/92	06/30/92	06/30/92
Depth (ft)	5.500 ft	0.000 ft	6.000 ft	6.000 ft	0.000 ft	5.500 ft	1.000 ft	5.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	Y.	¥	¥	< 0.0170	¥	N.	V.	¥
Ethylbenzene	¥¥	Z Z	¥N	< 0.0017	¥	¥	¥	\$
Methylene chloride	MA	K	MA	< 0.0120	YN N	¥	Ş	1
Trichloroftuoromethane	X X	NA	¥X	< 0.0059	43	M	MA	4
× (4	K	X	< 0.0015	YR	¥	¥	≦
Tetrachloroethene	Y X	KN	MA	< 0.0008	KX	43	*	4
Toluene	MA	Y.	NA NA	€ 0.0008	4 2	¥	4	\$
Semivolatile Organic Compounds (us/s)								
1-Phenylnaphthalene	¥N	××	¥	¥2	MA	4 2	¥2	¥2
2.6.10.14-Tetramethylpentadecane (TIC)	· VN	NA	¥	¥8	NA A	M	¥.	¥
	¥N	¥N	¥	42	¥#	¥2	¥¥	4
2 - Methylnaphthalene	¥	MA	< 0.0490 <	¥.	¥	W	¥¥	× 0.0490
	NA NA	¥¥	< 0.0360	4 2	K K	YN	MA	< 0.0360
Bis (2-ethylhexyl) phthalate	¥	MA	2.9100**	K	KN	K.	¥¥	0.6200
Eicosane (71C)	V.	M	¥	Y.	¥ N	NA	YN.	YN
fluorene	*	¥X	< 0.0330	42	¥#	YR	4 2	< 0.0330
Heneicosane	¥	N	¥	¥8	YN	X	¥	¥
Heptadecane (11C)	¥	Y	≨	X	¥	¥ H	¥	\$
Hexadecone (IIC)	¥	Y.	¥	¥ X	W.	¥#	ī	¥
Hexamethylcyclotrisiloxane (TIC)	¥	Y.	4	K N	MA	¥ #	¥	4
Hesityl oxide / 4-Hethyl-3-penten-2-one	¥	¥.	¥	¥ H	NA NA	¥.	¥	≨
Napthalene	¥8	N	< 0.0370	X X	¥	4	≦	< 0.0370
Octadecane (11C)	≨	K	¥	¥¥	YN	4 2	¥	¥
Pentacosane	¥	¥¥	¥	NA	YN.	¥	¥	¥
Phenanthrene	¥	4 X	< 0.0330	K #	¥ Z	4	¥	< 0.0330
Pyrene	4	¥	< 0.0330	¥X	¥¥	¥	¥	< 0.0330
Tetradecane (TIC)	¥.	¥	₹	W.	¥	¥¥	4	£
Tridecane (11C)	¥	KX	¥¥	K	¥	Y.	¥	\$
n-Nitrosodiphenylamine	K N	NA NA	< 0.1900	¥	KN	W	K K	< 0.1900
octividee (1970)	4	42	Ş	¥	MA	¥	¥	9
	İ							
crbicides (ug/g)	43	4	W.	NA NA	NA	¥	¥#	NA

otes: ** = Analyte was detected at the conentration shown < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-079	EP-01-080	EP-01-080	EP-01-080-DUP	EP-01-081	EP-01-081	EP-01-082	EP-01-062
of de	0111*158	01111159	0111160	0111*246	0111*161	0111*162	0111+163	011.1*164
Date Sampled	06/59/92	26/62/90	26/57/00	06/29/92	06/30/92	06/30/92	06/30/92	06/30/92
Depth (ft)	5.500 ft	0.000 ft	6.000 ft	6.000 ft	0.000 ft	5.500 ft	1.000 ft	5.000 ft
iotal Petroleum Hydrocarbons (ug/g)	KX	V.	¥8	YH.	YN .	VN	¥¥	V#
Explosives (ug/g)								
1.3.5-Trinitrobenzene	< 0.4880	0.4880	0.4880	**	0.4880	0.4880	**0000.73	· 0.4880
1.3-Dinitrobenzene	< 0.4960	< 0.4901	0.4960	¥#	0967.0 >	< 0.4960	910.0000**	0967.0 >
2.4.6.1rinitrotoluene	< 0.4560	< 0.4550	< 0.4560	¥	< 0.4560	< 0.4560	1100.0000**	< 0.4560
2.4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.1400	**	< 0.4240	< 0.4240	2.5800**	· 0.1400
2.6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.0850	¥¥	< 0.5240	< 0.5240	< 0.5240	< 0.0 0 50
2-Witrotoluene (11C)	< 0.3070	< 0.3070	< 0.3070	¥ H	< 0.3070	< 0.3070	0.4490**	< 0.3070
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	¥ Z	< 0.5870	< 0.5870	2000.0000*	2.2800**
Cyclotetramethylenetetranitramine (HMX)	0,6660	• 0.6660	0.6660	*	0.6660	· 0.6660	100.0000**	· 0.6660
Mitraeline (Tetryl)	< 0.7310	< 0.7310	< 0.7310	NA.	< 0.7310	< 0.7310	< 0.7310	< 0.7310
Nitrobenzene	< 2.4100	< 2.4100	< 0.0450	NA NA	< 2.4100	< 2.4100	6.6200	< 0.0450
Dioxins/Furans (ug/g)	¥	Y #	¥	Z Z	¥#	¥ X	¥	*

5-2-83

Hotes: ** = A

TOOELE AD MORTH AREA: SIA. J. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-082-DUP
1 sp 10	0111*247
Date Sampled	06/30/92
Depth (ft)	5.000 ft
Volatile Organic Compounds (ug/g)	
Acetone	< 0.0170
Ethylbenzene	< 0.0017
Methylene chloride	< 0.0120
Trichlorofluoromethane	< 0.0059
Xylenes	< 0.0015
Tetrachtoroethene	\$00.000 ×
foluene	< 0.000 8
Semivolatile Organic Compounds (ug/g)	
1.Phenylnaphthalene	**
2,6,10,14-Tetramethylpentadecane (TIC)	**
	**
2-Hethylnaphthalene	¥#
	¥¥
Bis (2-ethylhexyl) phthalate	NA NA
Elcosane (TIC)	. Y
Fluorene	**
Heneicosane	KA A
Heptadecane (11C)	NA NA
Hexadecane (11C)	NA AN
Hexamethylcyclotrisiloxane (TIC)	NA.
Mesityl oxide / 4-Methyl-3-penten-2-one	NA .
Napthal ene	¥#
Octadecane (TIC)	N. N. S.
Pentacosane	¥
Phenanthrene	¥.
Pyrene	*
Tetradecane (TIC)	NA NA
Tridecane (TIC)	NA.
n-Nitrosodiphenylamine	HA
esticides (ug/g)	\S
ides (section)	3
(B/Bn) (2017)	

EP-01-082-0UP	110	Date Sampled 06/30/92	Depth (ft) 5.000 ft	Total Petroleum Hydrocarbons (ug/g)	Explosives (ug/g)	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	2,4,6.Trinitrotoluene	2,4-Dinitrotoluene	2,6.Dinitratoluene	2-Nitrotoluene (11C)	Cyclonite (RDX)	Cyclotetramethylenetetranitramine (HMX)	Hitramine (Tetryl)	Mitrobentene
82-DUP	247	765	- ft	NA NA		4	KA	¥#	NA AN	¥#	**	HA.	KA	#¥	1

Dioxins/furams (ug/g)

5-2-85

₹

Hotes: ** = /

TOOELE AD-NORTH AREA: SUM. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	SB-01-001	SB-01-001	\$8-01-001	SB-01-001	\$8-01-001	\$8-01-001	\$8.01.001	\$8-01-002
tab 10	011.1*259	0111*260	0111*261	0111*262	0111*263	1,564	011.1*265	0111*266
Date Sampled	07/23/92	07/23/92	07/23/92	07/23/92	07/24/92	07/24/92	07/24/92	07/27/92
Depth (ft)	5.000 ft	10.000 ft	20.000 ft	30.000 ft	40.000 ft	75.000 ft	80.000 ft	5.000 ft
Inlons (ug/g)								
Chloride	**0000°*	540.0000	3700.0000**	1200.0000	1040,0000	249.0000	900,1000	00500
Witrite, nitrate - nonspecified	0.6560	3.9200	5.9300	2.7500	3.6000	6.6200	1.3700	0009
Sulfate	1700.0000**	2200.0000**	12000.0000**	115.0000	< 90.4000	261.0000	× 90.4000	0007 06
Total phosphates	1900.0000**	260.0000	1900.0000	860.0000**	810.0000**	2200.0000**	1200.0000**	100.000
ieneral Inorganic Parameters								
£	8.0600	8.6400	7.6000	8.2400	8.1000	8.0400	8.4800	5.8700

ites: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-NORTH AREA: SUM. . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10 Lab 10 Date Sampled Depth (ft)	\$8-01-002 0111*267 07/27/92 15.000 ft	\$8.01.002 01.1*268 07/27/92 35.000 ft	\$8-01-002 01L1*269 07/27/92 50.000 ft	\$8-01-002 011:270 07/27/92 80.000 ft	\$8-01-002 0111*271 07/27/92 90.000 ft	\$8-01-002 011.1*272 07/27/92 100.000 ft	\$8-01-003 01L1*273 07/26/92 5.000 ft	SB-01-003 01L1*274 07/26/92 15.000 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Sulfate Total phosphates	< 6.0500 < 0.6000 < 90.4000 890.0000**	31.3000 0.9500 < 90.4000 600.0000**	< 6.0500 < 0.6000 < 90.4000 100.0000	294.0000 3.9900 < 90.4000 210.0000	169.0000 3.4400 < 90.4000 790.0000**	86.9000 1.6200 98.9000 760.0000**	76.5000 2.4400** 166.0000 970.0000**	1860.0000** 9.6700** 295.0000
General Inorganic Parameters pH	7.1600	8.0300	9.8900	7.4300	7.1700	8.0300	7.0600	8.2000

ites: ** * Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TODELE AD-WORTH AREA: SLANJ NO. 1 - MAIN DEMOLITION AREA SOIL AMALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	SB-01-003-0UP	SB-01-003	\$8-01-003	\$8-01-003	\$8-01-003	\$8-01-003	EP-01-001	EP-01-001
1 to 10	0111*295	011.1*275	0111-276	0111-277	0111*278	0111*279	HSOIL 1*1	#\$011.1°2
Date Sampled	07/26/92	07/26/92	26/92/10	07/26/92	07/26/92	07/26/92	26/62/50	56/59/50
Depth (ft)	15.000 ft	25.000 ft	35.000 ft	45.000 ft	70.000 ft	100.000 ft	2.000 ft	4.000 ft
Anions (ug/g)								
Chloride	1630.0000**	453.0000	151.0000	107.0000	91.9000	4	6.0500	· 6.0508
Mitrite, nitrate · nonspecified	9.1900**	7.6200**	4.3100	3.6500	2.2800	4	2.6100**	0.6170
Suifate	290.000	272.0000	636.0000	£15.0000**	730.0000	\$	< 90.4000	< 90.4000
Total phosphates	× 300.0000	390.0000	1500.0000**	**0000.065	1100.0000**	420.0000**	420.0000	630.0000**
General Inorganic Parameters								
£	7.3300	8.1100	5.9400	8.1400	7.4900	8.5700	7.2600	7.1300

5-2-89

Hotes: ** = 1

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: SUM. , 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample ID Lab ID Date Sampled Depth (ft)	EP-01-002 MSOIL1*3 05/29/92 2.000 ft	EP-01-002 NSOIL1*4 05/29/92 3.000 ft	EP-01-003 MSOIL1*5 05/30/92 2.000 ft	EP-01-003 NSO1L1*6 05/30/92 5.000 ft	EP-01-004 MSO1L1*7 05/30/92 3.000 ft	EP-01-004 MS01L1*8 05/30/92 5.000 ft	EP-01-005 NS01L1*9 05/30/92 3.000 ft	EP-01-005 S01L1*10 05/30/92 7.000 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Sulfate Total phosphates	< 6.0500 < 0.6000 < 90.4000 510.0000**	< 6.0500 < 0.6000 < 90.4000 350.0000	< 6.0500 < 0.6000 < 90.4000 1300.0000**	260.0000** 7.3200** 1200.0000** 2400.0000**	130.0000 13.0000** 138.0000	730.0000** 8.9400** 850.0000**	9.3600 2.3100 < 90.4000 760.0000**	360.0000** 4.2500** 271.0000 610.0000**
General Inorganic Parameters pH	8.6400	8.6800	7.6800	9.8100	7.7300	7.6900	6.3800	7.2100

ites: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-NORTH AREA: SUMU NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample ID Lab ID Date Sampled Depth (ft)	EP-01-006 \$0111*11 05/30/92 3.000 ft	EP-01-006 \$011*12 05/30/92 5.000 ft	EP-01-007 soit.1*13 05/30/92 3.000 ft	EP-01-007 \$01L1*14 05/30/92 5.000 ft	EP-01-008 \$01L1*15 05/31/92 3.000 ft	EP-01-008 SOLL1*16 05/31/92 7.000 ft	EP-01-009 801L1*17 05/31/92 1.500 ft	EP-01-009 80111918 65/31/92 4.500 ft
ons (ug/g) Chloride Mitrite, nitrate - nonspecified Sulfate Total phosphates	80.2000 NA 134.0000 660.0000**	440.0000** 0.5900 133.0000 390.0000	11.7000 0.9720 < 90.4000 580.0000**	12.6000 < 0.6000 < 90.4000 470.0000**	660.0000** 18.0000** 2600.0000** 510.0000**	500.0000** 3.3100** 387.0000	< 6.0500 1.8900 < 90.6000 870.0000**	6.0500 1.9600 4.90.0000
General Inorganic Parameters pH	9.0800	B. 3900	9.7000	9.2300	7.2200	9.2300	8.0600	6.5500

is above the background concentration for the depth shown, < = Not

cted at the value shown, MA = Not analyzed

Notes: ** = Vr

TOOELE AD-NORTH AREA: SIA . 1 - MAIN DEMOLITION AREA SOI! ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10 Lab 10 Date Sampled Depth (ft)	EP-01-010 SOIL1*19 05/31/92 2.500 ft	EP-01-010 SOIL1*20 05/31/92 5.500 ft	EP-01-011 01L1•218 05/31/92 3.000 ft	EP-01-011-0UP SOIL1*21 05/31/92 3.000 ft	EP-01-011 S01L1*22 05/31/92 6.000 ft	EP-01-012 S01.11°23 05/31/92 2.000 ft	EP-01-012 S01L1*24 05/31/92 4.000 ft	EP-01-013 SOIL 1*25 06/01/92 1.000 ft
Anions (ug/g) Chloride Nitrite, nitrate - nonspecified Sulfate Total phosphates	390.0000** 2.2000 291.0000 630.0000**	1800.0000** 13.0000* < 1800.0000	490.0000** 93.0000** 1400.0000** 260.0000	390.0000** 74.0000** 1300.0000** 600.0000**	32.4000 < 0.6000 1100.0000**	6.0500 0.7460 90.4000 550.0000**	26.7000 0.6620 < 90.4000 470.0000**	< 6.0500 3.0200** < 90.4000 390.0000
General Inorganic Parameters pH	7.7500	7.5600	3.8300	6.7500	7.6800	8.1200	9.2000	4.6400

TODELE AD-NORTH AREA: SUMU NO. 1 - MAIN DEMOLITION AREA SOIL AMALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	EP-01-013	EP-01-014	EP-01-014	EP-01-015	EP-01-015	EP-01-016	EP-01-016	EP-01-017
Lab 10	\$011.1*26	S0111*28	SOIL 1*27	SOIL 1*30	8011.1°29	5011.1•31	SOIL 1*32	\$011.1-33
Date Sampled	06/01/92	06/01/92	06/01/92	06/01/92	06/01/92	06/01/92	06/01/92	06/02/92
Depth (ft)	4.500 ft	3.000 ft	7.000 ft	3.500 ft	6.500 ft	0.000 ft	4.500 ft	0.000 ft
Anions (ug/g)								
Chloride	< 6.0500	< 6.0500	390.0000**	7.3300	7.3000	< 6.0500	1200.0000**	26.7000
Mitrite, nitrate · nonspecified	0.9220	2.1800	5.2300**	0.6920	1.7800	0009.0 >	◆ 0.6000	1.1800
Suifate	× 90.4000	< 90.4000	< 90.4000	< 90.4000	< 90.4000	× 90.4000	< 900.000°	× 90.4000
Total phosphates	**0000**	790.0000**	1200.0000**	560.0000**	540.0000**	••0000.069	630.0000**	730.000
General Inorganic Parameters								
*	4.1000	4.6300	3.4200	4.5800	5.9700	8.3600	0060.6	9.0200

ected at the value shown, NA = Not analyzed

is above the background concentration for the depth shown, < = P

Hotes: **

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: SM . 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 1D	EP-01-018	EP-01-018	EP-01-018-DUP	EP-01-019	EP-01-019	EP-01-020	EP-01-020	EP-01-021
Cl de 10	S011.1°36	0111*219	5011103	SOIL 1*37	S011.1*38	SOIL 1-39	50111*40	5011.1.41
Date Sampled	06/05/95	06/05/92	06/05/92	06/03/92	26/03/95	06/03/92	06/03/92	06/03/92
Depth (ft)	4.000 ft	6.500 ft	6.500 ft	1.500 ft	7.500 ft	1.500 ft	4.500 ft	2.000 ft
Anions (ug/g)								
Chloride	95.0000	190.0000	83.4000	72.0000	290.0000**	< 6.0500	< 6.0500	< 6.0500
Nitrite, nitrate - nonspecified	5.8800**	9.2800**	4.4700**	4.0300.	< 0.6000	0.5910	· 0.6000	0.8160
Sulfate	3200.0000**	3000.0000*	4.0000 °0007	613.0000**	282.0000	< 90.4000	× 90.4000	< 90.4000 ×
Total phosphates	290.0000	< 150.0000	350.0000	750.0000**	530.0000**	**0000.097	540.0000**	**0000.029
General Inorganic Parameters								
P#	6.6700	7.0000	7.1400	7.8900	9.2500	7.2000	9.1600	8.1200

otes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

100ELE AD-NORTH AREA: SUMU NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULIS FOR GENERAL CHEMICALS

Sample 10	EP-01-021	EP-01-022	EP-01-022	EP-01-023	EP-01-023	EP-01-024	EP-01-024	EP-01-025
01 qe1	5011105	\$211105	SOIL 1*44	S011.1°45	S011.1*46	2511105	\$51,1108	\$91T10S
Date Sampled	06/03/92	26/06/90	06/04/92	26/04/90	06/04/92	06/04/92	26/0/90	26/07/95
Depth (ft)	4.500 ft	4.000 ft	5.000 ft	1) 060.7	5.500 ft	0.000 ft	4.500 ft	4.500 fc
Anions (ug/g)								
Chloride	900,4000	2500.0000**	••0000.059	79.2000	300.0000**	< 6.0500	18.0000	7600.0000*
Nitrite, nitrate - nonspecified	0.7340	9.7800**	0.6000	0.9600	0.6000	0.9680	2.0900	9.7500**
Sulfate	× 90.4000	× 90.4000	**0000.67	< 90.4000	< 90.4000	< 90.4000	< 90.4000	° 90.4000
fotal phosphates	\$60.0000**	680.0000**	550.0000**	590.0000**	670.0000**	610.0000**	**0000.095	750.0000
General Inorganic Parameters								
#d	9.2300	7.9800	9.2200	9.2400	8.3300	5.0000	3.6500	2.5900

s above the background concentration for the depth shown, < = Not

ted at the value shown, MA = Not analyzed

Page No. 1 12/19/92

TOOELE AD-WORTH AREA: Sh. J. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	EP-01-025	EP-01-026	EP-01-026	EP-01-027	EP-01-027	EP-01-028	EP-01-028	EP-01-029
01 qe1	S0111•50	S01L1*51	50111*52	5011.1*53	S011.1*54	SO11.1*55	SOIL 1*56	S01L1*57
Date Sampled	26/06/05	26/60/90	26/60/90	26/60/90	26/00/90	26/00/90	06/09/92	26/60/90
Depth (ft)	6.500 ft	4.500 ft	7.000 ft	3.500 ft	5.000 ft	4.500 ft	7.000 ft	3.500 ft
Anions (ug/g)								
Chloride	< 6.0500	17.7000	7.4000	18.9000	26.0000	96.7000	42.2000	21.0000
Witrite, nitrate - nonspecified	· 0.6000	5.1400**	2.2100	30.0000**	4.3000**	16.0000**	11.0000**	2.1250
Sulfate	< 90.4000	< 90.4000	< 90.4000	< 90.4000	< 90.4000	331.0000	< 90.4000	× 90.4000
Total phosphates	320.0000	400.0000	440.0000	550.0000**	470.0000**	530.0000**	400.0000	280.0000
General Inorganic Parameters								
£	3.1500	3.9000	4.1300	6.0200	6.7400	3.5800	5.6400	2.4600

Notes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-029	EP-01-029-DUP	EP-01-030	EP-01-030	EP-01-031	EP-01-031	EP-01-032	EP-01-032
1 op 10	0111+220	50111*58	SOIL 1*59	11.05	5011.1•62	5011.1*61	\$911.108	79-1 1105
Date Sampled	76/06/90	26/00/90	06/10/92	06/10/92	06/10/92	06/10/92	06/10/92	06/10/92
Depth (ft)	5.000 ft	5.000 ft	3.000 ft	6.500 ft	0.000 ft	5.500 ft	0.500 fc	5.000 ft
Anions (ug/g)								
Chloride	× 6.0500	7.0000	44.5000	12.1000	× 6.0500	230,0000	0050 4 >	300 0000
Witrite, nitrate - nonspecified	1.2500	1,1300	18,0000**	\$ 7900**	1,6800	1 1100	0.000	0.000
Sulfate	< 90.4000	< 90.4000	132,0000	< 90.4000	× 90.4000	0007.06 >	0007 06 >	15.00 0000**
Total phosphates	170.0000	220.0000	220.0000	< 150.0000	160.000	420.0000	400.000	530.0000**
General Inorganic Parameters								
₹.	3.3100	3.0800	9.1500	8.2100	8.2400	8.2800	8.1100	3.5300

5-2-97

TOCELE AD-WORTH AREA: S D. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 1D	EP-01-033	EP-01-033	EP-01-034	EP-01-034	EP-01-035	EP-01-035	EP-01-036	EP-01-036
Lab 10	SO1L 1*65	99.1 110S	S011.1*67	SOIL 1*68	S0111•70	SOIL 1*69	5011.1-71	50111472
Date Sampled	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92	06/11/92
Depth (ft)	4.000 ft	6.500 ft	3.500 ft	6.000 ft	0.500 ft	6.000 ft	0.000 ft	5.000 ft
Anions (ug/g)								
Chloride	45.0000	< 6.0500	240.0000	180.0000	< 6.0500	< 6.0500	< 6.0500	< 6.0500
Mitrite, nitrate · nonspecified	390.0000*	45.0000**	500.0000*	530.0000**	1.9500	26.0000**	0.9130	0.6950
Sulfate	< 90.4000	< 90.4000	< 90.4000	193.0000	< 90.4000	< 90.4000	× 90.4000	< 90.4000
Total phosphates	< 150.0000	420.0000**	310.0000	420.0000	260.0000	480.0000**	410.0000	590.0000**
General Inorganic Parameters								
₹.	7.7700	7.5400	7.3200	7.2400	8.0200	9.1000	9.5700	8.7400

Notes: ** * Value is above the background concentration for the depth shown, < * Not detected at the value shown, NA = Not analyzed

TOOELE AD-WORTH AREA: SUMU NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10 tab 10 base Sampled	EP-01-037 SOIL1+73	EP-01-037 SOIL 1*74	EP-01-038 SOIL1*75	EP-01-038 SOIL 1*76	EP-01-039 SOIL 1*77	EP-01-039 SOIL 1+78	EP-01-040 \$01L1*79	EP-01-040 \$0111*80
Depth (ft)	0.500 ft .	6.500 ft	0.500 ft	7.000 ft	0.000 ft	7.500 fc	0.000 ft	8.500 ft
Anions (ug/g)								
Chloride	< 6.0500	830.0000**	6.0500	< 6.0500	< 6.0500	< 6.0500	< 6.0500	< 6.0500
Nitrite, nitrate - nonspecified	1.1400	**0000.95	1.1300	8.8600**	0.7700	4.3200**	0.6000	7.6100**
Sulfate	° 90.4000	**0000.509	< 90.4000	× 90.4000	0007'06 >	× 90.4000	0007.06 ×	< 90.4000
Total phosphates	\$20.0000**	330.0000	350.0000	250.0000	300.0000	< 150.0000	500.000 0*	< 150.0000
General Inorganic Parameters pH	9.1200	8.0300	9.8200	8.9900	7.5200	8.4200	9.0000	9.1300

TOOELE AD-NORTH AREA: ! O. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULIS FOR GEWERAL CHEMICALS

Page No. 12/19/92

Sample 10 Lab 10 Date Sampled Depth (ft)	EP-01-041 S011.1*81 06/13/92 0.000 ft	EP-01-041 S0111*82 06/13/92 9.000 ft	EP-01-042 0111*227 06/13/92 2.000 ft	EP-01-042-0UP SOIL1+83 06/13/92 2.000 ft	EP-01-042 S0111*84 06/13/92 5.000 ft	EP-01-043 S0111*65 06/13/92 0.000 ft	EP-01-043 \$011.1°&6 06/13/92 5.000 ft	EP-01-044 S0111*87 06/13/92 0.000 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Sulfate Total phosphates	< 6.0500 < 0.6000 < 90.4000 340.0000	< 6.0500 20.0000** < 90.4000	131.0000 500.00000** < 90.4000	101.0000 380.0000** 158.0000 550.0000**	< 6.0500 1.2800 < 90.4000 330.0000	< 6.0500 3.1400** < 90.4000 370.0000	170.0000 1.2800 118.0000 380.0000	4 6.0500 1.1700 4 90.4000 460.0000**
General Inorganic Parameters pH	7.8900	7.1600	7.8500	5.5600	8.5800	7.2100	9.3200	7.1200

TOOELE AD-NORTH AREA: SLANJ NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR LEMERAL CHEMICALS

Sample 10	EP-01-044	EP-01-045	EP-01-045-DUP	EP-01-045	EP-01-046	EP-01-046-DUP	EP-01-046	EP-01-047
01 qe1	SOIL 1*88	0111*221	50111-89	\$0111.90	0111*222	50111-91	SOIL 1*92	0111*223
Date Sampled	06/13/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Depth (ft)	5.000 ft	3.500 ft	3.500 ft	5.500 ft	3.000 ft	3.000 ft	4.500 ft	1.000 ft
Anions (ug/g)								
Chloride	2800.0000**	\$60.0000	290.0000**	590.0000	97.3000	112.0000	1100,0000**	9.860
Mitrite, nitrate - nonspecified	15.0000*	4.2600**	4.1900**	1.6600	96.0000**	110.0000**	260.0000**	2.3300
Sulfate	1100.0000	156.0000	156.0000	338.0000	< 90.4000	< 90.4000	870.0000**	× 90.4000
Total phosphates	870.0000**	630.0000**	1200.0000**	720.0000**	470.0000**	400.0000	530.0000**	390.000
General Inorganic Parameters pH	7.9300	6.6200	6.2700	9.1100	6.7500	9.9900	6.8000	7.2700

Notes: ** = Value is above the background concentration for the depth shown, < = Not Artected at the value shown, NA = Not analyzed

5.9,101

TODELE AD-NORTH AREA: 5 .40. 1 - MAIN DEMOLITION AREA SOIL AWALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	EP-01-047-0UP	EP-01-047	EP-01-048	EP-01-048	EP-01-049	EP-01-049	EP-01-050	EP-01-050
1 ab 10	50111+93	5011108	SOIL 1*95	96-1 110S	2011 1497	SOIL 1*98	801119	0111100
Date Sampled	06/14/95	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92	06/15/92	06/15/92
Depth (1t)	1.000 ft	5.000 ft	0.000 ft	4.500 ft	0.000 ft	4.500 ft	2.500 ft	4.500 ft
Anions (ug/g) Chloride Nitrite, nitrate - nonspecified Sulfate Total phosphates General Inorganic Parameters	6.8900 1.6200 < 90.4000 500.0000**	101,0000 1,2700 115,0000 690,0000**	< 6.0500 4.2400** < 90.4000 530.0000**	690.0000** 0.9240 760.0000** 320.0000	< 6.0500 13.0000** < 90.4000 490.0000**	1700.0000** 0.7590 2500.0000** 680.0000**	360.0000** 12.0000** 300.0000 620.0000**	1400.0000** 1.3700 1400.0000** 410.0000
3	8.2100	7.0300	7.2200	7.1000	6.9300	0066.9	7.9200	8.9700

Notes: ** = Value is above the background concentration for the depth shown, < # Not detected at the value shown, NA = Not analyzed

Sample 1D Lab 1D Date Sampled Depth (ft)	EP-01-051 011.1*101 06/15/92 2.500 ft	EP-01-051-0UP 0111-224 06/15/92 2.500 ft	EP-01-051 011.1*102 06/15/92 5.000 ft	EP-01-052 0111-103 06/15/92 2.500 ft	EP-01-052 011 1*104 06/15/92 7.000 ft	EP-01-053 01L1*105 06/16/92 3.500 ft	EP-01-053-DUP 01L1*225 06/16/92 3.500 ft	EP-01-153 011.1*106 06/16/92 6.500 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Sulfate Total phosphates	< 6.0500 0.9270 < 90.4000 630.0000**	< 6.0500 1.1100 < 90.4000 320.0000	< 6.0500 1.4600 < 90.4000 < 150.0000	950.0000** 6.4400** 632.0000** 510.0000**	35.2000 23.0000** < 90.4000 740.0000**	2300.0000** 78.0000** 441.0000	2100.0000** 76.0000** 479.0000** 330.0000	5200.0000** < 0.6000 1200.0000** 210.0000
General Inorganic Parameters pM	7.3500	6.7600	9.2100	7.1900	7.9300	0067-9	958.6	7 1406

5-2-103

is above the background concentration for the depth shown, < = N'

ected at the value shown, NA = Not analyzed

Notes: ** = '

TOOLEE AD-WORTH AREA: S D. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Lab 10 Date Sampled 06/16/92 Depth (ft) 2.000 ft	07 0111*226					CC: 10-04	FD-01-054-MB
		0111-108	011.1*109	0111110	011 1*230	0111111	011 14260
	92 06/16/92	06/16/92	06/17/92	06/17/92	06/17/92	06/17/92	06/17/02
	ft 2.000 ft	4.500 ft	2.000 ft	5.000 ft	5.000 ft	2.000 ft	2.000 ft
Anions (ug/g)	A Committee of the Comm						
Chloride 8.1600	00 7.7800	9.7600	< 6.0500	0.0500	0050 4 2	100 0000	130 0000
nitrate - nonspecified	~	1.0200	0.6000	0.6520	0.5850	900.00	250.0000
v	•	× 90.4000	× 90.4000	< 90.4000	0007:06 >	0007 00 >	9007 00 7
Total phosphates 490,0000**	•	370.0000	220.0000	190.0000	450.0000**	190.000	240.0000
General Inorganic Parameters							
pH 7.1700	00 6.9400	7.4500	8.0300	8.3000	8.1000	8.2700	8.6400

5-2-104

TOCELE AD-NORTH AREA: SUMU NO. 1 - MAIN DENOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	8P-01-056	EP-01-057	EP-01-057	EP-01-058	EP-01-058	EP-01-059	EP-01-059-0UP	EP-01-059
01 981	0111112	011.1-113	011.1114	0111*115	0111116	0111117	0111*241	0111-118
Date Sampled	06/17/92	06/17/92	06/17/92	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92
Depth (ft)	4.500 ft	2.500 ft	5.000 ft	3.000 ft	5.000 ft	0.000 ft	0.000 ft	5.000 ft
Anions (ug/g)								
Chloride	2200.0000**	< 6.0500	< 6.0500	6.4200	6.0500	6.5800	9.9000	2400.0000**
Mitrite, nitrate - monspecified	0.6420	0.6570	0009.0	× 0.6000	v 0.6000	15.0000**	13.0000**	7. 7000**
Sulfate	252.0000	< 90.4000	< 90.4000	< 90.4000	× 90.4000	× 90.4000	< 90.4000	1500.0000**
Total phosphates	190.0000	190.0000	190.0000	290.0000	220.0000	620.0000**	330,0000	620.0000**
General Inorganic Parameters								
₹.	7.0100	7.8800	8.0000	6.4300	6.1400	6.5700	6.6300	9.1300

Notes: ** = 1

TOOELE AD-NORTH AREA: S. J. & - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHENICALS

Lab 10	EP-01-060	EP-01-060	EP-01-061	EP-01-061-0UP	EP-01-061	EP-01-062	EP-01-062	EP-01-063
Part Complete	0111110	011110	011.1-121	0111*242	0111*122	0111*123	0111*124	011.1*126
nace sampled	06/18/92	06/18/92	06/18/92	06/18/92	06/18/92	06/23/92	06/23/92	06/23/92
Depth (ft)	2.500 ft	5.500 ft	4.500 ft	4.500 ft	7.000 ft	2.500 ft	6.000 ft	1.000 ft
Anions (ug/g)								
Chloride	< 6.0500	< 6.0500	< 6.0500	< 6.0500	< 6.0500	< 6.0500	7,7300	× 6.0500
Mitrite, nitrate - nonspecified	4.9300**	13.0000**	2.4100**	2.3900**	11.0000**	· 0.6000	14.0000	0009.0
Suifate	< 90.4000	< 90.4000 ×	< 90.4000	× 90.4000	< 90.4000	< 90.4000	× 90.4000	× 90.4000
Total phosphates	710.0000**	**0000.069	440.0000	110.0000	••0000.099	410.0000	960.0000**	260.0000
General inorganic Parameters								
₹.	7.4600	6.9100	7.2100	7.1500	7.5900	7.0300	7.0900	6.8100

Notes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, MA = Not analyzed

Sample 10	EP-01-063	EP-01-064	EP-01-064-DUP	EP-01-064	EP-01-065	EP-01-065	EP-01-066	EP-01-066
01 de1	011.1*125	0111+127	0111243	0111-128	0111*129	011 1-130	011.1-131	01.1*132
Date Sampled	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	26/57/90	26/57/90
Depth (ft)	5.000 ft	0.500 ft	0.500 ft	5.000 ft	0.000 ft	4.500 ft	3.000 ft	5.000 ft
Anions (ug/g)								
Chloride	< 6.0500	< 6. 0500	< 6.0500	27.7000	< 6.0500	23.2000	< 6.0500	· 6.0500
Witrite, nitrate - nonspecified	17.0000**	3.1000**	3.7800**	2.5900**	2.1100	1.4300	· 0.6000	• 0.600
Sulfate	< 90.4000	0007'06 >	< 90.4000	< 90.4000	< 90.4000	529.0000**	× 90.4000	× 90.4000
Total phosphates	810.0000**	740.0000	85.0000	750.0000**	540.0000**	\$20.0000	670.0000**	**0000.059
General Inorganic Parameters								
ā	9.6600	7.2700	6.8700	9.0400	7.1300	8.6400	6.3400	7.5500

5-2-107

is above the background concentration for the depth shown, < = No'

cted at the value shown, MA = Not analyzed

TODELE AD-WORTH AREA: 5 3.1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESL... FOR GENERAL CHEMICALS

Sample 10	EP-01-067	EP-01-067	EP-01-068	EP-01-068	EP-01-068-DUP	EP-01-069	EP-01-069	FP-01-040-NIP
1ab 10	011.1*133	0111-134	011.1*135	011.1*136	0111*248	011 11137	101111111111111111111111111111111111111	011 10269
Date Sampled	26/52/90	06/24/92	06/24/92	06/24/92	26/52/90	06/24/92	261 170	06/26/92
Depth (ft)	0.000 ft	4.500 ft	3.000 ft	5.000 ft	5.000 ft	3.500 ft	5.500 ft	5.500 ft
Anions (ug/g)				٠				
Chloride	· 6.0500	8.4100	8.7500	< 6.0500	< 6.0500	00200 >	0050 9 9	0050 4 7
Witrite, nitrate - nonspecified	° 0.6000	· 0.6000	1.6500	0.6000	0.6000	0009 0 >	. 0000	0.000
Sulfate	0007°06 >	< 90.4000	< 90.4000	× 90.4000	< 90.4000	0007 06 >	0007 06 >	0007 00 >
Total phosphates	240.0000	230.0000	310.0000	320.0000	350,0000	2\$0.0000	120.0000	440.0000
General Inorganic Parameters								
£	7.6600	8.4800	7.4400	7.0300	9.4500	8.2100	7.9900	8.2100

TOOGLE AD-NORTH AREA: SLAND NO. 1 - MAIN DEHOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

				֡				
Sample 10	EP-01-070	EP-01-070	EP-01-071	EP-01-071	EP-01-072	EP-01-072	EP-01-073	EP-01-073
01 981	0111-139	0111-140	01110141	01110142	0111-143	0111*144	0111*145	971-1110
Date Sampled	06/22/92	06/25/92	06/25/92	06/22/92	26/92/90	26/92/90	06/26/92	06/26/92
Depth (ft)	3.000 ft	5.000 ft	2.500 fc	5.500 ft	0.000 ft	4.500 ft	0.000 (t	5.500 ft
Anions (ug/g)								
Chloride	< 6. 0500	< 6.05GJ	6.0500	< 6.0500	· 6.0500	26.8000	· 6.0500	270.0000**
Witrite, nitrate - nonspecified	· 0.6000	0.6000	0.9330	< 0.6000	2.8800**	39.0000**	5.4700**	16.0000**
Sulfate	< 90.4000	< 90.4000	< 90.4000	< 90.4000	< 90.4000	× 90.4000	× 90.4000	326.0000
Total phosphates	230.0000	140.0000	170.0000	160.0000	**0000.064	730.0000**	300.000	810.0000**
General Inorganic Parameters								
£	8.6800	8.1300	8.1800	6.6200	7.7300	8.5200	7.9700	9.1900

is above the background concentration for the depth shown, < * Ho

Notes: ** = 1

ected at the value shown, NA = Not analyzed

TOOELE AD-NORTH AREA: S O. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	£P-01-074	EP-01-074	EP-01-075	EP-01-075	EP-01-076	EP-01-076	EP-01-077	EP-01-077
01 qe1	01110147	0111-148	0111-149	0111-150	0111*151	0111*152	0111*153	0111*154
Date Sampled	06/56/92	26/92/90	06/56/92	06/26/92	06/28/92	06/28/92	26/62/90	06/29/92
Depth (ft)	2.500 ft	9.500 ft	0.500 ft	5.000 ft	0.000 ft	5.500 ft	0.000 ft	4.500 ft
Anions (ug/g)								
Chloride	17.0000	12.8000	8.5300	1600.0000**	< 6.0500	< 6.0500	0 4 A 0500	************
Nitrite, nitrate - nonspecified	6.9700**	1.6400	**0000.4	53.0000**	0.7400	0009.0 >	1.7000	0.7150
Sulfate	< 90.4000	< 90.4000	< 90.4000	166.0000	< 90.4000	< 90.4000	0007'06 >	**0000 076
Total phosphates	\$50.0000**	**0000.009	510.0000**	710.0000**	160.0000	230.0000	380.0000	1200.0000**
General Inorganic Parameters								
₹.	9.1500	9.2600	7.5500	7.2500	8.0300	7.8700	6.8200	7.0300

TOOELE AD-NORTH AREA: SUMU NO. 1 - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GEWERAL CHEMICALS

Sample 10 Lab 10 Date Sampled Depth (ft)	EP-01-078 0111*155 06/29/92 0.000 ft	EP-01-078 011.1*156 06/29/92 5.000 ft	EP-01-079 01L1*157 06/29/92 0.000 ft	EP-01-079 01(1*158 06/29/92 5.500 ft	EP-01-080 01(1*159 06/29/92 0.000 ft	EP-01-080 0111-160 06/29/92 6.000 ft	EP-01-081 01L1*161 06/30/92 0.000 ft	EP-01-061 011.1*162 06/30/92 5.500 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Sulfate Total phosphates	0.020°9 > 0.7730	0.9300 880.0000** 946.0000**	< 6.0500 2.4200** < 90.4000 300.0000	1200.0000** 0.7560 1800.0000**	< 6.0500 0.8360 < 90.4000 400.0000	1500.0000** 5.0200** 548.0000** 750.0000**	12.0000 1.3300 < 90.4000 1000.0000**	6.0500 6.0000000 6.00000000
General Inorganic Parameters pM	7.1400	7.1200	7.9100	8.0400	7.8500	0066.9	7.4900	7.7700

Notes: ** = VAIVE is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-WORTH AREA: SI J. T - MAIN DEMOLITION AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Page No. 1 12/19/92

Sample 1D EP-01-082 EP-01-082 Lab 1D 01L1*164 Date Sampled 06/30/92 06/30/92 Depth (ft) 1,000 ft 5.000 ft Anions (ug/g) 11.9000 < 6.0500 Chloride 11.9000 < 6.0500 Witrite, nitrate - nonspecified 62.0000** 12.0000** Sulfate 158.0000 < 90.4000 Total phosphates 1200.0000** 1200.000** General Inorganic Parameters 7.8400 6.8900				
011.1•163 06/30/92 1.000 ft 11.9000 158.0000 1200.0000••	Sample 1D	EP-01-082	EP-01-082	
11.9000 ft 11.9000 11.9000 1200.0000 1200.0000**	01 del	0111-163	0111*164	
11.9000 ft 11.9000 158.0000 1200.0000**	Date Sampled	26/30/95	06/30/92	
11.9000 cified . 62.0000** 158.0000 1200.0000**	Depth (ft)	1.000 ft	5.000 ft	
11.9000 clfied . 62.0000** 158.0000 1200.0000**	Anions (ug/g)			
cified . 62.0000** 158.0000 1200.0000**	Chloride	11.9000	· 6.0500	
156.0000 1200.0000** 7.8400	Nitrite, nitrate - nonspecified	• • 0000 • •	12.0000**	
1200.0000**	Sulfate	158.0000	< 90.4000	
7.8400	Total phosphates	1200.0000**	1200.0000**	
7.8400	General Inorganic Parameters			
	***	7.8400	9.8900	

Table 5-3

TABLE 5-3

CLUSTER BOMB DETONATION AREA (SWMU 1a) ANALYTICAL RESULTS

Leb 10 Date Sampled Depth (ft)		20 D	\$5. IO. BO	200 11 85	10-10-BC	30-10-95	30-10-95	Er. 01-850
Date Sampled Depth (ft)	0111-280	0111*281	011.1*282	011.1*283	0111*284	0111*285	0111*286	0111179
Depth (ft)	07/25/92	07/25/92	07/25/92	07/25/92	07/25/92	07/26/92	07/26/92	26/30/95
	5.000 ft	10.000 ft	15.000 ft	20.000 ft	40.000 ft	50.000 ft	100.000 ft	0.000 ft
Metals and Evanide (110/0)								
Atraicia	14000.0000	3460.0000	5510.0000	6160.0000	16300.0000	3110.0000	17600.0000	10900.0000
Ant faony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	7.1100	6.2000	6.3900	£.3700**	2.5400	3.5400	8.4500**	9.6500
Barius	172,0000	79.0000	70.1000	76.4000	182.0000	38.4000	154.0000	157.0000
Beryllium	1.3900	0.5860	< 0.5000	1.0400	1.2600	< 0.5000	1.5200	1.5100
Cadnium	< 0.7000	0.7000	< 0.7000	< 0.7000	< 0.7000	◆ 0.7000	< 0.7000	< 0.7000
Calcium	58900.0000	30000.0000	38000.0000	34600.0000	13800.0000	130000.0000	47800.0000	38200.0000
Chronium	17.1000	9.9800	9.3200	10.4000	16.1000	9.4400	16.9000	13.0000
Cobalt	7.8800**	2.8800	7.8000	4.4100	8.3500	2.0900	8.6600	5.7200
Copper	16.5000	6.2700	8.0200	9.2500	16.3000	5.5600	18.7000**	25.6000
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×
Iron	14800.0000	0000.0090	8950.0000	10800,0000	17200.0000	5330.0000	18900.0000	12900.0000
Lead	14.0000	9.7100	9.6100	11.4000	14.0000	4.5500	18.0000**	16.0000
Magnesica	9440.0000	3740.0000	5860.0000	0000.0769	7870.0000	8980.0000	12100.0000	8740.0000
Tendente	450.0000	215.0000	230.0000	190.0000	545.0000	166.0000	617.0000	404.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.0643**	0.0643**
Nickel	18.3000**	9.7600	9.7100	10.4000	18.8000	6.9700	22.4000**	14.8000
Potassium	3820.0000	616.0000	1290.0000	1270.0000	3730.0000	242.0000	4350.0000	3640.0000
Selenica	1.1900••	0.5980**	0.7440**	0.6210**	0.6930**	1.5600**	1.2300**	· 0.2500
\$ilver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	· 0.5890
unipos	3380.0000**	1450.0000	2010.0000**	2390.0000**	581.0000	270.0000	392.0000	361.0000
Thattium	< 6.6 200	< 6.6200	< 6.6200	< 6.6 200	< 6.6200	10.2000	6.6200	c 6.6200
Varadium	26.9000	12.1000	17.7000	22.9000	25.3000	12.0000	28.9000	23.4000
2 inc	63.1000	23.2000	31.5000	33.8000	62.3000	25.9000	83.3000	61.000

5-3-1

is above the background concentration for the depth shown, < = scted at the value

streed at the value shown, MA = Not analyzed

TOOGLE AD-WORTH AREA J NO. 1A - CLUSTER BOHB AREA SOIL ANALYTICAL RESULTS FOR METALS

41 7	FP.01.090	FP-01-091	EP-01-091	EP-01-092	EP-01-092	EP-01-093	EP-01-093	EP-01-094
Sample 10					70.00	20101110	A11110	011 1117
1 ab 10	0111.160	0111-1181	011.1.162	011.1.185	100	691-1110	20 1	
Date Campled	26/30/95	06/30/92	06/30/92	07/01/92	07/01/92	07/01/92	07/01/92	07/01/92
Depth (ft)	5.000 ft	0.000 ft	5.000 ft	0.000 ft	5.000 ft	0.000 ft	4.500 ft	0.000 ft
ustale and framide (10/0)								
	6250.0000	11500.0000	7580.0000	12800.0000	15000.0000	11200.0000	7820.0000	13900.0000
	. < 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Areasic	0.6500	6.1000	11.3000	6.8100	8.5600	6.1600	8.8000	6.5900
	144,0000	186.0000	166.0000	167.0000	171.0000	216.0000	148.0000	198.0000
	0.7860	1.3300	1.0000	1.6000	1.8300**	1.3100	0.8870	1.5600
Bery Crum	0002:0 >	0.8490**	< 0.7000	< 0.7000	< 0.7000	1.3900**	< 0.7000	1.5000**
	0000 00907	23000,0000	24600.0000	36600.0000	44000.0000	29300.0000	78000.0000**	34400.0000
	8.9300		9.7300	15.2000	20.3000	15.0000	11.1000	17.3000
	7.2800	5.9200	4.5600	6.4300	8.0200**	8.6500	4.4500	6.6200
	8.2000	**0000.67	11.2000	29.4000**	15.8000	142.0000**	7.5600	94.6000
apiece.	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200
5	8950.0000	13500.0000	10800.0000	13600.0000	17200.0000	15400.0000	10200.0000	16000.0000
_	10.2000	23.6000	11.6000	22.0000	15.0000	27.2000	9.7200	24.2000
3	2040.0000	8880.0000	9940.0000	10000.0000	10100.0000	7880.0000	7730.0000	9760.0000
	157,0000	458.0000	173.0000	525.0000	**0000.899	454.0000	202.0000	516.0000
	00500 >	0.0698**	< 0.0500	< 0.0500	< 0.0500 ×	0.0765**	0.0686**	0.0746**
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	9.7100	14.0000	12.5000	16.8000**	22.4000**	14.3000	11.1000	17.5000**
	1320.0000	4530.0000	2150.0000	4560.0000	2620.0000	3820.0000	1320.0000	4850.0000
1:40	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
	0885.0 >	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
	1440.0000**	364,0000	2050.0000**	392.0000	2440.0000**	343.0000	1110.0000	391.0000
10 TO 41	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200
	20.2000	20.5000	26.0000	22.3000	28.2000	20.4000	24.0000	24.3000
	27 6000	85,3000	36.4000	73.7000	87.2000	120.0000**	30.9000	109.0000**
2115		,	,					

Sample 10	EP-01-094	EP-01-094-DUP	EP-01-095	EP-01-095
01 qe1	0111+188	011.1*257	0111*189	0111-190
Date Sampled	07/01/92	07/01/92	07/01/92	07/01/92
Depth (ft)	5.000 ft	5.000 ft	0.000 ft	7.000 ft
Metals and Cyanide (ug/g)				
A i umi rum	15800.0000	11300.0000	11600.0000	16400.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	7.2300	3.8200	6.2800	7.9600
Berica	274.0000**	206.0000	291.0000**	170.0000
Beryllium	1.8100**	1.4200	1.4900	1.9800**
Cadhium	< 0.7000	0.9670**	1.4000**	< 0.7000
Calcium	40400.0000	37300.0000	33600.0000	36100.0000
Chromium	18.5000	13.6000	14.3000	19.8000
Cobalt	6.4700	6.2100	2.6200	7.1000**
Copper	67.1000**	**0000.65	95.6000	19.0000
Cyanide	< 0.9200	< 0.9200	< 0.9 200	< 0.9200
Iron	15700.0000	12300.0000	12300.0000	16600.0000
lead	23.0000	\$60.0000	25.1000	16.0000
Hegnes ium	10300.0000	8520.0000	8140.0000	9040.0000
Manganese	477.0000	422.0000	410.0000	467.0000
Mercury	0.0675**	0.0600**	0.0692**	< 0.0500
Bicket	19.7000**	15.0000	13.8000	20.4000**
Potassium	4720.0000	3620.0000	3870.0000	3460.0000
Selenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	c 0.5890	< 0.5890	< 0.5890
Sodium	433.0000	362.0000	379.0000	1680.0000**
That I ium	< 6.6200	< 6.6200	< 6.6200	< 6.6200
Vanadium	25.8000	20.4000	19.8000	27.5000
2 inc	102.0000	79.8000	106.0000	74.5000

5-3-3

Hotes: ** :

TOOELE AD-NORTH AREA. J NO. 14 - CLUSTER BONB AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

10.000 ft 10.0	Sample 10	SB-01-004	\$8-01-004	\$8.01-00¢	\$8.01-00¢	\$8 · 01 · 004	SB-01-004	\$8-01-004	EP-01-090
07/25/92 07/25/92 07/25/92 07/25/92 07/25/92 07/25/92 07/26/92 07/	Lab 10	0111*280	0111*281	0111*282	0111*283	0111*284	011.1*285	0111*286	0111179
Sounds (Lug/g) NA	Date Sampled	07/25/92	07/25/92	07/25/92	26/52/10	07/25/92	07/26/92	07/26/92	06/30/92
Compounds (ug/g) NA	Depth (ft)	5.000 ft	10.000 ft	15.000 ft	20.000 ft	40.000 ft	50.000 ft	100.000 fc	0.000 ft
Compounds (ug/g) NA	Volatile Organic Compounds (ug/g)	N	HA	¥1	¥	£	4	VII	≦
Laminating (1979) NA	Semivolatile Organic Compounds (ug/g) Mexadecanoic acid, butyl ester (TIC)	W Y	4	≦	¥	≨	ž	\$	\$
NA NA<	Pesticides (ug/g)	4	Ş	4	¥	4	\$	¥	*
carbons (ug/g) NA	Herbicides (ug/g)	¥	¥	ş	¥¥	4	4	¥	¥
 < 0.4240 < 0.5870 < 0.5870<	Total Petroleum Mydrocarbons (ug/g)	¥	¥.	¥	4	4	\$	4	\$
NA NA NA NA NA NA	Explosives (ug/g) 2,4.Dinitrotoluene Cyclonite (RDX)	< 0.5870 >	< 0.5870 >	< 0.4240 < 0.5870	< 0.4240 < 0.5870	< 0.4240 < 0.5870	< 0.4240 < 0.5870	< 0.4240 < 0.5870	< 0.5870 × 0.5870
	Dioxins/Furans (ug/g)	K	¥	4	K	\$	\$	ī	\$

TOCELE AD-NORTH AREA: SUMU NO. 1A - CLUSTER BONG AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-090	EP-01-091	EP-01-091	EP-01-092	EP-01-092	EP-01-093	EP-01-093	EP-01-003-04
Lab 10	011.1*180	011.1*181	0111-182	011.1*183	0111-164	01111165	011.1*186	01.1-256
Date Sampled	06/30/92	06/30/92	06/30/92	07/01/92	26/10/20	07/01/92	07/01/92	07/01/42
Depth (ft)	5.000 ft	0.000 ft	5.000 ft	0.000 ft	5.000 ft	0.000 ft	4.500 ft	4.500 ft
Volatile Organic Compounds (ug/g)	¥8	NA	¥.	A M	MA	Y X	¥	9
Semivolatite Organic Compounds (ug/g) Nexadecanoic acid, butyl ester (TIC)	\$	\$	¥	¥	£	ž	0.4000**	1
Pesticides (ug/g)	¥	V.	Ş	Y.	¥8	¥.	9	¥
Herbicides (ug/g)	¥	¥	¥	43	¥	*	¥	¥
Total Petroleum Nydrocarbons (ug/g)	4	¥	*	¥	¥	4	¥	\$
Explosives (ug/g) 2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.1400	\$
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	≨
Dioxins/furans (ug/g)	¥.	¥	¥	¥¥	¥	KN	Ş	2

TODELE AD-NORTH AREA: JUNO. 14 - CLUSTER BOMB AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-094	EP-01-094	EP-01-094-DUP	EP-01-094-DUP EP-01-094-DUP	EP-01-095	EP-01-095	EP-01-095-01P	
1ab 10	0111-187	0111*257	0111*188	0111*257	0111-189	0111190	0111*362	
Date Sampled	07/01/92	06/28/92	07/01/92	07/01/92	07/01/92	07/01/92	07/01/92	
Depth (ft)	0.000 ft	5.000 ft	5.000 ft	5.000 ft	0.000 ft	7.000 ft	7.000 ft	
Volatile Organic Compounds (ug/g)	¥.	¥	¥.	NA NA	NA NA	¥ z	1	
Semivolatile Organic Compounds (ug/g) Mexadecanoic acid, butyl ester (TIC)	4	¥	*	ž	4	₹	4 2	
Pesticides (ug/g)	¥	Y.	*	¥	¥ X	4	Q	
Herbicides (ug/g)	NA	YN.	¥	¥.	*	4	¥	
Total Petroleum Hydrocarbons (ug/g)	¥2	HA	¥.	¥	4	4	¥	
Explosives (ug/g) 2,4.Dinitrotoluene g Cyclonite (RDX)	< 0.4240 < 0.5870	Z Z	< 0.5240 < 0.5870	10.5000**	< 0.4240 < 0.5870	< 0.4240 < 0.5870	0.1400 ×	
Dioxins/furans (ug/g)	₹	Q.	ž	Q.	¥	4	Ş	

TOOELE AD-NORTH AREA: SIMU NO. 14 - CLUSTER BOMB AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHENICALS

Sample 10 Lab 10 Date Sampled Depth (ft)	\$8-01-004 0111*280 07/25/92 5.000 ft	\$8-01-004 0111*281 07/25/92 10.000 ft	sa-01-004 0111*282 07/25/92 15.000 ft	\$8-01-004 011.1*283 07/25/92 20.000 ft	\$8-01-004 0111*284 07/25/92 40.000 ft	\$8-01-004 0111°285 07/26/92 50.000 ft	\$8-01-004 011.1*286 07/26/92 190.000 ft	EP-01-090 01(1*179 06/30/92 0.000 ft
Anions (ug/g) Chloride Mitrite, nitrate - nonspecified Sulfate Total phosphates	1380.0000** < 1.8000 691.0000** 1200.0000**	1380,0000** 0.8720 607 0000 400,0000	787.0000 0.7820 < 904.0000 520.0000**	679.0000 0.6770 < 904.0000 310.0000	2250.0000** 26.0000** < 90.4000 560.0000**	173.0000 2.3200 < 90.4000 1400.0000**	26.7000 1.6400 < 90.4000 2100.0000**	6.0500 0.600 0.4000 710.0000**
General Inorganic Parameters pH	7.0100	7.5100	8.5400	7.2000	7.5300	7.5700	8.0400	9.7500

ted at the value shown, MA = Not analyzed

TOOELE AD-WORTH AREA: NO. 1A - CLUSTER BONB AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Page No. 12/19/92

Sample 10	EP-01-090	EP-01-091	EP-01-091	EP-01-092	EP-01-092	EP-01-093	EP-01-093	£P-01-094
tab 10	011.1*180	0111181	0111*182	011.1*183	011.1*184	0111*165	011.1*186	0111-167
Date Sampled	06/30/92	06/30/92	06/30/92	07/01/92	07/01/92	07/01/92	07/01/92	07/01/92
Depth (ft)	5.000 ft	0.000 ft	5.000 ft	0.000 ft	5.000 ft	0.000 ft	4.500 ft	0.000 ft
Anions (ug/g)								
Chloride	8.6900	< 6.0500	< 6.0500	< 6.0500	76,3000	× 6.0500	< 6.0500	0009.6
Nitrite, nitrate · nonspecified	× 0.6000	0.8240	0.6000	0.6580	0.6000	2.4700**	2,1000	6.0700**
Sulfate	0007°06 >	0007.06 >	< 90.4000	< 90.4000	3100.0000**	× 90.4000	< 90.4000	0007'06 >
Total phosphates	790.0000**	860.0000**	580.0000**	560.0000**	380.0000	360.0000	350.0000	610.0000**
General Inorganic Parameters								
ard.	8.4300	7.7100	10.1000	8.8700	9.0600	8.9100	10.0000	9.0000

TOOELE AD-NORTH AREA: SLANJ MO. 1A - CLUSTER BONB AREA SOIL AWALYTICAL RESULTS FOR GENERAL CHEMICALS

Page No. 1 12/19/92

Sample 10	EP-01-094	EP-01-094-DUP	EP-01-095	EP-01-095	
01 qe1	0111-188	0111-257	0111+189	0111*190	
Date Sampled	07/01/92	07/01/92	07/01/92	07/01/92	
Depth (ft)	5.000 ft	5.000 ft	0.400 ft	7.000 ft	
Anions (ug/g)					
Chloride	25.8000	21.4000	9.1300	0007.09	
Witrite, nitrate - nonspecified	51.0000**	39.0000**	7.4500**	\$.4000**	
Sulfate	0005'06 ×	0007.06 >	< 90.4000	< 90.4000	
Total phosphates	370.0000	**0000.097	370.0000	570.0000**	
General Inorganic Parameters					
**	8.6000	8.5600	8.8700	0007.6	

5-3-9

is above the background concentration for the depth shown, < = 11-11 . ected at the valu

ected at the value shown, NA = Not analyzed

Table 5-4

TABLE 5-4

BURN PAD (SWMU 1b) ANALYTICAL RESULTS

TOOELE AD-MORTH AREA; SHALL NO, 18 - BURN PAD AREA SOIL ANALYTICAL RESULTS FOR HETALS

Sample 10	SB-01-006	EP-01-096						
OI QP1	0111-373	011.1*374	011.1*375	011.1*376	0111*377	0111*378	0111*379	011.1-191
Date Sampled	07/30/92	07/30/92	07/30/92	26/30/45	07/30/92	07/30/92	07/30/92	08/04/92
Depth (ft)	5.000 fr	20.000 ft	35.000 ft	60.000 ft	70.000 ft	80.000 ft	100.000 ft	3.500 ft

Metals and Cyanide (ug/g)								
Atuminum	2790.0000	3860.0000	2870.0000	7890.0000	13000.0000	20400.0000	4570.0000	4590.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	2.6500	3.9600	3.9700	11.9000**	7.8900	3.2100	8.2200**	7.2900
Barica	47.5000	26.0000	29.2000	89.8000	85.0000	126.0000	122.0000	272.0000**
Beryl i un	< 0.5000	< 0.5000	< 0.5000	< 0.5000	1.0600	1.3300	< 0.5000	< 0.5000
Cadmium	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	3.1100**
Calcium	9590.0000	29800.0000	21300.0000	28100.0000	9260.0000	4480.0000	77000.0000	8890.0000
Chromium	< 4.0500	5.7100	5.6900	10.2000	17.7000	20.3000	8.1200	8.0000
Cobelt	2.2900	3.1600	2.9600	4.0300	6.2100	9.7500	4.5100	2.7000
Copper	3.6200	7.8000	5.2700	8.4700	12.4000	18.9000**	9.7800	25.1000
Cyanide	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200	¥	< 0.9200
Iron	4910.0000	8460.0000	5540.0000	14500.0000	14500.0000	20000.00002	8520.0000	0000.06%
peal	2.4000	8.6200	6.2400	0079.6	12.0000	15.0000	2.8600	••0002.76
Ragnesium	1770.0000	6210.0000	4500.0000	9670.0000	6190.0000	6830.0000	8190.0000	2740.0000
Kanganese	97.0000	273.0000	94.8000	143.0000	125.0000	289.0000	1190.0000**	194.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 ×
Bickel	4.7500	9.2100	5.1000	10.7000	15.8000	19.9000**	23.0000**	7.4600
Potessium	643.0000	1030.0000	575.0000	1170.0000	3510.0000	2060.0000	1210.0000	1440.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	244.0000	758.0000	266.0000	715.0000	925.0000	1050.0000	\$75.0000	325.0000
That (fum	< 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200	< 6.6200	6.6200	< 6.6200
Vanadium	7.9200	13.9000	10.9000	18.2000	25.8000	29.0000	14.3000	8.5500
2 inc	14.4000	24.8000	19.1000	35.2000	95.5000	74.0000	38.0000	171.0000**

Notes: ** = Vp'-we is above the background concentration for the depth shown, < = Not "-tected at the value shown, NA = Not analyzed

TOOELE AD-NORTH AR JANU NO. 18 - BURN PAD AREA SOIL ANALYTICAL RESULTS FOR METALS

S	Sample 10	EP-01-096-DUP	EP-01-096	EP-01-097	EP-01-097	EP-01-098	EP-01-098	EP-01-099	EP-01-099
4	e de	011 1*326	01114192	011 1103	0111194	011.1*195	011.1*196	011.1*197	0111198
		20, 70, 40	20770780	09 707 80	08/02/02	08/02/03	08/05/02	08/02/05	08/05/02
Oac	Date Sampled	08/04/92	24/50/00	74/50/90	74/00/00	24/60/00	24/60/00	34/69/00	34/60/00
Dep	Depth (ft)	3.500 ft	8.000 ft	0.000 ft	6.000 ft	0.000 ft	5.500 ft	7.000 ft	9.500 ft
1									
Met	Metals and Cyanide (ug/g)								
-	Alunim	4420.0000	3130.0000	4750.0000	3970.0000	7190.0000	2960.0000	14800.0000	2230.0000
•	Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
•	Arsenic	6.7100	2.5400	3.6100	3.2600	3.5200	2.8700	8.5700	8.4100
	Barica	219.0000	55.7000	71.3000	0006.99	94.0000	44.8000	80.3000	78.5000
_	Beryllium	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
_	Cachrium	4.1100**	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	36.7000**	< 0.7000
_	Calcium	8890.0000	10100.0000	11300.0000	17200.0000	3370.0000	6650.0000	15700.0000	11900.0000
_	Chromium	18.3000	< 4.0500	7.7500	< 4.0500	8.8400	< 4.0500	13.9000	4.0500
_	Cobalt	2.6600	1.9200	2.2500	2.2300	3.7700	2.3600	4.0000	2.4500
_	Copper	44.2000**	4.2700	22.8000	7.0800	11.1000	4.4700	737.0000**	6.1200
_	Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200
_	Iron	21900.0000	4780.0000	6560.0000	5250.0000	8560.0000	4790.0000	34100.0000**	5500.0000
_	Lead	104.0000**	3.8400	17.0000	4.3600	9.4100	4.9100	159.0000**	7.3700
-4-	Hagnesium	2720.0000	1380.0000	2680.0000	2770.0000	3860.0000	1380.0000	2910.0000	3680.0000
2	Hanganese	281.0000	127.0000	177.0000	132.0000	295.0000	99.1000	317.0000	110.0000
_	Hercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	· 0.0500
_	Nickel	12.0000	3.3200	5.7600	4.5300	7.8000	4.3300	22.0000**	2.4400
	Potassium	1350.0000	1070.0000	1420.0000	1110.0000	2500.0000	584.0000	1580.0000	984.0000
٠,	Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×
٠,	Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	35.0000**	< 0.5890
7,	Sodium	270.0000	203.0000	213.0000	230.0000	240.0000	201.0000	1050.0000	298.0000
_	Thatiium	< 6.6 200	< 6.6200	< 6.6200	< 6.6200	< 6.6 200	< 6.6200	6.6200	· 6.6200
_	Vanadium	6.7100	7.6100	9.3900	8.7800	12.3000	9 .0900	7.3700	12.0000
	2 inc	158.0000**	20.9000	61.0000	19.5000	61.8000	16.1000	1740.0000**	26.0000

Sample 10	EP-01-099-0UP	EP-01-100	EP-01-100	EP-01-101	EP-01-101	
196 10	011.1+328	0111110	0111+200	0111-201	0111-202	
Date Sampled	08/02/92	08/02/92	08/05/92	08/06/92	26/90/00	
Depth (ft)	9.500 ft	3.000 ft	5.000 ft	3.500 ft	7.500 ft	
Metals and Cyanide (ug/g)						
	2530.0000	0000.0099	\$740,0000	3460.0000	2000.0000	
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	
Arsenic	7.3900	3.6700	4.9100	3.5700	5.1100	
Barium	24.4000	145.0000	80,7000	80.5000	82.6000	
Beryllium	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	
Cadhium	< 0.7000	35.1000**	< 0.7000	< 0.7000	< 0.7000	
Colcium	11700.0000	17200.0000	13900.0000	12200.0000	31400.0000	
Chromium	< 4.0500	10.000	8.7000	5.5100	< 4.0500	
Cobait	2.2200	3.8800	3.9100	2.8800	2.6300	
Copper	4.4600	36.4000**	6.1700	9.5900	9.2200	
Cyanide	.< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	
Iron	5400.0000	10400.0000	8660,0000	7250.0000	4410.0000	
Lead	5.1500	227.0000**	9.9000	32.9000	13.0000	
Hagnesium	3670.0000	4260.0000	3400.0000	2320.0000	6590.0000	
Hanganese	114.0000	277.0000	149.0000	250.0000	148.0000	
Hercury	< 0.0500	< 0.0500	< 0.0500 <	0.1140**	· 0.0500	
Hickel	5.6500	8.9000	7.6100	6.0300	5.9700	
Potassium	715.0000	2130.0000	1410.0000	1510.0000	641.0000	
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	
Silver	< 0.5890	3.7000**	< 0.5890	< 0.5890	< 0.5890	
Sodium	298.0000	472.0000	258.0000	474.0000	243.0000	
Thellium	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	
Vanadium	12.2000	13.1000	15.2000	7.0600	8.9200	
2 inc	23.5000	524.0000**	23.8000	57.1000	20.4000	
,						

5-4-3

Notes: **

Page No. 08/14/93

TOOELE AD-WORTH AREA 1 NO. 18 - BURN PAD AREA SOIL ANALYTICAL RESULIS FOR ORGANIC COMPOUNDS

Sample 1D	SB-01-006	SB-01-006	SB-01-006	\$8-01-006	SB-01-006	SB-01-006	EP-01-096	EP-01-096-04P
Lab ID	0111-373	0111*374	011.1*375	0111*376	0111*377	0111*378	0111191	011.1*326
Date Sampled	07/30/92	07/30/92	07/30/92	07/30/92	07/30/92	07/30/92	08/04/92	08/04/92
Depth (ft)	5.000 ft	20.000 ft	35.000 ft	60.000 ft	70.000 ft	80.000 ft	3.500 ft	3.500 ft
Volatile Organic Compounds (ug/g) Tetrachloroethene	< 0.0008	× 0.0008	\$0000 ×	V.	¥ X	*	< 0.0008	1
Semivolatile Organic Compounds (ug/g) Bis (2-ethylhexyl) phthalate	< 0.6200	< 0.6200	0.7500**	ž	₹	\$	< 3.000	¥
Pesticides (ug/g)	¥	¥ N	M	¥	¥	4	4	\$
Herbicides (ug/g)	4	W.	M	YN.	¥	¥	¥	ş
Total Petroleum Mydrocarbons (ug/g)	¥	¥	¥	¥	¥	YN	4	£
Explosives (ug/g) 2,4,6.1rinitrotoluene g Cyclonite (RDX)	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 0.8260**	<pre> 0.4560 > 0.5870 ></pre>
Moxins/furans (ug/g) Heptachlorodibenzodioxin - non specific Heptachlorodibenzofuran - non specific Hexachlorodibenzodioxin - non specific Octachlorodibenzodioxin - non specific	4 4 4 4	<u> </u>	444	444	444	1111	0.001500** 0.000100** 0.000300**	1111

TOCELE AD-NORTH AREA: SIMIL NO. 18 - BURN PAD AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-096	EP-01-097	EP-01-097	EP-01-098	EP-01-098	EP-01-099	EP-01-099	EP-01-099-DUP
Date Sampled	26/06/08	08/05/92	08/05/92	08/05/92	08/05/92	06/05/92	01119198	011.1*328
Depth (ft)	8.000 ft	0.000 ft	6.000 ft	0.000 ft	5.500 ft	7.000 ft	9.500 ft	9.500 ft
Volatile Organic Compounds (ug/g) Tetrachloroethene	¥	NA NA	4	4	4	1.1000**	4	1
Semivolatile Organic Compounds (ug/g) Bis (2-ethythexyl) phthalate	.	\$	¥	¥	ž	< 0.6200	ž	\$
Pesticides (ug/g)	¥ X	*	*	¥	¥	¥	¥	4
Herbicides (ug/g)	¥	X	\$	×	¥.	¥	Ş	¥
lotal Petroleum Mydrocarbons (ug/g)	X	¥	4	XX	¥	¥	¥	\$
Explosives (ug/g) m2,4,6-Trinitrotoluene fCyclonite (fDX)	< 0.4560 < 0.5870	0.6400**	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 × 0.5870	0.560 >	0.4560 >
Dioxins/furans (ug/g) Reptachlorodibenzodioxin - non specific Heptachlorodibenzodium - non specific Hexachlorodibenzodioxin - non specific Octachlorodibenzodioxin - non specific	1111	\$ \$ \$ \$ \$	1111	444	444	1111	1111	1111

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

Page No. 1 06/14/93

TOOLLE AD-WORTH AREA. J NO. 18 - BURN PAD AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Compounds (ug/g)	Lab 10 Date Sampled Depth 'ft)	EP-01-100 01(1*199 06/05/92 3.000 ft	EP-01-100 01.1*200 08/05/92 5.000 ft	EP-01-101 01.1*201 08/06/92 3.500 ft	5-2-
ic Compounds (ug/g) NA NA NA NA NA NA NA NA NA N	Organic Compounds (ug/g)	4	¥	¥	1
NA N	Semivolatile Organic Compounds (ug/g) 8is (2-ethylhexyl) phthalate	\$	4	Š	
NA NA NA NA NA NA CONTROCERDORS (US/S) NA	Pesticides (ug/g)	KH	¥	4	
ydrocarbons (ug/g) MA NA NA NA NA NA (ug/g) (coluene < 0.4560 < 0.4560 < 0.4560 (coluene < 0.5870 < 0.5870 0.9940**)	Merbicides (ug/g)	¥	¥	¥	
(coluene < 0.4560 < 0.4560 < 0.4560)	Total Petroleum Mydrocarbons (ug/g)	¥	¥	¥	
	Explosives (ug/g) 2,4,6-Trinitrolaluene	< 0.4560 < 0.5870	< 0.4560 < 0.5870	< 0.4560 0.9940**	< 0.4560 < 0.5870
	stachlorodibenzofuran - non specific	¥	¥#	¥#	
NA NA	Mexachlorodibenzodioxin - non specific	M	¥	KA	
NA NA NA	Octachlorodibenzodioxin - non specific	*	¥¥	¥ N	

Sample 10	SB-01-006	SB · 01 · 006	SB · 01 · 006	58 · 01 · 006	SB 01-006	900-10-85	EP-01-096	EP-01-096-DU
01 qe1	0111*373	0111*374	0111975	0111*376	0111+377	011.1*378	161-110	0111-326
Date Sampled	07/30/92	07/30/92	07/30/92	07/30/92	07/30/92	07/30/92	06/04/92	06/04/92
Depth (ft)	5.000 ft	20.000 ft	35.000 ft	60.000 ft	70.000 ft	80.000 ft	3.500 ft	3.500 ft
Anions (ug/g)								
Chloride	6.0500	< 6.0500	29.7000	121.0000	135.0000	148.0000	00500.5	0050 9 >
Nitrite, nitrate - nonspecified	0009.0 >	1.2700	2.3300	3.4900	3.5600	2.4900	2.5300**	2.2700
Sulfate	0007.06 >	× 90.4000	< 90.4000	< 90.4000	× 90.4000	128.0000	0007.06 >	0007 06 ×
Total phosphates	410.0000	1200.0000**	540.0000**	85.0000	150.0000	110.0000	280.0000	740.0000
General Inorganic Par ame ters								
3.	6.6300	9.0500	9.1100	8.0000	7.6100	7.4400	6.3700	A. 5200

TOOELE AD-WORTH ARE AND NO. 18 - BURN PAD AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	EP-01-096	EP-01-097	EP-01-097	EP-01-098	EP-01-098	EP-01-099	EP-01-099	EP-01-099-04P
01 qe 1	0111192	011.1*193	011.1*194	0111*195	0111-196	0111-197	0111*198	011 1-528
Date Sampled	08/04/95	08/05/92	08/05/92	08/05/92	08/05/92	08/05/92	08/02/92	08/02/92
Depth (ft)	B.000 ft	0.000 ft	6.000 ft	0.000 ft	5.500 ft	7.000 ft	9.500 ft	9.500 ft
Anions (ug/g)								
Chloride	< 6.0500	< 6.0500	< 6.0500	< 6.0500	< 6.0500	238.0000	16.8000	18.8000
Witrite, nitrate · nonspecified	1.5800	0.6470	0.6410	0.6800	0009'0 >	7.3900**	1.2200	1 160
Sulfate	< 90.4000	< 90.4000	< 90.4000	< 90.4000	< 90.4000	245.0000	0007.06 >	0097 06 >
Total phosphates	580.0000**	440.0000**	330.0000	700.0000**	530.0000**	300.0000	290.0000	**0000.009
General Inorganic Parameters								
3 6.	7.2600	8.1300	7.1200	7.6800	7.7300	7.2800	8.1300	7.4700

Notes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TODELE AD-NORTH AREA: SURU NO. 18 - BURN PAD AREA SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Page No. 1 12/19/92

Sample 10 Lab 10 Date Sampled Depth (ft)	EP-01-100 0111*199 06/05/92 3.000 ft	EP-01-100 0111*200 08/05/92 5.000 ft	EP-01-101 011,*201 08/06/92 3.500 ft	EP-01-101 01L1-202 08/06/92 7.500 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Sulfate Total phosphates	28.5000 5.1400** < 90.4000 590.0000**	10.6000 < 0.6000 < 90.4000 260.0000	43.3000 0.5930 5650.0000** 410.0000	< 6.0500 < 0.6000 < 0.6000 < 710.0000**
General Inorganic Parameters pH	8.3000	6.2100	7.6700	9.1200

tected at the value shown, NA = Not analyzed is above the background concentration for the depth shown, < x Pri Notes: ** =

Table 5-5

TABLE 5-5

TRASH BURN PITS (SWMU 1c) ANALYTICAL RESULTS

TOOELE AD-NORTH AREA: SLANJ NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR METALS

Camble ID	SB-01-007	SB-01-007-DUP	SB · 01 · 007	SB-01-007	SB-01-007	SB-01-007	SB · 01 · 007	790-10-93
	0111*380	011 1*394	0111*383	0111-381	0111*384	0111*382	011.1+385	0111-306
palotte Campian	07/29/92	26/67/20	26/62/10	17/29/92	07/29/92	26/62/10	26/62/10	26/62/10
Depth (ft)	5.000 ft	5.000 ft	10.000 ft	zv.000 ft	25.000 ft	35.000 ft	45.000 ft	60.000 ft
Depth (ft)	5.000 ft	5.000 ft	10.000 11	71 000.77	23.000 11	33.000 11		23.000.00

Sample 10	58-01-007	SB-01-007-0UP	SB · 01 · 007	SB-01-007	SB-01-007	20-00-00V	28.5.5.	20-10-24
	011 1*380	0111*394	011.1*383	0111+381	0111*384	011.1*382	011.1*385	0111*386
	02/30/03	0/0//0	07/20/02	47/29/92	07/29/92	26/62/10	07/29/92	26/62/10
Date Sampled	3//2/10	3 () ()	27 600 65	3 000	36 000 44	16 000 ft	17 000 57	\$ 000 S
Depth (ft)	5.000 ft	5.000 ft	10.000 11	24.000.11	14 DOD C	33.66	2000	
Hetals and Cyanide (ug/g)						,		
Aluminum	3440.0000	2760.0000	4800.0000	2140.0000	5010.0000	4370.0000	7110.0000	0000.0019
Ant immy	. 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1400
Arearic	12,0000	14.0000	14.0000**	8.7200**	10.4000**	11.1000**	6.1200	3.6900
	117.0000	116.0000	95.4000	88.1000	104.0000	75.2000	66.1000	67.8000
	× 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.7160	0.8600
	4 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	· 0.7000
	28500,0000	29000,0000	35000.0000	23600.0000	36900.0000	32400.0000	19900.0000	10700.0000
	6.5600	5.5800	8.3800	4 4.0500	8.1000	10.5000	12.5000	18.7000
- Table 1	2 7900	3.0200	3.3700	2.6500	3.9200	0066.4	4.6700	4.7600
1900	6,1100	5.8800	7.8500	5.1700	7.7700	8.3800	10.2000	7.0500
et ites.	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200 ×	0.9200
Lon	7600,0000	7050.0000	9120.0000	2990.0000	9260.0000	10700.0000	11300.0000	12000,0000
	8.8000	9.0400	10.2000	5.7900	11.8000	9.3700	0.9700	11.0000
1::0000	6150.0000	5900.0000	9000.0699	5050.0000	7620.0000	5700.0000	3950.0000	3660.0000
	119.0000	107.0000	133.0000	124.0000	159.0000	175.0000	137.0000	139.0000
727.15.14	× 0.0500	< 0.0500 ×	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 ×	0.0200
	7.2400	2.9900	0.4800	5.3400	8.8000	12.0000	12.8000	11.8000
	981.0000	829.0000	1380.0000	552.0000	1360.0000	1150.0000	1950.0000	1240.0000
	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
	1420.0000**	1440.0000**	1740.0000	2010.0000**	2880.0000**	1740.0000	1000.0001	719.0000
15.000 15.000	× 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200	• 6.6200
	16.3000	15.3000	19.3000	10.4000	17.0000	18.8000	18.4000	15.6000
2 ion	22.6000	21.3000	29.5000	16.9000	31.0000	32.0000	49.2000	37.3000

5-5-1

is above the background concentration for the depth shown, < = Not

Notes: ** # Vr

ected at the value shown, NA = Not analyzed

SOIL ANALYTICAL RESULTS FOR METALS TOOELE AD-NORTH AREA:

			900	000 10 10	000 00	900 00	900 00	10 47
Sample 10	SB-01-008	SB - 01 - 008	28 - 01 - 008	28-01-002	200 - 10 - 8S	28-01-008	200-10-9S	EF-01-102
1.8b 10	0111*387	011.1*388	011.1*389	0111+390	011.1*391	011.1*392	0111*393	0111*203
Date Sampled	07/28/92	07/28/92	07/28/92	07/28/92	07/28/92	07/28/92	07/29/92	26/90/00
Depth (ft)	5.000 ft	15.000 ft	25.000 ft	35.000 ft	55.000 ft	60.000 ft	100.000 ft	3 500 ft
Metals and Cyanide (ug/g)								
Atuminum	5790.0000	1930.0000	0000.0009	6420.0000	9970.0000	2290.0000	7440.0000	4520.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	11.8000	4.3700	10.2000**	5.7100	3.5600	1.9100	6.0100	3.7800
Barium	118.0000	89.7000	139.0000	115.0000	97.8000	45.9000	81.6000	126.0000
8eryllium	< 0.5000	· 0.5000	0.6860	0.6890	0.8070	< 0.5000	0.9260	1.1200
Cachium	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	5.3300**
Calcium	39900.0000	17000.0000	36900.0000	28700.0000	12800.0000	34700.0000	82000.0000	19100.0000
Chromium	8.5000	< 4.0500	9.6900	11.2000	11.0000	< 4.0500	11.4000	9.7800
Cobalt	3.4500	2.4000	4.2900	3.7800	5.3700	2.7600	7.9000	3.8900
Copper	9.6900	4.8000	8.9000	10.0000	7.1400	3.5600	8.2700	36.8000**
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
Iron	8710.0000	4400.0000	9270.0000	12700.0000	12700.0000	\$050.0000	9450.0000	35900.0000**
Lead	8.7900	4.8600	11.9000	12.4000	15.0000	8.1000	8.4900	129.0000**
Magnesium	7830.0000	3910.0000	7500.0000	6050,0000	4060.0000	6510.0000	8650.0000	3950.0000
N Manganese	133.0000	89.2000	97.5000	0000.66	287.0000	106.0000	294.0000	274.0000
Mercury	< 0.0500	0.0645**	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.3190**
Nickel	8.7900	3.7300	11.3000	9.8500	13.4000	5.6300	14.8000	9.7700
Potassium	1590.0000	403.0000	1410.0000	1490.0000	1610.0000	448.0000	1870.0000	1770.0000
Selenium	0.7820**	0.4300**	0.8930**	1.5900**	0.5270**	0.5300**	1.2500**	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	× 0.5890	< 0.5890	< 0.5890	2.1400**
Sodium	1770.0000**	820.0000	2250.0000**	1860.0000**	784.0000	320.0000	298.0000	339.0000
Thattium	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200	6.6200
Vanadium	19.5000	9.1100	20.7000	24.8000	13.2000	8.4000	16.8000	8.1700
2 inc	27.2000	13.9000	33.9000	37.9000	45.8000	17.7000	41.5000	119.0000**

Sample 10	10	EP-01-102	EP-01-102-DUP	EP-01-103	EP-01-103	EP-01-104	EP-01-104	EP-01-105	EP-01-105
4	: :	011 1+204	011 1+332	011.1*205	011.1*206	011.1+207	0111*208	011.1*209	0111-210
Pate 6	Date Sampled	08/06/92	08/06/92	08/06/92	08/06/92	08/06/92	08/06/92	08/07/92	26/20/90
Depth (ft)	(a)	9.500 ft	9.500 ft	0.000 ft	6.000 ft	3.000 ft	5.500 ft	5.000 ft	7.000 ft
	Makely and Francisch Vinckey								
	ats and cyanica (ug/g)	\$270,0000	6470.0000	3460.0000	9910.0000	7580.0000	2660.0000	6130.0000	3860.0000
Ant	Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	10.5000**	< 7.1400	14.6000**	< 7.1400
ATS	Arsenic	6.7600	7.0500	7.3500	4.0200	15.0000	7.0900	5.1200	9.6500
-60	Barica	128.0000	132.0000	87.7000	149.0000	411.0000**	85.6000	148.0000	101.0000
Ber	Beryllica	1.4900	0.6280	< 0.5000	1.1000	0.7270	< 0.5000	0.8910	< 0.5000
S	Cadmium	1.7400**	2.5400**	< 0.7000	< 0.7000	9.0000	< 0.7000	4.1700**	< 0.7000
Cal	Calcium	17700.0000	21800.0000	27200.0000	14200.0000	25400.0000	30800.0000	10700.0000	35800.0000
Ę	Chromium	13.4000	12.9000	5.8700	11.2000	9.3600	< 4.0500	9.1500	5.3800
S	Cobalt	6.4200	5.4700	2.6200	5.5200	4.5200	2.5000	4.3500	4.0300
8	Copper	1340.0000**	44.3000**	5.6800	13.9000	21.1000	4.3000	327.0000**	9.9500
Cya	Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
	58	38200.0000**	25 700 . 0000**	2940.0000	11000.0000	12900.0000	5260.0000	21900.0000	6870.0000
Lead	Pa	**0000**	203.0000**	6.8100	11.2000	\$6.6000**	6.7900	76.0000*	10.6000
_	Hagnes i um	74,80.0000	5060.0000	4960.0000	7100.0000	5810.0000	6790.0000	3570.0000	8260.0000
Man	Manganese	434.0000	330.0000	76.2000	445.0000	307.0000	110.0000	471.0000	187.0000
Her	Hercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	0.0500
N ic	Nickel	26.3000**	15.8000	2.4600	11.9000	0076.6	5.8800	13.8000	7.7800
Pot	Potassium	2000.0000	2170.0000	793.0000	4080.0000	2460.0000	977.0000	2210.0000	1430.0000
Sel	Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 ×
Sil	Silver	1.1200**	< 0.5890	< 0.5890	< 0.5890	C. 7930**	< 0.5890	1.9900**	< 0.5890
Sod	Sodium	317.0000	346.0000	1760.0000**	320.0000	574.0000	435.0000	692.0000	784.0000
Tha	Thattiem	< 6.6200	< 6.6 200	< 6.6200	< 6.6200	< 6.6 200	< 6.6200	< 6.6200	< 6.6200
Van	Vanadium	9.1900	13.5000	14.7000	16.1000	13.3000	13.2000	9.6600	17.6000
2 inc	٤	**0000**	303.0000**	19.6000	49.0000	17000.0000**	20.000	22000.0000**	124.0000**

Notes: ** =

TOOELE AD-NORTH AREA: , , NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR HETALS

Sample 10	EP-01-105-DUP	EP-01-106	EP-01-106	EP-01-107	EP-01-107	EP-01-108	EP-01-108	EP-01-109
01 de 1	011 1+341	0111-211	0111*212	0111-213	0111*214	0111*215	0111*216	162-1110
Date Sampled	08/07/92	08/07/92	08/07/92	08/07/92	08/07/92	08/01/92	08/07/92	08/08/92
Depth (ft)	7.000 ft	6.000 ft	8.000 ft	1.000 ft	5.000 ft	5.000 ft	7.000 ft	4.000 ft
						-		
Metals and Cyanide (ug/g)								
Atuminum	4780.0000	5070.0000	2880.0000	7330.0000	4280.0000	17000.0000	3680.0000	11600.0000
Ant imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	10.4000**	< 7.1400	< 7.1400
Arsenic	8.9200	7.2400	9.6700	2.3200	8.1800	0.8770	9.2900	0.8760
Barium	103.0000	142.0000	80.2000	300.0000**	89.9000	**0000.909	95.8000	13000.0000**
Beryllium	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.7660	< 0.5000	< 0.5000
Cadmium	< 0.7000	18.8000**	< 0.7000	2.5200**	< 0.7000	72.9000**	< 0.7000	5.9500**
Calcium	35900.0000	42000.0000	97000.0000*	14000.0000	32900.0000	28600.0000	28600.0000	32000.0000
Chromium	9.4700	13.1000	< 4.0500	13.1000	5.8200	**0000.87	5.7000	13.5000
Cobalt	3.9400	4.1600	2.4800	4.1200	3.1400	7.1200	3.2800	5.2900
Copper	12.8000	21.8000	5.3600	**0009.77	5.3000	281.0000**	7.7500	54.5000**
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×
	7870.0000	11700.0000	0000.0909	15200.0000	6550.0000	13400.0000	7000.0000	8270.0000
beat 15	12.0000	\$97.0000**	10.8000	85.5000**	8.2400	691.0000**	0.96.6	71.4000**
Magnesium	8700.0000	5360.0000	5180.0000	5290.0000	7220.0000	8020.0000	5830.0000	26200.0000**
Manganese	173.0000	319.0000	128.0000	412.0000	159.0000	452.0000	196.0000	205.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <
Nickel	7.9100	0007.6	2.6600	11.8000	7.3100	25.6000**	8.1400	11.8000
Potassium	1550.0000	2260.0000	972.0000	3320.0000	1350.0000	3480.0000	1060.0000	2060.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	0.5890	< 0.5890	< 0.5890	2.6800**	< 0.5890	28.0000**	< 0.5890	< 0.5890
Sodium	814.0000	1000.0000	913.0000	410.0000	497.0000	10200.0000**	9000.009	1680.0000**
Thattium	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	8.1800
Vanadium	19.0000	13.0000	13.0000	12.3000	14.5000	47.7000**	15.6000	17.8000
Zinc	184,0000**	454.0000**	19.4000	507.0000**	19.6000	1760.0000**	23.5000	1790.0000**

TOOELE AD-WORTH AREA: SLAVU NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR METALS

Sample ID	EP-01-109	EP-01-110	EP-01-110	EP-01-111	EP-01-111	EP-01-111-DUP	EP-01-112	EP-01-112
(ab 10	011.1*298	011.1*299	011.1•300	011.1*301	0111*302	0111*349	0111*303	0111*304
Date Sampled	26/00/80	08/08/92	26/00/90	08/08/92	08/08/92	08/08/92	08/09/92	08/09/92
Depth (ft)	6.500 ft	0.500 ft	5.000 ft	3.500 ft	5.500 ft	5.500 ft	3.500 ft	5.500 ft

Date Sampled	08/08/92	08/08/92	08/08/92	08/08/92	08/08/92	08/08/92	08/09/85	06/09/92
Depth (ft)	6.500 ft	0.500 ft	5.000 ft	3.500 ft	5.500 ft	5.500 ft	3.500 ft	5.500 ft
Metals and Cyanide (ug/g)								
Aluminum	3500.0000	11400.0000	4980.0000	9000.0099	4300.0000	3060.0000	9210.0000	5410.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	10.2000**	< 7.1400 <
Arsenic	17.0000	1.0000	4.7800	3.9300	10.5000	14.0000	0.000	7.5400
Sprice Control	126.0000	160.0000	67.1000	134.0000	97.3000	101.0000	661.0000**	115.0000
	< 0.5000	0.8830	< 0.5000	0.7930	< 0.5000	< 0.5000	1.3700	< 0.5000
Cedaius	< 0.7000	1.1700**	< 0.7000	6.0200 **	< 0.7000	< 0.7000	1.6400**	< 0.7000
Calcium	26800.0000	17500.0000	5090,0000	24900.0000	25800.0000	25800.0000	18800.0000	36300.0000
Chromium	6.1000	14.8000	7.3000	16.1000	7.1900	5.8300	31.7000**	8.3000
Cobe(t	2.6000	4.9100	3.3900	4.5900	2.8400	2.8400	9.1000**	3.2900
Copper	2.9900	28.2000**	6.2600	**0008.67	6.1100	2.8900	78.4000**	12.2000
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200 <
Iron	7660.0000	13000.0000	7380.0000	13100.0000	7390.0000	6510.0000	45200.0000**	8350.0000
Lead	9.4000	23.0000	0090.6	103.0000**	7.2600	8.3900	928.0000**	23.6000
Hagnes ium	0000.0999	4580.0000	2460.0000	5690.0000	6070.0000	2620.0000	6460.0000	9340.0000
Manganese	109.0000	416.0000	156.0000	299.0000	113.0000	105.0000	209.0000	134.0000
Nercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	< 0.0500 <	< 0.0500 <	· 0.0500
Nickel	9.3800	11.7000	7.6900	17.1000**	6.7800	6.3600	32.9000**	8.3600
Potassium	883.0000	4020.0000	928.0000	2480.0000	1100.0000	848.0000	3840.0000	1370.0000
Setenium	< 0.2500	< 0.2500	< 6.2500	< 0.2500	< 0.2500	< 0.2 500	< 0.2500	0.2300
S: Lee	< 0.5890	5.5400**	< 0.5890	3.8900**	< 0.5890	< 0.5890	1.1900**	< 0.5890
Sodium	1230.0000	310.0000	1040.0000	755.0000	409.0000	375.0000	2130.0000**	1200.0000
That I fum	< 6.6 200	< 6.6200	< 6.6 200	< 6.6200	< 6.6200	< 6.6200	6.3500	9.6200
Vanadium	21.3000	16.9000	13.5000	14.1000	16.7000	14.7000	14.9000	18.2000
2 inc	23.6000	24.4000	20.0000	370.0000**	23.2000	20.4000	\$02.0000**	36.9000

ected at the value shown, NA = Not analyzed

TOOELE AD-NORTH AREA: . . .J NO. 1C - TRASH BURN PITS
SOIL ANALYTICAL RESULTS FOR METALS

Sample 10	EP-01-113	EP-01-113	EP-01-114	EP-01-114	EP-01-115	EP-01-115	EP-01-115-0UP	EP-01-116
	0111*305	0111*306	011.1*307	0111*308	0111*309	0111*310	0111-353	0111-311
Date Sampled	26/60/80	26/60/90	08/09/92	08/09/92	08/10/92	08/10/92	08/10/92	08/10/92
Depth (ft)	6.500 ft	8.000 ft	4.000 ft	11.500 ft	4.500 ft	9.500 ft	9.500 ft	3.500 ft
Metals and Cyanide (ug/g)								
Atuminum	13400.0000	4910.0000	16500.0000	4380.0000	7000.0000	3620.0000	3340.0000	9420.0000
Antimony	< 7.1400	< 7.1400	26.0000**	< 7.1400	< 36.0000	< 7.1400	< 7.1400	< 7.1400
Arsenic	5.5900	6.0500	8.7400	9.9100**	12.0000	6.1400	8.4800	2.9400
en in a	639.0000**	79.1000	531.0000**	123.0000	144.0000	81.3000	81.7000	152.0000
Beryllium	0.8020	< 0.5000	1.8000**	< 0.5000	8.5000**	< 0.5000	< 0.5000	1.2200
Cadmium	2.3600**	< 0.7000	29.5000**	< 0.7000	< 3.5000	< 0.7000	< 0.7000	1.3800**
Calcium	13400.0000	30200.0000	16200.0000	26000.0000	12600.0000	22400.0000	22900.0000	15700.0000
Chronium	30.0000**	6.9100	250.0000**	7.1100	120.0000**	6.2500	5.5900	14.0000
Cobalt	8.4300**	2.9200	23.0000**	3.2200	30.0000**	2.9300	2.9300	4.4300
Copper	126.0000**	2.6600	**0000.897	6.4500	210.0000**	18.5000	6.4200	284.0000**
Cyanide	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200
Iran	18600.0000	7120.0000	77000.00004	7110.0000	240000.00000*	6890.0000	5800.0000	24300.0000**
pean	314.0000**	8.4400	4400.0000*	7.6800	310.0000**	7.2400	7.6200	1060.0000**
• Magnesium	5220.0000	6840.0000	6930.0000	5390.0000	3200.0000	4560.0000	4530.0000	5230.0000
Manganese	424.0000	145.0000	810.0000**	105.0000	2400.0000**	105.0000	92.1000	457.0000
Hercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500 ×	< 0.0500	< 0.0500	< 0.0500 ×	< 0.0500
Nickel	25.0000**	7.5900	47.8000**	6.6700	270.0000**	8.0300	2.9900	12.9000
Potassium	3210.0000	1220.0000	2540.0000	2700.0000	1420.0000	1950.0000	1800.0000	3400.0000
Setenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	0.4210**
Silver	8.6100**	< 0.5890	1.7200**	< 0.5890	4.0004.	< 0.5890	< 0.5890	0.6380
Sodium	1850.0000**	948.0000	2140.0000**	1260.0000	1860.0000**	478.0000	482.0000	3540.0000**
Thallium	< 6.6 200	< 6.6200	29.0000**	< 6.6 200	4 *0000.59	< 6.6200	< 6.6200	< 6.6200
Vanadium	23.2000	15.6000	16.8000	19.3000	< 17.0000	14.4000	13.5000	12.9000
2 inc	1910.0000**	24.6000	4,0000.000,	31.9000	**0000.008	23.6000	21.8000	£64.0000**

Sample 10	EP-01-116	EP-01-11/	EP-01-117	EP-01-118	EP-01-116	£7-01-119	4112.43	201.10.43
1ab 10	0111*312	0111-313	0111*314	0111*315	011.1*316	0111*317	0111-318	011.1-319
Date Samoled	08/10/92	08/10/92	08/10/92	08/10/92	08/10/92	08/11/92	08/11/92	08/11/92
Depth (ft)	9.500 ft	0.500 ft	5.500 ft	0.000 ft	5.500 ft	0.000 ft	5.500 ft	0.000 ft
Metals and Lyanide (Lg/g)	1700 0001	10100,0000	0000.0414	8630,0000	7660,0000	7390.0000	2290.0000	5820.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	11.7000**	< 7.1400	< 7.1400	< 7.1400	× 7.1400
Arsenic	4.8100	0.8900	13.0000	1.3100	3.0200	3.8000	2.6700	4.2700
Barius	84.6000	163.0000	99.4000	162.0000	9009.29	129.0000	52.0000	111.0000
Beryllium	< 0.5000	0.8890	< 0.5000	0.8370	< 0.5000	0.6340	< 0.5000	0.5730
Cachium	< 0.7000	24.0000	< 0.7000	44.5000**	< 0.7000	< 0.7000	o. 7000	< 0.7000
Celcium	20600.0000	21600.0000	25600.0000	4840.0000	52700.0000	21900.0000	24400.0000	39300.0000
Chromium	6.8200	18.5000	9.4400	16.6000	7.1100	8.8000	< 4.0500	7.8900
Cobeit	2.1600	5.4100	2.7200	3.9600	3.4800	3.7900	< 1.4200	3.0600
Copper	9.4600	••0000.69	6.2500	\$5.9000**	00%5.7	15.4000	9.9000	9.5500
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	0.9200	< 0.9200	< 0.9200	< 0.9200
Iron	7080.0000	9790.0000	6550.0000	9900.0000	7350.0000	8850.0000	2260.0000	7480.0000
lead	8.8000	168.0000**	9.8700	223.0000**	8.6400	37.5000	25.7000	22.8000
Magnes ium	4450.0000	7340.0000	6220.0000	3990.0000	6430.0000	6270.0000	3360.0000	999,0099
Manganese	70.8000	346.0000	90.4000	367.0000	128.0000	380.0000	123.0000	211.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500 <
Hickel	6.5100	17.5000**	5.5500	12.4000	9.2500	9.4100	3.9500	7.3200
Potassium	1320.0000	4390.0000	1060.0000	2950.0000	1500.0000	3310.0000	963.0000	2590.0000
Setenica	0.4040**	< 0.2500	< 0.2500	< 0.2500	< 0.2500	0.6060**	0.4940**	0.7850**
Silver	· 0.5890	11.0000**	< 0.5890	70.0000*	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	2170.0000**	631.0000	1750.0000**	332.0000	363.0000	259.0000	205.0000	281.0000
Thetticm	· 6.6200	< 6.6200	< 6.6 200	< 6.6200	< 6.6200	< 6.6200	· 6.6200	× 6.6200
Vanadium	15.0000	24.7000	17.3000	18.3000	13.5000	11.2000	5.7700	10.700
2 inc	26.9000	208.0000**	20.3000	201.0000**	24.4000	49.0000	21.1000	32.7000

Notes: ** =

TOOELE AD-NORTH AREA. AJ NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR METALS

Sample 1D	EP-01-120	EP-01-121	EP-01-121
01 de 1	0111+320	011.1*321	0111*522
Cate Cented	08/11/92	08/11/92	08/11/92
Depth (ft)	5.000 ft	0.000 ft	9.000 ft
merels and framide (100/00)			
	. 4380.0000	5290.0000	1600.0000
Antimony	< 7.1400	< 7.1400	< 7.1400
Arsenic	9.0500	4.9200	2.8400
	96.8000	117.0000	36.3000
Bervilium	< 0.5000	< 0.5000	< 0.5000
Cadaius	< 0.7000	< 0.7000	< 0.7000
	37600.0000	30500.0000	15800.0000
Chromical	0006.9	8.4700	< 4.0500
Cobalt	2.4100	3.2100	< 1.4200
Copper	8.5300	9.9900	2.7500
Cyanide	< 0.9200	0.9200	< 0.9200 ×
_	6470.0000	6590.0000	3160.0000
pea)	37.4000	11.0000	2.9900
.	6280.0000	5670.0000	3410.0000
Mandanese	132.0000	127.0000	51.7000
Resour	· 0.0500	< 0.0500	< 0.0500
Rickel	9.0800	7.5100	2.9800
Potassius	1630.0000	2200.0000	247.0000
Selection	0.7260**	0.5740**	< 0.2500
	< 0.5890	< 0.5890	< 0.5890
Sodice	301.0000	300.0000	241.0000
That Lium	< 6.6200	< 6.6200	< 6.6200
Vanadium	12.2000	13.4000	7.1900
zi.c	24.8000	26.6000	12.7000

TOCELE AD-MORTH AREA: SLATU NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Semple 10	SB-01-007	SB-01-007-DUP	SB-01-007	SB - 01 - 007	SB-01-007	SB-01-007	51-01-00V	28-10-88
01 de 3	0111*380	0111*394	0111-383	011.1*381	011.1*384	011.1*382	011.1*365	0111.38
Date Sampled	07/29/92	07/29/92	07/29/92	07/29/92	07/29/92	26/62/10	26/62/10	29/62/10
Depth (ft)	5.000 ft	5.000 ft	10.000 ft	20.000 ft	25.000 ft	35.000 ft	45.000 ft	60.000 fc
Volatile Organic Compounds (ug/g)								
Acetone	< 0.0170	< 0.0170	K	< 0.0170	¥X	< 0.0170	¥	\$
Chloroform	< 0.0009	< 0.0009	¥	< 0.0009	¥	< 0.0009	4	\$
Hexane	\$	M	¥¥	¥	¥	¥	¥ #	\$
Methylene chloride	< 0.0120	< 0.0120	¥	< 0.0120	¥	< 0.0120	4	\$
Trichlorofluoromethane	< 0.0059	< 0.0059	¥	< 0.0059	¥	< 0.0059	W.	\$
letrachloroethene	< 0.0008	◆ 0.0008	ĭ	< 0.0008	\$	< 0.0008	4	S
Toluene	< 0.0008	< 0.0008	£	< 0.000 6	4	< 0.0008	\$	≦
Semivolatile Organic Compounds (ug/g)								
1,2,4-Trichlorobenzene	< 0.0400	< 0.0400 ×	¥	00%0.0 >	¥	< 0.0400 <	¥	\$
Bis (2-ethylhexyl) phthalate	< 0.6200	< 0.6200	¥	< 0.6200	¥	< 0.6200	*	≨
Mexachlorobenzene	< 0.0330	< 0.0330	¥	< 0.0330	¥	< 0.0330	₹	\$
Napthalene	< 0.0370	< 0.0370	¥¥	< 0.0370	¥	< 0.0370	\$	≦
Pyrene	< 0.0330	< 0.0330	¥	< 0.0330	¥	< 0.0330	48	£
Pesticides (ug/g)	Q	9	¥	Q.	¥	9	¥	1
Herbicides (ug/g)	¥	¥	¥	¥	¥	¥	4	\$
Total Petrolcum Hydrocarbons (ug/g)	¥	4	¥	NA NA	¥	¥	¥	**
Explosives (ug/g)							,	,
1, 3, 5-Trinitrobenzene	< 0.4880	0.4880	0994.D >	0997.0 >	0.4880	< 0.4880	× 0.4800	0007.0 v
2,4,6-Irinitrotoluene	< 0.4560	< 0.4560	× 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560	0.6560
2,4-Dinitrotoluene	< 0.1400	< 0.1400	< 0.4240	< 0.1400	< 0.4240	< 0.1400	0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.0850	< 0.0850	< 0.5240	< 0.0650	< 0.5240	< 0.0850	< 0.5240	< 0.5240
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	· 0.5870	· 0.5878
Cyclotetramethylcnetetranitramine (HMX)	0.6660	0.6660	0.6660	0.6660	< 0.6660	0.6660	× 0.6660	· 0.6660
Dioxins/Furans (ug/g)								
Neptachlorodibenzodioxin - non specific	¥	4	4	4	4	¥	₹	1
Hexachlorodibenzodioxin - non specific	≨	¥	¥#	¥	**	S	1	£
and the same of th	•	4	1	4	4	1	4	1

Page No. 1 08/14/93

TOCELE AD-NORTH AREA: 10.1C - TRASH BURN PITS SOIL ANALYTICAL RESULIS FOR ORGANIC COMPCUNDS

Unit	0.02 0.02 0.00	10 0011+391 07/28/92 10 05/28/92 10 05/28/	011.1*392 07.28/92 60.000 ft NA NA NA NA NA NA NA	100.000 ft	001.11*203 006.06/92 3.500 ft 0.0009 0.0009 0.00008 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009
Compounds (ug/g) Compounds (u	5 6 M		0117392 07/28/92 60.000 ft 84 84 84 84 84 84 84 84 84	01/15993 07/29/92 100.000 ft 100.000 ft 100.000 ft 100.000 ft	001.1°203 06/06/92 3.500 ft < 0.0009 (0.0006 < 0.0008 < 0.0008 < 0.0009 < 0.0009 < 0.0009 < 0.0009
Compounds (ug/g) Compounds (u	5 M		07/26/92 60.000 ft 11A 11A 11A 11A 11A 11A 11A 11A 11A 11	100.000 ft	08/06/92 3.500 ft < 0.0170 < 0.0009 NA < 0.0009 < 0.0008 < 0.0059 < 0.0059 < 20.0000 < 20.0000 < 20.0000
Compounds (ug/g) Compounds (u	m		60.000 ft	100.000 ft	3.500 ft < 0.0170 < 0.0009 NA < 0.0008 < 0.0008 < 0.0059 < 1.0000 < 20.0000 < 20.0000 < 0.0000
Compounds (ug/g) < 0.0170 < 0.0170 NA NA NA NA NA NA NA NA NA N			111111 1111	11111 111	 0.0170 0.0009 0.0120 0.0008 0.0059 1.0000 20.0000 20.0000 20.0000 20.0000 20.0000
Compounds (ug/g)		•	111111 1111	111111 1111	 0.0170 0.0009 0.0120 0.0008 0.0000 20.0000 20.0000 20.0000 20.0000 20.0000
C		•	111111 1111	111111 1111	 0.0170 0.0009 0.0120 0.0008 1.0000 20.0000 20.0000
C 0.0009 C 0.0009 NA		•	11111	111111 1111	 0.0009 10.0008 0.0059 1.0000 20.0000 20.0000
NA		•	1111 1111 11111	11111 1111	 NA 0.0120 0.0008 0.0059 1.0000 20.0000 20.0000
c		•	1111 1111	1111 1111	 0.0120 0.0008 0.0059 1.0000 20.0000 20.0000 0.0000
Compounds (ug/g)		•	111 1111	1111 1111	 0.008 0.0059 1.0000 20.0000 0.0000
Compounds (ug/g) Compounds (•	11 1111	1 1 1 1 1 1 1	 0.008 1.0000 20.000 20.0000 0.0000
obenzene		_	\$ \$\$\$\$\$	14 1411	 0.0059 1.0000 20.0000 0.8000
obenzene	V V V V		1111	1111	< 1.0000 < 20.0000 < 0.8000
obenzene	V V V V		1111	1111	1.000020.00000.8000
Avil phthalate (0.6200 (0.6200 NA (0.6200 (0.0330 NA (0.6200 (0.0330 NA (0.6200 (0.0330 NA (0.6200 NA (0.6200 NA (0.6300 (0.630 (0.630			.	1111	1.000020.00006.8000
ene	~ ~ ~		1111	X	< 20.0000 < 0.8000
ene	v v v		\$ \$ \$	£ £	0.8000
 < 0.0370 < 0.0330 < 0.04880 < 0.4880 < 0.4880 	v v		¥ ¥	**	2000
 < 0.0330 < 0.0330 NA NA<td>< 0.03</td><td></td><td>4</td><td>5</td><td>- C-7565</td>	< 0.03		4	5	- C-7565
NA N				¥	< 0.8000
NA N					
Vdrocarbons (ug/g) NA NA NA NA NA Denzene < 0.4880 < 0.4880 <			¥3	¥.	M
ydrocarbons (ug/g) NA NA NA NA Denzene < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880	NA	K	¥	¥	*
> 0.4880 < 0.4880 < 0.4880	NA AN	K 2	¥	¥	*
> 0880 < 0.4880 < 0.4880 <					
	0.4880	< 0.4880	0.4880	< 0.4880	< 0.4880
2,4,6-Trinitrotoluene < 0.4560 < 0.4560 < 0.4560 < 0.4	0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560
2,4-Dinitrotaluene < 0.1400 < 0.1400 < 0.4240 < 0.0	0.4240	< 0.4240	< 0.4240	< 0.4240	· 4.0000
2,6-Dinitrotoluene < 0.0850 < 0.0850 < 0.5240 < 0.0	0.5240	< 0.5240	< 0.5240	< 0.5240	< 2.0000
Cyclonite (RDX) < 0.5870 < 0.5870 < 0.5870 < 0.9	0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (HHX) < 0.6660 < 0.6660 < 0.6660 < 0.0	0.6660	< 0.6660	0.6660	0.6660	0.6660
Dioxins/furans (ug/g)					
NA KA			¥N	¥.	0.000100
	NA NA		¥	₹	< 0.000027
Octachlorodibenzodioxin - non specific NA NA NA		¥	¥	¥ 2	0.000300**

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, MA = Not analyzed

	201 - 10 - 43	EP-01-102-0UP	EP-01-103	EP-01-103	EP-01-104	EP-01-104	EP-01-105	EP-01-105
(ab 10	011 1*204	01110332	0111*205	0111+206	0111*207	0111*208	0111*209	0111-210
Date Sampled	08/06/92	08/06/92	26/09/00	08/06/92	08/06/92	08/06/92	06/07/92	06/07/92
Depth (ft)	9.500 ft	9.500 ft	0.000 fc	6.000 ft	3.000 ft	5.500 ft	5.000 ft	7.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170 ×	· 0.0170
Chloroform	< 0.0009	< 0.0009	< 0.0009	6000.0 ×	< 0.0009	< 0.0009	4 0.000	< 0.000
Hexane	KA	MA	¥	M	¥	W.	\$	\$
Methylene chloride	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120
Trichlorofluoromethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	0.0100**	< 0.0059
Jetrachloroethene	< 0.0008	₹ 0.0008	c 0.0008	< 0.0008	< 0.0008	< 0.000 0	• 0.0008	• 0.000
Johnene	< 0.0008	· 0.0008	◆ 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	• 0.000 6
Semivolatile Organic Compounds (ug/g)								
1,2,4. Irichlorobenzene	K	K	YN	¥	4 8	MA	0.0690	1
Bis (2-ethylhexyl) phthalate	W.	*	*	VN	4	4	× 0.6200	1
Hexach lorobenzene	¥	43	YH.	4	42	¥#	0.0060**	\$
Napthalene	**	¥3	¥X	¥	¥ 2	¥	0.0780**	1
• Pyrene	4	¥1	¥	¥	4	4	< 0.0330	≦
Pesticides (ug/g)	4	¥	₹	42	4	*	9	\$
Herbicides (ug/g)	¥	¥	¥	¥ X	¥	¥	4	\$
Total Petroleum Hydrocarbons (ug/g)	43	¥	¥	*	ž	W	43	•
Emplosives (ug/g)								
1, 3, 5-Trinitrobenzene	< 0.4880	< 0.4880	· 0.4880	< 0.4880	· 0.4880	· 0.4880	0.4880	0.4880
2,4,6-Trinitrotoluene	7.8400**	2.1700**	< 0.4560 ×	< 0.4560	· 0.4560	< 0.4560	< 0.4560	· 0.4560
2,4.Dinitrotoluene	< 0.4240	c 0.4240	< 0.4240	< 0.4240	0,4240	< 0.4240	< 0.1400	< 0.4240
2,6 Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.0850	< 0.5240
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	0.8300**	< 0.5670
Cyclotetramethylenetetranitramine (HMX)	0999'0 >	09990 >	· 0.6660	0.6660	0.6660	0.6660	0.6660	0.6660
Dioxins/furans (ug/g)								
Neptachlorodibenzodioxin - non specific	¥¥	42	KA K	4	42	K N	¥ X	¥
Nexachtorodibenzodioxin - non specific	¥	MA	M	¥	4	W.	¥	4
	;	•	•		**	•	•	•

te was detected at the concentration shown < = Not detected at the

Notes: ** =

e shown, MA = Not analyzed

Page No. 12/19/92

TOOELE AD-NORTH AREA , NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	EP-01-105-DUP	EP - 01 - 106	24-01-120	201-10-43	EV-01-10/	EV-01-108		
Lab 10	0111*341	0111*211	01114212	0111*213	0111*214	011.1*215	011.1*216	011.1*297
Date Sampled	08/07/92	08/07/92	08/01/92	08/07/92	08/07/92	08/01/92	08/07/92	08/08/92
Depth (ft)	7.000 ft	6.000 ft	8.000 ft	1.000 ft	5.000 ft	5.000 ft	7.000 ft	4.000 ft
Volatile Organic Compounds (ug/g)								
Acetone	4	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	0.0180**
Chloroform	¥	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0012**	< 0.0009	• 0.000
Hexane	W.	NA	\$	42	\$	0.0086**	¥	¥
Methylene chloride	*	< 0.0120	< 0.0120	< 0.0120	< 0.0120	0.0200	< 0.0120	< 0.0120
Trichlorofluoromethane	KA	0.0088**	0.0088**	0.0078**	0.0057**	0.0360**	0.0081**	< 0.0059
Tetrachloroethene	¥	€ 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Toluene	¥	₹ 0.0008	0.0008	0.0012**	< 0.000 8	₹ 0.0008	< 0.0008	¢ 0.0008
Semivolatile Organic Compounds (ug/g)								
1,2,4.Trichlorobenzene	4	4 2	¥	¥N	42	4	¥	¥
Bis (2-ethylhexyl) phthalate	¥2	¥¥	≨	A B	42	¥	¥	\$
	¥	Y.	¥	*	£	¥	¥	\$
	¥#	W	*	*	**	¥	¥¥	*
21. Pyrene	¥ N	NA	X	NA NA	¥2	4		¥
Pesticides (ug/g)	¥ Z	4	¥	4	¥.	¥	4	ş
Herbicides (ug/g)	¥	4	¥ Z	¥	¥	¥	K	4
Total Petroleum Hydrocarbons (ug/g)	¥	ď	4	¥	₹	¥	¥ X	¥
Explosives (ug/g)								
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	· 0.4880	< 0.4880	< 0.4880	< 0.4880	. 0.4880	· 0.4880
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560
2,4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (HHX)	< 0.6660	0.6660	· 0.6660	< 0.6660	0.6660	< 0.6660	· 0.6660	0.6660 ⋅
Dioxins/furans (ug/g)								
Heptachlorodibenzodioxin - non specific	¥.	4 2	¥ X	¥¥	YN.	¥	£	4
Mexachlorodibenzodioxin - non specific	≨	¥	¥	¥	4	≦	¥	₹#
Actach Landibaradiania . na crecitio	5	1	4	4	4	•	**	;

08/08/92 08/	558 m	0111*302 04/04/92 5.500 ft < 0.0170 < 0.0009 NA	0111*349	0111*303	0111-304
0.010 0.01	58 m	6.500 ft 6.500 ft 6.0.0170 6.0.0009	5 500 fg	08/09/92	
0.500 ft 0.500 ft 5.000 ft		5.500 ft < 0.0170 < 0.0009 NA	S SOO FE		06/09/92
councis (ug/g)		0.01700.0009NA	. , , , , , , , , , , , , , , , , , , ,	3.500 ft	5.500 ft
Compounds (Lug/g)		0.01700.0009NA			
Compounds (ug/g)		0.0009 NA	42	< 0.0170	< 0.0170
hane			¥	< 0.0009	0.0012**
terbons (ug/g) carbons (ug/g)			VH.	¥#	ī
Compounds (ug/g) Compounds (ug/g) Compounds (ug/g) NA N	V V V		¥#	< 0.0120	< 0.0120
Compounds (ug/g) Compounds (ug/g) Compounds (ug/g) NA N	V V	< 0.0059	¥#	< 0.0059	< 0.0059
Compounds (ug/g) Rompounds (u	V V	< 0.0008	W	< 0.0008	< 0.0008
Compounds (ug/g) Reference RA RA RA RA RA RA RA RA RA R	• •	< 0.000 8	¥ x	< 0.000 8	• 0.000 8
carbons (ug/g) ere **A **NA	• •			•	
Carbons (ug/g) NA NA NA NA NA NA NA NA NA N	٧	¥	**	< 0.0400 ×	\$
NA N		¥	4	0.7100**	\$
AN NA N	•	¥	¥ X	< 0.0330	\$
Carbons (ug/g) NA NA NA NA NA NA NA NA NA N	•	*	¥ X	0.0600**	\$
Carbons (ug/g) NA NA NA NA NA NA NA NA NA N	•	¥.	¥	0.0670.0	≦
Carbons (ug/g) NA NA NA NA NA NA NA NA NA N		X	\$	9	¥
ene < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4880 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.4560 < 0.5860 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870		¥ N	¥	*	\$
ene		¥	\$	4	\$
ene					
 conference /ul>	•	< 0.4880	0.488 0	< 0.4880	0.4880
<pre>< 0.4240 < 0.4240 < 0.4240 < 0.4240 < 0.5240 < 0.5240 < 0.5240 < 0.5240 < 0.5240 < 0.5870 < 0.587</pre>	0.4560	< 0.4560	× 0.4560	< 0.4560	0.4560
< 0.5240 < 0.5240 < 0.5240 < 0.5240 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0	> 0,424.0	< 0.4240	< 0.4240	< 0.1400	< 0.4240
< 0.5870 < 0.5870 < 0.5870 < 0.5870 < 0.660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.6660 < 0.	0.5240 <	< 0.5240	< 0.5240	< 0.0850	< 0.5240
etetranitramine (HMX) < 0.6660 < 0.6660 < 0.66	0.5870 <	< 0.5870	< 0.5870	< 0.5870	< 0.5870
:	o.6660	0999.0 >	0999.0 >	0.6660	0.6660
		;	:	;	
		42	4	4	4
4		£	¥	1	\$
Octachlorodibenzodioxin - non specific NA NA NA NA		*	X	4	¥

5-5-13

Notes: " te u

Page No. 1 08/14/93

TOOELE AD-NORTH AREA: : SOIL ANALYTICAL RESU.

10. 1C - TRASH BURN PITS FOR ORGANIC COMPOUNDS

Lab ID Date Sampled Depth (ft) Depth (ft) Volatile Organic Compounds (ug/g) Acetone Chloroform Hexane (IIC) MA Methylene chloride Tetrachloroethene MA	011.1*306 08/09/92 8.000 ft	011.1*307	011.1*308	0111*350	0111*309	0111*310	. 0111*353
	08/09/92 8.000 ft	08/09/92	08/09/02	0111-320	08/10/92	08/10/92	0111"355
	08/09/92 8.000 ft	08/09/92	78/00/02		08/10/92	08/10/92	
6.500	8.000 ft			08/10/92		1	08/10/92
		4.000 ft	11.500 ft	3.500 ft	4.500 ft	9.500 ft	9.500 ft
	¥2	¥	*	X	< 0.0170	< 0.0170	4
	¥	¥	\$	¥	< 0.0009	< 0.000	=
	¥2	4	≦	¥2	¥	*	1
loroethene	¥×	Y#	¥	**	< 0.0120	< 0.0120	\$
	K	4	4	M	< 0.0008	· 0.0008	
	NA	¥	¥	¥	< 0.0008	× 0.0008	±
Trichlorofluoromethane	¥#	¥	¥	¥.	< 0.0059	< 0.0059	8
Semivolatile Organic Compounds (ug/g)							
1,2,4-Trichlorobenzene	¥	42	*	4 %	¥	3	1
a late	¥W	*	\$	A	•		
	×	**	*	1		£ \$: :
	*		1	1	Z 4		:
-		E 3	£ 3		E :	* :	\$:
	\$	Š	Ě	\$	4	S	¥
Pesticides (ug/g)	¥	¥	¥	¥	¥	¥	4
Herbicides (ug/g)	¥	ş	ž	¥	¥	¥N	¥
Total Petroleum Mydrocarbons (ug/g)	¥.	¥	¥	¥	¥	W.	¥
Explosives (ug/g)							
1,3,5-Trinitrobenzene < 0.4880	< 0.4880	< 0.4880	< 0.4880	¥	1.6000**	0.4860	0.4880
2,4,6-Trinitrotoluene < 0.4560	< 0.4560	< 0.4560	< 0.4560	MA	3.2700**	· 0.4560	0959.0 >
2,4-Dinitrotoluene < 0.4240	< 0.4240	< 0.4240	< 0.4240	4	12.5000**	< 0.4240	< 0.4240
2,6-Dinitrotoluene c 0.5240	< 0.5240	< 0.5240	< 0.5240	X	1.9300**	< 0.5240	< 0.5240
Cyclonite (RDX) < 0.5870	< 0.5870	**0000°*	< 0.5870	¥	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (HMX) < 0.6660	09990 >	5400.0000**	< 0.6660	42	0999.0 >	0.6660	< 0.6660
Dioxins/Furans (ug/g)							
4	¥.	£	NA NA	0.000600**	4	¥	*
	¥	4	KN KN	0.000100**	4	¥#	¥
Octachlorodibenzodioxin - non specific	¥X	4	*	0.001800**	£	¥	***

IOCELE AD-NORIM AREA: SUMU MO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10 Lab 10 Date Sampled Death (ft)					EP-01-136	EV-02-130	A17.10.13	ACT . FO
lab 10 Date Sampled Death (ft)			20200)	21214	71201 110	7110110	ALT 1-11A
Date Sampled	011.1-511	216-1110	0101-010	*10-110	0101-313	016-210	1000	
Depth (ft)	08/10/92	08/10/92	08/10/92	08/10/92	08/10/92	08/10/92	08/11/92	26/11/90
	3.500 ft	9.500 ft	0.500 ft	5.500 ft	0.000 ft	5.500 ft	0.000 ft	5.500 ft
	,							
Volatile Organic Compounds (ug/g)	,	;					90.0	44644
Acetone	< 0.0170	< 0.0170	< 0.0170	× 0.01/0	· 0.01/0	o 0.0176	0.00	C.0320-
Chioroform	< 0.000	6000.0 ×	· 0.0009	◆ 0.000¢	• 0.0009	< 0.000	• 0.000 • •	· 0.000
Hexese	4 2	¥	\$	¥	¥	¥.	¥ 2	1
Hethylene chloride	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120 <
Trichloroftuoromethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059
Intrachloroethene	< 0.0008	< 0.0008	0.0013**	◆ 0.0008	< 0.0006	< 0.0008	0.0022**	• 0.000
Toluene	< 0.0008	< 0.0008	< 0.000B	♦ 0.0008	\$000° ×	◆ 0.000 8	• 0.000	< 0.000 6
Seaind site Dramie Communds (120/0)								
1 2 4-Irichlorobenzene	*	¥	¥	¥	¥	42	¥¥	1
	¥ N	3	7	4	**	**	*	\$
SIS (C. EIDYINEAYI) JAHIMANA		*	1	=	*	4	K	***
	¥ ;	¥ :	E :					
. Napthalene	4	¥	¥	S	E :		* :	S :
Pyrene	¥¥	¥.	<u> </u>	£	¥	¥	<u> </u>	≦
Pesticides (ug/g)	NA NA	K	¥	*	¥X	48	4	¥
Herbicides (ug/g)	¥¥	¥2	S	4	₹ 2	4	A	\$
lotal Petroleum Hydrocarbons (ug/g)	¥.	N N	4	4	K	4	4	48
Explosives (ug/g)								
1,3,5-Trinitrobenzene	0.4880	< 0.4880	· 0.4880	< 0.4880	< 0.4880	· 0.4880	· 0.4880	· 0.4660
2.4.6-Irinitrotoluene	2.0500**	< 0.4560	< 0.4560	< 0.4560	· 0.4560	· 0.4560	· 0.4560	· 0.4560
2 4.Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	0,4240
2.6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
Cyclonite (80x)	< 0.5870	< 0.5870	**0000.74	< 0.5870	38.0000	< 0.5870	< 0.5870	· 0.5870
Cyclotetramethylenetetranitramine (HMX)	1.5800**	• 0.6660	9.2100	¢ 0.6660	1.6400**	0.6660	0.6660	0.6660
Dioxins/Furans (ug/g)		:	:	:	•	:	;	•
Meptachlorodibenzodioxin - non specific	¥	₹	₹	K	S	*	₹ :	S :
Mexachlorodibenzodioxin - non specific	¥	4	4	4	X	4	4	≦
Octachlorodibenzodioxin - non specific	¥	¥ N	¥	¥ X	¥.	**	*	\$

Notes: **

e was detected at the concentration shown < = Not detected at the

; shown, NA = Not analyzed

Page No. 12/19/92

TOOELE AD-NORTH AREA ... UNO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

9 6	01114319	0111*320	EP-01-121 011.1*321	EP-01-121 0111*322
Date Sampled Depth (ft)	08/11/92 0.000 ft	5.000 ft	08/11/92 0.000 ft	08/11/92 9.000 ft
Volatile Organic Compounds (ug/g)				
Acetone	< 0.0170	< 0.0170	< 0.0170	< 0.0170
Chloroform	< 0.0009	6000.0 >	¢ 0.000	< 0.0009
Нехале	¥.	Z.	\$	¥
Methylene chloride	< 0.0120	< 0.0120	< 0.0120	< 0.0120
Trichlorofluoromethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059
Tetrachloroethene	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Tol uene	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Semivolatile Organic Compounds (ug/g)				
1,2,4.Trichlorobenzene	¥	KN	K	¥
Bis (2-ethylhexyl) phthalate	4	N	*	¥
Nexachlorobenzene	W	*	¥¥	XX
Napthalene	N.	**	ş	XX
Pyrene	Y 2	4	¥	Y.
Pesticides (ug/g)	X X	N.	NA	W
Herbicides (ug/g)	42	4	N	¥
lotal Petroleum Hydrocarbons (ug/g)	N.	¥.	N	K
Explosives (ug/g)				
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	< 0.4880
2,4,6-Irinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560
2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870
Cyclotetramethylenetetranitramine (MMX)	< 0.6660	< 0.6660	< 0.6660	< 0.6660
Dioxins/furans (ug/g)				
Meptachlorodibenzodioxin - non specific	N	¥N	¥X	¥
Hexachlorodibenzodioxin - non specific	KN	¥	¥X	44
Octach ocodibenzodiny in a non enecific	2	42	•	42

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, MA = Not analyzed

TOOELE AD-NORTH AREA: SLAND NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	SB-01-007	SB - 01 - 007 - DUP	SB -01-007	SB-01-007	SB-01-007	SB-01-007	SB-01-007	58-01-007
1.65 10	0111*380	0111-394	0111*383	0111*381	0111*384	011.1+382	0111*385	0111*306
Date Sampled	26/62/10	07/29/92	07/29/92	26/62/20	26/62/10	07/29/92	26/62/20	26/62/10
Depth (ft)	5.000 ft	5.000 ft	10.000 ft	20.000 ft	25.000 ft	35.000 ft	45.000 ft	60.000 ft
Anions (ug/g)								
Chloride	< 6.0500	< 6.0500	16.7000	1720.0000**	1500.0000**	3280.0000**	1890.0000**	2020.0000**
Witrite, nitrate - nonspecified	< 0.6000	0.6000	0.6970	1.2100	2.2300	16.0000**	13.0000**	15.0000**
Sulfate	< 90.4000	0007.06 >	360.0000	834.0000**	623.0000	9250.0000**	764.0000	202.0000
Total phosphates	420.0000**	310.0000	270.0000	760.0000**	440.0000**	320.0000	180.0000	160.0000
General Inorganic Parameters								
75	10.1000	10.2000	8.0500	7.4500	6.4400	9.6600	8.3000	8.4400

Notes: ** = Vp' - is above the background concentration for the depth shown, < = Not ' ected at the value shown, NA = Not analyzed

5-5-17

TOOELE AD-NORTH AREA: J NO. 1C - TRASH BURN PITS
SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	SB-01-008	\$8.01.008	SB-01-00B	\$8-01-008	\$8-01-008	\$8-01-006	SB-01-008	£P-01-102
tab 10	0111*387	011.1*388	0111*389	0111*390	0111-391	0111*392	011.1*393	0111-203
Date Sampled	07/28/92	07/28/92	07/28/92	07/28/92	07/28/92	07/28/92	07/29/92	08/06/92
Depth (ft)	5.000 ft	15.000 ft	25.000 ft	35.000 ft	55.000 ft	60.000 ft	100.000 ft	3.500 ft
Anions (ug/g)								
Chloride	< 6.0500	109.0000	2350.0000**	3390.0000**	1590.0000**	809.0000	470.0000	7.4800
Nitrite, nitrate - nonspecified	< 0.6000	0.6000	5.8800	2.7100	2.7000	7.4700**	12.0000**	7.8000**
Sulfate	< 90.4000	184.0000	0000.989	487.0000	226.0000	127.0000	375.0000	< 90.4000
Total phosphates	330.0000	170.0000	260.0000	260.0000	260.0000	4	£	1400.0000**
General Inorganic Parameters pM	0066.6	8,0600	8.0400	9.1200	8.3600	6.7500	8.4000	9.1500

Notes: ** * Value is above the background concentration for the depth shown, < * Not detected at the value shown, NA = Not analyzed

	EP-01-102	EP-01-102-DUP	EP-01-103	EP-01-103	EP-01-104	EP-01-104	EP-01-105	EP-01-105
01 981	0111+204	0111*332	011.1*205	0111*206	011.1*207	011.1*208	0111*209	011.1*210
Date Sampled	26/90/90	26/09/00	26/00/80	26/90/80	26/90/80	26/90/80	08/01/92	08/01/92
Depth (ft)	9.500 ft	9.500 ft	0.000 ft	6.000 ft	3.000 ft	5.500 ft	5.000 ft	7.000 ft
Anions (ug/g)								,
Chloride	9.1600	· 6.0500	322.0000**	6.0500	71.1000	· 6.0500	115.0000	· 6.0500
Witrite, nitrate - nonspecified	₹.2100**	2.6200**	0.7140	< 0.6000	2.8200**	0.6000	4.7500**	0.6000
Sulfate	< 90.4000	< 90.4000	116.0000	< 90.4000	173.0000	× 90.4000	162.0000	< 90.4000 ×
fotal phosphates	480.0000 **	370.0000	1300.0000**			420.0000	310.000	610.0000**
General Inorganic Parameters								
**	8.1000	7.6700	9.2700	7.7800	8.5900	8.5300	8.2200	9.2400

5-6-19

Notes: **

TOOELE AD-NORTH AREA J NO. 1C - TRASH BURN PITS
SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	EP-01-105-0UP	EP-01-106	EP-01-106	EP-01-107	EP-01-107	EP-01-108	EP-01-108	EP-01-109
Lab 10	. 175-1710	0111*211	0111*212	0111*213	0111*214	0111*215	011.1*216	011.1*297
Date Sampled	08/07/92	08/07/92	26/20/90	08/07/92	08/07/92	08/07/92	08/07/92	26/00/80
Depth (ft)	7.000 ft	6.000 ft	8.000 ft	1.000 ft	5.000 ft	5.000 ft	7.000 ft	4.000 ft
Anions (ua/a)								
Chloride	< 6.0500	18.4000	< 6.0500	< 6.0 500	31.0000	32.5000	< 6.0500	45.2000
Witrite, nitrate - nonspecified	0009'0	1.8400	0.8240	0.5970	× 0.60	12.0000**	2.4000**	17.0000**
Sulfate	< 90.4000	310.0000	< 90.4000	< 90.4000	< 90.4000	< 90.4000	× 90.4000	< 90.4000
Total phosphates	420.0000	200.0000	••0000.089	360.0000	360.0000	410.0000	220.0000	250.0000
General Inorganic Parameters								
**	7.5700	8.1500	7.1800	7.6500	7.5700	7.8300	8.2200	9.3200

Notes: ** x Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TOCELE AD WORTH AREA: SLANJ NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Page No. 1 12/19/92

Sample 10	EP-01-109	EP-01-110	EP-01-110	EP-01-111	EP-01-111	EP-01-111-DUP	EP-01-112	EP-01-112
Lab 10	0111*298	0111*299	011.1*300	011.1*301	0111+302	011.1*349	0111*303	0111*304
Date Sampled	08/08/92	08/08/92	08/08/92	26/00/80	26/90/80	26/00/00	08/09/92	26/60/90
Depth (ft)	6.500 ft	0.500 ft	5.000 ft	3.500 ft	5.500 ft	5.500 fc	3.500 ft	5.500 ft
Anions (ug/g)	0007 St	A 0500	00500	220 0000	A8 5000	A2 9000	**************************************	0001-27
	9027	0000.		7 00004	0007 0	4000	. 00004	
Mitrite, nitrate - nonspecified	1.4300	3.4800==	v 0.6000	0004.	200.0 200.0	0.000	0.9006	38.
Sulfate	0007°06 >	< 90.4000	× 90.4000	217.0000	000 1 .06 ×	× 90.4000	315.0000	9007°06 ×
Total phosphates	0000.76	390.0000	620.0000**	390.0000	240.0000	130.0000	430.0000	0000.077
General Inorganic Parameters pH	9.94.00	7.0800	10.0000	8.7800	9.3500	8.3400	9.9100	10.3000

ie is above the background concentration for the depth shown, < = F 'etected at the value shown, NA = Not analyzed

Hotes: ** :

TOOFLE AD-WORTH AREA: , NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	EP-01-113	EP-01-113	EP-01-114	EP-01-114	EP-01-115	EP-01-115	EP-01-115-0UP	EP-01-116
01 del	011.1*305	011.1+306	0111-307	011.1+308	0111-309	011.1*310	0111+353	0111*311
Date Sampled	26/60/90	08/09/92	08/09/92	08/09/92	08/10/92	08/10/92	08/10/92	08/10/92
Depth (ft)	6.500 ft	8.000 ft	4.000 ft	11.500 ft	4.500 ft	9.500 ft	9.560 ft	3.500 ft
Anions (ug/g)								
Chloride	10.000	22.1000	280.0000**	220.0000	113.0000	37,0000	77.4000	22.3000
Mitrite, nitrate - nonspecified	**************************************	1.1400	26.0000**	10.2000**	1.9300	2.1800	2.6600**	5.0100**
Sulfate	198.0000	< 90.4000	630.0000**	225.0000	229.0000	109.0000	134.0000	× 90.4000
Total phosphates	260.0000	230.0000	340.0000	160.0000	230.0000	260.0000	210.0000	260.0000
General Inorganic Parameters								
£	9.5000	10.2000	9.1800	10.2000	9.8600	9.7900	9.5700	10.4000

Notes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

Sample 10	EP-01-116	EP-01-117	EP-01-117	EP-01-118	EP-01-118	EP-01-119	EP-01-119	FP-01-120
01 qe1	0111-312	011.1*313	0111-314	0111*315	0111*316	0111-317	011.1*318	011 14410
Date Sampled	08/10/92	08/10/92	08/10/92	08/10/92	08/10/92	08/11/92	08/11/92	08/11/02
Depth (ft)	9.500 ft	0.500 ft	5.500 ft	0.000 ft	5.500 ft	0.000 ft	5.500 ft	0.000 ft
Anions (ug/g)								
Chloride	< 6.0500	8.6300	170.0000	< 6.0500	8.2400	16.5000	, 6 m500	0027 Z
Nitrite, nitrate - nonspecified	3.3800**	5.1600**	0.6000	1.0100	0.6900	18.0000**	0009.0 >	
Sul fate	0007 06 >	< 90.4000	1200.0000**	< 90.4000	0007.06	< 90.4000	0007 06 >	96.4
fotal phosphates	110.0000	130.0000	330.0000	210.0000	360.0000	480.0000**	230.0000	240.0000
General Inorganic Parameters								
£	10.4000	7.2100	9.7400	6.7200	9.5700	8.4700	9.4200	0.1100

6-6-23

is above the background concentration for the depth shown, < = 8-

ected at the value shown, NA = Not analyzed

TOOELE AD-WORTM AREA JU NO. 1C - TRASH BURN PITS SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Page No. 12/19/92

1

Notes: ** * Value is above the background concentration for the depth shown, < * Not detected at the value shown, NA * Not analyzed

Table 5-6

TABLE 5-6

PROPELLANT BURN PANS (SWMU 1d) ANALYTICAL RESULTS

TOOELE AD-NORTH AREA: SLANJ NO. 1D - PROPELLANT BURN PANS SOIL ANALYTICAL RESULTS FOR METALS

Sample 10	SB - 01 - 005	58-01-005	SB-01-005	SB-01-005-DUP	SB-01-005	SB-01-005	SB-01-005	SB - 01 - 805
	011.1*287	0111*288	0111*289	011.1*294	0111*290	011.1*291	0111*292	011.1-293
	07/26/02	03/32/0	07/26/02	07/25/02	07/25/02	07/25/02	07/25/02	03/25/02
בשנע משולינים	7,777.5	10 000 61	20 000 65	20,000,40	25 000 40	30 000 02	70 000 64	100 000
Ueptin (Tt.)	11 000.0	200.01	200.01	11 000 07	31 000.73	35.55		
Motels and Cvanide (115/8)								
Alueirus	16100.0000	4090.0000	9000.0009	0000.0009	6200.0000	5310.0000	1630.0000	2680.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	9.8200	9.5800
Arsenic	9.6300	4.8200	7.8900	5.1700	5.7500	5.4700	3.2500	7.0900
Berica	173.0000	45.3000	75.1000	82.6000	94.9000	99000.99	35.5000	26.4000
Beryllium	1.5300	< 0.5000	0.7220	0.8330	0.7950	0.6130	< 0.5000	· 0.5000
Cachaiun	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	· 0.7000
Catcium	32900.0000	97000.0000	24300.0000	23800.0000	32400.0000	130000.0000	240000.000042	230000.00002
Chronica	23.0000**	7.9500	10.9000	10.6000	10.3000	7.0100	2.4400	6.4100
Cobalt	8.3700**	2.7400	4.6400	4.4500	4.7300	3.3600	< 1.4200	1.8400
Copper	18.8000	9.0000	9.6200	9.1900	9.4300	2.2600	8.0100	4.0700
Cvanide	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200
Ira	16800.0000	6500.0000	11400.0000	11000.0000	10700.0000	9540.0000	3040.0000	3920.0000
gread	22.0000	5.8900	11.4000	10.8000	11.7000	6.5900	4.5300	3.7000
Greenes Lus	10400.0000	7270.0000	5700.0000	2440.0000	6800.0000	28200.0000	5520.0000	5240.0000
- Aproposes	472.0000	202.0000	136.0000	138.0000	104.0000	298.0000	102.0000	120.0000
Mercury	< 0.0500	< 0.0500	0.0727**	0.0637**	0.0500	• 0.0500	< 0.0500	< 0.0500 ×
Nickel	₹9004.	8.6500	10.1000	9.9000	11.6000	7.5700	5.7400	7.1200
Potassium	3210.0000	645.0000	1020.0000	1050.0000	1380.0000	1350.0000	201.0000	746.0000
Selenica	1.1600**	1.3800**	0.7490**	0.6840**	1.1700**	1.3900**	1.6800**	1.8800**
S	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 1.2000	· 1.2000
Sodium	2770.0000**	867.0000	2500.0000**	2350.0000**	3030.0000**	1390.0000	434.0000	243.0000
Thellium	< 6.6 200	< 6.6200	6.6200	< 6.6200	< 6.6200	12.3000**	9.2800	6.9700
Venedium	31.5000**	13.8000	23.9000	21.8000	22.1000	14.4000	0077.6	10.2000
Zinc	109.0000**	24.0000	33.1000	32.9000	36.8000	22.7000	20.2000	25.000

Notes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-NORTH AREA: SW. , 10 - PROPELLANT BURN PANS SOIL ANALYTICAL "CSULTS FOR METALS

Sample 10	EP-01-083	EP-01-083	EP-01-084	EP-01-084	EP-01-085	EP-01-085	EP-01-086	EP-01-086
	011 14145	A1110	741 110	84141110	011 1 110	0111110	011.171	0111172
Lab ID	COL 1110	011110	01.10		10, 40, 70	00,740,00		60,761,90
Date Sampled	06/27/92	06/27/92	06/27/92	26/12/90	76/77/90	76/77/90	74/77/00	26/12/on
Depth (ft)	0.000 ft	4.500 ft	0.000 ft	4.500 ft	0.000 ft	4.500 ft	0.000 ft	5.000 ft
Attacks and cyanica (cg/g)	8830.0000	7770.0000	0000.0969	2900.0000	11500.0000	14800.0000	6380.0000	13800.0000
And instance	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Areas a	5.3300	6.2900	3.9100	2.9000	5.8900	10.4000	7.9400	10.1000
	301,0000**	64.1000	329.0000**	46.0000	182.0000	211.0000	275.0000**	177.0000
	1.3900	1.2900	0.9200	0.8820	1.7300**	1.7500**	0.7860	1.7900**
	1.4500**	< 0.7000	1.4500**	< 0.7000	< 0.7000	< 0.7000	1.7100**	< 0.7000
	26100.0000	67000.0000	25500.0000	41500.0000	34900,0000	34800.0000	30500.0000	36600.0000
	12.2000	13.6000	0078.6	9.1100	13.6000	19.5000	10.7000	17.3000
	4.2600	4.0400	3.4800	3.0400	5.9300	8.9300**	4.3500	7.8700**
i and a	229.0000**	9.1800	249.0000**	6.2600	74.2000**	17.5000	211.0000**	16.7000
	1.3500**	< 0.9200	1.1500**	1.4100**	< 0.9200	< 0.9200	< 0.9200	< 0.9200
2011	10600.0000	10100.0000	8630.0000	8100.0000	12300.0000	16600.0000	9300.0000	14,800,0000
	388.0000**	23.0000	44.3000	9.5200	130.0000**	17.0000	2030.0000**	14.0000
Hanne i san a	7280.0000	12200.0000	5630.0000	10400.0000	9390.0000	9300.0000	7000.0000	8380.0000
and	413.0000	365.0000	276.0000	124.0000	505,0000	**0000.709	379.0000	531.0000
	< 0.0500	< 0.0500	0.0638**	0.1100**	< 0.0500	< 0.0500	0.0773**	< 0.0500
	11.6000	15.2000	0009.6	11.7000	15.8000	22.7000**	12.0000	19.4000**
	4110.0000	1120.0000	2710.0000	705.0000	4470.0000	3590.0000	2890.0000	3320.0000
1:00	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
wijeos	426.0000	1220.0000	1160.0000	1160.0000	364,0000	3720.0000**	289.0000	3760.0000**
	16.2000**	16.1000**	9.7200**	< 6.6200	< 6.6200	< 6.6200	< 6 .6200	· 6.6200
1:7:00	16.1000	22.9000	14.6000	15.5000	19.0000	\$6.9000**	14.0000	30.6000
Zinc	140.0000**	43.9000	149.0000**	37.2000	84.4000	85.2000	137.0000**	70.0000

TOOELE AD-NORTH AREA: SLANU NO. 1D - PROPELLANT BURN PANS SOIL AMALYTICAL RESULTS FOR METALS

Sample 10	EP-01-087	EP-01-087-DUP	EP-01-087	EP-01-088	EP-01-088	EP-01-089	EP-01-089
(ab i0	0111173	0111•253	0111174	0111175	0111110	011.1*177	011.1.178
Date Sampled	26/58/90	06/28/92	06/28/92	06/28/92	06/28/92	26/52/90	26/82/90
Depth (ft)	0.000 ft	0.000 ft	5.000 ft	0.000 ft	6.000 ft	0.000 ft	4.500 ft
Attended by the Attended Colors	6870.0000	8030.0000	8790.0000	7000.0000	9530.0000	6730.0000	16200.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	4.3300	5.1300	7.9500	4.6500	6.7000	4.5700	8.0700
	240.0000	204.0000	96.0000	294.0000**	119.06.30	351,0000**	240.0000
Bervil ium	0.7560	0.7380	1.1000	0.7290	1.4500	0.9060	1.8800**
Cadaium	1.2700**	1.3300**	< 0.7000	1.1200**	< 0.7000	1.4300**	< 0.7000
Calcium	28600.0000	28600.0000	61000.0000	35300.0000	75000.0000**	32500.0000	26400.0000
Chronical	10.3000	11.3000	12.7000	10.4000	14.0000	10.1000	20.2000
Cobalt	3.8500	4.2300	j.6500	3.5100	5.3500	3.3900	8.4100**
Copper	165.0000**	169.0000**	9.7800	179.0000**	11.2000	234.0000**	16.4000
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	1.2200**	< 0.9200
lron.	8370.0000	9860.0000	10500.0000	8310.0000	11400.0000	8480.0000	17000.0000
lead 2	1350.0000**	196.0000**	14.0000	1450.0000**	12.0000	126.0000**	16.0000
Magnes Ltd	6520.0000	6940.0000	14400.0000**	5870.0000	8350.0000	5880.0000	7860.0000
Kanganese	349.0000	376.0000	531.0000	293.0000	522.0000	247.0000	\$76.0000**
Mercury	0.0545**	0.0622**	< 0.0500	0.0891**	< 0.0500	0.1210**	< 0.0500 <
Nickel	10.7000	11.7000	16.5000	10.0000	15.8000	9.8200	00022
Potassium	2770.0000	3070.0000	1180.0000	2510.0000	1810.0000	2940 . 0000	0000.0007
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	· 0.5890
Sodium	340.0000	352.0000	1500.0000**	322.0000	516.0000	317.0000	2530.0000**
That Lium	< 6.6200	< 6.6200	< 6.6200	< 6.6 200	< 6.6 200	< 6.6200	· 6.6200
Vanadium	12.8000	14.6000	23.5000	14.2000	22.1000	12.6000	30.0000**
Zinc	111.0000**	113.0000**	45.6000	118.0000**	54.3000	145.0000**	74.8000

Notes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-WORTH AREA: SM 1D - PROPELLANT BURN PANS SOIL ANALYTICAL RESUL.. FOR ORGANIC COMPOUNDS

Sample 10	\$8-01-005	\$8.01.005	\$8-01-005	SB-01-005-0UP	se-01-005	\$8-01-005	\$8-01-005	SB-01-005
Lab 10	011.1*287	0111*288	011.1*289	011.1*294	0111*290	011.1*291	011.1*292	011 1*293
Date Sampled	26/52/10	07/25/92	07/25/92	07/25/92	07/25/92	07/25/92	07/25/92	07/25/92
Depth (ft)	5.000 ft	10.000 ft	20.000 ft	20.000 ft	25.000 ft	30.000 ft	40.000 ft	100.000 ft
Volatile Organic Compounds (ug/g)	Y X	Y Y	\\	Y.	¥ X	Y N	¥ X	Y Y
Semivolatile Organic Compounds (ug/g) Di-n-butyl phthalate	4	¥	¥	¥	¥	*	₹	¥.
Pesticides (ug/g)	¥	¥2	¥	N	¥	N N	¥	4
Herbicides (ug/g)	¥	¥.	¥	¥¥	¥.	¥ Z	¥	¥
Total Petroleum Hydrocarbons (ug/g)	¥	¥	¥.	N A	¥	¥	W	¥
Explosives (ug/g) 2,4-Dinitrotoluene	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240	< 0.4240
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240	< 0.5240
Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870	< 0.5870
o Dokins/furans (ug/g)	¥	YN.	4	N	4	¥ Z	¥.	X

TOOELE AD-NORTH AREA: SLANJ NO. 10 - PROPELLANT BURN PANS SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 1D Lab 10 Date Sampled	EP-01-083 0111*165	EP-01-083 011.1*166	EP-01-084 011 1*167	EP-01-084 0111*168	EP-01-085 011 1*169	EP-01-085 011 1*170	EP-01-086 0111*171	EP-01-006 0111-172
Depth (ft)	0.000 ft	4.500 ft	0.000 ft	4.500 ft	0.000 ft	4.500 ft	0.000 ft	06/27/92 5.000 ft
Volatile Organic Compounds (ug/g)	¥	NA	VX	KA	V2	WA	¥ Z	4
Semivolatile Organic Compounds (ug/g) Di-n-butyl phthalate	Y	¥	4	¥	¥	ž	*	£
Pesticides (ug/g)	W.	N.	¥	M	. NA	W.	¥	¥
Herbicides (ug/g)	¥	YN .	¥	X	42	W.	¥	¥
Total Petroleum Hydrocarbons (ug/g)	¥	¥	4	¥	N	NA NA	W.	¥3
Explosives (ug/g) 2,4-Dinitrotaluene 2,6-Dinitrotaluene Cyclonite (RDX)	13.6000** < 0.5240 < 0.5870	< 0.4240 < 0.5240 < 0.5870	6.7800** < 0.5240 < 0.5870	< 0.4240 < 0.5240 < 0.5870	< 0.4240 < 0.5240 < 0.5870	< 0.4240 < 0.5240 < 0.5870	2.0700** < 0.5240 < 0.5870	< 0.4240 < 0.5240 < 0.5870 <
er Opioxins/furans (ug/g) on	₹ 2	4	¥.	4	¥	¥.	₹ 2	¥

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-NORTH AREA: SW . 1D - PROPELLANT BURN PANS SOIL ANALYTICAL RESUL: 5 FOR ORGANIC COMPOUNDS

Sample 10	EP-01-087	EP-01-087-DUP	EP-01-087	EP-01-087-0UP	EP-01-088	EP-01-088-DUP	EP-01-088	EP-01-089
OI qu'i	011.1*173	0111*253	0111*174	0111*244	01111175	0111*245	01110176	011 14177
Date Sampled	06/28/92	06/28/92	06/28/92	06/28/92	06/28/92	06/28/92	06/28/92	06/28/92
Depth (ft)	0.000 ft	0.000 ft	5.000 ft	5.000 ft	0.000 ft	0.000 ft	6.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)	¥	¥¥	¥ X	æ	NA NA	QN	N N	¥ X
Semivolatile Organic Compounds (ug/g) Di-n-butyl phthalate	¥	X	< 0.0610	¥	0.8040**	¥	4	¥
Pesticides (ug/g)	X	W	¥	V.	NA	¥2	\$	KN
Herbicides (ug/g)	¥	¥.	¥	N	X	¥.	¥	¥
Total Petroleum Hydrocarbons (ug/g)	W	¥¥	*	Y.	N.	KA	X	\$
Explosives (ug/g) 2,4-Dinitrotoluene	5.4600**	2.4500**	< 0.1400	¥	10.3000**	₹ 2	< 0.4240	5.4800**
2,6-Dinitrotoluene	< 0.5240	< 0.5240	< 0.0850	KN	0.2820**	K	< 0.5240	< 0.5240
Cyclonite (RDX)	0.6890**	0.7380**	< 0.5870	NA NA	1.0900**	£	< 0.5870	< 0.5870
o Doxins/furans (ug/g)	¥.	¥2	X	NA	¥	¥.	W	**

Date Sampled Depth (ft) Volatile Organic Compounds (ug/g)	EP-01-089 01.1*178 06/28/92 4.500 ft
Di-n-butyl phthalate Pesticides (ug/g) Herbicides (ug/g)	4 4 4
Total Petroleum Hydrocarbons (ug/g) Explosives (ug/g) 2.4-Dinitrocoluene	NA NA 0,524,0 >
2,6-Dinitroluene Cyclonite (RDX)	< 0.5240 < 0.5870
operins/furans (ug/g)	4

TOOKLE AD-WORTH AREA: SI . 1D - PROPELLANT BURN PANS SOIL ANALYTICAL RESUL... FOR GENERAL CHEMICALS

Sample 1D Lab 1D Date Sampled Depth (ft)	\$8.01.005 01L1*287 07/25/92 5.000 ft	\$8.01.005 011.1*288 07/25/92 10.000 ft	SB-01-005 01L1*289 07/25/92 20.000 ft	\$8-01-005-0UP 01L1*294 07/25/92 20.000 ft	\$8-01-005 01L1*290 07/25/92 25.000 ft	\$8-01-005 011.1*291 07/25/92 30.000 ft	\$8-01-005 0111*292 07/25/92 40.000 ft	\$8-01-005 0111*293 07/25/92 100.060 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Suifate Total phosphates	23.7000 11.0000** < 90.4000 1000.0000**	109.0000 1.0300 341.0000 660.0000**	105.0000 1.3200 < 271.0000 580.0000**	985.0000 1.2200 998.0000**	5920.0000**. 10.5000** 427.0000 860.0000**	3620.0000** 13.0000** 186.0000	1450.0000** 7.2000** < 90.4000 710.0000**	43.3000 < 0.6000 < 90.4000 < 7.4900
General Inorganic Parameters pM	9.5800	9.2300	8.6900	8.5100	7.7600	7.7800	7.9500	8.6200

TOOELE AD-NORTH AREA: SLANU WO. 1D - PROPELLANT BURN PANS SOIL ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 1D	EP-01-083	EP-01-083	EP-01-084	EP-01-084	EP-01-085	EP-01-085	EP-01-086	EP-01-086
01 981	01110165	011.1*166	0111*167	0111-168	0111*169	0111110	011.1*171	211-1110
Date Sampled	26/22/95	06/27/92	06/27/92	06/27/92	06/27/92	26/22/95	26/22/90	06/27/92
Depth (ft)	0.000 ft	4.500 ft	0.000 ft	4.500 ft	0.000 ft	4.500 ft	0.000 ft	5.000 ft
Anions (ug/g)								
Chloride	0009'87	6.7500	1200.0000**	9.0300	29.4000	4500.0000**	9.5200	2800.0000**
Mitrite, nitrate - nonspecified	37.0000**	0.7130	87.0000**	2.2200	20.0000**	2.3300	24.0000**	1.0600
Sulfate	452.0000	< 90.4000	1200.0000**	× 90.4000	< 90.4000	1300.0000**	× 90.4000	631.0000**
Total phosphates	640.0000**	420.0000	550.0000**	2300.0000**	670.0000**	2100.0000**	••0000.098	1000.0000**
General Inorganic Parameters pM	6.9500	0069.6	9.6600	9.9000	8.5000	9.8600	7.3900	7.2900

Notes: ** x Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-MORTH AREA: St . 10 - PROPELLANT BURN PANS SOIL ANALYTICAL RESULES FOR GENERAL CHEMICALS

temple to	EP-01-087	EP-01-087-0UP	EP-01-087	FP-01-088	FP-01-088	FP-01-mAv	50-01-080
	22141110	O11 14253	011 14174	2011	011 14174	0.11 10177	8414
		662 1310		01.1.10	0/1-1/0	211-110	
Date Sampled	06/58/92	06/28/92	06/28/92	06/28/92	06/28/92	06/28/92	06/28/92
Depth (ft)	0.000 ft	0.000 ft	5.000 ft	0.000 ft	6.000 ft	0.000 ft	4.500 ft
Anions (ug/g)	i i						
Chloride	20.8000	45.3000	8.3000	33.3000	25.5000	32.1000	41.8000
Mitrite, nitrate - nonspecified	61.0000**	55.0000**	0.9340	27.0000**	5.4300**	39.0000**	2.0500
Sulfate	195.0000	169.0000	< 90.4000	156.0000	< 90.4000	830.0000**	203.0000
Total phosphates	980.0000**	730.0000**	1400.0000**	1100.0000**	1100.0000**	530.0000**	790.0000**
General Inorganic Parameters							
£	7.1500	8.5500	0097.6	7.1500	7.9800	6.8200	8.1800

Table 5-7

TABLE 5-7

BOX ELDER WASH ANALYTICAL RESULTS

TOOELE AD-NORTH AREA: SUMU NO. 1 - BOX ELDER WASH SOIL ANALYTICAL RESULTS FOR METALS

Page No. 1 12/18/92

							700 10	400.00
Semile 10	\$5-01-001	SS-01-00 5	SS-01-002-DUP	\$5-01-003	SS-01-00¢	58-01-002	22-10-60	20-10-88
	9014	00/46	20741 110	10711110	7071110	011 1*403	01.1.404	0111405
2 4	0111-350	00%-1710	100		100		60,43,40	CD/C1/40
Date Samiled	07/12/92	07/12/92	07/12/92	07/12/92	26/21//0	26/21//0	24/21//0	24/31/10
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 te
(a) and of the contract of the								
Actes and cyanica togya	V000 000Y	A 100 0000	9120,0000	10700.0000	8910.0000	6630.0000	8890.0000	7540.0000
AI CAI MA	0091.2 %	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Antimony	0000 \$	2 0300	9.7000	6.7000	9.4000	9.4000	9.3000	5.2500
Arsenic	2004.7	152 0000	149,0000	163.0000	137.0000	151.0000	141.0000	129.0000
	000.01	0676	1,1700	1.3400	1.0100	0.9420	1.0900	0.6510
	0.04%	0.8800**	0.9430**	< 0.7000	00.7000	< 0.7000	< 0.7000	0.700
	41200,0000	37000.0000	38800,0000	33100.0000	31000.0000	47800.0000	34500.0000	34300.0000
	8.6600	10.6000	11,8000	12.8000	11.3000	11.0000	11.2000	10.1000
	5.1500	5.3400	5.6700	9.4000	5.2300	2.4500	5.2100	4.8100
רממונו	0000 71	65.3000**	75.3000**	20.5000	10.9000	19.3000	16.0000	12.2000
	0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200 ×	< 0.9200 ×	0.9200
Cyaniae	8070.0000	9420,0000	10300.0000	11200.0000	9720.0000	9570.0000	9710.0000	8780.0000
	11.0000	13.0000	11.0000	12.0000	8.2000	8.2000	9.1000	9.2000
	8660.0000	8710.0000	9070.0000	6780.0000	7500.0000	3400.0000	8700.0000	8260.0000
	0000 077	453,0000	457,0000	\$26.0000	429.0000	498.0000	443.0000	412.0000
	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500 <	< 0.0500 ×	× 0.0500
	11,4000	12,5000	13.8000	14.9000	12.1000	12.5000	12.6000	11.9000
NICKEL STATES	2880,0000	3240,0000	3440.0000	4160.0000	3020.0000	3230.0000	3070.0000	2640.0000
	× 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	0052.0
	0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	× 0.5890	× 0.5890
1110	339,0000	321,0000	317.0000	338.0000	414.0000	348.0000	325.0000	288.0000
	× 6.6200	< 6.6200	0060.6	< 6.6200	< 6.6200	6.6200	< 6.6200	· 6.6200
	15, 1000	15.4000	16.1000	18.7000	16.4000	16.5000	16.3000	15.600
Vertaglium	72.6000	72.7000	77.7000	58.5000	48.1000	54.3000	50.1000	43.3000

is above the background concentration for the depth shown, < = Nr

ected at the value shown, MA = Not analyzed

Notes: ** =

Page No. 1 12/18/92

TOOELE AD-NORTH AREA. I NO. 1 - BOX ELDER UASH SOIL ANALYFICAL RESULTS FOR METALS

Date Sampled 07/12/92 Depth (ft) 0.000 ft Aluminum \$120.000 Aluminum < 7.1400 Antimony < 7.1400 Arsenic 90.3000 Barium 0.6980 Cadmium < 0.7000 Cateium 38600.0000 Chromium 7.0200 Cobalt 3.0600	S 68 9 5 1-		
3888	38.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	512 3886 594 594 594 595 595 596 596 596 596 596 596 596 596	388 × 2512 0.0 254
snide (ug/g) 512	5 212 3666 594 594 594 594 594 594		55 6 33 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
512	512 3666 594 594 595 594 595 596 596 597 597 598 598 598 598 598 598 598 598	512 3886 3886 594 594 594 595 596 596 596 597 598 598 598 598 598 598 598 598	512 366 596 596 597 597 597 598 598 598 598 598 598 598 598
3998	tium Lium tium I ium I i	tium 3888 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
3888	ic 1 1 1 1 1 1 1 1 1	ic	icm icm icm icm icm icm icm icm
3888	tium 3888 tium 3888 tium 5886 t	tium 1855 216 1855 tium t	tium tium de continum de
3685	tium 3888 ium 3888 ium 3888 ium 5894 c 633 c 633 c 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	tium 3888 ium 3888 t t	tium 3888 ium 3888 ium 3888 c 4 de 633 sium 559 sium 64 ium 64
3660	t t 3886	ium 3886 ium 3886 t t	ium 3888 ium 3888 t t
3085	ium 3888 t t de	ium 3886 t de 633 sium 594 sium 594 105 11 11 12 12 13 14 15 15 16 16 17 18 18 18 18 18 18 18 18 18	1858
	t t c c c c c c c c c c c c c c c c c c	t t c c c c c c c c c c c c c c c c c c	t t t t t t t t t t t t t t t t t t t
	t de 633 633 633 633 633 633 633 633 633	t de	de
	de	de	de
		sium 59 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1	sium 59 rese 2 ry 4 sium 18 rium 4 r 7 r 8 rum 7 rum 8 rum 8 rum 9 r
	sium 59 77 7 8 8 8 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1	sium 59 1 1 1 1 1 1 1 1 1 1 1 1 1	sium 59 77 77 8 ium 18 8 ium 7 6 6 7 7 8 ium 7 7 8 ium
9	sium 59 7 7 7 8 8 8 1 1 1 8 1 1 1 1 1 1 1 1 1 1	sium 59 77 77 81 81 10 78 78 78 78 78 78 81	sium 59 7 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8
90	2 × 8 ×	2 v 2 v 4 v 4 v 4 v 4 v 4 v 4 v 4 v 4 v	2
de Files	* 8. *	> 18 18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* ************************************
de	81	18 * * * * * * * * * * * * * * * * * * *	86
de			
de			
de			
de			•
de	2 *		

TOCELE AD-WORTH AREA: SLANJ NO. 1 - BOX ELDER MASH SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sarrol e 10	\$5.01.001	\$5-01-002	SS-01-002-DUP	\$5.01.003	\$5.01.004	\$5-01-005	\$5-01-006	28-01-007
190 10	0111+399	0111*400	205-1110	107-110	0111*402	0111-403	0111*404	011.1-405
Date Sampled	07/12/92	07/12/92	07/12/92	07/12/92	07/12/92	07/12/92	07/12/92	07/12/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)	Y X	4	¥¥	¥	4	¥2	X	1
Semivolatile Organic Compounds (ug/g)	¥	¥	4	¥	¥	W	4	\$
Pesticides (ug/g)	¥	YH	¥	¥	W.	¥.	¥	**
Herbicides (ug/g)	4	Y.	¥	4	¥	¥	¥	¥
lotal Petroleum Hydrocarbons (ug/g)	¥	*	YN	X	¥	¥	4	¥
Explosives (ug/g)	OW	QN	£	QN.	9	Q	9	9
Dioxins/furans (ug/g)	¥	¥	\$	¥	¥	4	\$	1

Page No. 1 12/19/92

TOOELE AD-NORTH AREA: 40. 1 - BOX ELDER MASH SOIL ANALYTICAL RESULL. FOR ORGANIC COMPOUNDS

Sample 10	\$5-01-008
(ab 10	011.1*406
Date Sampled	07/12/92
Depth (ft)	0.000 ft
Volatile Organic Compounds (ug/g)	¥
Semivolatile Organic Compounds (ug/g)	¥8
Pesticides (ug/g)	4 2
Herbicides (ug/g)	¥
Total Petroleum Hydrocarbons (ug/g)	¥
Explosives (ug/g)	MD
Digarins/furans (ug/9)	· ¥

Sample 1D	\$5-01-001	SS-01-002	SS-01-002-DUP	\$5-01-003	\$5-01-004	\$5-01-005	\$5-01-006	\$5-01-007
tab 10	661 110	0111-400	011.1*407	0111-401	0111+402	0111-403	11.1.404	0111+405
Date Sampled	07/12/92	26/21/20	07/12/92	07/12/92	07/12/92	07/12/92	07/12/92	07/12/92
Depth (11)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Anions (ug/g)								
Chloride	< 6.0500	16.9000	14.7000	< 6.0500	9.1400	9.2800	13,5000	7.3200
Witrite, nitrate - nonspecified	6.2200**	18.0000**	3.2500**	17.0000**	5.4300**	18.0000**	10.6000**	4.3000-
Total phosphates	1100.0000**	< 300.0000	\$90.0000**	2200.0000**	430.0000	410.0000	850.0000**	420.000
General Inorganic Parameters								
盂	8.5000	8.5800	8.6100	8.7100	8.7400	8.8600	8.6100	8.6900

5-7-5

Notes: **

TOOELE AD-NORTH AREA:

SOIL ANALYTICAL RESUL., FOR GENERAL CHEMICALS

Page No. 12/19/92

orptin (11)	0111406 07/12/92 0.000 ft
Anions (ug/g) Chloride Witrite, nitrate - nonspecified Total phosphates	< 6.0500 . 4.0300** 1300.0000**

General Inorganic Parameters pH

8.8800

otes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

Table 5-8

TABLE 5-8

SAND BLAST AREA (SWMU 4) ANALYTICAL RESULTS

	66.04.001	200-70-55	\$00.70.55	\$00·50-SS	\$5-04-005	SS-04-005-DUP	900-70-55
	100 10 10					011 14773	21701110
1. de 10	0111*408	0111-409	017.170	0111"411	215-1110	0111-176	
	07/21/92	07/21/92	07/21/92	07/21/92	07/21/92	07/21/92	07/21/92
707 4000	000 0	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Hetais and Cyanide (19/9)	2740,0000	2080,0000	3300.0000	2000.0000	2630.0000	1680.0000	3050.0000
	22,3000**	< 7.1400	< 14,0000	< 36.0000	22.5000**	19.3000**	8.9500**
And impact	16.0000	4.2900	23.0000	29.0000	17.0000	11.9000	25.0000
	127.0000	47.2000	177.0000	272.0000**	730.0000**	503.0000**	317.0000**
	1.4800	< 0.5000	3.8000**	8.6000**	1.7800**	1.3200	< 0.5000
	0009*19	2.0400	**0000	260.0000**	62.9000**	56.6000**	6.7400**
	10800.0000	83000.0000	48000.0000	18300,0000	17300.0000	19500.0000	24000.0000
	0000.827	16.6000	648.0000	1740.0000**	1980.0000**	1860.0000**	**0006.4
	13, 1000**	< 1.4200	18.0000**	39.0000**	34.3000**	29.8000**	3.9400
	308.0000**	8.0600	220.0000**	430.0000**	152.0000**	134.0000**	192.0000**
to the second	< 0.9200	< 0.9200	1.3300**	1.0800**	6.6900	4.0100**	< 0.9200
	33700.0000**	3370.0000	100000.000001	200000.0000	33500.0000**	26000.0000**	13400.0000
	1820.0000**	31.6000	1500.0000**	**000.0004	9400.0000*	\$600.0000	288.0000**
	2000.0000	8100.0000	5200.0000	3100.0000	2820.0000	4110.0000	0000.0967
	249.0000	127.0000	1100.0000**	1800.0000**	375.0000	280.0000	191.0000
	0.2200**	< 0.0500	0.2250**	0.0984**	0.0737**	0.0706**	· 0.0500
	54,1000**	5.0200	190,0000**	360.0000**	35.1000**	29.4000**	\$0.6000**
NICKEL STATES	\$55,0000	299.0000	1010,0000	455.0000	501.0000	251.0000	731.0000
	0 2200	< 0.2500	0.9860**	1.3200**	0.5470**	< 0.2500	< 0.2500
Selentum	00000	0.5890	< 1.2000	< 2.9000	< 0.5890	< 0.5890	1.5700**
SILVET	281 0000	208 0000	1190,0000	773,0000	392.0000	306.0000	1050.0000
anibos .	12 0000**	0017 W	\$2,0000**	**0000.96	26.5000**	22.3000**	< 6.6200
	2000.2	0 2500	12.0000	4 17,0000	13.6000	10.4000	9.8800
Vanadtum	0044.7	2.500	**0000 000*	2800 0000**	2700 0000**	**0000 UC7C	292.0000**
2inc	1660.0000	0006.76		£000,0000	77.	***************************************	1

5-8-1

Notes: ** = .

TOOGLE AD-WORTH AREA: 1 O. 4 - SANDBLAST AREA SOIL ANALYTICAL RESULTS FOR DRGANIC COMPOUNDS

County In	86.04.001	28-04-002	\$00.70.55	700-70-85	\$5-04-005	SS-04-005-DUP	900-70-88
						011 44 473	20,000
01 q #1	011.1*408	0111.409	017.110	0111411	215-1110	2//_1110	0111413
Date Sampled	07/21/92	07/21/92	26/12//0	07/21/92	07/21/92	07/21/92	07/21/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)							
1,1,2-Trichloro-1,2,2-trifluoroethane	¥	¥	\$	0.0062**	¥	¥	4
Chloroform	< 0.0009	< 0.0009	< 0.0009	0.0012**	< 0.0009	6000.0 ×	< 0.0009
Methylene chloride	< 0.0120	< 0.0120	< 0.0120	< 0.0120	< 0.0120	0.1800**	< 0.0120
Trichlorofluoromethane	0.0150**	0.0086**	0.0126**	0.0141**	< 0.0059	< 0.0059	< 0.0059
Toluene	0.0049**	0.0020**	0.0028**	0.0033**	< 0.0008	< 0.000 8	\$ 0.000 8
Semivolatile Organic Compounds (ug/g)							
2.6.10.14-Tetramethylpentadecane (TIC)	¥	YH.	¥H	HA	42	¥¥	1.0000**
Anthracene	< 0.1000	< 0.0330	< 0.1000	0.2000**	< 0.1000	< 0.1000	< 0.1000
Bis (2-ethylhexyl) phthalate	10.0000**	< 0.6200	**0000.4	8.0000*	**0000.05	**0000.03	< 2.0000
Chrysene	< 0.5000	< 0.1200	< 0.5000	0.5000**	0.6000**	0.6000**	< 0.5000
Di-n-butyl phthalate	< 0.2000	< 0.0610	< 0.2000	1.0000**	< 0.2000	< 0.2000 <	< 0.2000
de (Cosane (TIC)	¥8	¥	KX	M	¥	¥	2.0000**
N-Tuoranthene	< 0.3000	0.0680	0.3000**	1.0000**	1.0000**	1.0000**	< 0.3000
Neptadecane (11C)	KM KM	¥	¥.	¥	MA	Y N	1.0000**
Hexadecane (TIC)	¥	¥¥	¥	4 3	W.	4	0.6000**
Nexadecanoic acid / Palmitic acid (TIC)	6.0000	¥	2.0000**	K	10.0000**	10.0000**	YH
Octadecane (TIC)	V.	¥	¥	M	¥¥	¥	2.0000**
Octadecanoic acid / Stearic acid	1.0000**	YN	¥	4.0000.4	¥	5.0000**	¥
Phenanthrene	< 0.1000	< 0.0330	0.1000	0.2000**	1.0000**	1.0000*	0.4000*
Pyrene	< 0.1000	< 0.0330	< 0.1000	0.5000	0.6000**	0.6000**	0.3000**
esticides (ug/g)	Q	Q.	9	Q.	9	9	2
erbicides (ug/g)	4 3	¥	¥	¥	\$	4	¥
otal Petroleum Hydrocarbons (ug/g)	¥	¥	¥	*	4	*	¥
aplosives (ug/g)	9	9	Ş	Ş	Q	Š	9
ioxins/furans (ug/g)	¥	¥	¥	¥¥	¥	Z	X 3

Table 5-9

TABLE 5-9

SEWAGE LAGOONS (SWMU 14) ANALYTICAL RESULTS

Sample 10	SD · 14 · 001	SD - 14 - 002	SD - 14 - 002 - DUP	\$0-14-003	\$0-14-004
190 10	0111*414	0111-415	0111-418	0111-416	0111*417
Date Sampled	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Netals and Cyanide (ug/g)					
Atuminum	3910.0000	2000.0000	4720.0000	11000.0000	12600.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1400
Arsenic	27.9000	33.6000	31.900	4.3300	3.9500
Barica	341.0000**	360.0000*	362.0000**	95.5000	126.0000
Beryltius	♦ 0.5000	< 0.5000	◆ 0.5000	1.1700	1.1300
Cadaius	26.3000**	45.0000**	41.0000**	1.5000**	< 0.7000
Calcius	14,1000,0000**	117000.0000**	107000.0000**	67000.0000	26200.0000
Chronium	< 4.0500	147.0000**	145.0000**	20.9000	15.7000
Cobalt	< 1.4200	< 1.4200	< 1.4200	3.8900	5.2800
Conner	367.0000**	410.0000**	418.0000**	0009. 52	17.4000
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
lien	8150.0000	10100.0000	9900.0000	11900.0000	12900.0000
78	226.0000**	388,0000**	417.0000**	37.9000	20.0000

3640.0000 364.0000 < 0.0500 12.5000 4890.0000 < 0.2500 < 0.5890 344.0000 **6.6200** 20.1000 71.7000

0.0733**

2.5100**

2.7000** 33.9000*

1.5700**

• 1.7100 < 100.0000

< 1.7100

100.000

12.7000 3520.0000

130.0000

11500.0000

6890.0000

7300.0000 143.0000

740.0000 117.0000

Hagnes ium Manganese Pot ass ium Selenium

Hercury Nickel

132.0000

0.7260** 2.6600**

13.4000** 102.0000** 6610.0000**

14.6000** 101.0000** 6850.0000**

16.7000** 56.4000** 9430.0000**

< 100.0000

12.5000**

< 6.6200 < 3.3900

23.6000 97.6000

1230.0000**

1260.0000** < 3.3900 < 6.6200

1070.0000**

< 6.6200 < 3.3900

That I ice Vanadium

Silver Sodium

641.0000

e shown, NA = Not analyzed

ite was detected at the concentration shown < = Not detected at the

Hotes: ** =

Page No. . 12/21/92

. SLANU NO. 14 - SENAGE LAGOONS

TOOELE AD-WORTH A

SEDIMENT ANALYTICAL RESURTS FOR ORGANIC COMPOUNDS

0.3200** SD - 14 - 004 011 10417 07/13/92 0.000 ft 윷 ž ž 욡 SD - 14 - 003 011 1-416 **4** 07/13/92 0.000 ft € **\$ \$** 읖 ĭ SD-14-002-DUP 0111-418 07/13/92 0.000 ft ş ¥ ž 皇 **\$ \$** 0111415 SD - 14 - 002 0.000 ft **\$ \$** 웆 ≦ ĭ SD - 14 - 001 - DUP 300,0000** 115-1110 ž 07/13/92 0.000 ft 웆 ₹ ž 읖 50 - 14 - 001 NE081*47 07/13/92 0.000 ft 윷 **\$ \$** ¥ ž ž Semivolatile Organic Compounds (ug/g) Total Petroleum Hydrocarbons (ug/g) Volatile Organic Compounds (ug/g) 2-Cyclohexen-1-one (11C) Heptadecane (TIC) Pesticides (ug/g) Herbicides (ug/g) Date Sampled Depth (ft) Sample 10 9 9

Explosives (ug/g)

ž

¥

ĭ

₹

≨

ž

웆

욯

웆

윺

윷

¥

- SEUAGE LAGOONS ENERAL CHEMICALS	\$0-14-003 \$0-14-004 01.1*416 01.1*417 07/13/92 07/13/92 0.000 ft 0.000 ft
TOOELE AD-NORTH AREA: SIMU NO. 14 - SEUAGE LAGOONS SEDIMENT AMALYTICAL RESULTS FOR GENERAL CHEMICALS	SD-14-002-DUP OIL1*418 O7/13/92 0.000 ft
SEDIHENT AMALT	SD-14-002 011 1*415 07/13/92 0.000 ft
	SD-14-001 0111*414 07/13/92 0.000 ft
age No. 1 2/19/92	ample 10 ab 10 ate Sampled epth (ft)

6-9-3

Page No. 1 12/31/92

TOOELE AD-NORTH AREA: NO. 14 - SEUAGE LAGOONS SURFACE WATER AWALYTICAL RESULTS FOR METALS

	SW- 14-001	SU-14-001-DUP	SW-14-002	
Leb 10	NUTR1*13	NUTR1*17	WIR1*14	
Date Sampled	07/13/92	07/13/92	07/13/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	
Netals and Cyanide (ug/l)				
Atuminum	< 141.0000	< 141.0000	< 141.0000	
Antimony	< 38.0000	< 38.0000	< 38.0000	
Arsenic	3.3000**	< 2.5400	2.9800**	
Barica	63.5000**	63.8000**	**0000.79	
Beryllium	< 5.0000	< 5.0000	< 5.0000	
Cadmium	< 4.0100	< 4.0100	< 4.0100	
Catcium	107000.0000**	107000.0000**	109000.0000**	
Chronium	< 6.0200	< 6.0200	< 6 .0200	
Cobelt	< 25.0000	< 25.0000	< 25.0000	
Copper	• B.0900	8 .0900	× 8.0900	
Cyanide	< 2.5000	< 2.5000	< 2.5000	
Iron	**0004**	59.1000**	88.7000**	
read	2.2800**	1.9500**	3.5800**	
s Nagresius	46700.0000**	45700.0000**	47400.0000**	
A Manganese	24.3000**	24.5000**	24.7000**	
Mercury	< 0.2430	< 0.2430	< 0.2430	
wickel	< 34.3000	< 34.3000	< 34.3000	
Potassium	22200.0000**	22000.0000**	22800.0000**	
Selenium	< 3.0200	< 3.0200	< 3.0200	
Silver	< 4.6000	< 4.6000	0009.4 >	
Sodice	211000.0000**	206000.0000**	214000.0000**	
Thattium	0066.9 >	< 6.9900	× 6.9900	
Vanadium	× 11.0000	× 11.0000	< 11.0000	
Zinc	< 21.1000	< 21.1000	< 21.1000	

Somple 1D	SW-14-001	SW-14-001-DUP	SN-14-002	SW-14-002-DUP
01 qe1	WUTR1*13	NUTR1*17	MUTR1*14	NUTR1-17
Date Sampled	07/13/92	. 07/13/92	07/13/92	07/13/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/l)			li	
Chloroform	< 0.5000	YN.	0.6150**	< 0.5000
Semivolatile Organic Compounds (ug/l)				
Heptadecane (TIC)	6 .0000	8.0000**	10.0000	KN
Pesticides (ug/l)	9	욮	£	¥
Herbicides (ug/l)	W	YN	¥8	¥.
Total Petroleum Nydrocarbons (ug/t)	¥	4	¥	¥
Explosives (ug/t)	9	Q	물	¥
Olgains/furans (ug/l) é é	¥ X	*	X X	*

_	
è	79
ě	5
Ξ	¥

TOOELE AD-MORTH AREA: NO. 14 - SEUAGE LAGOONS
SURFACE MATER ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Sample 10	14-001	SW-14-001-DUP	SW- 14 - 002	
0.001	NVIR1+13	NWTR1*17	NUTR1*14	
Date Sampled	07/13/92	07/13/92	07/13/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	
Anions (ug/l)				
Phosphate	7400.0000**	7400.0000**	7400.0000**	
Chloride	410000.0000**	410000.000044	**0000.000004	
Mitrite, nitrate - nonspecified	24.9000**	13.5000**	39.7000**	
Suifate	132000.0000**	132000.0000**	131000.0000**	
General Inorganic Parameters	¥	42	4 2	

5-9-7

Groundwater Sampling Results
First Round - July, 1992

Page No. 1 12/19/92

TOOELE AD MORTH AREA: SELECTE ITORING AND SOURCE WATER WELLS GROUNDWATER ANALYTICAL RESULTS FOR METALS

Semple 10	A-3	1-9	8-1-0UP	N-134-90	N-135-90	N-136-90	2-M	2- 7 3
	TALITOTAL	FL-1917M	TWUT D1+0	TAUTE 1+1	TWUTR1+3	TNUTR 1*5	NUTR1#27	MUTR1*27
	00,01,00	07/11/02	02/11/02	07/10/02	07/10/02	07/17/02	07/30/92	07/30/92
Date Sampled	3/13/10	36/11/10	34/11/10	34 /01 /10	37.701.720	2/ 3 000 6/6	2,000,0	500 000 60
Depth (ft)	227.000 ft	295.000 ft	295.000 ft	194.000 10	237.000 15	243.000 11	2.000.0	300.000
Metals and Cyanide (ug/l)								
Atunirum	< 141.0000	< 141.0000	< 141.0000	28300.0000**	< 141.0000	< 141.0000	< 141.0000	< 141.0000
Antimony	< 38.0000	< 38.0000	< 38.0000	< 38.0000	< 38.0000	< 38.0000	< 38.0000	< 38.0000
Arsenic	< 2.5400	< 2.5400	< 2.5400	33.7000**	< 2.5400	< 2.5400	< 2.5400	< 2.5400
	32.5000**	48.7000**	48 .0000**	215.0000**	41.7000**	60.7000**	53.9000**	53.9000**
	< 5.0000	< 5.0000	< 5.0000	< 5.0000	< 5.0000	< 5.0000	< 5.0000	< 5.0000
Cadmius	< 4.0100	< 4.0100	< 4.0100	< 4.0100	< 4.0100	< 4.0100	< 4.0100	< 4.0100
Calcium	116000.0000**	116000.0000**	115000.0000**	320000.0000**	118000.0000**	180000.0000**	63000.0000**	63000.0000**
Chronium	8.5800**	< 6.0200	< 6.0200	2760.0000**	< 6.0200	< 6.0200	< 6.0200	6.0200
Cobalt	< 25.0000	< 25.0000	< 25.0000	< 25.0000	< 25.0000	< 25.0000	< 25.0000	< 25.0000
Copper	8 .0900	× 8.0900	< 8.0900	94.2000**	< 8.0900	8.0900	8.9900**	8.9900**
Cyanide	< 2.5000	< 2.5000	< 2.5000	< 2.5000	< 2.5000	< 2.5000	< 2.5000	< 2.5000
Lou	< 38.8000	< 38.8000	< 38.8000	37500.0000**	< 38.8000	< 38.8000	< 38.8000	< 38.8000
Lead	< 1.2600	< 1.2600	1.5200**	32.6000**	3.1500**	2.2800**	7.4800**	7.4800**
	41400.0000**	51500.0000**	51400.0000**	72300.0000**	55300.0000**	84400.0000**	19200.0000**	19200.0000**
Transanese	18.0000**	24.4000**	21.2000**	439.0000**	· 85.2000**	136.0000**	< 2.7500	< 2.7500
Mercury	< 0.2430	< 0.2430	< 0.2430	< 0.2430	< 0.2430	< 0.2430	< 0.2430	< 0.2430
Zickel	114.0000**	**0009.67	**0009.67	359.0000**	324.0000**	240.0000**	< 34.3000	< 34.3000
Potassium	3510.0000**	6230.0000**	5820.0000**	9550.0000**	5610.0000**	7560.0000**	2030.0000**	2030.0000
Setenium	< 3.0200	5.5400**	3.7300**	< 3.0200	*.0064.3	11.7000**	< 3.0200	< 3.0200
Silver	0009° >	4.6000	· 4.6000	< 4.6000	< 4.6000	· 4.6000	6.6000	· 4.6000
Sodium	112000.0000**	129000.0000**	130000.0000**	133000.0000**	136000.0000**	142000.0000**	43800.0000**	43800.0000**
That Lium	× 6.9900	· 6.9900	6.9900	· 6.9900	< 6.9900	· 6.9900	· 6.9900	6.9900
Vanadium	× 11.0000	· 11.0000	< 11.0000	79.8000**	< 11.0000	12.8000**	• 11.0000	· 11.0000
2 inc	< 21.1000	\$240.0000**	5340.0000**	2420.0000**	201.0000**	81.9000**	< 21.1000	< 21.1000

Samie 10	£-35	W-3-00P	
0. 0. 0.	TMSRC1*1	INSRC1*2	
Date Samled	05/06/92	05/06/92	
Depth (ft)	700.000 ft	700.000 ft	
			- 1
Metals and Cyanide (ug/l)			
Atumina	< 141.0000	< 141.0000	
Antimony	< 38.0000	× 38.0000	
Arsenic	2.6800**	2.7700**	
	€000000	61.9000**	
Beryllin	< 5.0000	× 5.0000	
Cachelina	< 4.0100	× 4.0100	
Calciu	\$8800.0000°*	100000.00000	
Chronica	< 6.0200	< 6.0200	
Cobalt	< 25.0000	< 25.0000	
Conner	× 8.0900	× 8.0900	
Cvanide	< 2.5000	< 2.5000	
	<. 38.8000	< 38.8000	
pearl .	< 1.2600	· 1.2600	
Meanestur	35600.0000**	36100.0000**	
Karoarese	12.6000**	6.6200**	
Mercury	< 0.2430	< 0.2430	
	< 34.3000	< 34.3000	
	3450.0000**	3470.0000**	
Selevin	< 3.0200	< 3.0200	
Silver	· 4.6000	· 4.6000	
Sadiu	96100.0000**	97800.0000**	
	000 Y >	0000 9 >	

.e was detected at the concentration shown $< \pm$ Not detected at the

shown, NA = Not analyzed

Notes: ** : /

4.600097800.0000**6.990011.000021.1000

< 6.9900 < 11.0000 < 21.1000

Thettiem Vanadium Zinc

Page No. 1 12/19/92

TOCELE AD-NORTH AREA: SELECTEI .. TORING AND SCURCE WATER WELLS GROUNDWATER ANALYTICAL RESULTS FOR ORGANIC CONFOUNDS

Sample 10	A-3	8-1	B-1-0UP	N-134-90	N-135-90	N-136-90	W-2	E-3
1 db 10	TWATR1*7	NUTR1*11	THUTR1*9	TWUTR1*1	TNUTR1+3	TNUTR1#5	MUTR 1*27	THSRC1*1
Date Sampled	07/12/92	07/11/92	07/11/92	07/10/92	07/10/92	07/12/92	07/30/92	05/06/92
Depth (ft)	227.000 ft	293.000 ft	293.000 ft	194.000 ft	237.000 ft	243.000 ft	500.000 ft	700.000 ft
volatile Organic Compounds (ug/l)								
1.2-Dichloroethenes (cis and trans)	1.3600**	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000 <	· 0.5000
Trichtoroethere	31.4000**	3.6200**	3.5200**	0.4900**	10.0000**	< 0.5000	< 0.5000	< 0.5000
Chloroform	0.5330**	< 0.5000	< 0.5000	0.5600**	1.0000**	0.5950**	< 0.5000	< 0.5000
Semivolatile Organic Compounds (ug/l)								
Bis (2-ethylhexyl) phthalate	· 4.8000	< 4.8000	< 4.8000	6.5000**	< 4.8000	< 4.8000	< 4.8000	· 4.8000
Mexadecanoic acid, butyl ester (11C)	±	¥#	KA	4	¥	YN	¥	4.0000.4
Octadecanoic acid, butyl ester (TIC)	4	42	42	¥.	¥.	4	W	5.0000**
'esticides (ug/l)	9	Q	9	9	Q	9	9	9
erbicides (ug/l)	₹2	4	\$	¥	¥	¥	¥.	ĝ
ogal Petroleum Nydrocarbons (ug/l)	9	Q	Q	Q	9	9	¥	ĝ
K xplosives (ug/l)	9	Q	9	9	Q	Q	9	9
ioxins/furans (ug/l)	¥	₹	¥	¥8	¥	¥	4	9

	Sample 10	W-3-0UP	
	Lab 10	TWSRC1*2	
	Date Sampled	05/06/92	
	Depth (ft)	700.000 ft	
	Volatile Organic Compounds (ug/l)		
	1,2-Dichloroethenes (cis and trans)	< 0.5000	
	Trichloroethene	< 0.5000	
	Chloroform	< 0.5000	
	Semivolatile Organic Compounds (ug/l)		
	Bis (2-ethylhexyl) phthalate	< 4.8000	
	Hexadecanoic acid, butyl ester (TIC)	Y#	
	Octadecamoic acid, butyl ester (TIC)	4	
	Pesticides (ug/l)	9	
	Herbicides (ug/l)	Q	
g.	Total Petroleum Hydrocarbons (ug/l)	9	
9-13	÷ Explosives (ug/l)	9	
	Dioxins/furans (ug/l)	g	

Notes: ** = Ar

TOOGLE AD-NORTH AREA: SELECTEF TORING AND SOURCE WATER WELLS GROUNDWATER ANALYTICAL RELEGATE FOR GENERAL CHEMICALS

"age No. 1 12/19/92

1#**SR**C1*1 05/06/92 700.000 ft 14-3 07/30/92 500.000 ft MUTR1+27 **18**-5 N-136-90 TNUTR1*5 07/12/92 243.000 ft N-135-90 TNUTR1*3 07/10/92 237.000 ft N-134-90 TMJTR1*1 07/10/92 194.000 ft 1MUTR1*9 07/11/92 293.000 ft 8 · 1 · DUP NUTR1*11 07/11/92 293.000 ft 1MUTR1*7 07/12/92 227.000 ft A-3 Date Sampled Tepth (ft) Sample 10 01 qe

W-3-DUP	TNSRC1*2	26/90/50	700.000 ft
Sample ID	1sb 10	Date Sampled	Depth (ft)

240000.0000** 3200.0000** 16.8000** Mitrite, nitrate - nonspecified Anions (ug/l) Phosphate Chioride Sul fate

97300.0000**

General Inorganic Parameters

죕

¥

· shown, NA = Not analyzed te was detected at the concentration shown < = Not detected at thr

Groundwater Sampling Results Second Round - February, 1993

.

Page No. 07/30/93

TOOELE AD-NORTH AREA: SELECT TORING IS GROUNDWATER ANALY RESULTS

FORING AND SOURCE WATER WELLS
RESULTS FOR METALS

Serole 10	A-3	.	N-134-90	N-135-90	N-136-90	N-136-90-DUP
	TWIR1*8	WUTR1*10	TWIR1*2	THUTR1*4	MUTR1*34	INUIR1*6
Date Sampled	02/05/93	02/04/93	02/05/93	02/03/93	02/03/93	02/03/93
Depth (ft)	227.000 ft	293.000 ft	194.000 ft	237.000 ft	243.000 ft	243.000 ft
Netals and Cyanide (ug/1)						
Atumbura	< 141.0000	< 141.0000	< 141.0000	< 141.0000 - 141.0000	× 141.0000	< 141.0000
Antimony	< 38.0000	< 38.0000	< 38.0000	< 38.0000	< 38.0000	< 38.0000
Arsenic	< 2.5400	< 2.5400	< 2.5400	< 2.5400	< 2.5400	< 2.5400
	31.5000**	42.6000**	56.7000**	40.1000**	65.2000**	63.1000**
Dervit ium	< 5.0000	< 5.0000	< 5.0000	< 5.0000	< 5.0000	< 5.0000
Cadaine	< 4.0100	< 4.0100	< 4.0100	< 4.0100	< 4.0100	< 4.0100
Catcium	140000.0000**	124000.0000**	145000.0000**	132000.0000**	210000.0000**	207000.0000**
Chronium	< 6.0200	< 6.0200	< 6.0200	< 6.0 200	7.1100**	< 6.0200
Cobalt	< 25.0000	< 25.0000	< 25.0000	< 25.0000	< 25.0000	< 25.0000
Conner	8.0900	< 8.0900	8.0900	8.0900	× 8.0900	· 8.0900
Cvanide	< 2.5000	< 2.5000	< 2.5000	< 2.5000	< 2.5000	< 2.5000
621	< 38.8000	< 38.8000	< 38.8000	< 38.8000	75.9000**	< 38.8000
	< 1.2600	< 1.2600	< 1.2600	< 1.2600	< 1.2600	× 1.2600
S Brosseries	**0000.0059*	53300.0000**	64000.0000 *	58300.0000**	94300.0000**	91800.0000**
	99.3000**	< 2.7500	83.2000**	**0000.89	102.0000**	101.0000**
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	< 0.2430	< 0.2430	< 0.2430	< 0.2430	< 0.2430	< 0.2430
Rotybdenia	\$	K	¥#	4 2	4	≨
	477.0000**	< 34.3000	349.0000**	219.0000**	370.0000**	362.0000**
Potassium	\$040.0000**	\$640.0000**	7240.0000**	**0000.0599	8070.0000	8130.0000**
Selenium	< 3.0200	4.1500**	6.3900**	5.5400**	14.2000**	14.2000**
	× 4.6000	· 4.6000	· 4.6000	· 4.6000	· 4.6000	0009.4 >
Table Section 1	123000.0000**	132000.0000**	135000.0000**	145000.0000**	153000.0000**	148000.0000**
That I fun	· 6.9900	< 6.9900	6.9900	< 6.9900	· 6.9900	0066.9 >
Vecadium	< 11.0000	· 11.0000	11.0000	< 11.0000	× 11.0000	· 11.0000
2,50	< 21.1000	350.0000**	628.0000**	264.0000**	< 21.1000	< 21.1000
2						

Thurstain	Sample 10	A-3	1-8	N-134-90	N-135-90	N-135-90	N-136-90	N-136-90-0UP	N-136-90
02/05/93 02/03/93 02/03/93 02/03/93 227.000 ft 293.000	01 qe1	THUTR 1-B	NUTR1*10	TWUTR1*2	THUTR1*4	TNUTR1*4	NUTR1+34	TMUTR1*6	NUTR1*34
227.000 ft 293.000 ft 194.000 ft 237.000 ft 250.000 ft	Date Sampled	02/02/93	02/04/93	02/05/93	02/03/93	02/03/93	02/03/93	02/03/93	02/03/93
Compounds (ug/1) 1.6000** < 0.5000 < 0.5000 < 0.5000 < 0.5000 1.1000**	Depth (ft)	227.000 ft	293.000 ft	194.000 ft	237.000 ft	250.000 ft	243.000 ft	243.000 ft	250.000 ft
1.6000***	Volatile Organic Compounds (ug/l)								
1.1000** 0.5800 < 0.5000 < 0.5000 32.0000** 2.7000** < 0.5000 8.5000** 8.5000** 6.5000** 8.50000** 8	1,2-Dichloroethenes (cis and trans)	1.6000**	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
32.0000** 2.7000** < 0.5000 8.5000** 8.5000** Corpounds (ug/1)	Chloroform	1.1000**	0.8800**	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
Compounds (ug/1) ND ND ND ND NA NA NA NA NA Cerbons (ug/1) ND ND ND ND ND NA NB ND ND ND ND	Trichloroethene	32.0000**	2.7000**	< 0.5000	8.5000**	8.5000**	< 0.5000	< 0.5000	< 0.5000
cerbons (ug/1) ND	Semivolatile Organic Compounds (ug/l)	9	9	9	욯	9	2	QN	9
carbons (ug/1) ND	Pesticides (ug/l)	YN	Y2	4	4	W	¥	M	N
rearbons (ug/1) MD	Herbicides (ug/l)	Y.	¥8	\$	\$	Y.	¥	N	M
ON ON ON ON THE	iotal Petroleum Hydrocarbons (ug/l)	욮	9	Ş	9	9	ð	S	9
	:xplosives (ug/l)	9	9	Q	9	2	2	Q.	2
	Dioxins/furans (ug/l)	**	¥X	W	N	KA	¥	Z Z	KA

votes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

Page No. 1 07/30/93

TOOELE AD NORTH AREA: SELEC: GROUNDWATER ANALYTICAL

CORING AND SOURCE WATER WELLS
LIS FOR ORGANIC COMPOUNDS

Sample 10 Lab 10 Date Sampled Depth (ft)	N-136-90-DUP TMJTR1*6 02/03/93 250.000 ft
Volatile Organic Compounds (ug/l) 1,2-Dichloroethenes (cis and trans) Chloroform Trichloroethene	0.50000.50000.5000
Semivolatile Organic Compounds (ug/l)	Q
Pesticides (ug/l)	¥2
Herbicides (ug/l)	4 2
Total Petroleum Mydrocarbons (ug/l)	N N
Explosives (ug/l)	Q
Dioxins/Furans (ug/l)	₹ 2

TOOELE AD-WORTH AREA: SELECTED MONITORING AND SOURCE R WELLS GROUNDWATER ANALYTICAL RESULTS FOR GENERAL CHEMICALS

Page No. 1 07/30/93

Sample 1D Lab 1D Date Sampled Depth (ft)	A-3 IMJR1+8 02/05/93 227.000 ft	B-1 NVIR1*10 02/04/93 293.000 ft	N-134-90 TNUTR1+2 02/05/93 194.000 ft	N-135-90 TWUR1*4 02/03/93 237.000 ft	N-136-90 NUTR1=34 02/03/93 243.000 ft	N-136-90-bup INVIR1*6 . 02/03/93 243.000 ft	
Anions (ug/l) Chloride Witrite, nitrate - nonspecified Phosphate Sulfate	33000.0000** 4800.0000** 2100.0000**	33000.0000** 2800.0000** 2100.0000** 159000.0000**	410000.0000** 3800.0000** 4200.0000** 179000.0000**	380000,0000** 3400,0000** 3500,0000** 170000,0000**	600000 .0000** B600 .0000** 3500 .0000**	600000, 0000** 7200, 0000** 2400, 0000**	1
General Inorganic Parameters Alkalinity - bicarbonate (ug/l) Ammonia (ug/l) Specific Conductivity (uhos/cm) pH	624000.0000** < 20.0000 1570.0000**	656000.0000** < 20.0000 1630.0000**	952000.0000** 30.4000** 1860.0000**	400000.0000** < 20.00000 1760.0000**	\$20000.0000** \$0.9000** 2400.0000** 7.8400	\$86000.0000** 20.8000** 2510.0000** 7.8100	

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, MA = Not analyzed

Table 5-10

TABLE 5-10

AED DEMILITARIZATION TEST FACILITY (SWMU 19) ANALYTICAL RESULTS

	sc. 10.001	\$5.19.002	\$5-19-003	\$5-19-004	\$5-19-005	\$5-19-006	28-19-007	88-19-008
		00741 110	011 16421	011 14422	1011 10623	011.1*424	011.1*425	925-1110
	615-1710	024-1310	136-10	27,00,00	20,00,00	02,08,02	07/08/02	07/08/92
Date Sampled	26/90//0	26/90//0	76/90/70	24/00/10	26/00//0	1/00/10		
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 16	0.000 10
Metals and Cyanide (ug/g)						0000	0000	, 1000 0000
Atminia	4310.0000	5160.0000	3780.0000	4750.0000	2970.0000	1500.00CL	3400.0000	200 · 000
for immy	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400 <	< 7.1400	< 7.1400	× 7.1400
Time of the state	0006 1	3.5100	10.8000	2.3600	2.2200	3.3900	3.0300	3.3700
	2002 72	80.2000	20.4000	58.2000	24.4000	30.3000	25.4000	63.9000
	0005.0 >	0.5370	0.5960	0.5300	< 0.5000	< 0.5000	< 0.5000	· 0.5000
	0002 0 >	1.3400**	< 0.7000	< 0.7000	< 0.7000	< 0.7000	0.7000	00.700
Comitae	DOOL DOOL	18800.0000	1920,0000	3540.0000	5890.0000	23500.0000	3270.0000	4970.0000
	000000000000000000000000000000000000000	7.5200	6.7200	2.6800	6.1500	< 4.0500	4.7700	4.9100
	2 2000	2.3100	2.2900	2.4500	1.8000	< 1.4200	2.2700	2.3700
118001	7.1400	9.5800	14.7000	2.6800	5.5400	2.4300	9.0500	9005.9
	0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
Lyanius 1	5270 0000	6680.0000	5180,0000	5440.0000	3760.0000	2820.0000	7860.0000	5160.0000
	0000 4	2.6000	10.0000	7.0000	55.0000**	2.9900	5.7500	5.1700
	0000 0072	0000 0177	1760.0000	2160.0000	1780.0000	2200.0000	1830.0000	2030.0000
	187 000	224, 0000	161.0000	167.0000	147.0000	29.7000	164.0000	187.000
Taylor Tool	0000	× 0.0500	0.0567**	< 0.0500	· 0.0500	< 0.0500 <	< 0.0500 <	· 0.6500
Hercury	0007 5	2 9700	5.3900	4.7100	3.6700	2.8100	7.9000	5.0100
MICKEL	1100 0000	1450 0000	1080,0000	1420.0000	943.0000	319.0000	1170.0000	1310.0000
Porassium	0 2500		< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500
sel en la	0003.0	0.000	, 0 5800	A D 5A90	< 0.5890	< 0.5890	< 0.5890	· 0.5890
Silver	0.5870	0.000	178 0000	176 0000	164.000	179.0000	171.0000	175.0000
en jos	000.313	0000.663	6 6 6200	0029.9	× 4.6200	· 6.6200	< 6.6200	• 6.6280
Theiring	2 4300	0.000	6.1000	8.0400	5.3100	4.7400	6.7500	7.4500
Venedium	0039.7	900.	125 000000	21 0000	20 0000	12 3000	30,5000	24.2000
2 inc	32.5000	44.8000	133.000	23.7000	1111111	,	***	1

5-10-1

is above the background concentration for the depth shown, < = No

sted at the value shown, MA = Not amalyzed

ED DEMILITARIZATION TEST FACILITY \$5-19-012 01L1*430 07/08/92 0.000 ft SOIL ANALYTICAL ... SULTS FOR METALS \$5-19-011 0111*429 07/08/92 0.000 ft \$5-19-010-DUP 07/06/92 0.000 ft 0111*431 TOOELE AD-NORTH AREA: SWALL NO. 1 \$\$-19-010 01L1*428 07/08/92 0.000 ft SS-19-009 011.1°427 07/08/92 0.000 ft Date Sampled Depth (ft) Page No. 12/18/92 Sample 10 or del

4,555,500 4 7,1400 3,4000	00 36/0.0000 00 < 7.1400 00 2.5600	4.110.0000 < 7.1400 3.5400	4.2600 4.2600	3920.0000 < 7.1400 7.4900
77.50 0.58		74.1000	74.9000 0.7060	76.1000 0.6110
¢ 0.70		1.5500**	5.3200**	5.2600**
10,000.00		4000.0000	6320.0000	33900.0000
6.19		5.1400	26.9000**	36.6000**
3.00		2.5300	3.1100	4.9600
7.24		8.2200	78.7000**	411.0000**
< 0.92		< 0.9200	< 0.9200	< 0.9200
2440.00	-	5690.0000	12500.0000	27800.0000**
5.64		9.2400	45.7000	137.0000**
2680.00		2140.0000	2830.0000	4380.0000
194.00		174.0000	201.0000	357.0000
< 0.05		· 0.0500	< 0.0500 ×	< 0.0500
5.51		5.2000	13.2000	27.6000**
1570.00		1310.0000	1220.0000	1170.0000
< 0.25		< 0.2500	< 0.2500	< 0.2500
< 0.58		< 0.5890	< 0.5890	< 0.5890
200.00		187.0000	243.0000	328.0000
× 6.62		< 6.6200	6.6200	< 6.6200
9.30		7.1900	2.4400	6.8800
27.10		38.5000	3660.0000**	9.0000.629

<u>.</u>	%
Pege	12/21

011.1°424 011.1°425 01.006.92 07.006.92 07.006.92 07.006.92 07.006.92 0.006		SS-19-001	SS-19-002	88-19-003	\$5-19-004	\$5-19-005	\$5-19-006	25-19-007	St - 10-00
0,000 ft	0. qe1	0111-419	0111420	0111*421	011.10422	\$27.1 110	767-110	A 110	X 761 110
0.000 ft 0.0	Date Sampled	07/08/92	07/08/92	07/08/92	07/08/92	07/04/02	07/08/02	07/04/02	
thane (Lag/4) compounds (Lag/4) compounds (Lag/4) compounds (Lag/4) than that the compounds (Lag/4) compounds (Lag/4) in that the compounds (Lag/4) step (Lag/4) compounds (Lag/4) in that the compounds (Lag/4) in that that that that that that that tha	Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Compounds (Lug/e) Compounds (Lug/e) Inhibition (11C) Inhibition (Inhibition (11C) Inhibition (11C) Inhibition (Inhibition	Voletile Organic Compounds (ug/g)								
Compounds (Lug/g) thylperizedecame (11C) A 0.0650 C 0.0650 B 0.0850* C 0.0650 C 0.0650 B 0.0850* C 0.0650 C 0.0650 C 0.0650 B 0.0850* C 0.0650 C 0.	Trichlorofluoromethane	< 0.0059		< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.005 9
thy periodic accesses (0.664) < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640 < 0.0640<	Semivolatile Organic Compounds (ug/g)								
Fire C 0.0660 C 0.066	2,6,10,14-Tetramethylpentadecane (TIC)	4	¥#	\$	¥	4	**	3	1
Columbia	Benzo(k) fluoranthene	0.0660		0.0650**	0.0660	0.0660	0.0660	0990'0 >	9790 0
Compared	Sis (2-ethylhexyl) phthalate	< 0.6200	< 0.6200 ×	2.0000**	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 0.6200
Carbons (19/9) NA N	Di-n-butyl phthalate	0.0610		0.4600**	< 0.0610	< 0.0610	< 0.0610	0.0610	< 0.0610
Cerbons (19/9) *** NA	Eicosane (11C)	¥	S	¥	4	¥	4	\$	1
NA	fluoranthene	< 0.0680 <		0.2300**	< 0.0680	0.0680	0.0680	· 0.0680	× 0.068
MA	Meneicosane	¥	¥	¥	¥	4	¥	\$	1
NA	Neptadecane (715)	¥	M	≦	4	¥	¥	\$	5
* 0.0330	Mexadecane (TIC)	4	H	4	¥#	¥	≦	¥#	*
 Carbons (La/8) C 0.0330 C 0	Octadecane (11C)	¥	¥	\$	¥	K	\	*	1
O	Phenanthrene	< 0.0330		0.0410	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Carbons (ug/g)	Pyrene	< 0.0330		0.2300**		< 0.0330	< 0.0330	< 0.0330	· 0.0330
Carbons (19/9) MD MD MD MD MD MD MD Carbons (19/9) MA MA MA MA MA MA MA Carbons (19/9) MA C.5870 < 0.5870	Tetradecane (TIC)	4	¥#	¥	\$	YH.	¥¥	VM	1
Carbons (ug/g) NA NA NA NA NA NA NA NA NA N	Pesticides (ug/g)	Q	9	2	9	9	9	9	2
carbons (ug/g)	lerbicides (ug/g)	4	\$	\$	¥	¥	XX	ī	\$
< 0.5870 < 0.5870 < 0.5870 6.7700** 8.4100** < 0.5870 < 0.5870 NS NA	iotal Petroleum Mydrocarbons (ug/g)	¥	ž	\$	¥	¥	ž	\$	1
NA NA NA NA NA NA NA	ixplosives (ug/g) Cyclonite (RDX)	0.5870		< 0.5870	6. 770000	******	£ 50 ° °		
NA NA NA NA NA NA					3		0.260	6.30%	6.3 6 /8
	ioxins/furans (ug/g)	42	¥	4	4	1	≦	\$	1

te was detected at the concentration shown < = Not detected at the

* shown, MA = Not analyzed

Hotes: ** = /

_	
Page No.	12/21/92

ED DEMILITARIZATION TEST FACILITY FOR ORGANIC COMPOUNDS

TOCELE AD-NORTH AREA: SIMU NO. "
SOIL AMALYTICAL RESUL

Sample 10	88-19-009	SS-19-010	SS-19-010-DUP	\$5-19-011	210-61-55
01 qe1	0111-427	01110428	011.1*431	01114429	0111430
Date Sampled	07/08/92	07/08/92	07/08/92	07/08/92	07/08/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)					
Trichlarofluoramethane	0.0057**	< 0.0059	0.0076**	< 0.0059	< 0.0059
Semivolatile Organic Compounds (ug/g)	-				
2,6,10,14-Tetramethylpentadecane (TIC)	¥	100.0000	100.0000**	¥	W
Benzo (k) fluoranthene	< 0.0660	< 0.7000	< 0.7000	< 0.7000	< 0.7000
Bis (2-ethylhexyl) phthalate	< 0.6200	· 6.0000	× 6.0000	6.0000	· 6.0000
Di-n-butyl phthalate	< 0.0610	< 0.6000	< 0.6000	8.0000**	0.6000
Eicosane (11C)	¥	¥	100.0000**	¥#	¥
fluoranthene	< 0.0680	< 0.7000	< 0.7000 <	< 0.7000	< 0.7000
Hene i cosane	¥	¥	70.0000	¥	NA NA
Heptadecane (TIC)	¥	100.0000	100.0000**	¥	*
Hexadecane (11C)	¥	100.0000	¥	≦	4
"Detadecane (110)	4	¥	100.000**	¥	*
Phenanthrene	< 0.0330	< 0.3000	< 0.3000	< 0.3000	< 0.3000
Pyrene	< 0.0330	1.0000**	1.0000**	< 0.3000	< 0.3000
Tetradecane (TIC)	¥	30.0000**	30.0000**	¥ Z	¥#
Pesticides (ug/g)	9	욮	2	2	Q
Herbicides (ug/g)	¥	¥	¥	W	W
iotal Petroleum Mydrocarbons (ug/g)	**	¥	¥	\$	¥.
faplosives (ug/g) Cyclonite (RDX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	0.7980**
lioxins/furans (ug/g)	¥	KA	ş	48	¥

Sample 10	\$5-19-001	\$5-19-002	\$5-19-003	\$5-19-004	\$5-19-005	\$5.19.006	\$5·19·007	SS-19-006
01 991	0111*419	0111*420	0111*421	0111*422	0111*423	0111-424	0111-425	925-1190
Date Sampled	07/08/92	07/08/92	07/08/92	07/08/92	07/08/92	07/08/92	07/08/92	07/08/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 fc
Anions (ug/g)								
Chloride	• 6 .0500	6.0500	6.0500	6.0500	· 6.0500	6.0500	· 6.0500	· 6.0500
Mitrite, nitrate - nonspecified	0.9390	1.3000	2.2300	1.3200	3.9100**	9.1700**	3.0000**	2.260
Total phosphates	250.0000	310.0000	270.0000	300.0000	150.0000	210.0000	220.0000	240.000
General Inorganic Parameters								
₹.	9.1000	8.8000	7.6500	9.0400	8.7500	9.4000	8.9300	8.7980

*ected at the value shown, NA = Not analyzed is above the background concentration for the depth shown, < = No Hotes: ** = V

Page No. 1 12/19/92

TOOELE AD-WORTH AREA: SUMU NO. LED DENILITARIZATION TEST FACILITY SOIL ANALYTICAL RESULIS FOR GENERAL CHEMICALS

Comite 10	55-10-000	55-10-010	SS-10-010-DM	\$5.10.011	55-10-012	Į.
0. 7.1. 0. 0e1	0111*427	0111*428	0111*431	0111*429	0111*430	
Date Sampled	07/08/92	07/08/92	07/08/92	07/08/92	07/08/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
						1
Anions (ug/g)						
Chloride	< 6.0500	< 6.0500	< 6.0500	< 6.0500	150.0000	
Witrite, nitrate · nonspecified	3.2400**	< 0.6000	0.6000	11.0000**	28.0000**	
Total phosphates	280.0000	250.0000	160.0000	1200.0000**	1200.0000**	
General Inorganic Parameters pM	8.8400	7.5900	7.5800	7.1600	8.5300	

Table 5-11

TABLE 5-11

AED DEACTIVATION FURNACE SITE (SWMU 20) ANALYTICAL RESULTS

Sample 10	\$5-20-001	SS-20-001-0UP	SS-20-002	\$5-20-003	32-20-00 4	\$5-20-005	SS-20-006	90-92-SS
(ab 10	0111*434	011.1*450	0111*435	0111-436	0111*437	0111*438	0171-430	0111*440
Date Sampled	07/09/92	07/09/92	07/09/92	07/09/92	26/60/10	07/09/92	07/09/92	07/09/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft

Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000
Hetals and Cyanide (ug/g)								
Aluminum	6230.0000	4370.0000	3260.0000	3460.0000	4100.0000	3730.0000	9000.0009	4300.0000
Ant imony	16.9000**	< 7.1400	< 7.1400	< 7.1400	< 7.1400	10.7000**	39.7000**	< 7.1400
Arsenic	8.0100	8.0000	7.8900	9.0000	9.6400	2.6800	6.1600	4.9700
	71.8000	75.9000	55.5000	63.2000	51.5000	70.5000	275.0000**	74.9000
Beryllica	1.0200	0.8870	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
Cadeius	21.6000**	20.7000**	< 0.7000	2.2600**	< 0.7000	1.7400**	20.1000**	< 0.7000
Calcium	29000 0000	19500.0000	27700.0000	45100.0000	27800.0000	48500.0000	46200.0000	9090.00777
Chronica	\$0.2000**	45.0000**	6.4100	7.2900	6.8800	15.5000	63.8000**	7.7300
Cobalt	5.2700	4.6600	2.2300	2.4700	2.1500	2.3100	5.5100	2.4400
Compe	2480.0000**	132.0000**	12.3000	25.5000*	2.0000	13.9000	202.0000**	10.800
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200	< 0.9200
	43800.0000**	42500.0000**	7490.0000	4490.0000	4780.0000	7920.0000	22800.0000	6260.0000
tead	**0000**	840.0000**	121.0000**	173.0000**	12.0000	41.8000	2050.0000**	37.1000
Magaes in a	2750.0000	2490.0000	3920.0000	3770.0000	2440.0000	3560.0000	5130.0000	3740.0000
T constant	259.0000	232.0000	129.0000	159.0000	166.0000	137.0000	293.0000	174.0000
Mercury	0.1050**	0.0691	< 0.0500 ×	0.0500	< 0.0500	< 0.0500	× 0.0500	< 0.0500 ×
	29.4000**	25.0000**	4.5900	5.7200	2.8000	9.4800	31.9000**	6.1200
Potessium	1110.0000	904.0000	790.0000	784.0000	992.0000	735.0000	1590.0000	1190.0000
Setenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Sites	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5690	× 0.5090
Society	144.0000	245.0000	216.0000	228.0000	245.0000	383.0000	571.0000	413.0000
That tiem	20.0000*	11.0000**	6.6200	< 6.6200	6.6200	6.6200	16.8000**	9.979.9
Venedium	10.1000	5.9200	9.1500	10.3000	10.9000	13.5000	15.7000	12.5000
2 inc	1760.0000**	929.0000**	31.4000	1760.0000**	26.4000	104.0000	727.0000**	82.3000

detected at the value shown, MA = Not analyzed Notes: ** - * Lue is above the background concentration for the depth shown, < = W

TOOELE AD-NORTH AREA: SIMMU NO. AED DEACTIVATION FURNACE SITE SOIL ANALYTICAL RESULTS FOR METALS

Sample 10	SS-20-008	SS-20-009	SS-20-010	SS-20-011	SS-20-012	SS-20-012-DUP	SS-20-013	\$\$-50·01¢
of de s	0111*441	0111*442	0111*443	011.1*444	0111*445	0111*451	977-1110	0111*447
Date Sampled	07/10/92	07/10/92	07/10/92	07/10/92	07/10/92	07/10/92	07/10/92	07/10/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.060 ft
							1	
Metals and Cyanide (ug/g)								
Atunisum	7140.0000	6190.0000	3090.0000	6220.0000	3590.0000	3280.0000	3210.0000	14500.0000
Antimony	· 7.1400	< 7.1400	< 7.1400	< 7.1400	12.0000**	< 7.1400	< 7.1400	203.0000**
Arsenic	4.3700	5.0000	5.6700	3.9600	6.5000	2.6000	7.8900	9.3000
Enicae	104.0000	110.0000	72.2000	90.1000	199.0000	188.0000	57.0000	\$600.000**
Bery! ius	0.6200	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.5780
Cadarica	< 0.7000	< 0.7000	0.8530**	< 0.7000	8.1000**	5.9800**	< 0.7000	109.0000**
Calcida	8550.0000	13800.0000	26700.0000	7340.0000	27900.0000	34100.0000	15100.0000	33500.0000
Chronica	10.0000	9.3200	5.8300	8.2200	8.6200	19.1000	4.8500	131,0000**
Cobalt	3.8000	3.7300	1.9100	3.6500	2.0600	2.0900	1.8700	5.7700
Copper	12.6000	15.0000	22.2000	9.6800	116.0000**	131.0000**	8.2600	2000.0000*
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	1.3200**
Lon	8190.0000	7530.0000	4360.0000	7050.0000	0000 0069	9890.0000	4260.0000	26500,0000**
	22.2000	30.1000	57.3000**	15.0000	2540.0000**	912.0000**	22.4000	21000.0000**
Bagnesium	3610.0000	3730.0000	3010.0000	3220.0000	3370.0000	2930.0000	1440.0000	9450.0000
. Handanese	293.0000	398.0000	128.0000	246.0000	145.0000	145.0000	98.8000	283.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Rickel	8.8600	11.2000	5.0800	7.5300	6.8200	6.2100	4.2800	34.0000
Potassium	2230.0000	2040.0000	731.0000	2410.0000	898.0000	738.0000	0000.009	1620.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	1.6400**
Sodium	233.0000	270.0000	385.0000	211.0000	281.0000	296.0000	181.0000	630.0000
That I is	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6 200	< 6.6200	< 6.6200	26.2000**
Vanadium	12.4000	11.2000	8.2600	11.6000	8.5200	7.1700	8.2500	13.7000
2 inc	55.1000	71.0000	204.0000**	49.6000	393.0000**	307.0000**	20.2000	2840.0900**

Page No. 1 12/18/92	10061	TOOELE AD-NORTH AREA: SI
Sample 10	\$5-20-015	\$5-20-016
Leb 10	877-1110	0111-449
Date Sampled	07/10/92	07/10/92
Depth (ft)	0.000 ft	0.000 ft

Hetals and Cyanide (ug/g)		
Aluminum	5980.0000	5130.0000
Antimony	11.6000**	< 7.1400
Arsenic	2.9600	7.5700
Barius	311.0000**	322.0000**
Beryllium	0.5510	< 0.5000 ×
Cadmium	**009*·6	9.5600**
Calcium	9180.0000	15000.0000
Chronium	19.9000	** 0000.76
Cobalt	3.5600	3.4600
Copper	233.0000**	152.0000*
Cyanide	< 0.9200	< 0.9200
Iron	8710.0000	9190.0000
Lead	2410.0000**	1260.0000**
Nagnesium	3480.0000	3350.0000
Manganese	262.0000	245.0000
Hercury	< 0.0500	< 0.0500
Nickel	11.3000	132.0000**
Potassium	1700.0000	1530.0000
Selenium	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890
Sodium	237.0000	265.0000
Thattium	< 6.6200	< 6.6 200
Vanadium	8.8200	9.4300
Zinc	445.0000**	4.0000.597

5-11-3

Page No. 1 12/21/92

TOCELE AD-NORTH AREA: SUMU NO. AED DEACTIVATION FURNACE SITE SOIL ANALYTICAL RESUL. FOR ORGANIC COMPOUNDS

Sample 10	\$5.20-001	SS-20-001-DUP	\$5-20-002	\$\$-20-003	\$5-20-004	\$5.20.005	\$5-20-006	\$5.20-007
01 qe1	011.1*434	011.1*450	0111-435	0111*436	01114437	0111*438	0111*439	0111-440
Date Sampled	26/60/20	07/09/92	26/60/20	26/60/20	07/09/92	07/09/92	07/09/92	26/60/20
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Ethylbenzene	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017
Trichlorofluoromethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059
Xylenes	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	0.0046**
Toluene	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Semivolatile Organic Compounds (ug/g)								
Dimethyl phthalate	· 4.0000	· 4.0000	< 4.0000	4. 0000	< 4.0000	8.0000	< 8.0000	< 8.0000
Phenanthrene	< 0.8000	< 0.8000	< 0.8000	< 0.8000	< 0.8000	< 2.0000	< 2.0000	< 2.0000
Pesticides (ug/g)	9	ON.	9	2	Ş	9	9	9
Herbicides (ug/g)	ž	W	4	¥	¥	¥	M	¥
Total Petroleum Mydrocarbons (ug/g)	¥	¥	¥	¥	¥ X	¥	4	¥
Explosives (ug/g)			. !	!		,		
2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	< 0.4560	· 0.4560
2,4-Dinitrotoluene	· 4.0000	· 4.0000	· 4.0000	× 4.0000	· 4.0000	< 7.0000	< 7.0000	< 7.0000
'ioxins/furans (ug/g)	4	¥.	¥	KA	¥	¥	X	\$

TODELE AD-NORTH AREA: SUMU NO. 20 - AED DEACTIVATION FURNACE SITE SOIL ANALYTICAL RESULTS FOR DRGANIC COMPOUNDS

Page No. 1 12/21/92

0111*44 0111*45 0111*451 0111*446 07/10/92 07/10/92 07/10/92 07/10/92 0.000 ft 0.000 ft 0.000 ft 0.000 ft <0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.00	Sample 10		SS-20-008	SS-20-009	SS-20-010	SS-20-011	55-20-012	SS-20-012-04	56-20-013	CC-20.014
07/10/92 07/10/92	1 eb 10		0111*441	0111*442	0111*443	011.1*444	577#1 110	011 1*451	011 14446	27741 110
0.000 ft 0.0	Date Sampled		07/10/92	07/10/92	07/10/92	07/10/92	07/10/92	07/10/92	07/10/02	02/10/02
there (19/9)	Depth (ft)		0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
thane	Volatile Organic Co	(6/6n) spunodwo	-							
thane	Ethylbenzene		< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	, 100 C
Compounds (149/9) Compounds (14	Trichlorofluorom	nethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	0.00.0	0.00.0
Compounds (ug/g) * 3.0000	Xyl enes		< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	, 0 0015	
Compounds (149/9) 4.3.0000	Joluene		< 0.0008	< 0.0008	< 0.0008	₹ 0.0008	0.0008	< 0.000B	< 0.000B	< 0.000B
* 0.7000	Semivolatile Organi Dimethyl phthala	ic Compounds (ug/g) ite	< 3.0000	\$.0000 \$	< B.0000	0.2600**	\$ 0000 ×	6 .0000	< 0.1700	× 8.0000
Carbons (ug/g) NA	Phenanthrene		0.7000	< 2.0000	< 2.0000	< 0.0330	< 2.0000	< 2.0000	< 0.0330	2.5000**
carbons (ug/g) NA	Pesticides (ug/g)		QN	2	£	9	9	9	9	9
carbons (ug/g)	Nerbicides (ug/g)		Y	¥	¥X	¥	¥8	¥	¥	\$
**************************************	Total Petroleum Hyd	rocarbons (ug/g)	X	*	ž	¥	NA	X	4	\$
NA NA NA NA NA	Explosives (ug/g) 2,4,6-Trinitroto 2,4-Dinitrotolues	luene	< 0.4560 < 3.0000		1.4400** < 7.0000	< 0.4560 < 0.1400	< 0.4560 < 7.0000	< 0.4560 < 7.0000	< 0.4560 < 0.1400	< 0.4560 < 7.0000
	Dioxins/Furans (ug/	6	¥ Z	4	¥	¥2	¥	M	\$	\$

Notes: ** = Anivte was detected at the concentration shown < = Not detected at the valve shown, NA = Not analyzed

Page No. 1 12/21/92

TOCELE AD-NORTH AREA: SUMU NO. AED DEACTIVATION FURNACE SITE SOIL ANALYTICAL RESUL.. FOR ORGANIC COMPOUNDS

	22-20-015	SS-20-016	
OI qe1	0111*448	0111*449	
Date Sampled	07/10/92	07/10/92	
Depth (ft)	0.000 ft	0.000 ft	
Volatile Organic Compounds (ug/g)			
Ethylbenzene	0.0019**	< 0.0017	
Trichlorofluoramethane	0.0074**	0.0062**	
Xytenes	0.0071**	< 0.0015	
Toluene	0.0017**	< 0.000 8	
Semivolatile Organic Compounds (ug/g)			
Dimethyl phthalate	< 3.0000	× 8.0000	
Phenanthrene	< 0.7000	< 2.0000	
Pesticides (ug/g)	Q	QN	
Herbicides (ug/g)	YH.	¥	
មុក fotbel Petroleum Hydrocarbons (ug/g)	X	Y Y	
Explosives (ug/g)			
2,4,6.Trinitrotoluene	< 0.4560	0.5200**	
2,4-Dinitrotoluene	< 3.0000	< 7.0000	
Jioxins/furans (ug/g)	AA	¥8	

Table 5-12

TABLE 5-12

DEACTIVATION FURNACE BUILDING (SWMU 21) ANALYTICAL RESULTS

tab 1D Date Sampled Depth (ft) Metals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Beryllium	011 1*453 07/11/92 0.000 ft	A11 10454						
Date Sampled Depth (ft) Hetals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Beryllium	07/11/92 0.000 ft		0111-455	0111*456	0111-452	011.1*457	011.1*458	01.1*459
Depth (ft) Metals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Beryllium	0.000 ft	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92
Metals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Beryllium		0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 1t
Attunium Antimory Arsenic Barium Beryllium								
Antimony Arsenic Barium Beryllium	990.0009	7580.0000	7460.0000	10500.0000	7340.0000	10600.0000	9380.0000	8170.0000
Arsenic Barium Beryllium Codelium	30.1000**	76.0000**	235.0000**	134.0000**	22.6000**	**0009.67	9.1700**	148.8000**
Borium Deryllium Canalian	4.2600	5.7900	9.9900	7.5800	7.4200	8.9000	6.1300	2.6488
Beryllium	862.0000**	5200.0000**	1570.0000**	1740.0000**	430.0000**	240.0000**	367.0000**	2700.0000**
Padalina	0.6890	0.6780	< 0.5000	0.6590	0.8830	< 0.5000	1.0000	0.43
	0008.	130.0000**	98.6000	166.0000**	**0000.965	701.0000**	13.1000**	77.9000
Catcium	17400.0000	42200.0000	39600.0000	42400.0000	39400.0000	7500.0000	23500.0000	35700.0000
Chromium	32.6000**	••000.	39.0000**	68.3000**	**0000.0074	11000.0000**	15.2000	***************************************
Cobalt	2.3700	3.7200	2.9500	3.8500	2.2200	3.3500	4.9400	2.8800
Copper	903.0000**	1440.0000**	1800.0000**	3500.0000**	193.0000**	709.0000**	361.0000**	3800.008
Cyanide	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	0000.069	780.0000	< 0.9200	oo26.0 ×
from	7040.0000	21400.0000	11500.0000	14200.0000	19000.0000	25400.0000**	11400.0000	12500.0000
Lead	2210.0000**	4910.0000**	26000.0000**	11000.0000**	1340.0000**	3960.0000**	748.0000**	14000.00001
Megresica	3300.0000	7590.0000	7060.0000	7060.0000	5040.0000	9490.0000	8530.0000	7440.000
Henserese	151.0000	306.0000	201.0000	213.0000	166.0000	202.0000	706.0000	264.0000
Mercury	< 0.0500	< 0.0500	0.0558**	0.0782**	< 0.0500 <	< 0.0500 <	· 0.0500	• 0.0500
Mickel	32.0000**	45.4000**	23.2000**	37.4000**	5.3700	7.1900	12.0000	24.7000**
Potessium	1150.0000	1290.0000	2070.0000	1360.0000	3570.0000	4870.0000	3610.0000	1460.000
Selenium	0.3760**	0.5720	0.4960**	1.1800**	0.8720**	1.0100**	0.6310**	0.6170**
Silver	1.3800**	**000 †.9	8.5200**	14.0000**	< 0.5890	0.8790**	1.7400**	3.7700**
en indica	232.0000	292.0000	409.0000	277.0000	754.0000	1050.0000	453.0000	257.0000
That I ium	8.4500	19.2000**	59.9000	18.6000**	17.9000**	28.1000**	9.8600 **	
and items	9.2600	10.4000	10.7000	9.4100	9.8400	12.0000	17.3000	10.500
2 inc	1100.0000**	3970.0000**	2610.0000**	4270.0000**	764.0000**	1370.0000**	**0000**	7200.0000**

5-12-1

Notes: ** . V

TOOGLE AD WORTH AREA: SUMU NO. 21 D D SOIL AMALYTICAL MEADLE:

Page No. 1 12/18/92

ATION FURNACE BUILDING

	ee. 35.00#	56.21.000	55-21-010	
Sample 10	200-12-58	17-CC	211 217	
	097-1110	105_110	794-1110	
	07/11/92	07/11/92	07/11/92	
Sale samples	0.000 ft	0.000 ft	0.000 ft	
				١
tetals and Cyanide (ug/g)	0000 0000	24000 0000**	10500.0000	
Alwina	7600.0000	Tee 0000++	***************************************	
Antimony	130.0000-	150.000	130.000	
Arsenic	43.0000	11.0000	8.9200	
	3000.0000**	12000.0000	\$800.0000 *	
	3.8000**	1,2000	0.8500	
	75.0000**	\$00°,0000	325.0000*	
	37000.0000	29200,0000	28500.0000	
	100.0000**	248.0000**	137.0000**	
	15 0000*	9.6300	6.4100	
Cobalt	Sonn nones	15000.0000	4000.0000	
Copper	0.9200	1.4100**	1.3600**	
Cyanide	**0000 000071	42400 0000	30600.0000**	
Iron	11000 0000**	63000,0000**	6500.0000**	
043-6	A800,0000	11100.0000	0000 00069	
	2300.0000**	523.0000	403.0000	
asaur6urii:	0.0687**	0.0579**	0.0991**	
Hercury	84, 0000**	254.0000**	90.1000**	
	1100.0000	736.0000	932.0000	
	1.8300**	1.7600**	1.3400**	
	12.0000**	7.5400**	2.7600**	
	270.0000	326.0000	310.0000	
Sodius	**0000**	82.8000**	20.5000**	
	× 14.0000	9.0000	7.6500	
	19000,0000**	18000,0000**	12000.0000**	
2100				

TOCELE AD-WORTH AREA: SAMU NO. 21 - AED DEACTIVATION FURNACE BUILDING SCIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	SS-21-001	SS-21-002	\$5-21-003	\$S-21-004	\$5.21-005	SS-21-006-NID	ee-21-004	- 20 - 00
Leb 10	011.1*453	757-110	25701 110	O11 18454		777-003-004 011-10-10-10-10-10-10-10-10-10-10-10-10-	000-17-ee	/m.17.cc
Dete Sampled	07/11/02	07/11/02	07/11/02	02/11/00	0111452	0111457	011.1*458	0111-450
Depth (ft)	0.000 ft	0.000 ft	u.000 ft	0.000 ft	0.000 ft	0.000 ft	07/11/92 0.000 ft	07/11/42 0.000 fc
Volatile Organic Compounds (ug/g)		;						
(31) augustne.11a1/squadn.d.2.16u1au.7	\	**	W.	¥	¥	¥	×	***
Ethylbenzene	0.0018**	0.0027**	0.0023**	0.0032**	0.0059**	0.0031**		300 0
Toluene	* 0.000 8	0.6000**	× 0.0008	< 0.0008	0.0016**	× 0.0003	0.000	200.0
Xylenes	0.0098**	0.0121**	0.0111**	0.0161**	0.0274**		0.0183**	0.0170
Semivolatile Organic Compounds (ug/g)								
2-Ethyl-1-hexanol	X	¥#	*	\$	4	•	:	
Di-n-butyl phthelate	0.0610		- C	E 600 1	¥ 60		\$	8.0000±
Fluoranthene	× 0.0680	0 1000	2000	90.				002.0 •
Hexadecanole acid / Palmitic acid (110)	*			;	0.100	0000 ·	× 0.0680	× 0.3000
Manabal and	¥ ;			S	\	0.3100**	¥	1
	0.03/0	× 0.0/00	× 0.0700	0.0200	< 0.0700 <	< 0.0370	< 0.0370	< 0.1000
Frietign Corp.	< 0.0330	< 0.0700 <	< 0.0700	< 0.0700 <	< 0.0700 <	< 0.0330	< 0.0330	< 0.1000
Pyrene	< 0.0330		< 0.0700 <	< 0.0700 <	< 0.0700 <	< 0.0330	< 0.0330	c 0.1000
n-Kitrosodiphenylenine	< 0.1900	0.5000**	0.4000	< 0.4000	< 0.4000	< 0.1900	0001.0	
But sides (10/0)	1	***	•	;	;			
2-	E	Š	£	¥	\$	X	¥	¥#
Herbicides (ug/g)	*	¥	¥	¥	4	¥	¥	≦
Total Petroleum Mydrocarbons (ug/g)	¥#	\$	NA NA	¥	4	¥	4	¥
Explosives (up/g)								
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	0.4860	< 0.4880	***************************************	***************************************		
2, 4, 6-Trinitrotoluene	< 0.4560	1.1500**	< 0.4560	< 0.4560	14000 00001	16000 00000	0.4860	
2,4-Dinitrotoluene	< 0,1400	4.0000.4	4.0000**	< 0.3000	**0000.4	6. Annes		000,0
2,6-Dinitrotoluene	< 0.0850	< 0.2000	< 0.2000	< 0.2000	< 0.2000	0.0050	0.000	0.000
Cyclonite (ADX)	< 0.5870	< 0.5870	< 0.5870	< 0.5870	6.0000**	5.5000**	< 0.5870	0.5870
Dioxins/furams (ug/g)								
2,3,7,8-Tetrachlorodibenzofuran	< 0.000003	0.000028**	< 0.000003	< 0.000005	< 0.000003	< 0.000003	< 0.000003	< 0.000025
Heptachlorodibenzodioxin - non specific	0.0002000	0.001400**	0.000100**	0.000300**	0.000500**	0.000500**	0.000100**	< 0.000300
Meptachlorodibenzofuran - non specific	< 0.000045	0.000500**	< 0.000021	0.000100**	0.000100**	0.000200**	< 0.000018	0.000100
Mexachlorodibenzodioxin - non specific	< 0.000013	0.000200	< 0.000013	< 0.000014	< 0.000014	< 0.000038	< 0.000011	0.000100
Mexachlorodibenzofuran - non specific	< 0.000024	0.000200**	< 0.00000 ×	< 0.000044	< 0.000033	• 0.000040	< 0.000008	4 0.00016
Octachlorodibenzodioxin - non specific	0.001600	0.007500**	0.000500	0.001800**	0.003600**	0.003600**	0.000600**	0 000000

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

Page No. 08/14/93

TOOELE AD-NORTH AREA: SIAMU NO. SED DEACTIVATION FURNACE BUILDING SOIL ANALYTICAL RESUL.. FOR ORGANIC COMPOUNDS

Sample 10	\$5-21-001	SS-21-002	SS-21-003	SS-21-004	\$5-21-005	\$\$-21-005-DUP	\$5-21-006	\$5-21-007
01 991	0111*453	0111*454	0111*455	0111*456	0111*452	0111*457	0111*458	0111-459
Date Sampled	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Octachlorodibanzofuran - non specific Pentachlorodibanzofuran - non specific	< 0.000013 < 0.000003	0.000700**	< 0.000100 < 0.000003	< 0.000200 < 0.000004	0.000300**	0.000300**	< 0.000100 < 0.000003	< 0.000300 < 0.00016

Sample 10	SS-21-008	SS-21-009	55-21-010	
01 de J	011.1*460	0111*461	011.1-462	
Date Sampled	26/11/20	07/11/92	07/11/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	
Volstile Organic Compounds (ug/g)				
2-Methyl-2-propanol/tert-Butanone (11C)	0.0075**	¥	*	
Ethylbenzene	0.0028**	0.0055**	< 0.0017	
Toluene	< 0.0008	0.9000**	< 0.000 8	
Xylenes	0.0149**	0.0249**	0.0019**	
Semivolatile Organic Compounds (ug/g)				
2-Ethyl-1-hexanol	¥	¥	*	
Di-n-butyl phthalate	0.2000**	7.0000**	*•0000°9	
Fluoranthene	o. 1000	0.3000**	< 0.3000	
Hexadecanoic acid / Palmitic acid (TIC)	¥¥	\$	S	
Napthalene	< 0.0700	0.1000**	₹ 0.2000	
Phenanthrene	< 0.0700 ×	0.2000**	< 0.2000	
Pyrene	< 0.0700	0.2000**	< 0.2000	
n-Nitrosodiphenylamine	< 0.4000	2.0000**	4 1.0000	
5.				
Paticides (ug/g)	4	4	¥	
Herbicides (ug/g)	YN	¥	¥	
Total Petroleum Mydrocarbons (ug/g)	**	NA A	¥	
Explosives (ug/g)				
1,3,5-Trinitrobenzene	< 0.4880	< 0.4880	< 0.4880	
2,4,6.Trinitrotoluene	< 0.4560	< 0.4560	2.0100**	
2,4-Dinitrotoluene	< 0.3000	7.0000**	< 0.7000	
2,6-Dinitrotoluene	< 0.2000	0.5000**	0007.0 >	
Cyclonite (MDx)	< 0.5870	< 0.5870	< 0.5870	
Dioxins/furans (ug/g)				
	0.00000	u. 0001001	< 0.000034	
Heptachlorodibenzodioxin - non specific		0.001300**	0.004000**	
Meptachlorodibenzofuran - non specific	< 0.000037	0.000700**	0.001300**	
Mexachlorodibenzodioxin - non specific	< 0.000015	0.000100**	0.000500**	
Mexachlorodibenzofuran - non specific	· 0.000008	0.000200**	0.000300**	

Notes: ** * Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

TOCELE AD-WORTH AREA: SLAND NO. AL

Page No. 2 08/14/93

NO. AED DEACTIVATION FURNACE BUILDING RES FOR ORGANIC COMPOUNDS

Sample 10	\$5-21-008	88-21-009	\$5-21-010	
1eb 10	0111*460	0111*461	0111*462	
Date Sampled	07/11/92	07/11/92	07/11/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	
Octachlorodibenzofuran - non specific Pentachlorodibenzofuran - non specific	< 0.000100 < 0.000002	0.001000**	0.002800**	

Sample 10	\$5-21-001	SS-21-002	\$5-21-003	SS-21-004	\$5-21-005	SS-21-005-DUP	SS-21-006	55-21-007
01 de 1	0111+453	0111*454	011.1*455	0111*456	0111*452	157-1710	0111*458	0111.459
Date Sampled	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92	07/11/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Anions (ug/g)								
Chioride	10.5000	< 6.0500	250.0000**	17.1000	10.6000	7.3700	90.6000	00\$0.9
Nitrite, nitrate · nonspecified	. 7.4500**	1.7600	70.0000**	7.6000**	11.0000**	6.7300**	۴.0000 ۶	0.5660
Sulfate	< 90.4000	< 90.4000	256.0000	< 90.4000	< 90.4000	× 90.4000	165.0000	· 90.4000
Total phosphates	••0000-•	1500.0000**	••0000 066	220.0000	290.0000	< 300.0000	830.0000**	•\$0.0000**
General Inorganic P arame ters								
***	8.7400	8.7100	8.8000	7.5900	8.6300	8.1300	8 S600	0090 0

is above the background concentration for the depth shown, < = #

tected at the value shown, MA = Not analyzed

TOOELE AD-MORTH AREA: SUMU NO. 2 - ¿D DEACTIVATION FURNACE BUILDING SOIL ANALYTICAL RESULIS FOR GENERAL CHEMICALS

Page No. 1 12/19/92

Sample 10	\$5-21-008	SS-21-009	55-21-010	
OI qe1	01114460	0111*461	0111*462	
Date Sampled	07/11/92	07/11/92	07/11/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	
Anions (ug/g)				
Chloride	< 6.0500	9.2000	9.8800	
Nitrite, nitrate - nonspecified	1.1400	4.1700**	6.3200**	
Sulfate	· 90.4000	202.0000	213.0000	
Total phosphates	880.0000**	410.0000	2000.0000**	
General Inorganic Parameters		;		
₹.	8.9300	8.7200	8.8100	

Table 5-13

TABLE 5-13 DRMO STORAGE YARD (SWMU 26)

ANALYTICAL RESULTS

Lab 10 Date Sampled	-35.07. 6 8			200 - 92 - 8 5	SOD - 02 - BS		55.02.28	
Date Sampled	627-1710	011.1*463	0111*480	011.1*464	0111-481	011.1*465	011.1*482	77.110
	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92
Depth (ft)	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft
Month of Complete Contract								! !
	864.0000	909.0000	4230.0000	900.000	3840.0000	3670.0000	2560.0000	5660.000
And family	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.140
According	4.7900	3.6300	7.1600	4.4600	6.2000	4.6200	7.5100	7.7300
	0000 97	19,1000	99.99	55.7000	28.9000	72.2000	59.7000	66.160
	005.0 >	< 0.5000	< 0.5000	< 0.5000	0.5880	0.6160	0.5990	0.60¥
	002.0	< 0.7000	3.2600**	< 0.7000	1.4300**	1.0700**	1.5100**	4 0.700
	0000 00006	71000.0000	54000.0000	110000.0000**	9000.00099	0000.00099	26500.0000	7710.000
	7.0500	× 4.0500	45.7000**	< 4.0500	11.7000	9.5600	11.4000	9.1300
	< 1.4200	< 1.4200	2.3000	< 1.4200	1.8800	2.0600	2.1500	2.7800
Compe	5.9200	3.5200	25.2000	2.6300	11.3000	9.7000	15.0000	15.4000
Cymple	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	× 0.9200
	1830,0000	1950.0000	8150.0000	1500.0000	4480.0000	7690.0000	2680.0000	6590.000
_	15.000	7.4600	75.2000**	4.7700	34.5000	12.0000	69.0000	35.6000
-13	4670,0000	8990.0000	4270.0000	8360.0000	6350.0000	4560.0000	3630.0000	3030.0000
•	90.5000	76.6000	200.0000	55.1000	137.0000	142.0000	167.0000	227.000
	< 0.0500	0.0200	< 0.0500	< 0.0500	< 0.0500 <	· 0.0500	< 0.0500 <	· 0.0500
	2.3900	2.5800	7.1700	2.5100	5.9700	9.5600	6.0500	6.6500
	186.0000	121.0000	1090.0000	123.0000	1060.0000	1030.0000	1560.0000	1760.000
	< 0.2500		< 0.2500	• 0.2500	< 0.2500 ×	< 0.2500	< 0.2500 <	· 0.250
	< 0.5890	•	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	A 0.589
	272.0000	175.0000	743.0000	368.0000	427.0000	273.0000	432.0000	227.000
111111	< 6.6200	< 6.6200	6.6200	< 6.6 200	8.0400	< 6.6200	< 6.6200	× 6.620
	5.5800	6.3200	10.5000	6.1900	10.6000	10.6000	10.2000	10.400
	0001 50	16 9000	113,0000**	14,9000	0006-67	30.8000	55.1000	74.8000

'age No. 1 12/18/92

TOOELE AD-NORTH AREA: SIMIL 26 - DRMO STORAGE YARD SOIL ANALYTICAL RESULTS FOR METALS

sample 10	SB-26-004-DUP	SB · 56 · 005	SB - 56 - 005	28 - 56 - 006	SB - 56 - 006	28 - 56 - 007	SB-26-007	28 -56-00 8
: <u>-</u>	011.1*478	0111*483	0111*467	011.1*484	011.1*468	0111*485	0111469	0111*486
ate Counted	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/24/92
lepth (ft)	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft
							·	Ē
'etals and Cyanide (ug/g)								
Aluminum	6200.0000	5020.0000	7220.0000	5020.0000	6360.0000	3230.0000	4930.0000	7000 0667
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	9.0500	6.2800	4.0300	8.6000	8.3500	2.6900	8.7000	8.2300
	73.7000	0009.76	0009.06	9.3000	85.6000	24.9000	112.0000	76.1000
	0.6130	0.7050	0.6250	0.6780	0.6030	< 0.5000	< 0.5000	0.6160
Cadaica	< 0.7000	1.7800**	< 0.7000	0.8730**	< 0.7000	1.4300**	2.0200**	2.2400**
Colcius	18000.0000	26200.0000	30600.0000	41600.0000	38500.0000	30400.0000	39700.0000	46100.0000
Chronium	9.7500	12.5000	12.9000	14.1000	11.5000	20.6000	28.1000**	13.9000
Cobalt	2.5300	2.0400	2.9300	2.2400	2.8200	2.0200	2.2400	2.1300
Copper	15.0000	303.0000**	**0005.09	18.2000	9.2600	50.1000**	135.0000**	75.9000**
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200	< 0.9200
Log	6510.0000	5830.0000	7760.0000	6030.0000	6580.0000	5390.0000	7430,0000	5540.0000
pead;	74.7000**	133.0000**	30.3000	53.6000	32.6000	••0007.99	224.0000**	202.0000**
Zeones (ca	3620.0000	4780.0000	4970.0000	4100.0000	3720.0000	3620.0000	4550.0000	4370.0000
Managanese	216.0000	173.0000	233.0000	213.0000	186.0000	160.0000	204.0000	183.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 ×
Nickel	6.0500	6.1500	8.0500	7.3500	7.0900	7.1300	7.2900	6.9300
Potassium	1760.0000	1520.0000	2040.0000	1410.0000	1660.0000	1030.0000	1350,0000	1190.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	275.0000	365.0000	261.0000	412.0000	280.0000	348.0000	291.0000	637.0000
Thellium	< 6.6200	< 6.6 200	< 6.6200	8.1900	< 6.6200	< 6.6200	< 6.6200	< 6.6200
Vanadium	11.0000	10.5000	12.5000	11.9000	13.3000	9.4400	11.8000	11.5000
2 inc	45.6000	310.0000**	80.9000	75.3000	39.9000	178.0000**	160.0000**	226.0000**

TOCELE AD-WORTH AREA: SLANJ NO. 26 - DRMO STORAGE YARD SOIL AMALYTICAL RESULTS FOR METALS

-	
P89e #0.	12/18/92

1,000 ft	Sample 10	\$9 - 56 - 008	58-26-009	88-26-009	SB-26-010	SB-26-010	\$4-26-011	SB-26-011	-110-92-85
1,000 ft 0,000 ft 1,000 ft	190 10	011.1*470	0111*487	0111*471	0111-488	0111*472	0111*489	0111*473	01110524
1,000 ft 0,000 ft 1,000 ft 0,000 ft 1,000 ft	Date Sampled	06/24/92	06/24/92	06/24/92	06/24/92	06/24/92	26/57/90	26/52/90	26/52/90
3700, 0000 4550, 0000 10640, 0000 5870, 0000 1840, 0000 5120, 0000 7146, 0000 73 1440, 0000 73, 1440 47, 1440 4	Depth (ft)	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	1.000 ft
3700,0000 4550,0000 10600,0000 5870,0000 1460,0000 5120,0000 7,1400 < 7,1400									
4.7300 7.7800 4.7400<	Metals and Cyanics (Ug/g)	3700,0000	4550.0000	10600.0000	5870,0000	1840.0000	5120.0000	7140.0000	7000.0000
11,000 6,700 1,5300 1,		< 7.1400	× 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
114,0000 60,7000 86,9000 100,0000 42,5000 71,4000 68,0000 100,0000 42,500 42,5000 42	Arser	4.7300	7.7800	4.7600	7.3000	9.4700	7.6700	3.0100	3.2800
Colored Colo		114.0000	900.7000	98.9000	108.0000	42.5000	71.4000	99.0000	73.1000
4.07000 1.6300*** 4.07000 9.3400*** 0.08950*** 2.6100*** 4.07000 76000.0000*** 62000.0000*** 62000.00000** 62000.00000 69000.00000 49300.0000 2.45000 2.9100 11.2000 11.2000 2.20000*** 2.10000*** 17.0000 11.1000 2.9100 11.1000 4.1200 1.8100 2.8200 4.9200 4.1600 2.4500 2.9100 11.1000 4.1200 2.9200 4.9200 4.1600 2.9200 4.1600 2.9200 4.1600 2.9200 4.1600 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 4.91000 2.9100 4.91000 2.9100 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000 4.91000		◆ 0.5000	< 0.5000	0.6510	< 0.5000	· 0.5000	< 0.5000	< 0.5000	< 0.5000
11,9000 12,0000	Cachina	< 0.7000	1.6300**	< 0.7000	9.3400**	0.8950	2.6100**	< 0.7000	· 0.7000
11.1000	Calcius	76000.0000**	62000.0000	₩0000.0006€	40200.0000	9000 00099	49300.0000	2390.0000	2580.000
4, 2000 1,8100 3,8500 2,8200 4,4000** 2,5900 2,9100 9,8200 29,8000** 11,7000 380,0000** 17,9000 4,4000** 7,1000 7,1000 4,0000** 4,0000** 4,6000** 17,9000 4,6000** 7,1000 7,2000 7,1000 7,2000 7,1000 7,2000 7,1000 7,2000 7,1000 7,2000 7,1000 7,2000 7,1000 7,2500 7,2500 7,2500 7,2500 7,2500 7,2500 7,2500 7,2500 7,2500 7,2500 7,2500 7,2500	Chronium	11.9000	22.0000**	20.1000	57.1000**	15.0000	14.1000	11.1000	11.1000
9.8200 29.8000** 11.7000 380.0000** 17.9000 44.8000** 7.1000 4.0.9200 4.0.	Cobalt	< 1.4200	1.8100	3.8500	2.8200	< 1.4200	2.4500	2.9100	3.3300
4. 0.9200 4.0.9200	Conner	9.8200	29.8000**	11.7000	380.0000**	17.9000	44.8000**	7.1000	8.3560
19,0000 19,00000 19,	Cvanide	◆ 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	× 8.9200
9,0000 218,0000 406,0000 416,0000 4030,0000 2650,0000		3880.0000	4730.0000	0000.0096	8080.0000	3010.0000	6170.0000	7230.0000	7670.0000
4540.0000 6320.0000 6720.0000 4060.0000 4140.0000 2650.0000 2650.0000 2650.0000 2650.0000 2650.0000 2650.0000 2650.000 2660.000 </td <td></td> <td>19.0000</td> <td>218.0000**</td> <td>67.7000**</td> <td>252.0000**</td> <td>65.0000**</td> <td>20.6000</td> <td>8.4100</td> <td>9.600</td>		19.0000	218.0000**	67.7000**	252.0000**	65.0000**	20.6000	8.4100	9.600
92.7000 131.0000 181.0000 225.0000 67.2000 208.0000 218.0000 4.0.0500 4.0.0500 4.0.0500 4.0.0500 4.0.0500 4.0.0500 7.8000 7.4500 6.5300 6.5300 4.0.0500 4.0.0500 4.0.0500 7.4500 7.4500 7.83.0000 1100.0000 2360.0000 1700.0000 47.0000 1390.0000 1960.0000 2.5500 4.0.5890	Magnesium	4540.0000	6320.0000	8730.0000	4060.0000	4140.0000	4030,0000	2650.0000	2720.0000
4.0.0500 4.0.0500 4.0.6500 4.0.6500 4.0.6500 7.4500 6.5300 6.5310 12.9000 8.7700 4.6400 7.8000 7.4500 7.83.000 1100.0000 2360.0000 1770.0000 477.000 1390.0000 1960.0000 27500 4.0.5890 4.0.5890 4.0.5890 4.0.5890 4.0.5890 4.0.5890 4.0.5890 4.0.5890 6.0.5890 307.0000 497.0000 381.0000 614.0000 294.0000 294.0000 385.0000 4.5.600 4.5.600 4.6.6200	Mendenda	92.7000	131.0000	181.0000	225.0000	67.2000	208.0000	218.0000	242.0000
6.5300 6.3100 12.9000 6.7700 4.6400 7.8000 7.4500 7	201000	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.0500	< 0.0500 <	< 0.0500 <	· 0.0500
Light 783.0000 1100.0000 2360.0000 1700.0000 477.0000 1390.0000 1960.0000 2500 4 0.2500		6.5300	6.3100	12.9000	8.7700	4.6400	7.8000	7.4500	7.9808
4 0.2500 10.1000 18.8000 10.7000 8.4700 11.4000 11.7000 11.7000 11.7000 12.9000	Potessica	783.0000	1100.0000	2360.0000	1700.0000	477.0000	1390.0000	1960.0000	2050.0000
 C. S. B. S. G. C. C. S. B. G. C. C. S. B. G. C. C. C. S. B. G. C. C. S. B. G. C. C. S. B. G. C. /li>	Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500
307.0000 497.0000 581.0000 614.0000 290.0000 294.0000 385.0000 3 585.00000 3 585.00000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.0000 3 585.00000 3 585.0000 3 585.00000 3 585.0000 3 585.0000 3 585.0000 3 585.00000 3 585.000000 3 585.0	Tex 198	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	× 0.500
 < 6.6200 < 7.000 /ul>	Sodium	307.0000	497.0000	381.0000	614.0000	290.000	294.0000	385.0000	374.0000
dium 9.2500 10.1000 18.8000 10.7000 8.4700 11.4000 11.7000 dium 14.4.0000** 72.3000 548.0000** 39.7000 281.0000** 36.9000	Thailit	< 6.6200	8.6400	< 6.6200	< 6.6200	< 6.6200	< 6.6200	¢ 6.6200	· 6.628
42 Anno 164		9.2500	10.1000	18.8000	10.7000	8.4700	11.4000	11.7000	12.8000
	Ziec	42.8000	166.0000**	72.3000	568.0000**	39.7000	281.0000**	36.9000	44.2000

12/18/92

TOOELE AD-NORTH AREA: SIAN 26 - DRWD STORAGE YARD SOIL ANALYTICAL RESULTS FOR WETALS

		24.013	ca. 24.017	CB. 26.013	SR-26-014	SB-26-014	\$8-26-015	\$8-26-015
sample 10	210.02.8S	210-02-96	CIO 03-95					22.700
9	011.1*490	011.1*474	01114491	011.1*475	01114492	011.1-476	011.1*495	775-1110
	0472700	06/26/02	26/56/90	06/24/92	06/24/92	26/52/90	06/24/92	06/24/92
late sampled	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft
יפטנה (זנ)								
tetals and Lyanide (ug/g)	0000 0087	6110 0000	6390,0000	6450,0000	3860.0000	5360.0000	3950,0000	4860.0000
Aluminum	200:041	< 7 1400	0071.2 >	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1400
Antimony	0077 \$		10 6000	3.0700	6,1100	6.3200	5.5800	4.3500
Arsenic	25,455	25 9000	70,2000	65.7000	94.0000	73.0000	63.7000	78.5000
	000:00	0005.0	0.5750	< 0.5000	< 0.5000	< 0.5000	< ຜ.5000	< 0.5000
Berylliam	# 2000 P	**0990	1.3400**	< 0.7000	0.7870	1.2800**	4.4200**	1.1500**
	0000 00281	5100.0000	21800.0000	9840.0000	26200.0000	27700.0000	19300.0000	34600.0000
	3020:00	10 9000	10.7000	9.9800	11.4000	13.7000	10.2000	7.6700
Chromium	2 2900	2.9800	2.6900	2.3800	2.3000	2.4100	1.9200	2.0300
Coball	***0001 72	26.7000**	14.1000	7.9800	12.2000	14.4000	10.6000	7.6200
	0020 0 >	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
Lyanide	0000 UY75	6820,0000	7070,0000	6520.0000	5070.0000	9000.0629	5120.0000	5240.0000
	**0007-95	26.2000	44.5000	10.7000	41.0000	47.0000	19.0000	6.3700
Dea 11	222000	0000 0772	3570.0000	2740.0000	3600.0000	4360.0000	3940.0000	3830.0000
Tagnes Ca	228 0000 278 0000	277.0000	374,0000	208.0000	167.0000	193.0000	185.0000	153.0000
and the state of t	0050.0	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500 <
Hercury	6,6100	7.4300	8.0200	7.3000	5.7600	7.3000	2.6900	5.9500
	0000 0111	1710,0000	1930,0000	1780,0000	1260.0000	1640.0000	1310.0000	1330.0000
For assign	003:00 >		< 0.2500	< 0.2500	< 0.2500	· 0.2500	< 0.2500	< 0.2500
Sel en l'al	CORS	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
SILVET	0000 200	214,0000	463,0000	238.0000	204.0000	228.0000	336.0000	320.0000
	9 6 6200		< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200
	0033 K	10,1000	11.4000	10.5000	8.3800	10.6000	7.9700	10.1000
Ashaci um	**0000	120 0000	293,0000**	40.3000	49.2000	71.6000	42.3000	29.3000

Color Colo	Sample 10	\$\$-26-016	\$5-26-017	810-92-88	\$5-26-019	and-610-92-88	83 - 26 - 020	\$5-26-021	53-52-85
1670 1000 11 1000 12 1000 12 1000 13 1000 13 1000 14 1000 14 1000 15		90394 116	01341 110	11841 110	A11 10512	AC 345 110	A11 10513	215-1110	515-110
9 cond ft 0,000 ft 0,		100-1110	016-110		216.1316	70.00			
1670,0000 ft 0,0000 ft 0,0	Date Sampled	06/59/92	26/62/90	26/62/90	26/62/90	26/62/90	24/62/90	24/A2/qq	74/U/B
1470,0000 1560,0000 5590,0000 4620,0000 3470,0000 3310,0000 47,1400 47	Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
1470,0000									
1,000	Metals and Cyanide (us/s)								
C	Attains	1670.0000	1580.0000	5590.0000	4020.0000	34.70.0000	3310.0000	1530.0000	4280.0024
6.9000 5.1200 7.7000 6.2.2000 5.1000 13.0000 4.7500 13.0000 1.7000 5.2000 5.12000 5.12000 5.12000 5.12000 5.12000 5.12000 5.12000 5.12000 5.12000 5.12000 6.2.2000 5.12000 6.2.2000 5.12000 6.2.2000 5.12000 6	Antiector	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	8.978°
14,5000 32,2000 40,5	Arsenic	0086.9	5.1200	7.7000	2.2600	5.1100	13.0000	4.730	13.000
1,0500	Parita	34.5000	32.2000	68.7000	62.2000	28.9000	51.5000	30.400	F. 200
1,0600**		< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	· 0.500
	Cachina	1.0600**	< 0.7000	1.7200**	1.3000**	1.6500**	3.5900**	2.2100**	. 788.
14,6000	Calciu	48000,0000	72000.0000**	22900.0000	40100.0000	39700.0000	44 700 . 0000	63000.0000	49786.888
1,4200 1,4200 1,4200 1,9000 1,9000 2,1500 1,4200 1,9000 1,9000 2,14200 1,9000 1,9000 1,4200	Checolin	14.6000	11.1000	12.7000	12.9000	10.9000	12.8000	8.2400	2.7
10,4000 5,0600 14,1000 17,4000 25,60000 5,9600 14,1000 17,4000 25,60000 5,9600 14,1000 4,9200	Cobalic	< 1,4200	< 1.4200	2.4200	1.9800	1.9000	2.1500	< 1.4200	2.X
120,0000 2590,0000 5340,0000 4780,0000 4330,0000 2590,0000 2590,0000 2540,0000 44,3000 42,0000 42,3000	Coner	10.4000	2.0600	14.1000	15.6000	17.4000	25.6000**	2.3600	2. X
1120.0000 2590.0000 340.0000 4780.0000 480.0000 2590.0000 25.0000 25.0000 44.3000 42.3000 75.0000 25.0000 25.0000 25.0000 25.0000 44.3000 4010.0000 5350.0000 42.30000 42.30000 42.30000 42.30000 42.30000 42.30000 42.3000 42.3000 42.3000 42.3	Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200 <	• 0.9200	. 0.928
35,7000 25,4000 38,3000 42,3000 52,0000 5350,0000 42,3000 5350,0000 4620,0000 4620,0000 472,0000 156,0000 156,0000 77,0000 157,00	92	3120.0000	2590.0000	7500.0000	5340.0000	4780.0000	4830.0000	2590.000	7515.
Color Colo	Lead	35.7000	25.4000	38.3000	44.3000	45.3000	75.0000	28.000	335.000
104.0000 62.7000 157.0000 156.0000 159.0006 77.0000 77.0000 77.0000 77.0000 77.0000 77.0000 77.0000 77.0000 7.1200 7.	Magnesium	4040.0000	4860.0000	3780.0000	4700.0000	4010.0000	5350.0000	4620.0000	4140.000
Colored Colo	Menanese	104.0000	82.7000	205.0000	157.0000	156.0000	159.000	77.0000	177.000
6.3600 4.0500 7.6100 7.7300 6.7100 7.1200 3.9700 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000	Mercury	× 0.0500	0.0200	< 0.0500 <	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	9.676
14, 0000	Bickel	9.3600	4.0500	7.6100	7.7300	6.7100	7.1200	3.9700	8.7788
Comment	Potestium	260.0000	487.0000	1590.0000	1260.0000	1110.0000	1060.000	503.000	1230.000
 c 0.5890 d 0.5890<	Selenium	< 0.2500	< 0.2500	• 0.2500	< 0.2500	0.2300 ×	· 0.2500	< 0.2500 ×	. 0.258
144,0000 131,0000 205,0000 288,0000 288,0000 294,0000 234,0000 14,0000 14,0000 111,0000 10,0000 111,00	Silver	< 0.5890	< 0.5890	< 0.5890	· 0.5890	< 0.5890	< 0.5890	< 0.5890	. 0.588
tium < 6.6200 < 6.6200 < 6.6200 < 6.6200 < 6.6200 < 6.6200 < 6.6200 C 7.1800 C 7.180	Sodium	144.0000	131.0000	205.0000	387.0000	2000 .002	291.000	234.0000	24.8E
dium 5.8400 7.4000 10.7000 9.1400 10.4000 7.1800 10.4000 7.1800 10.4000 7.1800 111.0000** 25.4000	That ties	< 6.6200	< 6.6200	< 6.6200	< 6.6200	• 6 .6200	< 6.6200	e 6.6200	· 6.638
25.4000 111.0000** 25.4000	Vandius	5.8400	7.4000	11.4000	10.7000	9.1400	10.4000	7.1800	10.000
	2 inc	94.7000	20.9000	83.5000	51.4000	51.2000	111.0000**	23.4000	- TEST - IRE

٠,

sected at the value shown, MA = Not analyzed

hown,

age No. 1 2/18/92

TOOELE AD-WORTH AREA: SAMU NO. 26 - DRMO STORAGE YARD SOIL ANALYTICAL RESULTS FOR METALS

		760 76 00	360.36.99	ee. 24. 025.NB	46.24.026	\$5-26-027	82.26.028	85-26-029
ample 10	C20-02-SS	*20-02-55	620.03.ce	170 07 EE				
· 4	011.1*516	0111*517	011.1*518	0111*527	0111-519	0111-520	125-1110	011.1766
	04/30/03	04/11/02	06/30/02	06/30/92	06/30/92	06/30/92	26/30/95	06/30/92
ate sampled	34/43/00	2/ 000 0		**	•			0.000 (t
epth (ft)	0.000 44	0.000 11	0.000 12	0.000	2.000.5	3000		
etals and Evanide (ug/g)								
	7000.000	2920,0000	1840.0000	1240.0000	6030.0000	3900.0000	2850.0000	4240.0000
	A 3300**	< 7.1400	< 7.1400	< 7.1400	28.1000**	< 7.1400	< 7.1400	< 7.1400
ALL SHOOTS	A 2000	5, 1500	5.3000	4.6600	8.9100	6.3200	2.8200	7.6500
Arsenic	113 0000	97 0000	30.8000	24.3000	281.0000**	65.1000	83.0000	25.6000
	0000.01	0 5000	0 S000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	· 0.5000
	8 2200s		× 0.7000	¢ 0.7000	21.9000**	< 0.7000	1.6400**	4.2700**
Cachium	0000 00077	17500 0000	71000 00000	40000 000044	35500,0000	38500.0000	71000.0000**	14700.0000
	37 2000	16 6000	9 9000	7.7700	103.0000**	9.8200	11.1000	9.7100
Chronica	32.7000-	9000	004.5	0027 6 7	0099	0097.2	2,7300	2.4800
Cobalt	2. 1900	1.7300	0025	7 1300	2000 0000**	11,900	21.1000	24.7000
Copper	0000	-0004.04	0.27.0	0000	0000	9000	0000	0.0200
Cyanide	< 0.9200	< 0.920U	0024.0	0.7500	0.950	934.0	2020 020	2440 0000
82	7970.0000	4670.0000	2860.0000	2550.0000	14600.0000	0000.0555	0000.0000	2010.0000
	1000,0000	64.3000	20.000	22.0000	1140.0000**	42.0000	31.6000	25.4000
	4100,0000	3700,0000	5590.0000	5840.0000	4440.0000	4020.0000	2690.0000	3410.0000
	194,0000	113,0000	85.8000	84.2000	286.0000	189.0000	188.0000	190.0000
\$ 100 miles	× 0.0500	< 0.0500	< 0.0500	< 0.0500	0,1010**	< 0.0500	< 0.0500 <	< 0.0500 <
	12 7000	5,8900	4.3800	4.5500	28.2000**	8.0500	0069.6	9.2600
A I CRAIL	0000 020	801,0000	601.0000	419.0000	1320.0000	1130.0000	1710.0000	1200.0000
	, n 2500	< 0.2500	< 0.2500	< 0.2500	1.4600	< 0.2500	0.2500	· 0.2500
	0 5760	A 0.5890	< 0.5890	< 0.5890	3.0300**	< 0.5890	< 0.5890	< 0.5890
	37.6 0000	272 0000	263,0000	144,0000	369.0000	341.0000	283.0000	215.0000
Society	6 6 6200		< 6.6200	< 6.6200	< 6.6200	< 6.6200	· 6.6200	< 6.6200
	10 2000	0077	8.4500	6.8700	10.6000	10.8000	14.9000	11.9000
Wanada Um	20000	00 1000	20 0000	22,9000	1700,0000**	39.2000	9900	**0000.0567
Zinc	258.0000	40.000						

	88-56-030	\$5-26-031	SS-56-032	SS-56-033	SS-56-034	470-750-92-88	SS- 26-035	
2 4	011.1*523	011.1*494	011.1*495	967-1110	0111-497	0111-528	0111-496	97-110
Date Sampled	06/30/92	06/30/92	26/30/95	26/30/95	07/07/92	07/07/92	07/07/92	25/25/00
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 fc
Metals and Cyanide (ug/g)								
Aluminum	0000.0099	7990.0000	8590.0000	3770.0000	3060.0000	3360.0000	2210.0000	
Ant imony	× 7.1600	< 7.1400	< 7.1400	< 7.1400	< 7.1400 <	< 7.1400	× 7.1400	· 7.74
Arsenic	9.9400	13.0000	12.3000	7.7300	9.6700	5.8100	2.0800	
Bertes	63.9000	117.0000	117.0000	67.6000	20.8000	20.4000	47.3000	Z. Z
Bertliu	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	· 0.568
Cachina	1,1500**	5.7100**	4.7200**	2.9400**	1.4700**	1.8200**	3.1000**	4.948
Calcium	42300,0000	16100.0000	52000.0000	31900.0000	35700.0000	44100.0000	20600.0000	41300.000
Chronium	13.8000	21.5000**	23.3000**	10.6000	9.8700	10.000	20.3000	2.25
Cobalt	2.8500	3.4100	4.3300	2.5000	2.0200	< 1.4200	1.6600	S. 786
Cacoer	22.7000	88.8000	71.5000**	17.5000	10.9000	11.7000	25. too	16. 30EF**
Cyanide	1.1500**	1.6000**	< 0.9200	< 0.9200	< 0.9200 <	< 0.9200	• 0.9200	. 0.928
51	7250.0000	9500.0000	10400.0000	5350.0000	4000.0000	2000.0000	4290.0000	735.888
Lend	63,1000**	161.0000**	163.0000**	38.7000	32.3000	32.9000	94.6000	101.000
Magnesium	4360.0000	4800.0000	7420.0000	2840.0000	4550.0000	2400.0000	3000.0000	4910.000
Haramete	222.0000	329.0000	336.0000	234.0000	142.0000	166.0000	102.0000	74.888
Mercury	◆ 0.0500	0.0600**	0.0621**	< 0.0500 <	< 0.0500 <	· 0.0500	· 0.0500	· 0.658
Bicket	8.5800	11.9000	13.5000	6.6700	9.6500	9.6500	4.6700	16. 1688
Potassiu	2190.0000	2590.0000	2700.0000	1170.0000	973.0000	1030.0000	900.009	1930.00
Setenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	0.5420**	• 0.2500	0.5070**	. 0.258
Silver	< 0.5890	0.8900**	7.0300**	< 0.5890	< 0.5890	· 0.5890	0.5090	· 0.588
en pos	261.0000	431.0000	1130.0000	389.0000	229.0000	191.0000	189.8000	25. ee
Their	< 6.6200	6.6200	10.2000**	< 6.6200	< 6.6200	· 6.6200	· 6.6200	97.0
Vanadium	13.6000	14.4000	17.6000	9.8800	7.9000	9.2400	9060.9	15.0
Zinc	96.6000	579.0000**	260.0000**	119.0000**	49.7000	52.0000	143.0000**	163.0000

'age No. 1

TOCELE AD-WORTH AREA: SUMD. . 26 - DRIVO STORAGE YARD SOLL ANALYTICAL RESULTS FOR METALS

	66 74 017	910 76 99	010-36-99	66.34.040	ee.34.044	66.34.043	24.74.643	44.36-044
ample 10	160-07-66	97.97.66	150-07-66	00-07-66	10-03-EE	300 03 55		
01 qe	011.1*500	01110501	0111*502	011.1*503	0111*504	0111*505	011.1*506	0111*507
ate Sampled	07/01/92	07/07/92	26/20/00	26/20/20	07/07/92	07/07/92	07/07/92	07/07/92
epth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
etals and Cyanide (ug/g)								
Atunina	3900.0000	3830.0000	2030.0000	8730.0000	2560.0000	0000.0005	6820.0000	8180.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	5,4600	5.8200	8.4200	21.0000	10.000	7.6900	9.6900	2.0400
	50.3000	9000.	36.8000	111.0000	74.8000	64.2000	97.8000	91.0000
	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.6830	< 0.5000 <	< 0.5000
Cadaius	1.1900**	3.8400**	2.1700**	2.6900**	6.6200**	5.8100**	5.7100**	1.3200**
Cateius	62000.0000	37200.0000	42200.0000	18600.0000	31000.0000	34,700,0000	28600.0000	10200.0000
5)5020	11.6000	27.6000**	9.6500	14.7000	22.3000**	17.2000	21.6000**	20.1000
Cobalt	1.8700	2.3300	< 1.4200	3.8900	3.3300	3.3900	3.5600	4.0400
Cooper	12.9000	34.5000**	16.9000	50.5000**	30.3000**	29.6000**	**0000.95	16.6000
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200
Test.	7490.0000	4690.0000	3170.0000	9500.0000	7010.0000	11300.0000	8190.0000	9150.0000
Pas	26.6000	118.0000**	48.1000	145.0000*	190.0000**	95.5000**	••000.109	89.1000**
Engages ica	6320.0000	4100.0000	6630.0000	4950.0000	3230.0000	2360.0000	4120.0000	3140.0000
Tendents a	159.0000	147.0000	109.0000	378.0000	246.0000	249.0000	257.0000	288.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <
	9.3400	6.2200	4.6500	9.5400	8.0600	9.4700	0095.6	9.8200
Potessium	941.0000	1030.0000	495.0000	2770.0000	1490.0000	1090.0000	2020.0000	2460.0000
Selection	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodice	236.0000	246.0000	232.0000	278.0000	254.0000	234.0000	294.0000	271.0000
Thattien	< 6.6200	< 6.6200	6.6200	6.6200	< 6.6200	6.0700	< 6.6200	< 6.6200
Vanadium	11.2000	9.8700	7.3800	15.7000	12.8000	10.8000	14.3000	13.7000
Zinc	125.0000**	157.0000**	102.0000	310.0000**	**0000.795	275.0000**	523.0000**	1610.0000**
2								

Sample 10 Sample 10 Lab 10 Date Sampled Date Sampled Date Sampled Date Sampled O 1/07/92 Atualization Attainum Cacletum Cacletum Cacletum Cacletum Cacletum Cacletum Capper Cobalt Copalt Copal			
Lab ID Date Sampled Depth (ft) Aluminum Antimony Arsenic Barium Cadmium Cadmium Cadmium Copper Cyanide Iron Lead Haganese Mercury Hickel Potassium Selenium Silver Sodium Thatlium Vanadium		Sample 10	\$5-26-045
Date Sampled Depth (ft) Metals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Cadmium Cadmium Catcium Chalt Copper Cyanide Iron Lead Hagnesium Hanganese Mercury Hickel Potasium Selenium Silver Sodium Thallium		01 991	0111,508
Metals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cobalt Copper Cyanide Iron Lead Hagnesium Hanganese Mercury Hickel Potasium Selenium Silver Sodium Thallium Vanadium		Date Sampled	07/07/92
Metals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Catcium Chromium Copper Cyanide Iron Lead Magnesium Hanganese Mercury Wickel Potassium Selenium Silver Sodium Thatlium Vanadium		Depth (ft)	0.000 ft
Atuminum Antimory Arsenic Barium Beryllium Cadelum Chromium Copper Cyanide Iron Lead Hagnesium Hanganese Hercury Hickel Potasium Selenium Silver Sodium Thatlium Vanadium			
Atuminan Antimony Arsenic Barium Baryllium Cadelum Chomium Copper Cyanide Iron Lead Magnesium Manganese Mercury Mickel Potassium Selenium Silver Sodium Thatlium Vanadium		Metals and Cyanide (ug/g)	
Antimony Arsenic Barium Beryllium Cadalum Chromium Copper Cyanide Iron Lead Magnesium Manganese Mercury Mickel Potassium Selenium Silver Sodium Thatlium Vanadium		Atuninum	6390.0000
Arsenic Barium Baryllium Cadalum Chromium Cobalt Copper Cyanide Iron Lead Magnesium Marganese Mercury Mickel Potassium Selenium Silver Sodium Thatlium Vanadium		Antimony	< 7.1400
Barium Beryllium Cadmium Cadmium Chromium Cobalt Copper Cyanide Iron Lead Hagnesium Hanganese Hercury Hickel Potassium Selenium Silver Sodium Thatlium Vanadium		Arsenic	10.4000
Beryttium Cadeium Catcium Catcium Chromium Cobatt Copper Cyanide Iron Lead Magnesium Magnesium Manganese Mercury Mickel Potassium Selenium Selenium Sitver Sodium Thattium Zinc			137.0000
Cadelue Catcium Chromium Cobalt Copper Cyanide Iron Lead Magnesium Hanganese Mercury Mickel Potassium Selenium Silver Sodium Thattium Vanadium		Beryl i tun	0.9010
Calcium Chromium Cobalt Copper Cyanide Iron Lead Magnesium Manganese Mercury Wickel Potassium Selenium Silver Sodium Thattium Vanadium		Cachius	14.9000**
Chromium Cobalt Copper Cyanide Iron Lead Magnesium Manganese Mercury Mickel Potassium Selenium Selenium Silver Sodium Thattium Vanadium		Catalum	12400.0000
Cobalt Copper Cyanide Iron Lead Maganese Mercury Mickel Potassium Selenium Silver Sodium Thallium Vanadium		Chronica	*000\$°0
Copper Cyanide Iron Lead Hagnesium Hanganese Mercury Hicket Potassium Selenium Silver Sodium Thattium Vanadium		Cobelt	4.9600
Cyanide Iron Lead Hagnesium Hanganese Mercury Mickel Potasium Selenium Silver Sodium Thallium Vanadium		Copper	107.0000**
lron Lead Hageresium Hanganesium Hanganese Hercury Hickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium		Cyanide	< 0.9 200
Lead Magnesium Manganese Mercury Mickel Potassium Selenium Silver Sodium Thallium Vanadium		Iron	20100.0000
Magnesium Hanganese Mercury Micket Potassium Selemium Selemium Silver Sodium Thallium Vanadium		lead	₹50000-
Manganese Mercury Micket Potassium Selenium Selenium Silver Sodium Thattium Vanadium	j-1;	Negnesium	3210.0000
Hercury Mickel Potasium Selenium Silver Sodium Thatlium Vanadium	3-1	Nanganese	362.000
<u> </u>)	Mercury	◆ 0.0500
<u> </u>		Mickel	24.5000**
		Potessium	2070.0000
5 6		Selenica	< 0.2500
• •		Silver	1.2100**
9 4		Sodium	306.000
		That I ium	16.7000**
		Vanadium	10.4000
		2,00	2010.0000**

is above the background concentration for the depth shown,

ected at the value shown, MA = Not analyzed

TOOELE AD-MORTH AREA: SLANJ 26 - DRHO STORAGE YARD SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	200 75 00	24.001	100 76 65	26. 36. 003	200.36.003	24.001	24.004	24.004
ample 10	100-92-85	100-07-96	700 - 07 - 8e	300.03.86	COO 03 BE			
01 dr	0111479	01110463	0111*480	0111*464	OIL 1*481	011.1*465	0111*482	997.110
ote Sampled	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92
opth (ft)	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft
olatile Organic Compounds (ug/g)								
Acetone	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	6.0170	< 0.0170 <
Trichlorofluoromethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059
mivolatile Organic Compounds (ug/g)								
2,6,10,14-Tetramethylpentadecane (TIC)	¥	4	¥	¥	\$	\$	≦	\$
2-Cyclohexen-1-one (TIC)	¥	¥8	¥	¥	≦	4	\$	4
Benzo (a) anthracene	· 4.0000	< 0.1700	< 4.0000	< 0.8000	· 4.0000	· 4.0000	< 0.1700	· 0.8000
Benzo (a) byrene	• 6.0000	< 0.2500	• 6.0000	• 1.0000	· 6.0000	< 6 .0000	< 0.2500	. 1.0000
Benzo(b) fluoranthene	< 5.0000	< 0.2100	< 5.0000	< 1.0000	< 5.0000	< 5.0000	< 0.2100	• 1.0000
Benzo (k) fluoranthene	< 2.0000	0.0660	< 2.0000	< 0.3000	< 2.0000	< 2.0000	· 0.0660	< 0.3000
Bis (2-ethylhexyl) phthalate	< 20.0000	< 0.6200	< 20.0000	< 3.0000	< 20.0000	< 20.0000	< 0.6200	< 3.0000
Chrysene	< 3.0000	< 0.1200	< 3.0000	0009.0 →	× 3.0000	< 3.0000	< 0.1200	· 0.6000
Cicosane (11C)	¥	*	¥	¥	4	4	4	\$
4 Loranthene	< 2.0000	0.0680	< 2.0000	< 0.3000	< 2.0000	< 2.0000	< 0.0680	< 0.3000
Septadecane (TIC)	\$	¥¥	¥	*	42	¥	\$	\$
Hexadecare (11C)	4	W.	¥#	4	42	ž	¥#	¥
Octadecare (11C)	\$	¥	¥#	¥	¥	¥	¥	ĭ
Octadecanoic acid, butyl ester (TIC)	4	¥#	¥#	1.0000**	≨	¥	¥	\$
Phenanthrene	0.8000	< 0.0330	< 0.8000	< 0.2000	< 0.8000	< 0.8000	< 0.0330	< 0.2000
Pyrene	< 0.8000 ×	< 0.0330	< 0.8000	< 0.2000	< 0.8000	< 0.8000 ×	< 0.0330	< 0.2000
sticides (ug/g)	æ	9	9	9	9	9	9	9
rbicides (ug/g)	ž	YN	¥	Y 2	¥	¥	ž	¥
tal Petroleum Mydrocarbons (ug/g)	¥	X	Y	¥	\$	4	¥	ş
olosives (ug/g)	9	9	9	2	9	9	9	2
vains/furans (ug/g)	¥	4	*	¥	4	\$	¥	¥

Serole 10	SB-26-004-DUP	\$00-92-85	58 · 56 · 005	28 · 26 · 006	21 -26-006	28-56-007	28-56-007	2 · X · 2
	011.1*4.78	0111*483	011.1*467	0111*484	897-1110	0111-485	697.1710	0111-486
Date Samied	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	06/23/92	26/24/95
Depth (ft)	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft
Voletile Greenic Communda (100/8)								
Arabase	< 0.0170	< 0.0170	< 0.0170	< 0.0170	4 0.0170	4 0.0170	· 0.0170	× 0.0178
Trichlorofluoromethane	< 0.0059		< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	· 0.0059
Semivolatile Organic Compounds (ug/g)								
2.6.10.14-Tetramethylpentadecane (11C)	¥#	\$	*	4 2	≨	4	¥	a
2-Cyclohegen-1-one (11C)	¥#	≨	≨	¥	\$	1	\$	1
Benzolalanthracane	< 0.8000	< 0.1700	< 0.1700	< 0.8000	< 0.8000	< 0.8000	5.0000**	× 0.1700
Beozofalovrene	× 1.0000	< 0.2500	< 0.2500	4 1.0000	· 1.0000	· 1.000	9.0000**	4 0.2500
Benzofb) fluoranthene	< 1.0000	< 0.2100	< 0.2100	< 1.0000	· 1.0000	· 1.0000	10.0000**	< 6.2100 ×
Benzofk) fluoranthene	◆ 0.3000	• 0.0660	< 0.0660	< 0.3000	< 0.3000	< 0.3000	5.0000**	< 0.0660
Bis (2-ethylbesyl) shthalate	< 3.0000	< 0.6200	< 0.6200	< 3.0000	< 3.0000	< 3.0000	< 20.0000	< 0.6200
Chrysene	0.6000	< 0.1200	< 0.1200	< 0.6000	< 0.6000	0009.0 >	10.0000**	< 0.1200
Ficesone (TIC)	¥	≦	¥	¥W	42	¥	\$	≦
fluoranthene	< 0.3000	0.1300**	< 0.0680	< 0.3000	< 0.3000	< 0.3000	••0000•9	× 0.0680
Mentadecare (TIC)	¥	4	¥#	¥	¥#	*	\$	1
Kexadecane (11C)	*	≨	¥	MA MA	\$	4	4	\$
Octadecene (11C)	*	XX	*	\$	YH.	*	¥	1
Octadecanoic acid, butyl ester (110)	¥	*	¥	¥	\$	*	\$	¥
Phenanthrene	< 0.2000	0.0570**	< 0.0330	< 0.2000	< 0.2000	0.2000**	3.0000**	< 0.0330
Pyrene	< 0.2000	0.1200**	< 0.0330	< 0.2000	< 0.2000	0.4000**	••0000·•	< 0.0330
Pesticides (ug/g)	2	9	9	9	2	9	9	2
Herbicides (ug/g)	¥¥	4	\$	*	4	¥	\$	1
Total Petroleum Mydrocarbons (ug/g)	¥	Ş	¥	¥8	\$	\$	\$	\$
Explosives (ug/g)	2	9	2	2	2	9	9	2
Dioxins/Furans (ug/g)	Y.	¥	¥	¥	\$	\$	1	\$

shown, NA = Not enelyzed

TOOELE AD-WORTH AREA: SIM. . 26 - DRHO STORAGE VARD SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	CB. 24.008	CB - 26 - 000	CB- 24-000	CB.24.010	SB-24-010	CB-24-011	CB-26-011	SB-26-011-01P
	000 01 80	200 03 00	100 01 00					
으 ~	011.1*470	011.1*487	0111-471	0111*455	0111*472	0111*489	0111-473	0111-524
late Sampled	06/54/95	26/57/90	06/24/92	26/57/90	06/24/92	26/52/90	26/57/90	06/24/92
Jepth (1t)	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	1.000 ft
/olatile Organic Compounds (ug/g)								
Acetone	< 0.0170	< 0.0170	0.0170	< 0.0170	< 0.0170	× 0.0170	< 0.0170	< 0.0170
Trichlorofluoromethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	0.0058**	< 0.0059	0.0061**
caivolatile Organic Compounds (ug/g)								
2,6,10,14-Tetramethylpentadecane (TIC)	W	¥	42	¥,	4	¥	¥ X	1
2-Cyclohexen-1-one (71C)	¥	¥#	42	MA	42	¥	4 2	*
Benzo(a) anthracene	< 0.1700	< 0.8000	< 0.1700	< 0.1700 ×	< 0.1700	< 2.0000	4 0.1700	< 0.1700
Benzo (a) byrene	< 0.2500	4 1.0000	< 0.2500	< 0.2500	< 0.2500	< 2.0000	< 0.2500	< 0.2500
Benzo (b) fluoranthene	< 0.2100	< 1.0000	< 0.2100	< 0.2100	< 0.2100	< 2.0000	< 0.2100	< 0.2100
Benzo (k.) fluoranthene	0.0660	< 0.3000	< 0.0660	< 0.0660	0.0660	< 0.7000	0.0660	< 0.0660
Bis (2-ethylhexyl) phthalate	< 0.6200	< 3.0000	< 0.6200	0.8200**	< 0.6200	× 6.0000	< 0.6200	< 0.6200
Chrysene	< 0.1200	< 0.6000	< 0.1200	< 0.1200	< 0.1200	< 1.0000	< 0.1200	< 0.1200
Eicosane (11C)	\$	£	\$	MA	**	¥¥	¥	*
t toranthere	0.0680	< 0.3000	< 0.0680	< 0.0680	< 0.0680	< 0.7000	· 0.0680	× 0.0680
Meptadecane (710)	W.	¥#	¥	¥#	KX	¥	4	¥
Hexadecane (11C)	\$	*	*	4	¥#	¥	¥	¥
Octadecane (71C)	E	YN	¥X	¥N	¥	¥	42	¥
Octadecamoic acid, butyl ester (110)	4	¥	*	¥	W.	¥	¥	¥
Phenanthrene	< 0.0330	< 0.2000	< 0.0330	0.0380**	< 0.0330	< 0.3000	< 0.0330	< 0.0330
Pyrene	< 0.0330	< 0.2000	< 0.0330	< 0.0330	< 0.0330	< 0.3000	< 0.0330	< 0.0330
sticides (ug/g)	Ð	2	9	2	2	9	9	ş
rbicides (ug/g)	¥	\$	¥	4	¥.	4	*	4
tal Petroleum Hydrocarbons (ug/g)	4	\$	¥	X	4	¥#	4	4
plosives (ug/g)	9	웊	9	9	ş	9	2	Q
oxins/furans (ug/g)	\$	\$	\$	¥	4	4	¥	\$

Service 15	\$8.26-012	SB-26-012	\$8-26-013	\$8-26-013	\$8-26-014	\$8-26-014	\$8-26-015	\$10-92-015
	007+1110	7277	107+1 110	52791110	110,1002	011.1*476	011.1*493	011.1*477
	06/24/92	06/24/92	06/24/92	06/24/92	06/24/92	06/24/92	26/52/90	06/24/92
Depth (ft)	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft	0.000 ft	1.000 ft
Voletile Organic Compounds (ug/g)							•	
Acetone	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	. 0.0170	· 0.0178
Trichiorofluoramethane	< 0.0059	< 0.0059	0.0068**	< 0.0059	0.0087**	< 0.0059	0.0082**	· 0.0059
Semivolatite Organic Compounds (ug/g)								
2.6.10.14-Tetramethylpentadecone (TIC)	X	¥	¥	4	¥	₹	¥	1
2-Cyclohexen-1-one (11C)	¥2	*	¥N	¥#	¥	4	0.3100**	1
Reportation	< 2.0000	< 2.0000	0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700
Renzolaloviene	< 2.0000	< 2.0000	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Benzolb) fluoranthene	< 2.0000	< 2.0000	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100
Benzofk) fluoranthere	< 0.7000	< 0.7000	0.0660	< 0.0660	0.0660	0.0660	× 8.0660	· 0.0660
Bis (2-ethylhexvl) chthalate	× 6.0000	• 6.0000	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 0.6200
Chrysene	4 1.0000	• 1.0000	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200
Ficosane (TIC)	¥¥	¥	¥	¥#	¥	¥	¥	1
Fluoranthene	< 0.7000	< 0.7000	< 0.0680 <	< 0.0680	< 0.0680	< 0.0680	< 0.0680	· 0.0680
Heptadecare (710)	KX	¥	MA	¥X	4	\$	≦	a
Revadecare (TIC)	N N	¥#	¥	¥	¥	4	\$	1
Octadecare (TIC)	K	4	4	¥	\$	¥#	\$	\$
Octadecanoic acid, butyl ester (TIC)	¥8	\$	¥	¥	₹	\$	1	≦
Phenonthrene	< 0.3000	< 0.3000	< 0.0330	< 0.0330	< 0.0330	0.0460**	< 0.03%	< 0.0330
Pyrene	< 0.3000	< 0.3000	< 0.0330	< 0.0330	< 0.0330	0.0670**	< 0.0330	< 0.0330
Pesticides (ug/g)	9	9	9	9	9	9	9	2
Herbicides (ug/g)	¥	¥	¥	4	£	4	*	1
Total Petroleum Hydrocarbons (ug/g)	¥	¥	¥	4	\$	4	M	ī
Explosives (ug/g)	9	9	9	ş	9	9	9	9
Dioxins/Furans (ug/g)	N	8	4	4	≦	4	¥	\$

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

Page No. 1 12/21/92

TOOELE AD-NORTH AREA: SIMU .. 26 - DRMO STORAGE YARD SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

		200 200	26.046	66.24.010	CC. 24. 010-011P	\$5-26-020	\$5-26-021	\$5-26-022
Committee 10	SS-26-016	22.50.01/	910.07.88	410-03-EE				31341
	011 14500	011.1*510	01.1*511	0111*512	OIL1*526	011.1-513	011.214	0111213
	נפיפר, זפ	06/30/02	UK/20/02	06/29/92	26/67/90	06/29/92	26/52/90	26/52/90
late Sampled	76/67/90	24/42/00	20/57/25			7 000 6	**	** 000 0
repth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 11	0.000 11	2,000,1	2.000.0
(n) and the Committee Commonwealth (1997)								
Joint organic compounds (08/8)	02100	< 0.0170 ×	< 0.0170	< 0.0170	< 0.0170	< 0.0170 <	6.0170	< 0.0170
Acetone	0.010	0.00		0000	0 000	o 0020	< 0.0059	< 0.0059
Trichlorofluoromethane	< 0.0059 <	4 0.00.9	v (0.00)	6.003				
iemivolatile Organic Compounds (ug/g)						;	;	;
(317) and adaptively of the contract of the co	M	¥	4	¥	¥	\	≦	4
	1	¥.	*	¥	¥	¥	≦	¥
2-Cyclohexen-1-one (TIC)	906.		0 8000	◆ 0.8000	< 0.8000	< 0.8000	< 0.8000	< 0.1700
Benzo[a] anthracene	00/1.0	0000.		< 1.0000	× 1.0000	< 1.0000	· 1.0000	< 0.2500
Benzo (a) pyrene	0.5300	0000		× 1.0000	× 1.0000	< 1.0000	4 1.0000	< 0.2100
Benzo[b] fluoranthene	0.2100	2002.		00010 >	< 0.3000	< 0.3000	< 0.3000	0.1300**
Benzo [k] fluoranthene	0.0000	0.000		0000 ¥ ×	0000 >	< 3.0000	< 3.0000	< 0.6200
Bis (2-ethylhexyl) phtholate	< 0.6200	3.0000			2000		0009°C >	0.2400**
Chrysene	< 0.1200	0.6000	4 0.6000	0.000		5		1
is cosmo (315)	¥	¥	*	X	₹	¥		
Cally and Cally	0.1200**	< 0.3000	< 0.3000	< 0.3000	< 0.3000	< 0.3000	< 0.3000	0.3300**
	**	**	W	¥	¥¥	¥	≦	¥
	4	¥	ž	¥	43	¥	¥	¥
Nexadecare (TIC)		4	X	*	XX .	≨	≦	4
Octadecane (115)	£ \$		1	**	*	\$	*	≨
Octadecanoic acid, butyl ester (TIC)	440270	0000	0000	< 0.2000	< 0.2000	< 0.2000	< 0.2000	0.1900
Phenanthrene	0.0030-	, (00000	0000	0000	c 0.2000	< 0.2000	0.2000*
Pyrene	0.1200**	0.5000	0007.0	0.5000				
'sticides (ug/g)	욮	Ş	2	Ş	ş	9	₽	9
rbicides (ug/g)	¥	¥.	¥	¥	¥	4	X	£
ital Petroleum Hydrocarbons (ug/g)	¥	¥.	¥	¥	4	£	¥	¥
plosives (ug/g)	2	웊	2	2	ş	9	9	9
			:	•	1	3	\$	\$
oxins/furans (ug/g)	\$	4	¥	Ĭ	ž	Ē	E	•

Outside Outs	Sample 10	\$5-26-023	\$2-92-95	SS-26-025	SS-26-025-DUP	88-56-026	28-56-027	820-92-SS	X3-92-83
Desire Sampled Co.51072 O.510722 O.651072	1 de 10	011.1*516	0111*517	0111*518	0111*527	011.1*519	011.1*520	011.1*521	01110522
Page	Date Sampled	06/29/92	06/30/92	06/30/92	26/30/95	06/30/92	06/30/92	06/30/92	26/36/95
Voluntitie Organic Compounds (19/9) C-0.0170 C-0.0079 C-0.	Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
	Voletile Organic Compounds (ug/g)								
Compounds (149,6)	Acetore	0.0510**	0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	c 0.0170	c 0.0170
Semivolatile Organic Compounds (Loy/g) NA	Trichlorofluoromethane	< 0.0059	< 0.0059	< 0.0059	< 0.0059	0.0071**	< 0.0059	· 0.0059	· 0.0059
2.6,10,14-Tetramethylpotradecare (11C)	Semivolatile Organic Compounds (ug/g)								
2-Cyclobaser-1-one (IIC) NA N	2,6,10,14-Tetramethylpentadecane (TIC)	¥	¥	¥	\$	≨	\$	¥	≦
Seriolal anthracere	2-Cyclohexen-1-one (TIC)	\$	\$	4	¥#	≨	≨	≦	1
Bentofalpyrere (5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000 <5.0000	Benzo(a) anthracene	< 3.0000		< 7.0000	< 7.0000	< 5.0000	< 7.0000 ×	< 3.0000	< 2.0000
Benzeit/filtor/anthene	Benzofalovrene	< 5.0000		< 10.0000	< 10.0000	< 2.0000	< 10.0000 ×		< 2.0000
Berzeililiuoranthere	Benzo (b) fluoranthene	· 4.0000		· 8.0000	6.0000	< 2.0000	< 8.0000		
Size (2-ethylabayl) phthalate	Benzo (k) fluoranthene	4 1.0000	2.0000**	< 3.0000	< 3.0000		< 3.0000	. 1.0000	
Chrystene Chrystene C 2,0000	Bis (2-ethythexyl) phthalate	× 10.0000	10.0000	< 20.0000	< 20.0000	< 6.0000	< 20.0000	· 10.0000	
Elcosame (TIC) NA	Chrysene	< 2.0000	< 2.0000	< 5.0000	< 5.0000		< 5.0000	< 2.0000	
Figure antitle C 1,0000 C 2,0000 C 3,0000 C 3,0000 C 3,0000 C 3,0000 C 4,0000		*	¥#	4	¥	≦	\$	\$	1
Negation (IIC) NA		< 1.0000	2.0000**	3.0000		· 0.7000			
Nexadecame (IIC) NA		NA	4	¥	¥	¥	4	≦	1
butyl ester (TIC) NA		¥#	48	₹	¥#		1	1	1
butyl ester (IIC) NA	Octadecane (71C)	YH	¥#	¥	¥#	1	≦	\$	1
 Carbons (ug/g) NA NA<td>Octadecanoic acid, butyl ester (TIC)</td><td>42</td><td>¥</td><td>42</td><td>48</td><td>≦</td><td>≦</td><td>≦</td><td>≦</td>	Octadecanoic acid, butyl ester (TIC)	4 2	¥	4 2	48	≦	≦	≦	≦
carbons (ug/g) * 0.7000 2.0000*** * 1.0000 * 0.3600 * 0.7000 * 0.7000 * 0.7000 * 0.7000 * 0.3600	Phenenthrene	< 0.7000	0.9000**	• 1.0000	• 1.0000	< 0.3000	• 1.0000	• 0.7000	< 0.300e
carbons (ug/g) MD	Pyrene	< 0.7000	2.0000**			< 0.3000	4 1.000	< 0.7000	< 0.300
Carbons (ug/g)	Pesticides (ug/g)	QN	9	ĝ	9	9	9	9	2
carbons (ug/g) NA	Herbicides (ug/g)	K	¥	\$	¥.	\$	¥	¥	1
ON O	Total Petroleum Hydrocarbons (ug/g)	X	4	¥	¥	4	¥	¥	1
HA HA HA HA HA	Explosives (ug/g)	Q	9	2	9	2	9	9	2
	Dioxins/furans (ug/g)	4	¥	*	42	\$	\$	ş	1

Page No. 1 12/21/92

TOOKLE AD-NORTH AREA: SUAL. J. 26 - DRMO STORAGE YARD SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	SS-26-030	55-26-031	\$5-26-032	\$5-26-033	750-92-55	SS-24-014-NID	56.34.016	66.34.015.mm
01 de 1	16523	707+1 110	30741 110	70741	20,44,00		60-03-66	200.000.00 ee
		10.000	64-1-10	0111-430	164-1710	974-1710	0111466	0111.220
Date Sampled	26/30/95	06/30/92	06/30/92	06/30/92	07/07/92	26/10/10	26//0//0	07/07/92
Depth (1t)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Francounds (1997a)								
	!							
Acetone	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170	. 0.0170	< 0.0170	< 0.0170
Trichlorofluoromethane	· 0.0059	< 0.0059	0.0110**	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059
Semivolatile Organic Compounds (ug/g)								
2,6,10,14-Tetramethylpentadecane (TIC)	K	¥	¥X	4	**	4	1	3
2-Cyclohexen-1-one (15C)	¥x	¥	**	4	*	1	1	1 1
Benzo (a) anthracene	< 3.0000	< 7.0000	< 7.0000	< 3.0000	0.8000	0.8000	1 7000	: 3
Benzo(a) pyrene	< 5.0000	< 10.0000	× 10.0000	< 5.0000	< 1.2500	< 1.2500	2 0000	
Benzo (b) fluoranthene	· 4.0000	< 8.0000	◆ 8.0000	< 4.0000	< 1.0500	× 1.0500	× 2 1000	
Benzo (k) fluoranthene	1.0000	< 3.0000	< 3.0000	• 1.0000	< 0.3300	< 0.3300	0099'0	
Bis (2-ethylhexyl) phthalate	< 10.0000	< 20.0000	< 20.0000	< 10.0000	< 3.1000	< 3.1000	6.2000	: 3
Chrysene	< 2.0000	< 5.0000	> 5.0000	< 2.0000	0009.0 >	0.6000	4 1.2000	.
Ficosane (TIC)	¥	RA	*	¥N	¥	*	\$	1
if Luoranthene	< 1.0000	< 3.0000	< 3.0000	< 1.0000	< 0.3400	< 0.3400	0.6800	1
Heptadecane (11C)	K H	KX	¥	¥	¥	1	¥3	=
Hexadecane (11C)	¥	MA	¥	4	\$	4	¥#	1
Octadecane (TIC)	*	¥	¥	*	4	*	¥	1
Octadecamoic acid, butyl ester (TIC)	¥	¥	W	*	ž	**	¥	1
Phenanthrene	2.0000**	1.0000	• 1.0000	< 0.7000	< 0.1650	. < 0.1650	< 0.3300	1
Pyrene	2.0000**	4 1.0000	4 1.0000	< 0.7000	< 0.1650	< 0.1650	< 0.3300	¥
nsticides (ug/g)	ş	Q	9	9	9	£	9	¥
orbicides (ug/g)	¥	4	¥8	¥	¥	¥	4	\$
stal Petroleum Mydrocarbons (ug/g)	*	¥	ž	¥X	*	ž	\$	£
plosives (ug/g)	Q.	2	2	9	2	9	2	4
oxins/furans (ug/g)	¥	¥	¥	≨	¥	¥	ž	\$

TODELE AD-NORTH AREA: SLAUJ NO. 26 - DRING STORAGE YARD SOIL AMALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Page No. 12/21/92

Sample 10	\$5-26-036	SS-26-037	\$5-26-030	88-56-039	88-26-040	\$5-26-041	25-26-042	28-26-063
	011.1*499	01110500	011,1*501	0111*502	011.1*503	0111*504	0111*505	201110
	07/07/05	07/07/92	07/07/92	07/07/92	07/07/92	07/07/92	07/07/92	07/07/92
Depth (11)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	9.800 fr
Voletile Organic Communds (190/8)								
	< 0.0170	< 0.0170	< 0.0170	< 0.0170	¢ 0.0170	× 0.0170	× 0.0170	× 0.01%
Trichlorofluoromethane	< 0.0059	< 0.0059	0.0071**	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.8059
Semivolatile Organic Compounds (ug/g)								
2,6,10,14-Tetramethylpentadecane (TIC)	¥	\$	6.2000**	7.0000*	1	1	4.0700*	\$
2-Cyclohexen-1-one (TIC)	¥	¥	≨	≨	1	1	1	1
Benzolalanthracene	• 1.7000	< 1.7000	· 1.7000	< 1.7000	< 1.7000	. 1.7000	. 1.7000	· 1.788
Benzolalovrene	· 2.0000	< 2.0000	< 2.0000	< 2.0000	< 2.0000	< 2.0000	< 2.0000	< 2.0000
Benzo (b) f lucranthene	< 2.1000	< 2.1000	< 2.1000	< 2.1000	< 2.1000	< 2.1000	< 2.1000	< 2.1000
Benzo (k) fluoranthene	0.6600	v 0.6600	• 0.6600	· 0.6600	• 0.6600	· 0.6600	0.6600	· 0.660
Bis (2-ethylhexyl) phthalate	6.2000	< 6.2000	< 6.2000	< 6.2000	< 6.2000	6.2000	6.2000	· 6.2880
Chrysene	< 1.2000	< 1.2000	< 1.2000	< 1.2000	< 1.2000	< 1.2000	· 1.200	· 1.200
	¥	YH.	\$	20.2000	≨	≦	≦	1
	< 0.6800	< 0.6800	< 0.6800	· 0.69	· 0.6800	· 0.6800	· 0.6600	. C. CER
Weptadecane (TIC)	¥	YH.	≦	0 90. ′∠	≦	ş	6.0000	1
_	¥	*	\$	3.0300**	1	\$	4.0700**	£
Octadecane (TIC)	¥#	¥#	1	6.0000	\$	¥	10.2000**	\$
Octadecanoic acid, butyl ester (11C)	¥	¥	\$	¥	ş	≨	ī	1
Phenanthrene	< 0.3300	< 0.3300	< 0.3300	0.9000**	< 0.3300	< 0.3300	< 0.3300	· 0.3388
Pyrene	< 0.3300	< 0.3300	< 0.3300	0.7180**	< 0.3300	< 0.3300	< 0.3300	< 0.5300
Pesticides (ug/g)	9	9	9	9	2	9	9	•
Herbicides (ug/g)	¥	¥	¥	\$	1	1	\$	1
Total Petroleum Mydrocarbons (ug/g)	¥.	\$	ş	ş	≦	\$	\$	1
Explosives (ug/g)	9	9	9	9	9	9	9	9
Dioxins/furans (ug/g)	¥	≦	\$	≦	≦	1	1	\$

Page No. 1 12/21/92

TODELE AD-WORTH AREA: SUN. .J. 26 - DRNO STORAGE YARD SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	\$5-26-044	SS-26-045	
190 10	0111-507	0111*508	
Date Sampled	07/07/92	07/07/92	
Depth (ft)	0.000 ft	0.000 ft	
Voletile Organic Compounds (ug/g)			
Acetone	0.0170	< 0.0170	
Trichlorofluoromethane	< 0.0059	< 0.0059	
Semivotatile Organic Compounds (ug/g)			
2,6,10,14-Tetramethylpentadecane (TIC)	¥#	4	
2-Cyclohexen-1-one (TIC)	*	¥	
Benzo [a] anthracene	< 0.1700	< 0.8000	
Benzo (a) pyrene	< 0.2500	< 1.2500	
Benzo(b) fluoranthene	< 0.2100	< 1.0500	
Benzo [k] fluoranthene	< 0.0660	< 0.3300	
Bis (2-ethylhexyl) phthalate	< 0.6200	< 3.1000	
Chrysene	< 0.1200	< 0.6000	
eficosane (11C)	M	X	
if luoranthene	< 0.0680	< 0.3400	
Heptadecane (110)	¥	¥X	
Hexadecane (TIC)	¥	¥3	
Octadecane (11C)	MA	MA	
Octadecanoic acid, butyl ester (TIC)	¥	KA	
Phenanthrene	< 0.0330	< 0.1650	
Pyrene	< 0.0330	< 0.1650	
'icides (ug/g)	9	£	
cides (ug/g)	NA NA	¥	
otal Petroleum Hydrocarbons (ug/g)	¥	¥	
uplosives (ug/g)	9	9	
ioxins/furans (ug/g)	¥	¥	

Table 5-14

TABLE 5-14

RCRA CONTAINER STORAGE (SWMU 27) ANALYTICAL RESULTS

IEA		
MAGE 1		
ER 570		
DNTAIN	METAL	
RCRA C	TS FOR	
- 12	REST	
TOGELE AD-NORTH AREA: SUAU NO. 27 - RCRA CONTAINER STORAGE AREA	SQIL ANALYTICAL RESULTS FOR HETALS	
EA: SM	L AMAL	
ITH ARI	ğ	
AD-HO		
3		
8		
<u>0</u>		
100		
2001		
1001		
1001		

1 6		86.27.001	SS-27-001-DUP	\$5-27-002	\$5.27.003	\$5.27.004	\$2-27-005	88-27-006	22-22-807
9 -		011.1-433	011.1*533	01110534	0111-535	0111-536	011.1*557	2561110	
Date Sampled		07/15/92	07/15/92	07/15/92	07/15/92	07/15/92	07/15/92	07/15/92	97/15/92
Depth (ft)		0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	6.000 fc
a state	Material and Cvenide (us/s)								
Alleine		2740.0000	1830.0000	1800.0000	4160.0000	1320.0000	1630.0000	2780.0000	4230.000
Antimony		< 7.1400	< 7.1400	9.2200**	< 7.1400	< 7.1400	< 7.1400	9.3700**	< 7.1480
Arsenic		2.4600	7.6700	7.2800	16.0000	8.1100	7.9700	21.0000	15.000
		107.0000	128.0000	214.0000	63.3000	102.0000	137.0000	179.0000	2.200 2.200
Beryll iu	-	< 0.5000	· 0.5000	< 0.5000	0.5860	· 0.5000	0.6510	0.5850	0.676
Cadaius		12.0000**	16.9000**	1.7800**	0.8800	10.1000**	14.0000**	12.3000**	2.3386
Calcius		110000.0000**	120000.0000**	190000.00001	30400.0000	110000.000011	120000.0000**	57000.0000	. 0000.00215
		76.3000**	81.7000**	18.9000	12.1000	190.0000**	313.0000**	67.9000**	2.684.
Cobelt		4.8300	5.1600	1.7200	5.5400	4.2700	2.2000	2.8900	2.6288
Cooper		19.6000	22.2000	9.9400	15.4000	18.7000	27.8000**	\$9.900 0**	18.600
Cvanide		< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 <	< 0.9200	· 0.9200	· 0.9200
lres		9490.0000	6720.0000	3500.0000	5930.0000	5370.0000	7140.0000	7680.0000	6140.000
Lead		135.0000**	194.0000**	33.3000	58.9000**	415.0000**	\$62.0000**	561.0000**	142.000
_		\$6600.0000**	26300.0000**	22100.0000**	7750.0000	26200.0000**	28100.0000**	8560.0000	6478.8088
Managerese		145.0000	160.000	106.000	245.0000	133.0000	148.0000	233.0000	285.888
_		11.0000**	17.0000**	0.3510**	< 0.0500 <	2.3000**	0.3220**	1.8000**	· 0.650
Micket		15.6000	16.3000	7.4700	7.5900	9.8400	17.4000**	12,000	7.498
Potassica	-	648.0000	644.0000	296.0000	14.70.0000	395.0000	200.000	961.000	1400.0000
Selenius		< 0.7500	< 0.2500	· 0.2500	< 0.2500 ×	< 0.2500	0.3750**	4 0.250	6.358er
Silver		< 0.5890	< 0.5890	< 0.5890	· 0.5890	< 0.5890	× 0.5890	· 0.5890	· 0.500
Sodium		477.0000	488.0000	839.0000	296.0000	389.000	415.0000	330.0000	£5.
Thallien		11.1000**	11.3000**	13.9000**	6.6200	14.6000**	16.1000**	v 6.6200	. 6.628
Vanedium		15.6000	12.5000	13.4000	10.7000	12.5000	15.7000	8.9488 8.9488	Z. Z
Zinc		140.0000**	164.0000**	51.5000	67.5000	334.0000**	456.0000**	212.0000**	Z .

)

is above the background concentration for the depth shown, <

cted at the value shown, MA = Not analyzed

Page No. 08/14/93

TOCELE AD-WORTH AREA: SIANJ , 7 - RCRA CONTAINER STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Semple 10	\$5-27-001	SS-27-001-DUP	\$\$-27-002	\$5-27-003	\$5-27-004	\$5-27-005	\$3-27-006	88-27-007
	011.1*433	OIL 1*533	0111*534	0111*535	0111*536	0111*537	0111*536	0111*539
Date Sampled	07/15/92	07/15/92	07/15/92	07/15/92	07/15/92	07/15/92	07/15/92	07/15/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Hexane (TIC)	¥	0.0065**	0.0064**	0.0110**	0.0063**	0.0053**	0.0064**	0.0094**
Semivolatile Organic Compounds (ug/g)	9	2	ā	2	9	9	9	2
Pesticides (ug/g)	\$	¥	\$	¥	¥	\$	\$	s
Herbicides (ug/g)	\$	YN.	\$	¥	1	\$	4	\$
Total Petroleum Hydrocarbons (ug/g)	*	¥	¥	¥	VI.	1	غ	\$
Explosives (ug/g)	9	9	2	9	2	9	2	9
Dioxins/Furans (ug/g)	YH.	¥	¥	¥	¥	\$	\$	ş
5-14-2								

Table 5-15

TABLE 5-15

90-DAY CONTAINER STORAGE AREA (SWMU 28) ANALYTICAL RESULTS

01 qe1	SS-28-001	SS-28-001-DUP	SS-58-002	SS-28-003	SS-28-004	SS-28-005	900-92-SS	¥-1755
	0111-540	0111*548	011.1*541	0111+542	011.1*543	0111*544	011 1-545	0111*54
	07/14/92	07/14/92	07/14/92	26/11/20	07/14/92	07/14/92	07/14/92	07/14/76
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 fz
					,			
Metals and Cyanide (ug/g)	0000 0176	2740 0000	UUUU UYE7	2040,0000	3000 0000	5800,0000	6320.0000	2530.000
Antimon	< 7.1400	× 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.166K
Arsenic	25.0000	24.0000	8.1800	32.0000	35.0000	45.0000	28.0000	20.000
Rariva	62.4000	99.4000	95.3000	55.5000	108.0000	129.0000	133.0000	66.980
	< 0.5000	< 0.5000	< 0.5000	0.6800	< 0.5000	0.7820	0.7280	0.702
Cachium	19.6000**	19.1000**	1.0200**	2.0600**	19.3000**	2.7300**	1.7600**	7.270
Cetcius	\$0000.0000	50500.0000	70000.0000**	46700.0000	43300.0000	30100.0000	18900.0000	42800.000K
Chronium	24.4000**	28.0000**	23.2000**	15.1000	17.2000	16.6000	10.3000	23.100
Cobalit	1.9800	2.1400	3.1100	1.9200	2.5500	3.4400	3.7400	1.6500
Cooper	22.9000	29.1000**	15.4000	14.6000	26.5000**	33.4000**	20.9000	18.900
Cyanide	< 0.9200	4	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	× 0.920
	5740.0000	5030.0000	2990.0000	4850.0000	9000.0009	8060.0000	7910.0000	4780.0004
lead	135.0000**	194.0000**	51.0000	61.7000**	143.0000**	191.0000**	74.9000**	334.0000
Magnesius	5820.0000	5310.0000	7190.0000	5080,0000	5320.0000	9000.0999	6420.0000	2460.000 ©
	167.0000	178.0000	182.0000	175.0000	221.0000	409.0000	409.0000	220.000c
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	< 0.0500	→ 0.050 €
Wickel	8.0600	9.6000	10.1000	7.2000	5.8400	8.2100	8.7600	5.8300
Potassium	812.0000	859.0000	1180.0000	984.0000	1030.0000	2190.0000	25 to . 0000	0000.000
Selenius	< 0.2500	0.9640**	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500	· 0.2580
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	0.6010
Specific	350.0000	351.0000	1390.0000	693.0000	756.0000	417.0000	450.0000	524.0000
	< 6.6 200	6.6200	6.6200	< 6.6200	8 .1000	6.6200	· 6.6200	· 6.6280
Vanadium	8.0800	8.4600	13.8000	9.7100	6.7300	12.7000	13.3000	8.9580
2 inc	123.0000**	129.0000**	24.6000	72.4000	156.0000**	161.0000**	90.1000	114.0000

tected at the value shown, MA = Not analyzed

Page No. 1 12/15/92

TOCELE AD-NORTH AREA: SLANJ NO. 28 - 90-DAY DRUM STORAGE AREA SOLL ANALYTICAL RESULTS FOR METALS

\$\$-28-008 0111*547 07/14/92 0.000 ft 30.0000 70.2000 < 0.5000 6.7400** 5.7400** 5.7400** 6.7400** 6.7400** 5.0600 21.4000 21.4000 < 0.5000 124.0000** 5.04000 6.4000 1230.0000 6.4000 7.5800

TOCELE AD-WORTH AREA: SUMU NO. 28 - 90-DAY DRUM STORAGE AREA SOIL AWALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	\$5-28-001	SS-28-001-DUP	\$5-28-002	\$5-28-003	\$5-28-004	\$5-28-005	\$5-28-006	28-28-98
9 91	0111-540	0111*548	0111*541	0111*542	0111*543	0111*544	0111*545	011.1*546
Date Sampled	07/14/92	07/14/92	07/14/92	07/14/92	07/14/92	07/14/92	07/14/92	24/14/40
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g) Acetone	< 0.0170	0.0170	0.0990**	< 0.0170	< 0.0170	< 0.0170	< 0.0170	< 0.0170
Semivolatile Organic Compounds (ug/g) Butyibenzyi phthalate	0.8000	¥	2.0000**	< 0.8000	< 4.0000	4.0000	· 4.0000	· 4.0000
Pesticides (ug/g)	Q	¥	₽	9	2	9	9	9
Herbicides (ug/g)	Y	¥	\$	¥	¥	\$	\$	š
Total Petroleum Hydrocarbons (ug/g) Total petroleum hydrocarbons	371.0000**	258.0000	2160.0000**	833.0000**	2290.0000**	501.0000**	680.0000**	737.0000
Explosives (ug/g)	Q.	K	9	2	9	9	9	2
Dioxins/Furans (ug/g)	M	YH.	≦	¥	¥	¥	\$	1

Page No. 1 12/21/92

TOORIE AD-NORTH AREA: SIMU L .. - 90-DAY DRIM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Lab D	Sample 10	\$5.28-008
ounds (ug/g) Compounds (ug/g) ate free (ug/g) drocarbons	Ol del	01114547
ounds (ug/g) Compounds (ug/g) ate drocarbons drocarbons	Date Sampled	07/14/92
compounds (ug/g) Sete Cempounds (ug/g) Gerbons (ug/g)	Depth (ft)	0.000 ft
Compounds (ug/g) ste cerbors (ug/g) drocerbons	Volatile Organic Compounds (ug/g)	
Compounds (ug/g) ste carbons (ug/g) drocarbons	Acetone	. < 0.0170
cerbons (ug/g) drocerbons	Semivolatile Organic Compounds (ug/g) Butyibenzyl phthalate	0000* >
carbons (ug/g) drocarbons	Pesticides (ug/g)	₽
cerbons (ug/g) drocerbons	Herbicides (ug/g)	¥
	fotal Petroleum Hydrocarbons (ug/g) Total petroleum hydrocarbons	95.0000**
	(xplosives (ug/g)	Q.
	idnins/furens (ug/g)	**

Table 5-16

TABLE 5-16

DRUM STORAGE AREAS (SWMU 29) ANALYTICAL RESULTS

Sample 10	\$8-29-001	SB-29-002	\$8.29.003	SB-29-003	700-62-85	\$8-29-005	900-62- 8 5	28-23-066
	01110549	0111+551	0111*553	0111*554	011.1*555	0111*557	0111-559	0111056
or o	06/11/92	06/11/92	06/12/92	06/12/92	06/11/92	06/11/92	06/15/92	06/15/92
Depth (1t)	0.000 ft	0.000 ft	0.000 ft	3.000 ft	0.000 ft	0.000 ft	0.000 ft	4.000 ft
Metals and Cyanide (ug/g)								
Atualiza	10400.0000	9690.0000	8240.0000	997.0000	5630.0000	7380.0000	7710.0000	2490.0000
Ant imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1400	× 7.1400
Arsenic	15.0000	17.0000	9.8200	3.2000	28.0000	9.0500	9.7000	5.3200
Darte	173.0000	130.0000	158.0000	26.9000	116,0000	117.0000	126.0000	. 9000 67
Bereitius	0.7890	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000 <
Cadita	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	· 0.700
Colcium	24200.0000	23700.0000	60000.0000	65000.0000	77000.0000**	42900.0000	34800.0000	70000.0000**
Chronium	13.5000	9.8200	12.7000	6.2400	10.9000	12.9000	12.2000	9.020
Cobalt	4.6000	3.1000	3.6400	< 1.4200	2.3900	2.9700	3.6600	· 1.4200
J-0000	20.1000	16.5000	12.7000	2.7200	14.2000	10.8000	12.1000	3.0500
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	c 0.9200	< 0.9200
- Co.	10800.0000	7390.0000	8360.0000	1630.0000	6450.0000	7700.0000	6320.0000	3130.000
Lead	47.8000	45.7000	22.6000	3.2100	46.7000	28.0000	26.000	7.600
Magnesica	8040.0000	5640.0000	7600.0000	2000.0000	7660.0000	9490.0000	7020. 1000	4360.000
Rangerese	455.0000	307.0000	300.000	43.3000	236.0000	248.0000	313.0000	24.900
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	· 0.0500	· 0.0500
Mickel	10.3000	7.8600	7.5000	2.4900	6.5400	7.2400	8.0400	3.4200
Potestica	3470.0000	2310.0000	2640.0000	154.0000	1950.0000	2240.0000	2550.0000	630.000
Selection	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	. 0.2500	· 0.2500	• 0.2500
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	× 0.5890	× 0.500
	314.0000	270.0000	415.0000	196.0000	307.0000	1140.0000	844.0000	211.0000
Thelitum	< 6.6200	< 6.6200	< 6.6200	6.6200	6.6200	6.6200	· 6.6200	· 6.620
Venedium	16.8000	11.7000	14.5000	7.4600	13.2000	14.3000	14.7000	9.3500
2 inc	93.1000	80.1000	0006.09	11.6000	78.1000	61.2000	99.7000	15.200

5-16-1

age No. 1 2/18/92

TOOELE AD-WORTH AREA: SIMP. . 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR METALS

ample 10	SB - 29 - 007	SB-29-007	SB-29-007-DUP	SB - 29 - 008	SB-29-008	SB - 29 - 009	600-62- 8 5	SE - 29 - 010
- Q	0111*561	0111*562	011.1*627	0111*563	0111*564	0111*565	011.1*566	0111*567
ate Campled	06/15/92	06/15/92	06/15/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
epth (ft)	0.000 ft	4.000 ft	4.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 ft	0.000 ft
etals and Cyanide (ug/g)								
Alunium	11600.0000	899.0000	874.0000	8700.0000	4230.0000	9980.0000	1150.0000	9970.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	10.4000	3.0300	2.6200	8.6500	8.4800	11.7000	2.7200	13.0000
Ser ius	161.0000	36.6000	30.5000	127.0000	89.3000	140.0000	43.1000	101.0000
Beryllica	0.6050	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
Cadhium	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000
Calcius	26100.0000	53000.0000	77000.0000**	30700.0000	100000,0000**	29700.0000	88000.0000**	24100.0000
Chromium	14.8000	5.6200	6.3800	11.6000	9.7200	14.0000	9.4900	10.8000
Cobalt	4.1500	< 1.4200	< 1.4200	3.9600	2.5100	3.8400	< 1.4200	2.9800
Copper	15.8000	1.9300	2.0700	13.4000	4.4600	16.6000	2.7600	11.6000
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200	< 0.9200
Iron	11100.0000	1700.0000	1680.0000	9000.0006	4370.0000	9520.0000	2390.0000	7230.0000
lead	36.5000	3.3100	2.8400	25.7000	23.0000	32.1000	3.5500	34.9000
effagnes i um	8430.0000	3450.0000	4560.0000	7300.0000	6500.0000	9500.0000	3380.0000	2960.0000
altanganese	411.0000	0000.67	58.3000	325.0000	0009.66	333.0000	9000 . 90	270.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500 ×	< 0.0500	< 0.0500	· 0.0500	< 0.0500 <
Nickel	10.6000	2.3800	3.3800	9.1100	6.3800	8.6800	2.7200	6.8200
Potassium	3690.0000	224.0000	203.0000	3000.0000	1200.0000	3350.0000	339.0000	2250.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	435.0000	172.0000	130.000	268.0000	287.0000	295.0000	168.0000	238.0000
Thallium	< 6.6 200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200
Vanadium	18.6000	9.6700	6.7700	14.6000	13.2000	16.2000	8.2400	11.6000
2 inc	78.2000	10.8000	9.8500	103.0000	111.0000**	68.3000	10.6000	89.5000

	ca. 20.010	CB. 20.010.010	CB. 20.011	ca.20.012	CB-20-012	SR-20-013	54-20-013	20-02-02
	210 43 89			310 43 00				
21 497	011.1*568	011.1*625	0111-570	011.1*571	011.1*572	011.1.573	01175/4	01.10
Date Sampled	06/14/92	06/14/92	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92
Depth (ft)	4.000 ft	4.000 ft	3.000 ft	0.500 ft	3.000 ft	0.000 ft	3.000 ft	0.000 ft
Metals and Cvanide (us/s)								
Atunina	1680.0000	1720.0000	974.0000	1250.0000	942.0000	1040.0000	1600.0000	3780.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	4.3500	5.7600	2.6800	5.0300	3.3100	9.7600	2.7000	2.8900
	43.4000	52.0000	19.5000	74.4000	31.9000	136.0000	24.5000	113.0000
Beryllius	◆ 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000 <
	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	• 0.700
	0000.00004	76000.0000	54000.0000	93000.0000*	58000.0000	140000.0000**	29000.0009	£3000.0000**
	9.7400	7.8700	< 4.0500	9.6400	5.5300	2.8400	7.1000	8 .9100
Cobelt	< 1.4200	< 1.4200	< 1.4200	< 1.4200	< 1.4200	< 1.4200	< 1.4200	4 1.4200
Coper	4.0600	4.3100	2.1300	2.0500	1.6600	1.8800	2.2700	4.7300
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	· 0.9200
5.	2520.0000	2670.0000	2210,3000	2060.0000	1930.0000	2000.0000	2490.0000	4120.000
Lead	7.1500	12.0000	3.9000	4.6700	3.7800	4.7800	4.9200	5.5300
Recesium	0000.0066	4400.0000	4950.0000	4670.0000	2440.0000	6130.0000	3910.0000	5260.0000
Handanese	73.2000	92.3000	\$0.200	63.6000	46.5000	98.2000	47.1000	126.900
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	· 0.0500	· 0.8500
Zicke.	3.4200	4.6400	4 1.7100	< 1.7100	2.2900	2.2600	4.6200	4. 910
Potessium	455.0000	484.0000	197.0000	282.0000	243.0000	206.000	0000.667	944. 8080
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 <	• 0.2500	< 0.2500	· 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	· 0.5090	· 0.500
Sodium	214.0000	138.0000	187.0000	227.0000	180.0000	306.0000	181.0000	257.000
	6.6200	6.6200	6.6200	< 6.6200	6.6200	· 6.6200	« 6.6200	4 6.6200
an (pere)	10.3000	6.8700	6.1700	9.7900	5.1300	9006.9	5.5700	1.6
Zinc	18.7000	20.6000	11.5000	10.8000	9.6600	9.6100	13.2000	23.1000

Page No. 1 12/18/92

TOCELE AD-WORTH AREA: SUN, 29 - DRUM STORAGE AREA SOIL AWALYTICAL RESULTS FOR METALS

Sample 10	\$8-29-014	SB - 29 - 014 - DUP	SB-29-015	SB-29-015-DUP	SB-29-015	SB-29-016	SB-29-016	SB-29-017
9	011.1*576	011.1*624	0111*577	011.1*623	0111-578	011.1*579	0111*580	011.1*581
Jate Sampled	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92	06/13/92	06/13/92	06/12/92
Jepth (ft)	3.000 ft	3.000 ft	0.000 ft	0.000 ft	3.000 ft	0.000 ft	2.000 ft	0.000 ft
tetals and Cvanide (up/a)								
Alceine	1400.0000	916.0000	9410.0000	10600.0000	6430.0000	9850.0000	3710.0000	6540.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	4.3900	3.7300	8.9600	7.7900	9.2000	8.2300	8.3800	6.9300
	17.9000	17.6000	129.0000	148.0000	106.0000	128.0000	900.3000	89.2000
Berv(Lius	< 0.5000	< 0.5000	0.6280	0.8460	< 0.5000	0.6950	< 0.5000	< 0.5000
Cachaium	◆ 0.7000	< 0.7000	1.1500**	0.9550**	< 0.7000	0.9840**	< 0.7000	< 0.7000
Catcium	58000.0000	58000.0000	33800.0000	28700.0000	50000.0000	40000.0000	69000.0000	38100.0000
Chromium	7.3900	0020.9	14.0000	15.6000	11.9000	16.7000	10.3000	11.1000
Cobalt	< 1.4200	< 1.4200	4.0300	7.6900	2.8300	3.6000	v 1.4200	2.6600
Copper	1.6700	1.6100	13.9000	15.3000	7.5300	14.1000	2.2400	10.3000
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	• 0.9200	< 0.9200
- Iron	2540.0000	2430.0000	9520.0000	11100.0000	7050.0000	9720.0000	4650.0000	7200.0000
Feed	4.4000	4.2100	29.0000	31.0000	11.4000	31.4000	8.4600	27.9000
Magnes ium	5430.0000	\$150.0000	6560.0000	7090.0000	5300.0000	9000.0009	4150.0000	6260.0000
Manganese	51.9000	53.9000	355.0000	409.0000	208.0000	355.0000	126.0000	239.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500 ×	< 0.0500 <
Nickel	3.3100	3.6800	8.2900	10.9000	6.7100	8.9500	4.5000	6.9400
Potassium	333.0000	238.0000	2870.0000	3310.0000	1790.0000	2940.0000	968.0000	2000.0002
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	172.0000	155.0000	349.0000	284.0000	245.0000	300.000	200.0000	215.0000
Thetticm	< 6.6200	< 6.6 200	< 6.4200	< 6.6200	< 6.6200	< 6.6200	6.6200	< 6.6200
Vanadium	7.3800	6.7600	17.2000	18.8000	17.6000	18.2000	15.3000	13.2000
1	12, 1000	11,8000	69.2000	79.7000	38.4000	83.6000	29.1000	0000'67

Sample 10	210-62-95	\$10-62-85	\$8.29.018	\$10-62-85	88-29-019	020-62-85	020-62-85	129-62-85
=	011.1*582	011.1*583	011.1*584	0111*585	0111*586	0111*587	01110588	001.100
Date Sampled	06/12/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	26/11/00
Depth (ft)	3.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	9.000 ft
Metals and Cyanide (ug/g)	מטט טטטט	11400 0000	0000 0507	8890,0000	2660.0000	9460.0000	1360.0000	7820.0000
Ant factor	× 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1488
Arsenic	9,1500	8.5700	9.6600	0067.6	11.4000	9.0900	10.5000	9.0400
	92.4000	153.0000	64 .1000	129.0000	47.9000	119.0000	34.7000	263.0000-
Dervitium	< 0.5000	0.9300	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000 <
Cadaius	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000 •	· 6.7000
Calcium	9000,0000	25500.0000	45600.0000	38500.0000	**0000.0006 8	25500.0000	150000.0000**	15000.0000-
Chromium	23.8000**	14.5000	9.7500	12.9000	11.4000	13.7000	10.5000	11.700
Cabalt	2.1700	4.6100	2.1500	3.5500	< 1.4200	3.8200	· 1.4200	2.700
Coper	7.9500	13.8000	9.0900	11.7000	3.5600	11.6000	2.0800	9.3200
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	· 0.920
	6120.0000	11400.0000	5910.0000	8740.0000	4030.0000	9890.0000	2300.0000	7160.0000
Lead	9.2800	22.0000	7.9800	22.0000	5.3900	17.0000	10.000	16.000
Megnesium	\$260.0000	9370.0000	4110.0000	6400.0000	3580.0000	7220.0000	3870.0000	9480.000
Handanese	163.0000	427.0000	170.0000	310.0000	101.0000	336.0000	59.1000	267.0800
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	• 0.050
Rickel	4.2100	10.7000	5.6100	8.6000	4.7100	8.4400	2.9400	6.548
Potassium	1070.0000	3710.0000	1350.0000	2750.0000	711.0000	2950.0000	366.0000	2540.000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	• 0.2500	• 0.2500	· 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	. 0.588
Solia S	242.0000	294.0000	216.0000	290.0000	179.0000	282.0000	238.0000	742.000
Thettica	< 6.6200	< 6.6200	< 6.6200	• 6.6200	6.6200	• 6.6200	6.6200	10.1080**
the part of the pa	13.0000	19.4000	15.3000	16.9000	12.0000	18.6000	0049.6	17.488
Zine	25.4000	61.7000	29.9000	53.9000	18.6000	89.8000	14.7000	74.000

'age No. 12/18/92

TOCELE AD-NORTH AREA: SM., . 29 - DRUM STORAGE AREA SOLL ANALYTICAL RESULTS FOR METALS

	SB-29-021-DUP	58-29-021	SB-29-022	SB-29-022	SB-29-023	SB - 29 - 023	\$20-62·85	\$20-62- B S
01 4	011.1*626	0111*590	011.1*591	0111*592	0111-593	0111*594	0111*595	011.1-596
ate Sampled	06/14/92	06/14/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92
epth (ft)	0.000 ft	4.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft
tetals and Cyanide (ug/g)			1					
Atuminum	6810.0000	2070.0000	3950.0000	24 10 .0000	1160.0000	1280.0000	3800.0000	1640.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	9.5000	7.7100	9.5700	9.7600	25.0000	21.0000	10.2000	8.6100
E7 :: 00	255.0000**	24.0000	112.0000	53.1000	181.0000	46.1000	98.6000	27.6000
	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.5820	< 0.5000
Cadaica	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000
Colcium	150000.0000**	95000.0000	46900.0000	9000.00099	100000.00000	53000.0000	63000.0000	**0000 . 00069
Chronium	9.6500	12.5000	10.7000	10.9000	6.1500	8.4300	10.4000	9.9900
Cobelt	3.2400	< 1.4200	1.8600	< 1.4200	< 1.4200	< 1.4200	1.9400	< 1.4200
Copper	9.7700	3.0800	5.6700	4.1200	2.1400	3.3100	4.7400	2.0200
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200 ×	< 0.9200
Iron	0000 . 0699	2900.0000	4870.0000	3960.0000	2500.0000	3460.0000	4750.0000	2810.0000
on ead	20.0000	7.5600	36.0000	7.5300	8.7100	8.9800	7.6500	5.0500
dengnes ium	9970.0000	9680.0000	7840.0000	5360.0000	4680.0000	4020.0000	2660.0000	4560.0000
Manganese	255.0000	102.0000	141.0000	0009.66	91.9000	70.8000	137.0000	73.8000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	· 0.0500	< 0.0500 <	< 0.0500
Nickel	9.9400	3.7000	4.5400	3.8200	2.3400	3.1500	2.0800	4.6200
Potassium	2300.0000	623.0000	1140.0000	993.0000	254.0000	304.0000	1150.0000	422.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	362.0000	230.0000	195.0000	164.0000	261.0000	145.0000	243.0000	200.0000
Thailien	10.9000**	< 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200	6.6200	6.6200
Vanadium	16.8000	12.9000	11.1000	14.2000	12.5000	12.2000	12.6000	8.8500
Zinc	43.6000	16.6000	26.9000	18.5000	13.0000	18.9000	20.3000	11.2000

Leb 10 Date Sampled Depth (ft) Metals and Cyanide (ug/g) Aluminum Antimony Arsenic Barium Berytlium Cadmium	0111*597 06/13/92 0.000 ft	0111-598	011.1*599		10711			
	06/13/92 0.000 ft	60. 60. 70		011,1*600	0111-601	011.1*602	0111-603	35:110
	0.000 ft	26/13/45	06/14/92	06/14/92	06/14/92	06/14/92	06/15/92	06/15/92
		2.000 ft	0.000 ft	2.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 fc
•								
• • •	0000	0000	0000 0007	0000 0010	0000	0000 0274	6750 0000	A 400 VCT
	6550.0000	7 1600	2 1400	4 7 1400	× 7.1600	× 7.1600	× 7.1400	4 7.1600
5	7 0800	A 4500	8.0200	11.8000	8.4200	7.2600	6.1200	7.900
5	104 0000	0007 57	159.000	85.5000	95.3000	76.7000	195.0000	27.0000
	2000	0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
	< 0.7000	< 0.7000	6.7000	0.8200	< 0.7000	< 0.7000	< 0.7000	< 0.7000
	41500.0000	65000.0000	100000.0000**	91000.0000**	68000.0000	70000.0000**	150000.0000**	37000.0000
	13.6000	6.9700	8.8000	23.4000**	9.0700	8.3900	9.7900	4.0508
Cobali	3.3300	< 1.4200	2.0400	4 1.4200	< 1.4200	< 1.4200	2.4500	4 1.4200
Come	9.7700	3.0400	5.6200	3.4000	4.4100	2.3700	7.5900	1.1500
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	55.0000*	4.7000**
	8510.0000	2610.0000	4470.0000	4920.0000	3960.0000	2800.0000	5820.0000	1480.0000
Lead	13.0000	9.9000	12.0000	9.8000	2.5600	10.000	19.0000	3.4600
	5770.0000	4680.0000	6170.0000	5080.0000	4680.0000	4340.0000	8890.0000	2050.0000
	228.0000	72.4000	177.0000	107.0000	101.0000	61.2000	170.0000	31.1000
	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	< 0.0500 ×
	8.3200	3.5900	3.8000	3.4800	3.6900	4.0300	5.1600	< 1.7100
	2530.0000	502.0000	1220.0000	622.0000	1030.0000	452.0000	1750.0000	209.000
Selenius	< 0.2500	< 0.2500	< 0.2500 ×	< 0.2500	< 0.2500	< 0.2500	< 0.2500	• 0.2500
Sitver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	· 1.8000	· 0.5090
	241.0000	155.0000	317.0000	238.0000	289.0000	188.0000	995.0000	178.0000
5	< 6.6 200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6. 6200	< 6.6200	· 6.6200
Variation	16.2000	8.1700	12.7000	12.4000	11.0000	6.9500	14.8000	4.8000
Zine	45.7000	16.6000	27.4000	18.0000	19.4000	12.5000	36.8000	· 8.0300

Page No. 1 12/18/92

TOOELE AD-NORTH AREA; SWMD 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR METALS

In a lam.	SR-29-028-011P	SB-29-029	58-29-029	SB-29-030	SB-29-030	\$8-29-031	SB-29-031-DUP	\$8-29-031
OI aldus	90744 110	2011 10700	70741 110	20741 110	80701 110	00744.00	10701 110	01741
01 qa	011.1*628	011.1.005	000-1-10	787.130	011.1-008	11.00	110	
late Sampled	06/15/92	06/15/92	06/15/92	06/17/92	06/17/92	06/17/92	06/17/92	06/17/92
lepth (ft)	4.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 ft	0.000 ft	0.000 ft	4.000 ft
letals and Cyanide (ug/g)								
Attning	379.0000	11500.0000	4640.0000	5960.0000	2750.0000	11000.0000	7730.0000	4360.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	7.1900	7.0400	7.1000	12.0000	8.3900	7.6800	7.3800	5.3700
EDITOR	25.0000	142.0000	111,0000	126.0000	88.7000	158,0000	158.0000	76.0000
	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.6410	< 0.5000	< 0.5000
	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000
Colcius	33300.0000	68000.0000	130000.0000**	50100.0000	\$2000.0000*	9000 .00009	38100.0000	24000.0000
Chronium	< 4.0500	14.6000	11.0000	9.6200	10.9000	12.9000	9.7200	10.3000
Cobait	< 1.4200	4.2900	2.9100	2.6900	< 1.4200	3.9900	3.5200	2.4800
Coper	< 0.9650	11.2000	6.6100	11.1000	4.2500	10.5000	10.5000	7.8600
Cyanide	3.1300**	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200
Fron	877.0000	10200.0000	4780.0000	6590.0000	3500.0000	10000.0000	8200.0000	5150.0000
pe a fil	1.5200	13.0000	7.2200	26.3000	7.0700	20.0000	20.0000	7.2000
Series of Life	3210.0000	7940.0000	8140.0000	990.0099	5660.0000	9410.0000	8750.0000	7690.0000
Mendenese	21.6000	263.0000	166.0000	305.0000	114.0000	374.0000	395.0000	153.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Rickel	< 1.7100	10.0000	5.9200	6.7200	4.3200	10.2000	8.7400	6.4200
Potassica	< 100.0000	3520.0000	1420.0000	1960.0000	800.000	3630.0000	2840.0000	1410.0000
Selenius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	< 100.0000	295.0000	347.0000	267.0000	255.0000	385.0000	327.0000	236.0000
Thettium	< 6.6200	< 6.6200	9.1800	< 6.6200	< 6.6200	< 6.6200	10.2000**	< 6.6200
Vanadium	4.1600	22.5000	14.3000	12.2000	9.1400	19.3000	14.7000	11.1000
2 inc	< 8.0300	64.6000	32.6000	54.6000	20.6000	27.6000	51.8000	30.7000

Sample 10	58-59-035	SB-29-032	SB-29-033	SB-29-033	SB-29-034	X0-62-88	SB - 29 - 035	SE-52-035
01 qe 1	0111*611	01110612	011.1*613	011.1*614	011.1*615	011.1*616	011.1-617	011.1-618
Date Sampled	06/17/92	06/17/92	06/17/92	06/17/92	06/17/92	06/17/92	06/17/92	06/17/92
Depth (ft)	0.000 ft	4.000 ft	0.000 ft	3.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 ft
Metals and Evanide (us/s)								
Atunina	5870.0000	2030.0000	5240.0000	2230.0000	4110.0000	2950.0000	4590.0000	2190.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	15,0000	7.2300	24.0000	7.7500	15.0000	8.6900	22.0000	9.4900
	89.1000	104.0000	75.2000	41.8000	26.0000	26.2000	72.6000	90.8000
	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000
Cadaius	0.9200**	< 0.7000	< 0.7000	< 0.7000	3.1300**	< 0.7000	1.6500**	< 0.7000
Calcium	9000.0009	61000.0000	40900.0000	95000.0000*	27400.0000	81000.0000**	47200.0000	79000,00007
Chronium	16.3000	41.6000**	32.0000**	12.5000	15.2000	10.7000	19.1000	10.8000
Cobal	3.2100	< 1.4200	5.4500	< 1.4200	2.3600	< 1.4200	2.7500	< 1.4200
Coper	16.8000	3.5000	16.4000	3.9600	15.6000	4.2700	23.4000	3.2200
Cyanide	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200 ×
81	7650.0000	6520.0000	2900.0000	2950.0000	9000.0609	3690.0000	7410.0000	3230.0000
Lead	86.4000**	8.6700	222.0000**	17.0000	103.0000**	14.0000	147.0000**	16.0000
Magnes La	9500.0000	2990.0000	4050.0000	7320.0000	7000.0000	7460.0000	11000.0000	7490.0000
	227.0000	163.0000	219.0000	89.7000	197.0000	95.3000	283.0000	96.6000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500 <	· 0.0500
Bickel	7.7000	6.2800	6.3800	2.0600	9.0000	3.6600	8.0400	3.5100
Potessium	1700.0000	603.0000	1400.0000	652.0000	1160.0000	765.0000	1360.0000	559.000
Selection	◆ 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500 <	0.2500
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Society	531.0000	284.0000	0000.689	306.0000	392.0000	337.0000	543.0000	330.000
Thatties	< 6.6200	< 6.6200	< 6.6200	< 6.6200	6.6200	6.6200	6.6200	6.6200
Variation	14.2000	10.1000	12.6000	9.9000	10.6000	12.5000	12.2000	9.0200
	0001 TO	20 1000	7007 00	10 1000	00 5000	29.3000	164,0000+	2000

tected at the value shown, MA = Not analyzed · is above the background concentration for the depth shown,

Hote

age No. 1 2/18/92

TODELE AD-NORTH AREA: SIMU . 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR METALS

ab 10	0171,010	0111-620	0111*621	011.1*622
ite Sampled	06/17/92	06/17/92	06/17/92	06/17/92
epth (ft)	0.000 ft	3.000 ft	0.000 ft	4.000 ft
ntals and Cyanide (ug/g)				
Aluminum	5870.0000	2420.0000	5770.0000	2730.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	17.0000	6.1900	12.7000	8.1900
Barium	85.0000	43.3000	74.6000	38,1000
Beryllium	< 0.5000	< 0.5000	< 0.5000	< 0.5000
Cadmium	1.1700**	< 0.7000	< 0.7000	< 0.7000
Calcium	41700.0000	47800.0000	32600.0000	100000.0000**
Chromium	16.2000	11.4000	13.1000	15.0000
Cobalt	2.5700	< 1.4200	2.7600	2.0400
Copper	21.5000	4.0900	14.3000	3.4100
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200
516	7310.0000	3280.0000	9980.0000	3820,0000
7 16-	101.0000**	7.4100	80.0000*	10.6000
dagnes i un	5630.0000	4520.0000	4350.0000	7740.0000
Manganese	230.0000	65.1000	243.0000	93.1000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Rickel	7.8200	3.5700	7.9000	4.5900
Potassium	1770.0000	651.0000	1660.0000	845.0000
Setenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodium	790.0000	375.0000	409.0000	311.000
Thattien	< 6.6200	< 6.6200	< 6.6 200	< 6.6200
Vanadium	13.0000	8.9600	13.7000	13.1000

19 10								
	011.10549	011,1*551	011.10553	101110554	011.1*555	011.1*557	011.1*559	011.1*560
Date Sampled	0,/11/92	06/11/92	06/12/92	06/12/92	06/11/92	06/11/92	06/15/92	06/15/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	3.000 ft	0.000 ft	0.000 ft	0.000 ft	4.000 ft
Volstile Organic Compounds (ug/g)								
Nexane	¥	4	¥	0.0040**	**	Y#	¥	¥
Toluene	4	0 000 >	K	₹ 0.0008	• 0.000B	0.0008	4	< 0.000 6
Semivolatile Organic Compounds (ug/g)								
Acenaphthene	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.2000	< 0.0360 <	< 0.0360	< 0.0360
Anthracene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.2000	< 0.0330	< 0.0330	< 0.0330
Senzo (a) anthracene	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.8000	< 0.1700	< 0.1700	< 0.1700
Benzo (a) pyrene	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 1.0000	< 0.2500	< 0.2500	< 0.2500
Benzo (b) fluoranthene	< 0.2100	< 0.2100	< 0.2100	< 0.2100	• 1.0000	< 0.2100	< 0.2100	< 0.2100
Benzo(e)pyrine (11C)	¥	¥	¥	¥	¥	≦	≨	¥
Benzo (k) fluoranthene	< 0.0660	< 0.0660	0990.0 >	0.0660	< 0.3000	< 0.0660	· 0.0660	< 0.0660
Bis (2-ethylhexyl) phthalate	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 3.0000	< 0.6200	< 0.6200	< 0.6200
Chrysene	< 0.1200	< 0.1200	< 0.1200	< 0.1200	· 0.6000	< 0.1200	< 0.1200	< 0.1200
Fluoranthene	◆ 0.0680	< 0.0680	< 0.0680	< 0.0680	< 0.3000	< 0.0680	< 0.0680	< 0.0680
Fluorene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.2000 ×	< 0.0330	< 0.0330	< 0.0330
Octadecanoic acid, butyl ester (TIC)	¥#	YN	¥	W	¥ N	¥	4	\$
Phenanthrene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.2000	< 0.0330	< 0.0330	< 0.0330
Pyrene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.2000	0.0830**	< 0.0330	< 0.0330
Pesticides (us/s)								
Endrin	< 0.4500	< 0.4500	< 0.0066	< 0.4500	< 2.0000	< 0.4500	< 0.0066	< 0.4500
Isodrin	4	K #	< 0.0046	* 0.00 %	4	¥	× 0.0046	< 0.0046
0°0-0'd	< 0.2700	< 0.2700	< 0.0083	< 0.2700	< 2.0000	< 0.2700	< 0.0063	< 0.2700
p.p.00£	< 0.3100	< 0.3100	< 0.0077	< 0.3100	< 2.0000	< 0.3100	< 0.0077	< 0.3100
p,p-b01	< 0.3100	< 0.3100	< 0.0071	< 0.3100	< 2.0000	< 0.3100	0.0092**	< 0.3; #
Herbicides (ug/g)	¥	¥	4	¥	\$	¥	¥	¥
Total Petroleum Nydrocarbons (ug/g) Total petroleum hydrocarbons	\$	51.4000**	\\	< 28.3000	59.3000**	51.1000**	ž	< 28.3000
Explosives (ug/g)	9	9	욮	9	9	9	9	9
Dioxins/furans (ug/g)	YN	¥	¥	4	M	¥	4	¥

'te was detected at the concentration shown < * Not detected at

t shown, NA = Not analyzed

Page No. 1 12/21/92

TOOFIE AD-WORTH AREA: "JAN NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	700-67-8S	200-62-85	SB-29-007-0UP	89·29·008	SB · 29 · 008	SB-29-009	SB-29-009	SI - 29-010
OI qe1	0111*561	0111*562	0111*627	0111*563	0111*564	0111*565	011.1*566	01110567
Date Sampled	06/15/92	06/15/92	06/15/92	06/14/92	06/14/92	06/14/92	06/14/92	06/14/92
Depth (ft)	0.000 ft	4.000 ft	4.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Hexare	¥	¥ N	≨	\$	¥	¥#	¥	1
folume	◆ 0.000\$	< 0.0008	< 0.0008	K	< 0.000 8	< 0.000 8	< 0.0008	< 0.000B
Semivolatile Organic Compounds (ug/g)								
Acenaphthene	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360
Anthracene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Benzo (a) anthracene	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700
Benzo (a) pyrene	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Benzo(b) fluoranthene	< 0.2100	< 0.2100 ×	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100
Benzole]pyrine (11C)	4 2	\$	¥	×	5	¥	₹	1
Senzo(k) fluoranthene	• 0.0660	0.0660	0990.0 >	< 0.0660	· 0.0660	< 0.0660	· 0.0660	0.0660
Dis (2-ethylhexyl) phthalate	< 0.6200	< 0.6200	< 0.6200	< 0.6200	0.8930**	< 0.6200	< 0.6200	< 0.6200 ×
Chrysene	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200
fluoranthere	< 0.0680	< 0.0680	< 0.0680	0.1860**	< 0.0680	× 0.0680	< 0.0680	< 0.0680
fluorene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Octadecanoic acid, butyl ester (IIC)	¥	4	¥	Y.	ď.	4	S	\$
Phenanthrene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Pyrene	< 0.0330	< 0.0330	< 0.0330	0.1900**	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Pesticides (ug/g)								
Endrin	9900.0 •	< 0.4500	9900'0 >	< 0.0066	< 0.4500	• 0.0066	9900.0 >	9900.0 >
Isodrin	< 0.0046	< 0.0046	× 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.00%
000-d-d	< 0.0083	< 0.2700	< 0.0083	< 0.0083	< 0.2700	< 0.0083	< 0.0063	< 0.0083
p,p-b0£	< 0.0077	< 0.3100	< 0.0077	< 0.0077	< 0.3100	< 0.0077	< 0.0077	< 0.0077
p.p-b01	< 0.0071	< 0.3100	< 0.0071	< 0.0071	< 0.3100	0.0198**	< 0.0071	< 0.0071
Herbicides (ug/g)	¥	¥	4	¥	¥	M	¥	¥
lotal Petroleum Mydrocarbona (ug/g) fotal petroleum hydrocarbons	32.3000**	< 28.5000	< 27.5000	¥.	31.6000**	945.0000**	< 28.5000	< 28.300n
Explosíves (ug/g)	9	9	ĝ	ĝ	9	æ	9	9
(4/4:)	3	¥.	4	4	7	4	4	4

/te was detected at the concentration shown < = Not detected at the Notes: ** =

9 shown, MA = Not enalyzed

TOOFLE AD-MORTH AREA: SIMU NO, 29 - DRUM STORAGE AREA SOLL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Lab 10 Date Sampled Depth (ft)					310.43.60	717.43.80	710.43.80	
Date Sampled Depth (ft)	0111*568	011.1*625	0111*570	011.1*571	011,1*572	0111*573	0111*574	0111*575
Depth (ft)	06/14/92	26/14/90	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92
	4.000 ft	4.000 ft	3.000 ft	0.500 ft	3.000 ft	0.000 ft	3.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Nexare	¥	¥	0.0083**	4	0.0052**	42	0.0110**	*
Toluene	¢ 0.0008	< 0.0008	◆ 0.000€	\$	< 0.0008	≦	• 0.0006	\$
Semivolatile Organic Compounds (ug/g)								
Acenaphthene	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360	< 0.0360
Anthracene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Benzo (a) anthracene	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700	< 0.1700
Benzo [a] pyrene	. < 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500
Benzo [b] fluor anthene	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100	< 0.2100
Benzole)pyrine (11C)	4	4	¥	\$	*	¥	#W	*
genzolk) fluoranthene	< 0.0660	0.0660	< 0.0660	< 0.0660	< 0.0660	< 0.0660	0.0660	< 0.0660
Bis (2-ethylhexyl) phthalate	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 0.6200	< 0.6200
_	< 0.1200	< 0.1200 ×	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200	< 0.1200
f Fluoranthene	< 0.0680	0.0680	· 0.0680	× 0.0680	· 0.0680	· 0.0680	· 0.0680	< 0.0680 <
fluorene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Octadecamoic acid, butyl ester (11C)	¥	¥	**	¥2	¥	≨	4	\$
Phenanthrene	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330	< 0.0330
Pyrene	< 0.0330	< 0.0330	< 0.0330	0.1400**	< 0.0330	0.0970**	< 0.0330	< 0.0330
Pesticides (ug/g)								
Endrin	< 0.4500	< 0.0066	< 0.4500	< 0.0066	< 0.4500	< 0.0066	< 0.0066	< 0.0066
Isadrin	< 0.0046	< 0.0046	9 0.00 ×	< 0.0046	< 0.00%	< 0.00%	• 0.00 66	9 0.0046
00-d'd	< 0.2700	< 0.0063	< 0.2700	< 0.0063	< 0.2700	< 0.0083	< 0.0063	< 0.0063
900-d'd	< 0.3100	< 0.0077	< 0.3100	< 0.0077	< 0.3100	< 0.0077	< 0.0077	< 0.0077
p,p-001	< 0.3100	· 0.0071	< 0.3100	< 0.0071	< 0.3100	< 0.0071	< 0.0071	× 0.0071
Herbicides (ug/g)	Y N	4	¥	¥#	KA	¥	**	÷
Total Petroleum Mydrocarbons (ug/g)								
Total petroleum hydrocarbons	< 28.7000	< 27.5000	< 28.7000	¥	49.8000**	ž	< 28.5000	≦
Explosives (ug/g)	£	9	9	Ş	2	2	2	9
Dioxins/furans (ug/g)	4	¥	¥.	¥	4	\$	4	\$

te was detected at the concentration shown < = Not detected at the p shown, NA = Not analyzed

Page No. 1 12/21/92

TOOFIE AD-WORTH AREA: Saud NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	\$10-62-8S	SB - 29 - 014 - DUP	SI - 29 - 015	SB-29-015-0UP	SB-29-015	\$10-62-118	.910-62-85	20·20·012
1eb 10	0111*576	0111*624	011,10577	011.1*623	0111*578	011.1*579	011.1*580	011.1*581
Date Sampled	06/12/92	06/12/92	06/12/92	06/12/92	06/12/92	06/13/92	06/13/92	06/12/92
Depth (ft)	3.000 ft	3.000 ft	0.000 ft	0.000 ft	3.000 ft	0.000 ft	2.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)								
Henens	0.0062**	0.0052**	¥	0.0088**	0.0076**	¥	\$	1
Toluene	< 0.0008	< 0.000 8	0.0008	< 0.0008	* 0.000B	1	< 0.0008	1
Semivolatile Organic Compounds (ug/g)							•	
Acenaphthene	< 0.0360	< 0.0360	0007'0 >	< 0.7000	< 0.1800	0.9000	< 0.7200	< 2.0000
Anthracene	< 0.0330	< 0.0330	< 0.3000	< 0.7000	< 0.1650	< 0.8250	< 0.6600	< 2.0000
Benzo [a] anthracene	< 0.1700	< 0.1700	< 2.0000	< 3.0000	< 0.8500	< 4.2500	< 3.4000	· 8.0000
Benzo (a) pyrene	< 0.2500	< 0.2500	< 2.0000	< 5.0000	< 1.2500	< 6.2500	< 5.0000	< 10.0000
Benzo [b] fluoranthene	< 0.2100	< 0.2100	< 2.0000	< 4.0000	< 1.0500	< 5.2500	< 4.2000	< 10.0000
Benzole) pyrine (11C)	¥ N	¥	¥	X	4	¥#	48	1
Benzo (k) fluoranthene	< 0.0660	< 0.0660	< 0.7000	. 1.0000	< 0.3300	. < 1.6500	< 1.3200	< 3.0000
Bis (2-ethylhexyl) phthalate	< 0.6200	< 0.6200	6.0000	< 10.0000	< 3.1000	< 15.5000	< 12.4000	< 30.0000
Chrysene	< 0.1200	< 0.1200	< 1.0000	< 2.0000	< 0.6000	< 3.0000	< 2.4000	· 6.0000
fluoranthene	< 0.0680	< 0.0680	< 0.7000	< 1.0000	< 0.3400	< 1.7000	< 1.3600	< 3.0000
Fluorene	< 0.0330	< 0.0330	< 0.3000	< 0.7000	< 0.1650	< 0.8250	< 0.6600	< 2.0000
Octadecanoic acid, butyl ester (110)	0.3110**	¥#	4	¥	₹	₹	4	\$
Phenanthrene	< 0.0330		< 0.3000	< 0.7000	< 0.1650	< 0.8250	· 0.6600	< 2.0000
Pyrene	< 0.0330	< 0.0330	< 0.3000	< 0.7000	< 0.1650	< 0.8250	• 0.6600	< 2.0000
Pesticides (ug/g)								
Endrin	< 0.4500	< 0.4500	9900.0 >	< 0.0066	< 2,5000	990.0 ×	* 0.0066	0.0066
Isodrin	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.00%
000-d'd	< 0.2700	< 0.2700	< 0.0083	< 0.0083	< 1.5000	< 0.0083	< 0.0063	< 0.0063
300-0'd	< 0.3100	< 0.3100	< 0.0077	< 0.0077	< 1.5000	< 0.0077	< 0.0077	< 0.0077
p,p-001	< 0.3100	< 0.3100	< 0.0071	0.0100**	< 1.5000	< 0.0071	< 0.0071	< 0.0071
Merbicides (ug/g)	KA	¥	¥8	*	¥#	\$	\$	*
Total Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	< 28.3000	¥	176.0000**	238.0000**	31.9000**	ş	852.0000**	Ĩ
Explosives (ug/g)	Q	9	ş	Q	Q.	2	2	9
Dioxins/furans (ug/g)	Y.	*	¥8	¥	Z.	¥	\$	ž

TOCELE AD-MORTH AREA: SHALL NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	20-62-01	810-62-85	SB-29-018	SB-29-019	610-62- 8 5	020 - 62 · 85	28 - 29 - 0 20	SB - 29 - 021
	011 145.82	011 1+583	011.1+5.84	011 1+585	011.1*586	011.1*587	011.1*588	0111-589
	06/12/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/14/92
Depth (ft)	3.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft
Voletile Organic Compounds (ug/g)							•	
Rexere	0.0044**	4	¥	4	48	*	4	¥
Toluene	* 0.0008	*	· 0.0006	< 0.0008	× 0.0008	≦	• 0.000 8	\$
Semivolatile Organic Compounds (ug/g)								
Acenechthene	× 0.4000	< 0.3600	< 0.3600	< 0.0360	< 0.0360	· 0.9000	· 1.8000	< 0.7200
Anthracere	< 0.3000	< 0.3300	< 0.3300	< 0.0330	< 0.0330	< 0.8250	· 1.6500	· 0.6600
Benzo (a) anthracene	< 2.0000	< 1.7000	1.7000	< 0.1700	◆ 0.1700 →	· 4.2500	• 8.0000	< 3.4000
Benzolalbyrene	< 7.0000	< 2.0000	< 2.0000	< 0.2500	< 0.2500	< 6.2500	< 12.5000	< 5.0000 • 5.0000
Benzo (b) fluoranthene	< 2.0000	< 2.1000	< 2.1000	< 0.2100	< 0.2100	< 5.2500	< 10.5000	< 4.2000
Benzo(e)pyrine (11C)	¥	¥	≦	¥#	¥	¥	*	*
Benzoft 1 fuoranthene	< 0.7000	0.6600	0.6600	< 0.0660	0,0660	· 1.6500	< 3.3000	< 1.3200
Bis (2-ethylhexyl) phthalate	• 6.0000	< 6.2000	< 6.2000	< 0.6200	< 0.6200	< 15.5000 ·	< 31.0000	< 12.4000
Chrysene	• 1.0000	· 1.2000	< 1.2000	< 0.1200	< 0.1200	· 3.0000	· 6.0000	< 2.4000
	< 0.7000	0.6800	< 0.6000	< 0.0680	< 0.0680	• 1.7000	< 3.4000	< 1.3600
	< 0.3000	< 0.3300	< 0.3300	< 0.0330	< 0.0330	< 0.8250	< 1.6500	0.6600
Octadecanoic acid, butyl ester (110)	42	4	¥	¥	≦	1	¥	\$
	< 0.3000	< 0.3300	< 0.3300	< 0.0330	< 0.0330	< 0.6250	< 1.6500	0.6600
Pyrene	< 0.3000	< 0.3300	< 0.3300	< 0.0330	< 0.0330	2.6700**	3.7400**	0099.0 >
Pesticides (ug/g)								
Endrin	9 00.00 >	• 0.0066	× 0.0066	• 0.0066	9900.0 •	• 0.0066	0.0158**	0.0066
Isodrin	< 0.0046	0.00	< 0.0046	· 0.0046	< 0.0046	< 0.00%	0.0085**	· 0.0046
D. D. 000	< 0.0083	< 0.0083	< 0.0063	< 0.0083	< 0.0063	< 0.0063	< 0.00 6 3	< 0.0063
307-d'd	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.007	< 0.0077	< 0.0077	< 0.007
p.p-001	◆ 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	€ 0.0071	· 0.0071
Merbicides (ug/g)	X	¥	¥8	YN	Ş	\$	4	\$
Total Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	199.0000**	4	104,0000**	< 28.7000	35.9000**	1	1390.0000**	4
Explosives (ug/g)	9	Q	9	£	9	2	9	9
Dioxins/Furans (ug/g)	M	¥	4	4	VH.	¥	£	ž
					!			

Page No. 1 12/21/92

TOOELE AD-MORTH ARL. J NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Lab 10 Date Sampled Depth (ft) Valetile Granic Compards (10/0)	011.1*626	0111-590	0111*591	011 14502	10501	705-1110	70241 110	All tech
Date Sampled Depth (ft) Valetile Granic Compards (10/0)				1//	747 - 110		747 - 310	
Depth (ft)	06/14/92	06/14/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92	06/13/92
Voletile Oreanic Compounds (us/s)	0.000 ft	4.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft
Hexane	¥ X	≦	¥	K	4	≨	4	1
Toluene	¥	< 0.0008	£	< 0.0008	× 0.0008	× 0.0008	≦	• 0.00 0
Semivolatile Organic Compounds (ug/g)								
Acenaphthene	¥	0.9000	· 1.8000	< 0.3600	< 0.3600	· 1.8000	₹	< 0.3600
Anthracene	4	< 0.8250	< 1.6500	< 0.3300	< 0.3300	< 1.6500	4	< 0.3300
Benzo (a) anthracene	MA	< 4.2500	8 .0000	< 1.7000	< 1.7000	· 8.0000	¥#	4 1.7006
Benzo (a) Dyrene	NA NA	< 6.2500	< 12.5000	< 2.0000	< 2.0000	< 12.5000	4	< 2.0000 ×
Benzo (b) fluoranthene	¥#	< 5.2500	< 10.5000	< 2.1000	< 2.1000	< 10.5000	4	< 2.1000 ×
Benzolelbyrine (11C)	¥	48	4	¥	¥	¥	¥	1
Benzoft 1 fluoranthene	¥	< 1.6500	< 3.3000	< 0.6600	0.6600	< 3.3000	¥	0099.0 >
Bis (2-ethylhexyl) phthalate	¥	< 15.5000	< 31.0000	◆ 6 .2000	6.2000	< 31.0000	1	6.2000
	¥	< 3.0000	· 6.0000	< 1.2000	< 1.2000	< 6.0000	≦	· 1.200
	¥	< 1.7000	< 3.4000	< 0.6800	< 0.6800 ×	< 3.4000	≦	· 0.6800
Fluorene	¥	< 0.8250	< 1.6500	< 0.3300	< 0.3300	< 1.6500<	1	< 0.3300
_	¥	¥	×	¥	¥	¥	≦	£
Phenanthrene	\$	< 0.8250	< 1.6500	< 0.3300	< 0.3300	4 1.6500	1	< 0.3300
Pyrene	X	3.0900**	4 1.6500	< 0.3300	< 0.3300	• 1.6500	ž	< 0.3300
Pesticides (us/a)								
Endrin	* 0.0066	• 0.0066	× 0.0066	9900.0 ×	• 0.0066	• 0.0066	• 0.0066	9900.0 •
Isodrin	< 0.0046	< 0.0046	< 0.0046	< 0.0046	0.00	* 0.0046	< 0.0046	· 0.0046
D. D-000	< 0.0083	0.0424**	< 0.0083	< 0.0083	< 0.0083	< 0.0083	< 0.0063	· 0.0063
30.00	< 0.0077	0.0140**	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077
p,p-001	< 0.0071	0.0097**	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071
Nerbicides (ug/g)	4	¥	4	\$	\$	£	4	1
Total Petroleum Mydrocarbona (ug/g) Total petroleum hydrocarbona	\$	1480.0000**	ş	844.0000**	207.0000**	729.00004	¥	144,0000**
Explosives (ug/g)	9	9	Q.	€	9	9	\$	2
Dioxins/Furans (ug/g)	¥	ž	*	¥	*	\$	¥	\$

Hotes: ** .

s shown, WA = Not analyzed

'te was detected at the concentration shown < = Not detected at the

TODELE AD-WORTH AREA: SUMU NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	\$3-29-052	\$20-62-85	920-62-85	SB-29-026	SB-29-027	28-29-027	820-62- 85	820-62-8S
	011.10597	0111*598	0111+599	01110	109-1710	0111*602	0111*603	0111-604
Date Sampled	06/13/92	06/13/92	06/14/92	06/14/92	26/11/90	06/14/92	06/15/92	06/15/92
Depth (ft)	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 ft
Volatile Organic Compounds (ug/g)								
Henere	NA NA	¥	4	\$	4	1	1	≨
Toluene	< 0.000 6	< 0.000 8	¥	* 0.000 8	*	× 0.0006	× 0.0006	< 0.000 8
Semivolatile Organic Compounds (ug/g)								
Acenaphthene	< 0.3600	< 0.3600	¥3	· 0.9000	\$	< 0.3600	< 0.0360	< 0.0360
Anthreene	< 0.3300	< 0.3300	\$	< 0.8250	\$	< 0.3300	< 0.0330	< 0.0330
Benzo (a) anthracene	< 1.7000	< 1.7000	4	< 4.2500	≦	4 1.7000	< 0.1700	< 0.1700
Benzolejovrene	< 2.0000	< 2.0000	¥	< 6.2500	4	< 2.5000	< 0.2500 ×	< 0.2500
Benzo(b) fluoranthene	< 2.1000	< 2.1000	4	< 5.2500	\$	< 2.1000	< 0.2100	< 0.2100
Denzo(e) Dyrine (TIC)	¥	4	4	¥	4	≨	\$	*
Benzofk) fluoranthene	v 0.6600	0.6600	¥	< 1.6500	4	0.6600	· 0.0660	· 0.0660
Bis (2-ethylhexyl) phthelate	• 6.2000	6.2000	¥	< 15.5000	4	· 6.2000	< 0.6200 ×	3.7000**
	< 1.2000	· 1.2000	ž	< 3.0000	\$	< 1.2000	< 0.1200	< 0.1200
	< 0.6800	· 0.6800	*	< 1.7000	\$	< 0.6800	< 0.0680	0.0680
- Fluorene	< 0.3300	< 0.3300	¥	< 0.6250	¥	< 0.3300	< 0.0330	< 0.0330
	YH	4	¥	¥	*	*	≨	≦
Phenanthrene	< 0.3300	< 0.3300	¥	< 0.8250	4	< 0.3300	< 0.0330	< 0.0330
Pyrene	< 0.3300	< 0.3300	\$	2.6800**	\$	1.0600**	< 0.0330	< 0.0330
Pesticides (ug/g)								
Endrin	9900.0 ×	* 0.0066	9900.0	< 12.5000	0.0066	× 5.0000	× 0.0066	< 0.4500
Isodrin	< 0.00%	0.0046	< 0.0046	• 0.00 6	< 0.0046	× 0.0046	9 ,00.0 ×	× 0.0046
000-010	< 0.0083	< 0.0083	< 0.0063	< 7.5000	< 0.0083	× 3.0000	< 0.0063	< 0.2700
D,D-D0E	< 0.0077	< 0.0077	< 0.0077	< 7.5000	< 0.0077	< 3.0000	< 0.0077	< 0.3100
p.p-001	< 0.0071	< 0.0071	< 0.0071	< 7.5000	· 0.0071	· 3.0000	· 0.0071	< 0.3100
Herbicides (ug/g)	N N	\$	\$	4	\$	1	\$	1
Total Petroleum Mydrocarbons (ug/g) Total petroleum Mydrocarbons	80.0000**	122.0000**	1	1320.0000**	≦	486.0000**	< 28.3000	< 28.300ti
Explosives (ug/g)	9	9	\$	9	¥	£	9	2
Dioxins/furans (ug/g)	K	4	¥	4	M	W.	¥	¥

e was detected at the concentration shown < = Not detected at the

he shown, MA =

Page No. 1 12/21/92

TOCELE AD-WORTH AREA: Sund NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPCUNDS

	SB - 29 - 028 - DUP	SB-29-029	620-62- 8 5	SE -29-030	28 - 29 - 030	21 -29-031	SB-29-031-DUP	150-62-13
	011 1*628	011.1*605	011.1*606	011.1-607	0111*608	0111-609	0111-793	011.1-610
	04/15/02	06/15/92	06/15/92	06/17/92	06/17/92	06/17/92	06/17/92	26/11/95
Depth (ft)	4.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 ft	0.000 ft	0.000 ft	4.000 ft
Voletile Organic Compounds (ug/g)								
	*	¥	\$	0.0073**	0.0052**	¥	1	1
Toluene	< 0.0008	¥ X	< 0.000 8	◆ 0.0008	0.0008	*	¥	• 0.00 0
Semivolatile Organic Compounds (ug/g)								
Acenachthene	< 0.0360	4	< 0.0360 <	< 0.0360	< 0.0360	¥	0.1100**	× 0.0360
Anthracene	< 0.0330	¥#	< 0.0330	< 0.0330	< 0.0330	≦	0.0690	< 0.0330
Benzofalanthracene	< 0.1700	¥	< 0.1700	< 0.1700	< 0.1700 ×	\$	0.2500**	< 0.1700
Benzofalovrene	< 0.2500	¥ X	< 0.2500	< 0.2500	< 0.2500	£	0.3910**	• 0.2500
Benzo (N) fluorenthene	< 0.2100	¥#	< 0.2100	< 0.2100	< 0.2100	≦	0.3650**	< 0.2100
Bensolelawrine (TIC)	4	*	≦	*	¥	4	0.3180**	\$
Tensolf I forested	× 0.0660	4	0.0660	• 0.0660	0.0660	4	0.3190**	0.0660
Bis (2-ethylbery) of the late	< 0.6200	¥	< 0.6200	< 0.6200	< 0.6200	¥¥	< 0.6200	< 0.6200
	< 0.1200	8	< 0.1200	< 0.1200	< 0.1200	42	0.4030**	< 0.1200
	< 0.0680	¥	< 0.0680	< 0.0680	< 0.0680	≦	0.5800**	< 0.0680
	< 0.0330	M	< 0.0330	< 0.0330	< 0.0330	4	0.0540**	< 0.0330
	¥3	K	42	4	¥	₹	₹	\$
Phenanthrene	< 0.0330	¥ H	< 0.0330	< 0.0330	< 0.0330	¥	0.4500**	< 0.0330
Pyrene	< 0.0330	48	< 0.0330	< 0.0330	< 0.0330	4	0.7400**	< 0.0330
Pesticides (150/a)								
Endrin	* 0.0066	× 0.0066	9900.0 ×	9900.0 ×	• 0.0066	• 0.0066	• 0.0066	0.0066
Isodrin	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	0.0046
00-0-0	< 0.0063	< 0.0083	< 0.0083	< 0.0083	< 0.0083	< 0.0063	< 0.0063	< 0.0063
0.0.00	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077
p,p-001	< 0.0071	• 0.0071	< 0.0071	0.0100**	< 0.0071	< 0.0071	· 0.0071	< 0.0071
Merbicides (ug/g)	¥	¥¥	\$	\$	Y	\$	\$	ž
Total Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	< 28.7000	\$	< 28.5000	< 30.1000	33.2000**	ž	\$	34.3000**
Explosives (ug/g)	9	9	9	Ş	9	9	2	2
Dioxins/furans (ug/g)	4	¥	Y.	ž	\$	ž	4	1

Notes: ** f . . was detected at the concentration of a Not detected at the

shown, MA = Not analyzed

TOOELE AD-WORTH AREA: SLAW NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

County 18	SB-29-032	SB-29-032	\$8-29-033	SB-29-033	\$8-59-034	\$8-29-034	\$8-62-035	\$80-62-95
	011 16411	011 18612	21701 110	71791110	A1401 110	A1441 110	7194110	A14-1 110
	0111-011	01(1)(0)	0111-013	06417.03	06,43,63	04,117,02	04/17/02	04/17/02
Date Sampled Depth (ft)	0.000 ft	4.000 ft	0.000 ft	3.000 ft	0.000 ft	4.000 ft	0.000 ft	4.000 ft
Volatile Organic Compounds (ug/g)								
Hexare	4	0.0100**	0.0065**	¥	¥	¥	¥	0.0053**
Toluene	¥	< 0.0008	• 0.000	€ 0.0008	4	0.000 →	≦	• 0.000
Semivolatile Organic Compounds (ug/g)								
Acenaphthene	¥#	< 0.0360	< 0.7060	< 0.0360	₹	× 0.4000	4	< 0.0360
Anthracene	¥#	< 0.0330	• 0.7000	< 0.0330	1	< 0.3000	≦	< 0.0330
Benzo (a) anthracene	¥	< 0.1700	< 3.0000	< 0.1700	4	< 2.0000	¥#	< 0.1700
Benzo(a) Dyrene	¥	< 0.2500	< 5.0000	< 0.2500	4	< 2.0000	1	< 0.2500
Benzo(b) fluoranthene	¥	< 0.2100	< 4.0000	< 0.2100	¥#	< 2.0000	\$	< 0.2100
Benzolelpyrine (11C)	¥	4	¥	42	£	\$	1	1
Benzofk) fluoranthene	*	< 0.0660	< 1.0000	< 0.0660	48	< 0.7000	¥	0.0660
Dis (2-ethylhexyl) phthalate	¥	< 0.6200	< 10.0000	< 0.6200	4	6.0000	4	• 0.6200
Chrysene	4	< 0.1200	< 2.0000	< 0.1200	\$	• 1.0000	**	< 0.1200
	₹	< 0.0680	4 1.0000	< 0.0680	¥	< 0.7000	į	· 0.0680
	¥	< 0.0330	< 0.7000	< 0.0330	¥	< 0.3000	\$	· 0.0330
Octadecanoic acid, butyl ester (110)	*	¥	W.	¥ H	¥	¥	*	¥
_	¥	< 0.0330	< 0.7000	< 0.0330	4	< 0.3000	1	< 0.0330
Pyrene	\$	< 0.0330	< 0.7000	< 0.0330	4	< 0.3000	ş	< 0.0330
Pest(cides (ug/g)								
Endrin	4 0.0066	< 0.0066	< 0.0066	< 0.0066	9900.0 ×	< 0.0066	• · 0 · 0066	• 0.0066
Isodrin	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	• 0.00 46	· 0.0046
0.0-000	< 0.0083	< 0.0063	< 0.0083	< 0.0083	< 0.0083	< 0.0083	< 0.0063	< 0.0063
D.D.D06	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077	< 0.0077
p.p-D01	< 0.0071	< 0.0071	0.0120**	< 0.0071	0.0186**	< 0.0071	0.0754**	· 0.0071
Herbicides (ug/g)	4	ž	4	4	\$	£	≦	*
Total Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	ž	**0004*	301.0000**	41.4000**	4	80.5000**	ş	< 28.1000
Explosives (ug/g)	4	9	2	9	ş	9	¥	9
Dioxins/Furans (ug/g)	Y Y	¥	¥.	¥	¥	¥	¥¥	4
•								

Hotes:

e was detected at the concentration shown < = Not detected at ti

shown, WA = Not analyzed

TOOFLE AD-NORTH AREA. J NO. 29 - DRUM STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Page No. 1 12/21/92

	Sente 10	SB - 29 - 036	SB-29-036	28-29-037	28-29-037	
• =		011.1*619	0111*620	0111-621	011.1*622	
ē	Cote Samled	06/11/92	06/17/92	06/17/92	06/17/92	
ă	Depth (11)	0.000 ft	3.000 ft	0.000 11	4.000 ft	
i š	Voletile Organic Communds (110/8)					
•		7	0.0052**	¥	0.0068**	
	Totuene	\$	0.0025**	¥	0.0000	
ě	Semi-volatile Organic Compounds (ug/g)					
•		¥	< 0.0360	¥	< 0.0360	
	Anthracene	¥	< 0.0330	X	< 0.0330	
	Renzofalanthracene	¥3	< 0.1700	4	< 0.1700	
	Renzo (a) pyrene	X	< 0.2500	4	< 0.2500	
	Benzo (b) fluoranthene	X	< 0.2100	£	< 0.2100	
	Benzolejovnine (11C)	≨	¥	¥	¥	
	Benzofk1 fluoranthene	MA	< 0.0660	4	· 0.0660	
	Bis (2-ethylbexyl) obthalste	42	< 0.6200	42	< 0.6200	
		¥	< 0.1200	\$	< 0.1200	
_	Fluoranthene	¥#	< 0.0680	\$	< 0.0680	
16 -	fluorene	K#	< 0.0330	4	< 0.0330	
	Octadecanoic acid, butyl ester (11C)	4	¥	4	¥	
	Phenanthrene	¥#	0.0390**	4	< 0.0330	
	Pyrene	YA.	< 0.0330	4	< 0.0330	
š	Pesticides (ug/g)					
	Endrin	• 0.0066	• 0.0066	9900.0 ×	• 0.0066	
	Isodrin	< 0.0046	< 0.0046	× 0.0046	· 0.0046	
	0,0-00g	< 0.0083	< 0.0063	< 0.0083	< 0.0083	
	90.006	< 0.0077	< 0.0077	< 0.0077	< 0.0077	
	p, p 001	0.0239**	< 0.0071	0.0294**	< 0.0071	
¥	Merbicides (ug/g)	¥	¥	¥	4	
7	Total Petroleum Mydrocarbons (ug/g) Total petroleum Mydrocarbons	4	41.3000**	4	33.5000**	
٥	Explosives (ug/g)	¥	2	4	9	
5	Dioxins/furans (ug/g)	¥	¥.	4	NA NA	
-						

te was detected at the concentration shown < = Not detected at the ' shown, NA = Not analyzed Notes: .. z '

Table 5-17

TABLE 5-17

PESTICIDE HANDLING AND STORAGE AREA (SWMU 34) ANALYTICAL RESULTS

TOOELE AD-WORTH AREA: SUMU WO. 34 - PESTICIDE HANDLING AND STORAGE AREA SOLL AMALYTICAL RESULTS FOR METALS

Comple 10	\$5-34-001	28-34-002	SS-34-002-DUP	\$5-34-003	\$5-34-004	\$5-34-005	SS-34-006	
		02744 110	72746 110	12705 110	C2786 110	111111111	7/11/10	
5 6 7	0111-629	0101	11.034	150-1110	01110	011.		
Date Samiled	07/21/92	07/21/92	07/21/92	26/12//0	07/21/92	26/12/20	07/21/92	
Deoth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
herels and Cumitle (1979)								
	4000.0000	4580.0000	4430.0000	2740.0000	1290.0000	2870.0000	1860.0000	
And farmer	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	
Araboic	17.0000	30.000	38.0000	8.6900	7.7300	75.0000	18.000	
	79.0000	101,0000	99.6000	47.8000	27.7000	92.9000	57.6000	
	< 0.5000	0.6540	1.1300	< 0.5000	< 0.5000	0.9510	0.7070	
	1.3600**	3.6600**	2.8200**	< 0.7000	< 0.7000	11.6000**	3.9500**	
	35600.0000	13400,0000	11900.0000	46200.0000	44400.0000	28000.0000	36500.0000	
	14.2000	22.9000**	16.0000	9.8000	2.5600	29.0000**	28.7000**	
Cobale	3.5100	5.3300	2.0000	1.6500	< 1.4200	4.1600	2.0900	
11800	\$2.6000**	43.3000**	**0009.33	14.2000	5.5300	180.0000**	73.4000**	
t in the second	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	2.8800**	
	7490.0000	18300,0000	17900.0000	4230.0000	2610.0000	13900.0000	0000.0999	
	145.0000**	230,0000**	198.0000**	41.3000	29.2000	1120.0000**	223.0000**	
and	3060.0000	3010,0000	3050.0000	3950.0000	5780.0000	4510.0000	4860.0000	
a section and a	210.0000	252.0000	261.0000	130,0000	97.4000	255.0000	137.0000	
25.51.51	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	· 0.0500	< 0.0500 <	
Michel Michel	13.6000	59.6000**	15.1000	5.2100	3.1500	16.5000	5.7400	
Dotpeedin	1200.0000	1460.0000	1420.0000	797.0000	425.0000	851.0000	508.0000	
	0.4480**	< 0.2500	0.3840**	< 0.2500	< 0.2500	< 0.2500	< 0.2500	
	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	
	235.0000	274.0000	276.0000	258.0000	223.0000	343.0000	254.0000	
	< 6.6200	< 6.6200	< 6.6200	< 6.6200	< 6.6200	9.5800	9.8600**	
	8.9600	8.9000	8.5500	7.7700	2.9000	8.5200	6.3100	
2 inc	\$94.0000**	047.0000*°	589.0000**	77.9000	1090.0000**	2210.0000**	**0000.799	

Notes: ** = Value is above the background concentration for the depth shown, < * Not detected at the value shown, NA = Not analyzed

1ge No. 1 2/21/92

TODELE AD-WORTH AREA: SUMU NO, 34 - . ICIDE NANDLING AND STORAGE AREA SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

amole 10	\$5-34-001	\$5.34.002	SS-34-002-0UP	88-34-003	\$5-34-004	\$5-34-005	900-75-55	
9	0111-629	011.1-630	01110634	0111*631	011.1-632	011 1*633	01.1.773	
are Sampled	07/21/92	07/21/92	07/21/92	07/21/92	07/21/92	07/21/92	07/21/92	
epth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
statile Organic Compounds (ug/g)	¥ a	¥	¥.	4	4	HA.	Z Z	
vaivolatile Organic Compounds (ug/g)	¥#	¥	¥	4	4	¥	¥8	
sticides (ug/g)								
Endrin	< 0.0330	9900.0 >	0.1100**	< 0.0066	1.4000**	4.5000**	0.2300**	
Mentachlor	21.0000**	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 1.2000	< 0.0062	
Hept achtor apoxide	< 0.0310	< 0.0062	< 0.0062	< 0.0062	< 0.0062	0.0064**	< 0.0062	
Lindane / same-Benzenehexachloride	< 0.0320	0.0072**	* 0.0064					
alcha-Chlordane	**0000**	0.2400**	0.2200**	0.1100**	< 0.0050	7.3000**	0.2700**	
earne-Chiordene	54.0000*	0.2400**	0.2100**	0.0570	< 0.0050	11.0000**	0.3700**	
00-0-0	0.7200**	2.1000**	0.9600	0.1700**	0.0420**	0.2000**	0.0630	
90.0.0	**0006.	0.5800**	0.6700	1.2000**	0.1600**	0.6100**	0.1300**	
100-00	6.0000	3.0000**	3.0000	3.7000**	0.1100**	1.0000**	0.5500**	
-2								
2,4-Dichlorophenoxyacetic acid / 2,4-D	0.8300**	0.2900**	0.0960	< 0.0177	0.0620**	**0000.66	0.3700**	
tal Petroleum Mydrocarbons (ug/g)	4	KH.	¥	¥	¥	*	¥	
plosives (ug/g)	ğ	¥8	¥	4	X	\$	4	
oxins/furans (ug/g)	\$	X	¥	W	W	YN.	ş	
•								

Table 5-18

TABLE 5-18

CONTAMINATED WASTE PROCESSING PLANT (SWMU 37) ANALYTICAL RESULTS

Sample 10	\$5-37-001	58-37-002	\$5-37-003	\$5-37-00¢	\$5-37-005	\$5-37-006	\$5-37-007	85-37-00
199 10	011.1*635	011.1*636	011.1*637	0111*638	0111*639	0111-640	0111-641	01110642
Date Sampled	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Metals and Cyanide (ug/g) Aluminum	1830.0000	2070.0000	2180.0000	3440.0000	2270.0000	2990.0000	2650.0000	3220.0000

Netals and Cyanide (ug/g)								
Aluminu	1830.0000	2070.0000	2180.0000	3440.0000	2270.0000	2990.0000	2650.0000	3220.0000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400
Arsenic	3.4300	9.9600	3.5200	3.9600	3.8900	3.8900	3.8000	3.600
Derive	39.6000	41.2000	41.8000	57.3000	48.0000	99.8000	77.6000	59.700°
Beryllium	0.5880	< 0.5000	0.5880	< 0.5000	< 0.5000	0.6320	< 0.5000	< 0.5000
Cadaius	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	< 0.7000	• 0.700c
Catchus	24100.0000	29700.0000	22000.0000	24,600,0000	27000.0000	39000.0000	29100.0000	22300.0000
Chronium	0096.4	5.4700	5.1700	2.5600	< 4.0500	5.1200	7.8900	5.1700
Cobelt	2.0900	2.0900	2.0000	2.5900	2.2500	2.2300	2.1800	2.6800
Copper	12.3000	10.5000	10.4000	9.8000	4.3400	6.5400	0098.6	5.1400
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
fron	6480.0000	4970.0000	4460.0000	5790.0000	4780.0000	0000 °045	5790.0000	5330.0000
Pead	8.8000	7.9500	7.4900	0077.9	6.2300	8.8800	15.0000	7.3500
Nagnesium	3490.0000	4970.0000	3620.0000	4350.0000	3790.0000	4290,0000	4310.0000	3590.0000
Narganese	83.3000	190.000	97.8000	136.0000	97.3000	148.0000	178.0000	143.0000
Mercury .	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500 <	< 0.0500	◆ 0.0500	< 0.0500
Hickel	3.3700	4.2100	4.1600	5.2000	7.0900	4.2900	4.5700	7.6800
Potassium	454.0000	478.0000	657.0000	999.0000	817.0000	1020.0000	978.0000	1100.0000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	• 0.2500	• 0.2500	0.4630**	0.3870
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890
Sodies	233.0000	233.0000	323.0000	285.0000	234.0000	306.0000	203.0000	251.0000
That I ium	< 6.6200	< 6.6200	< 6.6200	< 6.6200	• 6.6200	< 6.6200	< 6.6200	< 6.6200
Variedium	9.1400	10.1000	8.5800	10.3000	9.6300	8.8400	8.4200	9.8900
2 inc	27.0000	30.3000	90.2000	50.2000	23.1000	32.2000	43.6000	21.5000

· is above the background concentration for the depth shown,

ected at the value sh

= Not analyzed

Page No. 1 12/18/92

TOCELE AD-WORTH AREA: SMAU NO. 37 - CONTANINATED WASTE PROCESSING PLANT SOLL ANALYTICAL RESULTS FOR METALS

						ı
Sample 10	600-28-38	SS-37-010	SS-37-010-0UP	\$5-37-011	\$5-37-012	
01 qe1	0111*643	011.1*644	0111*647	0111*645	0111*646	
Date Sampled	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
Metals and Cyanide (ug/g)						
Atuminum	1750.0000	1980.0000	1850.0000	1260.0000	1340.0000	
Ant imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	
Arsenic	3.5300	3.5000	3.4600	4.2900	3.6200	
Barica	46.6000	43.1000	45.7000	35.2000	33.9000	
Deryllium	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	
Cadaius	< 0.7000	0.9710**	< 0.7000	< 0.7000	1.6000**	
Calcium	29500.0000	25500.0000	29000.0000	24100.0000	17800.0000	
Chronium	< 4.0500	5.1700	5.3200	< 4.0500	11.6000	
Cobelt	2.2300	2.2600	2.1500	1.7900	1.7700	
Copper	3.5200	4.4200	4.2100	2.0700	14.9000	
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	
Lon	3900.0000	4390.0000	4090.0000	3600.0000	7560.0000	
Flead	6.9800	10.4000	11.0000	4.7700	36.8000	
en enes ius	3110.0000	3550.0000	4900.0000	3300.0000	2640.0000	
Manganese	82.3000	92.1000	92.1000	99.2000	91.7000	
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	
Nickel	4.1600	3.6700	3.5500	2.7100	8.5500	
Potessium	519.0000	558.0000	531.0000	303.0000	410.0000	
Selenium	0.3820**	< 0.2500	0.3630**	< 0.2500	0.3460**	
Silver	× 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	
Sodium	210.0000	227.0000	244.0000	212.0000	217.0000	
Thellium	< 9.6 200	< 6.6200	< 6.6200	< 6.6200	6.6200	
Vanadium	7.9900	8.8600	8.7800	7.7300	6.1200	
Zinc	18.4000	26.9000	23.2000	12.1000	509.0000**	

					300 20	17.004	66. 22.003	20.27
Sample ID	100-75-55	200.76.68	500.76.88	55.25.66	COM-16-68	200-16-66	100-16-68	
99 991	011 1*635	011.1°636	01110637	0111-638	0111-639	0111*640	01.1.6X	011.1-647
Date Sampled	07/13/92	07/13/92	.07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/9;
Depth (ft)	0.000 fc	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 11
Volatile Organic Compounds (ug/g)								
2-Methyl-2-propanol/tert-Bulanone (11C)	¥	3	\$	¥	\$	\$	4	•
Xylenes	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
Semivolatile Organic Compounds (ug/g)								
2,6,10,14-Tetramethylpentadecane (TIC)	¥	\$	\$	**	**	**	*	3
Anthracene	< 0.2000	< 0.7000	0.1100**	< 0.7000	< 0.2000	< 0.0330	< 0.7000	< 0.033
Benzo [a] anthracene	< 0.8000	< 3.0000	0.6700**	< 3.0000	< 0.6000	< 0.1700	< 3.0000	0.190
Dento (a) Dyrene	1.0000	< 5.0000	0.8200**	< 5.0000	• 1.0000	0.2200	< 5.0000	< 0.250 ^c
Benzolbi fluoranthene	4 1.0000	· 4.0000	0.9400	· 4.0000	< 1.0000	< 0.2100	· 4.0000	< 0.210X
Benzolejpyrine (TIC)	¥H	\$	0.5200**	¥#	ă	4	**	2
Benzolg, h. i Derylene	4 1.0000	< 5.0000	0.4500**	< 5.0000	< 1.0000	< 0.2500	< 5.0000	< 0.250C
Benzo [k] f Luoranthene	< 0.3000	. 1.0000	0.5000**	• 1.0000	1.0000**	< 0.0660	2.0000**	0.2400
Chrysene	0009.0 →	< 2.0000	1.3000**	< 2.0000	1.0000**	< 0.1200	< 2.0000	0.3900
Eicosane (11C)	¥	¥	\$	¥	¥	ş	\$	1
Fluoranthene	< 0.3000	2.0000*	1.8000**	• 1.0000	2.0000**	0.1600**	5.0000**	0.6100
Neneicosane	4	4	\$	¥	4	≦	\$	1
Neptadecane (71C)	¥	4	4	¥	\$	1	≦	1
Nexadecane (11C)	¥	¥#	4	3	4	1	¥	\$
Indeno[1,2,3-C,0]pyrene	< 1.0000	· 6.0000	0.4600	₹ 6.000 €	• 1.0000	0.2900	• 6.0000	< 0.2900
Octadecane (11C)	¥	4	4	¥.	¥	1	4	\$
Phenanthrene	0.3000**	2.0000**	0.9100	< 0.7000	2.0000**	0.0840**	2.0000**	0.3100
Pyrene	0.4000*	2.0000**	1.5000**	• 0.7000	2.0000**	0.1600**	5.0000*	0.5200
Tetradecane (TIC)	≦	¥	\$	¥	¥	≦	¥	2
Iridecane (TIC)	W	V	4	¥	¥	≦	≦	2
Pesticides (ug/g)	ş	ş	9	9	9	2	9	2
Merbicides (ug/9)	¥	¥	¥8	¥	Y	\$	\$	1
Total Petroleum Nydrocarbons (ug/g)	¥	¥	Ş	¥	¥	\$	1	\$
Explosives (ug/g) 2,4,6-Trinitrotoluene	< 0.4560	< 0.4560	0.5150**	< 0.4560	0.4560	0.4560	< 0.4560	< 0.4560
•								

| Diaxins/furans (ug/g)

/te was detected at the concentration shown < = Not detected at

te shown, NA = Not analyzed

Page No. 1 12/21/92

TOCELE AD-WORTH AREA: SUMU A. . . . CONTANTHATED WASTE PROCESSING PLANT SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	SS-37-009	SS-37-010	SS-37-010-DUP	SS-37-011	55-37-012
CP 10	01111-643	999,110	011.1*647	011.1*645	979-1-10
Date Sampled .	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)					
2-Nethyl-2-propanol/tert-Butanone (11C)	¥	*	0.0067**	48	1
Xylenes	< 0.0015	< 0.0015	< 0.0015	0.0017**	< 0.0015
Semivolatile Organic Compounds (ug/g)					
2,6,10,14-Tetramethytpentadecone (TIC)	¥	200.0000	**0000.004	ž	4
Anthracene	< 0.2000	< 0.7000	< 0.7000	< 0.0330	< 0.7000
Senzo (a) anthracene	< 0.8000	< 3.0000	< 3.0000	< 0.1700	< 3.0000
Senzo (a) pyrene	< 1.0000	< 5.0000	< 5.0000	< 0.2500	< 5.0000
Benzo [b] fluoranthene	< 1.0000	4.0000	· 4.0000	< 0.2100	4.0000
Benzolelpyrine (TIC)	¥	¥	£	¥	¥H
Benzolg, h, i speryl ene	• 1.0000	< 5.0000	< 5.0000	< 0.2500	< 5.00 00
Benzo (k) fluoranthene	0.5000**	. 1.0000	4 1.0000	< 0.0660	2.0000**
Chrysene	1.0000**	< 2.0000	< 2.0000	< 0.1200	\$.0000**
Eicosane (11C)	¥	**0000.06	200.0000	4	*
fluoranthene	2.0000	• 1.0000	• 1.0000	< 0.06 8 0	5.0000**
Reneicosane	¥	**0000.09	4	4	\$
Neptadecane (11C)	4	100.0000	200 · 0000+	4	4
Hexadecane (11C)	#	£	500.0000	4	\$
Indeno[1,2,3-C,0]pyrene	• 1.0000	• 6.0000	• 6.0000	< 0.2900	· 6.0000
· Octadecane (11C)	¥	**0000.06	*	¥ X	±
Phenenthrene	1.0000**	< 0.7000	< 0.700	< 0.0330	2.0000*
Pyrene	2.0000*	2.0000**	3.0000*	< 0.0330	5.0000*
Tetradecane (71C)	¥2	**0000.09	200.0000	¥	**
Tridecane (TIC)	*	\(\)	**0000	*	4
Pesticides (ug/g)	2	9	9	4	¥
Nerbicides (ug/g)	¥	¥	X	≦	¥
Total Petroleum Mydrocarbons (ug/g)	¥.	W	Ş	¥	¥
Explosives (ug/g) 2,4,6-Trinitratoluene	< 0.4560	< 0.4560	× 0.4560	< 0.4560	< 0.4560

(Bloxins/furans (ug/g)

Notes: ** * P. 'vie was detected at the concentration shown < * Not detected at the v-'is shown, MA = Not analyzed

TODELE AD-MORTH AREA: SIMU NO. 37 - CONTANTHATED LASTE PROCESSING PLANT SOIL AMALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Page No. 2 08/14/93

Sample 10	\$\$-37-001	\$\$-37-002	\$\$-37-003	\$8-37-006	85-37-005	\$\$-37-006	88-37-007	\$\$-37-00\$
Lab 10	0111*635	01L1*636	0111*637	0111*636	0111*639	0111*640	011.1*641	011.14642
Date Sampled	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
2,3,7,8-Tetrachlorodibenzo-p-diaxin 2,3,7,8-Tetrachlorodibenzofuran Neptachlorodibenzodiaxin - non specific Neptachlorodibenzofuran - non specific Nexachlorodibenzofuran - non specific Nexachlorodibenzofuran - non specific Octachlorodibenzofuran - non specific Octachlorodibenzofuran - non specific Pentachlorodibenzofuran - non specific Pentachlorodibenzodiaxin - non specific	 0.000004 0.000500** 0.000500** 0.000100 0.000020 0.000200** 0.002200** 0.000200 0.000200 0.0000015 0.0000015 	 0.000005 0.000700** 0.000100** 0.000100 0.00010 0.000061 0.000200** 0.000200** 0.000200** 0.000200** 	 0.000005 0.000003 0.000900** 0.000200** 0.000207 0.000000 0.000016 0.000006 	 0.000008 0.000100 0.000100 0.000033 0.000500** 0.000100 0.000100 0.00034 0.000034 	 0.000004 0.000003 0.000003 0.000100 0.000010 0.000500** 0.000500** 0.0005003 0.0005003 0.0005003 0.000003 0.000002 	 0.000003 0.000003 0.000001 0.000012 0.000013 0.000013 0.000013 	 0.000004 0.000100** 0.000100 0.00010 0.00000 0.001500** 0.001500** 0.001500 0.00010 0.00015 0.00015 0.00015 0.00000 0.00000 	 0.00005 0.00006 0.00007 0.00006 0.00008 0.00008 0.00010 0.00011 0.00003

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, MA = Not analyzed

Page No. 2 08/14/93

TOCELE AD-WORTH AREA: SUAU NO. 3. CONTAMINATED WASTE PROCESSING PLANT SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	SS-37-009	55-37-010	SS-37-010-DUP	\$5-37-011	55-37-012	
01 487	0111*643	011.1*644	011.1*647	011.1*645	0111*646	
Date Sampled	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
2,3,7,8-Tetrachlorodibenzo-p-dioxin	< 0.00004	< 0.000012	< 0.000009	< 0.00000¢	0.000200**	
2, 3, 7, 8- Tetrachi orodibenzofuran	< 0.00003	< 0.000013	< 0.000007	< 0.000003	0.000300**	
Reptachlorodibenzodioxin - non specific	0.000100**	0,0000,0 >	< 0.000100	< 0.000019	0.018000**	
Neptachlorodibenzofuran - non specific	< 0.00009	< 0.00000 ×	< 0.00000	< 0.00000	0.002200**	
Mexachlorodibenzodioxin - non specific	< 0.000015	< 0.000017	< 0.000018	< 0.000013	0.005900**	
Mexachlorodibenzofuran - non specific	< 0.00008	< 0.000010	< 0.00000	< 0.000008	0.001600**	
Octachlorodibenzodioxin - non specific	0.000500**	< 0.000200	0.000200	< 0.000100	0.047000**	
Octachlorodibenzofuran - non specific	< 0.000031	< 0.000031	< 0.000048	< 0.000032	0.003100**	
Pentachlorodibanzodioxin - non specific	< 0.000014	< 0.000020	< 0.000013	< 0.000012	0.000900**	
Pentachlorodibenzofuran - non specific	* 0.000004	< 0.000004	< 0.000003	< 0.000003	0.000400**	

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

TOOELE AD-WORTH AREA: SLANJ NO. 37 - CONTANTNATED LASTE PROCESSING PLANT SOLE ANALYTICAL RESULTS FOR GEMERAL CHEMICALS

Page No. 1 12/19/92

Semple 1D	\$5.37.001	\$5-37-002	\$5-37-003	\$5-37-004	\$5.37.005	\$5-37-006	25-37-007	\$5-37-00¢
	0111*635	0111*636	011.1*637	0111*638	0111-639	011.1-640	0111-641	011 1-642
Date Sampled	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92	07/13/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Anions (ug/g)	6.0500	6.0500	27.7000	22.5000	· 6.0500	14.7000	· 6.0500	· 6.0500
Mitrite, nitrate - nonspecified	0.6570	0.9840	3.2500**	3.7600**	2.1900	2.0700	9.8700**	1.9600
lotal phosphates	450.0000**	330.0000	320.0000	\$80.0000**	**0000.064	410.0000	160.000	530.0000
General Inorganic Parameters	,			j				

9.1200

8.2800

8.1600

8.6200

6.7100

9.2200

9.3200

8.7100

Z

Page No. 1 12/19/92

TOOELE AD-WORTH AREA: SLANJ NO. 3, LUNTAMINATED WASTE PROCESSING PLANT SOIL ANALYTICAL RESULTS FOR GENERAL CHENICALS

Sample 10	88-37-009	55-37-010	SS-37-010-DUP	\$5-37-011	\$5-37-012	
01 481	0111*643	011.1*644	0111*647	011.1*645	0111*646	
Date Sampled	07/13/92	07/13/92	07/13/92	07/13/92	07/13/62	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
Anjone (118/6)						1
Chloride	· 6.0500	< 6.0500	< 6.0500	< 6.0500	11.5000	
Mitrite, nitrate - nonspecified	0.8800	< 0.6000	< 0.6000	· 0.6000	4.4500**	
Total phosphates	330.0000	300.0000	450.0000**	440.0000	340.0000	
General Inorganic Parameters						
£	8.5000	7.9200	7.7900	8.3400	8.0000	

Notes: ** = Value is above the background concentration for the depth shown, < = Not detected at the value shown, NA = Not analyzed

Table 5-19

TABLE 5-19

INDUSTRIAL WASTEWATER TREATMENT PLANT (SWMU 38) ANALYTICAL RESULTS

					1
Sample 10	\$5-38-001	SS-38-002	\$5-38-003	\$5-38-00¢	1
10 July 10	0111*648	011.1*649	0111*650	0111*651	
Date Sampled	07/21/92	07/21/92	07/21/92	07/21/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 fc	
					1
Metals and Cyanide (ug/g)					
Atuminum	3620.0000	3640.0000	3750.0000	4040.0000	
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	
Arsenic	9.8800	7.3400	6.2500	6.1900	
Barica	120.0000	88.4000	104.0000	111.0000	
Beryllium	0.8580	0.7090	0.6770	0.6410	
Cadmium	1.0300**	0.9640**	< 0.7000	< 0.7000	
Calcium	\$5000.0000**	51300.0000	84000.0000**	100000.000001	
Chromium	13.0000	12.5000	15.7000	0097.6	
Cobelt	2.5600	2.4300	2.5300	2.4000	
Copper	20.2000	26.3000**	20.2000	12.3000	
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	
Iron	4960.0000	4800.0000	5100.0000	4940.0000	
lead	35.7000	34.8000	24.0000	30.000	
Magnes ium	7260.0000	6190.0000	8090,0000	9410.0000	
Manganese	215.0000	225 .0000	226.0000	186.0000	
Mercury	< 0.0500	0.0627**	< 0.0500	< 0.0500 <	
Mickel	8.5900	7.2600	8.5900	7.7800	
Potessium	919.0000	1120.0000	1000,0000	1040.0000	
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	
Sodium	420.0000	380.0000	496.0000	3730.0000**	
Thailie	< 6.6200	< 6.6200	< 6.6200	12.1000**	
Vanadium	11.3000	10.3000	11.7000	12.5000	
Zinc	136.0000**	99.3000	44.1000	38.1000	

5-19-1

is above the background concentration for the depth shown, < =

Notes: **

acted at the value shown, NA = Not analyzed

TOCELE AD-NORTH AREA: SUMU NO. 38 - INDUSTRIAL WASTE TREATMENT PLANT SOLL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	.00 01	100	200 00 00	- 10 m	
Sample 10	100-22-55	200-00-00	59.30.003	#50-80-00	
2 91	0111*648	0111*649	0111+650	0111-651	
Date Sampled	07/21/92	07/21/92	07/21/92	07/21/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
Valetile Greenir Communds (100/0)					
1 1.2-Trichloro-1.2.2-trifluoroethane	0.0062**	¥	4	*	
Trichlorofluoromethane	0.0236**	< 0.0059	< 0.0059	< 0.0059	
Semivolatile Organic Compounds (ug/g)					
-	4.1000**	¥	ž	0.3100**	
2-Butoxyetherol (TIC)	4.1000**	¥	2.1000**	±	
2-Nethylnaphthalene	0.6100**	0.2000**	0.2800**	< 0.0490 <	
Benzaldehyde (TIC)	1.0000**	4	¥	¥	
Decare	5.1000**	3.2000**	3.2000**	¥	
01-n-butyl phthalate	0.1900**	< 0.0610	0.020	< 0.0610	
Dodecare (11C)	2.0000**	1.1000**	0.9500**	42	
Ficosane (71C)	¥#	0.8500**	1.1000**	0.2100**	
: Reptadecare (710)	4.1000**	1.1000**	2.1000**	0.4100**	
Mexadecare (TIC)	3.1000**	1.1000**	1.1000**	¥#	
Napthel ere	0.3700**	0.0990**	0.1700**	< 0.0370	
Nonadecare (TIC)	4	0.7400**	4	¥¥	
Honane (TIC)	2.0000**	1.1000**	0.8400**	¥ 8	
Octadecane (11C)	¥ X	1.1000**	2.1000**	0.3100**	
Pentadecone (TIC)	3.1000**	2.1000**	2.1000**	K	
Phenanthrene	0.1800**	0.0660**	0.1700**	< 0.0330	
Phenol	0.5000**	0.1100	0.6000**	0.3400**	
Pyrene	< 0.0330	< 0.0330	0.0620**	0.0490**	
Tetradecane (TIC)	2.0000**	1,1000**	1.1000**	¥	
Tridecane (TIC)	¥ X	¥#	0.4200**	\$	
esticides (ug/g)	æ	9	9	9	
erbicides (ug/g)	¥	4	¥	₹2	
otal Petroleum Mydrocarbons (ug/g)	¥	4	\$	4	
xplosives (ug/g)	2	2	2	9	
ioxins/furans (ug/g)	¥	¥	¥	¥	

01114652 07/21/92 0.000 fc 0.000 fc Compounds (ug/g) 11C) 11C) 11C) 11C, 00000** 1.000000** 1.000000** 1.000000** 1.0000000000	Sample 10	AC-38-001	AC-38-001-DUP	
### ### ##############################	01 qe1	0111-652	0111*653	
### ### ##############################	Date Sampled	07/21/92	07/21/92	
Compounds (ug/g) 11C) 11C) 11C) 11C) 11C, 0000000 11C, 00000000 11C, 000000000 11C, 00000000 11C, 000000000 11C, 000000000 11C, 0000000000 11C, 0000000000 11C, 0000000000000 11C, 00000000000000000000000000000000000	Depth (ft)	0.000 ft	0.000 fc	
It Compounds (ug/g)	Voletile Organic Compounds (ug/g)	9	9	
## ### ### ### ### ### ### ### ### ###	Semivolatile Organic Compounds (us/a)			
## 4. Cresol / p-Cresol 7.0000** 4.0000** 4.0000** 4.0000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10.000000** 10	1-Nethylnaphthalene	\$	7.0000**	
4-Cresol / p-Cresol 7.0000** 4-Cresol / p-Cresol 10.0000** 4.0000** 10.0000** 7.0000** 84 20.0000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 1	2-Butoxyethanol (TIC)	≦	*0000**	
4-Cresol / p-Cresol 5.0000** 10.0000** 4.0000** 4.0000** 10.0000** 4.0000** 4.0000** 4.0000** 4.0000** 4.0	2-Nothyl naphthal one	7.0000**	5.0000**	
10.0000** 4.0000** 10.0000** 7.0000** 3.0000** 14. 22. 84. 20.0000** 14. 20.0000** 14. 20.0000** 14. 20.0000** 15.0000** 16.00000** 16.0000** 16.0000** 16.0000** 16.0000** 16.0000** 16.0000** 16.00000** 16.00000** 16.00000** 16.00000** 16.00000** 16.00000*	4-Methylphenol / 4-Cresol / p-Cresol	\$.0000**	\$.0000**	
4.0000** 10.0000** 7.0000** 3.0000** 8.0000** 10.00000** 10.00000** 10.00000** 10.0000** 10.00000** 10.00000** 10.00000** 10.00000** 10.00000** 10	Genzothiazole	10.000**	7.0000**	
10.0000** 0.3000** 7.0000** 3.0000** 14. 2. 20.0000** 10.4000** 10	Diethyl phthelate	4.0000**	**0000.7	
0.3000** 7.0000** 3.0000** MA 20.0000** (400.0000** 7.0000** MA Carbons (ug/g) MA	Dodecane (11C)	10.000**	-5	
7.0000** 3.0000** 4A 20.0000** 0.400.0000** 7.0000** 4M MA	fluorene	0.3000**	0.3000**	
3.0000** MA 20.0000** 0.4000** 7.0000** MD MA MA MA MA MA MA MA MA MA	Heptadecame (TIC)	7.0000*	=	
### ### 20.0000** 0.40000** 400.0000** 400.0000** ### ############################	Hapthel ene	3.0000*	3.0000**	
20.0000** 0.4000** 400.0000** 7.0000** NA RA NA NA	=	\$	20.0000**	
0.4000** 400.0000** 40	-	20.0000**	10.0000**	
400.0000** 40 7.0000** 40 ND NA NA NA NA	_	0.4000**	0.3000**	
7.0000** ND SET OF THE	Phenol	**000.00 *	400 000°	
MA NA	Tetradecane (TIC)	7.0000**	7.0000**	
Carbons (ug/g) KA	Pesticides (ug/g)	9	2	
carbons (ug/g) NA NA NA NA NA	Herbicides (ug/g)	¥	¥	
Q V	lotal Petroleum Hydrocarbons (ug/g)	\$	4	
4	inplosives (ug/g)	2	9	
	loxins/furans (ug/g)	¥	X	

TOOELE AD-NORTH AREA: SIANJ NO. 38 - INDUSTRIAL WASTE TREATMENT PLANT WASTE CARBON SAMPLES AMALYTICAL RESULTS FOR METALS

Sample 10	AC-38-001	AC-38-001-DUP
1.eb 10	0111*652	0111-653
Date Sampled	07/21/92	07/21/92
Depth (ft)	0.000 ft	0.000 ft
Metals and Cyanide (ug/g)		
Atunium	3160.0000**	2880.0000**
Antimony	< 7.1400	< 7.1400
Arsenic	7.0300**	6.6300**
Berice	**000**	58.5000**
Beryllium	0.7870**	0.8450**
Cadaius	29.3000**	26.3000**
Calcium	4590.0000**	4000.000
Chronium	30.1000**	25.8000**
Cobelt	14.5000**	11.2000**
Copper	**000**	46.3000**
Cyanide	< 0.9200	< 0.9200
Iron	4310.0000**	4010.0000**
Lead	443.0000**	401.0000**
Magnesium	432.0000**	431.0000**
Hanganese	234.0000**	225.0000**
Nercury	< 0.0500	< 0.0500
Mickel	34.9000**	26.8000**
Potessium	703.0000**	775.0000
Selenium	1.3900**	1.1200**
Silver	< 0.5890	< 0.5890
Sodium	2230.0000**	2160.0000**
Thetitus	< 6.6200	< 6.6 200
Variation	13.8000**	10.9000**
Zinc	559,0000*	\$19.0000**

	AC-38-001 AC-38-001-00P				
Comple 18		Date Sampled	Depth (ft)	Metals and Cyanide (ug/1)	

									AM AM													NA NA		AM AM	
etals and Cyanide (ug/l)	Atuning	Ant laony	Arsenic	Barica	Beryllium	Cadalus	Cotolum	Chronium	Cobelt	Copper	Cyanide	Jron	Lead	Magnesium	Hanganese	Mercury	Hickel	Potassium	Selenium	Silver	Sodium	That i i.m.	Vanadius	Zinc	

5-19-6

Hotes: ** .

Page No. 1 01/05/93

TODELE AD-WORTH AREA: SUAND NO. 58 - INDUSTRIAL WASTE TREATMENT PLANT WASTE CARBON LEACHATE ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	AC-38-001	AC-38-001-DUP
Date Sampled	08/03/92	08/03/92
Depth (1t)	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/l)		
1,1,1-Trichtoroethane	< 5.0000	30.0000**
Nethylene chloride	2000.0000**	1000.0000**
Semivolatile Organic Compounds (ug/l)		
2-Butoxyethanol (TIC)	20.0000**	30.0000**
Pesticides (ug/l)	9	9
Merbicides (ug/l)	¥	ş
Total Petroleum Mydrocarbons (ug/l)	¥.	¥
Explosives (ug/l)	9	2
ebloxins/furans (ug/l)	¥	\$

Table 5-21

TABLE 5-21

BOMB WASHOUT BUILDING (SWMU 42) ANALYTICAL RESULTS

Same to	100-27-88	SB-42-001	200-27-85	200-25-005	28-42-003	SB-42-003-DUP	28-42-003	10·27· 85
199 19	011.1*654	01114655	0111*656	0111+657	011.1*658	011.1*684	011.1*659	0111*66
Date Sampled	06/26/92	06/26/92	06/26/92	06/26/92	06/26/92	06/26/92	06/26/92	06/26/9
Depth (ft)	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	0.000 ft	2.000 ft	0.000 ft
Netals and Cyanide (ug/g)								
Atumina	9050.0000	1900.0000	7530.0000	1890.0000	8500.0000	9750.0000	7560.0000	3260.000
Antimon	< 7.1400	< 7.1400	< 7.1400	< 7.1400	••0000. 7/9	**0000.607	**0000.545	× 7.1404
Arsenic	5.6100	4.0800	5.1600	4.3900	15.0000	9.5900	10.9000	5.090
Berita	95.3000	35.4000	218.0000	79.9000	1570.0000**	1300.000**	2350.0000**	68 .200
Bervillian	0.8420	< 0.5000	< 0.5000	< 0.5000	1.6300	0.7170	0.7770	· 0.500
Cadalum	3.3600**	1.1800**	< 0.7000	1.6600**	41.3000**	26.6000**	**0005. 77	< 0.700K
Calclin	13300.0000	50100.0000	16500.0000	87000.0000**	31000.0000	26400.0000	31500.0000	45400.0004
Director	30.2000**	7.3600	11.3000	8.3200	21.2000**	16.7000	20.2000	7.620
Cobalt	4.1400	< 1.4200	3.7200	< 1.4200	10.4000**	3.3300	2.6600	× 1.4200
Comer	41.0000*	16.7000	13.2000	24.3000	19000.0000**	1890.0000**	5000.0000**	19.000
Cyanide	< 0.9200	< 0.9200 ×	< 0.9200	< 0.9200	< 0.9200 <	< 0.9200	< 0.9200	• 0.920 C
5	10400.0000	2880,0000	6320.0000	2770.0000	**0000.00099	10400.0000	18300.0000	4240.0000
Lond	••0006.16	28.0000	26.8000	55.1000**	\$4000.0000	31000.0000**	37000.0000**	30.200c
Harnestun	4430.0000	2970,0000	3730.0000	5160.0000	5550.000	\$140.0000	54.70.0000	2680.000
Maraerese	296.0000	81.6000	249.0000	90.2000	423.0000	244.0000	254.0000	122.6000
Mercury	< 0.0500	0.0500	< 0.0500 ×	< 0.0500 ×	< 0.0500 <	0.0667**	0.0727**	< 0.0500 ×
Bicket	10.2000	4.6200	8.8700	5.1800	26.7000**	12.6000	15.4000	√06 8∵
Potessium	2280.0000	407,0000	2180.0000	441.0000	1460.0000	1750.0000	994.0000	663 .000
Selonius	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500	· 0.2500	< 0.2500 <	• 0.2500
S-1/40-	2.6500**	< 0.5890	0.6610	< 0.5890	34.0000**	16.0000**	170.0000**	< 0.5890
Sodius	227.0000	206.0000	243.0000	236.0000	248.0000	148.0000	228.0000	225.0000
Thatties	< 6.6200	< 6.6200	< 6.6200	• 6.6200	61.6000**	45.0000**	**0000.04	• 6.620 0
Variabilita	13.2000	7.4200	13.3000	8 .1500	6.1000	12.3000	8.9700	9.5200
2 inc	435.0000**	85.7000	52.700	98 .6000	5530.0000**	2600.0000**	••0000.0006	62.8000

age No. 1 2/18/92

TOOELE AD-WORTH AREA: SIMPL NO. 42 - BONG WASHOUT BUILDING SOIL ANALYTICAL RESULTS FOR METALS

	700-27-ES	SB - 62 - 005	SB-42-005	SB-42-006	SB-42-006	SB-42-007	SB-42-007	SB-42-008
	***************************************	27,00	27700 110	77743 110	27741 110	77744 110	4774	87701110
	199-110	700-1110	68-1-10	100-110	COC 110	000-1-10) OIL 1-80/	
ate Sampled	06/26/92	26/92/90	06/56/92	26/92/90	26/92/90	26/97/90	06/26/92	06/27/92
epth (ft)	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft
etals and Cyanide (ug/g)								
Atualous	2140.0000	6240.0000	3290.0000	11200.0000	1510.0000	8280.0000	2330,0000	8910.0000
Antimony	< 7.1400	35.9000**	< 7.1400	532.0000**	35.1000**	**0000.785	278.0000**	259.0000**
Arsenic	4.5700	9.0200	4.7800	20.000	3.6600	17.0000	11.5000	21.0000
	34.5000	334.0000**	92.4000	17000.0000**	783.0000**	13000.0000**	**0000.00077	\$800.000°*
Dervil ium	< 0.5000	0.6420	< 0.5000	1.0800	< 0.5000	0.6160	< 0.5000	0.5610
Cadalus	< 0.7000	< 0.7000	< 0.7000	11.7000**	< 0.7000	11.6000*	1.1600**	11.1000**
Calcium	87000,0000**	25800.0000	45600.0000	16900.0000	95000.0000**	35300.0000	35900.0000	7850.0000
Chronium	8.9700	10.7000	13.1000	140.0000**	15.5000	95.7000**	23.6000**	123.0000**
Cobalt	< 1.4200	3.1400	2.0000	8.9900**	< 1.4200	5.1700	11.6000**	3.0400
Copper	5.6200	23.1000	9.9900	5700.0000**	192.0000**	3900.0000**	7000.0000**	2200.0000**
Cvanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	1.0900**	< 0.9200	0.9200
	3050.0000	7040.0000	4730.0000	23700.0000**	2730.0000	12300.0000	3370.0000	12000.0000
Pa-7	8.5000	367.0000**	33.4000	39000.0000**	1380.0000**	23000.0000**	9600.0000**	14000.0000*
- Meanes ica	5180.0000	5630.0000	3840.0000	15500.0000**	5670.0000	12700.0000	94000.0000**	9400.0000
Managerese	100.0000	237.0000	121.0000	365.0000	94.0000	206.0000	116.0000	270.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	0.0622**	< 0.0500 <	· 0.0500	· 0.0500	0.0570**
Nickel	5.5900	9.8900	6.5300	63.0000 **	6.2500	37.7000**	12.6000	26.7000**
Poressius	519.0000	1920.0000	935.0000	1620.0000	338.0000	705.0000	325.0000	1440.0000
Selentus	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500	× 0.2500
	< 0.5890	< 0.5890	< 0.5890	1.4900**	< 0.5890	0.6200**	0.8710**	0.8680**
Sodius	220.0000	253.0000	236.0000	281.0000	230,0000	255.0000	401.0000	241.0000
	< 6.6200	< 6.6200	< 6.6200	54.9000**	8.6200	36.8000**	26.1000**	16.6000**
Variation	9.1000	11.9000	0099.6	12.1000	7.2700	8.1800	9.3500	11.2000
Zinc	15.8000	53.6000	18.8000	1590.0000**	61.6000	1060.0000**	1510,0000**	921.0000**

TODELE AD-NORTH AREA: SLAW NO. 42 - BONS LASHOUT BUILDING SOIL ANALYTICAL RESULTS FOR METALS

Sample 10	SB-42-008	88-42-009	\$8-45-006	SB-42-009-DUP	SB-42-010	010-27-85	110-27-85	10-27-85
01 981	0111*669	0111-670	011.1*671	0111*685	0111*672	011 1-673	0111-674	011.1.675
Date Sampled	06/27/92	06/27/92	06/27/92	06/27/92	26/22/90	26/27/95	06/27/92	06/27/92
Depth (ft)	2.000 ft	0.000 ft	2.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft

month of the first of							!	
	2690,0000	5000,0000	1710.0000	2610.0000	9640.0000	2830.0000	5410.0000	2780.0000
Antimor	9,8100**	< 7.1400	< 7.1400	< 7.1400	172.0000**	< 7.1400	< 7.1400	< 7.1400
Arsenic	4.0300	8.8300	5.7100	6.6200	10.3000	3.4400	11.6000	2.6800
	244.0000	88.3000	57.4000	55.7000	\$000.000¢	159.0000	73.8000	0002.87
Bervi fice	< 0.5000	< 0.5000	< 0.5000	< 0.5000	0.6730	< 0.5000	< 0.5000	< 0.5000
Cadaius	2.2500**	< 0.7000	< 0.7000	< 0.7000	7.6700**	< 0.7000	< 0.7000	< 0.7000
Catcius	38800.0000	26500.0000	71000.0000**	**0000.00069	18300.0000	70000,0000**	11400.0000	0000,00049
Chronica	31.9000**	9.7600	9.0400	8.6400	70.3000**	10.1000	9.5500	14.0000
Cobelit	3.6600	2.5000	< 1.4200	< 1.4200	3.8300	1.9000	2.4000	1.7000
Copper	36.5000**	13.8000	8.7600	7.9500	1360.0000**	25.7000**	15.5000	6.9100
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200
lran	4410.0000	6910.0000	2600.0000	3360.0000	10600.0000	3740.0000	6320.0000	0000.0004
lead.	210.0000**	42.7000	17.0000	24.1000	8 500.0000**	130.0000**	**0000.09	16.0000
Regres fum	3970.0000	4160.0000	180.000	4010.0000	7420.0000	3810.0000	2600.0000	2940.0000
Renewese	96.2000	240.0000	81.9000	92.5000	271.0000	98.0000	214.0000	106.0000
Mercury	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	· 0.0500	< 0.0500 <
Bickel	8.6800	7.0600	4.1900	4.5400	25.1000**	6.2400	6.0700	5.1600
Potassium	0000.909	1880.0000	420.0000	608.0000	1950.0000	644.0000	1650.0000	736.0000
Selenica	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500	< 0.2500	· 0.2500	< 0.2500
200	5.7700**	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5990	< 0.5890	< 0.5890
Sodium	210.0000	211.0000	214.0000	111.0000	242.0000	236.0000	198.0000	208.0000
Theilium	< 6.6200	< 6.6200	< 6.6200	< 6.6200	15.3000**	< 6.6200	c 6.6200	c 6.6280
Vanadium	8.4600	11.9000	7.2000	10.3000	12.4000	9.5400	9.7200	7.7700
zinc	33.2000	45.1000	22.6000	20.000	1060.0000**	31.4000	56.1000	23.3000

Motes: 1 is above the

tected at the value shown, MA = Not amalyzed

; is above the background concentration for the depth shown,

age No. 1 2/18/92

TODELE AD-NORTH AREA: SLAMU N.C. 42 - BONB MASHOUT BUILDING SOIL ANALYTICAL RESULTS FOR METALS

10 0 0 0 0 0 0 0 0 0				200 67 40	., .,	100 17 00	500 67 34	100 67 44	700-13-00
0.0111678 01111647 011116479 011116479 011116489 01116489 0116489 01	ample 10	210-24-9S	210.24-95	CIO-24-BC	CIO-24-90	100-24-66	300.34.66	COO - 34 - 66	- Y 10
0.000 ft 2.000 ft 2.000 ft 2.000 ft 0.000 ft	01 de	0111*676	011.1*677	011.1*678	0111*679	0111*687	0111*688	011.1*689	011.1*690
8099,0000 5530,0000 12000,0000 6590,0000 4270,0000 6670,0000 144, 1700 4,71400 5,714000 5,714000 5,714000 5,714000 5,714000 5,	ate Samiled	06/21/92	06/27/92	06/27/92	06/27/92	06/28/92	06/28/92	26/52/90	26/52/90
80990 00000 5530 00000 12000 00000 6590 00000 4270 0000 6670 00000 145 00000 1000000 1000000 1000000 1000000 1000000	epth (ft)	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
8699, 0000 5330, 0000 12000, 0000 6590, 0000 4270, 0000 6870, 0000 14, 1700 47, 1400									
100,0000000000000000000000000000000000	etals and Cyanide (ug/g)								
108.0000** \$0.9000** \$4.7000 \$4.7700 \$4.7000 \$4.7000 \$4.7000 \$4.7000 \$4.7000 \$4.9000 \$4.7000 \$4.9000 \$4.5000	Atuminum	8090.0000	5530.0000	12000.0000	0000.0659	4270.0000	6870.0000	14300.0000	15000.0000
5.1700 3.0700 4.7700 4.9900 5.5500 1620.0000** 629.0000** 1620.0000** 255.1000 4.9900 4.0500 3.9100** 1.2900 4.0500 4.0500 4.0500 4.0500 4.0500 3.9100** 1.2900 2.0500 4.0500 7340.0000 15.000 15.000 26.4000** 13.300 163.0000** 34.4000** 9.440 13.8000 13.8000 26.4000** 243.0000** 2740.0000* 7340.0000** 34.0000** 34.0000** 35.0000 19.0000 19.0000 553.0000** 243.0000** 2740.0000** 34.0000** 34.0000** 34.0000** 34.0000** 34.0000** 34.0000	Antimony	108.0000**	\$0.9000**	**0000.655	60.3000**	< 7.1400	< 7.1400	5300.0000**	3300.0000**
1620.0000** 629.0000** 16200.0000** 2420.0000** 55.1000 102.00	Arsenic	5.1700	3.0700	37.0000	4.7700	7.9800	5.6500	30.000	47.0000
4,0,5000 4,0,5000 4,0,5000 4,0,5000 4,0,5000 4,0,5000 4,0,5000 4,0,5000 1,0,0000		1620.0000**	629.0000	16000.0000**	2420.0000**	55.1000	102.0000	35000.0000**	30000.0000**
3.9100** 1.2900** 22.6000** 3.6600** 0.8940** < 0.7000 4350.0000 15800.0000 15200.0000 7340.0000 73000.0000** 39600.000 26.4000** 13.3000 45.0000** 3.45.000** 7.5900 2.8200 553.0000** 24.400** 2.7500 4.9200 7.5900 2.8200 553.0000** 24.3000** 2.7500 4.9200 4.9200 4.9200 6.100.0000** 24.0000** 345.0000** 7.5900 4.9200 4.9200 6.100.0000** 24.0000 7070.0000 4.440.000 7010.0000 2.8200 6.100.0000** 2580.0000 7070.0000 4.440.0000 7010.0000 2.8200.0000 2.2400.0000** 2580.0000 2286.0000 22900 4.0500 8.9000 2.9000 2.2400.0000** 4.6300.0000** 4.0500.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000 112.0000	Bervil ium	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	< 0.5000	1.8000**	3.0000*
4350,0000 1520,0000 1520,0000 7340,0000 7340,0000 73600,0000 1520 26,4000** 13,3000 4,5900 2,7700 1,9900 2,8200 2,8200 3,1000 2,4400 4,5900 2,7700 1,9900 2,8200 19,8000 555,0000** 2,4400 4,5900 2,7700 1,9900 2,8200 19,0000 6100,0000** 24,0000** 2760,0000** 1,5900 4,5900 4,5900 2,800 8340,0000 4,5900 109200 4,5900 1,9900 4,9000 1,9900 1,9000 8400,0000** 24,0000 10900 225,0000 4,5900 1,5000 1,5000 1,5000 2700,0000** 2560,0000 2560,0000 1,1500 1,5000	Cecinita	3.9100**	1.2900**	22.6000**	3.6600**	0.8940**	< 0.7000	13.9000**	30.0000**
26,4000** 13,3000 163,0000** 34,4000** 9,6400 13,8000 2,820 1,9900 2,820 1,9000 2,820 1,9000 2,820 1,9000 2,820 1,9000 2,820 1,9000 2,820 1,9000 2,820 1,9000 2,820 1,9000 2,820 1,9000 2,920 4,5900 4,5900 4,5900 4,5900 4,5900 1,9000		4350.0000	15800.0000	16200.0000	7340.0000	73000.0000**	39600.0000	15200.0000	16700.0000
3.1000 2.4400 4.5900 2.7700 1.9900 2.8200 19.0000 553.0000** 243.0000** 245.0000** 345.0000** 7.5900 19.0000 2100 6 0.9200 4 0.9200 <	Chronium	26.4000**	13.3000	163.0000**	34.4000**	0059.6	13.8000	298.0000**	243.0000**
553.0000** 243.0000** 2750.0000** 7.5900 19.0000 2100 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 4 0.9200 8 0.	Cobalt	3.1000	2.4400	4.5900	2.7700	1.9900	2.8200	16.0000**	11.0000**
8340,0000 \$600,0000 \$7070,0000 \$15000 \$0.9200	Copper	553.0000**	243.0000**	2760.0000**	345.0000**	7.5900	19.0000	21000.0000**	23000.0000**
1,000	Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	1.5800**	3.2100**
6100.0000** 2980.0000** 13.0000 81.5000** 1000 20400.0000** 5470.0000 25800.0000** 620.0000 6600.0000 5200.0000 2890.0000 2890.0000 189.0000 2890.0000 2890.0000 189.0000 2890.0000 2890.0000 189.0000 2890.0000 2890.0000 189.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2890.0000 2880.000	, L	8340.0000	5880.0000	10900.0000	7070.0000	4440.0000	7010.0000	87000.0000**	110000.0000**
20400.0000** \$470.0000 25800.0000** 6620.0000 6600.0000 \$200.0000 189.0000 699.0000 189.0000 699.0000 189.0000 699.000	on ead	6100.0000**	2980.0000**	16000.0000**	2190.0000**	13.0000	81.5000**	100000.0000+	84000.0000**
279,0000 185,0000 226,0000 138,0000 189,0000 40,0500 40,0500 6,6300 18,70000 5,7800 8,9000 3 50,0500 6,6300 18,70000 1720,000 1720,000 18,000 3 50,0000 1330,0000 2070,000 1720,000 18,000 18,000 2 50,0000 1330,0000 207,0000 222,000 6,2500 6,2500 6,2500 6,2500 6,2500 529,0000 207,0000 312,0000 222,0000 248,000 1330,0000 3 13,26000 13,2000 10,2000 13,2000 10,800 15,1000 16,100	Natagnes i un	20400.0000**	5470.0000	25800.0000**	990.000	9900.0009	5200.0000	29100.0000**	29000.0000**
< 0.0500 < 0.0500 < 0.0500 < 0.0500 < 0.0500 < 0.0500 < 0.0500 33 9,9900 6,6300 18,7000** 9,9900 5,7800 8,9000 33 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,2500 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,250 < 0,	- Hangarese	279.0000	165.0000	286.0000	229.0000	138.0000	189.0000	640.0000**	920.0000**
9.9900 6.6300 18.7000** 9.9800 5.7800 8.9000 8.9000 114m 5.7800 8.9000 1330.0000 2150.0000 1330.0000 2070.0000 1720.0000 1220.0000 1860.0000 6.2500 c 0.2500	Mercury	< 0.0500	< 0.0500	0.1280**	< 0.0500 <	< 0.0500	< 0.0500 <	0.1090**	0.1000**
130,0000	Hickel	0066.6	6.6300	18.7000**	9.9800	5.7800	8.9000	373.0000*	420.0000**
A < 0.2500 < 0.2500 < 0.2500 < 0.2500 < 0.2500 < 0.2500 C 0.5890 < 0.5890 < 0.5890 < 0.5890 < 0.5890 < 0.5890 A 0.2500 < 0.5890 < 0.5890 < 0.5890 < 0.5890 B 0.25000 0.27.000 312.0000 222.0000 248.0000 1330.0000 B 13.6000** < 6.6200 < 6.6200 < 6.6200 < 6.6200 < 6.6200 B 13.2000 10.2000 13.6000 12.1000 15.3000	Potassium	2150.0000	1330.0000	2070.0000	1720.0000	1220.0000	1840.0000	272.0000	265.0000
 < 0.5890 < 0.5800 < 0.5890 < 0.5890<	Setenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500	· 0.2500
229.0000 207.0000 312.0000 222.0000 248.0000 1330.0000 1350.0000 1350.0000 1350.0000 1350.0000 1350.0000 1350.0000 1350.0000 10.2000 10.2000 12.1000 14.5000 15.3000 1	Silver	< 0.5890	< 0.5890	0.9830**	< 0.5890	< 0.5890	< 0.5890	12.0000**	8.0000**
12.6000** < 6.6200	Sodium	229.0000	207.0000	312.0000	222.0000	248.0000	1330.0000	306.0000	350.0000
dium 13.2000 10.2000 13.6000 10.8000 12.1000 16.3000 16.3000 15.1000 16.3000 15.1000 16.3000 1	Thellium	12.6000**	< 6.6200	23.7000**	6.6200	< 6.6200	< 6.6200	200.0000**	160.0000**
41 FOOD 17	Vanadium	13.2000	10.2000	13.6000	10.8000	12.1000	16.3000	5.0900	< 10.0000
3/0.000" [30.0000" [430.0000" 22.5000 0]	2 inc	378.0000**	136.0000**	1450.0000**	253.0000**	52.3000	61,5000	\$000.0000	4800.0000*

Sample 10	\$8-42-005	SS-42-009-DUP	88-45-00 6	28-45-00 7	SS-42-00 0	
0.00	0111460	0111*686	0111*681	011.1*682	011.1*683	
Date Sampled	06/28/92	06/28/92	06/28/92	26/58/95	06/28/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	
Metals and Cyanide (ug/g)						
Atunina	3770.0000	5310.0000	4260.0000	16500.0000	10000,00001	
Antimony	< 7.1400	16.1000**	< 7.1400	1110.0000.	672.0000**	
Arsenic	19.0000	29.0000	68,000	52.0000	32.0000	
	163.0000	256.0000**	160.000	\$4000.00045	18000.0000*	
Dervil ius	< 0.5000	< 0.5000	< 0.5000	0.6610	< 0.5000	
Cachina	1.5700**	2.1400**	2.6200**	78.1000**	**0007.69	
Colcius	15900.0000	20400.0000	24000.0000	45900.0000	40000.0000	
Chronius	7.7100	11.7000	15.3000	793.0000**	582.0000**	
Cobelt	2.0400	2.6200	2.4700	9.4600	2.5600	
Copper	53.7000**	67.2000**	••0007.09	12000.0000**	7600.0000**	
Cyanide	< 0.9200	1.1200**	< 0.9200	1.1300**	< 0.9200 <	
Lea	2670.0000	7280.0000	2620.0000	17900.0000	14800.0000	
Lead	**0000.064	1320.0000**	346.0000**	61000.0000**	**0000.0000\$	
Magnes fun	3280.0000	4210.0000	5670.0000	40300.0000	43600.0000**	
Narganese	167.0000	205.0000	208.000	281.0000	252.0000	
Mercury	< 0.0500	< 0.0500	< 0.0500 <	0.6740**	0.2260**	
wickel	5.0100	6.1000	6.7800	74.1000**	**0006.57	
Potassica	1030.0000	1410.0000	1330.0000	995.0000	1230.0000	
Selector	× 0.2500	< 0.2500	< 0.2500	< 0.2500	< 0.2500	
	< 0.5890	< 0.5890	< 0.5890	2.3300**	1.7600**	
Sodium	110.0000	262.0000	312.0000	384.0000	361.000	
That I ium	< 6. 6200	8.6100	10.2000**	96 .4000**	000.	
Vanadium	9.7100	14.8000	11.6000	12.0000	13.4000	
Zine	94.1000	115.0000**	130.000**	3310.0000**	3630.0000**	

TOCELE AD-MORTH AREA: SUMU M. . 42 - BOND MASHOUT BUILDING SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

ample 1D ab 1D ate Sampled epth (ft)	\$8-42-001 011.1*654 06/26/92 0.000 ft	\$8-42-001 01L1*655 06/26/92 2.000 ft	\$8-42-002 0111*656 06/26/92 0.000 ft	\$8-42-002 0111*657 06/26/92 2.000 ft	\$8-42-003 011.1*658 06/26/92 0.000 ft	\$8-42-003-DUP 01L1*684 06/26/92 0.000 ft	\$8-42-003 01L1*659 06/26/92 2.000 ft	\$8-42-804 011.1*660 06/26/92 0.000 ft
olatile Organic Compounds (ug/g)	X	*	*	*	¥	\$	1	5
emivolatile Organic Compounds (ug/g)	\$	¥	¥	4	¥	¥	¥	\$
esticides (ug/g)	¥	4	\$	*	¥	¥	¥	a
erbicides (ug/g)	X	\$	8	¥	¥#	¥	≦	\$
stal Petroleum Hydrocarbona (ug/g)	\$	4	\$	¥	*	ş	1	\$
oplosives (ug/g) 2,4-Dinitrotoluene 2,6-Dinitrotoluene	< 0.4240 < 0.5240	<pre></pre>	< 0.4240 < 0.5240	< 0.4240 < 0.5240	< 0.4240 < 0.5240	< 0.4240 < 0.5240	< 0.4240 < 0.5240	< 0.4240 < 0.5240
igkins/furans (ug/g)	ž	4	ş	\$	\$	\$	¥	s

TOCELE AD-MONTH AREA: SHAU NO. 42 - BONS LASHOUT BUILDING SOIL ANALYTICAL RESULTS FOR ORGANIC COMPGINDS

Compounds (ug/g)	Sample 10	58-42-004	SB-42-005	\$8-42-005	SB-42-006	SB-42-006	SB-42-007	\$8-42-007	SB-42-00¢
Compounds (ug/g) NA	Leb ID Date Sampled	06/26/92	06/26/92		06/26/92	06/26/92	06/26/92	06/26/92	06/27/92
Compounds (ug/g) NA	Depth (ft)	2.000 ft	0.000 ft	2.6.3	0.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft
Compounds (ug/g) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA carbons (ug/g) .0.4240 < 0.4240	Volatile Organic Compounds (ug/g)	HA	HA H	VH.	ИА	NA NA	RA	VH	4
Carbons (ug/g) **A MA Semivolatile Organic Compounds (ug/g)	YN	¥	4	¥.	¥.	¥	¥	\$	
carbons (ug/g) NA	Pesticides (ug/g)	¥	*	.\$	¥	¥	¥	\$	*
 cerbons (ug/g) d.4240 d.424	Nerbicides (ug/g)	¥	¥	3	¥	¥	AII.	¥	¥#
 < 0.4240 < 0.4240 < 0.5240 < 0.5240<	Total Petroleum Mydrocarbons (ug/g)	¥ .	ž	YN.	¥	¥	¥	¥	*
VII VII VII VII VII VII VII VII VII	Explosives (ug/g) 2,4-Dinitrotoluene 2,6-Dinitrotoluene	< 0.4240 < 0.5240	< 0.4240 < 0.5240	< 0.4240 < 0.5240	0.5350**	< 0.4240 < 0.5240	< 0.4240 < 0.5240	1.4200**	< 0.4240 < 0.5240
	Dioxins/furans (ug/g)	4	4	\$	4	\$	4	\$	1

'age No. 1

TOOELE AD-MORTH AREA: SLAFL .. .2 - BONG WASHOUT BUILDING SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

emple 10	88-42-008	88-42-006	88-42-009	SB-42-009-DUP	\$6-42-010	\$8-42-010	\$8-42-011	\$8-42-011
51 qe	0111*669	0111*670	0111*671	011.1*685	0111*672	0111*673	011.1*674	01.1.673
ate Sampled	06/27/92	06/27/92	06/27/92	26/22/90	06/27/92	06/27/92	26/22/90	06/27/92
epth (ft)	2.000 ft	0.000 ft	2.000 ft	2.000 ft	0.000 ft	2.000 ft	0.000 ft	2.000 ft
olatile Organic Compounds (ug/g)	¥	¥ X	\$	**	¥	¥	¥1	1
maivolatile Organic Compounds (ug/g)	YN	4	\$	A	YH	W	\$	\$
osticides (ug/g)	¥	¥	¥	\$	¥	*	\$	ş
rbicides (ug/g)	X	\$	¥8	¥	¥	¥	\$	1
otal Petroleum Mydrocarbons (ug/g)	¥	\$	¥.	¥	¥	¥	ž	1
oplosives (ug/g) 2,4-Dinitrotoluene 2,6-Dinitrotoluene	< 0.4240 < 0.5240	< 0.4240 < 0.5240	< 0.4240 < 0.5240	0,5240 0,5240 0,5240	< 0.4240 < 0.5240	< 0.4240 < 0.5240	0.4240 0.5240	< 0.4240 < 0.5240
Aths/furans (ug/g)	\$	¥	¥	¥	ğ	S	\$	\$

Lab ID OIL1*676 OIL1*677 OIL1*679 <	1,12679 0111°687 0,727/92 06/28/92 000 ft 0.000 ft MA MA MA	06.28/92 06.28/92 0.000 ft	0.200 ft	0111-660 06/28/97 0.000 ft
9) WA			0.000 ft	0.000 ft
9) WA			0.000 ft	0.000 fz
		1 1	\$ 1	3 3
		1	4	3
			į	
AN MA MA	EA EA	4	4	1
	WA #	¥	4	2
	WA	\$	¥	*
Explosives (ug/g) 2,4-Dinitrotoluene < 0.4240 < 0.4240 0.7650** < 0.4240 2,6-Dinitrotoluene < 0.5240 < 0.5240 < 0.5240	0.4240 < 0.4240 0.5240 < 0.5240	< 0.4240 < 0.5240 <	0.5160**	3.0900
Dioxins/furans (ug/g) NA NA NA	HA HA	£	1	1

TOCELE AD-MORTH AREA: SUMU NO. 42 - BONG LASHOUT BUILDING SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Table 5-24

TABLE 5-24

STORMWATER DISCHARGE AREA (SWMU 45) ANALYTICAL RESULTS

TOOELE AD-MORTH AREA: SLAU NO. 45 - STORMLATER DISCHARGE AREA SOLL ANALYTICAL RESULTS FOR METALS

Sample 10	100-55-85	SB-45-001	100-53-BS	100-57-85	SB-45-001-0UP	100-57-85	100-57-85	0-57-85
01 981	011.1*691	0111-692	01.1*693	0111*694	0111*698	0111*695	0111*696	0111-69
Date Sampled	06/25/92	06/25/92	26/52/90	26/52/90	26/52/90	26/52/90	26/52/90	06/25/90
Depth (ft)	0.000 ft	1.000 ft	5.000 ft	9.000 ft	9.000 ft	13.000 ft	17.000 ft	23.000

Depth (11)	0.000 10	1.000 16	3.000.0	7.00.1	y. 000 TE	13.000 TC		3.0
Metale and Cuanide (100/0)								
Alleine	4000,0000	9720.0000	5450.0000	0000.0969	7690.0000	8780.0000	9910.0000	15900.000
Antimony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	c 7.140
Arsenic	13.8000	8.1600	4.3400	8.4500	5.6500	8.6200**	17.0000**	6.220
	87.4000	113.0000	63.3000	58.9000	9007.09	76.7000	82.1000	217.000
Beryl lice	< 0.5000	0.6320	< 0.5000	< 0.5000	< 0.5000	0.9760	< 0.5000	1.570
Cadelus	2.9800**	< 0.7000	< 0.7000	< 0.7000	< 0.700	< 0.7000	< 0.7000	6.70 0
Calcius	44100.0000	7470.0000	62400.0000	9000.0009	63800,0000	71000.0000	59400.0000	140000.000
Chronium	33,3000**	17.1000	13.4000	13.3000	14.5000	14.7000	16.0000	18.600
Cobelt	3.2300	4.2200	3.0400	3.5700	3.1400	4.6300	4.6900	5.250
Copper	64.7000**	21.5000	8.1600	8.0400	7.6000	11.1000	11.5000	15.000
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.920
	6850.0000	10400.0000	8210.0000	9370.0000	9990,0000	12700.0000	11400.0000	14800.000
read	₹9000.192	\$7.5000**	6.3500	5.5200	2.9000	6.6300	7.1600	9.500
Magnesium	4370.0000	5210.0000	7400.0000	9400.0000	8280,0000	10100.0000	9700.0000	11800.000
Hargenese	183.0000	452.0000	114.0000	210.0000	197.0000	243.0000	294.0000	543.000
Mercury	0.0751**	< 0.0500 <	< 0.0500	< 0.0500	· 0.0500	< 0.0500	< 0.0500 <	< 0.050v
Hickel	9.8300	10.7000	10.2000	9.9400	9.8900	12.0000	15.3000	18.200
Potassium	1010.0000	3200.0000	1660.0000	2080.0000	2180.0000	2730.0000	2600,0000	3870.000
Selenium	< 0.2500	< 0.2500	< 0.2500	< 0.2500	· 0.2500	0.2500	• 0.2500	< 0.250
Silver	0.7060**	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	< 0.5890	⋄ 0.589 i
Sodice	347.0000	503.0000	531.0000	770.0000	737.0000	906.0000	674.0000	962.000
That I tum	< 6.6200	< 6.6200	< 6.6200	< 6.6200	9.7200**	11.1000	< 6.6200	12.600
Vanadium	11.8000	15.800	17.7000	20.000	20.000	26.8000	22.0000	26.160
Zine	212.0000**	72.4000	30.5000	36.3000	35.9000	47.0000	44.5000	52.700

< = Not detected at the value shown, NA = Not emalyzed Notes: ** = V-1: is above the background concentration for the depth shown,

FOOELE AD-WORTH AREA: SHAU IN. .. - STORMATER DISCHARGE AREA SOIL AMALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	SB-42-001	SB-45-001	\$8-45-001	SB-45-001	SB-45-001-DUP	\$8-45-001	190-53-88	100-57-00
Leb 10	0111*691	0111*692	011.1*693	011.1*694	011.1*698	509-1 110	011 1*60K	20701 110
Date Sumpled	06/25/92	26/52/90	26/52/90	26/52/90	26/52/90	06/22/92	06/25/02	26.75.000
Depth (ft)	0.000 ft	1.000 ft	5.000 ft	9.000 ft	9.000 ft	13.000 ft	17.000 ft	23.000 ft
Volatile Organic Compounds (ug/g)	•	1	1	:				
(1) - I manifelyclonexame (1) - (1)	≦	S	\$	ž	¥.	¥	\$	0.0052**
Semivolatile Organic Compounds (ug/g) Bis (2-ethylhexyl) phthalate Butviten: . shthalate	< 31.0000 A A 0000	3.7800**	< 0.6200 . 0 . 0.000	0.6200	0.6200	0.8360**	< 0.6200	× 0.6200
		3		9.1.00	00/1/00	0.4640	< 0.1700	< 0.1700
Pesticides (ug/g)	9	2	9	ş	2	9	2	2
Nerbicides (ug/g)	\$	\$	£	\$	¥	*	ā	1
fotal Petroleum Hydrocarbons (ug/g)	≦	£	¥	\$	¥	\$	ž	i
Explosives (ug/g)	₽	2	2	9	2	9	9	2
Official (ug/g)	*	¥	¥	¥	\$	≦	₹	1

Sample 10	100-57-QS	SD-45-002	\$0-45-003	SD-45-003-DUP	50-42-00¢	\$00-57-08
01 991	011.1*699	0111+700	101.1.701	901-1-10	011.1*702	0111-703
Date Sampled	26/60/10	07/09/92	07/09/92	26/60/10	07/09/92	07/09/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)						
2-Hethyl-2-propanol/tert-Butanone (11C)	4	0.0531**	1	1	**	1
Toluene	₹ 0.000	0.0600**	× 0.0006	0.0010	• 0.000 0	• 0.000
Semivolatile Organic Compounds (ug/g)	2	2	2	9	9	9
Pesticides (ug/g)						
Dieldrin	< 0.0063	0.0064**	0.0305**	0.0207**	0.0283**	0.0179**
alpha-Chlordene	< 0.0050	0.0244**	0.0292**	0.0294	0.1800**	0.1000**
games - Chi ordene	< 0.0050	0.0341**	0.0274**	0.0354**	0.2400**	0.1100**
000-d'd	< 0.0063	0.0840**	0.0278**	0.0216**	0.3000**	0.7000**
p.p.00€	< 0.0077	0.0174**	× 0.0077	< 0.0077	0.0520**	0.0130**
p,p-001	< 0.0071	< 0.0071	0.0124**	0.0109**	0.1400**	0.0459**
Werbicides (ug/g)	¥	£	\$	\$	1	ž
Total Petroleum Mydrocarbons (ug/g)	\$	ş	\$	ş	\$	ā
Explosives (ug/g)	9	9	9	2	9	2
Diaxins/Furans (ug/g)	4	\$	≦	*	\$	\$

6-24-3

3**ege No. 1** 12/19/92

TOOELE AD-NORTH AREA: SIMU MO. .. - STORMANTER DISCHARGE AREA SEDIMENT AMALYTICAL RESULTS FOR WETALS

Sample 10	50-45-001	SD - 45 - 002	SD-45-003	SD-45-003-DUP	30-42-004	SO-45-005
9	011.1*699	0111*700	011.1+701	011.1•704	011.1*702	011.1-705
late Samiled	26/06/05	26/60/20	26/60/20	07/09/92	07/09/92	07/09/92
Jepth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
letats and cyanide (ug/g)						
Atuninum	7740.0000	5010.0000	4400.0000	2330.0000	9340.0000	14,000,0000
Ant Imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	< 7.1400	× 7.1400
Arsenic	0000 36	7.8700	14.0000	7.3300	12.3000	17.6000
	214.0000	74.9000	53.8000	30.000	102.000	153.0000
Beryll ich	0.8600	< 0.5000	< 0.5000	< 0.5000	0.7860	1.1200
Cadaina	3.4600**	4.1900**	1.3900**	< 0.7000	5.4400**	6.3500**
Calcius	18600.0000	32100.0000	38600.0000	21400.0000	41200.0000	56100.0000
Chronium	13.5000	33.7000**	18.8000	7.8400	********	42.0000*
Cobelt	3.6400	3.0800	< 1.4200	< 1.4200	5.7400	7.9900**
Copper	65.2000**	63.3000**	31,1000**	15.9000	109.0000**	117.0000**
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	< 0.9200	2.1200**
	11900.0000	0000.0899	4670.0000	2830.0000	11300.0000	16100.0000
Seed.	\$94.0000**	215.0000**	99 .8000**	51.0000	319.0000**	254.0000**
Alegnes i ca	5330.0000	5180.0000	8350.0000	3110.0000	8300.0000	10900.0000
Angenese	240.0000	99.7000	80.1000	40.200	165.0000	226.0000
Mercury	· 0.0500	< 0.0500	< 0.0500	< 0.0500 •	0.1230**	0.0911**
Bickel	9.1500	12.0000	7.9000	3.5300	18.2000**	22.9000**
Potessice	2880.0000	1360.0000	1420.0000	714.0000	2600.0000	3930.0000
Selenium	< 0.2500	0.4950**	< 0.2500	< 0.2500 ×	0.6890**	1.2300**
	1.2500**	1.3000**	< 0.5890	< 0.5890	1.4800**	1.9500**
Sodice	314.0000	399.0000	424.0000	351.0000	512.0000	735.0000
Thettium	15.5000**	< 6.6200	12.2000**	6.6200	16.8000**	22.1000
· mipereA	15.3000	15.2000	13.0000	7.5000	23.6000	33.4000**
2 inc	324.0000**	257.0000**	92.3000	61.000	4.26.0000**	**0000.084

TODELE AD-WORTH AREA: SUMU NO. 45 - STORMANTER DISCHARGE AREA SURFACE WATER AMALYTICAL RESULTS FOR ORGANIC COMPOUNDS

e Organic Compounds (ug/l) e Organic Compounds (ug/l) atile Organic Compounds (ug/l) adecanoic acid / Myristic acid (TiC) thylphenol / 4-Cresol / p-Cresol (2-ethylhexyl) phthalate des (ug/l) atroleum Mydrocarbons (ug/l) furans (ug/l)	Sample 10	100-57-NS	SN-45-002	\$00-\$7-MS	
0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.6800** < 0.5000 0.6800** < 0.5000 cmpounds (ug/1)	Date Sampled	07/09/92	07/09/92	07/09/92	
ounds (ug/1) 0.6800** < 0.5000 Compounds (ug/1) (Myristic acid (TiC) (MA 7.0000** Cresol / p-Cresol (MA 7.0000** 16.0000** MA MA M	Depth (ft)	0.000 fτ	0.000 ft	0.000 ft	
Cresol (15000**	Volatile Organic Compounds (ug/l) Toluane	0.6800**	< 0.5000	< 0.5000	
/ Myristic acid (TIC) MA 7.0000** c 0.522 phthalate 1.5000** c 0.522 phthalate 16.0000** c 0.522 phthalate 16.0000** c 4.800 MA	Semivolatile Organic Compounds (ug/l)				
Cresol / p-Cresol 0.6700** 1.5000** < 0.52 phthelate 16.0000** 20.0000** < 4.80 MA MA I **Thors (ug/l) MA MA I **MA MA MA I **MA MA MA I **MA MA M	Tetradecambic acid / Myristic acid (TIC)	¥	7.0000**	\$	
No.	4-Methylphenol / 4-Cresol / p-Cresol	0.6700**	1.5000**	< 0.5200	
HA H	Dis (2-ethylhexyl) puthelete	16.0000**	20.0000**	< 4.8000	
HA H	Pesticides (ug/l)	2	9	2	
**************************************	Nerbicides (ug/1)	\$	\$	¥	
< 4.5000 < 4.5000 < 4.50	Total Petroleum Hydrocarbons (ug/l)	\$	¥	*	
. va	Explosives (ug/1) P2,4-Dinitrotoluene	· 4.5000	· 4.5000	< 4.5000	
	Dioxins/Furama (ug/l)		\$	¥¥	

TOCELE AD-WORTH AREA: SUMU NO. . - STORMANTER DISCHARGE AREA SURFACE WATER AMALYTICAL RESULTS FOR WETALS

Sample 10	sn-45-001	SN-45-002	SN-45-003	
01 401	MJR1*21	WUTR1*22	MJTR1+23	
Date Sampled	07/09/92	07/09/92	07/09/92	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	
Metals and cyanide (ug/1)	0000 171 ×	× 141,0000	< 141,0000	
	× 38,000	< 38,0000	× 36,000	
Acemic	4.8000**	4.8000**	7.6800**	
	69.2000**	70.5000**	103.0000**	
Beryllice	< 5.0000	< 5.0000	· 5.000	
Cachius	00100 >	< 4.0100	< 4.0100	
Calcius	86400.0000**	84800.0000**	94,600.0000**	
Chronium	< 6.0200	< 6.0200	< 6.0200	
Cobelt	< 25.0000	< 25.0000	· 25.0000	
J-8003	× 8.0900	8.0900	× 8.0900	
Cvanide	< 2.5000	< 2.5000	12.3000**	
	< 38.8000	< 38.8000	₽9.8000	
5-	< 1.2600	< 1.2600	1.6300**	
Searce full	31500.0000**	31000.0000**	32400.0000**	
Terresee	\$2.6000**	\$5.6000**	48.5000**	
Mercury	< 0.2430	< 0.2430	< 0.2430	
Mickel	· 34.3000	< 34.3000	< 34.3000	
Potessica	**0000`000Y	4910.0000**	7160.0000**	
Setentus	< 3.0200	< 3.0200	< 3.0200	
Setter	0009.4 >	· 4.6000	0009.4 >	
Sedius	87400.0000**	86500.0000**	96300.0000**	
Theilite	0066'9 >	• 6.9900	< 6.990	
- ipace/	< 11.0000	11.0000	< 11.000	
Zine	< 21,1000	< 21.1000	< 21.1000	

Table 5-25

TABLE 5-25

USED OIL DUMPSTERS (SWMU 46) ANALYTICAL RESULTS

Semple 10	100-95-85	200-99-85	\$00-97-05	400-500-64-62	700-97-85	500-9 7-8 5	900-95-85	29-99-95
190	0111*705	0111*706	011.1+707	011.1-733	0111-708	011.1*709	0111-710	011.1*711
Date Sampled	07/22/92	07/22/92	07/22/92	07/22/92	C. /22/92	07/22/92	07/23/92	07/23/92
Depth (ft)	1.000 ft	1.000 ft	1.000 ft	1.000 ft	1.000 ft	1.000 ft	1.000 ft	1.000 ft
Volatile Organic Compounds (ug/g)	4	4	\$	¥	\$	8 8	¥	S
Semivolatile Organic Compounds (ug/g)	YN.	\$	VIII	4	4	ž	¥	\$
Pesticides (ug/g)	M	\$	4	4	4	¥	4	\$
Herbicides (ug/g)	*	4	\$	¥	*	\$	\$	\$
Total Petroleum Mydrocarbons (ug/g) Total patroleum Mydrocarbons	4746.0000**	752.0000**	2080.0000**	2650.0000**	< 27.9000	479.0000**	64.70.0000**	\$0700.0000**
Explosives (ug/g)	\$	3	¥	¥	\$	S	4	\$

1

돌

≨

≦

≦

ī

≦

≦

9 Dioxins/furans (ug/g)

TODELE AD-MORTH AREA: SUND NO. 46 - USED DIL DUMPSTERS SOIL ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

	SB - 46 - 007 - DUP	800-9 7 -85	SB-46-009	SB-46-010	58-46-011	\$8-46-012	\$10-99-08	710-97-85
01 de 1	0111*734	0111*712	011.1*713	0111*714	011.1*715	011.1*716	0111-717	0111*718
Date Sampled	07/23/92	07/23/92	07/23/92	07/24/92	07/24/92	07/24/92	07/24/92	07/24/92
Depth (ft)	1.000 ft	0.900 ft	1.000 ft	1.000 ft	1.000 ft	0.800 ft	1.000 ft	1.000 ft
Volatile Organic Compounds (ug/g)	MA M	¥	VR	YH.	¥	¥	\$	*
Semivolatile Organic Compounds (ug/g)		*	¥	K	W	M	¥	\$
Pesticides (ug/g)	Ž	¥	¥	¥	¥	¥	¥	\$
Herbicides (ug/g)	4	\\ \	¥	. *	¥	¥	4	\$
Total Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	51200.0000**	85.2000**	457.0000**	< 28.1000	192.0000**	3240.0000**	\$95.0000**	1130.0000**
Explosives (ug/g)	4	\$	¥	KA	¥	\$	≦	\$
055xins/furans (ug/g) 52 52 53 54	X	≦	¥	¥	¥	4	Š	4

TOCELE AD-MORTH AREA: SUMU NO. 46 - USED OIL DUMPSTERS SOIL ANALYTICAL RESULTS FOR CREANIC COMPOUNDS

Sample 10	\$8-46-015	\$8-46-016	210-99-85	810-99-88	100-97-55	20-49-005	\$8-46-003	900-97-88
01 921	011.1-719	0111-720	011.1*721	011.1*722	0111-739	0111+740	0111*741	0111-742
Date Sampled	07/24/92	26/52/10	07/25/92	07/25/92	07/22/92	07/22/92	07/22/92	07/22/92
Depth (ft)	1.000 ft	0.600 ft	1.000 ft	1.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)	VH .	VN.	VR.	VII	HA	¥	ş	\$
Semivolatile Organic Compo is (ug/g)	4	\$	4	\$	≦	\$	\$	1
Pesticides (ug/g)	¥	ā	\$	*	≦	\$	\$	\$
Herbicides (ug/g)	*	4	\$	*	≦	\$	1	\$
Total Petroleum Hydrocarbons (ug/g) Total petroleum hydrocarbons	35.0000**	16700.0000**	394.0000**	< 27.9000	39100.0000**	574.0000**	6550.0000**	32.3000**
Explosives (ug/g)	X	¥	¥	¥	\$	1	\$	\$
Dioxins/furens (ug/g)	¥	\$	4	¥	*	\$	\$	\$

e was detected at the concentration shown < = Not detected at the "" shown, NA = Not analyzed , Motes: ** . .

5-25-3

TOOFLE AD-MORTH AREA: SL. +6 - USED OIL DUMPSTERS SOIL AMALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	\$00-97-55	900-97-55	200-97-58	800-97-58	88-46-009	010-97-88	\$5-46-011	\$5-46-012
	011.1+74.3	011.10744	011.1*745	0111+746	0111+747	011.1*748	0111-749	011.10750
Date Sampled	07/22/92	07/23/92	07/23/92	07/23/92	07/23/92	07/24/92	26/32/20	07/24/92
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)	¥.	M	¥	4	¥	Y H	NH NH	4
Semivolatile Organic Compounds (ug/g)	ž	¥	Ş	*	¥	W.	\$	3
Pesticides (ug/g)	ž	\$	4	¥	¥	\$	\$	1
Herbicides (ug/g)	¥	¥	\$	4	¥	\$	\$	\$
iotal Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	4320,0000**	10800.0000**	20600.0000**	359.0000**	1560.0000**	24800,0000**	1030.0000**	3140.0000**
Explosives (ug/g)	\$	¥¥	A	¥	*	Ş	\$	ž
Dioxine/Furans (ug/g)	\$	\$	\$	£	£	≨	£	1

Sample 1D	\$5-46-013	SS-46-014	\$10-99-55	910-97-88	210-97-55	810-99-88
at de 10	01114751	0111*752	0111*753	0111.754	0111-755	0111-756
Date Sampled	07/24/92	07/24/92	07/24/92	07/25/92	07/25/92	26/52/10
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft	0.000 ft
Volatile Organic Compounds (ug/g)	¥	1	VII	AN.	¥	\$
Semivolatile Organic Compounds (ug/g)	1	\$	¥	¥	4	\$
Pesticides (ug/g)	\$	1	4	¥	4	¥
Merbicides (ug/g)	\$	ā	\$	¥	¥	\$
Total Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	**000***	26600.0000**	923.0000**	1100.0000**	12200.0000**	734.0000**
Explosives (ug/g)	*	\$	ž	¥	¥	ş
Dioxins/furans (ug/g)	¥.	\$	\$	1	3	\$

Hotes: ** = Ar. ' te was detected at the concentration shown < = Not detected at the vr - shown, MA = Not analyzed

Table 5-26

TABLE 5-26

BOILER BLOWDOWN WATER (SWMU 47) ANALYTICAL RESULTS

Sample 10	100-27-AS	SW-47-002	
9	MUIR1*26	WJR1*28	
Date Sampled	07/16/92	02/08/93	
Depth (ft)	0.000 ft	0.000 ft	
Marcala and Committee (1997)			
Aliena	< 141.0000	< 141.0000	
Antimony	< 38.0000	< 38.0000	
Artenic	10.9000**	< 2.5400	
Berice	× 5.0000	26.2000**	
Beryllium	< 5.0000	< 5.0000	
Cacinities	× 4.0100	× 4.0100	
Colcius	1000.0000**	**0000.00004	
Chronium	< 6.0200	< 6.0200	
Cobelt	< 25.0000	< 25.0000	
Concer	81.7000**	16.9000**	
Cyanide	< 2.5000	10.8000**	
50	2060.0000**	179.0000**	
per	7.8100**	< 1.2600	
entegnes fue	< 500.000	14400.0000**	
Management	43.2000**	29.9000**	
Mercury	< 0.2430	< 0.2430	
Hickel	× 34.3000	< 34.3000	
Potassica	14200.0000**	2220.0000**	
Selenius	< 3.0200	< 3.0200	
Sitver	0009.4 ×	× 4.6000	
Sodium	**0000`0000*6	170000.00000*	
Theilium	0066.9 >	0066.9 >	
Vanadium	< 11.0000	< 11.0000	
Zire	45.6000**	< 21.1000	

Notes: ** = Analyte was detected at the concentration shown < = Not detected at the value shown, NA = Not analyzed

Page No. 1 06/16/93

TOCELE AD-HORTH AREA: S.A. . 47 - BOILER BLOUDOUN WATER SURFACE WATER ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Lab D	Sample 10	Su-47-001	SW-47-002	
carbons (ug/1) campounds (ug/1) campounds (ug/1) campounds (ug/1) campounds (ug/1) campounds (ug/1) denseldshyde (TIC) carbons (ug/1)	1 eb 10	MUTR1*26	NVTR1*28	
compounds (ug/l) B.6000** Compounds (ug/l) B.6000** Compounds (ug/l) Compounds (ug/l) Compounds (ug/l) Compounds (ug/l) Compounds (ug/l) Compounds (ug/l) A.0000** A.00	Date Sampled	26/91/20	02/08/93	
carbons (ug/l) * 1.0000 * 1.0000 20.0000** * 1.0000** * 1.0000** * 2.00000** * 4.0000** * 4.0000** * 5.0000** * 5.0000** * 6.0000** * 7.0000** * 6.0000** * 7.0000** * 8.0000** * 8.0000** * 9.0000** * 9.0000** * 1.0000** * 9.0000** * 1.0000** * 9.0000** * 1.0000** * 1.0000** * 1.0000** * 1.0000** * 1.0000** * 2.0000** * 3.0000** * 3.0000** * 4.0000** * 4.0000** * 5.0000** * 6.0000** * 7.0000** * 8.0000** * 8.0000** * 8.0000** * 8.0000** * 8.0000** * 9.00000** * 9.00000** * 9.00000** * 9.00000** *	Depth (ft)	0.000 ft	0.000 ft	
carbons (ug/1) Compounds (ug/1) AMA MA MA MA MA MA MA MA MA	Volstile Organic Compounds (ug/l)			
<pre>campounds (ug/l) Compounds (ug/l) Compounds (ug/l) 8.6000** 4.0000** 4.0000** 4.0000** Cresol / p-Cresol</pre>	1,1,1-Trichloroethane	• 1.0000	1.8000**	
20.0000** 1.0000** 1.0000** Compounds (ug/1) 8.6000** 4.0000** 4.0000** Cresol / p-Cresol 2.5000** Carbons (ug/1) drocarbons (ug/1) NA NA NA NA NA NA	1,1-Dichtoroethane	. 1.0000	1.6000**	
1.0000** Compounds (ug/l) 8.6000** 4.0000** thoxybenzaldehyde (TIC) Cresol / p-Cresol Carbons (ug/l) drocarbons (ug/l) * 200.0000* * MA *** *** *** *** *** *** *** *** ***	Acetone	20.0000**	20.0000**	
Compounds (ug/1) 8.6000** 4.0000** 4.0000** 4.0000** Cresol / p-Cresol 2.5000** A. A. A. A. A. A. A. A. A.	Chloroform	1.0000**	< 0.5000	
Compounds (ug/1) 8.6000** 4.0000** thoxybenzaldehyde (TIC) 20.0000** -Cresol / p-Cresol 2.5000** -Cresol / p-Cresol 2.5000** Carbons (ug/1) drocarbons (ug/1) NA NA NA NA NA	Methylene chloride	200.0000**	< 2.3000	
8.6000** thouybenzaldehyde (TIC) 20.0000** Cresol / p-Cresol 2.5000** Carbons (ug/l) ** MA MA MA MA MA MA MA MA MA	Semivolatile Organic Compounds (ug/l)			
thoxybenzaldehyde (TIC) 20.0000** -Cresol / p-Cresol 2.5000** -Cresol / p-Cresol 2.5000** Carbons (ug/l) ** MA MA MA MA MA MA MA MA MA	2,4-Dichlorophenol	8.6000**	< 2.9000	
thouybenzeldehyde (TIC) 20,0000** -Cresol / p-Cresol 2,5000** 5,0000** Carbons (ug/l) 4,200,0000 MA MA MA MA MA MA MA MA MA	2-Chlorophenol	**0000.	< 0.9900	
-Cresol / p-Cresol 2.5000** -Cresol / p-Cresol 2.5000** 5.0000** KA Carbons (ug/l) drocarbons (W/l) NO NA	4-Hydroxy-3,5-dimethoxybenzeldehyde (TIC)	20.0000**	¥	
-Cresol / p-Cresol 2.5000** 5.0000** KA MA MA drocarbons (ug/l) drocarbons (MD	4-Hydroxy-3-methoxybenzaldehyde (TIC)	10.0000**	¥	
5.0000** NA AA drocarbons (ug/l) 4.200.0000 NO NA	4-Nethylphenol / 4-Cresol / p-Cresol	2.5000**	< 0.5200	
MA MA MA drocarbons (ug/l) < 200.0000 MD MA	Meptadecane (TIC)	5.0000*	MA	
MA MA carbons (ug/l) < 200.0000 HD MA MA	6-			
MA carbons (ug/l) < 200.0000 HD MD MA	de sticides (ug/l)	¥	¥	
drocarbons (ug/l) < 200.0000 ND ND ND ND NA	Werbicides (ug/l)	¥#	MA	
9 \$	Total Petroleum Hydrocarbons (ug/l) Total petroleum hydrocarbons	< 200.0000	806.0000**	
NA NA	Explosives (ug/l)	9	2	
	Dioxins/Furans (ug/l)	M	ž	
			:	

TODELE AD-WORTH AREA: SLAW NO. 47 - BOILER BLOUDOUN WATER SLAFACE WATER AMALYTICAL RESULTS FOR GENERAL CHENICALS

Page No. 1 08/16/93

SN-47-002	MJR1*28	02/08/93	0.000 ft
Sample 10	01 qe1	Date Sampled	Depth (ft)

Anione (ug/1)
Phosphate 181.0000**

General Inorganic Parameters

≨

Notes: ** * Analyte was detected at the concentration shown < * Not detected at the value shown, NA * Not analyzed

Page No. 1 06/16/93

TOOELE AD-WORTH AREA: SIA. .. 47 - BOILER BLOWDOWN WATER SEDIMENT AMALYTICAL RESULTS FOR METALS

	3 3 3	25-14-5	400-200-21-0S	3.7.3	
1eb 10	0111*768	0111*769	011.1*774	0111-770	
Date Sampled	07/16/92	07/16/92	07/16/92	02/08/93	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	1.000 ft	
Netals and Cyanide (ug/g)					
Alumina	\$240.0000	2880.0000	2600.0000	3060.0000	
Ant imony	< 7.1400	< 7.1400	< 7.1400	< 7.1400	
Arsenic	18.0000	21.0000	15.0000	10.6000	
Berica	395.0000**	99.4000	61.6000	83.9000	
Beryllium	1.5400	0.6750	1.1200	< 0.5000	
Cadaius	5.4200**	5.6300**	4.1100**	24.7000**	
Colcium	65000.0000	9000.00099	57000.0000	\$7300.0000	
Chronium	\$0.8000**	13.4000	12.8000	63.8000**	
Cobelt	6.2600	3.5000	3.5200	5.0400	
Copper	176.0000*	1480.0000**	946.0000**	197.0000**	
Cyanide	< 0.9200	< 0.9200	< 0.9200	< 0.9200	
Iren	32700.0000**	10500.0000	12700.0000	10500.0000	
Lead	**0000.199	201.0000**	131.0000**	265.0000**	
Megnesium	8770.0000	9000.0069	6920.0000	8080.0000	
* Nanganese	320.0000	275.0000	237.0000	149.0000	
Mercury	0.3190**	< 0.0500	< 0.0500	< 0.0500	
Mickel	27.8000**	7.9500	7.2100	17.9000**	
Potassium	572.0000	739.0000	94.0000	967.0000	
Selenium	1.2200**	< 0.2500	< 0.2500	1.1400**	
Silver	< 0.5890	< 0.5890	< 0.5890	< 0.5890	
Sodium	1610.0000**	456.0000	354.0000	811.0000	
Thellion	33.1000**	15.3000**	14.4000**	< 6.6200	
Venedium	32.3000**	19.0000	14.6000	11.7000	
	******	************	***************************************	404 AMO**	

TOOELE AD-WORTH AREA: SLAND NO. 47 - BOILER BLOUDOLN WATER SEDINENT ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS

Sample 10	100-47-001	SD-47-002	SD-47-002-DUP	\$0-47-003	
	0111-768	0111-769	0111-774	0111770	,
Date Sampled	07/16/92	07/16/92	07/16/92	02/08/93	
Depth (ft)	0.000 ft	0.000 ft	0.000 ft	1.000 ft	
Volatile Organic Compounds (ug/g)	2	9	9	9	
Semivolatile Organic Compounds (ug/g)	9	9	2	9	
Pesticides (ug/g)	¥	¥	¥	*	
Merbicides (ug/g)	\$	¥	¥	¥	
Total Petroleum Mydrocarbons (ug/g) Total petroleum hydrocarbons	675.0000**	150.0000**	139.0000**	3110.0000**	
Explosives (ug/g)	9	9	9	9	
Dioxins/furans (ug/g)	≦	¥	¥	¥	

5-**26-**5

Notes: ** a Analyte was detected at the concentration shown < = Not detected at the value shown, MA = Not analyzed

Section 6

6.0 SUMMARY OF RECOMMENDATIONS

6.0.0.1. This section contains a summary of recommendations based on the results of the Phase I RFI sampling results. Recommendations are offered for each SWMU based on whether there is evidence of a release of hazardous waste or constituents, and whether individual SWMUs are regulated under RCRA apart from the TEAD-N Corrective Action Permit. Recommendations for those facilities that currently have a RCRA permit to treat, store, or dispose of hazardous waste (TSD facility), or have interim status while awaiting a permit, are made considering that additional sampling and risk evaluations are required as part of closure of these facilities.

6.0.0.2. In those cases where there is no indication that a release has occurred, no further action is recommended. Conversely, where there are indications that contaminants were released, a follow-up Phase II investigation including evaluations of health risks is recommended. In the case of the RCRA Container Storage Yard (SWMU 27), no further action under RCRA corrective action is recommended because this is a permitted facility and an evaluation of risks to on-site workers is included in this Phase I RFI report. Of those SWMUs recommended for Phase II investigation, not all require additional field work. At several SWMUs, existing data can be used to support risk-based decisions regarding the need for corrective measures. Therefore, SWMU-specific recommendations fall into one of the following four categories:

- No further action. Based on facility design and past waste-handling practices, contaminant releases are considered unlikely, or the Phase I RFI was able to conclude that no contaminant releases have occurred.
- No further action under RCRA Corrective Action (SWMU 27 only). The Phase I data indicate that contaminants above background are present in the soils around this facility but, since the SWMU is operating under a current RCRA TSD facility permit that requires additional sampling and risk assessment upon closure, no further action under RCRA Corrective Action is necessary. An evaluation of risks to on-site workers has been completed as part of this report, and the risks found to be insignificant.
- Phase II investigation without sampling. The Phase I data indicate that a release of contaminants has occurred and there is sufficient information available to conduct either a baseline health risk assessment (for SWMUs not

regulated by RCRA TSD facility permits) or an evaluation of current risks to human and environmental health (for SWMUs regulated by RCRA TSD facility permits). These risk assessments or risk evaluations will be used to determine whether or not a corrective measure study or interim remedial action is needed.

Phase II investigation with additional sampling. Additional field investigations
are necessary to collect the data needed to assess the threat to human and
environmental health and to determine whether or not a corrective measures
study or interim remedial action is needed.

6.1 SWMU-SPECIFIC RECOMMENDATIONS

6.1.0.1. Specific recommendations for each SWMU are described in the following paragraphs. Table 6-1 summarizes these recommendations.

6.1.1. Open Burning/Open Detonation Areas (SWMU 1, 1a, 1b, 1c, 1d)

6.1.1.1. Main Demolition Area (SWMU 1). Based on the results of the Phase I RFI sampling program, a release of contaminants to the surface and near-surface soils has occurred at the Main Demolition Area. Demilitarization activities at SWMU 1 have released metals, explosives, and VOCs and SVOCs. Because this SWMU has interim status under RCRA as a TSD facility, additional sampling and risk assessments will be conducted upon facility closure. However, prior to closure, the presence of the hazardous constituents in the surface and near-surface soils may pose potential health risks to humans, especially on-site workers, and the environment. To quantify the current threat to human health and the environment, a Phase II investigation should utilize the existing data to conduct a current-use risk assessment of both human and environmental health. This should include the known contamination and exposure pathways including inhalation, dermal contact, and ingestion by both humans and cattle that graze in and around the OB/OD Areas. Because the existing environmental sampling data are adequate to support a current-use risk assessment of human and environmental health, no additional sampling is recommended.

TABLE 6-1
SUMMARY OF RECOMMENDATIONS FOR SUSPECTED RELEASES SWMUs

			Recom	mendations	
SWMU Name	SWMU Number	No Further Action	No Further Action Under RCRA Corrective Action	Phase II RFI Risk Assessment Only	Phase II RFI Additional Sampling and Risk Assessment Only
Open Burning/Open Detonation Areas					
Main Demolition Area ^(a)	1			•	
Cluster Bomb Detonation Area	la			•	
Burn Pad	1b			•	
Trash Burn Pits	1c			•	
Propellant Burn Pans ^(a)	1d			•	
Box Elder Wash	-	•			
Sandblast Area	4				•
Sewage Lagoons	14				•
AED Demilitarization Test Facility	19			•	
AED Deactivation Furnace Site	20				•
Deactivation Furnace Building(a)	21			•	
DRMO Storage Yard	26			•	-
RCRA Container Storage Yard ^(b)	27		•		
90 Day Drum Storage Area	28				•
Drum Storage Areas	29			•	
Pesticide Handling and Storage Area	34				•
Contaminated Waste Processing Plant	37				•
Industrial Waste Treatment Plant	38			•	
Solvent Recovery Facility	39	•			
Bomb Washout Building	42				•
Container Storage for P999	43	•		·	
Tank Storage for TCE	44	•			
Stormwater Discharge Area	45				•
Used Oil Dumpsters	46				•
Boiler Blowdown Water	47				•

Notes: (a) SWMU is regulated by a RCRA TSD facility permit requiring additional sampling and risk assessment upon closure. Phase II risk assessments for these facilities will be limited to current-use scenarios.

⁽b) SWMU is regulated by a RCRA TSD facility permit. An evaluation of risks due to current-use exposure has been completed.

- 6.1.1.2. Cluster Bomb Detonation Area (SWMU 1a). The results of the Phase I RFI sampling at SWMU 1a show that certain contaminants have been released to the surface and near-surface soils by previous activities. Because this sub-SWMU is recommended for inclusion within the Main Demolition Area (SWMU 1), additional investigations of the Cluster Bomb Detonation Area should be included with SWMU 1.
- 6.1.1.3. Burn Pad (SWMU 1b). Phase I RFI sampling revealed that some release of contaminants has occurred here. Therefore, a Phase II evaluation using existing data is recommended. The Phase II investigation should include a baseline risk assessment to help identify and quantify potential; aks associated with this SWMU to humans and the environment. The existing data are sufficient to support the Phase II evaluation and no additional sampling is required.
- 6.1.1.4. Trash Burn Pits (SWMU 1c). Soil samples from the trash burn pits indicate that contaminants have been released in surface and near-surface soils. Metals, VOCs, SVOCs, explosives, explosive by-products, and minor concentrations of dioxins and furans were detected at SWMU 1c. The effect of this release on human health and the environment is not known at this time. A Phase II evaluation utilizing existing data is recommended. The evaluation should include a baseline risk assessment to help identify and quantify health risks associated with this release. No further sampling activities are recommended.
- 6.1.1.5. Propellant Burn Pans (SWMU 1d). Surface and subsurface soil samples from SWMU 1d reveal that past and present demilitarization activities have released metals and explosive compounds to the surrounding surface soils. Because this sub-SWMU is a TSD facility operating under interim RCRA status, additional sampling and assessments of risks will be conducted upon closure. However, prior to closure, the presence of hazardous wastes and constituents may pose a threat to humans and the environment. For this reason, it is recommended that SWMU 1d be included in a Phase II investigation that includes a current-use risk assessment to quantify risks to humans and the environment. Because the sampling data collected to date are sufficient to support a current-use risk assessment, no further sampling is recommended.

6.1.2 Box Elder Wash

6.1.2.1. Based on the results of the Phase I RFI sampling along Box Elder Wash, no contamination of surface soils appears to have occurred. The contaminants present at the various SWMUs and SWMU subunits within the OB/OD Area do not appear to have been

transported by surface water into or along this wash. The only metals detected above the background thresholds were cadmium and copper, and the concentrations of these metals were negligible. No explosives were detected. The concentrations of major anions in some samples, while above statistically-generated background values, are not considered a major concern here in the absence of other contaminants. Therefore, no further action is recommended for Box Elder Wash.

6.1.3. Sand Blast Area (SWMU 4)

6.1.3.1. Samples collected during the Phase I RFI sampling detected the presence of elevated metals and organic compounds in the surface soils surrounding the sandblast dumpsters at SWMU 4. Metals detected commonly included cadmium and lead, both of which are considered toxic. Several other metals were also detected, as was cyanide. VOCs and SVOCs were detected at low levels in several samples. Most of the SVOCs were likely constituents in the paints used in the sandblast media. Sample results indicate that collection points for used sandblast media are sources of contaminants released to the environment. For this reason, it is recommend that SWMU 4 be included in future Phase II studies. The presence of elevated levels of metals and several SVOCs may pose a potential health risk to humans. To quantify the threat to human health and the environment, the Phase II effort should include the following:

- Sampling shallow borings (up to 5 feet deep) through the asphalt parking lots in the vicinity of the sandblast media dumpsters to evaluate depth of contamination.
- Sampling of surface soils and soils immediately beneath the paved areas in a grid pattern to determine the horizontal extent of contamination.
- Sampling surface soils along surface water runoff pathways.
- Conducting a baseline health risk assessment.

6.1.4. Sewage Lagoons (SWMU 14)

6.1.4.1. The results of the Phase I RFI Sampling Program show that the sewage lagoons have affected groundwater quality in that concentrations of sodium in downgradient wells are slightly elevated compared to upgradient water quality. Also, groundwater sampling

during July 1992 detected elevated levels of arsenic, barium, lead, and chromium, especially in the downgradient well N-134-90. These elevated levels were not found during the follow-up sampling round in February 1993. Because the first round results were not replicated, sewage lagoon wastewater does not appear to be contributing organic contaminants or metals to the groundwater at this time. Because of the elevated levels of contaminants detected in the lagoon sediments, and the potential for contamination of the soils underlying the lagoon liner, further activities are recommended at SWMU 14. These activities should include sampling the underlying soils.

6.1.5. AED Demilitarization Test Facility (SWMU 19)

6.1.5.1. Soil samples collected during the Phase I RFI Sampling Program reveal that a release of low levels of metals, the explosive compound RDX, and several different SVOCs has occurred. SWMU 19 should be included in future Phase II evaluation activities. Elevated levels of nitrate are also present in surface soils. However, because concentrations of contaminants are low and not widespread, no additional sampling is recommended. Existing data should be sufficient to conduct a baseline risk assessment to evaluate the potential risks associated with this SWMU.

6.1.6. AED Deactivation Furnace Site (SWMU 20)

6.1.6.1. Phase I soil sampling revealed that demilitarization test activities conducted at SWMU 20 have released contaminants including varying concentrations of metals, explosives, and concentrations of organic compounds to the soils. It is recommended that this SWMU be included in future Phase II evaluation activities. The presence of metals in surface soils may present a potential health risk to humans. To quantify this risk, the Phase II investigation should include the following:

- Sampling surface soils and shallow soils for metals and explosives, both at the facility and on transects away from the facility to determine the vertical and areal extent of contamination
- · Conducting a baseline risk assessment

6.1.7. Deactivation Furnace Building (SWMU 21)

6.1.7.1. Phase I RFI soil sampling revealed that various contaminants have been released to surface soils from SWMU 21 activities. Elevated levels of numerous metals were detected in all soil samples collected, as were detectable levels of dioxins/furans. Explosives were present in five of the ten samples collected. Both VOCs and SVOCs were also detected in surface soils as well as elevated levels of nitrates and total phosphates. These compounds are most likely present as daughter products from the incineration of explosives at this SWMU. Because this SWMU operates under a RCRA TSD facility permit, requiring additional sampling and risk assessment upon closure, a current-use assessment of risks to human and environmental health is recommended for the Phase II RFI. Sampling should be limited to that needed to support the current-use risk assessment. Although extensive soils data have been collected, a drinking water supply for cattle and native animals near SWMU 21 may pose a threat to these animals. Therefore, the following is recommended:

- · Sampling surface water in a watering trough near the east side of the SWMU
- Sampling sediment from a wet area where the watering trough drains.

6.1.8. DRMO Storage Yard (SWMU 26)

6.1.8.1. Phase I RFI soil sampling at SWMU 26 has revealed that various contaminants have been released to surface soils. Metals, small concentrations of cyanide, and minor concentrations of VOCs and SVOCs were detected in the soil samples. Based on the results of this sampling there is evidence that activities at SWMU 26 have released numerous types of contaminants to the environment. Therefore, it is recommended that Phase I RFI sampling data be used in the Phase II evaluation to assess potential health risks to both humans and the environment. No more sampling is required for the Phase II assessment, as Phase I sampling provided sufficient coverage. However, a Phase II assessment should include an evaluation of stained soils versus unstained soils sampled to provide an indication of the localization of the detected contamination.

6.1.9. RCRA Container Storage (SWMU 27)

6.1.9.1. Contaminants detected during the Phase I RFI investigation at SWMU 27 include elevated levels of several metals. However, because all samples at this SWMU were collected from imported granular fill material underlying this facility, it is possible that elevated metals are naturally-occurring in this imported material. Regardless of their

source, as discussed in Section 5.14.5., these metals pose no threat to on-site workers under the current-use scenario. Since SWMU 27 is currently an operating TSD facility under a RCRA Part B permit, additional sampling and risk assessment will be conducted upon facility closure. For both these reasons, no further action under RCRA Corrective Action is recommended for this SWMU.

6.1.10. 90-Day Container Storage Area (SWMU 28)

6.1.10.1. The results of the Phase I RFI Sampling Program show that metals and organic compounds have been released to surface soils at SWMU 28. Concentrations of cadmium, lead, and zinc, as well as VOCs and SVOCs, were detected in soil samples. For this reason, it is recommended that SWMU 28 be included in the Phase II evaluation to quantify the threat to human health and the environment. Since SWMU 28 is a 90-day holding area, no RCRA permit is required. However, RCRA requirements will involve future environmental sampling activities at the time of closure and no additional Phase II soil samples should be collected and should include sampling soil borings (3-5 feet deep) to determine the vertical extent of contaminants.

6.1.11. Drum Storage Areas (SWMU 29)

6.1.11.1 Soil samples collected from SWMU 29 during the Phase I RFI investigation indicate that activities at the Drum Storage Areas have released contaminants to the environment. Metals, VOCs, and pesticide compounds were identified in the soil samples. Because the Phase I data provide sufficient coverage, it is recommended that the Phase I data be evaluated in the Phase II investigation to quantify health risks in a baseline risk assessment. Because present sample data give widespread coverage, no additional sample collection is required at this time.

6.1.12. Pesticide Handling and Storage Area (SWMU 34)

6.1.12.1 Soil sampling conducted at the Pesticide Handling and Storage Facility has revealed that contaminants have been released. Five of six soil samples contained elevated levels of metals. One sample contained an elevated level of cyanide and all six samples contained detectable concentrations of pesticides and/or herbicides. Due to the presence of these contaminants, it is recommended that this SWMU be included in Phase II investigations. Because DDT is present in concentrations greater than 1 µg/g, it is possible that this compound may present a threat to human health and the environment. Although

the available data are useful, they are insufficient to quantify health risks. Therefore, to collect the needed data and quantify the health risks, the scope of the Phase II RFI should include the following:

- Sampling surface soils around the facility to provide wider coverage and determine the areal extent of contamination
- Sampling surface and near-surface soils in shallow borings (3-5 feet deep) at and around the facility to evaluate the areal and vertical migration of contaminants
- Sampling deeper borings (20 feet deep) in the vicinity of the mixing area and under the adjacent concrete pad to determine if spills or rinsate have migrated into the subsurface to this depth
- Analyzing selected samples for dioxins/furans to see if these types of compounds (present in some herbicides) are present
- Conducting a baseline risk assessment.

6.1.13. Contaminated Waste Processing Plant (SWMU 37)

6.1.13.1. Soil sampling during the Phase I RFI suggest that incineration activities have released numerous types of contaminants to the environment, some of which may pose a health threat to humans and the environment. Contaminants of concern include dioxins/furans and SVOCs. For this reason, it is recommended that SWMU 37 be included in the Phase II evaluation. Because there are insufficient data to quantify the threat to human health and the environment, additional Phase II soil sampling should be conducted at this SWMU prior to conducting an evaluation of health risks. Phase II efforts should include:

 Sampling surface soils around the facility and away from the paved area to determine the areal extent of contaminants

- Sampling deeper borings in areas of known contamination and surface water runoff channels to evaluate the vertical migration of the SVOCs and the dioxins/furans
- Conducting a baseline risk assessment.

6.1.14. Industrial Wastewater Treatment Plant (SWMU 38)

6.1.14.1. Soil samples collected from SWMU 38 during the Phase I sampling show that low levels of several contaminants have been released to surface soils in the vicinity of the used granular activated carbon (GAC) containers. For this reason, it is recommended that SWMU 38 be included in the Phase II evaluation. Due to the low concentrations and limited extent of the contaminants present, it is recommended that no additional sampling be conducted at this SWMU, but that the Phase II investigation include an evaluation of the potential health risk posed by contaminants at this SWMU utilizing existing data.

6.1.15. Solvent Recovery Facility (SWMU 39)

6.1.15.1. Because the Solvent Recovery Facility is new and equipped with adequate containment features, and because there have been no spills of reportable quantities, it is unlikely that there is any significant environmental contamination resulting from waste handling or storage practices at this facility. For this reason, no sampling was conducted and unless the waste handling practices change, no further actions are recommended.

6.1.16. Bomb Washout Building (SWMU 42)

- 6.1.16.1. Phase I sampling activities at the Bomb Washout Facility indicate that both metals and explosives have been released to the soils in the vicinity. Extremely high levels of lead are a cause for concern. Because of the contamination detected at SWMU 42, it is recommended that it be included in the Phase II evaluation. Due to the presence of elevated metals in surface soils, there is a potential health risk to both humans and the environment. To quantify the risk, the Phase II RFI should include the following:
 - Searching for additional, more specific background information regarding the
 nature and history of activities conducted at SWMU 42 and describing the
 different types and locations of equipment operated here, allowing more efficient
 siting of sampling locations

- Sampling borings from 5 to 10 feet deep in areas away from the immediate vicinity of the ditch, pond, and second furnace to evaluate metals and explosives contamination at those depths
- Sampling deeper borings to 100 feet beneath the waste water ditch and evaporative pond where elevated metals are present below the depths explored in the Phase I investigation
- Field screening for lead using X-ray fluorescence to evaluate lead concentrations on site, allowing rapid delineation of contaminated areas
- Conducting a baseline health risk assessment.

6.1.17. Container Storage Areas for P-999 and Mustard Agent-Filled Mortar Rounds (SWMU 43)

6.1.17.1. No environmental sampling was conducted in the vicinity of the storage igloos in SWMU 43 and upon review of available records and interviews with Base personnel, no indications that mustard agents leaked from the 4.2-inch mortar rounds while stored in the north area were revealed. In addition, because M-55 rocket components stored in other igloos did not contain or contact chemical agents or warheads, there is no reason to believe that contaminants have been released to the environment from these storage facilities. For this reason no further action is recommended for SWMU 43.

6.1.18. Tank Storage for Trichloroethylene (SWMU 44)

6.1.18.1. Waste from the TCE storage tank was emptied into the IWL outfall ditches and lagoon. These facilities have been excavated and capped. Remediation of the groundwater contaminant plume associated with the IWL is underway. Neither the storage tank nor contamination originating from the tank remain at the site, therefore no further action is recommended.

6.1.19. Stormwater Discharge Area (SWMU 45)

6.1.19.1. Sampling of surface water sediment and soil at SWMU 45 suggest that stormwater discharges have released contaminants to the environment. Therefore, it is

recommended that SWMU 45 be included in future Phase II activities. Because elevated concentrations of metals, explosives, VOCs, and SVOCs were detected in both the sediment and surface waters, and this area has received aqueous discharges for many years, it is possible that contaminants have migrated to the groundwater beneath this pond. The Phase II RFI at this SWMU should include installation and sampling of monitoring wells in the vicinity of SWMU 45, as well as sampling of existing nearby monitoring wells. In addition, to quantify the risks to human health and the environment, a baseline risk assessment should be included.

6.1.20. Used Oil Dumpsters (SWMU 46)

6.1.20.1. The results of surface and shallow soil sampling near the used oil dumpsters comprising SWMU 46 show that these dumpsters have released TRPHs to the nearby surface and shallow subsurface soils. Therefore, it is recommended that this SWMU be included in the Phase II evaluation to characterize the extent of this contamination and to evaluate the potential health risk it poses to humans and the environment. To provide the necessary information, additional Phase II soil samples should be collected and an evaluation of health risks conducted. The scope of the Phase II RFI should include:

- Shallow soil borings (up to 5 feet bgs) in the vicinity of the used oil dumpsters
- Soil samples from the first foot and total depth for TRPH and VOCs
- A baseline risk assessment.

6.1.21. Boiler Blowdown Water (SWMU 47)

6.1.21.1. The media sampled at SWMU 47 included surface water and sediment. Results of this sampling reveal that boiler blowdown activities may have released some organic compounds to the environment. Therefore, it is recommended that SWMU 47 be included in Phase II evaluation activities including a baseline risk assessment. Additional sampling is recommended around the open discharge site west of Building 691, to further quantify the risks associated with this effluent. Surface water, sediment, and shallow soil samples should be collected along the open channel here.

6.2 SWMU PRIORITIZATION

6.2.0.1. One of the objectives of the Phase I RFI was to rank the SWMUs included in the program for additional investigation. Table 6-2 contains a summary in which SWMUs are prioritized by a qualitative evaluation of the toxicity and extent of contaminants, exposure pathways, and potential receptors.

TABLE 6-2 **SWMU PRIORITIZATION**

Priority	SWMU Name (Number)	Rationale
1	Bomb Washout Building (SWMU 42)(a)	High levels of metals in surface soils
2	Stormwater Discharge Area (SWMU 45)(a)	Threat to groundwater
3	Deactivation Furnace Building (SWMU 21) ^(a)	High levels of metals in surface soils
4	Contaminated Waste Processing Plant (SWMU 37) ^(a)	Elevated levels of dioxins and metals
5	AED Deactivation Furnace Site (SWMU 20) ^(a)	High levels of metals in surface soils
6	OB/OD Areas (SWMU 1)(b)	Extensive area contamination
7	Pesticide Handling and Storage Area (SWMU 34) ^(a)	Presence of pesticides and herbicides in surface soils
8	Sandblast Areas (SWMU 4) ^(a)	High levels of potentially toxic metals
9	DRMO Storage Yard (SWMU 26)(b)	Wide area of moderate contamination of several types
10	Drum Storage Areas (SWMU 29)(b)	Pesticides and metals along surface water drainage
11	Sewage Lagoons (SWMU 14)(a)	Sediments and underlying soils could be a contamination source
12	90-Day Drum Storage Area (SWMU 28)(a)	Slightly elevated levels of several contaminants in isolated locations
13	Industrial Waste Treatment Plant (SWMU 38) ^(b)	Slightly elevated levels of metals and SVOCs in isolated area
14	AED Demilitarization Test Facility (SWMU 19) ^(b)	Slightly elevated levels of metals at isolated locations
15	Used Oil Dumpsters (SWMU 46)(a)	Detectable levels of TRPH present at most locations
16	Boiler Blowdown Water (SWMU 47)(b)	Some elevated metals, cyanide, and TRPH at isolated locations
17	RCRA Container Storage Yard (SWMU 27) ^(c)	Eventual RCRA closure requirements
18	Container Storage for P-999 and Mustard Agent-filled Mortar Rounds (SWMU 43)(d)	No evidence of release
19	Solvent Recovery Facility (SWMU 39)(d)	No evidence of release
20	Tank Storage for TCE (SWMU 44)(d)	No SWMU present at this facility

Notes:

- (a) Indicates a Phase II investigation with additional sampling is recommended.
 (b) Indicates a Phase II investigation without additional sampling is recommended.
 (c) Indicates no further action is recommended under RCRA Corrective Action.
 (d) Indicates no further action is recommended.

REFERENCES

- AEHA, 1982. Final Report, Hazardous Waste Management Special Study No. 80-26-0207-83, Tooele Army Depot, Tooele, Utah, March 15 September 26, 1982, Aberdeen Proving Ground, Maryland.
- AEHA, 1983. "Phase 2 Hazardous Waste Special Study No. 39-26-0147-83, DARCOM Open Burning/Open Detonation Grounds Evaluation, Tooele Army Depot, Utah," U.S. Army Aberdeen Proving Ground, Maryland.
- AEHA, 1984. "Phase 3 Hazardous Waste Special Study No. 39-26-0147-83, DARCOM Open Burning/Open Detonation Grounds Evaluation, November 1981 September 1983;" U.S. Army, Aberdeen Proving Ground, Maryland.
- AEHA, 1985. "Phase 4 Hazardous Waste Study No. 37-26-0462-85, AMC Open Burning/Open Detonation Grounds Evaluation. Investigation of Soil Contamination at the Open Burning Ground, Tooele Army Depot, Utah, 27 July 10 August 1984," U.S. Army, Aberdeen Proving Ground, Maryland.
- AEHA, 1987. "RCRA Part B Permit Writers Guidance Manual for Department of Defense Open Burning/Open Detonation Units," Aberdeen Proving Ground, MD.
- AEHA, 1989. "Hazardous Waste Management Consultation No. 37-26-0277-89, Residue from Burning PCP-Treated Wood, Tooele Army Depot, Utah," Aberdeen Proving Ground, Maryland; January 1989.
- Benton, 1991. Telephone interview conducted by David Shank (JMM) with endangered species biologist, W.R. Benton, US Fish and Wildlife Service, Salt Lake City, UT, November 1991.
- Bishop, 1990. Telephone interviews conducted by J. MacKinnon, Environmental Engineer and P. Ianni, Senior Scientist, E.C. Jordan Co. with J. Bishop, TEAD-N employee, July 18, 1990 and July 31, 1990.
- Chamberland, 1992. Telephone interview by David Shank (JMM) with Robert Chamberland, former TEAD-N employee in the dynometer test facility in Building 637, April, 1992.
- Clark, 1990. Telephone interview conducted by E.C. Jordan Co. with R. Clark, employee, Tooele Army Depot, North Area; 1990.
- Curry, D.R. and Others, 1984. Major Levels of the Great Salt Lake and Lake Bonneville, Utah. Utah Geological and Mineral Survey, Map 73, 1:750,000 scale.
- E.C. Jordan Co. (Jordan), 1989. Site Visit Walkover and Interviews Tooele Army Depot, North Area; requested by U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland, October 31 November 2, 1989.
- EA Engineering, Science, and Technology, Inc. (EA), 1988. "Tooele Army Depot Preliminary Assessment/Site Investigation Final Report, Volume I North Area," prepared for U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland; December 1988.

- EMO, 1989. Environmental Management Office, TEAD-N, 1989. Results of Analysis of Used Granular Activated Carbon Sample from the Industrial Wastewater Treatment Plant.
- EPIC, 1986. Environmental Photographic Interpretaion Center Report Addendum.
 Installation Assessment Report, Tooele Army Depot, North Area, Utah, July 1986.
- ERTEC, 1982. "Assessment of Environmental Contamination Exploratory Stage, Tooele Army Depot, Tooele, Utah;" Volumes I-IV, October, 1982; addendum added in 1986, completed by EMSL, Las Vegas.
- Everitt and Kaliser, 1980. "Geology for Assessment of Seismic Risk in the Tooele and Rush Valleys, Tooele County, Utah;" Utah Geological and Mineral Survey, Special Studies No. 51.
- Fisher, 1993. Telephone communication between Mr. Larry Fisher, TEAD Environmental Engineer, and D.C. Krupicka, Montgomery Staff Geologist; August, 1993.
- Fox, 1989. Personal interview conducted by D. Shank, Hydrogeologist, James M. Montgomery Consulting Engineers, Inc. with W. Fox, U.S. Army Environmental Hygiene Agency employee; December 6, 1989.
- Gates, 1965. "Reevaluation of the Ground-Water Resources of Tooele Valley, Utah;" Utah State Engineer, Technical Publication No. 12.
- JMM, 1988. "Final Groundwater Quality Assessment Engineering Report to the Tooele Army Depot, Utah;" prepared for U.S. Army Corps of Engineers, Huntsville, Alabama; Project No. 15870621; December 1988.
- JMM, 1989. "Site Inspection of RCRA Container Storage Yard;" prepared by David L. Shank, Jr. on behalf of E.C. Jordan, December 6, 1989.
- JMM, 1992. "Data Collection Quality Assurance Plan (DCQAP);" prepared for USATHAMA, Aberdeen P.G., Maryland, Project Number 29420120, June, 1992.
- Kinsinger, 1989. Telephone interview conducted by David Shank (JMM) with TEAD N employee, Jim Knsinger, Tooele Army Depot, Utah, November 1991.
- Lopez, Virgil, 1993. Personal interview conducted by D. Krupicka, Geologist (JMM) with V. Lopez, TEAD-N Building 691 employee; February 8, 1993.
- Mander, 1989. Inventory of Drummed Wastes at 90-Day Drum Storage Area, conducted by G. Mander, TEAD-N employee; 1989.
- Mascarenas, 1990. Telephone interview conducted by E.C. Jordan, Inc. with former TEAD-N employee, Henry Mascarenas, 1990.
- McCoy, Mel, 1989. Personal Communication between Tim Kipp of E.C. Jordan Co., and Mel McCoy of Tooele Army Depot, Tooele, Utah, November 1989.
- Nash, 1992. Telephone interview conducted by David Shank (JMM) with Louis Nash, employee at TEAD-N 90-Day Storage Yard, April 1992.

- Nichols, 1991. Telephone interview conducted by David Shank with Engineering and Logistics Directorate Buildings and Grounds Section employee, Bill Nichols, December, 1991.
- NUS, 1987. "Draft Interim RCRA Facility Assessment," prepared for U.S. Environmental Protection Agency; USEPA Contract No. 68-01-7310; July 1987.
- Rasmussen, 1991. Laboratory data transmitted from Roger V. Rasmussen, TEAD Environmental Engineer, to Daniel Shrum, Associate Hydrogeologist, James M. Montgomery, Inc. on November 19, 1991.
- Rhea, 1990. Telephone interview conducted by J. MacKinnon, Environmental Engineer, E.C. Jordan Co. with K. Rhea, TEAD-N employee; July 26, 1990.
- Razem and Steiger, 1981. "Ground-Water Conditions in Tooele Valley, Utah, 1976-1978;" State of Utah Department of Natural Resources, Technical Publication No. 69.
- Rutishauser, 1989. Letter from Paul W. Rutishauser, Director, TEAD Directorate of Ammunition Operations to Daniel Shrum, Associate Hydrogeologist, James M. Montgomery, Inc., dated November 19, 1991.
- Rutihauser, 1990. Telephone interview by David Shank, James M. Montgomery, Consulting Engineers, Inc. with Paul Rutihauser, TEAD Director of ammunition operations.
- Rutihauser, 1991. Telephone interview by David Shank, James M. Montgomery, Consulting Engineers, Inc. with Paul Rutihauser, TEAD Director of ammunition operations.
- Serreyn, 1992. Personal interview conducted by David Shank (JMM) with Ammunition surveillance Chief, Milo Serreyn, Tooele Army Depot, Utah, October 1992.
- Siniscalchi, 1991. Telephone interview conducted by David Shank, Hydrogeologist, James M. Montgomery Consulting Engineers, Inc. with Jeff Siniscalchi, TEAD-N employee; November 19, 1991.
- Smith, 1990. Telephone interview conducted by P. Ianni, Senior Scientist, E.C. Jordan Co. with D. Smith TEAD-N employee; January 9, 1990.
- Snyder, 1990. Telephone interview conducted by P. Ianni, Senior Scientist, E.C. Jordan Co. with R. Snyder, TEAD-N employee; July 31, 1990.
- TEAD-N, 1991a, Draft Spill Prevention Control and Countermeasures Plan (SPCCP) and Installation Spill Contingency Plan (ISCP) for TEAD-N; Tooele Army Depot, September, 1991.
- TEAD-N, 1991b, Hazardous Waste Contingency Plan for TEAD-N (HW Management Facilities); Tooele Army Depot, October, 1991.
- Tetra Tech, 1992. Analytical data from pre-construction sampling at the drum storage areas (SWMU 29), November, 1992.
- Tooele, 1991. Telephone communication by Deborah Drain, James M. Montgomery Consulting Engineers, Inc. with Tooele County Commissioner's Office receptionist, December 1991.

- Tooker, E.W. and R. J. Roberts, 1970. Upper Paleozoic Rocks in the Oquirrh Mountains and Brigham Mining District, Utah, U.S. Geological Survey Professional Paper 629-A.
- USSCS, 1991, U.S. Soil Conservation Service (USSCS), Soil Survey of Tooele county Area, Utah; U.S. Department of Agriculture, unpublished data.
- USEPA, 1982. Installation Assessment, Tooele Army Depot (North Area), Utah, Prepared for US Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD, No. AR-21-F-202-0, january, 1982.
- USEPA, 1989. RCRA Facility Investigation (RFI) Guidance, OSWER Directive 9502.00-60, Parts 1 and 2, Waste Management Division Office of Solid Waste, May, 1989.
- USEPA, 1989a. Statistical Analysis of Ground-Water Monitoring Data at RCRA (Resource Conservation and Recovery Act) Facilities, Interim Final Guidance; pB89-151047, February, 1989.
- USEPA, 1990. Federal Register (57 FR 30798) Proposed Subpart S Amendments to RCRA (40 CFR Part 264) Action Levels, MCLs, and Protection Standards, Appendices A Through C; July, 1990.
- USEPA, 1992. Region IX Preliminary Remediation Goals Tables; November 10, 1992.
- Ware, 1992. Telephone interview conducted by David Shank (JMM) with Tom Ware, Chief of Utilities Division of Engineering and Logistics, April, 1992.
- Ware, 1993. Telephone interview conducted by D. Krupicka (Montgomery Watson) with Tom Ware, Chief of Utilities Division of Engineering and Logistics; August, 1993.
- Weston, Roy F., 1990. "Final Draft Remedial Investigation Report, Tooele Army Depot North Area Remedial Investigation," prepared for U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland; Contract No. DAAA15-85-D-0015; May 1990.
- WCC, 1986, Woodward-Clyde Consultants, "Final Draft Groundwater Quality Assessment Tooele Army Depot, Volume I;" prepared for Department of the Army Huntsville Division, Corps of Engineers; Contract No. DACA87-84-C-0071; April 1986.