
ADST/WDL/TR-930003050 MODSAF MAINTENANCE PLAN

-ytm Company

i AD-A282 760

i Advanced Distributed
Simulation TechnologyI
Modular Semi-Automated Forces System (MODSAF)
Maintenance Plan

* CDRL AOOA
-. ..X-. .'V

I Systems Company
ADST Program Office
12443 Research Parkway, Suite 303

I Orlando, FL 32826

February 19, 1993I Prepared for \~
STRICOM 94-24950
Simulator Trraiinxg and II 15
Instrumentation Command
Simulator Training and Instrumentation Command
Naval Training Systems Center
12350 Research Parkway
Orlando. FL 32826-3275

D'lCQULIY ILPFt1.

February 19, 4 8ny Ver1.
113i JOCm~ Ver 1.1

9r 4 sy'm com | | |

ADS T/WDL/TR-930003050 MODSAF MAINTENANCE PLAN

system complyFom
e

I REPORT DOCUMENTATION PAGE ow , . 7o4 188
Public reporting burden or this collection of information is esimd to avr. I hour per respose. ",clding the time for reviewing insructons, searchi

edsting data sources. gathering and mintining the dat needed, and completing and reviwng the olecon oft inomaton, sandcomments regardinglis
burden estimate or any other aspect of this c of inbrmton, inuding suggestions for reducing this burden. to Washington Headquarters Services,
Directorate for infornation Operations and Reports, 1215 Jefferson Dais Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of
Management and Budget Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE PO TYPE AND DATES COVERED
02/15/93 ersMn 1.u

12/92 -02/93
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IMODSAF Maintenance Plan Contract No.

N61339-91-D-0001

I e~~. AUTHORlS)CDLA A

Ceranowicz, Andrew

7. PERFORMING ORGANIZATION NAME(S) AND AORESS(ES) 8. PERFORMING ORGANIZATION
Loral Systems Company BEN Advanced Simulations REPORT NUIER

ADST Program Office BBN Systems and Technologies Division ADST/WDL/TR-92-003050
12443 Research Parkway, Suite 303 Bolt, Beranek, and Newman Inc. CRDL A00A

SOrlando, FL 32826 50 Moulton StreetI Cambridg~gX~ e. MA 02138 _________

9. SPONSOHING NITOHING AGENCY NAME(S) AND A JU ELS(M) 10. SPONSORING
STRICOM ORGANIZATION REPORT

Naval Training Systems Center
12350 Research Parkway
OrlandoFL 32826-3275

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Mximum 200 words)

The MODSAF Maintenance Plan describes the process required to modify and change parameters, features,
characteristics, and behaviors of the software modules of Version 1.0 of the Modular Semi-Automated Forces
System (MODSAF) 1.0. MODSAF is a Distributed Interactive Simulation (DIS) system for simulating and
controlling entities such as vehicles, dismounted infantry, missiles, and dynamic structures on a virtual
battlefield. These entities interact with each other and manned simulators to support training, combat
development experiments, test, and evaluation studies in the DIS environment. MODSAF is the replacement
for the current SIMNET Semi-Automated Forces (SAF).
14. SUBJECT TERMS 15. NUMBER OF PAGES

10

15. PRICE COE

17. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 17. SECURITY CLASSFICATION 20. LIMTATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 tndard Form 298 (Rev. 2-89)
Pmscrted by ANSI Sid Z39-18
29W102

February 19. 1993 Ii Ver 1.1

I

I
Table of Contents

0.1 Introduction .. 1
0.2 Adding and Changing Platforms 1

0.2.1 Model List File ... 2

0.2.2 Model File .. 3
0.2.3 Mapping File ... 5

0.3 Adding and Changing Units5
0.4 Adding and Changing Physical Components 6
0.5 Changing Behavior Via Task Frames 7
0.6 Changing Behavior Via Tasks 7

0.7 Making Protocol Changes .. 8
0.8 Making GUI Changes .. 8
0.9 Creating New Applications .. 9
0.10 Adding New Databases ... 9
0.11 Documentation Requirements 9
0.12 Testing Requirements * 10
0.13 Coding Standards .. 10

I
I
I

I £.Oossaon PoP
NTIS GRA&II DTIC TAB Q0
Unannounced 0

Jistsributlon

Avi lability Codee
Avail ~:.cr

iet l|SPeo Ic1

I
I

*ii ModSAF Maintenance Plan I

I
I
I
I
I
I
U
I
I
I
I
I
I
I
!1
I

I

I
!1

0.1 Introduction

The ModSAF software architecture is an extensible set of software modules that allows rapid
development and testing of new agents and tactics in the DIS simulated environment. The plat-
forms, sensors, weapons, organizations, and tactics in use by the military are constantly changing.
In addition, the scope of systems simulated by ModSAF 1.0 is limited. Therefore, extensions and
modifications will be needed to support future experiments and training. The architecture of Mod-
SAF supports this process by making it easier to add new modules. Therefore, it is anticipated that
the users of ModSAF will wish to extend and customize it. This plan indicates the types of changes

that users can make and describes some of the elements involved. Since ModSAF is currently under
development, it is not feasible to provide the exact details of the procedures required to make the
changes in this document. ModSAF will include detailed online documentation describing these
procedures.

I ModSAF can be changed through parameter files or by adding new code modules. New entities
can be added, behaviors can be modified, and the user interface can be changed by the use of pa-
rameter and resource files. More fundamental changes require writing new code. ModSAF supports
the addition of new code by isolating the code simulating different components and behaviors in
libraries. These libraries have well defined and documented interfaces and explicit dependencies.

This allows tie implementor of a change to quickly determine what libraries need to be added or
modified.I

0.2 Adding and Changing Platforms

The ModSAF architecture only defines a generic simulation entity in code. Detailed specification
of entities is actually done at when the entity is created at the start of an exercise. The components
and behaviors of the entity are read from a database of entity descriptions defined in parameter

files or by user inputs. The parameters specify the characteristics and behavior of the entity and
allow these to be changed without recompiling the system.

All the simulation modules which make up a particular SAFOR entity are listed in a data file
stored with the main program. This allows the user to change, add, or delete components such
as sensors, weapons, and propulsion systems. A generic version of each component is defined in
a library. If you write your own weapon or sensor component you can include it in a vehicle by
modifying the components section of the vehicle's parameter file. Generic components (such as
tracked-hull) are parameterized so they can be customized for particular vehicles (M1, M2, T72,
T80, etc.). This is true not only of physical components, but also of behavioral descriptions andI

I

2 ModSAF Maintenance Plan i
I

architectural support modules. For each component included in the entity, the data file also lists
the parameters used for that entity.

Parameter files are distinguished by ".rdra extensions on their names. For example, the pa-
rameter file defining an F14 aircraft model is named "USFl4Dparams.rdr". The F14 parameter
file specifies the dynamics model to use (rotary wing aircraft, fixed wing aircraft, tracked ground
vehicle, etc.), and the parameters of that model (maximum turn rate, fuel consumption, etc.). The
network appearance of the entity and its dead reckoning thresholding parameters are specified.
Weapons systems are specified by name, and vehicle dependent weapons parameters are given for
each (time to load the weapons, accuracy as a function of range, etc.). Since all this data (and
much more) is specified for each vehicle, it is possible to change the performance characteristics of
each vehicle without modifying any software (as long as the basic component models are capable of
the desired behavior). Adding new kinds of vehicles often requires only copying and modification
of data files.

All parameter files can be edited with standard Unix text editors such as vi or emacs. Future

versions of ModSAF will support specialized editors with graphical interfaces, menus, and error

checking features.I

Three different types of files may be modified or added when changing or adding a platform to
ModSAF.

* A model file may be modified to change the parameters for a particular type of platform. This
model file might define parameters that are shared by different platforms. A new model file
might be created to specify parameters for a new type of platform. 3

• The 'mapping file may be modified to specify new mappings between DIS entity types (plat-
forms) and the parameters used to simulate these platforms.

" The model ist file may be modified to specify the loading of newly defined model files.

These files are described below. 3

0.2.1 Model List File "

At program startup, the file "modellist.rdr" is read by the ModSAF application program. This
file contains the list of all the vehicle model files that should be read in by the program, as well

as some utility files that define macros which are shared between multiple vehicle model files. The U
following is an example modellist file:

I
I

3

S; ; Generic Macro files
"soils.rdr" ; Defines symbolic soil types

;; Specific Vehicle parameter files
"US-14D-parLaas.rdr"
"US-Sides inder-parns .rdr"

"US Miparms .rdr"
"USSR.T72M.params rdr"

Add more vehicles here

;; Finally, the association between vehicles and model data
"models.rdr"

This file specifies the loading of the following files:

1. "soils.rdr" which contains definitions of various soil types used by certain model files

2. Model parameter files for the following platforms:

9 F14D fixed wing aircraft

e Sidewinder, Phoenix and Sparrow air-to-air missiles

e M1 and T72M main battle tanks

3. A mapping file ("models.rdr") which specifies what parameters should apply to what DIS
entity types.

0.2.2 Model File

A model file specifies all the parameters for a particular platform. Parameters are specified in a
macro format that allow different vehicles to share common parameters. Each model file defines one
macro which defines all the relevant parameters that are applicable for a vehicle. This macro can
then be referenced in.the model mapping file to specify what DIS platforms use these parameters.

IThe following is an excerpt from a model file for the F14D aircrpft. It defines a macro
USF14DMODELPARLAHETERS which specifies various types of parameters for the simulation of that

model.

I

4 ModSAF Maintenance Plan

I
USF14D-_ODEL-.PARANETERS
(SM.PBTab)
(SH..TskManager)
(SN.Entity (lngth.threshold 10.0)

(vidth.threshold 10.0)
(height.threshold 10.0)
(rotation-threshold 3.0)
(turret.threshold 3.0)
(gun.threshold 3.0)
(vohicle.class vehicleClassSimple)
(guises vehicle.US.F14D vehicle.USSR._Su2S)

(SM.Collision (check ground trees missiles platforms)
(announce ground)
(duration 5000)
(feature-mass 10000)
(fidelity high))

(SMDFDamage (filename "dfdam.vulnerable.rdr")
(damage.threshold 10.0))

(SH.Components (hull S1..FVAHull)
(station-la ESNlfisileLauncher 1 0)
(station-3 [SMMissileLauncher 1 1J) I.
(station-S [SM.NissileLauncher 1 2])

(apg-71 .[SIRadar 1 0))

(SM.FreControl (components station-la station-3 station-5))

(SH_ WAHull I
(c.drag.super 1.06)
(c.drag.sub 1.0)
(vehicle.mass 27000.0) ;; Kg
(thrust.-min 0.0) ;; Netons
(thrust-max 308000.20) ;; N
(lift-min -529200.0) ;; N, corresponds to -2G's structure limit on F14D
(lift-max 1852200.0) ;;, corresponds to IG's structure limit on F14D

I
" I

This F14 model includes a task manager to execute its behaviors, an entity component to keep I
track of data required for the DIS entity state packet and determine when network packets should
be output, a collision detection component, a damage evaluation component, a hull, 3 missile
launchers, a radar, and a fire control system.

I

5

0.2.3 Mapping File

A mapping file specifies the mapping between DIS entity types and the parameters used to sim-
ulate such entities. For example, there are different DIS entities representing variations on the F14aircraft, such as F-14A, F-14B, F-14C, etc. ModSAF allows the simulation of each of these different
aircraft using the same parameters specified by the macro defined in the US.14.params.rdr file.

The name of the mapping file to use specified as the last file listed in the model list file "mod-
I ellist.rdr".

IThe following is an example mapping file ('models.rdr"):

$;; Revision: 1.2 $

(
("vehicle.USF14D, US-F14DODEL.PARAEERS)
("vehicle.USF14D-Soa.r, (SM.SAFSOAR) USFI4DMODEL-.PAXRJ S)("munitionUS.Sidevinder" US.SIDEWINDER-MODEL.PARAMETERS)("munit ionUS.Phoenix" US-PHOENIX-MODEL.PARAMETERS)

I ("munitionUSSparrou" US-.SPARROW.MODEL.PAjAMETERS)

("vehicleUS.I1,, US. M. MODEL PARAMETERS)
(,vehicle.USSRT72W,, USSRT72MMODEL_PARAWETERS)

This file specifies:

1. The DIS entity vehicleUSF14D should use the parameters defined by the macro called
I US.FI4D.HODEL.PARAIETEPS. This macro happens to be defined by the'model file 'US.F14Dparams. rdr'I2. The DIS entity vehicleUSFl4V-Soar should use a parameter called (SMLSAFSOA)JO, as wellI the other parameters specified in the USF14DMODELpPARAETERS.

3. The Sidewinder, Phoenix, and Sparrow missile entities should use the parameters specified by
the respective macros.

I 4. The M and T72M tank entities should use the parameters specified by the respective macros.

I
0.3 Adding and Changing Units

Units are represented by ModSAF as dynamic structures in the Persistent Object Database.
These unit structures can be edited by the SAF Commander during an exercise to perform dy-

'6 ModSAF Maintenance Plan

I
namic task organization. Additionally certain tasks and missions will automatically perform task

organization during the exercise to achieve their objectives.

The definition of the basic units available to the system is done through parameter files that
specify the subordinate units, applicable formations, capabilities, and applicable missions.

I
0.4 Adding and Changing Physical Components

Each vehicle or entity simulated by ModSAF is composed of a number of components. These
component models are defined by libraries and are parameterized so that they can be used to
represent a range of systems. If the desired system can be represented by an existing component
then you can create the appropriate model by editing parameter files. If there is no applicable

model you must write your own component library.

Components are classified into the following categories:

Hulls These are physical models of vehicle hull capabilities. A particular vehicle never has

more than one hull. Examples include libTrackedHull, libFWAHull, and libMkissileHull.

Turrets These are physical models of turret capabilities. A vehicle may have more than one
turret. Only one kind of turret (libGenTurret, for generic turret) is currently defined.

Guns These model various types of munition launchers. Examples include libBallGun, and
libMissileLaunclier. 3

Sensors These are the parts of a vehicle which are responsible for determining what may be
sensed by the vehicle crew. Examples include libVisual, LibRadar, and in the future,
libAural (for infantry).

The collection of physical subsystems, some of which may occur more than once on a particular
vehicle (such as a vehicle urith two ballistic guns) is managed by libComponents.

To support interoperability and module replacement, the following conventions are used in
ModSAF to guarantee the protection of private data:

" It is recognized that any public data structure may at least be examined by software in higher I
levels, and hence the meaning of values should be well documented.

" The modification of public data structures is strictly prohibited, except by way of a function

invocation. 'I
____ I

7

e All public header files (where data types and global variables are specified) defined by a library
are copied to a public area at compile time, while private header files are never copied from
the source area.

Private functions are defined as 'static' wherever possible (this strictly prevents the compiler
from allowing other modules to call them).

The following are special guidelines that must be followed when defining vehicle sub-class li-
braries:

- The library is built using 'osatemplate' (the ModSAF templating program), to ensure that
all necessary functions have been provided.

- Where applicable, the first argument to public functions is a vehicle ID.

No public function assumes that the class exists for the vehicle ID specified. Each is prepared
to return a nominal value, in case one is not specified correctly. In general, error messages are
not printed when this happens.

0.5 Changing Behavior Via Task Frames

The behavior of ModSAF vehicles and units is defined by tasks and task frames. A task is a
behavior, such as obstacle avoidance or targeting, defined by parameterized library. Task frames
are used to group related tasks which run at the same time and represent a phase of a mission
such as road march. The task frames that the user is presented with are similar to the Combat
Instruction Sets in previous SAF systems. These task frames are defined in data files that list the
tasks included in each task frame together with the parameters for those tasks. Parameters may
be defaults that the user may edit or system-level parameters that the user may not change. The
parameters all task frames to customize the operation of the tasks which it uses.

0.6 Changing Behavior Via Task-

The foundation of the ModSAF command and control framework is the task. Tasks may control
a unit (company road march) or.they may control an individual entity (drive toward a waypoint)..
Tasks may be executed.to achieve a mission objective (attack an objective), or they may be exe-
cuted continuously, independent of the mission (scan for enemy). Tasks may be representations of
actual battlefield behavior (run for cover), or they may be implementation details of the simulation
(arbitrate between several possible alternative actions).

8 ModSAF Maintenance Plan

I
Each task is encoded as a finite state machine. A special entity component called the task

manager (libTaskMgr) is responsible for triggering the executing the tasks for each entity. A subset
of the current state of each executing task is maintained on the network so that the platform
executing the task may be seamlessly transferred from one ModSAF simulator to another.

To add a new task you can customize and existing task by -.Langing its parameters. These
tasks are called derived tasks and they are defined by parameter files. Each derived task refers
to a generic task defined by a ModSAF library and provides a new name and parameters for the
task. To define a completely new behavior you will have to create a new library. These tasks
can be defined as finite state machines using the ModSAF finite state machine preprocessor or as
arbitrary code to implement other paradigms. In addition to the things needed to define a new
physical component, some tasks require the definition of a user interface editor that allows the SAF
commander to inspect and modify the execution of the task. These editors are specified in data
files. I
0.7 Making Protocol Changes

The ModSAF system interfaces to the DIS network using SNIP. Any changes of syntax that

occur in DIS can be accommodated by changing only the Simulation Protocol Dependent Module I
of SNIP. SNIP Simulation Information Units isolate ModSAF from changes in the protocol. The
addition of new packet types will also require the addition/modification of SAF behaviors and
physical components that can react to or generate the new packets.

I
0.8 Making GUI Changes

The Graphical User Interface is composed of many independent editors, around a substructure
of support libraries. The architectural support comes from libSAFGUI, which provides the top-level
layout, manages the current interface mode, and displays help; libSensitive, which allows objects on
the map (such as points, or units) to be classified into mouse sensitive groups; libTactMap which
provides a 2D view of the terrain database, as well - the ability to add dynamic objects to the
map display; libEditor, which provides a means for defining editors in data files; libPrivilege, which
allows access to buttons on the display to be restricted; and libXFile, which provides a simple
means for graphically interacting with the Unix'file system.

A data file specifies the method for drawing various classes of vehicle types by choosing from a

small set of graphic primitives (box, line, circle, etc.). Sizes, locations, and rotation (with the hull,

I
I

I I 9'

or with the turret) information is given for each attribute, as well as the order in which to draw

them.

I
0.9 Creating New Applications

The ModSAF libraries form a repository of software. Subsets of this software can be linked
together by a main application program together with parameter files for defining the simulation
objects and user interface to create new ModSAF systems or subsystems. The ModSAF main.c
program and src/ModSAF directory provides an example of how to create these systems. Typically
very little new code is required to create a new ModSAF system from the library components.

I 0.10 Adding New Databases

The terrain is represented in various formats contained in two terrain databases for use by the
simulation modules.

I The vector format provided by IUbCTDB provides high performance algorithms for comput-
ing point to point visibility, radar masking, elevation lookup, vehicle placemeit on the terrain,
and graphical display of the terrain database (such as contour line generation and hypsometric

mapping).

The object based format provided by libQuad provides a structure more suitable for intelligent
terrain processing.

I These databases are compiled from BBN's S1000 Source Databases. The addition of new
databases will require the creation of anew S1000 database using the BBN S1000 toolkit. Then the
source database would need to be processed by the LibQuad and LibCTDB compilers to produce
new databases.

I
0.11 Documentation Requirements

Every ModSAF library must be documented using texinfo format documentation. A template
document can be found in '/usr/local/lib/osa/texinfo'. The texinfo documentation should
be named 'lib<lib> .toxinf o'. It should translate to both emacs info format ('make info') and
'.dvi' format ('make lib<lib> .dvi') without errors or warnings.I!

I

10 ModSAF Maintenance Plan I
[

0.12 Testing Requirements

Each library should contain a test program or test plan which can be used to confirm that the
library works correctly. This program should be well commented so that it can be understood by
other programmers trying to determine if a port or a change has worked, and so that it can be used
as an example.

The test program should have 'test' in its name (such as 'test . c', 'xtest. c', etc.), so that it
can be readily identified as a test program.

Test programs which determine their own success or failure are preferable to those which require
some analysis of their output by the tester.

0.13 Coding Standards

If new library code is written in C and especially if that new code is added to a currently existing
library, the. coding standards defined in the ModSAF Programmer's Guide should be followed. This

document is part of the ModSAF documentation distribution available both online and in hardcopy.

I
mI
I

I
I

I

