ADVANCED DISTRIBUTED SIMULATION TECHNOLOGY

TEST PLANS AND PROCEDURES

FOR THE

BASELINE SAF FOR BDS-D SITES

(ModSAF)

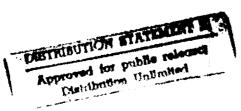
VOLUME 1 of 2

Ver. 1.0 - 20 December 1993

CONTRACT NO. N61339-91-D-0001

D.O.: 0021

CDRL SEQUENCE NO. A006


Prepared for:

U.S. Army Simulation, Training, and Instrumentation Command (STRICOM) 12350 Research Parkway Orlando, FL 32826-3276

Prepared by:

ADST Program Office 12151-A Research Parkway Orlando, FL 32826

ALL DES

DITO QUALITY INSPECTED &

94 8 08 04 1

REPOR	T DOCUMENTATIO	N PAGE	Forth approved OMB No. 0704-0188
			to time for reviewing instructions, searching adding data sources, mments regarding this burden estimate or any other sepect of es, Directorate for information Operations and Reports, 1215 roject (0704-0186), Weshington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		3. REPORT TYPE AND DATES COVERED
	12/20/93		
4. TITLE AND SUBTITLE Test Plans and Procedures fo	or the Baseline SAF for BDS-D Sit	tes (ModSAF) - Vo	s. FUNDING NUMBERS l. I C N61339-91-D-0001, Deliver Order (0021), ModSAF (CDRL A006)
8. AUTHOR(5) Maureen Saffi, Carol Ladd, I	Dan Burns		A006)
7. PERFORMING ORGANIZATION NA Loral Systems Company ADST Program Office 112151-A Research Parkway Orlando, FL 32826	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER ADST-TR-W003271
. SPONSORING/MONITORING AGEN Simulation Training and Inst 12350 Research Parkway Orlando, FL 32826-3275	CY NAME(S) AND ADDRESS(ES) rumentation Command (STRICO	9M)	10. SPONSORING ORGANIZATION REPORT ADST-TR-W003271
11. SUPPLEMENTARY NOTES			12b. DISTRIBUTION CODE
ZAL UIST HIBU HONVAVAILABILITY ST	AICMENI		12D. DISTRIBUTION CODE
			A
3. ABSTRACT (Maximum 200 words) This document provides for requirements of the ModSA	nal test procedures for acceptanc system have been met.	e of the ModSAF s	ystem. The test procedures verify that the
4. SUBJECT TERMS Modular Semi-Automated F	orces, DIS, ADST, BDS-D		15. NUMBER OF PAGES Approx 60 16. PRICE CODE
7. SECURITY CLASSIFICATION	17. SECURITY CLASSIFICATION	17. SECUNITY CL	ABBIFICATION 28. LIMITATION OF ABSTRACT
F REPORT JNCLASSIFIED	OF THE PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFI	ED UL
N 7540-01-280-5500			Standard Form 298 (Rev. 2-69)

3

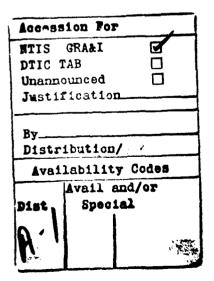
heathed	57	ANS
NA. 189		

299-10

LORAL

ADST/WDL/TR-W003271

Acceptance Test Plan


TABLE OF CONTENTS

Systems Company

1. SCOPE	1
1.1 System Overview	1
1.2 Document Overview	3
2. APPLICABLE DOCUMENTS.	4
3. TEST PHILOSOPHY AND OBJECTIVES	4
3.1 Test Description	5
3.1.1 ModSAF System Overall Requirements	5
3.1.2 SAF Workstation Subsystem.	6
3.1.3 SAF Simulator Subsystem	
3.1.4 SAF Logger Subsystem	7
	8
	A-1
APPENDIX B	B-1

FIGURES

Version 1.0

Systems Company

Acceptance Test Plan Vol 1

1. SCOPE

This Acceptance Test Plan (ATP) establishes the plan for the testing of the Baseline Modular Semi-Automated Forces (ModSAF) for Battlefield Distributed Simulation -Developmental (BDS-D) sites. This document has been developed by LORAL Advanced Distributed Simulation under contract Number N61339-91-D-0001; D.O. 0021, Contract Data Requirements List (CDRL) A006, in accordance with paragraph 3.3 of the Statement of Work (SOW), Baseline SAF for BDS-D Sites, ModSAF.

1.1 System Overview

The purpose of the ModSAF environment is to provide a Distributed Interactive Simulation (DIS) system for simulating and controlling entities, such as vehicles, Dismounted Infantry (DI), missiles, and dynamic structures on a virtual battlefield. These entities interact with each other and with manned individual entity simulators, such as an M1 tank simulator, to support training, combat development experiments, tactics and doctrine studies, weapon and sensor evaluations, and man-machine interface issues. The ModSAF System functions in an established simulation system environment at the Aviation Test Bed (AVTB) at Ft. Rucker, Alabama, and the Mounted Warfare Test Bed (MWTB) at Ft. Knox, Kentucky. The purpose of this test plan is to define the test program which will verify the requirements and operation of the ModSAF System after integration with the existing facilities. Figure 1.0-1 reflects the components of the ModSAF environment which are applicable to the ModSAF delivery order. Once the testing of the ModSAF software has been completed and the software and documentation referred to as ModSAF 1.0 has been accepted by and delivered to the Government, configuration management will be established. It is anticipated the ModSAF software and documentation will be delivered to multiple Government and industry sites.

ModSAF comes from the Advanced Research Projects Agency (ARPA) What If Simulation System for Advanced Research and Development (WISSARD) and "Seamless Simulation" programs. ModSAF restructures the SAFOR baseline to make if more open, more modular and DIS compliant. In addition to new functionality developed under WISSARD, ModSAF 1.0 focuses on providing better control, more flexibility and extensions to higher echelons, and full documentation of the ModSAF 1.0 SAFOR.

With ModSAF, the operator is able to organize forces according to task, transfer control to another operator, and regroup forces for new tasks. A single operator has the ability to command vehicles simulated by more than one SAFOR workstation. It is also possible to checkpoint and restart a mission without re-tasking the forces. Command and control information is recorded along with exercise information. The system provides beyond visual range air-to-air combat behavior, and includes improved modeling of radar, intervisibility among entities, and detection probabilities. The operator can plan higher level and more flexible missions by including contingencies for

20 December 1993

Version 1.0

LORAL

Systems Company

Acceptance Test Plan Vol 1

known and expected agents. The resulting ModSAF runs under DIS 1.0 protocol standards.

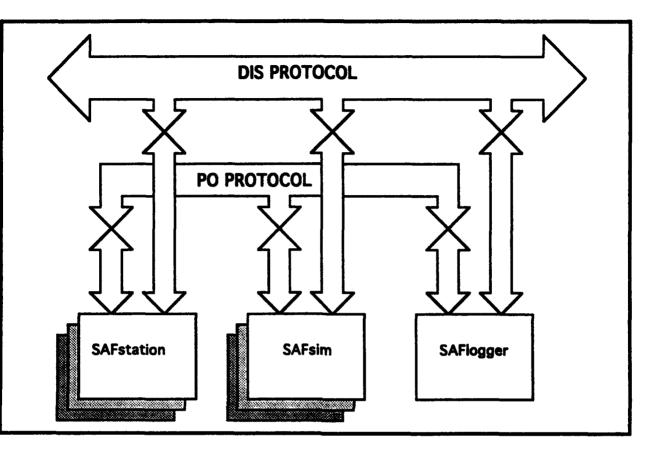


Figure 1.0-1 ModSAF Environment

The objectives of the ModSAF 1.0 delivery order for which this Acceptance Test Plan applies are as follows:

- To bring SAFOR systems, both hardware and software, to a common baseline, with documentation and training sufficient to permit BDS-D site personnel to maintain the upgraded systems.
- To provide additional capabilities including new battlefield platforms and functionality, SAFOR operator tools, and better system performance.
- To provide all of the capabilities of the SAFOR in use at the sites at the time of installation of the ModSAF System.
- To provide for a graceful transition path from ModSAF to Computer Generated Forces (CGF).

The purpose of this ATP is to provide formal test procedures for acceptance of the ModSAF System. The test procedures verify that the requirements of the ModSAF System have been met. These procedures do not verify and validate the software models of individual entities.

Acceptance Test Plan Vol 1

1.2 Document Overview

This Acceptance Test Plan is organized into two volumes to satisfy the CDRL A006 requirement. Each volume is a stand-alone document and consists of the following sections:

Systems Company

- 1. Volume I This Volume of the Acceptance Test Plan details the test definitions and test philosophy for the ModSAF 1.0 System test program. The following sections constitute this volume:
 - a. Section 1 contains an overview, purpose and brief description of the functionality of the ModSAF System environment.
 - b. Section 2 identifies those documents which are applicable and have been referenced in the generation of this document.
 - c. Section 3 provides the test philosophy and approach to be implemented in the verification of the ModSAF System requirements and design. The tests described in this section will be the basis for the generation of the Volume II document.
 - d. Appendix A ModSAF Requirements Traceability Matrix.
 - e. Appendix B Glossary of Acronyms and Abbreviations.
- 2. Volume II This volume of the Acceptance Test Plan contains qualification test preparations, pre-test procedures, qualification test descriptions, and identification of test cases. Finally, the volume contains the detailed step-by-step procedures to verify the ModSAF System requirements as defined in the ModSAF 1.0 System Requirements Specification document. The allocation of requirements to each test are provided in Appendix A of Volume I and will provide the traceability to the procedures contained in this volume.

2.0 APPLICABLE DOCUMENTS

The following documents are applicable to the extent referenced herein and where not specifically referenced are used as sources of additional information.

Systems Company

- 1. <u>ModSAF Systems Requirement Specification</u>, STRICOM, 12350 Research Parkway, Orlando, Florida 32826-3275, dated 15 February 1993.
- 2. Statement of Work for the Baseline SAF for BDS-D Sites, Modular Semi-Automated Forces (ModSAF), dated 10 October 1992.
- 3. <u>ModSAF Installation Plan</u>, STRICOM, 12350 Research Parkway, Orlando, Florida 32826-3275, dated 12 February 1993.
- 4. <u>ModSAF Training Plan</u>, STRICOM, 12350 Research Parkway, Orlando, Florida 32826-3275, dated 12 February 1993.
- 5. <u>ModSAF Maintenance Plan</u>, STRICOM, 12350 Research Parkway, Orlando, Florida 32826-3275, dated 12 February 1993.

3.0 TEST PHILOSOPHY AND OBJECTIVES

The ModSAF System test philosophy is to verify as many of the requirements as possible during the early stages of the testing program. This approach to final acceptance will provide the benefits of surfacing problems early in the testing program which will also enable early resolutions of the problems. This approach also provides the benefit of a smooth on-site acceptance test phase in that the acceptance test procedures will have been previously exercised and procedural problems corrected as applicable. The early stages of the testing program defined as the In-House Verification test phase, will be conducted in the Loral Advanced Distributed Simulations (LADS) facility located in Cambridge, Massachusetts. A government-owned IRIS INDIGO system will be configured to support the testing of the requirements associated with the ModSAF System.

A ModSAF Requirements Traceability Matrix will be maintained throughout all testing phases which will provide the status of requirements verified, or failed, as applicable. In addition to the Requirements Traceability Matrix, a Software Problem Report (SPR) system will be maintained for all problems surfaced during the test program. The Requirements Traceability Matrix will be maintained in such a manner that the SPRs are completely traceable to the requirements affected. As each SPR is generated, assignment will be made by the ModSAF System delivery order manager, or his designated representative, as to whether the problem is procedural, hardware, software, or a system problem. Accordingly, appropriate personnel will be assigned to investigate and resolve the problem. As problems are resolved, they will be submitted for re-test before becoming part of the "next" official baseline. An important part of the ModSAF System test program will be "regression" testing. Continuous regression testing will be conducted throughout the test program to ensure that as new resolutions

Systems Company

are introduced into the baseline, previously working functions have not been contaminated.

The primary objective of this plan and the accompanying test procedures (Vol II) is to establish that the ModSAF System is in compliance with the requirements as delineated in the ModSAF System Requirements document. This objective is best achieved by defining tests, development of test procedures, and execution of these tests which will thoroughly verify the ModSAF System requirements.

3.1 Test Description

The ModSAF System is comprised of four subsystems that will be tested. The subsystems are identified as follows:

- SAF Workstation Subsystem
- SAF Simulator Subsystem
- SAF Logger Subsystem
- ModSAF Interface

In addition, the test program will verify aggregate requirements.

The test program will develop test procedures with the objective of verifying the aggregate requirements and the specific requirements pertaining to each of the defined subsystems. The definition of tests and allocation of requirements will be made to provide a most efficient and thorough test program. This will be accomplished through analysis of the requirements and existing design documentation so that the requirements can be correlated to the functionality of the subject requirements. Independent tests and procedures will be defined so that these tests can be executed independently. The independent test approach will provide the program with the flexibility to execute the tests in any sequence desired and remove dependencies where execution of functions are truly independent. The ModSAF Requirements Traceability Matrix (Appendix A) identifies the allocation of requirements to the tests as defined in the following paragraphs:

3.1.1 ModSAF System Overall Requirements

This test will verify the overall functional requirements of the ModSAF 1.0 System. Among the many capabilities that will be tested or demonstrated in this test as part of the ModSAF 1.0 System Overall Requirements are:

- Architecture.
- Configurations.
- Top Level Requirements.
- Versions.
- Testability.

20 December 1993

-5-

CRAL

Systems Company

- Extensibility.
- Documentation.

This test will verify:

1) the architecture and distribution of the capabilities of ModSAF among three components,

2) sharing of simulation and control information by using databases and network protocols,

- 3) single and combined system operation,
- 4) control of simulated entities by single and multiple SAFstations,
- 5) creation of large numbers of computer generated DIS forces,
- 6) capabilities that equal or exceed those of the currently fielded SAFOR systems,
- 7) Version 1.0 requirements,
- 8) testability of operations under successively simpler conditions,
- 9) library and parameter file extensibility, and
- 10) availability of ModSAF documentation.

3.1.2 SAF Workstation Subsystem

This subsystem test will demonstrate the capabilities associated with the SAF Workstation Subsystem. Conditions will be set up to ensure verification of the following capabilities:

- Mode Control.
- Plan View Display.
- Exercise Initialization Parameters.
- Exercise Control Parameters.
- Scenario Storage.
- Force Control.
- Interaction Between Workstations.
- Databases.
- Standards.

This test will verify the functional requirements for the ModSAF workstation. This test will verify:

- 1) support of three operator privilege modes,
- 2) a two-dimensional view of the simulated environment including control tools,
- 3) parameter control for an exercise,
- 4) saving of all mission and unit information into a scenario file,
- 5) control of ModSAF entities and units,
- 6) parameter initialization for an exercise,
- 7) control of aspects of the user interface,
- 8) ability to interact with other workstations,
- 9) access to the numerous databases, and

20 December 1993

-6-

Systems Company

Acceptance Test Pian Vol 1

10) use of X/Windows Motif standards and DOD Human Computer Interface Style Guide.

3.1.3 SAF Simulator Subsystem

This subsystem test will demonstrate the capabilities associated with the SAF Simulator Subsystem. Conditions will be set up to ensure verification of the following capabilities:

- Exercise Control.
- Command Interface.
- Entity Simulation.
- Structure Simulation.
- Unit Simulation.
- Parser Interface.
- Database Interfaces.

This test will verify the functional requirements for the SAFsim component of ModSAF. This subsystem will verify:

1) entity creation, state update, deletion and migration,

2) monitoring of PO database for entity actions,

3) construction of new entities either off-line by changing parameter files, or at run time via the PO database,

4) simulation of structures on the terrain,

- 5) unit simulation including combinations of entities, or entities and units,
- 6) parser interface for SAF software testing, and

7) database interfaces.

3.1.4 SAF Logger Subsystem

This subsystem test will demonstrate the capabilities associated with the SAF Logger Subsystem. Conditions will be set up to ensure verification of the following capabilities:

- Graphical User Interface (GUI).
- Exercise Recording.
- Exercise Playback.
- Initialization of ModSAF from a Logged Exercise.

This test will verify the functional requirements for the ModSAF data logger. This test will verify:

- 1) record and play back of simulation exercises,
- 2) creation of initialization overlays,
- 3) use of graphical user interface for user interaction,

4) recording of the simulation packets of any protocol family transmitted on the simulation network,

20 December 1993

CALIFORNIA DE

Sauger St

Version 1.0

LORAL

Systems Company

Acceptance Test Plan Vol 1

5) playback of the simulation packets of any protocol family recorded in a ModSAF data logger file, and

6) initialization of ModSAF from any point in a logged exercise using the recorded PO protocol packets.

3.1.5 ModSAF Interface

This test will demonstrate the capabilities associated with the Interface Requirements. Conditions will be set up to ensure verification of the following capabilities:

- DIS Database Interface.
- PO Database Interface.
- Parameter Database Interface.
- Terrain Database Interface.

This test will verify the interfacing of ModSAF components via the DIS database, PO database, parameter database, and the terrain database. This test will verify:

1) the support of DIS 1.0 protocol, with appropriate extensions,

2) the support of SIMNET 6.6.1 protocol,

3) PO database support, including organization of command and control information as shared overlays,

4) ability to modify the parameter database to define entity characteristics, and

5) terrain database queries and modifications.

APPENDIX A

Requirements Traceability Matrix

Test Methodologies:

I=Inspection—Verification by visual examination of the displays, reviewing descriptive documentation, and comparing the appropriate characteristics with a reference standard, to determine conformance to requirements. This includes mechanical inspection of equipment and the verification of accuracy and completeness of the documentation.

A=Analysis—Verification by evaluation using data sheets gathered from test participants, mathematical representations, charts, graphs, or data reduction to determine conformance to requirements.

D=Demonstration—Verification by operation, movement, or adjustment of the item under specific conditions to perform the designed function to determine conformance to the requirements. This includes content and accuracy of displays, and prompt system recovery from induced failure conditions.

R=Reliability-Not verified by Demonstration or Test. Verified as the byproduct of reliability and documentation testing by ILS personnel and/or engineering resources.

T=Test—Verification through systematic exercising of the applicable items under appropriate conditions, with instrumentation and collection, analysis, and evaluation of quantitative data to determine conformance to requirements. This includes correct computer program control flow, correct computer program data flow, and acceptance of proper range of values.

PARA	TITLE	DESCRIPTION	METH	TEST
1.1	Architecture	The capabilities of ModSAF will be	Ī	
		distributed among these three		
		components: SAFstation, SAFsim,	I	
		SAF-logger.		
1.1		The ModSAF components will share	I	1
		simulation and control information	1 -	ł
		by using the databases and network		!
		protocols described below: DIS		1
		Database, Persistent Object (PO)		1
		Database, Terrain Databases, and		
		Parameter Database.		
1.2	Configur-	A single computer will be able to	D	f
1.2	ations	run one of the SAFstation, SAFsim,		ŀ
	acions	or SAF-logger components at a	1	ł
		time.		
1 0				<u> </u>
1.2	}	A single computer will be able to run both the SAFstation and SAFsim	D]
			1	1
		at the same time.		ļ
1.2		Multiple SAFstations will be able	D	ŧ.
		to control entities simulated by		I
		one SAFsim.	L	
1.2		One SAFstation will be able to	D	
		control entities simulated on		
		multiple SAFsims.		
1.2		The SAFsims will act as simulation	D	
		servers and will negotiate between		
		themselves which SAFsim should		
		simulate an entity, unless one	1	
		SAFsim has been specifically		
		designated.		
1.2		The SAFsim will not have to	D	
		connect to a SAFsim but will		1
		communicate with all SAFsims via		
		the Persistent Object Database.		I
1.2		One SAFstation will be able to	D	
		initialize and load a scenario on		1
		all the SAF components		1
		participating in the exercise.		1
1.3	Top Level	ModSAF will provide the capability	D	1
	Requirements	to create large numbers of		1
		computer generated DIS forces that		1
		can be controlled by small numbers		1
		of operators providing supervisory		1
		control.		1
1.3	1	It will provide capabilities that	I	†
		equal or exceed those of the	1	1
	1	currently fielded SAFOR systems:	1	1
		SIMNET SAF 3.11.2 and ODIN SAF	I	
		4.3.6.		ł
1.3	+		<u>├</u>	
1.2	1	ModSAF will provide support for	I	1
		the WISSARD project, including		1
		interfaces for control by the SOAR	1	
		artificial intelligence reasoning		1
	L	system.	1	1

-

,

PARA	TITLE	Description	METH	T I 87
1.3		The ModSAF software will be	D	
		capable of running on MIPS and SGI		
		computers.		
1.4	Versions	ModSAF will be delivered in	D	
		incremental versions: ModSAF A,		
		ModSAF B, ModSAF 1.0, ModSAF 2.0.		
1.5	Testability	The ModSAF software will be	I	
		constructed so that it is possible]
		to test its operation under		
		successively simpler conditions.		
1.5		There will be mechanisms by which	I	
		complicating factors such as	_	1
		communications failures,		1
		occlusion, collisions, random		1
		failures, etc., can be eliminated.		
1.6	Extensibility	The ModSAF system architecture	I	
- • •		will provide extensibility through		
		the use of libraries and a		1
		parameter database.		1
1.6.1	Libraries	ModSAF software will be organized	I	
		into libraries, with applications	_	
		built from these libraries.		
1.6.1		The libraries will be layered so	T	
		that libraries only depend on	-	1
		other libraries at a lower level.		
1.6.1		All libraries will define public	I	
		interfaces (exported routines and	-	
		header files).		ł
1.6.1		All other routines will be	I	<u> </u>
		declared static.		1
1.6.2	Parameter	ModSAF will parameterize both	I	
1.0.2	Files	behavioral and physical models so	-	
		that a variety of physical systems		
		can be represented		
1.6.2		At program startup time, the off-	I	<u> </u>
		line parameter database which		l
		defines these parameters will be	[
		translated into a runtime		
		database.		
1.6.2	T	During runtime, the user or the	I	<u> </u>
		system will be allowed to change		
		this database for the purpose of	,	1
		making changes to models without	ł	
		forcing a recompilation of source	1	
		code.	l	
1.7	Documentation		I	<u> </u>
- • •		available in both hardcopy and on-	1	
		line format on the ModSAF		1
		development computers.	1	ľ
		I an a solution and a second second	L	<u> </u>

P

1

1

ļ

Ĩ

1

Appendix A

10 3.1

ete (1807-64

PARA	TITLE	DESCRIPTION	METH	TEST
1.7		ModSAF documentation will include:	I	
		Requirements Document, Interface	_	
		Description Document, Library		1
		Documentation, User's Manual,]	
		Installation Instructions, and	I	
		Maintenance Plan.		
2.1	Mode Control	The SAFstation will support three	D	i
2.1	Mode concrot	operator privilege modes.		
2.1			<u> </u>	<u> </u>
2.1		The highest privilege mode, System	D	1
		Operator, will provide more		
		functionality than the lower two		I
		privilege modes, Battlemaster and		I
		Commander.		
2.1	SAF	This ModSAF component will allow a	D	
	Workstation	user to set up, view, control, and	1	
	Requirements	participate in DIS exercises.		
2.1		The middle privilege mode,	D	
		Battlemaster, will provide more	[[
		functionality than the lowest		
		privilege mode, Commander.		
2.1.1	Commander	Commander mode will provide the	D	
	Mode	ability to run a pre-load scenario	-	1
		and to command the commanders' SAF		1
		entities in that scenario.	1	
2.1.1		In Commander mode, the situation	D	
		display will show only the		
		entities on the same side as the		
		entities controlled by the	1	1
ł		commander, and any enemy entities	ſ	1
		detected by the commander's		l
		entities.		1
2.1.2	Battlemaster	In Battlemaster mode, the SAF		
2.1.2	Mode		D	
	NOUE	operator will be able to create and save scenarios, in addition to		
		having all the capabilities		
		provided in Commander mode.		Į
2.1.3	System	System Operator mode will allow	D	I
	Operator Mode		1	
		operations such as delete and		
		save, in addition to providing all		1
		the functionality of Battlemaster		
		mode.		ļ
2.1.3		In System Operator mode, the SAF	D	
		operator will have the ability to	ł	1
		set all passwords and modify the		
		simulation configurations.		
2.2	Plan View	The SAFstation will provide a two-	D	
	Display	dimensional view of the simulated		ł
		environment (the so-called Plan		I
		View Display), along with various		I
		tools for controlling the view		
l		onto the environment and	ł	1
		determining which features are		l I
	1	displayed in it.		1
		Latsprayed in it.	11	<u> </u>

1

PARA	TITLE	DESCRIPTION	METH	TE87
2.2.1	Controlling	The SAFstation operator will be	D	
	the Display	able to control the view of the	-	Í
		simulated environment as described		1
		below.		
2.2.1.1	Panning	The SAFstation will provide the	D	<u> </u>
2.2.1.1	ranning			
		ability for the operator to pan,		•
		that is, to select any portion of		
		the map for display.		ļ
2.2.1.1		The operator will be able to pan	D	1
		by using scroll bars, by dragging		1
		a viewing window with the mouse,		1
		or by clicking with the mouse on a		
		new map center.		
2.2.1.2	Changing the	A Scale menu will allow the	D	
	Scale	operator to change the scale of	-	
		the tactical map display.		
2.2.1.2	<u> </u>	The Scale menu will display the	D	├
2.2.1.2				
		current scale and provide the		
		ability to select a different		
	 	scale.	ļ	
2.2.1.2		The operator will be able to	D	
		choose whether the map scale is		
		restricted to standard map scales]
		or can be freely adjusted.		
2.2.1.3	Zooming In	The SAFstation will allow the	D	
	and Out	operator to zoom in on a small		
		portion of the tactical map or		l
	}	zoom out to a large portion by]	1
		clicking once with the mouse on		1
		the map.		
2.2.1.3	<u> </u>	The SAFstation will allow the	<u> </u>	<u> </u>
2.2.1.3	1		D	
		operator to use the mouse to		1
]	select a rectangular area to zoom		
		in upon.	ļ	ļ
2.2.2	Displaying	The SAFstation will allow the	D	
	the Terrain	operator to determine which	1	1
		terrain features are currently	Į	
		displayed (roads, trees, lakes,	1	
		etc.).		
2.2.2		It will allow the operator to	D	1
	1	select the terrain features	-	
		displayed, the elevation		
		presentation (by shaded relief,		
		hypsometric tinting, or contour	1	
				l
		lines), and which military grid		L
	l	system, if any, to use.	ļ	<u> </u>
2.2.2.1	Features	The terrain features available for	D	1
		display on the tactical map		ļ
		display will include, but not be		ł
	1	limited to roads, trees, tree		ł
		canopies, rivers, lakes,]	
	1	buildings, railroads, pipelines,	I	
	1	Instrumet exertencet habertucet		

1

PARA	TITLE	DESCRIPTION	METH	TEST
2.2.2.2	Elevation	The operator will be able to	D	1
		display elevation by the following		1
		two methods: hypsometric tinting		
		and contour lines.		
2.2.2.2	· · · · · · · · · · · · · · · · · · ·	The operator will be able to	D	t
		display elevation by colors.		
2.2.2.2		A legend will specify the	D	
2.2.2.2	1	elevation range of each color.		
	<u> </u>			ļ
2.2.2.2		The operator will be able to	D	
		display elevation by contour lines	{	
		with or without labels showing the	Į	
		elevation values.		
2.2.2.2		The operator will be able to set	D	
		the contour interval at any time,		1
		from 5 to 40 meters, in increments		
		of 5 meters.	ł	
2.2.2.2		The interval selected will be	D	
		displayed.	_	
2.2.2.3	Military	The SAFstation operator will be	D	
2.2.2.3	Grids	able to overlay a grid system on		
	GIIGS	the map in either		
2.2.2.3	<u> </u>	longitude/latitude or UTM form.	<u> </u>	┣───
2.2.2.3		The grids will be shown at a scale	D	1
		appropriate for the current map		
	l	scale.		ļ
2.2.2.3	1	At the 1:200,000 map scale, one-	D	
		digit UTM grids will be shown,		1
		while at the 1:50,000 map scale,	i	1
		two-digit UTM grids will be shown.		
2.2.3	Analyzing the	The SAFstation will provide the	D	
	Terrain	following tools to allow the SAF	ł	1
		operator to analyze the current		1
		terrain database: terrain ruler,		
		cross-section tool,		
		intervisibility tools, terrain		
	1	query tool and coordinate	1	
		calculator.	1	1
2.2.3.1	Terrain Pular	A terrain ruler will allow the		
£.£.J.1	Terrain Rulei	operator to measure distances on		
		-		
	<u> </u>	the map.	<u> </u>	
2.2.3.1		The operator will have the ability	D	
		to specify the units in which the	l	
		distance is measured.	i	
2.2.3.1		The direction of the ruler will be	D	
		displayed.		L
2.2.3.2	Cross-Section		D	
	Tool	allow the operator to display the	1	1
		difference in elevation between		
				I
		two terrain points specified by	1	1
	I	the operator.	1	1

And a second of the second by

.

1

(🏴

.

PARA	TITLE	DESCRIPTION	METH	TEST
2.2.3.2		The length and direction of the	D	÷
		cross-section line drawn between		
		the specified points will be		1
		displayed; the composition of the		
		terrain will not.		
2.2.3.3	Inter-	Inter-visibility tools will allow	D	
2.2.J.J	visibility	the operator to do the following:		
	Tool	(1) check the inter-visibility		
	1001	between individual entities, (2)		
		check the inter-visibility between		1
				ł
		points on the terrain, and (3)	1	1
		check the area inter-visibility	[
		around a location.		<u> </u>
2.2.3.3		The operator will be able to	D	
		specify how high above the terrain		
		the inter-visibility is measured.		
2.2.3.3		For air vehicles, the altitude of	D	
		the vehicle will be used as the	I	1
		height at which the inter-	l	
		visibility is measured.		
2.2.3.3	T	For ground entities, the elevation	D	
		of the commander or driver will be	_	ļ
		used as the height at which the		
		inter-visibility is measured.		ļ
2.2.3.3	1	The operator will be able to set	D	╏────
2.2.3.3		the range for area inter-		
		visibility plots.		
2.2.3.4	Mannain Ouema		D	<u> </u>
2.2.3.4	Terrain Query Tool			
	1001	the tactical map at any location		
		to determine the soil type	Ì	
		(RCI250, road, water, etc.),		
		elevation, maximum gradient, and		
		location.	<u> </u>	<u> </u>
2.2.3.5	Coordinate	A coordinate calculator will allow	D	
	Calculator	the SAF operator to select a point]	I
		on the map and calculate its	1	1
		location in earth centered	ł	
		Cartesian, UTM,]	1
		longitude/latitude, and	1	ł
<u> </u>	·	topocentric Cartesian coordinates.		
2.2.4	Displaying	The Plan View Display will be able	D	
	the Situation		l	1
		an exercise by displaying the	Į]
		current positions of all entities	1	
		involved in the exercise.	1	I
2.2.4	1	It will be possible to use the	D	
		parameter files described in		1
		Chapter 5 to change the icons used	1	1
		to denote units and entities, or	I	
			i	1
0.0.4		to add new icons.	<u> </u>	┣──
2.2.4		The operator will be able to	D	1
		specify the refresh rate of the	I	1
		entity icons on the situation	1	1
		display, from 1 to 120 seconds.	ł	1

20 December 1993

ALC:

PARA	TITLE	DESCRIPTION	METH	TES:
2.2.4		The operator will also be able to temporarily freeze entity icon updates.	D	
2.2.4.1	Military Units	Army symbology and Navy symbology will be used to display military units.	I	
2.2.4.1		The operator will be able to choose which symbology takes precedence when both are applicable.	I	
2.2.4.1		The Army symbology will be defined by "FM 101-5: Operational Terms and Graphics.	I	
2.2.4.1		It will be possible to query the unit icons to get a description of the unit they represent.	D	
2.2.4.1		This description will include the entity ID and designation for the unit.	D	
2.2.4.1		It will be possible to aggregate the display to show only higher- level units or deaggregate it to show individual entities.	D	
2.2.4.1		Aggregation/deaggregation will be possible either globally or for individual units.	D	
2.2.4.1		Filters will allow the operator to control the display of different force types, including armor, infantry, artillery, air defense, support, air assets, and sea assets.	D	
2.2.4.1		A filter will allow control of whether the operator can see what all of his forces can see, or only what some subset of his forces can see.	D	
2.2.4.2	Entities	Individual entities may be displayed by the standard military symbology of "FM 101-5: Operational Terms and Graphics," or they may be displayed in a non- military form.	D	
2.2.4.2		The standard military form will show entity direction quantized to 8 directions (45 degrees), while the non-military form will show exact entity and turret orientations.	D	
2.2.4.2	T	Both forms will show catastrophic	D	1

20 December 1993

ſ

1

.

PARA	TITLE	DESCRIPTION	METH	TEST
2.2.4.2		The SAFstation will provide the	D	I
		ability to increase and decrease		
	ļ	the drawing size of the non-		ł
		military entity symbols.	1	
2.2.4.2		It will be possible to query the	D	
2.2.4.2		entity icons to get a description		
		of the entities they represent.		
2.2.4.2			<u> </u>	
2.2.4.2		This description will include the	D	
		entity ID and designation for the		
		entity and, if the entity is being	1	
		controlled by the SAFstation		
		making the query, the current	1	1
		status of that entity, including		
		information about fuel and		1
		ammunition supplies, speed,		
		mission status, and damage level.		
2.2.4.2		It will be possible to display	D	
		inter-visibility lines between	1	ł
		entities.		L
2.2.4.2		When an entity is only partially	D	
		visible, the percentage that is	I	I
		visible will be indicated by the	[1
		color of the intervisibility line		[
		and by text field showing the		t
		percentage.	ł	ļ
2.2.4.3	Designations	The SAF operator will be able to	D	
2.2.4.3	Designations	specify designations for units and		1
		entities and specify whether to	{	1
		display these designations.		1
2.2.4.3		If the SAF operator does not	D	
2.2.3.5		specify a designation for an		
		entity or unit, ModSAF will supply		1
		a default designation.		1
2.2.4.4	Simulation			┣──
2.2.4.4		The SAFstation will display	D	
	Events	simulation events such as indirect		
	ļ	fire explosions.	<u> </u>	
2.2.4.4		The SAFstation will also display	D	
		direct fire, designating the		1
		target and firer and whether the		1
		shot was a hit or a miss.	ļ	<u> </u>
2.2.4.4		The SAFstation will also display	D	ļ
		minefield explosions.		L
2.3	Exercise	Any SAFstation will be able to	D	
	Initializ-	initialize the parameters for an	I	1
	ation	exercise.	1	
	Parameters			
2.3		The exercise initialization	D	T
		functions will be available only	1 -	1
		in Battlemaster and/or the System		1
		Operator modes.		I
2.3	<u> </u>	When the System Operator sets the	D	<u> </u>
4.J		terrain database for the exercise,		1
	1		1	1
		I all wawkatations and similations		
		all workstations and simulators will change to the selected		

20 December 1993

1

1

A-9-

Appendix A

Sec. 5 40

PARA	TITLE	DESCRIPTION	METH	TEST
2.3		Changing the terrain will cause	D	
		running simulations to stop.		
2.4	Exercise	Any SAFstation will be able to	D	
	Control	control the parameters for an	Į	Į –
	Parameters	exercise.		
2.4		The exercise control functions	D	
		will be available only in		
		Battlemaster mode.		
2.4		Parameters that can be controlled	D	
		will include minefields,		1
		artillery, and model parameters.		
2.4.1	Minefields	The Battlemaster will be able to	D	
		create minefields from the	1	ł
	1	SAFstation at any time.	1	ŧ
2.4.1		The Battlemaster will be able to	D	
		draw the bounding area of the		
		minefield and then request	[
		simulation of the minefield from]	ļ
		the SAFsim.	İ.	l I
2.4.1		He will be able to specify	D	
		minefield parameters such as		1
		density and type of mine.		ł
2.4.2	Artillery	The Battlemaster will be able to		N/I
	-	interactively create artillery		
		bursts in any location or area on		
		the terrain.		
2.4.2		Various options will be available,	I	N/I
		such as number of rounds,		
		dispersal pattern and distance,		
		rate, round types, and time delays		
		between rounds.		
2.4.2		Bombs, mortars, howitzers, and		N/I
		MLRS will be available.	1.	
2.4.2		Timed/proximity and contact fuses		N/I
		will be available.		
2.4.2		It will be possible to set up		N/I
		multiple missions so that		
		artillery can fall at a specified	I	
		time during an exercise.		
2.4.3	Model	The SAFstation will provide the	I	
	Parameters	ability to modify simulation		1
		modeling parameters in real time.		
2.4.3		It will be possible to apply a	I	
		single set of parameter changes to		1
		multiple SAF units without	l	1
		duplicate data entry.		
2.5	Scenario	The ModSAF system will all the	D	
	Storage	Battlemaster to save all mission		
		and unit information into a		
	1	scenario file.		I I

.

ĺ

PARA	TITLE	DESCRIPTION	XBTE	TEST
2.5		This file will contain information	D	I
		about all entities, units, unit		
		hiearchies, missions, tasks,		
		control measures, and artillery	1	
		scripts that are currently	1	
		controlled by the workstation or	1	1
		that were created by it.	1	
2.5		This file will allow a new	D	
2.3		exercise to be initialized at the		
		point at which the previous		
		exercise was saved.		
2.6	Force Control	•	D	
		orders to any unit or entity		1
		directly by clicking on its icon.		
2.6.1	Task	The operator will be able to	[N/I
	Organization	create and command units from the		
		battalion level down to the]	
		individual entity level.	1	
2.6.1		It will be possible for the		N/I
		operator to create new tactical		
		organizations on line, using the		
		standard graphical user interface,		1
		without modification to the		
		underlying software.	l	
2.6.1			 	N/I
2.0.1		It will be possible to use the new	i i	N/I
		task organizations in the standard		
		command and control mechanism.	ļ	<u> </u>
2.6.1		The units will be built up in a	í	N/I
		hierarchical and modular way,		
		allowing the operator to mix		1
		branches (e.g., armor, close air		1
		support, artillery, and infantry)		
		and equipment nationalities (e.g.,		
		US armor vehicles with Russian	1	i
		armor vehicles).		1
2.6.1		Formations and movement techniques		N/I
		will be defined in a similarly	ł	
		modular way, so that they will]	
		work with the task-organized		1
		units.		1
2.6.1		It will be possible to save the	1	N/I
		task organizations to a data file		
		for reuse in other scenarios.		
2 6 1			<u> </u>	1
2.6.1		It will be possible to construct	1	N/I
		formations, movement techniques,	ł	
		and missions in a hierarchical		
	l	manner.		
	Methods of	Three methods of control will be	D	1
	Control	available to the operator: pre-		1
		programmed, immediate, and	I	1
		reactive.		
2.6.2		Pre-programmed and immediate	D	1
2.6.2	1	control will be available to the	۲ I	1
			1	

20 December 1993

Co. C. C.

100 A 100

Appendix A

1.00

1. 1. 1 L

PARA	TITLE	DESCRIPTION	METH	TEST
2.6.2		The operator will be able to	D	
		specify the contingencies to which		
		the units will react and how the		
		units will react to them.		
2.6.2.1	Pre-	Pre-programmed control will	D	
	programmed	support the definition of missions		
	Control	in terms of the following: (1)	1	
		the units that perform them, (2)]	
		control measures (such as phase	1	
		lines, travel routes, point, and	Į	
		assembly areas), (3) conditions		
		under which to terminate or		
		transition between mission phases.		
2.6.2.1	1	The conditions for transitioning	D	<u> </u>
2.4.2.1		between mission phases will be		
	1	definable in terms of the		
		following: (1) terrain, (2) time,		
		and (3) situation.	i i	
2.6.2.1		The operator will be able to	D	
2.0.2.1		construct any logical combination		
		(using AND, OR, and NOT) of these		
		basic or composite conditions as a		I
		composite condition upon which to]	
		terminate or transition mission		
		phases.		
2.6.2.1	+		D	<u> </u>
2.0.2.1		The operator will be able to		
		specify several contingency	Į.	
		missions for any given unit and		
		select the one mode appropriate to		
2.6.2.1		the developing tactical situation.		
2.6.2.1		It will be possible to modify	D	
		predefined missions during an		
		exercise, or to define and execute		1
	+	entirely new ones.	<u> </u>	<u> </u>
2.6.2.1		The operator will be able to	D	
	1	define, store, and reuse missions	I	l
		with predefined conditions under	ļ	1
		which to automatically execute	ł	
	<u> </u>	various contingencies.	ļ	
2.6.2.1		Once the overall mission is begun,	D	
		the contingencies will be	1	I
		automatically selected and		
		executed, using the kinds of		1
	ļ	conditions discussed above.	ļ	ļ
2.6.2.1		It will be possible for the	D	
		operator to issue commands to a	1	1
		subordinate unit while the		1
		superior unit is executing its	1	1
	1	mission.	I	1

PARA	TITLE	DESCRIPTION	METH	TEST
2.6.2.1		Without further operator	D	
		interventions, the subordinate		
		unit will perform its mission,		
]	while the senior unit adjusts its	j –	
		formations and actions in	ſ	[
		tactically realistic ways to		
		accommodate the loss of the		
		subordinate unit.	<u> </u>	ļ
2.6.2.1		The subordinate unit will rejoin	D	l
		its superior unit after its		1
		temporary mission is completed.		
2.6.2.1		The operator will be able to	D	
		specify tasks that specify		
		movement of units along a single		
		path, as well as tasks that		
		specify movement of units along		
			ĺ	[
		different paths.	<u> </u>	
2.6.2.1	1	Within each mission or mission	D	
	Î.	phase, the operator will be able	l	ł
		to redefine behavior and		
		capability parameters for the unit		
		or entity.		
2.6.2.1		Parameters controlled will include	D	
		at least the following: speed,		1
		formation, orientation, fire		
		permission, marksmanship, target		
		priorities, fuel consumption		1
	1	rates, priorities for different	I	
		simultaneous objectives (such as		
		finding the enemy, avoiding	1	
		detection, moving rapidly, and		
		surviving), task, and entity		
		parameters (such as vulnerability,	1	1
		turn radii, sensor capabilities,		
		speed and acceleration limits, and		
		weapons capabilities).		
2.6.2.2	Immediate	Immediate control will allow the	D	
	Control	operator to give commands	_	1
		interactively to override either	1	
		pre-programmed or reactive	I	I
		behaviors.		
2 6 2 2	<u> </u>		<u> </u>	
2.6.2.2		The operator will have the option	D	1
		of either overriding previous	1	ł
		commands or temporarily suspending		I
		them until the immediate command		1
		is completed.		
2.6.2.2		Parameters under immediate control	D	
	i	will include at least the		1
		following: speed, formation,		1
		orientation, fire permission,		1
		marksmanship, target priorities,		1
	1		1	I I
		and task.		<u> </u>
2.6.2.3	Reactive	The operator will be able to	l	1
	Control	specify the reactive behavior of	1	
	1	units.		1

1.1.1

20 December 1993

PARA	TITLE	DESCRIPTION	METH	TEST
2.6.2.3		This will be accomplished by	D	Ţ
		allowing the operator to select a		
		set of situations and battlefield		
		events to which the units will		
		respond (e.g., artillery attack),		
		modify the parameters of those		
		situations and events (e.g.,		
		artillery has fallen within 1 km		
		of the unit), and specify the		
		unit's reaction to each situation		
		or event (e.g., withdraw 5 km away		
		from the artillery bursts).		
2.6.3				
2.6.3	Mission	The SAFstation will provide	I	1
	Graphics	graphical symbols for the planning	l	
		of missions.	[<u> </u>
2.6.3.1	Overlays	The SAFstation operator will be	D	
		able to create tactical overlays		
		by arranging ModSAF graphics.		ļ
2.6.3.1		The SAFstation operator will be	D	i i
		able to edit, save, load, and		
		delete these overlays.		
2.6.3.1		Overlays can be shared between	D	
		SAFstations, although controls		
		will be placed on which		
		workstations can share overlays		
		(based on which side the		
		workstations are playing in an		
	1	exercise).]]
2.6.3.1		The SAFstation will provide the	D	
		capability to show or hide		
		specific overlays to allow the		
		operator to superimpose graphics		
		on the tactical display.		
2.6.3.2	Graphical	The SAFstation will be able to	D	
	Control	create and edit the following	Ĩ	
	Measures	graphical control measures:]	l l
		routes, points, lines, areas and	ł	Í
		zones, and text.		1
2.6.3.2		Routes The SAFstation will	D	<u> </u>
2.0.3.2				
		provide the ability to create routes for SAF entities to follow		
		during missions, including	t	1
	+	circular routes.	<u> </u>	_
2.6.3.2		The SAFstation operator will be	D	
		able to create, edit, and delete		1
	<u> </u>	routes.	 	<u> </u>
2.6.3.2		In addition, the ability to add	D	1
		points to the end of a route will	I	1
		be provided.	<u> </u>	<u> </u>
2.6.3.2		The following types of routes	D	
		will be supported: air, road,	1	1
		cross-country, and bridge.	i	1
2.6.3.2	†	Air routes will insert straight	D	<u>† </u>
2.0.J.2		line routes between operator-		1
	1		I	1
		specified points.	1	1

20 December 1993

PARA	TITLE	DESCRIPTION	METH	TEST
.6.3.2		Road routes will determine the	D	
		shortest sequence of road segments	1	
		between operator-specified road		
		points.		
.6.3.2		Cross-country routes will check	D	Ì
		for water crossings and allow the		
		operator to have the route		
		modified to avoid the water.		
.6.3.2		Bridge routes will allow the	D	<u> </u>
.0.3.2		operator to select a bridge to		
			1	
		cross as part of a cross-country		
		route.		<u> </u>
.6.3.2		Points The SAFstation operator	D	
		will be able to place the		
		following types of points:		
		general, coordinating, contact,		
1		control, target reference,		
		fortification, decision, hide, and	l I	
		launch points.	L	
.6.3.2		Lines The SAFstation operator	D	
		will be able to place the	1	
		following types of lines: plain,	1	
		front, minefield, fortification,		
		berm, antitank ditch, and wire.		
		Lines can be used to define other	ł	
		military control measures, such as		
		unit boundaries, objectives, and	!	
[phase lines.	 	
.6.3.2		Areas and zones The SAFstation	D	
		operator will be able to place		1
		areas and zones. These can be	:	
1		used to define assembly areas,		
		battie positions, and other		
		military area control measures.		
.6.3.2		Text The SAFstation operator	D	1
		will be able to place multiple		
		lines of text on the display.	1	l
.6.3.2		These control measures can be used		<u> </u>
.0.3.2			D	1
		in the mission specifications for units and entities. Various		1
		colors will be provided for each		
		control measure type, including	1	
		black, yellow, red, green, and		
		blue. Solid or dashed lines can be	1	1
ł		used for all line, area, and zone	1	1
		control measures.	ļ	ļ
.6.3.2		The operator will be able to move	D	1
		any control measure as a whole or		1
1		move any of the individual points		
1		that define a control measure. The	1	1
1		operator can add points to and	1	1
1			1	1
1				
1			1	1
1				
	···	delete points from any control measure or delete it entirely. The operator can add labels to control measures and edit the labels.		

A. 8. 54.

a the

20 December 1993

Ì

Appendix A

PARA	TITLE	DESCRIPTION	METH	TEST
.6.4	Message Log	The SAFstation will provide a	D	I
		message log that will display		1
		status messages and reports from	Í	
		the simulated entities and units		1
		under its control.		
.6.4		A radio log will show orders	D	i · · ·
.0.4		issued to the simulated entities		1
		and units from that SAFstation.		
.6.4	<u>├</u>	The operator can control the	D	1 —
.0.4				1
		frequency with which messages are		1
		sent, and which reports are sent.		
.6.5	H-Hour Time	The SAFstation will provide the	ł	N/I
		ability to set an H-Hour Time, so		
		that all SAF entities can perform		
		coordinating actions.		
.6.5		This H-Hour time can be modified,		N/I
	1	and it can be shared among	1	1
		workstations fighting on the same		
		side.		
.6.6	Resupply	The SAFstation will provide a		N/I
		method for setting the fuel levels		
		and weapons loads of entities at	ļ	
		resupply locations.		
.6.6		Airport locations for fixed-wing	1	N/I
		aircraft and FARP locations for		
		rotary-wing aircraft must be		
		specified by the Battlemaster. The		
		airport locations can be on or off	1	1
		the terrain database.		
.6.6		The resupply locations can be		N/I
.0.0		shared among SAFstations and can	[1 ¹¹ /1
		be saved in overlays.	Į	1
.6.6				1 37.17
.0.0		Ground entities will be resupplied		N/I
		through logistics vehicles in the	}	
	ł	simulation.		+
.6.6		The Battlemaster will be able to	ł	N/I
		resupply any SAF unit or entity at		
		anytime.	ļ	
.6.7	SAFview	The SAFstation operator will be	D	1
	Controls	able to perform the following	1	}
		operations with any SAFview		1
		component or Stealth (Flying	Í	1
		Carpet) on the simulation network:		
		(1) Teleport the SAFview to any	[1
		location on the database and (2)		
		Attach the SAFview to any entity		1
		under his command, using a number		
		of attachment modes.	l	
.6.7		These operations may be used to	D	1
		control other three-dimensional	1	1
		displays, such as the ODIN Flying	ł	1
				1
67		Carpet.	<u> </u>	+
.0./				1
.6.7		The use of the SAFview will be restricted in Commander mode.	D	Ì

.

1

PARA	TITLE	DESCRIPTION	METH	TEST
2.6.7		When the SAFview is not integrated	D	Γ
		with another ModSAF application,	1	
		the operator will be able to		
	1	change the exercise ID of the	1	
		SAFview.		
2.6.7		When the SAFview is integrated, it	D	
		will use the exercise ID selected		
		for the application.		
2.6.7		The current velocity and direction	D	
2.0		of travel of the SAFview will be		
		displayed.		
2.6.7		An icon on the situation display	D	<u> </u>
2.0.1		will indicate the location and		
		viewing direction of each SAFview		
		on the network.		1
2 6 0				<u> </u>
2.6.8	Vehicle	The SAFstation will provide a	D	l I
	Status Panel	status panel that displays a	l	1
		continuous update of the mission		
		and energy status of any single		
		aircraft specified by the		
		operator.		ļ
2.7	Operator	The operator will be able to set	D	
	Preferences	the following aspects of the user		
		interface according to his		
		preference: Numerical units,		1
	1	Symbology used to represent		
		entities, Grid units, and Editing		
		mode for control measures.		
2.7		These operator settings can be	D	
		saved to a file and later		i -
		retrieved and edited.		
2.7		They can be overridden by the	D	
		operator on a case-by-case basis.		
2.7.1	Numerical	The operator will be able to	D	
	Units	choose the units used for the		
		following: distance, altitude,		
		speed, and angles.	1	1
2.7.1		Distance used for all distance	D	
		displays, messages, and operator		1
	}	inputs. The available units will		1
		be feet, meters, nautical miles,		
		and kilometers.		
2.7.1		Altitude used for all altitude	D	1
		displays, messages, and operator	Ī	
	1	inputs. The available units will		1
	1	be feet, meters, nautical miles,	1	1
		and kilometers.	1	1
2.7.1		Speed used for all speed	D	1
2.1.1		displays, messages, and operator		
	1	inputs. Available units will	1	1
	1			1
	1	include knots, miles per hour,]	
	1	meters per second, mach, and	ſ	1
	1	kilometers per hour.	I	1

Appendix A

interest friezes

PARA	TITLE	DESCRIPTION	METH	TEST
2.7.1		Angles used for all angle displays, messages, and operator inputs. The available units will	D	
		include degrees, mils, and radians.		
2.7.2	Plan View Display	The operator will be able to select the following: symbology, grid units, and editing mode.	D	
2.7.2		Symbology used to represent the entities. The available symbols will include non-military entity icons, Army symbology, and Naval symbology.	D	
2.7.2		Grid units used for the map. The available units will include UTM and longitude/latitude. The operator will be able to specify whether to display UTM values in 6-, 8-, or 10-digit format.	D	
2.7.2		Editing mode used for control measures. The operator can choose between selecting whole control measures or selecting individual parts of control measures. When whole control measures are selected, operations such as moving and deleting are performed on the entire control measure. When parts are selected, operations are performed only on the part selected.	D	
2.8	Interaction Between Workstations	The SAFstations will have the ability to interact with each other by doing the following: sharing overlays, transferring control, and sharing an exercise time.	I	
2.8		Sharing overlays SAFstations will be able to share overlays. A filter will prevent SAFstations on different sides in an exercise from having access to the other side's overlays. Shared overlays can be edited from any SAFstation that has access to them.	D	

•

1

ł

.

PARA	TITLE	DESCRIPTION	MATH	2252
2.8		Transferring control Each	D	
		SAFstation will be able to		
		transfer control of entities and	Į]
		units to any other SAFstation. In.		
		Commander mode, the transfer must		
		be initiated from the SAFstation		
				ļ
		currently controlling the units or	l	l .
		entities. In Battlemaster mode,		
		the control of any unit can be	1	1
		transferred to the local		
		SAFstation or to any remote		
		SAFstation.		
2.8		Sharing an exercise time	D	
		SAFstations on the same side in	-	Į
		the exercise can share an H-Hour.		
2.9	Databases	The SAFstations will have access	I	}
2.9	Dacabases	to the DIS, PO, Terrain and	1 I	
	1		ļ	
		Parameter databases, as described		
		in Chapter 5. The DIS database is		
		used to determine the locations,		ļ
		velocities, and physical		1
		conditions of entities. The PO		
		Database is used to share command		
		and control as well as system	1	
		information among the SAFstations,		
		SAFsims, and SAF-loggers.		
2.10.1	X/Windows	For maximum portability, the	I	Í
2.10.1	Motif	ModSAF graphical user interface		
	MOUT	will be built using X/Windows and		ł
		Motif.		
2.10.2	DOD User	The ModSAF user interface will be	T	
2.10.2			- I	
	Interface	compliant with the draft DOD Human		
	Guide	Computer Interface Style Guide, 11		ł
		February 1992, prepared by the		
		Common Operating Environment	[ſ
		Working Group.		
3	SAF Simulator	ModSAF will provide the SOAR	I	
	Requirements	program with the capability to		1
		control aircraft movement,	ł	1
		sensors, and weapons.		1
3.1.1	Entity	Each SAFsim will receive creation	D	<u> </u>
~ • • • •	Creation	requests through the Persistent		ļ
	Lieacion			ł
		Object database from the		1
		SAFstations when the operator		
		requests simulation of SAF		I
		entities or units.		<u> </u>
3.1.1		All eligible SAFsims on the	D	
		simulation network will negotiate	1	1
		with each other to decide which	1	1
		SAFsim should simulate that		1
		entity.	1	I
3 1 1			<u> </u>	
3.1.1		The selected SAFsim will create	D	1
		and control that entity until told	1	
	1	to delete or transfer it.	1	1

. Le constant de la cons

20 December 1993

PARA	TITLE	DESCRIPTION	METH	T281
3.1.2	Entity State	The SAFsim will update the DIS and	I	1
		PO databases when the state of		
		the entities it is simulating		
		changes. This information		
		includes the positions, damage		
		level, amount of fuel and		
		ammunition, and marksmanship		
		level.		
3.1.3		The SAFsim will support the		N/I
3.1.3	Entity	deletion of entities that it is	1	N/1
	Deletion			
		simulating. Only the SAFstation		1
		controlling the entity can request		
		its deletion.		
3.1.4	Entity	A SAFsim will transfer simulation	I	
	Migration	of an entity to another SAFsim		
		when requested by the entity's		
		commander.		
3.1.4		Each SAFsim will also monitor the	I	I
		state of all other SAFsims on the	_	
		network.		
3.1.4		If a SAFsim drops off the network,	Ī	
J. T. Z		the remaining SAFsims will		
		negotiate with each other to take		
		control of the entities being	ļ	
		simulated by that SAFsim.]
+	-		<u> </u>	<u> </u>
3.1.4		The load will be balanced among	I	1
		the remaining SAFsims to the best]	l
		possible extent.		_
3.2	Command	Each SAFsim will check the PO	D	
	Interface	database for actions that its		1
		entities are asked to execute.		
3.2		The SAFsim will then notify the	D	
		unit of the presence of the		
		mission, frago, or immediate		
		command and allow the unit to		[
		decide how to respond to it.		L
3.2		The SAFsim will also put	D	T
	1	subordinate missions generated by		1
		its simulated entities in the PO	1	ł
		database for execution by the		1
		entity's subordinates.	1	1
3.2	1	Missions generated locally will be	D	+
J. L	1	handled in exactly the same way as		1
	1		I	1
~ ~		remotely generated missions.	<u> </u>	╂────
3.3	Entity	The SAF simulation models will	I	
	Simulation	emphasize efficiency and avoid	1	ł
		simulating those behaviors and	1	1
		mechanisms that do not produce		1
		significant externally visible		1
	<u> </u>	signatures.		
3.3		Many SAF models will include	I	
		simple elements of human control		
		that effectively simplify the		
	1	behavior of the entities.	1	1

•

I

PARA	TITLE	DESCRIPTION		7257
3.3		The SAFsim will allow the	I	
		construction of new entities		
		either off-line by changing		1
		parameter files or, at run time,		
		via the Persistent Object		
		database.		
3.3.1	Entity Hull	The following hull dynamics models	I	
	Simulation	will be available: ground vehicle	-	
		tracked, ground vehicle wheeled,		
		dismounted infantry, fixed wing		
		aircraft, rotary wing aircraft,		
		and missiles.		
3.3.1		Specific fuel consumption models	I	İ — — —
3.3.1		will apply to vehicles based on	-	
		the hull dynamics model.		
3.3.1	<u>+</u>	Vehicles will start with a	I	
3.3.1		standard amount of fuel per	1 ¹	
		vehicle, which will be defined in		
		the vehicle parameter database.		
3.3.1		Fuel consumption rates will be	I	
		determined by the specific vehicle		ļ
	_	dynamic model being used.		ļ
3.3.1		Vehicles will consume fuel at	I	1
		rates determined by parameters in		
		the vehicle parameter database.		ļ
3.3.1		The fuel consumption rate will be	I	
		reduced when a vehicle is idling.		
3.3.1.1	Ground	Ground vehicles will be able to	D	1
	Vehicles	move forward, backward, and turn.		
3.3.1.1		Vehicle orientation will be	D	1
		determined by the direction and		
		underlying terrain.		
3.3.1.1		Environmental factors, including	D	[
		slope and terrain type, will be		1
		considered when moving the		
		vehicle.		
3.3.1.1		The following hull dynamics models	D	
	1	will be available for ground		l
		vehicles: tracked and wheeled.		1
3.3.1.1		Tracked Ground Vehicles - these	D	
		vehicles will have the ability to		
		turn in place.		
3.3.1.1	T T	Wheeled Ground Vehicles - these	D	
		vehicles, which have a minimum	_	[
		turn radius, will have to be		
		moving to turn.		
3.3.1.2	Dismounted	The ModSAF system will model	D	<u> </u>
~ • ~ • + • £ • £	Infantry	dismounted infantry.		
3.3.1.2	1 THEAHERY	Each soldier will be able to carry	D	
3.3.1.2				1
3.3.1.2		and use a weapon. Infantry will be able to move and		
		IINTANETV WILL DO ADLO TO MOVO AND	D	1

20 December 1993

1. 35

Appendix A

a second a second

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.1.2		Infantry will have three postures:	D	
		standing (either standing in place		í
		or moving), kneeling, and prone.		l
3.3.1.2		Configuration information for	D	
		infantry will be provided in the		ļ
		vehicle parameter database.	Į.	}
3.3.1.2	1	Infantry have the special ability	D	<u> </u>
		to mount other appropriate		
		vehicles, such as IFVs or large	ł	
		helicopters; ride in them to	1	
		another location; and dismount.		
3.3.1.2		While mounted in a vehicle, the		
3.3.1.2			D	
		infantry will not be visible, but		
		will be vulnerable.		
3.3.1.2		Infantry will always be vertical	D	
	<u> </u>	when standing or kneeling.		L
3.3.1.2		Their orientations when prone will	D	1
		be determined by the underlying		
		terrain.		
3.3.1.3	Fixed Wing	Fixed wing aircraft (FWA) will	I	
	Aircraft	have six degrees of freedom.		
3.3.1.3		The model will calculate lift,	I	
		drag, and thrust. Effective	_	
		limitations on roll, pitch, and		
		yaw rates and accelerations will		
		be enforced.		
3.3.1.3		The ModSAF FWA dynamics software	I	_
		will use flight data from Height-	-	
		Mach (H-M) diagrams to determine		
		the specific power which is		
		available at any point in flight.		
3.3.1.3		Flight data from V-N diagrams will	Ī	
		be used to enforce aerodynamic and	-	
	1	structural limits on lift at any		
		point in the flight envelope.		
3.3.1.3	T	The ModSAF FWA will include a	D	
	1	simple low level pilot model that		
		can turn the aircraft to follow a		
		velocity vector, perform level		
		flight, and follow the contour of the earth.		
3.3.1.4	Potamy Wine			<u> </u>
	Rotary Wing	The rotary wing aircraft (RWA)	I	
	Aircraft	model will have six degrees of		
3.3.1.4		freedom.		
1.4.5		Its effective performance limits	I	
]	will include maximum roll, pitch,		
		and yaw rates, maximum speeds,		
		accelerations, and climb rates.		
]	These limits may be expressed in		
		more basic parameters such as		
		maximum lift.		

•

Ĵ

Ĵ

Ĵ

Î

Ì

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.1.4		The RWA model will include a	D	
		simple pilot model that is able to		
		follow a velocity vector, perform		
		level flight, contour flight, and		
		nap of earth flight.		
3.3.1.5	Missile	The ModSAF system will include the	D	
	Entities	following missile types: (1)		
		ground to ground, (2) Hellfire,		
		(3) long-range, radar guided, air-		
		to-air, (4) medium_range, radar		
		guided, air-to-air, and (5) short-		
		range, IR guided, air-to-air.		
3.3.1.5		Ground to ground missiles (similar	D	
		to the TOW missile) will have a		
		slight superelevation angle and a		
		METHurable initial velocity upon		
		firing. They will fly directly		
		toward the target along a line of		
		sight flight path as long as the		
		line of sight exists between the		
		firing vehicle and the target.		
		They will fly over encroaching		
		terrain, as long as there exists		
		partial line of sight from the		
		firing vehicle to the target.		
		They will be able to coast after		
		the powered portion of the flight		
		is finished.		

Ê

Í

Į

Î

Appendix A

W. Ca

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.1.5		Hellfire Missiles (ground/air to	D	
		ground) will be fired with a		
		slight superelevation angle. The		
		missile will fly out along its		
		initial trajectory until it finds	1	
		a lased target point to track to.		
		It will then fly toward the target		
		in the X Y plane, climbing until		
				l I
		it achieves a predetermined angle		
		between the direction of travel of		
		the missile and the direct vector		1
		to the target point. Maintaining		
		this angle to target slowly pulls		
		the missile flight angle down as		
		the missile approaches the target.		
1		When the missile passes into a		
		conical area above the target		
		point, the missile will fly		
		directly at the target point until		
		impact. This missile flight		
		pattern will occur as long as		
		there is a line of sight between		
		÷		
		the vehicle doing the target		
		designation and the target, and		
		also between the target and the		
		missile. The missile need not be		
		powered during the entire flight.		
· ·		Note, the vehicle that fired the		1
		missile does not have to be the		1
		vehicle designating the target.		1
3.3.1.5		Long-Range, Radar Guided, Air-To-	D	
		Air Missiles (similar to the		
		Phoenix missile) will be launched		
		by the firing vehicle, and will		
		fly straight to the target vehicle		
		using lead pursuit guidance. The		
		firing aircraft will guide the	1	1
		missile. When the target is within		I
		missile. when the target is within		
1		the tracking capabilities of the		
		Phoenix missile, the missile will		
		turn on its onboard radar and will		1
		track itself to target,		
		independent of its firing		1
		aircraft. The firing aircraft		1
		must be available to command the		1
		missile into self tracking mode.	1	
		If the firing aircraft is not able	1	l
		to switch the missile to self	1	1
1		tracking mode, then the missile	1	1
			1	1
		will not lock onto a target.	L	1

-

. .

J

Ĵ

P

Ĵ

Ĵ

ſ

Ĵ

ļ

Ĵ

ŀ

Ĵ

PARA	21218	DESCRIPTION	METH	TEST
3.3.1.5		Medium-Range, Radar Guided, Air-	D	
		To-Air Missiles (similar to the		
		Sparrow missile) will fly toward		1
		their targets using lead pursuit		
		guidance as long as the firing]	
		aircraft has the target		
		illuminated with its radar. A		
		position change by the firing		[
		aircraft can cause the missile to]	
		lose tracking. An example is a		
		firing aircraft that turns away so		[
		that the target is no longer radar		
		illuminated.		
3.3.1.5		Short-Range, IR Guided, Air-To-Air	D	
		Missiles (similar to the]
		Sidewinder) must be locked onto a		
		target before firing. They will		1
		fly directly toward a target using		
		pure pursuit guidance as long as		
		there is a line of sight between	I	
		the missile and the target. Once]	
		fired, the missile is self-		
		tracking (IR seeking).	1	
3.3.2	I mak i kan marana k		<u> </u>	
3.3.2	Entity Turret	The ModSAF system will allow	D	
	Simulation	vehicle models to include turrets.	ļ	ļ
3.3.2		Turrets will be able to rotate,	D	
		elevate, and depress any mounted		
		weapon to a specified limit.		ļ
3.3.2		Turrets will scan to track	D	
		targets, and when the vehicle is		
		not engaging an enemy, will		
		occasionally scan to a different		i i
		position within the vehicle's main		
		arc of observation.		
3.3.2	1	Turret parameters (scan rate to a	D	t
		position, scan limits, and the		1
		position offset to the attached	l	
		hull) will be defined in the		
		vehicle parameter database.	<u> </u>	
3.3.3	Weapons	The weapon systems for each entity	I	
	1	will be specified by the parameter		l
		database. This specification will		
		include: weapon position on the		1
		vehicle, amount of ammunition	l	I
	1	available to each weapon, pre-fire	1	
		time delays and weapon fire rates,		1
	1	mount information (turret or		1
		hull), and weapon range (area		1
		around the vehicle that the weapon	I	· ·
			-	-

A STATE AND A STATE

ALL ST

ļ

Ĵ

Î

Ĵ

Ĵ

Î

20 December 1993

A-25-

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.3		Weapon types will include missiles		
		(which are visible during flyout		
		and produce direct fire), indirect		
		fire weapons (which are invisible		
		during flight), and direct fire		
		weapons (which are invisible		ł
		during flight).		
3.3.3		When a direct fire weapon is	I	
		fired, a hit model will be used to		
		determine if the shell from the		
		weapon will strike the target.	ł	
3.3.3		The hit models will take into	I	i
		account the weapon being used, the	-	
		firer's velocity and range to		
		target, the target's vehicle type,		
		aspect angle, velocity and percent		ł
		exposure (visibility).		
3.3.3		These factors will be used to	I	
		determine the probability of the	-	
		shot hitting the target.		
3.3.3		This probability will be used to	I	<u> </u>
5.5.5		determine if there was a hit or		
		miss.		
3.3.3	<u>т</u>	Each missile will have a	I	
3.3.3		specifiable probability that a		
		particular weapon will be a dud.		
3.3.3	<u> </u>	When a particular weapon is to be	T	
5.5.5		used (if the probability is not	1	5
		zero), the chance that this		
		instance of the ammo/weapon will		
		be a dud will be tested.		
3.3.3		If it is a dud, there will be no	I	
		effective impact of the weapon	1	
	1	system on the target.	l	[
3.3.3	+	If the dud weapon system carries a	T	
		Warhead or explosive device of	1 ¹	
		some kind, there will be no		
	1	explosion.		
3.3.3.1	Waaman Dini			
3.3.3.1	Weapon Firing		D	1
		require the turret to track and	[1
		elevate relative to the direction	1	
2 2 2 4	+	of the target.		<u> </u>
3.3.3.1		When appropriate, the weapon	D	
		system will lead a moving target.	ļ	_
3.3.3.1	1	Vehicles will stop to shoot if	D	1
		required (for example, the M2 will	ļ	1
	1	stop when firing a TOW).		

•

j,

Ì

Ĵ

Ĵ

Ì

Ĵ

Ĵ

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.3.1		Weapon systems will have the	D	
		capability to fire at a specific		
		location. Firing may occur even	l	
	1	if no particular target vehicle		
		has been specified, or if no	1	
		potential target vehicle exists at		
		or near the specified location.		
3.3.3.2			<u> </u>	ł
3.3.3.2	Tactical	Missiles will have a parameter	I	
	Missiles	file which outlines the		
		performance characteristics of	1	
		that type of missile.	1	
3.3.3.2		These characteristics will include	I	
		targeting methods, warhead types,		
		flight dynamics, flight		
		characteristics, sensors, modes,	ſ	1
		limitations, movement within the		[
		dynamics model, etc.	1	
3.3.3.2		Both ballistic and battlefield	Ī	
3.3.3.2		missiles will be available.	-	
3.3.3.2		Missiles can be targeted and	I	
		destroyed by weapon systems	ł	
		designed specifically for	ł	
		destroying missiles in flight.		
3.3.3.2		Tactical missiles will have the	I	
		capability of using any of the		
		following guidance algorithms,		
		configured in the parameter files:		
		lead-pursuit, pure lead, and pure	1	
		pursuit.		
3.3.3.2		The weapon specification will also	T	
		indicate fuzing distance, minimum	1 1	[
		effective distance for damage, and		
		maximum tracking angle (outside of]	-
			1	
		which target tracking will be lost).		
			┣───	
3.3.3.3	Ballistic	Ballistic missiles will have		N/I
	Missiles	aspects of their launch sequence		
_		user definable.		
3.3.3.3		If the capabilities of the missile		N/I
		provide for the missile to get to		
		the specified point from its		
	ĺ	launch position, a supplied target		1
		point will automatically control		1
		the boost phase behavior for the	1	
		missile.		
3.3.3.3		Parameters that can be specified		N/I
3.3.3.3		for ballistic missiles include	1	1 N/ 1
	ł	initial and burnout mass, roll]	1
		factors (such as angle and start		
		time), thrust, and re-entry	l	1
	ļ	characteristics.		L
3.3.4	Sensor	Sensors on each entity will be	I	
	Simulation	user specifiable.		
3.3.4		Sensor types will include: visual,	I	T
J.J. 1				

ļ

Ĵ

Ĵ

Ĵ

Í

Appendix A

and war the of

76 L 14

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.4		Parameters appropriate to the	I	
		sensor type may consist of ranges,		
		update rates, arcs of primary and		
	1	secondary operation, blind areas,		
		effective distances, and chances		
		of detection.		
3.3.4	1	Sensors will determine what a	I	1
		vehicle can and cannot detect in		
	1	the environment.		
3.3.4		Target entities will be tracked if	I	
0.0.1		the following criteria exist: (1)		
		the entity is determined to be		
		within the sensing capabilities of		
		a tracking vehicle, and (2) the		
		target entity passes tests that		
		determine it is detectable.		
3.3.4		Probability tables, based on	I	t
J.J.4		orientation, situation, entity		1
		type, line of sight, angle of incidence, etc. may be used to		
		· · ·		
2 2 4 1		determine target detectability.	├───	
3.3.4.1	Radar Model	A radar model will be implemented	I	
		which calculates the radar cross-	Į	
		section of a target based upon the	l .	
		target type, range to target, and		
		target aspect angle.		<u> </u>
3.3.4.1		If the radar cross-section of a	I	1
		target is greater than a threshold	Í	1
		based upon the given radar's		
		capabilities and mode, then that		
		target will be detected by the]	
		radar.	<u> </u>	
3.3.4.1		The radar model will implement the	I	
		following radar modes similar to		1
		those in the F-14D AWG-9 radar:		
		Pulse Single Target Track (PSTT),	1	
	1	Pulse Doppler Single Target Track	l	1
		(PDSTT), Track-While-Scan (TWS)		
		Manual, and Track-While-Scan (TWS)		
		Auto.	ļ	ļ
3.3.4.1		The PSTT mode will also be used	I	1
		for the implementation of the		1
		long-range missile radar.		Į
3.3.4.1		The radar model will issue the	I	
		radar protocol data unit (PDU)	I	1
	1	defined in the DIS standard	1	ł
		whenever an aircraft or missile	1	í
		radar is turned on.		
3.3.4.1		An interim PDU based on the SIMNET	I	1
		Radar PDU will be used until this	-	1
		PDU is standardized in the DIS	1	1
	1	Protocol Standards.	1	1

.

Ĵ

1

Ì

J

Î

Ì

Ĵ

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.4.2	Visual Model	A visual sensor (eye) model will be provided that takes into account effective target size and occlusion (actual size, aspect angle, range, percentage visible),	I	
		the eyepoint of the viewer, the probability of detection, and the focus of attention.		
3.3.4.2		The models will be easily extended to support different illumination and weather conditions.	I	
3.3.4.3	Infrared (IR) Model	The IR model will be similar to the visual model but will include calculations for IR signature strength instead of effective target size.		N/I
3.3.4.3		Factors for IR signature strength will include thrust levels for aircraft, aspect angle, and entity type.		N/I
3.3.5	Damage	Damage models, which are user specifiable, will define how particular weapons affect a particular entity.	D	
3.3.5		The model will take into account the following factors: angle of incidence of the impact, which component of the target is affected, and the number of rounds taken.	D	
3.3.5		Missiles will be subject to damage by specifically targeted anti- missile systems.	D	
3.3.6	Entity Projections	The following sections list the entity appearances that will be available for projection onto the simulation network.	I	

he.

.

20 December 1993

J

Ĵ

1

Ĵ

Į

Î

ļ

Ĩ

Ì

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.6.1	US Entities	The American entities are listed	I	
		below.		
3.3.6.1		A6	I	
		A10		
		ADATS	1	1
		AH-64A		
		B52		1
		CG47		
		Ch-47		
		DD963		
		DI		1
		F14D		
		F18		
		FFG7		
		AH-1S		
		HMMWV		
		LHD1		
		LOSAT	1	1
		M1A1		
		M106A1		1
		M109		
		M113A2		I
		M113 ambulance	1	
		M113 engineer		ł
		M113		
		M2		
		M270		
	1	мз		J
		M35A2		1
		M577		ł
		M88A1		
		: M901		1
		м977		
		м978	1	1
		MPQ 53		1
		OH 58C	1	1
		OH 58D		1
	1	UH 60A		

E 🖤

Į

Ĵ

1

J

Î

Ţ

J

.

PARA	TITLE	DESCRIPTION	METH	7287
3.3.6.2	Russian	The Threat entities are listed	I	
	Entities	below.		
3.3.6.2		BMP 1	I	
		BMP 2		
		GAZ 66		
		MAZ 543		
	l i	Mi 8		ł
	[Mi 24	[
		Mi 28	1	
		MIG 23		
		MIG 29		
		MIG 29 MTLB		
		MTLB ambulance		
		SA 13		ł
	1	SA 9		l I
		SU 25		1
		SU refueler	ł	l I
		T72	ł	1
		T62	ł	I
		T55		
		UAZ 469		
		URAL 375F	l	
		2IL 157		ł
		ZSU 23-4		
3.3.6.3	Other	Other entities are listed below.	I	
	Entities			1
3.3.6.3	1	Gazelle	Ī	1
	1	LEO 2	_	1
		MARDER	1	1
		Water Carrier]	I
	1	Generic Missile	l	
3.3.7	Entitu-		-	<u> </u>
3.3.1	Entity	Behaviors will be decomposed into	I	
	Behaviors	hierarchical tasks.	<u> </u>	
3.3.7		Tasks will use entity,	I	1
		environmental, and internal state	}	1
		to generate control inputs that	ł	1
	1	guide the vehicle in accomplishing	j	
		its mission.	[ļ
3.3.7.1	Movement	Vehicles and DI will be able to	D	
		proceed to a point.		
3.3.7.1		Given a current orientation,	D	
		position, and velocity, the	I	1
		vehicles will turn and move toward		1
		the goal.		1
3.3.7.1	1	Multiple points can be sequenced	D	1
	1	together to form a route. A route	١ĭ	1
	1	for aircraft will be a simple set	1	1
	1	of these points.	1	1
2 2 7 4	<u> </u>		<u> </u>	
3.3.7.1		When requested by the operator, a	D	1
		route between two terrain		1
		locations can be automatically		
		generated for use by ground units	ł	1
	1	and entities.	1	1

N. Basis

Í

Ĵ

1

the state of

PARA	TITLE	DESCRIPTION	METH	TES1
3.3.7.1		Ground vehicle routes generated by	D	1
		the system will avoid uncrossable	-	
		rziver segments.		
3.3.7.1		Road routes can be specified by	D	1
		the operator	–	
3.3.7.1		If a road route is requested, a	D	t
5.5.7.1		route consisting of points leading		l
		across connecting road segments		l
		will be generated.		
3.3.7.2	Resupply	Vehicles will have the capability		N/I
3.3.7.2	Resuppiy	to handle the logistics protocol.	Į –	N/I
3.3.7.2	1	Vehicles will be able to request		N/I
3.3.7.2				N/1
		supplies from a logistics vehicle.		
3.3.7.2		If all resupply conditions are		N/I
		satisfied, logistics vehicles will		
		refuel and rearm at the rates		
		specified by the protocol.	ļ	<u> </u>
3.3.7.2		Vehicles may also be resupplied		N/I
		from the SAFstation by the		
	l	Battlemaster.		<u> </u>
3.3.7.3	Weapon	The operator will be able to	D	
Control	Control	determine the situations in which		1
		a vehicle will be allowed to fire		1
		its weapons. Overall fire		1
		permission can be withheld.		
3.3.7.3		Fire permission can be granted	D	
		under the following conditions:	Į	ļ
		(1) the target is within a		1
		particular distance of the vehicle		
		or (2) the target is within a	Í	
		particular distance of a		
		designated point.		
3.3.7.3		Fire permission can also be	D	
		established so that the vehicle	ļ	
		will be limited only by the	1	[
		distance limitations of the		
		weapons systems of that vehicle.		
3.3.7.3		Targeting characteristics will	D	
	1	allow weapons and targets to be]	
		matched in order to select the	ł	
		best target and weapon for the	1	1
		situation based on weapon		
		capabilities, weapon priorities		1
	ł	and target type, distance to		
		target, ammunition availability,		
	ł	target priority, and weapon		
		enabled lists.		
3.3.7.3		When multiple targets are	D	
	I	available for a vehicle, target		1
1		selection will choose the most	l	
		appropriate target.	1	
3.3.7.3	1	The operator will have the ability	D	†
		to establish a target priority	Ī	
		list based on a set of vehicle		
	1	TTOO MORE ON & SEC OF VEHICLE	1	1

.

Ъ.

Ţ

J

1

ļ

Î

Î

Ĵ

Î

•

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.7.3		This priority list will aid in	D	
		target selection when multiple		
		targets present themselves.		
3.3.7.3		Target classes available will	D	
		include tanks, command vehicles,	-	
		APCs, rotary wing aircraft,		
		artillery, anti-aircraft vehicles,		
		logistics vehicles, fixed wing]
		aircraft, missiles, and dismounted		
		infantry.		
2 2 7 2				
3.3.7.3		Vehicles with turrets will	D	
		occasionally scan their turret		
		either through an arc in front of		
		the vehicle or through an arc		
		determined by the vehicle's		
		position in the unit formation.		
		This will only occur when the		
		vehicle is alive and is not		
		firepower disabled.		
3.3.7.3		The following commands will be	D	ł
		generated for all weapon systems:		1
		place the weapon in the correct		
		firing position, fire the weapon,		1
		and reload the weapon.		
		Appropriate delay times will be		
		utilized.		
3.3.7.3		Aircraft will be able to perform	D	
		single target beyond visual range	}]
		(BVR) air to air tactics.		
3.3.7.4	Ground	Ground vehicles will have the	D	
	Vehicle	capability to cross bridges.	-	
	Specific			
	Control Tasks			l
3.3.7.4		Vehicles will slow down	D	t
~ . ~ . / . 3	1	automatically and line up		
		correctly to achieve a successful	l	
		bridge crossing. After crossing	ł	ł
		the bridge, vehicles resume their	ł	1
		previous speed and formation.		1
2 2 7 4	{		<u> </u>	
3.3.7.4		Ground vehicles will automatically	D	
		avoid obstacles they encounter in	1	
		their paths. Buildings, unfordable		
]	river segments, and tree lines (if		l
		desired) will automatically be	1	I
		circumvented. Other vehicles will	ſ	1
		also be avoided. Direction of	1	
			1	1
		travel and speed of these vehicles		
		travel and speed of these vehicles		
3.3.7.5	Air Vehicle	travel and speed of these vehicles will be taken into account in avoidance calculations.	I	
3.3.7.5	Air Vehicle Specific	travel and speed of these vehicles will be taken into account in	I	

Water and the second second second second

1

Ĵ

1

Sec. 19

50

a restarter a

14. K.

20 December 1993

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.7.5		Takeoff And Land	D	
		Air vehicles will have the ability]
		to take off and land. The aircraft		ł
		model will handle this task		
		automatically under the following		
		conditions: (1) a vehicle is		
		tasked to move, (2) the overall	1	
	1	task the vehicle is performing		i i
	requires it (such as returning to			
	base to resupply), or (3) the			
1		operator issues a request (such as		
		fly to this point and land).		
3.3.7.5		Orient Weapon System	D	<u> </u>
5.5.7.5		Air vehicles will have the ability	5	
		to realistically orient the		
		airframe in a desired direction		1
		when required by the targeting	Į –	
1		requirements of a particular		J
		weapon system.		L
3.3.7.5		Collision Avoidance	D	
3.3.7.5		Other vehicles will be avoided.	U	
		Direction of travel and speed will		
		breccion of travel and speed will be used in avoidance calculations.		
3.3.7.5	<u> </u>			{
3.3.7.5		Bingo Fuel	D	
		A bingo fuel level will be		ł
		calculated to determine the time		
		at which an aircraft must end its		
		current mission and return to the	1	
		refuel point. The distance to a		
		operator specified refuel point	1	
3.3.7.5		will be used in this calculation.	<u> </u>	<u> </u>
3.3.1.5		Aircraft Resupply	D	ļ
		When a predetermined level of fuel	1	I
		remains, rotary wing and fixed		
		wing aircraft will automatically		
1		perform the appropriate bingo fuel		
		maneuvers, such as returning to		
		base. Rotary wing aircraft will	1	Į.
1		be able to use FARP locations and	1	l
		will do the proper approach,		ł
		landing, exit, request, and		
		transfer procedures automatically.	I	1
		Fixed wing aircraft will		1
		automatically be refueled and	[I
1		rearmed when landing at one of the	[
		defined air bases.	<u> </u>	

,

J

Ĵ

1

•

PARA	TITLE	DESCRIPTION	XETH	TEST
3.3.7.5		Orbit Hold Air vehicles will have the ability to perform an orbit hold. Vehicles will perform this task as a single task, as an interrupt to a current task, or as the termination task of other tasks. Given a designated point, the vehicle will begin to circle at a fixed distance from the point at a standard speed.	D	
3.3.7.5		Racetrack Hold Air vehicles will have the ability to perform a racetrack hold. Vehicles will perform this task under the same conditions as an orbit hold. Given a specified point and the direction that the point was approached from, the vehicle will fly to the point, turn around, and head back in the direction it came from. The vehicle will proceed in this direction for a pre-determined time, turn around, and perform the entire maneuver again.	D	
3.3.7.5		Intercept Air vehicles will have the ability to turn and fly a course which will intercept a designated target.	D	
3.3.7.5		Return To Base Air vehicles will have the ability to fly to a point designated as their base of operations. Upon reaching this point, the vehicles will land.	D	
3.3.7.5		Evade Air vehicles will have the ability to turn and fly a course that will attempt to avoid a specific enemy contact or contacts.	D	
3.3.7.6	Fixed Winy Aircraft Specific Control Tasks	The following control tasks are supported for fixed wing aircraft.	I	

A State of the sta

1

1

1

Appendix A

PARA	TITLE	DESCRIPTION	METH	TEST
3.3.7.6		Low-Level Terrain Flight	D	1
		(Automatic Terrain Following)	-	
		Fixed wing aircraft will have the		
		ability to fly routes close to the		
		ground. In doing so, the vehicle		
		will attempt to maintain the		
		specified required altitude above		
		the ground but will tend to clip		
		peaks and dips. Low level flight	ł	
		will be characterized by a	1	
		constant speed and a desired		
	L	average altitude AGL.		<u> </u>
3.3.7.6		Takeoff And Land	D	
		The takeoff and land control task]	
		for fixed wing aircraft will be		
		unmodeled. Fixed wing aircraft		
		which are landing will set their	1	I
		altitude and velocity to zero upon		I
		achieving correct XY locations in	ļ	
		space.	1	
3.3.7.6	1	Jink	D	t
2.2.7.9		Fixed wing aircraft will have the		I
		ability to perform sudden changes		
		of flight path. Flight path angle		
			1	
		and direction will change. FWA		
	}	will also be able to fly toward a	1	
		point while performing multiple	1	
		jinks.		<u> </u>
3.3.7.7	Rotary Wing	Contour Flight	D	1
	Aircraft	Rotary wing aircraft will have the		1
	Specific	ability to fly contour flight.	1	
	Control Tasks	Terrain features lying in the path		
		of the vehicle, such as buildings,		
		trees, and tree canopies, will be		
		flown over before returning to the]	
		desired close to ground altitude.		1
3.3.7.7		Hover Hold	D	1
		Rotary wing aircraft will have the	-	1
		ability to perform a hover hold.	l	1
		This task will be performed under		1
	1	the same conditions as orbit hold.	I	
		The vehicle will fly to the		
		designated hover point, come to a		
				1
2 4 4		stop in the air, and remain there.	<u> </u>	<u> </u>
3.4.1	Minefields	The SAFsim will be able to create	D	
		and simulate minefields.	ļ	
3.4.1		These minefields will be specified	D	1
		by a bounding region, the type of		I
		mine contained therein, and a		ł
		density of mines.	1	I
3.4.1		Each minefield can have a	D	1
		operator-specified string to	1	1
	1	identify it.	i	1

Í

ļ

PARA	TITLE	DESCRIPTION	XXXX	7887
3.4.1		The SAFsim will monitor entities	D	
		moving within the minefield and		
		probabilistically determine		
		whether a mine explodes.		
3.4.1		The minefield will be capable of	D	Γ
		being breached, and areas where		
		mines have already exploded will		
		not explode again.		ł
3.4.2	Buildings	The system will be able to create		N/I
		buildings in the simulation.		
		Since these buildings are created		
		by the simulation, and are not	ł	
		part of the terrain, they are not		
		permanent. They follow the same		1
		rules for creation as entities,		
		except that once created, they can		Į
		only be destroyed or removed from		
		the simulation.		
3.4.2		A building cannot move, take		N/I
		commands, or perform any sort of		
		activity.		
3.4.3	Damage	The system can simulate buildings		N/I
5.4.5	Simulation	taking damage from direct and		1 ¹¹ 1
		indirect fire, and a destroyed		
		building will be displayed under		
		the proper circumstances.		
3.4.3		Damage tables will exist for		N/I
3.4.3		buildings in the parameter files.		N/1
3.5.1	Unit Types	The types of ground units	D	
J.J.1	Unit Types	simulated will include at least		
		the following:		
3.5.1			D	<u> </u>
3.3.1		Mechanized infantry battalion, company, and platoon		l
		Motorized rifle battalion,		
		company, and platoon		
		Armor battalion, company, and		
		platoon		
		Armored cavalry troop	Į.	
		Dismounted infantry section and		
		squad	ł	Į
		Artillery battery and platoon	1	1
		Supply platoon		
		Mortar platoon		1
		Air defense artillery platoon	1	1
3.5.1		Air support units will be provided	D	t
	1	for both fixed-wing aircraft (FWA)		1
		and rotary-wing aircraft (RWA) in	1	1
	1	flights of one, two, three, four,]	1
	1	and five aircraft.		
3.5.1	1	Both attack and scout RWA will be	D	+
9.9.I				ł
<u> </u>	t	provided.	<u> </u>	┼──
3.5.2	Task	The operator will have the	D	1
	Organization	capability to create units		1
		composed of entities and/or other	l	ł
		units.	1	1

Í

Appendix A

Sec. Sec.

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.2		The operator will be able to	D	
		specify the makeup of the units,		
		though some standard units will be		
		available.		
3.5.2		It will be possible for the ModSAF	D	
		system to create its own task-	-	
		organized units without operator		
		intervention, when tactically		1
		appropriate.		
3.5.3	Communication	The SAFsim will model message	D	<u> </u>
3.3.3	contendritcacion	communications between the ModSAF		
		units and their commanders.	<u> </u>	Į
3.5.3		Information will be aggregated and	D	
		messages will be sent to the		
		controlling SAFstation at the	[
		level of command of the unit being		
		simulated.		
3.5.3		The rate of report will match the	D	
		battle conditions.		
3.5.3		Units will have the ability to	D	T
		collect and correlate vehicle		j
		sighting information into spot and		
		contact reports.		
3.5.3		Other messages will include	D	†
		artillery impacts, encounters with		1
		minefields, unit task transitions,		l
		and unit strength reports.		1
3.5.3	-t	These communication models will		
5.5.5			D	
		also be used to send CVCC protocol]
		packets for shell, contact,		ł
		status, and spot reports.		<u> </u>
3.5.4	Unit Tasks	The grouping of entities into	I	ł
		units will allow the operator to		1
		control multiple entities by		1
		giving commands to the unit as a		1
		whole. The unit will then perform		I
		the specified commands/tasks as	1	I
		required. These tasks may involve		
		independent actions by sub-units		
		or entities.		
3.5.4		Sub-units or entities in a unit	I	
		may also be directly commanded or		1
	1	tasked separately from the		
		remainder of the unit.	ł	
3.5.4	1	Applicable tasks will support both	I	
		Threat and US tactics.		1
2 5 4 1	One and the dat		 	
3.5.4.1	Ground Unit	Tasks for ground units will	I	1
	Tasks	include at least the following:	1	I

j

PARA	73768	DESCRIPTION	METH	7257
3.5.4.1		Formation Keeping - Vehicles or	D	
		DI in a unit will have the ability	1	
		to move in formation relative to		
		each other. A variety of		l
		appropriate formations will be		Í
		available for each type and size		
		of unit. The commander will be		
		able to set the formation scale		
		factors to adjust the size of the		
		formations. Units will have the		
		capability to automatically adapt		
		their formation to their		
		situation. For example, as a unit		
		arrives at a river bridge, the]	
		member vehicles of that unit will		
		fall out of formation as each		
		approaches the bridge, will form a		
		column to cross the bridge, and		
		will return to their original		
		formation on the other side. This		
		behavior will also occur when		
		units skirt terrain features, such		
		as rivers or treelines, or		
		negotiate passages too small to		
		accommodate the original		
		formation.	L	ļ
3.5.4.1		Command From Simulator - ModSAF	D	
		ground units will have the ability	{	ł
		to be commanded by manned	1]
		simulators. The manned simulators		
		will take the place of the unit		
		commander vehicle, and will always		
		be the lead vehicle of the unit.		
3.5.4.1		Follow Vehicle - ModSAF ground	D	
		units will have the ability to		
		follow manned simulators. The		
		manned simulators will always be		
		the lead vehicle of the unit.		ļ
3.5.4.1		Bounding Overwatch - Ground	D	
		vehicles and dismounted infantry		l
		will be able to perform bounding		
		overwatch movement, in which a	1	1
		portion of the unit covers the		1
		movement of another portion of the	ļ	l
		unit, using terrain features as		
		cover.	{	

I

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.4.1		Targeting Coordination - Vehicles	D	
		in a unit will have the capability	-	
		to coordinate their fire with	ł	
		multiple targets. For example, a		
		US tank platoon of M1s presented	[
			l	
		with multiple targets will each		
		shoot at a target that has not		
		already been chosen by another		
		member of the platoon. This will		
		occur only with units that do this		1
		sort of coordinated fire (i.e., US		
		units), and only at the basic	Į	
		platoon level.		
3.5.4.1		Hasty Attack -	D	
		Ground units will automatically		I
		perform a hasty attack when they]
		come under fire, have fire		
		permission, and are on the move.		1
3.5.4.2	Air Unit	Tasks for air units will include	<u> </u>	<u> </u>
3.3.4.2			I	
	Tasks	at least the following:		<u> </u>
3.5.4.2	1	Formation Keeping - Vehicles in a	D	
		unit will have the ability to move	1	
		in formation relative to each		1
		other. A variety of appropriate		
		formations will be available for		
		each type and size of unit.		
3.5.4.2		Targeting Coordination - Vehicles	D	
	1	in a unit will have the capability		ļ
		to coordinate their fire at		
		multiple targets. This will occur		
		only with units at the basic		1
		flight level.		
3.5.4.2	t	FWA Ground Attack -	I	N/I
3.3.4.2			I	N/1
		FWA units will have a standard set	1	I
		of ground attacks available, with		l
		a variety of operator-selectable		
		options. The unit will perform an	1]
	1	ingress using any method and	J	J
	1	formation normally available for		
		route following. The flight will	I	
		then do one of the following		
		actions: go straight to the target	1	
		area in a direct attack, spread	1	I
		out into a line and do a trailing		1
	1	attack, or split up and do either		1
	1	a split or a ninety/ten attack.	1	
	1	Attack entry points can also be		1
				1
		selected as either level or pop-up		ł
		attacks, or standoff pop-up and	I	1
	ļ	dive attacks. Available delivery	1	ł
		methods for the attack will be	1	I
		laydown, strafe, medium-altitude		
	1	dive, or low-altitude dive.	1	1

1

Í

1

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.4.2		RWA Ground Attack - RWA units will	D	
		have two predefined ground attack		
		patterns, hover-fire and running-		
		fire. For both, the aircraft will		
		approach the target area slowly at		
		very low altitude to avoid		
		detection. In a hover-fire		
		attack, the vehicles move into (or		
		approach in) an extended line		
		formation. Each aircraft will then		
		pop up until a target is acquired,		1
		fire at that target, move back		
	1	down, then move laterally and pop		
		up and fire again. This will	1	
		continue until all targets in the	ł	
		designated area have been	1	
		destroyed. In a running-fire		
		attack, the rotary wing aircraft		
		will move to attack speed, flying		
		straight toward the target area,		
		fire, and then retreat. Each		1
		aircraft will either make the run		
		once only or make multiple runs,		
		as specified by the commander.		
3.5.5	Unit Task	The user will create missions for	I	
	Frames	the units he controls by combining		
		and editing sequences of task		
		frames. Unit task frames will be		
		created from unit tasks. This]]
		section lists the unit task frames		
		that will be defined in the ModSAF		
		system.		1
3.5.5	<u> </u>		 	<u> </u>
3.3.3		The operator will select generic	I	
		task frames; the specific task		
		frames that will be executed are		
		determined by the unit (echelon		
		and tactics. i.e. US or Threat)		
		that they are assigned to. Some		1
		task frames will not apply to all	l I	1
	l	units.		
3.5.5		The tasks that compose a task	I	
		frame have many parameters with		1
		default settings. The user		1
	1	customizes the task frames that he		1
	1	uses by editing these parameters,		
	1			
		which include speeds, formations,	1	
		messages, rules of engagement,		
	<u> </u>	etc.	ļ	_
3.5.5.1	Ground Unit	Ground Unit task frames components	I	1
	Task Frames	will include:	1	

1.34

No. S. A.

 ~ 2.5

A CARLES

1

20 December 1993

Appendix A

All and the second second

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.5.1	T	Assault/Attack	I	1
		Clear Area		
		Halt		
		Occupy Ambush	1	
]	Hasty Attack/Action Drill	Į	
		Occupy Assembly Area	[1
		Occupy Battle Position		
		Pre-battle March		1
		Random Traffic		
				1
		Reconnoiter		
		Roadmarch		
		Tactical March		
	L	Withdraw		Ĺ
3.5.5.2	Rotary Wing	The ModSAF software will be	1	
	Aircraft	capable of performing the		
	(RWA) Task	following task frames for RWA		Į
	Frames	units:		1
3.5.5.2		Occupy Assembly Area - A unit will		N/I
		fly to the center of an area and		
		land in an occupy assembly area		1
		formation. This formation	í	
		maximizes the chance of detecting		Į
		enemy contact from any direction,		1
		and the chance of escape of some		i
		of the unit if surprised.		1
3.5.5.2		Occupy Battle Position - A unit		N/I
5.5.5.2				N/I
	[will fly to a position and hold in		
		an occupy battle position	1	1
		formation. The battle position		1
		formation allows mutual support		
		and early detection of any enemy		
		contact. The direction of		
		expected contact will be the		l I
		orientation of the formation.		
3.5.5.2]	Fly Enroute - A unit will fly	D	1
		along a route, with one particular		1
		vehicle following the route, and		
		the other vehicles in the unit		
		maintaining predetermined		
		formation positions relative to		
		the leading vehicle or each other.		
3.5.5.2		Aerial Fire Support/Close Air	D	
	1	Support - Units will fire at		1
		ground targets in a designated	[1
		area.	1	I
3.5.5.2		Return To Base - Rotary wing	D	<u>t – – – – – – – – – – – – – – – – – – –</u>
		aircraft units will have the		1
			1	
		ability to fly to a point	I	ł
		designated as their base of	I	
		operations. Upon reaching this		
1	1	point, the vehicles will land.	1	ł

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.5.2		FARP Behavior - Rotary wing units		N/I
		will have the ability to perform		
		the proper FARP behaviors. The		
		unit will fly to a point a few	[
		kilometers from the resupply	1	
		point, then drop down to a low		
		altitude, and fly nap of earth or		
		low level flight to the resupply		
		point. The aircraft will		1
		automatically query the vehicles		[
		in the supply area for needed		
		supplies, and will land and		
		perform the resupply procedures.	1	
		When done, vehicles will leave the	{	
		area, again using low level or nap	1	Ì
		of earth flight till they are		ł
		again a few kilometers from the		ł
		resupply area.		L
3.5.5.2		Hold - RWA units will have the	D	1
		ability to do hover, orbit, and	1	
		racetrack holds. Hover holds will	1	
		be accomplished by the leader		
		coming to a stop at a particular		
		location, and the rest of the unit		
		moving into proper formation		1
		positions relative to the leader		1
		and each other. For an orbit		1
	ł	hold, the vehicles will trail the		1
	5	lead vehicle as they move around	1	
		the orbit circle. For the		
		racetrack hold, vehicles will	i	
		maintain formation positions, and		
		will follow the lead vehicle		
		around the racetrack route as if		
		following the lead vehicle on a		
		normal route.		
3.5.5.3	Fixed Wing	The ModSAF software will be		+
	Aircraft	capable of performing the	I	1
	(FWA) Task			
		following task frames for FWA		
	Frames	units:	<u> </u>	
3.5.5.3		At Airport - Aircraft will remain	D	1
		on the ground and will not move.		1
		Vehicles will be resupplied while		1
	performing this mission.	ļ		
3.5.5.3		Ingress -	D	1
		Unit will follow a route into a		1
		target area. Targets of		
		opportunity should not be	I	1
		approached. This should be used	I	
		before an Attack Ground Targets	I	
ł	1	mission.	I	1

1414-12

Appendix A

1. A. A.

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.5.3		Attack Ground Targets - The unit		N/I
		will perform the appropriate		
		predetermined ground attack tasks,		
		chaining together approach, entry,		
		delivery, and egress. The proper		
		(but not required) mission to		
		approach an attack target ground		
		mission is an ingress, and if		
		used, the unit will proceed to an		
		egress mission when the attack is		
		finished. For options, see Air		
2 5 5 2		Unit Tasks, FWA Ground Attack.		
3.5.5.3		Egress - Unit will follow a route	D	
		out of a target area. Targets of		
		opportunity can be approached.		1
		This should be used after an		
	1	Attack Ground Targets mission.	<u> </u>	ļ
3.5.5.3		Fly Enroute - Unit will fly along	D	
		a route, with the lead vehicle	ľ	
		following the route, and the other		
		members of the unit stationkeeping		
		off the leader or each other as		1
		appropriate.		
3.5.5.3		Combat Air Patrol - The unit will	D	
		patrol an area, awaiting orders or		
		targets of opportunity.		
3.5.5.3	1	Hold - FWA units will have the	D	1
		ability to do orbit and racetrack	<u> </u>	}
		holds. Orbit holds will be]	
		accomplished by the vehicles		
		trailing the lead vehicle as they		
		move around the orbit circle. For		}
		racetrack holds, vehicles will		1
		maintain formation positions and		
		follow the lead vehicle around the		
		racetrack route as if following		
		the lead vehicle on a normal		Į
2 5 6	tin i b	route.	<u>├</u>	<u> </u>
3.5.6	Unit	The SAFsim will implement	I	1
	Reactions	automatic reactive behaviors.	1	
		ModSAF vehicles of different types	1	ł
		will have unique sets of reactive	l	
		behaviors for different situations	ł	I
		and battlefield events. Reactions		1
		will be in addition to tasked		1
		behaviors. Reactions will include,	i	1
		but not be limited to the		I
		behaviors listed below.		L
3.5.6.1	Ground Unit	The ground unit reactions will	I	
	Reactions	include the following:		
3.5.6.1		Action Drill / Hasty Attack -	D	1
		Triggered by contact with enemy		1
		units of appropriate size,	1	
	1	position, and activity when the	1	ł
ł	1	unit has permission to engage.	1	I

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.6.1		Hasty Withdraw - This reaction	[N/I
		will occur when the unit has no		
		fire permission and comes under	1	1
2 5 6 1	<u> </u>	fire from another unit.	┣───	
3.5.6.1		React To Air Raid - The unit		N/I
		reacts when taking fire from an		
		enemy aircraft and not attacking.		ł
		The unit will scatter and vehicles will take cover if it is	[ſ
			1	
		available.	Į	
3.5.6.1		Avoid Enemy Contact (while covered	1	N/I
		or in open) - The unit will try to	1	
		find a place to hide, or if		
		already hidden, will remain in	1	
		place until the air contact is		
2553	<u> </u>	broken.	<u> </u>	{
3.5.6.1	1	Withdraw from Minefield -	D	I
		Triggered when a unit encounters	1	
		a mine. The unit, assuming a tank		
		trap, may issue covering fire and then back out of the minefield		
		until covered from potential fire by intervening terrain or by		
		terrain features such as trees or		
		buildings.		
3.5.6.1		React to Artillery - Unit will	D	
5.5.0.1		seek cover.		
3.5.6.2	Rotary Wing	The following reactions will be	D	<u> </u>
	Aircraft	included for ModSAF RWA:		
	(RWA)		ļ	
	Reactions			
3.5.6.2	1	React To Enemy FWA Attack - Unit	t	N/I
		will turn into the approaching		
		enemy FWA and then fly as fast and		
		as low as possible in order to cut		
		their firing angles. Once behind		
		the enemy FWA, the surviving RWA		
	}	will turn around and fire on the		1
		enemy aircraft.		
3.5.6.2		React To Enemy RWA Attack - RWA in		N/I
		the unit will scatter in the		
		opposite direction of the		
		attacking aircraft, and will		
		rendezvous at a distance from the		
		initial position.		
3.5.6.2		Evade - The unit will turn away		N/I
		from the air defense unit and get		I
	}	as low as possible, flying away	1	1
		from the fire or radar. At a safe		1
		distance, the unit will regroup		
		and either Hold Awaiting		
		Instructions or resume its	1	1

ŀ

I

Sector 10, 1.

4 TH &

Anth

. Mont

2.

PARA	TITLE	DESCRIPTION	METH	TEST
3.5.6.2		Bingo Fuel - The vehicle will monitor its fuel load and the distance from base or refuel location. If the critical fuel	D	
		level is reached, the vehicle will return to base.		
3.5.6.3	Fixed Wing Aircraft (FWA) Reactions	The ModSAF software will be capable of performing the following FWA reactions:	D	
3.5.6.3		Bingo Fuel - The vehicle will monitor its fuel load and the distance from base or refuel location. If the critical fuel level is reached, the vehicle will return to base.	D	
3.5.6.3		Evade - The unit will turn away from the air defense unit and fly away from the fire or radar. If enemy fire is shell fire, the unit will try to gain altitude. At a safe distance, the unit will regroup, and either Hold Awaiting Instructions or resume its mission.		N/I
3.6	Parser Interface	The SAFsim will provide a parser interface with the following capabilities for testing SAF software:	D	
3.6		a limited set of command line instructions for controlling the ModSAF system and vehicle debugging	D	
3.6		the capability to turn debugging code on and off in the SAFsim	D	
3.6		the capability to query the status of executing tasks and units in the simulation exercise	D	
3.7	Database Interfaces	The SAFsim will obtain information from the following databases: Terrain Database, Persistent Object Database, DIS Database, and Parameter Database. These databases are described in Chapter 5.	I	
4.1	Graphical User Interface (GUI)	The ModSAF data logger will provide a GUI for user interaction. The GUI will use X/Windows and Motif, and provide access to all features that the data logger supports.	I	

PARA	TITLE	DESCRIPTION	METH	TEST
4.2	Exercise	The ModSAF data logger will be	D	1
	Recording	able to record the simulation	_	
	1 · · · · · ·	packets of any protocol family		
		transmitted on the simulation	1	
		network. These include the DIS,		1
		Persistent Object (PO), SIMNET,		
		and Data Collection protocols.		
		The GUI will allow the user to		
		select which protocol families to		
		-		ł
		record. It will also allow the		
		user to specify the exercise ID,		
		exercise start time and date, and		
		the file name under which the		
		exercise will be saved. A compact	j –	}
		data storage format will be used,		
		so that large-scale exercises that	!	1
		last many hours can be recorded		l
		into a single file. The data will		1
		be recorded in such a way as to		I
		allow random access into the		I
		recorded exercise.		1
4.2	1	The ModSAF data logger will	D	1
		display exercise statistics on the		[
		GUI in real time while an exercise	ł	
		is being recorded. These		
		statistics will include the		
				i i
		exercise packet rate, exercise		
		entity count, logger data file	1	
		size, and elapsed exercise time.	(L
4.2		The ModSAF data logger will	D	
		support a studio mode that allows		1
		recording into multiple logger		
		files simultaneously, playback of		
		multiple logger files		
		simultaneously, and editing and		1
		splicing of logger files.		
4.2		The ModSAF data logger will	D	
		provide an automatic shut-off		
		feature that can be used to stop		1
		recording or playback at a user-		
		specified time. This will have		
		the same effect as pressing the		I
	1	"stop" button at the specified		
		time.		
A 2	- Para -		<u> </u>	╂────
4.3	Exercise	The ModSAF data logger will be	D	
	Playback	able to play back the simulation	1	1
		packets of any protocol family	1	
		recorded in a ModSAF data logger	I	ļ
	1	file. These include the DIS,		
		Persistent Object (PO), SIMNET,		
		and Data Collection protocols.		ł
	1	The GUI will allow the user to		I
		select which protocol families to	I	1
	1	play back.	1	1

B. No. W. S. W.

PARA	TITLE	DESCRIPTION	METH	TEST
4.3		The ModSAF data logger will	D	
		display exercise statistics on the		
		GUI in real time while an exercise		
		is being played back. These		
		statistics will include the		
		exercise packet rate, exercise		
		entity count, logger entity tick		
		rate, elapsed exercise time, and		
4.2		remaining exercise time.	<u> </u>	<u> </u>
4.3		The ModSAF data logger will be	D	
		able to play back a data logger		
		file on any exercise ID,		
		regardless of the exercise ID on		
		which the file was recorded. The		
		ModSAF data logger will support		
		modification of entity simulation		
		IDs, so that multiple exercises	ł	ł
		can be played back simultaneously		[
		without interference.		[
4.3		The ModSAF data logger will be	D	
		able to play back in forward and		[
		reverse directions. The ModSAF		
		data logger will be able to play	ļ	
		back an exercise either in real		
		time, up to 50 times faster than	ł	
		real time, or up to 10 times		1
		slower than real time. It will		
		compensate for first order dead	1	1
		reckoning of entities so that they		
		appear to move smoothly even when		
		being played back at speeds other		
		than real time.		
4.3		The ModSAF data logger will be	D	1
		able to make an exercise pause		
		during playback without causing		
		the entities to time out on the		
		simulation network. The ModSAF	1	
		data logger will be able to play		I
		back a user-specified portion of		
		an exercise repeatedly (loop		I
		play).		
4.4	Initializ-	Since all ModSAF command and	D	
	ation of	control information is sent via	-	
	ModSAF from a			
	Logged	logger will be recording the state		ł
	Exercise	of the missions that ModSAF		1
	mvercise	entities are executing throughout	1	ł
		· · ·	1	1
		an exercise. The ModSAF data		l I
		logger will record PO protocol		
		packets in such a way as to allow	1	1
	1	initialization of ModSAF from any	1	1
		point in a logged exercise. The		1
		recording will not interfere with		1
		the normal operation of the	1	1
	1	simulation.	1	1

PARA	TITLE	DESCRIPTION	METH	TEST
4.4		The ModSAF data logger will	D	
		provide an interface for		
		generating a ModSAF scenario file		
		at any point during playback. The		
-		scenario file generated can then		1
		be used to initialize ModSAF		
		entities from that point in the		
		exercise. This interface will		
		allow ModSAF entities to be		
		initialized from any point in the		
		exercise without having to replay		1
		the entire exercise up to that		
		point.		ł
5.1	DIS Database	The ModSAF software will support	D	
	Interface	the DIS 1.0 protocol, with	-	
		appropriate extensions necessary		
		for ModSAF, such as radar packets.		
		All applicable DIS packets (entity		
	1	state, events, exercise control,		
		appearance, impact, status, etc.)		1
		will be supported. In accordance		1
		with the DIS standard, each entity		1
		will broadcast state at least once		
		every five seconds, and more often		
		if required by dead reckoning		
				1
		algorithms. The DIS network		
5.1		interface layers will be UDP/IP.	<u> </u>	
5.1		The ModSAF software will also	D	
		support the SIMNET 6.6.1 protocol		
		using the SIMNET association layer		1
		as the network interface layer.		<u> </u>
5.1		The network drivers will be in a	D	
	1	small, well-defined interface	l	
		module to enhance portability		
		across operating systems and		
		computers.		L
5.2	PO Database	The following requirements apply	I	
	Interface	to the Persistent Object (PO)		
		database:		
5.2		It will support large numbers of	D	
		hosts.		
5.2		It will support real-time	D	
	1	performance.		
5.2	T T	It will be able to recover from	D	
	1	missed packets.	1 -	

Υ.

Contract Serve

Le The second

7. 18 P. 14

5.9

Contraction of

A CONTRACT

Appendix A

a cher manufacto

PARA	TITLE	DESCRIPTION	METH	TEST
5.2		It will support migration of	D	
		simulation objects from one		
		simulation computer to another. It		
		will be possible for simulation		
		objects to migrate at the user's		
		command. It will be possible for		
		simulation objects to migrate	1	
		automatically during simulation		
		and entity creation, either for		
		load balancing or graceful		
		recovery when a simulator times		
		out.		
5.2	1	It will support thousands of	D	
5.2		database objects that change	-	
		infrequently (less than two or		
		three times per minute). Objects		
		will rebroadcast with a 30-second		
		timeout period for an initial		
		period. Source-based filtering		1
		will be used to reduce steady-		
		state packet rates.		
5.2		It will support query-driven and	D	
3.2		event-driven interfaces.		
5.2.1	Command and	The PO database will support	D	<u>†</u>
2.2.4	Control	representations of order of battle		
	Concror	information, orders including		
		missions and graphics,		
		intelligence, reports and		
		messages, H-hours, and other	Í	1
		information required to set up		
		exercises and control their		
		participants.		
5.2.2	Command and	The capability to organize command	D	ł
5.2.2	Control	or exercise information into		
	Overlays	overlays and share that	1	
	overlays	information between workstations		1
		will be provided. These overlays		
		will store unit and entity		
		locations, unit and entity	1	
		missions, possible enemy locations	1	l
		and other intelligence	I	
		information, and mission-specific		I
		information (including graphics	ł	l I
			l	
		and routes). Sharing of overlays		l .
		will be possible only among		I
		workstations playing on the same	I	1
		side in an exercise.	I	

.

PARA	TITLE	DESCRIPTION	METH	TE81
5.3	Parameter	System and performance parameters	D	
	Database	will be defined in public		
	Interface	parameter files, which will be		
		used to initiate a runtime		
		parameter database. This database		
		can be changed at runtime by the		
		user or the system, and will allow		
		modification of models without		
		recompiling source code. The types		
		of parameters defined in the	ļ	
<u> </u>		public files are described below.	<u> </u>	┣───
5.3.1	Organiz-	The organizational parameters will	D	
	ational	define the organic echelons and		
	Parameters	formations used by the SAF units.	ļ	
		These echelons can be grouped to		!
		define new unit types.		
5.3.2	Entity	The entity parameters will specify	I	
	Parameters	characteristics of SAF entities		
		and define the component physical		l
		models and weapons systems for		l
		each SAF entity. The network		l
		entity types are defined in the		l
		simulation protocol files, but		
		variations of these entities can		
		be created in the parameter files.		
		The following entity information	ĺ	
		can be specified in these files:		
5.3.2		Network representation	T	1
		Alignment, identity, and function	[-	[
		of entity		
		Weapons carried by entity		
		Dynamics model parameters		
		Damage models for direct and		1
		indirect weapons		
		Standard fuel and ammunition loads		
		Detection probabilities	l	
5.3.3	Weapon	The weapon parameter files will	I	<u> </u>
J.J.J	Parameters	specify characteristics of	1 1	1
	ralameters	different weapons systems. The		
		following weapon system		
		information can be specified in		
<u> </u>	<u> </u>	these files:	<u> </u>	
5.3.3		Characteristics of projectile	I	1
		weapons (munition, range, round		
		velocity, mass)	ļ	Ļ
5.3.3		Characteristics of missiles	I	1
	1	(acceleration, maximum speed,	[1
		maximum range, guidance model,		1
		default elevation, mass, dud	1	
		probability)		
5.3.3		Hit probabilities	T T	1

Appendix A

and the second second second second second second second second second second second second second second second

and the state

And the second second

PARA	TITLE	DESCRIPTION	METH	TEST
5.3.4	Behavioral	The behavioral parameter files	I	
	Parameters	will define parameters for the		[
		various behavioral tasks,		
		specializing them for different		
		units and situations. Tasks and		
		their parameters will also be		ļ
		organized into task frames to		l
		define tactics and mission		
		components.		1
5.3.5	User	The user interface parameter files	I	<u> </u>
	Interface	will define parameters for the	-]
	Parameters	user interface. These will]
		include:		
5.3.5	1	Unit icons and entity pictures	I	
5.3.5		Graphics attributes (color, line	Ī	<u> </u>
		types)		
5.3.5		Size of panes for map, messages,	I	<u> </u>
5.5.5		and editor	•	ł
5.3.5		Control Measures	I	<u> </u>
5.3.5	+	Coordinate conversion	I	┠────
<u>5.3.5</u> 5.3.6				
5.3.0	Sensor	The sensor parameter files will	I	
	Parameters	define the parameters for the		
		various sensor systems modeled in		1
		ModSAF. These will include:		<u> </u>
5.3.6		Type of sensor	I	┞──
5.3.6		Capabilities of sensor	I	<u> </u>
5.3.7	Exercise	The exercise parameter files	I	J
	Parameters	define parameters used to control		
		the ModSAF system in the context		
		of a simulation site. This		1
		includes the site/host information		1
		for each SAF component.		
5.4	Terrain	The terrain databases will support	I	
	Database	the following queries:		
	Interface			
5.4		Intervisibility, including point-	D	
		to-point and area intervisibility		
5.4		Terrain elevation cross section	D	
5.4		Elevation and orientation for	D	
		entity placement		
5.4		Soil type	D	
5.4		Coordinate conversion between UTM,	D	
		latitude/longitude, earth-centered	ł	
		Cartesian and local coordinates	l	
5.4	1	Basic terrain feature data and	D	1
		attributes, including roads,	-	
		rivers, buildings, lakes, and	ł	ł
		trees	I	1
5.4		Road and river networks	D	+
		Local terrain features for terrain	D	<u> </u>
5.4				

PARA	TITLE	DESCRIPTION	METH	TEST
5.4		While multiple databases may be used at runtime for different purposes, they will all be automatically generated from a single common source file to ensure correlation.	D	
5.4.1	Terrain Data	The terrain database will include the soil types (road, muck, deep water, shallow water, packed dirt, soft dirt, sand, forested, etc.) at each point. Altitude and slopes will be included. While a regular grid system may be used, it will also be possible to describe and use irregular grids of larger or smaller size ("microterrain").	D	
5.4.2	Cultural Data	The terrain database will be capable of representing at least the following cultural data: primary roads, secondary roads, bridges, railroads, buildings.	D	

·

APPENDIX B

Glossary of Acronyms and Abbreviations

- ARPA Advanced Research Projects Agency
- ATP Acceptance Test Plan
- AVTB Aviation Test Bed, Ft. Rucker, Alabama
- BDS-D Battlefield Distributed Simulation Developmental
- CGF Computer Generated Forces
- LADS Loral Advanced Distributed Simulation
- CDRL Contract Data Requirements List
- MWTB Mounted Warfare Test Bed, Ft. Knox, Kentucky
- DI Dismounted Infantry
- DIS Distributed Interactive Simulation
- GUI Graphical User Interface
- ModSAF Modular Semi-Automated Forces
- SAF Semi-Automated Forces
- SAFOR Semi-Automated Forces
- SAFsim ModSAF Simulator Subsystem
- SAFstation ModSAF user interface workstation
- SPR Software Problem Report
- SOW Statement of Work
- WISSARD What If Simulation System for Advanced Research and Development