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1 Introduction

The U.S. Army Corps of Engineers and the California Department of Boat-
ing and Waterways (CDBW) need reliable, long-term wave measurements for
use in plarning, designing, and operating coastal projects. Design wave condi-
tions, usually expressed in terms of return intervals, are obtained through
extremal analysis of wave histories. The confidence in these projects drops as
the desired return interval exceeds about twice the length of the historical
record. However, there is seldom time between the inception of a project and
the point when design details are finalized to collect sufficiently long wave
histories. A commitment is needed to obtain the required long-term measure-
ments in advance of specific project planning. Wave hindcasts - which are
made possible by long-term meteorological observations - such as the success-
ful Wave Information Studies (WIS) conducted at the U.S. Army Engineer
Waterways Experiment Station, Coastal Engineering Research Center, are
another approach to this need, but wave measurements are still required for
their validation. Another need for wave data is accurate quantification of
conditions during specific events that result in damage to structures or delays
in operations. Finally, laboratory and analytical research into the physics of
wave generation, propagation, and transformation require measurements for
calibration and verification.

The Corps and the CDBW established the Coastal Data Information Program
(CDIP) with the goal of collecting wave data at sufficient spatial and temporal
density to meet these needs for the entire U.S. Pacific coastline. CDIP is a
network of wave gauges operated by the University of California at San Diego
Scripps Institution of Oceanography (Flick et al. 1993). To date, the density
of wave observations is inadequate to sufficiently monitor the U.S. coastline,
and any site selected for monitoring is a valuable addition to our knowledge.
As the number of stations increases, it is imperative that locations be effi-
ciently distributed to avoid collecting redundant data.

The overall goal of the report is to provide preliminary guidance and rec-
ommendations for the future study and implementation of regional wave moni-
toring networks. The technical background upon which the report is based,
and extensive references to past work, are given in O'Reilly (1991). The focus
here is on potential engineering applications.

It is important to note at the outset that the methodologies described in this
report were developed to study relatively long-period waves (swell) arriving in
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southern California from distant storms. When appropriate, the discussion has
been generalized to include locally generated seas. However, the fundamental
considerations in optimizing a network of gauges to monitor swell versus local
seas are believed to be quite distinct. Differences in swell wave conditions
between a network's measurement stations are primarily due to variations in
wave propagation over the regional bathymetry. For local seas, differences
between stations am more likely to be dominated by variations in the regional
wind field. A complete methodology for designing networks must eventually
find a balance between these two competing criteria.

Regional wave monitoring is defined here as the use of wave data collected
at a limited number of locations to estimate wave conditions throughout an
entire coastal region. The term "wave conditions" refers to wave parameters
needed for engineering design and planning (e.g. significant wave height, peak
wave period, radiation stress, etc.). A "coastal region" is defined as an area
where the directional spectra for incident swell can be approximated as homo-
geneous along its deepwater boundary. Historically, shallow-water wave mea-
surements have been collected primarily for site-specific purposes. Although
data with regional applicability are obviously desirable, relatively little research
has been done on the design of regional wave networks.

Relating wave measurements (and/or hindcasts) to regional wave conditions
requires some type of estimaon theory. Possible estimation methods are
discussed, including simple linear interpolation between adjacent gauges and
sophisticated schemes using numerical wave propagation models. An objective
technique for designing optimal wave gauge networks is also described, pro-
viding a conceptual framework for addressing regional monitoring issues such
as how many, where, and what types of measurement should be made.

The authors strongly recommend that the utility of deepwater directional
buoys, in combination with numerical wave models, be closely examined for
regional wave monitoring along exposed coastlines with relatively simple
bathymetry. Directional buoys are sometimes inadequate for coastal regions
with complex bathymetry, and shallow-water measurements must be an inte-
gral part of these networks. Optimal shallow-water gauge networks provide an
objectively rigorous field test of regional wave prediction schemes on both
simple and complex bathymetry.
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2 Measurement and
Estimation Theory
Uncertainty

Wave parameters of interest are defined as wave energy and the first four
directional moments of wave spectra at locations outside the surf zone. This
definition corresponds to what can be obtained directly from slope array or
pitch-and-roll buoy measurements, and also to the level of detailed wave infor-
mation needed for many engineering applications.

Uncertainty in wave measurements is primarily statistical, caused by the
limited duration of wave records and/or the nonstationarity of the wave field.
Smaller errors arise from sensor inaccuracies, buoy calibration errors, etc. If
an exact linear estimator theory related the various local measurements to the
regional wave field, and the gauges were far enough apart to be statistically
independent, then the regional estimates would theoretically have less statistical
uncertainty than an individual measurement. For example, if the exact theory
were a simple correlation scheme where the total energy at site B was the
average of the energies at sites A and C, then the statistical uncertainty would
actually be less at B than A or C. However, the estimation theories are far
from exact and quantifying the estimator errors is one of the more difficult
aspects of designing a monitoring program. The many errors associated with
estimating wave conditions at one location from measurements at other sites
are usually understood only to the extent that these errors are larger than statis-
tical and instnumental errors. The approach taken here is to assume that the
estimation theory, whatever it may be, is exact for the purpose of designing a
network. Field experiments are needed to quantify the errors and thus ulti-
mately validate the estimation scheme.
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3 Estimation Theories

Methods for relating specific wave measurements to wave conditions at
other sites can be crudely divided into the four categories discussed below.

Interpolation Methods

The simplest (and most costly) approach to regional monitoring is to instru-
ment the entire coastline, with the spacing between gauges small enough such
that wave conditions change only a small amount between gauges. In this
case, wave conditions between gauges could, by definition, be accurately esti-
mated through linear interpolation. Along broad reaches of open coastline the
gauge spacing might be quite large, but near very complicated bathymetry, for
example, near submarine canyons, this spacing could be reduced to less than
100 m. In general, the number of required gauges is prohibitively large, and
monitoring networks based on simple interpolation methods have very limited
practical value.

Correlation Methods

A more general form of linear interpolation utilizes empirically determined
linear correlations between wave parameters at different wave gauges, or
between deep-ocean wave parameters and shallow-water conditions. Wave
gauges at locations where wave conditions are highly correlated with other (not
necessarily spatially adjacent) gauge sites can be eliminated from the network.
However, linear correlation methods have not been successful on complex
bathymetry (e.g. Southern California) because the relationship between wave
conditions at two different sites, a very complicated function of the deep-ocean
directional spectrum, cannot be well characterized by a linear equation with
just a few variables, such as the peak wave frequency and direction of a deep-
ocean wave event. With simple bathymetry and wave conditions (single, nar-
row directional peaks), strong correlations might be found between directional
buoy measurements in deep water and shallow-water array measurements.
However, determining the correlations in this case is essentially equivalent to
empirically (and at considerable expense) finding the refraction and shoaling
coefficients of simple linear wave propagation theory. In addition, this
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empirical approach requires that every location of interest be occupied by a
gauge for a long duration in order to establish the correlations. Correlation
methods may have some use in site-specific problems, but are not considered
viable for regional wave monitoring in general.

The motivation behind correlation methods is to avoid making long-term
measurements of highly correlated, or redundant, wave information. In Chap-
ter 5, it will be shown how numerical wave models, linear programming, and
optimization techniques can be combined to select gauge locations which mini-
mize redundancy.

Numerical Wave Models

Numerical wave propagation models can be invaluable in the design and
operation of regional monitoring networks. A straightforward example is using
a single directional buoy in deep water to initialize a wave propagation model
that predicts the wave field at shoreward locations. If the wave model were
exact and the buoy measurements completely defined the deepwater directional
wave spectrum, then the coastal wave field could be accurately estimated with
no shallow-water measurements at all. However, neither assumption is in
general satisfied. The wave models rely on many simplifying assumptions and
the conditions under which the waves propagate (i.e. bathymetry, currents) are
imprecisely known (see Chapter 2). Furthermore, pitch-and-roll buoys and
two-component slope arrays are fundamentally low-resolution instruments
relative to multi-element arrays. An infinite number of directional spectra,
some of them markedly different in shape and equally plausible, can exactly fit
the same slope data.

Despite these limitations, various methods for assigning directional distribu-
tions to pitch-and-roll data (e.g. Maximum Likelihood Method, MLM, or Max-
imum Entropy Method, MEM), in conjunction with available wave propagation
models, may prove adequate for some regions of U.S. coastline. The South-
em California Wave Experiment, conducted over the winter of 1991-1992, was
designed to test this approach. Two linear wave propagation models (O'Reilly
and Guza 1992) were initialized with MEM estimates of the offshore spectrum
obtained from deepwater directional wave gauges within the Bight.

The buoy-wave propagation models provide good predictions of Bight-wide
wave conditions for the more open sections of coastline. Simple bathymetry
reduces the sensitivity of coastal wave conditions to details of the offshore
directional spectrum, and comparisons with shallow-water measurements veri-
fied the utility of this straightforward monitoring approach in these cases. At
the most highly sheltered and topographically complex shallow-water sites, the
limitations of this approach were evident.

The combined buoy-wave propagation estimator is relatively cheap because
a single buoy serves a relatively large stretch of coastline. The spacing of the
offshore buoys should be such that the deepwater directional spectrum varies
slowly between them. This spacing would presumably be some fraction of the
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length scale of typical storm events, and is best addressed through historical
data, from hindcast data, such as provided by the WIS, and future field experi-
ments. The buoy-wave propagation monitoring scheme should be extensively
tested, and concurrent data from offshore National Oceanic and Atmospheric
Administration (NOAA) buoys and shallow-water stations may already exist
for many sections of the U.S. coastline. Where directional buoys prove suffi-
cient, shallow-water instrumentation would be used primarily for site-specific
problems requiring exceptionally high accuracy, or for monitoring local seas
that are generated between the buoy and the coast.

In addition to propagating waves from offshore to onshore, numerical wave
models can also be used to "back out" shallow-water directional measurements
to deep water. These deepwater directional spectra can in turn be used to
predict shallow-water conditions elsewhere, as described above. At first glance
a shallow-water directional buoy has value equal to a deepwater buoy. How-
ever, this is not the case because refraction columnates low-frequency deep-
ocean waves to a narrow band nearly normal to the beach in shallow water.
Swell with a relatively broad directional spread in deep water is much nar-
rower in shallow water, and detail in the shallow spectrum cannot be well
resolved with a slope array or pitch-and-roll buoy. Owing to this resolution
problem alone, there is greater uncertainty in deepwater directional spectra
obtained by backing out shallow-water data than in a directly measured deep-
water spectra. A single shallow-water directional buoy or slope array is there-
fore less desirable for estimating deepwater, incident wave conditions than
direct deepwater measurements, particularly for long-period swell.

Short-period waves are usually characterized by a broad directional distribu-
tion and undergo less refraction than low-frequency waves in the same water
depth. Therefore, directional buoys in coastal waters may resolve directionol
distributions of seas better than swell. However, generation by local winds can
cause the energy of these high-frequency waves to have much more rapid
spatial variations in deep waters compared to the lower frequencies. Including
high-frequency waves in a regional network requires both monitoring (or mod-
eling) of the spatially variable wind field and the inclusion of source terms in
the wave propagation model. This is beyond the scope of the present report.

Inverse Methods

Numerical simulations with spectral wave models indicate that, with com-
plicated bathymetry, estimates of coastal wave conditions can be very sensitive
to errors in the shape of the deepwater directional spectrum. In this case, an
offshore pitch-and-roll buoy is believed to be inadequate as a sole source of
input to wave models (e.g., O'Reilly & Guza 1991). Routinely available spec-
tral hindcasts also lack the required resolution for many coastal engineering
applications. An alternative approach described here is to infer the deep-ocean
directional spectrum from wave data collected in both deep and shallow water.
Properly placed shallow-water gauges, used in conjunction with wave propaga-
tion models and (ideally) an offshore directional buoy, can significantly
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improve regional wave estimates based on a single directional buoy (Chap-
ter 3, section titled "Numerical Wave Models").

Wave measurements, even nondirectional measurements (i.e., energy), at
specifically chosen locations, can constrain the possible shape of the incident
deepwater directional spectrum. If an idealized coastal site were exposed to
wave energy from a single, narrow range of deep-ocean directions and effec-
tively sheltered from other directions (for example, a gauge situated shoreward
of a gap between two islands), then the energy observed at that site would
specify the deep-ocean directional spectra energy in the exposed directional
sector. Observations from many such partially sheltered shallow gauges, each
exposed to a different deep-ocean directional sector, could clearly be used to
estimate the deep-ocean directional spectra. The governing assumption is that
bottom effects are of highest priority and other effects modestly affect the
spectrum. The collection of sheltered sites, each measurinf energy alone, can
be used to form a so-called "incoherent directional array." Directional wave
information follows not from the phase information between closely spaced
sensors (i.e. a conventional "coherent array"), but from the spatial variation of
energy among the many spatially separated energy gauges. Because the effects
of real bathymetry are more complex than the idealized "gaps" discussed
above, estimating the deep-ocean directional spectrum from shallow-water
measurements is vastly more complicated. So-called "inverse methods," devel-
oped for conceptually similar problems in geophysics and other disciplines,
provide the necessary mathematical framework. Given a numerical wave prop-
agation model, and a set of wave measurements (either directional and/or non-
directional) obtained in either shallow water alone or in both shallow and deep
water, the inverse method described below yields an estimated deepwater spec-
tnzn that is "consistent" with these observations. Thus, wave monitoring
through inverse methods ideally includes both a deepwater directional buoy
and shallow-water gauges.

An objective means of estimating the "information content" of a specific
network of gauge locations is an integral part of the inverse approach to wave
monitoring. Inverse methods can thus be used not only to extract regional
wavc information from a given network, but also to design networks. Com-
bined with an optimization technique known as simulated annealing, inverse
methods can be used to determine how many gauges are necessary to define
specific regional wave parameters, and to select locations that maximize the
amount of useful (i.e. non-redundant) wave data collected with a fixed number
of gauges. The inverse approach thus quantitatively links network design and
performance.

chqas3 aWmam Theotis.



4 Southern California: A
Case Study of the Inverse
Method

This chapter describes how inverse methods and an existing 10-year data-
base of measurements by the CDIP in the Southern California Bight (Figure 1)
can be used to estimate the deep-ocean directional spectra. Estimated peak
directions are compared to hindcast directions for a few example wave events.
These estimated offshore spectra could in tum be used as input to the wave
models to estimate extreme wave conditions throughout the Bight during the
last decade. This example illustrates how inverse methods can be used with an
existing database of wave measurements to estimate historical wave conditions
at unmeasured sites. In addition, a method for designing optimal networks for
inverse modeling is presented. Data from an optimal network, recently
deployed in Southern California, are presently being used to test the inverse
method of designing and using regional wave networks (O'Reilly & Guza, in
preparation).

The inverse method of network design requires a wave propagation model.
The two models used here, spectral refraction (R Model, Longuet-Higgins
(1957)) and spectral refraction-diffraction (RD model, Kirby (1986)), are fully
described in O'Reilly & Guza (1992). Both models assume that the deep-
ocean spectrum is spatially homogeneous outside the Bight, and that there is
no local wave generation or dissipation. Thus, the models are limited to the
estimation of Bight-wide wave conditions associated with swell from distant
storms.

Linear Programming (Non-Negative Least
Squares)

Mathematical techniques, broadly defined as inverse methods, can be used
with the wave models and data collected in the Bight to estimate deep-ocean
directional spectra (see O'Reilly (1991) for details). The term "forward
model" will refer here to either the R (refraction) or RD (refraction-diffraction)
wave model. For a given wave frequency, the forward model yields a linear
relationship between the deep-ocean directional spectrum S. and the wave

8 Chapter 4 Southem Califorria: A Case Study of the Invmm hod
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Figure 1. Shallow-water bathymetry of the Southern California Bight

measurements d (energy or directional moments, for example), which can be
expressed as a linear functional of SO:

d(x) = Id O G(xO)So(9) (1)

G is derived from the forward model, and is essentially a shoaling-refraction-
diffraction transfer function (O'Reilly & Guza 1992).

Further simplification reduces Equation I to a linear programming problem.
Instead of seeking a function form, the solution So is discretized into a finite
number of frequency-directional bins, each with constant wave energy density.
The problem is then reduced to the matrix form

Ax = b (2)

COhap r 4 Soutem Caifonia: A CaeStudy of ft lnv9se Method



where

b = b1,b2, ";

bM = the observations

X fi XP, X21 "-

xN = the discretized deep ocean spectrum, at a fixed frequency

A = M by N matrix composed of the forward model energy or direc-
tional transfer functions for each wave measurement

Aij= the forward model estimate of some wave parameter, say energy,
at observation site i due to a unit amount of wave energy arriving
from the deep-ocean direction bin j

A numerical program well-suited for this particular inverse problem, NNLS
(Non-Negative Least Squares, Lawson and Hanson (1974)), finds the non-
negative deep-ocean spectrum that provides the best least squares fit to the
observations.

NNLS XpAX-bI 2  (3)

The length M of the data vector b is the number of individual observations
available in the Bight at a given time. The length N of the solution vector x is
the number of directional bins for the discretized deep-ocean spectrum. A
frequency bandwidth of .OHz and a directional bandwidth of 5 deg are used
here, and the range of possible incident deep-ocean wave directions is assumed
to be between 160 deg and 315 deg (N = 36). Since the forward model is
linear, there is no transfer of energy between frequencies, and each .01-Hz
band can be treated as a separate inverse problem.

When using historical wave observations, the inverse problem is often
poorly constrained (i.e. M << 36). To ensure a unique solution, an a priori
smoothness constraint is added to the linear programming problem by specify-
ing that the difference between neighboring directional bands equals zero. The
kernel A and the observations b are expanded to include these additional
constraints:

AMjj " Wd; AMjj,1 = -wd; bM.j - 0, forj 1, N-I (4)

where wd is a weighing factor that forces the NNLS routine toward direction-
ally smoother solutions as wd increases, and the remaining elements in each
row are set to zero. This results in a total of M + N - I data constraints and
the problem is over-determined if M>I. The NNLS routine finds the solution
that results in the best least squares fit to the data and smoothness constraint,
and wd controls the relative penalty of observation misfits versus lack of
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smoothness. The use of a directional smoothness constraint does not eliminate
the possibility of narrow solutions. Inverse model simulations with both nar-
row and broad spectra suggest that a properly weighted smoothness constraint
can improve the overall inverse model performance without seriously degrad-
ing the solutions for narrow spectra. These simulations are discussed further
in the section of this chapter titled "A Qualitative Comparison of Inverse
Estimates and Deep-Ocean Wave Hindcasts."

Modeling Nonstationary Wave Events

The time required for wave energy to propagate between spatially separated
wave measurement stations in the Southern California Bight (Figure 1) can be
as long as 6 hr for a wave frequency of .05 Hz and 14 hr for. 10-Hz waves.
For a given frequency band, the time lag between any two stations theoreti-
cally depends on the wave direction, and observed time lags are qualitatively
consistent with expectations. For example, westerly storm wave energy arrives
and wanes at the offshore gauge before the nearshore gauges. Observed time
lags at the beginning and end of large wave events thus contain additional
information about the wave directions in deep water.

Travel times between observation sites and temporal nonstationarity in the
deep ocean spectrum are incorporated into the inverse model by simultaneously
solving for many temporally sequential directional spectra. A wave measure-
ment at a specific site and a given frequency band is now linearly related to
different directional bins of the deep-ocean spectra at different times. Time
lags for each frequency-directional combination, at each site, are approximated
using simple geometry as illustrated for waves from the west (270 deg) and a
deep-ocean location at 33 deg, 120 deg W (Figure 2). For a given wave fre-
quency, the distance of wave propagation dp between the deep-ocean site and
an observation station is divided by the deepwater group velocity to get a time
lag estimate (rounded to the nearest hour for the discretized inverse problem).

The time lag approximation is somewhat crude since the distance d is the
shortest path the waves could take (and often an impossible one due to island
blocking). Island sheltering generally results in multiple, less direct, arrivals
from a single incident direction. In addition, the decrease in wave speed with
depth is not accounted for. As a result, there is a bias towards underestimating
lag times. A more accurate time lag approximation could be made using the
travel time of back-refracted rays in the R model. However, a more sophisti-
cated estimation scheme is pointless here because the lags are discretized to
the nearest hour and wave data are typically collected 3-6 hr apart.

The nonstationary inverse problem can also be expressed as a linear
functional
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d(xj) - £fdedt G(x,9,t) SO)(5

where d, G and S0 now have the additional dimension of time. The kernel A
of the disciuized problem (Equation 2) now relates the forward model estimate
at one observation location to deep-ocea spectra over a range of hourly time
bins. The dimensions of A, excluding any smoothness constraint, increase
from M by N to L by kW, where is the number of hourly deep-ocean spectra
solved for simultaneously and L is the number of wave observations made
within that time period. Ai., is the contribution of a unit amount of wave
energy from deep-ocean direction j, at hour h, to the wave observation i.
Unless hourly wave observations are made, the addition of the time domain
makes the problem even less data-constrained than the stationary wave energy
case. However, the inverse model can be constrained to have smooth solutions
in time (with a corresponding weight, w5) as well as direction. A is a large,
spars matrix when both smoothness constraints are included. For example,
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solving for a 36-hr time period of incident wave spectra results in roughly a
2,600 by 1.300 matrix inversion problem.

Observations from the Coastal Data Information
Program

The Coastal Data Information Program has been collecting wave data in the
Southern California Bight since the late 1970's [Seymour, Sessions. and Castel
19851. These data have been collected at numerous locations throughout the
Bight using either pressure sensors or Waverider (nondirectional) buoys (Fig-
ure 3). The shallow-water stations are generally at a depth of 10 m and often
provide directional information using a slope array of four pressure sensors.
The majority of the slope array data were collected at 6-hr intervals, and the
buoy data every 3 hr, with each data record about 17 min long at a 1-Hz sam-
ple rate. Recently, the record lengths have been increased to a sample size of
34 min or more, and the 6-hr interval between sampling periods has been
reduced in many cases. Over the last decade, NOAA has also operated several
directional (pitch-and-roll) and nondirectional buoys in the region (Figure 3).

The Waverider buoys and single pressure sensors provide wave energy
information only (i.e., one observation)

2x

f E(,e) dO
0

while the shallow-water slope arrays and pitch-and-roll buoys measure four
additional directional moments (four "more observations") of the local wave
spectrum (Longuet-Higgins et al. 1963).

2x

E(f,e) cose de

2w

2x

fE(f,e)cos2ede
0

2x

JE(f,) sin2e dO
0

Ohupbr 4 Suham U ,fCmia: A Cue. of t Invur Meotf 13



vi 9

~~15

25 Wkm

CONTOURS - 1Omn 200m 300m

I IMPERIAL BEACH ARRAY 12 NOAA BUOY 46024
*2 MISSION BAY ARRAY *13 BEGG ROCK BUOY
*3 SCRIPPS PIER S.P. 14 SAN PEDRO CHANNEL BUOY

4 DEL MAR ARRAY 15 NOAA BUOY 46025
*5 OCEANSIDE ARRAY 16 SANTA MONICA BAY BUOY

6 SAN CLEMENTE ARRAY 17 SANTA CRUZ ISLAND BUOY
7 SUNSET BEACH ARRAY 18 POINT MUGU BUOY
8 CHANNEL ISLANDS S.P. *19 NOAA BUOY 46023
9 SANTA BARBARA (2) 20 POINT ARGUELLO BUOY

10 POINT ARGUELLO BUOY *21 HARVEST PLATFORM
* 11 MISSION BAY BUOY * , PRESENTLY OPERATING

Figure 3. Southern Calionda wave observation stations, 1978 to present
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Data used in the present study were processed from CDIP archive tapes and an
estimation technique described by Herbes and Guza (1989) was used to calcu-
late directional moments for the slope arrays.

A Qualitative Comparison of Inverse Estimates
and Deep-Ocean Wave Hindcasts

Inverse model estimates of deep-ocean wave spectra, based on CDIP and
NOAA wave data, were compared to deep-ocean wave hindcasts of a peak
period peak wave direction produced by Pacific Weather Analysis
(U.S. Army Corps of Engineers 1988). 1 The peak directions of these hind-
cats are fairly accurate since weather patterms that generate large waves are
usually well-tracked. Two energetic Northern Hemisphere events (January
1985 and November 1989), and a single Southern Hemisphere swell event
(August 1984) were examined. The CDIP and NOAA observation locations
used in the inverse model are listed in Table 1 for each wave event. Three
CDIP locations, Imperial Beach, Del Mar, and Scripps Pier, were excluded
because of suspected inaccuracy and/or severe irregularity in the bathymety
grid.

Simulations were performed to select the directional smoothness weight wd
to use in the actual inverse model calculations. For simplicity, the inverse
simulations were based on stationary test spectra. These "true" spectra were
used to create "data!' using a forward wave model and chi-square statistical
nise (20 degrees of freedom) was then added to the data to simulate 17-min
wave records with the appropriate resolution. The simulated data were in tmrn
used in the inverse model to estimate the original test spectra. The simulations
were performed for the .055- to .065-Hz frequency band and with the observa-
tion stations that were operating during each event (Table 1).

The overall objective is to use inverse methods along with a forward wave
model to make Bight-wide wave estimates. To select a directional smoothness
weight, a measure of the "goodness" of the inverse solutions, using Bight-wide
estimates of wave heights, was defined. For each test case, the true and esti-
mated deep-ocean spectra were used with the RD model to predict the wave
height (Hrs) at roughly 4,000 locations spaced 3,200 m apart across the
Bight. The root mean square error between the true and estimated wave
heights was then calculated for each of four directional distributions (Figure 4).
Thirty-six different simulations were performed by moving the center of the
distribution in 5-deg increments from 160 deg to 315 deg. There were 50
different statistical realizations for each central direction, resulting in about
1,500 simulations at each of the 4,000 locations. The resulting Hm s errors
were averaged to obtain a single representative value for each of the four
directional distributions and a range of smoothness weights.

1 Pwmoi Commmication June, 1990. Nick Graham, Assistant Research Meteorologist,

Scripps ntiimtaon of Oceanography. La Jolla. CA.
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The Hm errors are plotted as a function
Tale I of the smoothness weight wd in Figure 5.
Observation Locations for Inverse Directionally broad test spectra produced
Estimates (See Location Map, lower H,. errors and benefitted the most
Figure 3) from the smoothness constraint. In addition,

Dew L....n wave estimates for the narrow directional
,__spectra (solid line, Figure 5) were not

August IO4 Oceanis Aray seriously degraded by a smoothness con-
so en CiM.. ay straint large enough to be useful for broader

Santa Cna Island Buoy spectra. The inverse estimates based on the
January, 1985 wave observation network

Rock BOy were more unstable than the other two

jan" Ie6 Missn Say Buoy examples, and improved to an H.. error
_______Amy value similar to the August 1984 estimates

when wd < .01. Based on the simulations,
Wd .1 was chosen for use with the field

____________ Cdata. In addition to the directional weight. a
Son Rock B temporal smoothness weight of 1.0 was

Nomer 199 in Bay Buoy used. This is large enough to suppress large
fluctuations in the inverse estimates on

Lassion Say Aunrealistically rapid times of 1-2 hr, but
OCeanW Ay small enough to not influence similar

Sunset Beach a changes over 6-12 hr.

BMl Rock uo

Harmt Rtm January 17, 1985
NOAA Buoy 46M2.3

NOM A B Northern Hemisphere winter storms typi-
cally form in the Northwest Pacific and

travel eastward towards the Gulf of Alaska. Occasionally a storm takes a more
southerly route towards the Hawaiian Islands and generates waves approaching
the Southern California Bight from a more westerly direction. This was the
case for a mid-January storm in 1985.

Inverse estimates of the deep-ocean directional spectra were made using the
R model and the wave stations listed in Table I over a 36-hr time period start-
ing at midnight on the 16th of January. The R model was chosen because its
directional transfer functions could be used with the CDIP slope array data.
Not including the smoothness constraints, there were a total of 79 observations
of wave energies or directional moments to constrain the solution in 36 direc-
tion bins over 36 hr, or 1,296 direction-time bins. Figure 6 shows the non-
stationary inverse model estimates of deep-ocean directional spectra, for the
.055-.065 Hz frequency band (corresponding to the 17-sec peak period of the
hindcast). The inverse estimate of the directional spectrum is consistent with
the Ihdxcast peak direction (267 deg) for this wave event. The peak direction
for the .045- to 55-Hz frequency bank (Figure 7) starts at 260 deg and moves
slightly northward to roughly 265-270 deg over a 20-hr period. This lower
frequency wave energy arrives before the .06-Hz energy in Figure 6, typical of
dispersive arrivals (lower wave frequencies travel faster) from distant storms.
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Figure 6. Inverse model estimate of the deep-ocean directional spectrum for a 36-hr time
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Figure 7. Inverse model estimate of the deep-ocean directional spectrum for a 36-hr time
period beginning on January 17, 1985. The wave frequency band is .045 to
.055 Hz. Coutour levels of wave energy density are every 1,000 cm2/Hz °

November 3, 1989

On October 29-30, 1989, an exceptionally powerful storm developed in the
far Northwestern Pacific with wave energy reaching Southern California on the
3rd of November. This storm was unusual because the wave frequencies con-
taining the greatest amount of energy were .05 Hz and lower. A relatively
large number of wave observations were available for this event, and six CDlP
stations and two NOAA buoys (Table 1) were used in the 36-hr inverse esti-
mate for the .045- to .055-Hz frequency band (Figure 8). The R model trans-
fer functions were used with the CDIP data and the RD model energy transfer
functions for the NOAA buoys. The peak direction in the inverse estimate was
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Figure 8. Inverse model estimate of the deep ocean directional spectrum for a 36-hr time
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.055 Hz. Contour levels of wave energy density are every 3,000 cm2 /Hz ° . The
dashed line represents the peak direction of the Pacific Weather Analysis wave
hindcast
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295 deg (recall that the deep ocean spectrum estimate was discretized into

5-deg bins), which is consistent with the Pacific Weather Analysis hindcast of

293 deg.

August 23, 1984

A less successful application of the inverse model was performed for a
large Southern Hemisphere wave event in August, 1984, where the Pacific
Weather Analysis hindcast estimated a peak period of 17-18 sec and direction
of 198 deg. The R model was used in the inverse problem along with four
observation stations (Table 1). The inverse estimate for the .055- to .065-Hz
frequency band is shown with the hindcast peak direction in Figure 9. The
inverse model is inconsistent with the hindcast in this instance, generally
showing bimodal directional spectra rather than a single peak.

Southern Hemisphere swells are generally assumed to be directionally nar-
row, and narrow spectra are the most difficult to accurately simulate with the
forward models (O'Reilly and Guza 1992). Thus, it is interesting to explore
whether or not the inconsistencies between the inverse model and the hindcast
are primarily due to forward model errors. A different inverse estimate, one
that assumes a priori that the incident spectra are directionally narrow, was
also made using these wave observations. Instead of allowing the wave energy
to be distributed across all 36 of the 5-deg deep-ocean directional bands,
36 separate inverse problems were solved. In each case the incident energy
was constrained to a single 5-deg directional band for the 36-hr time period
with the same temporal smoothness constraint w. = 1. The resulting misfit
between observations and estimates (Equation 3), a measure of how well the
NNLS solutions fit the data, are plotted versus incident direction in Figure 10,
upper panel. The overall minimum misfit, for the direction of 205 deg, is
657cm4 (compared to 528 cm4 in the original inverse solution). The nonlinear
inverse problem, with only a single directional bin, is actually over-determined
by the data alone, and if the smoothness constraint is dropped altogether (Fig-
ure 10, lower panel), then the minimum misfit is 247cm4 , for the direction
195 deg. Therefore, the inverse estimates (both with and without w.) are quite
consistent with the hindcast direction (198 deg), and the misfits are not much
larger than in the full-nonstationary problem.

This analysis suggests that the forward model is not inaccurate, but rather
the data set is fundamentally inadequate to define the offshore directional spec-
trum without rather drastic a priori assumptions (e.g.. the wave field is direc-
tionally unimodal). Although some results are encouraging, the simple
smoothness constraints in the full nonstationary inverse problem are inadequate
in some cases, failing to even resolve the peak direction of a wave event.
More information is needed to properly constrain the problem, either through
additional observation, or a priori assumptions.
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Figure 9. Inverse model estimate of the deep ocean directional spectrum for a 36-hr time
period beginning at noon on August 22, 1984. The wave trequency band is .055 to
.065 Hz. Contour levels of wave energy density are every 500 cm'f/tz

The hindcast information has been used here to check for inconsistencies in
the inverse estimates. A hindcast could be used more directly in the inverse
model, as a "preferred direction" constraint, for example, and spectral hindcast
models could specify preferred shapes for the deep-ocean spectra. That is, a
hindcast can be treated as "data" in the inverse model. An inverse estimate
combining observations and hindcasts would presumably work best for extreme
wave events since the location of distant sources of large waves is often well-
known.
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5 Designing an Optimal
Wave Data Network

Network Optimization by Simulated Annealing

Detennining the deployment locations for a finite number of wave measure-
ment instruments, in order to estimate wave conditions throughout the Bight, is
a large combinatorial maximization problem. The quantity to be maximized is
an objective function characterizing network perfomance. The number of
possible network configurations in the Bight is enormous and the problem does
not lend itself easily to simple optimization techniques.

Barth and Wunsch (1990) (hereafter B&W) use a method known as simu-
lated annealing to design ins rument arrays for acoustic tomography experi-
ments. The present problem is analogous to theirs in almost every way, and is
expressed in the same standard inverse form (Equation 2). The annealing
method will be outlined only briefly since the objective function used here is
that suggested by B&W, as is the general methodology for network selection.

Simulated annealing has its roots in thermodynamics and the technique of
slowly cooling molten solids to form the most crystalline, lowest energy state
possible. In order to achieve this, the cooling melt may have to go to higher
energy states at vari-is times, while still maintaining thermial equilibrium. The
likelihood of a higher energy excursion of a given size AE decreases with
temperature T and is governed by the Boltzmann probability distribution,

P (AE) - (6)

Metropolis et al. (1953) first incorporated Equation 6 into numerical cal-
culations and the technique has more recently been used to solve the so-called
traveling salesman problem (Press et al. 1986). In simulated annealing prob-
lems, "temperature" becomes a parameter that controls how slowly the proba-
bility distribution function changes. In addition, AE refers to the difference in
objective function values for two network configurations, one representing the
current state of the system and the second being another possible configura-
tion. Thus, new configurations with worse objective function values are less
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likely to be accepted at lower temperatures. Configurations with lower objec-
tive function values are always accepted.

In simulated annealing, a random combination of M locations is selected
and an initial objective function value is calculated. The network is then mod-
ified or "jumped" to a different configuration in a random way. A new objec-
tive function value is calculated for this network and the new configuration is
accepted or rejected with a probability given by Equation 6. To change the
network configuration, a wave station in the network is randomly selected and
moved to another site that is also randomly chosen. However, the maximum
distance of this random move decreases with the system's temperature. This
iterative process continues for a chosen rate of decreasing temperature, which
is referred to as the annealing schedule, until no further configurations are
accepted (based on specified iteration and temperature thresholds).

B&W suggest an objective function based on the singular value decomposi-
tion of the kernel A in Equation 2. Small singular values correspond to ele-
ments of the inverse solution x that will be seriously degraded by forward
model errors in A and statistical errors in b. By maximizing the smallest of
the singular values of A, the overall sensitivity of the inverse problem to these
errors is minimized.

To guarantee reaching a global minimum (or a global maximum if the
minus sign in the exponent in Equation 6 is dropped) the rate at which the
temperature can be decreased is extremely slow and often computationally
unrealistic. However, investigators have found that much faster annealing
schedules can be used in many cases, with results that are at least near-optimal
if not the global minimum. Because simulated annealing cannot always guar-
antee convergence to a global minimum, its use as a true optimization tech-
nique is somewhat controversial. At the very least, simulated annealing can
provide good solutions to combinatorial optimization problems where one's
intuition is normally quite limited. Whether or not the solution is truly optimal
is a question of theoretical interest; however, in practice. it is unlikely that the
objective function to be minimized will embody all aspects of the actual prob-
lem in the first place. Thus, for large optimization problems involving physi-
cal processes, the absolutely optimal solution may be sacrificed for a very
good one that can be obtained at a fraction of the computational expense.

Optimized configurations, for networks of various sizes, are shown in Fig-
ures 11-12. In each case A did not include smoothness constraints and the Nth
smallest singular value was maximized, where N is the number of stations in
the network. The optimized locations are based on the energy transfer func-
tions calculated by the stationary RD wave model for the .055- to .065-Hz fie-
quency band. Approximately 17,000 sites were considered in the annealing
problem, representing locations that were 1,600 m apart across the entire
Bight. Note that several network sites are clustered together on the northwest
edge of San Nicolas Island (Figure 1) in several cases (Figure 11). These sites
are actually a few kilometers apart and lie along a spatial energy gradient
associated with intense wave focusing. It appears that these locations were
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chosen in an attempt to resolve wave energy from the northwest. The majority
of the Bight is sheltered from these wave directions, hence the selection of
sites outside the islands. Interestingly, the smaller networks seem to prefer
larger energy transfer functions than the networks with more elements, result-
ing in more observation sites in shallow water for the sparse networks. The
reasons for this are unclear at the present time.

The singular values for the 8-, 12-, and 18-station optimal arrays are shown
in Figure 13. Also shown are the singular values for the networks used in the
three wave events examined in the previous section. Although these wave
events were estimated using only 4-8 stations, several of the stations provided
directional moment measurements, which resulted in 4 additional model con-
straints in each case. The August 84, January 85, and November 89 events
had a total of 12, 13, and 20 data constraints, respectively. The sizes of the
singular values associated with the historical data networks are much smaller
than those for the more optimal design. This indicates that there is a signifi-
cant amount of redundancy in the existing wave data for these events. There
is a fundamental trade-off in discrete inverse problems between solution reso-
lution and stability. Relatively high directional resolution was sought here
(5 deg), with what is in fact a minimal amount of wave measurement data, in
the hope that the smoothness constraint would provide enough additional infor-
mation to stabilize the solutions in the presence of model and data errors.
However, this was clearly unsuccessful for the Southern Hemisphere swell in
the section titled "August 23, 1984" in Chapter 4 (pages 22-24).

Simulations similar to those used in the previous section to select a direc-
tional smoothness constraint were also performed using optimal networks.
Bight-wide H., error estimates, for the same test spectra of Figure 4, were
calculated using the optimized 8-, 12-, and 18-station networks and various
values of wd (Figure 14). The smoothness constraint had less effect on the
optimized networks, and the Hm errors were smaller than those for the equi-
valent historical data networks (Figure 5).

The 12-station network was also used to examine changes in the H.. as a
function of forward model and statistical wave measurement errors (Figure 15,
upper panel). As was done previously, chi-square errors were added to the
simulated data before making the inverse estimates. It is difficult to character-
ize the type of forward model errors to be expected; therefore, the chi-square
uncertainty is assumed to represent both model and measurement errors for the
purpose of the present discussion. As would be expected, the H.,, error
increases with decreased degrees of freedom. In addition, the size of the
inverse model errors increases more rapidly at low degrees of freedom (<50).
Finally, H., errors are calculated as a function of optimized network size
(Figure 15, lower panel). The narrow test spectrum continues to result in the
largest H, errors and there is a sharp increase in inverse errors between the
5- and 8-station optimized networks.
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Discussion

In Chapter 4, a method was described to estimate nonstationary deep-ocean
directional wave spc that in turn could be used to predict wave energy and
directional spectra throughout the Southern California Bight. These deep-
ocean estimates ame made using observations of wave energy and directional
moments within the Bight. along with linear programming techniques.

Examples of this inverse estimation method were presented using historical
wave data collected by CIDIP and NOAA for several significant wave events.
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Solutions were consistent with wave hindcasts in two cases, but not for the
Southern Hemisphere swell event. A second estimation method, which
assumed a priori that the incident spectrum was narrow, was also applied to
the southern swell, and produced much better results. This suggested that,
although narrow incident spectra are the most difficult for the forward models
to simulate, the R model was reasonably consistent with the hindcast and
observations in this instance, and more information was needed to constrain
the problem.

More optimal wave networks, designed using simulated annealing, demon-
srated that significant improvements could be made in the inverse estimates if
the observation locations were tailored specifically for this task. Yet- even
when they are optimized, the smaller networks suffer from a lack of informa-
tion. Although the larger optimal networks shown may not be economically
feasible, they do provide insight into some aspects of designing a practical
network for inverse modeling. For example, if optimized locations are being
used, a directional smoothness constraint is of limited benefit. In order to
improve solution stability, more information (observations or hindcasts) must
be added.

Alternatively, the number of deep-ocean directional bins might be reduced.
As mentioned previously, the fundamental tradeoff in inverse problems is reso-
lution versus stability of the solution. Here, a directional resolution of 5 deg
was chosen, but less resolution could be considered, say 15 deg. This would
reduce the number of unknowns to as few as 12 for a given hourly time period
and therefore lead to more stable estimates. However, if incident wave spectra
are truly narrow, then more serious forward model errors would resulL
Another possibility is to vary the size of directional bins based on a priori
assumptions. For example, significant wave energy rarely comes from the
directions 235-255 deg, so this range of incident angles could be treated as a
single directional bin, or perhaps excluded completely. In addition, swell
arriving in the Bight that is generated in the Northern Hemisphere is believed
to be directionally broader than swell generated in the Southern Hemisphere;
and little energy from incident directions greater than 310 deg propagates into
the Bight. Thus, it may be possible to treat some of these west-northwesterly
directions with wider directional bins and reduce the number of unknowns
without seriously degrading the usefulness of the estimates.

A six-month field experiment (August, 1991 to February, 1992) has been
completed to assess the viability of more optimal networks. Ten individual
pressure sensors were deployed to temporarily expand the present CDIP and
NOAA wave network. These self-contained, bottom-anchored instruments
measured wave energy and were powered and recorded data internally. The
experiment was separated into two 3-month deployments with the first deploy-
ment designed to observe Southern Hemisphere swell, and the second tailored
to Northern Hemisphere events. In the optimized networks shown (Fig-
ures 11-12), simulated annealing was allowed to select shallow-water locations,
and did so in the smaller networks. However, the forward model solutions are
considered to be better in deeper water, away from locally strong refractive
and diffractive effects. In addition, the largest bathymetry errors are most
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likely to be found in shallow regions. Therefore, the instnument of choice
would be deepwater Waverider or pitch-and-roll buoys; however, the cost of
these instruments is somewhat prohibitive. Instead, a "poor man's" optimal
network, made up of the low-cost pressure sensors, was deployed in a water
depth of 30 In. This depth was selected in an attempt to mirimize the forward
model errors, while remaining shallow enough for recovery by scuba divers to
be possible. A ten-station expansion of the present network is consistent with
what is essentially a cost benefit curve, shown in Figure 15.

When speculating about a permanent network for inverse estimation, pitch-
and-roll buoys are particularly appealing bec'.se they provide five observa-
tions at one deepwater location. However, from an inverse estimation
perspective, a fair amount of redundancy/instability would result in comparison
to individual energy measurements. In other words, a data kernel based on
optimally moored pitch-and-roll buoys will always have smaller singular
values, and less stability, than the kernel for a network consisting of five times
as many optimally placed Waverider (energy only) buoys. Nevertheless, these
smaller singular values may be tolerable when weighed against economic and
logistical factors.
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6 Conclusions and
Recommendations

Conclusions

For regions with simple shelf and nearshore bathymetry, straightforward
linear interpolation between coastal measurement sites may be acceptable for
monitoring swell. However, if the bathymetry is simple enough for such a
procedure, then many coastal observations might be replaced with a single
offshore directional wave buoy coupled with a numerical wave propagation
model.

In bathymetrically compleA areas, coastal swell conditions are more spati-
ally variable, and are also more sensitive to the details of the frequency-
directional distribution in deep water. Simple correlations between wave
measurements at different sites are not likely given the range of possible deep-
water wave conditions. Interpolation schemes are thus not economically viable
because a very large number of instrument stations would be required.

Numerical wave models, used in conjunction with directional buoys and
shallow-water wave measurements, appear to be a necessary element in a cost-
effective regional monitoring network. Field verification of these models has
been difficult because of the need for moderately high-resolution deepwater
directional spectra. A recent field experiment in Southern California, co-spon-
sored by the California Department of Boating and Waterways, Sea Grant, and
the U.S. Army Corps of Engineers, was designed to test these models using
offshore buoy data to initialize the models. In addition, a directional array of
sensors was deployed on Harvest Platform, 100 km offshore from Point Con-
ception, CA, in the 200-m water depth, in the fall of 1992. This array will
provide slightly higher resolution deep-ocean directional spectra than those
obtained with a pitch-and-mU buoy, and will contribute further to the verifica-
ion of future numerical wave prediction schemes.

If it is found that pitch-and-mU buoys cannot provide high enough resolu-
tion deep-ocean information in some regions, then inverse methods could use
both deep- and shallow-water wave measurements to better resolve the incident
directional spectra. This method is presently undergoing verification in South-
em California.
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One of the results of this inverse model study has been the development of
an objective means for identifying optimal wave measurement locations, where
optimal implies maximum information for defining the regional wave field.
Given a specific nmber of instruments and the method to be used to estimate
regional wave conditions, the optimization technique can provide the best
locations for those wave measurements. Alternatively, the inverse method can
be used to construct "cost-benefit" curves which describe the information con-
tent of an array versus the number of instruments deployed.

Generation of waves by local winds is an important and complicated pro-
cess not included in the present discussion, which is restricted to low-
frequency waves generated by distant storms. However, the inverse method
can be used as a framework for the design of regional networks which incor-
porate local generation. If buoys are found to be adequate for monitoring
swell in a specific region, then shallow-water instnment locations could be
tailored to monitor local seas.

Recommendations

An important question in the future planning of a U.S. wave monitoring
program is how well coastal wave conditions can be predicted from a deep-
water directional buoy and existing numerical wave models. The answer to
this question will govern the relative mix of deep- and shallow-water stations
in an optimal wave monitoring program. Preliminary results from the southern
California wave experiment on complex bathynietry suggest that offshore
directional buoys may prove to be the monitoring method of choice for many
sections of U.S. coastline. A number of directional buoys are operated by
NOAA in the United States, and a search should be made for any correspond-
ing shallow-water data that could be used to test numerical models in other
less complicated regions throughout the United States.

The following recommendations are specifically aimed at trying to further
understand swell waves, and optimal ways of monitoring them, in regions
which have less complicated bathymetry than the Southern California Bight. It
is recognized that a useful network must also monitor local seas. Very little
research has been done on the topic of local seas and networks and this is
clearly a subject that needs further study. A number of the following recom-
mendations concerning the examination of existing data sets and new field
studies (from the perspective of regional wave monitoring) could be expanded
to include local seas.

In regions where no historical data are available, short-term field deploy-
ments of shallow-water gauges, in conjunction with a deepwater directional
buoy, should be made. The network optimization method described in this
report could be used to select shallow gauge sites which, owing to their lack of
redundancy, provide the best test of the buoy/model method. Therefore, even
if shallow-water networks are ultimately found to be less desirable than a

3Chapter 6 Conclusions and Remnmieratons



deepwater buoy for monitoring some coastal regions, optimal shallow-water
gauge placement is still important for verification purposes.

If studies using historical data are successful, then the question of deep-
water directional buoy spacing needs to be addressed. The most cost-efficient
approach would be to use the WIS hindcast studies to estimate the spatial
variability of the deepwater wave conditions along different regional coastlines,
derive a desired spacing of buoys through numerical simulations with the wave
models, and then verify the separation criteria through one or more regional
field studies.

For complex coastal regions where directional buoys are inadequate, shal-
low-water measurements must be an integral part of the monitoring network.
Much work on this topic has already been done in southern California and, if
necessary, these methodologies can be applied to other complex coastal
regions.
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