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Abstract

In many assembly tasks, it is necessary to insure the stability of a subcollection of
contacting objects. To achieve stability, it is often necessary to introduce fixture elements
(also called "fingers" in some work) to help hold objects in place. In this paper, the
complexity of stabilizing multiple contacting bodies with the fewest number of fixture
elements possible is considered. Standard fixture elements of the type explored in previous
single-object grasping work are considered, along with two generalized fixture element
variants. The types of stability considered are: form-closure (complete immobility of the
assembly); stability with respect to a specific external force and torque on each body; and
stability in the neighborhood of a specific external force and torque on each body. The
major result is that for most of the combinations of fixture element varieties, and types of
stability considered, achieving an optimal solution (that is, finding a smallest set of fixture
elements yielding stability) is NP-hard. However, for many fixturing problems it seems
likely that suboptimal, yet acceptably small solutions can be found in polynomial time, and
some candidate algorithms are presented.



1 Introduction

Stability of bodies is an important consideration in planning an assembly sequence. While
the problem of synthesizing stable grasps for a single object has received considerable
attention[9, 10, 13, 18, 16, 12], stabilization of multiple bodies has only recently been a
topic of interest[ 19, 14]. In the single-object case, the emphasis has been on synthesizing a
robust, stable grasp. Several different types of stability can be considered. A form-closure
of an object is a grasp that completely immobilizes the object; equivalently, the object
will remain motionless under any applied external forces and torque. A less restrictive
form of stability requires the grasp to balance only a particular external force and torque.
Other forms of stability involving friction have been considered, but we will defer frictional
considerations to future work.

In this paper, we take on the task of stabilizing a collection of contacting rigid bodies
without friction. We will assume that we are given a collection of fixtures elements which
are sufficient to stabilize the entire assembly.' For brevity, we shorten the phrase "fixture
element" to merely "fixture." The actual definition of a fixture is deferred to section 2 for the
moment, because we consider several variations of fixturing in this paper. Figure 1 shows
one of the fixture variations considered. In general, the set of fixtures available is assumed
to be a potentially very large collection; for example, the fixtures might be generated by
discretizing all exterior surfaces of the objects with fixture locations. Further, we imagine
that every fixture has some nonnegative cost associated with it, and that we would like to
select an inexpensive subcollection of fixtures that stabilizes the assembly. For example,
the cost of a fixture might depend on:

" Reachability. A fixture's cost might indicate the relative difficulty in actually estab-
lishing the fixture at that specific point in space. Certain fixtures would then be given
a high cost because they occurred on regions of objects which were difficult to reach.

" Fragility. There may be reasons to prefer not to fixture particular bodies in the
assembly unless absolutely necessary. This could be indicated by making fixtures
that occur on those objects expensive.

" Constant cost. Every fixture might be equally expensive. If we simply scale the cost
so that each fixture costs a unit amount, then a subcollection's cost is simply its size.

In this paper, we are concerned with the last, and simplest, cost function-selecting
the smallest possible fixture set that achieves stability (figure 1). A lower bound for the
complexity of selecting a minimal size stabilizing fixture set immediately establishes lower
bounds for more general cost functions.

A very different line of attack would be to generalize previous works on optimal grasps.
For example, Kirkpatrick et al. [8] descibes the measure of stability of a grasp based on
a geometric interpretation of Steinitz' theorem[16, 5]. Trinkle[18] similarly proposes a
stability measure that can be computed in terms of a linear program, and then extends

IThis means of course that exceptional objects, as defined by Mishra et al.[ 16] are restricted from our
consideration, since they can never be stabilized by a fixture set in a frictionless environment.
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(a) (b)

gavity gravity

Figure 1: (a) An assembly and its set of potential fixtures. (b) The smallest set of fixtures
possible that stabilizes the assembly due to gravity, assuming object A is very massive.
The seemingly odd fixturing on object B is because object A slides down and leftward,
attempting to force object B to rotate counterclockwise.

this work to measure and synthesize grasps (using, hopefully, a small number of fixtures)
for multi-body assemblies. Similarly, Markenscoff and Papadimitriou[13] and Li and
Sastry[10] also discuss what constitutes a good grasp for single-object assemblies, given
a specific task in mind. We believe that these are all good criterion, and should be extended
to the case of multi-body assemblies. However, before addressing these considerations,
we believe that the issue of the nwnber of fixtures used to stabilize an assembly must be
addressed. For single-object assemblies, this is often not a large concern, but for multi-body
assemblies, the size of the fixture set is clearly a factor to be considered. Although it is not
clear that small fixture sets are in general good fixture sets, the existence, and complexity of
finding fixture sets of a specific size seems a reasonable starting point in considering multi-
body assemblies. Clearly, the size of the fixture set could be an important consideration
when there are multiple fixturing sets yielding equally optimal grasps; in this case, one
would probably be interested in the smallest such set. Accordingly, our goal in this paper
is to establish lower-bounds on the complexity of finding minimal fixture sets.

In this paper, we define three varieties of fixturing, and consider three different types of
stability. Sections 5, 6 and 7 show that it is NP-hard to find a minimal stabilizing fixture
set for eight of the resulting nine combinations of fixturing and stability. In the ninth case,
section 8 shows that a minimal stabilizing set can be found in polynomial time if the contact
graph of the assembly is acyclic, but we have not found a lower bound if the graph is
cyclic. Polynomial-time algorithms yielding suboptimal, but hopefully small fixture sets,
are consider in section 8.
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2 Contacts and Fixtures

In this paper, we restrict our consideration to polyhedral objects. Thus, the contact regions
between objects are always polygons (or degenerate polygons).2 Because we do not con-
sider friction, in discussing stability it is sufficient to assume that contact forces arise only
at the vertices of the contact region[17]. Thus, we assume that contact between objects can
be characterized in terms of only finitely many contact points. At each contact, a surface
normal is assumed to be well-defined. Vertex-to-vertex contacts and other degenerate
contact geometries are not considered; Palmer[ 17] discusses the complexity issues that arise
when normals are ill-defined.

For illustrative purposes, we will mostly consider planar systems of n objects. All of
the results and algorithms in this paper are trivially extended to three-dimensional systems.
We will denote matrices and vectors using boldface type; the ith component of a vector
b is the scalar bi, written in regular type. The symbol 0 denotes on appropriately sized
vector or matrix of zeros. The notation b > 0 indicates that bi > 0 for all i. Given vectors
bi, b2, ... , b, E Rr, the r x s matrix whose ith column is bi is written as [ b b2 ... b,].
Given matrices A E R" S and B E Rrxt, the notation [ A I B ] denotes the r x (s + t) matrix
whose first s columns are the columns of A, and whose last t columns are the columns of B.

Let n E R2 be a force acting on a body at some point p E R2 in a global coordinate
system. The generalized force q E R3 on the body due to n is

q = (n, (p - c) x n)

where c E R2 denotes the body's center of mass. If the net generalized force acting on body
i is qi E R3, the generalized force for the entire collection of the n bodies is denoted by the
vector Q E R3 , where Q = (q,..., q). We shall refer to both q E R3 and Q E R31 as
"forces"; which sort of quantity we are referring to should be clear from the context.

2.1 Contacts

Let the total number of contact points between bodies in an assembly be denoted No, and
suppose that the ith contact occurs between bodies r and s at point p, with the surface normal
n at p oriented as show in figure 2a. The generalized force in R3 acting on body r is in the
direction

dr = (n, (p - Cr) x n)

while the force on body s is in the direction

d, = -(n, (p - c,) x n).

2Actually, objects with curved surfaces can also be considered, as long as the resulting contact regions are
polygonal. An example of a disallowed situation would be a cylinder resting upright on a plane, so that the
contact region is a disk in the plane. Baraff[2] discusses the difficulties that arise in considering nonpolygonal
contact regions.
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(a) (b)

Figure 2: (a) A contact between two objects in the assembly. (b) Contact between an object
and an immovable obstacle.

The direction of the generalized force on the entire collection of objects from the ith contact
is therefore

r-I (s-)-r n-s

lii 0.. .,O,dr,0,. .. ,,ds,0,..- -,O)

where 0 E R3.

The actual force Qi due to the ith contact has the form

Q = AIUi

where A is a nonnegative scalar. The nonnegativity of Ai arises from the restriction that
contact forces be compressive.

It is also necessary to represent predetermined mobility constraints; for example, parts of
an assembly might be resting on an immovable table. We will handle this by assuming that
contact points can occur between some body r and some immovable obstacle (figure 2b).
The immovable obstacle is not considered one of the n bodies in our collection. In this case,
the force direction ui has the form

r-I n-r

ui 0 10, d,, 0)(1)

and, as before, Qi = Aui.
The net generalized force due to contact is simply the sum

AUl +- + ±AN&UN

where all the A's are nonnegative. For notational ease, we define the matrix U E R"xIc
as

U --" U l U2 ... ON, . (2)
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(a) (b) (c)

r r C
n Cr CF 4

Figure 3: (a) A regular fixture. (b) A clamp, acting on a single object. If the clamp is
selected, the object is completely immobilized. (c) A clamp acting on two different objects
r and s, which are in contact. Selecting this clamp removes many, but not all degrees of
freedom from the two objects.

Any attainable net contact force can then be written in the form

UA

where each component Ai of A E Rc° is nonnegative.

2.2 Fixtures

In stabilizing assemblies, we will consider three varieties of fixtures. In previous single-
object fixturing work, a fixture has been defined in terms of a supporting, immobile finger
that touches an object at a specific point. We will call this sort of fixture a regular fixture.
A regular fixture on body r at location p produces a generalized force on the assembly in
the direction

r-I n-r
v : (0 , ,d,0,....0) (3)

where d = (n, (p - Cr) x n) and n is the inwards pointing surface-normal of body r at p
(figure 3a). We assume that fixtures generate only compressive forces, so that the fixture
force generated has the form av for some nonnegative scalar a. Regular fixtures, and
the single-object contact occurring in figure 2b appear to produce identical sorts of forces.
Note however that the force due to contact in figure 2b is always available to us, whereas
the fixture force acv is available only if we have decided to select that particular fixture in
stabilizing our assembly.

The force vector Q = av generated by a regular fixture is very sparse, since a regular
fixture produces a force on only a single body. For multi-body systems, we might consider
problems in which a single fixture could act on more than one body at a time. Accordingly,
we offer the notion of a generalizedfixture. We will define a generalized fixture as a force
that acts compressively on multiple bodies, but but in a uniform manner; that is, the force
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due to a single fixture of this type has the form

Q = av

where a > 0 and v is an arbitrary vector in R31. Note that the forces generated by a single
generalized fixture occupy a one-dimensional subspace of R-3 . Generalized fixtures might
arise from a gripping mechanism designed to always impart an equal force to a number of
different bodies, at different points and different directions. It is not clear to us that this
notion of a generalized fixture has any practical correspondence to real-world problems.
However, the complexity bounds obtained in section 5 for generalized fixturing furnish
valuable insights into regular fixturing of single-object assemblies.

A completely different variety of fixture arises by grouping a number of regular fixture
together. Consider a set of k regular fixtures, with the ith such fixture generating a general-
ized force in the direction vi E R3 , with each vi being sparse, as in equation (3). We can
group the k fixtures together into a generalized fixture, which can then generate forces of
the form

AIV+ + + AkVk

where the A's are all nonnegative. Thus, the set of forces produced by this single fixture
spans an k-dimensional space (assuming the vectors v, through vk are linearly independent).
Unlike regular fixtures, the cost of using all k fixtures is unit (even if some of those fixtures
turn out to be superfluous). We will call such a fixture a clamp. A clamp may act on a single
object (figure 3b), or on two or more objects (figure 3c).

The reason for this terminology is because this generalization does in fact capture
the concept of stabilizing an assembly by inserting mechanical clamps. Imagine that we
have available to us gripping mechanisms which can be attached to a single objerct and
achieve form-closure (complete immobilization of that object). If we were interested in the
minimum number of such mechanisms (that is, the minimum number of clamps) necessary
to attain stability, we would count each clamp as having unit cost, no matter how many
degrees of freedom the clamp actually eliminated. Note that the definition we have given
for a clamp allows a clamp to apply to two or more objects, as in figure 3c; However, our
complexity proofs concerning clamps are based on fixture groups that do in fact act on only
a single body, as in figure 3b. Thus, we will show that the complexity of fixturing with
clamps, as we have defined them, holds even if each clamp affects only a single body.

2.3 Fixture Forces

Given a set of Nf potential fixtures (either regular or generalized), we will denote the
direction of the force due to the ith fixture as vi E R3". If all the fixtures are used in
stabilizing the assembly, attainable fixture forces have the form

aIV + -+ aNfVNI

6



where each ai is nonnegative. Accordingly, we define the matrix V E R3IIN1 by writing

V = [vI v2 ... vN ]. (4)

Attainable fixture forces, using the entire set of fixtures, have the form

Va

where a E RN, is a vector satisfying c > 0.
We will be concerned with studying the forces attainable using only a subset of

all the fixtures. Let us denote a subset of the entire fixture collection as an index set
F C 1,2,. .. , Nf}. Given an index set F, if i E F we say that the fixture set F contains the
ith fixture. For a given fixture set F, only those fixtures in the set can contribute to the total
fixture force acting on the assembly. Let fi be the ith element of F, let k = IFI, and define
the matrix VF E R-3 k by

VF -- [Vfl Vfe2 ... VfA.]

(Without loss of generality, we may assume that f,< f2 < ... < fk.) The fixture forces

attainable using only the fixture set F can then be written as

VFa

where now a E Rk and a > 0.
For clamps, almost the same notation can be used-the difference is essentially book-

keeping. In the case of fixturing with clamps, the matrix V is the matrix one would obtain
if each clamp was treated as a set of unrelated regular fixtures. Thus, if the number of
regular fixtures grouped to form the ith clamp is ci and there are r clamps, V contains E= 1 c5
columns. Given a selection F of clamps, the matrix VF is obtained in a similar manner, the
regular fixtures comprising all the selected clamps are treated as completely unrelated, and
used to form the columns of VF. Note that the number of columns of VF may depend on
the specific set F, since VF will have

ifl

columns.
Having defined the ways in which the fixture and contact forces can combine, we can

proceed to introduce the various types of stability considered in this paper. Following that,
we will consider the complexity of finding fixture sets F of minimum size that achieve
stability for a given assembly.
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3 Types of Stability

In this paper, we consider three different types of stability. We present them in the order of
least restrictive to most restrictive; that is, each successive notion of stability subsumes its
predecessors. We describe the stability of the assembly given that a particular subset F of
the available fixtures has been selected to help stabilize the assembly. For completeness,
we give a formal definition of each type of stability, although these ideas are certainly not
new[12, 16].

3.1 Directional Stability

The first type of stability we consider is stability of the assembly with respect to a given
generalized external force Q... We will call this type of stability directional stability:

DEFINITION. An assembly with a fixture set F has directional stability with respect to
an applied force Q. if the contact and fixture forces that arise in response to Q sum to
exactly -Q,, resulting in a net force of zero on the assembly.

Since our assemblies are frictionless and have well-defined contact normals at each
contact point, the acceleration of an assembly in response to a given applied force is
unique[7, 4]. In particular, for any choice of Q,, directional stability is easily determined.
A simple result is that for a frictionless assemblies, if it is possible to attain contact and
fixture forces which sum to -Qe, then in fact the contact and fixture forces will sum to
-Qe[4, 1].4 If this is the case, then the applied force -Q, is completely canceled, the net
force on each body is zero, and no part of the assembly moves. Directional stability with
respect to a given Q,, is therefore easily determined by seeing if the linear program

UA + VF, , + Q' = 0, A > 0 and C > 0 (6)

possesses a solution ct and X. If this linear program has no solution, then the assembly is
unstable and will begin moving under the applied force Q,; in this case, the actual motion
can be determined by solving a quadratic program[l 1, 1].

Unfortunately, directional stability admits situations which we would consider to be
inherently unstable. Consider the assembly in figure 4a consisting of a single object A in
contact with an immovable horizontal surface. Potential fixtures are indicated in the figure.
If the external force applied to the system acts straight down upon A, then the assembly is
directionally stable if we choose F = 0; that is, if no fixtures are chosen. However, the
slightest perturbation of the external force to one side or the other renders the assembly
directionally unstable, given the choice F = 0. A more extreme example is shown in
figure 4b. In this case, given the fixture set F = { 2 }, the assembly is directionally stable

3 Palmer[ 17]'s result that determining stability of frictionless system is NP-hard does not apply because of
our assumption of well-defined contact normals.

4This is not to say that the forces at individual contacts and fixtures are well-determined: typically, these
forces will be indeterminate. The net effect of the forces on bodies however, will always be well-defined.
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(a) gravity (,) gravity

A

Figure 4: (a) The assembly is stable without any fixtures, but only if the external force is
directed straight down. (b) The center of mass of the object lies directly above the central
fixture. The assembly is stable using only fixture 2, but if gravity, or the object is perturbed
slightly, fixtures 1 and 3 are required.

with respect to a downward applied force through the center of mass. Now however, either
a perturbation in the applied force or a perturbation in object B's configuration (either a
rotation or translation) renders the assembly directionally unstable.

3.2 Robust Directional Stability

In the next section, we will prove lower bound results with respect to directional stability. It
can be reasonably argued that if these proofs depend on configurations such as figure 4b (that
is, configurations where even the smallest perturbations alter the stability of the system),
then the complexity bound obtained is too contrived to be useful. To counter this, we offer
a second, less restrictive measure of stability called robust directional stability:

DEFINITION. Given an applied force Q,, we will say a system with a fiture set F has
robust directional stability with respect to Q, if the assembly is directionally stable for all
external forces in some neighborhood of Q.,. More precisely, for each direction d E R3 ,
there must exist a positive scalar e such that the assembly is directionally stable with respect
to the force Qa + edL

An assembly which has robust directional stability can endure perturbations of Q,
without becoming unstable. Thus, in figure 4b, the fixture set F = { 2 } induces directional
stability, but the set F = { 1, 2, 3 } is required for robust directional stability. Note that
the definition of robust directional stability says nothing about how large a perturbation
in Q, can be before stability is lost (figure 5). Our proofs concerning robust directional
stability will show that minimal fixture sets yielding robust directional stability are NP-hard
to compute, even if the assembly can undergo large perturbations in QW without becoming
unstable.

9



prvity

Figure 5: The assembly has robust directional stability without any fixtures. The amount
of perturbation in the external force required to make the assembly unstable can be made
arbitrarily small by letting the angle 0 be arbitrarily close to 1800.

Note that the definition of robust directional stability clearly subsumes the notion of
mere directional stability. As a practical matter, determining if an assembly with fixture set
F has robust stability is no harder than seeing if the assembly is merely directionally stable.
Borrowing from Mishra et al.[16]'s work on form-closure, we prove the following:

THEOREM 3.1 Given an assembly with fixture set F, the assembly has robust directional
stability with respect to Qw if and only if

1. The set of vectors {ul, ... , u 1, v, vf.. , } spans R 3' (equivalently, the compos-
ite matrix [ U I VF ] has rank 3n) and

2. There exist strictly positive vectors a and A such that UA + VFa + Q =0.

PROOF. Consider an assembly with fixture set F satisfying the conditions of the theorem
for a given external force Q,. Let d E R31 be an arbitrary vector. We must show that there
exists e > 0 such that the assembly is directionally stable with respect to Q + ed. From the
first condition, there exists a solution a, and A, such that

[U I VF]( -) =-d,

or equivalently, such that
UA, + Via, + d = 0

although a, and A, will not necessarily be positive. From the second condition, there exist
vectors A and a satisfying

UA +VFa+Q,=0, A>0 and a >0.

10



Then for some sufficiently small c > 0,

+ eA, > 0 and a + ea, > 0

and

U(A, +e\,) + VF(a + ea,) + (Qav + ed) = (UA + VFa +Qw) + e(U, + VFa, +d) = 0.

Thus, the assembly is directionally stable with respect to Q + ed.
Conversely, consider an assembly with robust directional stability, with respect to a

force Q,,, and let \ 0 and ao be nonnegative vectors such that U'\o + VFaO = -Q. To
show that the first condition of the theorem holds, let b E R ' be an arbitrary vector. Since
the assembly is robustly stable, there exists e > 0 such that

U + VFG= -(Qe + eb).

But then
U + VFG = -(UXO + VFao + eb).

so U(,\ + \o) + VF (a + cio) = -eb, or equivalently,

[U I VF] =b.
-(a +ao)

Since b was arbitrary, rank([ U I VF 1) - 3n. To show that the second condition holds, let
e denote the vector e = 1 for all i; the dimension of e will vary according to its use. Let
y E R3 be defined by y = Ue + VFe. Then for some e > 0, there exist nonnegative A and
a satisfying

U,\ + VFa = -(QeV + ey) - - (Qw + e(Ue + VFe))

which yields
U(,\ + ee) + VF(a + ee) + Qw = O.

Since e > 0 and e is strictly positive, both \ + ee and a + ee are strictly positive as well,
and condition 2 is seen to hold. E3

Based on this theorem, robust directional stability is also easily determined. First, the
rank of the matrix [ U I VF ] must be determined (say, by employing an SVD decompo-
sition, or Gaussian elimination). Assuming that the matrix has rank 3n, one can employ
linear programming to determine if the second condition of theorem 3.1 holds. Although
the strict positivity constraints on A and a cannot be directly enforced in a linear program,
we can work around this restriction; clearly, the magnitude of Qw has no bearing on the
problem. Let us arbitrarily constrain all components of A and a to be one or larger, by
requiring A > e and a > e. Letting s denote an unknown scalar, strictly positive vectors A

11



and a satisfying UA + Va + Q, = 0 exist if and only if the linear program

UA +V, a+sQSU=0, A>e, a > e and s > 1 (7)

possesses a solution for a, A and s.
One can also show that if an assembly has robust directional stability, then there must

exist a lower bound on the e's needed in the above definition, assuming a bound on the d's.
That is, there exists a positive scalar e such that the assembly is directionally stable with
respect to Qw + ed for all d E R3R such that Ildil = 1 (under any vector-norm). This
follows from convexity: if an assembly is directionally stable with respect to Q., + d, and
also Q,, + d2 then the assembly is directionally stable with respect to

Qw + t(d2 -di)

for any 0 < t < 1. This result furnishes a practical way to determine if an assembly will
be stable over an entire range of applied forces. Given a set S of external force vectors,
if the assembly is directionally stable with respect to each force vector in the convex hull
of S, then the assembly is directionally stable with respect to every force vector in S (and
robustly stable for any force vector in the interior of the convex hull of S).

3.3 Form-closure

The last form of stability we consider is form-closure, where the contact and fixture forces
are sufficient to balance any and all external forces.

DEFINITION. An assembly with a fixture set F has form-closure (or is form-closed) if the
contact and fixture forces that arise in response to an external force Q,, sum to exactly
-Q,,, for all Q, E R3".

Form-closure of an assembly means that the assembly is completely immobile, and will
not move in response to any force. Clearly, form-closure implies both direction stability
and robust directional stability with respect to all external forces.5 Following the form of
theorem 3.1, and from Mishra et al.[16]'s work, the following theorem is easily proved:

THEOREM 3.2 Given an assembly with fixture set F, the assembly is form-closed if and

only if

1. The set of vectors {uj,... ,uNC, vj,,.. , vf,,1} spans R3" and

2. There exist strictly positive vectors a and A such that UA + VFa =0.
5Note hat finding a fixture set inducing form-closure is at least as hard as finding a fixture set inducing

directional or robust directional stability. However, one cannot immediately say anything about the relative
difficulty of finding minimal fixture sets for the three different types of stability. In fact, we suspect that finding
a minimal set of regular fixtures inducing form-closure is easier than finding a minimal set that produces
directional or robust directional stability.

12



Once again, form-closure is easily detected by checking the rank of the matrix [ U I VF],

and then seeing if the linear program

UA+VFp=O, A>e and a>e (8)

has a solution.
Having formally defined these notions of stability, we can now consider the complexity

of finding minimal stabilizing fixture sets. Following this, we will consider algorithms for
finding minimal stabilizing sets.

13



4 Size Bounds on F

For form-closure, work by Mishra et aL[16] and Markenscoff et aL[12] establishes that a
single planar object always requires at least four fixtures. However, never more than six
fixtures are required for form-closure. For three-dimensional objects, those bounds are re-
spectively seven and twelve. These bounds are obtained from the theorems of Carath6odory,
and Steinitz[16, 5].

In particular, Steinitz' theorem establishes that if Z C Rk and a point b E Rk is in the
interior of the convex hull of Z, then there exists a subset X C Z with at most 2k elements
such that b is interior to the convex hull of X. In matrix-parlance, this means that if

[U V( ) =b

for some strictly positive vector (A, c) E R4+NJ then there exists a matrix M containing
6n or fewer of the Nc + Nf columns of [ U I V ] such that

Mx=b

for some strictly positive vector x.
We can apply this result to planar multi-body assemblies. If we take b to be the origin,

0, this gives us the result that never more than 2.3n = 6n contacts and fixtures are necessary
for form-closure. Similarly, if we take b to be a specific external force Q E R3n, then again,
never more than 6n contacts and fixtures are required for robust directional stability with
respect to any external force. For directional stability, the upper bound is much lower, a
basic theorem of linear programming is that if there exists x satisfying

Mx=b and x>0

where M E R"×" then there exists a solution x with at most r nonzero elements. The
maximum number of contacts and fixtures needed for directional stability is therefore 3n.

In the other direction, both form-closure and robust directional stability require a fixture
set F such that the matrix [ U I VF ] has rank 3n, and thus at least 3n columns. Because
of this, both types of stability require a total of at least 3n contacts and fixtures. For form-
closure, this lower bound is improved to 3n + 1: if the matrix [ U I VF ] has rank 3n and
exactly 3n columns, it is nonsingular and the equation

[U I VFJY=O

has only the single nonpositive solution y = 0.
These lower bounds give us a lower bound on the size of the fixture set alone. Since

both form-closure and robust stability require rank([ U I VF ]) = 3n, we obtain

3n = rank([ U I VF 1) < rank(U) + rank(VF)
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Figure 6: An object with only translational freedom in contact with an immovable obstacle.
The directions of the forces in R2 generated by the fixtures are shown, as is the direction
of the force generated by the contact. To positively sum these vectors to zero, vectors 1, 2
and 3 must all be used.

or equivalently rank(VF) _ 3n - rank(U). Thus, at least

3n - rank(U)

fixtures are required to achieve form-closure. It is tempting to think that contacts always
help to decrease the number of fixtures needed for form-closure (or for robust directional
stability, if the contacts are "underneath" an object) but this is not always so. For simplicity,
consider a single object with only translational freedom, as show in figure 6. Without any
contact, three fixtures would be required for form-closure. But even though contact occurs,
all three fixtures are still required for form-closure. The direction of the contact and fixture
forces in R2 are shown next to the object. Clearly, the only strictly positive sum of the
vectors that is zero requires using vectors 1, 2, and 3. The use of vector C is not required.

Although we will see that finding a minimal fixture set is in general hard, it is not difficult
at all to find a fixture of size 6n or less that imparts form-closure. We present such an
algorithm below. Let us assume a predicate function positive-span(M, b) that takes a matrix
M and a vector b and returns a value of TRUE if and only if there exists a vector x such
that

Mx=b and x>0.

Note that x is required to be strictly positive. As discussed in section 3, positive-span can
be implemented as a linear program. The following algorithm returns a fixture subset F that
achieves form-closure (assuming such a subset exists):

15



Algorithm prune-fxtures

for i = I toN f
do

F=F-{i}
S=[U I VPWI
if rank(S) = 3n and positive-span(S, 0) = TRUE

F=F
done
retrn F

Assuming that a fixture set F imparting form-closure exists, the fixture set found by
prune-fixture-set is guaranteed to be of size 6n or less. The correctness of the algorithm is
a consequence of Steinitz' theorem. If the set of N, contacts and all N1 fixtures can achieve
form-closure, then no more than 6n of the fixtures are required for form-closure. Initially,
the fixture set F contains all the fixtures, so F imparts form-closure. As the algorithm
progresses, fixture i is removed from F only if it is demonstrated that the ith fixture is
not required for form-closure. Thus, as long as F contains more than 6n elements, Steinitz'
theorem applies and there must exist some element of F that can be removed. As a result,
the final set F returned must of size 6n or less.

Clearly, the same algorithm can be used to find a set of 6n or less fixtures that yields
robust directional stability with respect to an external force Q.,. The exact same algorithm
is used, except that

posifive-span(S, 0)

is replaced by
positive-span(S, -Q).

An algorithm that finds a fixture set of size 3n or less for directional stability is also easily
obtained. Assuming directional stability with respect to a force Q.. is possible, the simplex
algorithm, applied to the linear program

[UIV]( ) - -Q au=0 and (A) 0, (9)

yields a solution (A, a) with at most 3n positive elements. The fixture set F defined by

F={i I ajO} (10)

has at most 3n elements, and yields directional stability with respect to Q.
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5 Complexity of Minimal Generalized Fixturing

We now turn our attention to the complexity of minimal fixturing. For generalized fix-
tures (as we have chosen to define them), there is no restriction on the fixture vectors
{ vi, ... , vl }, and hence no restriction on the matrix V. Because of this, complexity results
concerning generalized fixturing are simply obtained. Note that for a single rigid body,
regular and generalized fixtures are essentially the same, since any arbitrary force direction
v in either RI (for a planar solid) or R6 (for a three-dimensional solid) can be obtained from
a single fixture.6 Thus, the problem of selecting a minimal set of regular fixtures for a single
rigid body (either for form-closure, robust directional stability or directional stability) can
be considered a generalized fixturing problem (albeit of very low dimension).

Since the largest minimal fixture set for a planar object will always be no larger than
six, a minimal fixturing set can found by an exhaustive search in time O(N 6 ). For a three-
dimensional object, an exhaustive search could require up to O(N 12 ) time. Although these
complexity bounds are polynomial, a smaller upper bound would clearly be better (espe-
cially in fixturing three-dimensional objects). The result of this section that generalized
fixturing is NP-hard suggests that minimal fixturing of a single object requires, in the worst
case, exhaustive search to obtain a minimal set (assuming of course that P 0 NP). Although
generalized fixturing may not be physically motivated enough to be a useful measure for
multi-body fixturing, it is useful at least in pointing out that minimal single-object fixturing
algorithms are likely to have worst-case performances equivalent to exhaustive search.

For brevity, we will make the following assumptions in all our complexity proofs
concerning regular and generalized fixturing:

* The contact set for an assembly is indicated by the matrix U, as described in section 2.

" The set of fixtures we can select from in trying to impart stability is indicated by the
matrix V, as described in section 2.

" The assembly in question can be stabilized by selecting all the fixtures indicated by
V, so that there is in fact at least one minimal fixture set F which imparts stability.

Note that given a choice F of a fixture set, any of the three types of stability previously
described can be tested for by solving a linear program and computing the rank of matrix.
Since both linear programming and computing the rank of a matrix are polynomial time
problems, it is clear that all the varieties of minimal fixturing we consider are in NP.

5.1 Generalized Fixtures and Directional Stability

The simplest complexity result to obtain is that finding a minimal size fixture set F imparting
directional stability is NP-hard.

THEOREM 5.1 Given a vector Qv and a set of generalized fixtures, finding a minimal
subset of those fixtures that yields directional stability with respect to Q (assuming such
a set exists) is NP-hard.

6nhe exception being that a pure torque cannot be obtained by a single regular fixture.
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PROOF. The proof involves a restriction to assemblies with no contact (thus our assertion
that optimal fixturing of a single object is likely to require exhaustive search). Garey and
Johnson[6, section A6, problem MP5] establishes that the following variation of linear
programming is NP-complete:

Given a matrix M, an n-vector b, and an integer k < n, does there exist a vector
x with no more than k nonzero components satisfying

Mx = b and x > 0?

This linear programming variation is trivially reducible to our stability problem. Given
a matrix M E R3Imx and a vector b E R-", we can produce an assembly of n bodies, none of
which contact, and set of m generalized fixtures such that V = M.7 We choose an external
force Q, = -b to act on the assembly. Since there is no contact, a fixture set F yields
directional stability if and only if

VFa = -Q,. = 0 and CI > 0

has a solution a. Clearly then, finding a minimal F is equivalent to finding a vector a with
the least number of nonzero elements such that

Vk = -Q,. = 0 and a > 0.

Since this problem is NP-hard, we conclude that finding a minimal set of generalized fixtures
yielding directional stability is NP-hard as well. 13

A proof of the complexity of obtaining robust directional stability with a minimal
number of general fixtures will follow from a study of regular fixturing, in section 6.

5.2 Generalized Fixtures and Form-Closure

For form-closure of an assembly without contact, we are interested in the following prob-
lem: what is the smallest set F such that rank(VF) = 3n and

Va=0

possesses a strictly positive solution ca? As in the above proof, given any matrix M E R 3XII,
we can produce an assembly of n bodies without contact, and a generalized set of m fixtures
such that V = M. Thus, finding a minimal set of generalized fixtures yielding form-closure
is equivalent in complexity to the following problem, which we call positive minimal span:

7Note that the assumption of generalized fixtures is key here. If we are limited to regular fixtures, for most
matrices M, we cannot design a fixture set such that V = M.
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THEOREM 5.2 Let M be an r x s matrix with r < s such that rank(M) = r and Mx = 0
for some strictly positive vector x. Given an integer k > r, determining if there exists an
index set CC { 1,2, ... s} of size k such that

1. rank(Mc) = rand

2. Mcy = Ofor some vector y > 0

is NP-complete.8 ,9

PROOF. To begin, it is clear that the problem is in NP since given C, the matrix Mc can
be tested to see if it satisfies the conditions of the theorem in polynomial time by linear
programming and a computation of the rank of Mc. To show that the problem is NP-hard,
we use a reduction from the following NP-complete problem, known as the minimum set
cover problem:

Let A be a set A = {a,a 2, ... a,. } of r elements. Let A1 through A, be subsets
of A. Does there exist a k-element subset Z C { A,,A 2 , ... A, } such that
Uzz z = A?

Given A and the subsets A, through A, the reduction is simple. We will construct a
matrix M of size r x (r + s) such that A can be covered by k of the Ai subsets if and only
if there exists a (k + s)-element index set C satisfying the conditions of theorem 5.2. We
construct M as follows: let M be written in the form

M = [m, m 2 ... M'+'

where each m, is a column vector of length r. The first s columns of M, that is, m, through
m,, consist entirely of zeroes and ones. For 1 < j _< s, let the ith component of mj equal
one if ai E Aj and zero otherwise.' 0 The last r columns form a negated identity matrix; that
is,

m,+!= I ,m,+2= ... mS+r=

8Note that the inequality on y in this theorem is strict
9We would not be surprised to find that a proof of this theorem already exists in the literature. (Actually,

we were surprised not to find a proof already in the literature!) If any of the referees know of a reference for
this proof, we would be happy to eliminate the proof of this theorem and simply cite the reference instead.

'°As an example, for s = 6, AI = { a2, a3, as} and A2 = {ai, a3,a4}, we would have(0) 1 °)
mI (IJ and M2

1 0
0 0
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We must show that A can be covered by a union of k of the Ai's if and only if there exists a
(k + s)-element index set C satisfying the second condition of theorem 5.2.

Suppose that A can be covered by the k-element collection { An,, An2, ... , A }. Then if
we let C = { nl, n2 , ... , nk, r+ 1, r+2, ... , r+s}, we claim that Mc satisfies the conditions
of theorem 5.2. First, since C contains the indices r + 1 through r + s, Mc's rightmost r
columns form the negated identity matrix, establishing that rank(M) = r. Second, since A
is covered by the collection { An,, A,,2, ... , A,, }, the vector

Y = mn,I + n,,2 + + Inlk

satisfies y 1 for all i, since y, indicates the number of times a appears in the collection
{ A,,,,A,, 2, ... , A,,k }, and this collection covers A. Letting I denote the s x s identity matrix
and e E 6k be the vector ej = 1 for all i, we obtain

e (= [n, ,I n 2 ... n , -I YMc Y

= y-y=O

where the vector (e, y) is strictly positive.
Conversely, suppose C is an index set of size k + s such that Mc satisfies the conditions

of the theorem. Since rank(Mc) = r and Mc has only r rows, no row of Mc can contain
all zeroes. Thus, for each I < i < r, Mc must include at least one column of M whose
ith component is nonzero. But in order to satisfy Mcy = 0 with y strictly positive, for
each 1 < i < r, the matrix Mc must contain at least two columns of M, both of whose
ith components are nonzero. Furthermore, for each i, these two components must be of
opposite sign. Since for each 1 < i < r the matrix Mc must contain a column whose ith
element is negative and since the only columns of M with negative entries are columns
s + I through s + r, clearly Mc must contain the last r columns of M, It must be then that
{ s+ l,s+2, ... , s + r} C C. Since C contains k + r elements, C must therefore have the
form

C= {ni,n2, ... , nk,s+ l,s+2, ... s+r}

where the n,'s are all less than s + 1. Then Mc can be written in the form

Mc = I n,1 M, 2 ... mnk I -I ].

Since C satisfies the second condition of the theorem, there exist strictly positive vectors x
and y such that

Mc( )[ mnn M 2 ... mn I-I]( )Y In 2 ... nnk X-Y01Mc Y

or equivalently,
[In',, n,2 ... n, ]IX = Y.
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Since every component of y is nonzero, every component of the vector

XIMI + -- "+ Xkl,

is nonzero as well. Hence, for each I < i < r, there must exist 1 < j _< k such that the ith
component of mn,, is nonzero as well. By the construction of the vectors mn, through m, the
set

{ Anj,An2, ... , Ank }

must therefore cover A. We conclude that positive minimal spanning is NP-complete. 0
This leads us directly to

THEOREM 5.3 Given a set of generalized fixtures, finding a minimal subset ofthosefixtures
that yields form-closure (assuming such a set exists) is NP-hard.

PROOF. The proof follows immediately from theorem 5.2. 0
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6 Complexity of Minimal Regular Fixturing

Complexity bounds for generalized fixturing could be obtained by considering linear pro-
grams augmented with combinatorial constraints. For regular fixtures, this approach cannot
be used because regular fixtures yield matrices of V with a very specific structure. Instead,
we will produce actual assemblies, whose minimal fixturing sets will correspond with
the solution of a minimum set-covering problem. We will make use of the NP-complete
problem of minimum set cover used in section 5 to establish complexity bounds. Given
a set of elements A -- {a 1 ,a 2, ... , a. } and subsets A1, A2, ... , A, of A, we will con-
struct an assembly that can be stabilized with k fixtures if and only if there exists a set
Z C {A 1,A 2 ,... A, } such that IZI = k and UZczZ = A. Without loss of generality, we
assume that each subset Ai contains three elements; this restricted form of minimum set
cover is still NP-hard.

THEOREM 6.1 Given a vector Q,,, and a set of regular fixtures, finding a minimal subset
of those fixtures that yields directional stability with respect to Q, (assuming such a set
exists) is NP-hard.

PROOF. The proof is by reduction of the minimum set covering problem. Given the set
A a {a, a2, ... , ar}, and subsets A1, A2, ... , A, of A, we construct an assembly of r+ s
objects. Objects I through r correspond to the r elements of A. Contact constraints with
immovable obstacles prevent the first r objects from any motion other than a translation
straight down (figure 7). The external force Q acting on the system tries to accelerate
each of these r objects downwards. For each I < i < r, we will say ai is covered when we
have prevented object i from moving downwards.

Object r + j, for 1 < j < s, corresponds to the subset A. These objects are also
constrained so that they can only move vertically. The set of fixtures for the assembly
consists of s fixtures. If thejth fixture is selected then object r +j is prevented from moving
downwards (figure 7). However, no external force (or rather, an external force of zero) acts
on objects r+ I through r+s. Thus, not all of these s objects necessarily need to be fixtures;
in particular, if object r +j is not used to support any of the first r objects, object r +j can
remain unfixtured.

Each object r + j touches three other of the first r objects: if Aj = { a, a,, a. }, then
object r + j contacts objects s, t and u. For example, the contacts on objects r + 1 and
r + 2 in figure 8 indicate thatA = { a, a2, a4} and A2 - {a 2, as, ar }. Selecting fixture
j prevents object r + j from meving downwards, thus covering object i for all i such that
ai E A. Conversely, if for some i < r, none of the fixturesj satisfying ai E Aj are selected,
then the external force will cause object i to move downwards, consequently causing all
such objects j to move downwards as well.

Clearly then, a fixture set F that yields directional stability with respect to the chosen
Q,,, induces a covering set Z, by defining

Z={Aj I jEF}.
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Figure 7: Objects 1 through r can only move downwards; a downwards external force acts
on each of these objects. Objects r + 1 through r + s can move downwards but are not
subjected to an external force. An object r +j can be prevented from moving by selecting
fixturej.
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Figure 8: Contact between object r +j and object i occurs if and only if ai E Aj.

Conversely, a covering set Z induces a fixture set yielding directional stability" by defin-
ing

F={j I AjEZ}. (11)

Since minimum covering is NP-hard, we conclude that finding a minimal fixture set yielding
directional stability is NP-hard as well. 0

As it stands, this result is somewhat unsatisfactory, in the sense that the external force
Q, is somewhat unnatural. Essentially, the first r objects are acted upon by gravity, but
objects r + 1 through r+ s are weightless. Because of this, the stability achieved is unstable
with respect to perturbations of Q,. Suppose for example, that we choose a fixturing set
yielding stability that does not include fixture 1. Then object r + 1 remains motionless only
because the external force on it is zero; if Q,,, is perturbed so that even an infinitesimal
downwards force acts on object r + 1, the object will move downwards.

However, we can modify the construction of figure 8 so that minimum covering sets
Z correspond to minimal fixture sets F that yield robust directional stability. In particular,
the external force acting on the modified system will be an ordinary gravity field. A set
of fixtures yielding stability will do so for relatively large external force variations (for

"A subtle point in this construction concerns the behavior of unfixtured objects. Suppose Z covers A, and
F is defined by equation (11). Let Aj i Z, soj V F and object r +j is unfixtured. Could some object i E Aj
exert a force on object r + j, causing a downwards motion? The answer to this is "no." Since Z covers A,
objectj is covered and cannot move. If object i exerted a force on object r +j, object r +j would move away
(downwards), breaking contact with object i. The contact force at a point where contact is broken however
must be zero[7].
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Figure 9: A downwards force on object i results in a horizontal force on object r +j. The
external gravity force acting on object r + j has no effect, as long as gravity points exactly
downwards.

example, if gravity acts straight down on one object, but is inclined 150 with respect to
another object).

THEOREM 6.2 Given a vector Q, and a set of regular fxtures, finding a minimal subset
of those fixtures that yields robust directional stability with respect to Q. (assuming such
a set exists) is NP-hardL

PROOF. The proof consists of modifying the construction in theorem 6.1 so that a minimal
covering set Z yields a minimal fixture set F that is robustly stable with respect to a uniform
gravity force. The modification is made in two steps.

Let Qw be an external force acting downwards on each object with strength proportional
to an object's mass. In the assemblies of theorem 6.1, contact occurred between object i and
object r +j if ai E A,. We modify the constraints on objects r + 1 through r + s so that each
object can now move only horizontally. The fixtures are positioned so that selecting fixture
j prevents object r+j from moving to the left. Contact between objects i and r+j is modified
as shown in figure 9. In order for object i to move downwards, object r+j must move to the
left. Clearly, selecting fixture j prevents object i from moving downwards. Note however
that if fixture j is unselected, the external force acting on object r + j induces no motion of
object r +j.

This modification does not change the fact that it is NP-hard to pick a minimal fixture
set yielding directional stability. This first modification overcomes the objection that the
external force chosen for the previous proof was somewhat unnatural. Still, given a covering
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Figure 10: The constraints on object r + j are altered so that perturbations in the gravity
direction have no immediate effect on object r +j.

set Z, the corresponding F only induces directional stability; any unfixtured object r + j is
stable only because the external force points exactly straight down.

A second modification fixes this. In figure 10, the motion constraint on object r +j is
altered so that the object can only move to the left and up (if unfixtured). If we assume that
objects I through • are massive compares with objects r + 1 through r + s, then a fixture
set which fails to cover some object i < r does not yield stability. However, a fixture set F
that yields directional stability also yields robust directional stability. To see this, suppose
object r + j is unfixtured. Perturbations on the forces acting on fixtured objects are of no
account. In order for object r + j to move, the external force acting on that object must
be inclined a sizeable amount with respect to the negative vertical axis in order to cause
a motion. Thus, a minimal covering set Z yields a minimal fixture set F yielding robust
directional stability. 3

THEOREM 63 Given a vector Q. and a set of generalized fixtures, finding a minimal
subset of those fixtures that yields robust directional stability with respect to Qa (assuming
such a set exists) is NP-har

PROOF. The proof follows from theorem 6.2 by restriction. 3
Unfortunately, we cannot follow theorems 6.1 and 6.2 with a proof that finding a set

of minimal fixtures yielding form-closure is NP-hard; nor can we show that such a fixture
set can be found in polynomial time. We will show however that if an assembly's contact
graph (a graph where nodes are object, and edges indicate contact between pairs of objects)
is acyclic, a minimal fixture set is easily obtained in polynomial time. The complexity
of the more general case of assemblies with cyclic contact graphs eludes us. Our strong
suspicion however is that finding minimal sets of regular fixtures yielding form-closure is
not NP-hard. Before considering contact graphs, we consider the complexity of fixturing
with clamps.
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7 Complexity of Minimal Fixturing with Clamps

Recall that clamps, which are groupings of regular fixtures, give us the ability to form-
close a single object with unit cost. If we consider assemblies where selecting a clamp
causes a particular body to be immobilized, we see that determining a set of bodies that
when immobilized yields stability of the entire assembly is a clamp-fixturing problem.
Accordingly, we can show that fixturing with clamps is NP-hard by constructing assemblies
where it is NP-hard to determine the smallest number of objects whose immobilization
yields stability for the entire structure.

The first two theorems concerning fixturing with clamps are trivial modifications to the
assemblies constructed in figures 8 and 10.

THEOREM 7.1 Given a vector Q,,, and a set of clamps, finding a minimal subset of those
clamps that yields robust directional stability with respect to Q, (assuming such a set
exists) is NP-hard.

PROOF. Consider the assembly of figure 8. Let us replace each fixturej with a clamp that
form-closes body r + j when selected. Each such clamp has no more or less effect when
selected than the original regular fixture. Thus, finding a minimal set of clamps required
for directional stability is just as hard as finding a minimal set of regular fixtures. 0

THEOREM 7.2 Given a vector Q,, and a set of clamps, finding a minimal subset of those
clamps that yields rboust directional stability with respect to QW (assuming such a set
exists) is NP-hard.

PROOF. The argument of the previous proof applies to the assembly of figure 10. 0

Although we have not obtained a result concerning regular fixturing and form-closure,
we can say something about the complexity of minimal fixturing with clamps for form-
closure. Our proof will involve a reduction from the following NP-complete problem[6,
section Al, problem GT 7]:

Let G = (N, E) be a directed graph with node set N and edge set E, and let
k < IN. Let the in- and out-degree of every node be two or less. Does there
exist a subset of nodes N' C N with IN' I = k such that N' contains at least one
vertex from every directed cycle in G?

To perform the reduction, we will take a directed graph all of whose nodes have both in-
and out-degree of two or less, and build a corresponding assembly. The assembly will be
form-closed by immobilizing k objects if and only if a subset N' of size k exists that contains
at least one vertex of every directed cycle of the graph.
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Figure 11: (a) Starting from its initial position, node object A can never slide to the left.
Similarly, the the connecting rods B and C can never slide to the left. Object A's input
connecting rods can slide forward (to the right) only if object A can. (b) If objectA is given a
push from an input connecting rod, and object C cannot move, object A can move by sliding
to the right and up. Conversely, if B could not move but C could, object A would slide to
the right and down. If neither B nor C can move, then A cannot move either, preventing A's
input connecting rods from moving as well.

,The basic building block of the assembly is shown in figure 11. We will call object A a
node object and objects B and C connecting rods. A node object corresponds to a node
of the graph. Connecting rods represent edges, and run from the "output" side of a node
(the right side), to the "input" side (the left side) of some other node. In figure 11, the only
freedom of motion for the connecting rods is to slide horizontally to the right. We will say
this is a "forward" motion of the connecting rod. Connecting rods are always prevented
from moving "backward" (to the left) from their initial position because of their spurs.

When can objectA slide forward? Suppose that rod B is prevented from moving forward.
Then object A could slide rightward and down only if the rod C is free to slide forward.
Similarly, object A can slight to the right and up only if rod B is free to slide forward. If
neither of the rods B and C can move, object A is prevented from moving as well. (Clearly,
under no circumstances can object A slide to the left)
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The construction of figure I I is replicated for each node of a graph. The assembly
corresponding to the graph

is shown in figure 12. Consider object 1 in this assembly: as in figure 11, object 1 can
slide forward if and only if one or more of its connecting "output" rods can slide forward.
(Connecting rods can be made to turn comers comers as shown in the upper-left detail of
figure 12. Similarly, nonpianar graphs can be formed by having a connecting rod cross over
another rod by turning a corner out of the plane of the paper, and later turning back into the
plane of the paper. For clarity, the spurs on the connecting rods preventing any "backwards"
movement by the rods are not shown in figure 12.) Since object l's connecting rods contact
objects 2 and 4, object I can move if and only if one or both of objects 2 and 4 are free to
move.

In order to perform the reduction, we want a node object i to be able to move if and
only if one or more of the node objects it is connected to can move. For example, object
I can move if and only if object 2 or object 4 can move. Object 5 is connected to only
one other node object, so an extra constraint is placed object 5, preventing it from moving
downwards at all. Clearly, object 5 can move if and only if object 3 can move. Since object
3 is connected to no other node objects, it is constrained to have no motion at all. Nodes
with zero or one incoming edge (such as nodes 5 and 2) need no special treatment.

Thus, given a directed graph G = (N, E) let us construct an assembly. The assembly will
have IN1 node objects of the type shown in figure 11, and IEl connecting rod mechanisms.
(We will describe the set of clamps shortly.) A connecting rod mechanism is placed between
node objects i and j for each directed edge (ij) E E, with the connector running "out"
from object i and "into" object j. For each node in the graph with no outputs, additional
constraints are added on the node object that immediately prevent it from moving (as
illustrated by node 3 in figure 12). For each node with only one output, an additional
constraint is placed on the node object i (as illustrated by node 5 in figure 12). The final
assembly thus has the property that node object i can move if and only if for some (i,j) E E,
node object j can move as well. Note that this implies that if node i has no outgoing edges,
node object i can never move.
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Figure 12: The assembly corresponding to the five node graph on page 29. Connecting
rods can bend around corners as shown in the detail in the upper left: assuming rod C can
move to the right, moving rod A to the right causes rod B to move downwards, causing
rod C to move to the right. Nonplanar graphs (requiring edges to "cross over" each other)
are modeled by having connecting rods turn comers taking them out of the plane of the
assembly.
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THEOREM 7.3 Given a graph G = (V, E), there is a movable node object in the con-
structed assembly if and only if there exists movable node objects n1, n2,... n such that
(ni, ni+1) E Efori < kand (nk, ni) E E.

PROOF. The forward direction of the proof is obvious from the construction of the as-
sembly: assuming the hypothesized list n1 , n2 ,... nk of movable objects, each of the k node
objects in the list can be moved forward some small amount, if all the movements occur
simultaneously.

Conversely, suppose that node object n1 in the assembly is movable. By construction,
a node object is movable if and only if it is connected to another movable node object n2.
Then there must exist a movable node object n2 such that (n1 , n2) E E. But in order for n2

to be movable, it too must be connected to some movable node n3 such that (n2 , n,) E E.
Clearly, this argument can be continued, generating a list of movable nodes n1 , n2, n3, ... ;

but since there are only finitely many nodes, at some point we will encounter a movable
object nj such that ni is already on the list. Then the subsequence n, ni+,I.... nj is a list of
movable node object satisfying the conditions of the theorem. 13

Using theorem 7.3, we can establish the complexity of establishing form-closure with a
minimal set of clamps.

THEOREM 7.4 Given a set of clamps, finding a minimal subset of those clamps that yields
form-closure (assuming such a set exists), is NP-hard

PROOF. Given a directed graph G = (N, E), we construct the corresponding assembly of
theorem 7.3. In addition, IN clamps are added. The ith clamp, when selected, form-closes
node object i.

Given a set N' that contains at least one vertex from every directed cycle in G, the
corresponding set of clamps

F={i I niEY}

induces form-closure. This follows from theorem 7.3: the connecting rods cannot move
unless some node object can move, and a movable node object implies a movable cycle
of node objects. However, since at least one node object in every possible cycle of node
objects is clamped, no object can move. By the same argument, a set of clamps F inducing
form-closure yields a set

M'={ni I iEF}

containing at least one vertex of every cycle in the graph. As a result, minimal sets N'
containing a vertex from each cycle correspond to minimal sets F yielding form-closure. 0
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8 Algorithms

So far, we have shown that for all but one of the fixturing/stability combinations considered,
finding minimal fixture set is NP-hard. The only exception has been minimal regular fixtur-
ing for form-closure. Although NP-hardness results can often be cause for disappointment,
from the standpoint of implementing algorithms, we do not believe this is the case here.

8.1 Degeneracy

From the theorems of Carathdodory, and Steinitz, we know that form-closure requires
between 3n + I and 6n fixtures and contacts. The pruning algorithm presented in section 4 is
a simple polynomial-time algorithm for finding a stabilizing set of not more than 6n fixtures.
However, 6n is the worst-case behavior of the algorithm--the algorithm may manage to
prune the set of fixtures to well below 6n. Characterizing the performance of the algorithm
would require a characterization of the set of assemblies one wants to fixture; clearly, this
is an application dependent question. However, there is a simple insight into the lower and
upper ranges of 3n + 1 and 6n contacts and fixtures required to form-close an assembly. A
similar insight applies to robust directional stability.

DEFINrION. A set of vectors Z = { am, m2, ... , m,} C R1 is said to be degenerate if
there exists a subset of size n or less vectors of Z that are linearly dependent. Otherwise, Z
is said to be nondegenerate.

THEOREM 8.1 Let Z = { m, M2 , ... , m,} C R1 be a nondegenerate set of vectors. Then
if the origin, 0, lies in the interior of the convex hull of Z there exists a subset X C Z such
that JXJ = n + 1 and the origin lies in the interior of the convex hull of X.

PROOF. The proof is geometric in nature. Given Z, let us consider the boundary of the
convex hull of Z. Since Z is nondegenerate, its convex hull occupies some n-dimensional
volume of R". Thus, the convex hull of Z is a convex n-dimensional polyhedron in R1.
Examining the boundary of this polyhedron, it is clear that each facet of this polyhedron is
embedded in some (n - )-dimensional hyperplane of R. Given a point p E R", if p lies
on the boundary of the convex hull of Z, then either p is interior to a facet, or p lies on the
boundary of a facet. Since each vertex of the polyhedron is a point in Z, if p lies on the
boundary of a facet, then p is a linear combination of n - I or fewer points of Z. Otherwise,
p is interior to a facet and p may be written as a strictly positive linear combination of n
linearly independent points in Z.

With this in mind, the proof is simple: given ml, consider the directed ray emanating
from mi and passing through the origin (figure 13). Not counting m, itself (which might lie
on the boundary of the convex hull of Z), no point on the ray between m, and 0 lies on the
boundary of the convex hull, since 0 is interior to the convex hull. Let p be the intersection
point of the ray and the convex hull boundary. By construction, p = -tmi, where t is a
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Figure 13: The geometric intuition for the proof. Since the set is nondegenerate, starting at
any point and traversing through the origin, a point p interior to a face of the convex hull is
reached.

positive scalar. If p is not interior to some facet of the convex hull boundary, then p is a
linear combination of n - 1 or fewer points of Z. But since p+ t, = 0, we would have n or
fewer points of Z that are linearly dependent. This would contradict the nondegeneracy of
Z. Therefore, it must be that p is a strictly linear combination of n points of Z. Then since
p + tm = 0 with t > 0, there exists a strictly positive set of n + 1 points of Z that sum to
zero. We conclude that some subset of n + 1 points of Z exists such that the origin lies in
the interior of its convex hull. 0

The implication of this theorem is that if the contact and fixture set is nondegenerate,
the pruning algorithm in section 4 will always find a minimal fixture set. Testing a set of
fixtures and contacts for nondegeneracy involves seeing if there exists a nonzero vector x
with n or fewer components such that

Mx=0

where M = [U I V ]. Unfortunately, this problem is NP-complete[15, 3]. Note however
that the converse of the theorem is false: even if the fixture and contact force direction
vectors form a degenerate set, it still might be possible to form-close the assembly with
only 3n + 1 fixtures and contacts. Our intuition then is that if the fixture and contact force
direction vectors are not highly degenerate (that is, if most sets of 3n or few vectors are
linearly independent), then the algorithm prune-fixtures from section 4 is likely to come
close to finding an optimal solution. The degree to which fixture and contact sets for an
assembly are degenerate is of course an application-dependent issue.

8.2 A Bottom-up Approach to Fixturing

The pruning algorithm prune-fixtures operates from the top-down: the algorithm starts by
initially selecting all the fixtures, then sees which fixtures can be eliminated, subject to the
condition that stability is still possible. Theorem 8.1 suggests that a bottom-up strategy
could be employed as well: in practice, it might be much faster to start with no fixtures

33



selected, and then continually select fixtures until stability is achieved (or until 6n fixtures
have been selected, in which case the algorithm halts and the top-down pruning approach
is used instead). A bottom-up algorithm would have the basic form:

Algorithm select-fixtures

while lF < 6n
do

let i J F minimize score(F, i)
F=FU{i}
S=[U I v']
if rank(S) = 3n and positive-span(S, 0) = TRUE

return F
done
return ERROR

The algorithm select-fixtures attempts to find a set of 6n or less fixtures that establish
form-closure. If F grows to have more than 6n elements, the algorithm returns an error; in
this case, there is no point in continuing, since the pruning algorithm can be used instead
to guarantee a fixture set of size 6n or less, assuming form-closure can be established at
all. (As a further refinement, the set returned by select-fxtures could be pruned by the
prune-fixtures algorithm, since fixtures that are added into F might not be needed later for
the form-closure.) The question in a bottom-up approach is is how to go about selecting the
next fixture-what function should we choose for score(F, i)?

Since theorem 8.1 shows us that it is degeneracy which prevents us from achieving
optimal fixture sets, we need to avoid choosing linearly dependent fixture sets. Accordingly,
we want to add fixtures into our set that yield forces that are as orthogonal as possible to
the current set of fixture/contact-force directions.12 Thus, a simple choice for score might
be to measure the deviation of orthogonality between a potential fixture and the current set
of fixtures and contacts. One possibility is

score(Fi) ) 2+ _ 2(12)

A fixture with a force direction exactly orthogonal to all the other fixtures and contact force
directions is given a score of zero.

Note that both the bottom-up and top-down algorithms can be used to find fixture sets
that stabilize an assembly over some range of external forces. As we noted in section 3.2,
an assembly with robust directional stability might be stable only over some very small

12Actuaily, this is not exactly true. We would really like to distribute the directions of the vectors chosen as
evenly as possible. In a two-dimensional space, we require at least three contact/fixture-force directions for
form-closure. The optimal spread of three vectors in two dimensions is to have the vectors exactly 1200 apart.
In an n-dimensional space, n + 1 vectors are evenly spread with angular separation cos- 11/n. As n grows
large, the desired angle between vectors approaches 900, so we can simply say that in general, we want to pick
new fixtures so that they are as orthogonal as possible to all the previously determined fixture/contact-force
directions.
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range of external forces. However, if an assembly with a fixture set is stabile with respect
to some external Q, and also Q2, then the assembly is stable with respect to any convex
combination of Q, and Q2. For example, suppose we want an assembly to be stable with
respect to gravity, even if gravity is perturbed by up to 15' from vertical. For a planar
system, we would need the assembly to be stable with respect to two external forces: gravity
perturbed by positive 150 and gravity perturbed by - 15*. (For a three-dimensional system,
the gravity range could be described by four external forces.) In the top-down approach,
fixtures are pruned only if their removal allows directional stability with respect to these
two external forces. In the bottom-up approach, fixtures are added until the assembly is
stable with respect to both external forces.

8.3 Form-closure of Acyclic Assemblies by Regular Fixturing

The one result we have not obtained a complexity measure for is minimal regular fixturing
for form-closure. We conclude this paper by showing that the problem has a polynomial-
time algorithm, given a restriction in the contact graph of the assembly:

DEFINrION. Given an assembly with n objects, the contact graph for the assembly is an
undirected graph G = (N, E) with IN = n. An edge (i,j) occurs in the graph if objects i
andj contact er ."er

We would li ,, '.j.iw that if an assembly has an acyclic contact graph, that we can
minimally fixture the tssembly for form-closure by treating each object of the assembly
separately. In essence, while fixturing object i, we will temporarily pretend that all the
other objects are already form-closed, and select a set of minimal fixture set Fi that form-
closes object i under this pretense. Remarkably, the set F = Ui F will turn out to form-
close the entire assembly. Since the number of fixtures required to form-close object i is
not increased if we temporarily pretend that all other objects are frozen, IF I is a lower
bound on the number of fixtures required to form-close object i when all the objects have
the potential to move. Thus, if F does indeed induce form-closure, it will be minimal.

The key step in our proof will involve "splitting" a contact between two objects; that is,
the contact is ignored, and in its place, a pair of constraints is added (figure 14). That is, in
figure 14b, we imagine that objects 1 and 2 no longer touch, but that object 1 touches some
immovable obstacle, as does object 2. In making this (temporary) alteration, and splitting
the contact at p into two separate constraints, we are allowing the contact force between
objects I and 2 to be unbalanced. That is, in figure 14a, a force of the form An is applied to
object 1, and a force of -An is applied to object 2, due to contact. After splitting the contact,
a force An might be applied to object 1, and a force -A 2n might be applied to object 2.
Thus, we will need to show that even though we have treated each contact between objects
as two seperate constraints (as in figure 14b), the forces that actually arise at the contact
point will be the same as would occur if the contact really was split.

Given the original assembly shown in figure 15a, we would split the contact between
objects I and 2 as shown in figure 15b. We then separately fixture object 1 by itself, ignoring
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(a) (b)

Figure 14: (a) Contact between two movable objects. The contact force exerted at p acts
equally and oppositely on both objects. (b) The contact is replaced by a pair of contacts
with immovable obstacles. Now the force due to contact at p on the two objects can be of
different strengths.

its contact with object 2 but making use of the constraint on object 1 induced by the splitting.
As the example in figure 15b shows, object I requires only 2 fixtures for form-closure. Next,
we separately fixture the assembly consisting of objects 2 through n, as denoted in figure 15b
(the fixtures are not shown in this figure). Again, we ignore the contact between objects 1
and 2 and instead make use of the constraint induced by the splitting. The final fixture set
produced is simply the union of the two fixture sets.

THEOREM 8.2 Given an assembly of n planar objects with an acyclic contact graph, and
such that a pair of objects has at most one mutual contact point, 13 a minimal set of regular
fixtures yielding form-closure can be found in O(nN 6 ) time.

PROOF. The proof is by induction on the number of contact points. Clearly, an assembly
with n objects and no contact points can be minimally fixtured for form-closure by applying
an exhaustive search algorithm separately to each object. Given a set of Nf regular fixtures,
the maximum time to minimally fixture object i is O(Nf6). All n objects can be minimally
fixtured for form-closure in at most O(nNf6) time.

Let us assume that the the theorem applies for assemblies with m contacts, and consider
an assembly with m + 1 contacts. Since the contact graph of the assembly is acyclic, there
must be some object that contacts only one other object. (Note that contact with immovable
obstacles has no effect on the contact graph; hence in figure 15a, object 1 is said to contact
only one other object, namely object 2.) Without loss of generality, let us assume that
object I contacts object 2, and no other objects. We shall label this contact as contact m + 1.

Let us split the assembly, as shown in figure 15a. Separately fixturing object 1 requires
at most O(N 6) time. Likewise, separately fixturing the assembly consisting of objects 2

13We believe that the theorem applies even if a pair of objects contact each other at multiple points.
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(a) (b)

22

Figure 15: (a) An assembly with m + 1 contact points. Object 1 touches object 2, and
an immovable obstacle. (b) The assembly is split, and in the new assembly, object 1 is
fixtured. Due to the contact constraints on object 1, only two fixtures are required for form-
closure. Objects 2 through n are fixtured as a separate group (fixtures for these objects are
not drawn).

through n, ignoring contact m + 1 but taking the new constraint on object 2 into account
requires O((n - l)Nf6 ) time, by inductive assumption. We claim that the union of the
fixtures chosen for the two separate problems will in fact yield form-closure for the entire
assembly. As discussed above, if this is so, then the union of the fixtures is also a minimal
fixturing set.

Let the matrix of contact force directions for the original, unsplit problem be written
as

U=[U1 I U2 I Um+II

where Um+, denotes the direction of force due to m + Ist contact, U denotes all other
contact forces that effect object 1, and U2 denotes all other contact forces that effect objects
2 through n. Note that the first three rows of U 2 are zero, since U2 denotes only contact
forces not involving object I. Similarly, all but the first three rows of U] are zero. The
vector u,.+1 has the form

u = (dl,d 2,0,O,...)

where d, and d2 denote the direction in R3 of the generalized contact force acting on
objects I and 2 respectively.

In the first step, we choose a set of fixtures FA that minimally form-close object I by
itself. Let V, = VFA. Similarly, define the fixture matrix V2 by V2 = VF.. where F8 is
the minimal fixture set chosen to minimally form-close objects 2 through n. The matrix VI,
like U1, only describes forces involving object 1, so all but the first three rows of V, are
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zero. Similarly, the first three rows of V2 are zero as well.
We claim that FA U F, induces form-closure on the entire assembly. The contact matrix

for the original, unsplit assembly has the form U - [IU I U2 I u.+ I, the contact matrix
U' for the split assembly has the form

U' [UI I U2 I UA I U]

where
UA = (dI,0,0,...) and u, = (0,d 2,0,...).

Now consider the assembly with contact m + I split, as in figure 15b. Since FA achieved
form closure on a single object (namely, object 1), the composite matrix [U I uA I V, ]
must have rank 3. Similarly, F, form-closed the other n- 1 objects, so the composite matrix
[U 2 I u, I V2 ] has rank 3(n - 1). Since um+ I UA + UB, this implies that

rank[U1 I U2 I u.+I I VI I V2 =rank[U I VFAUFs]- 3n.

Thus, FA U F, satisfies the first condition of theorem 3.2.
The fixture set FA U F, also satisfies the second condition of theorem 3.2. Since the

fixture sets FA and F, form-close all the objects in the split assembly, by definition

rank[ U1 I VFAUFB ] = 3 n

and there exist strictly positive vectors A and a such that

U' + VFAUFBa =0-. (13)

Let us partition A and a by writing a = (al, a2) and A = (xI, x2, A1, A2) where A, and A2
are scalars. Then from equation (13), we can write

U I X I + U 2X2 + UAAI + UBA2 + VICLI + V 2a 2 = 0. (14)

Since all but the first three rows of U1, VI, and UA are zero, and the first three rows of U2,
V2 and UA are zero, equation (14) is separable. Thus,

UIxI + UAAI + VICt =0

and
U 2 X2 + uab2 + V 2 Ct 2 = 0. (15)

Since A, is strictly positive, we can write

U+A2A + 2V 1 = A2UIxI + UAA2 + 2VIa1 =0. (16)

Adding equations (15) and (16), we obtain

\U IXI + U 2X 2 + UAA2 + UB,\2  L2
AI2 A I + V 2 0f2 =0,
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But since u.+I = UA + U8, we can express UAA12 + UBA 2 as u,,,+iA 2, which yields

2

[UI U2 I U.+ I( 1X2 )+[IVI V2 C =0.
\2 a2

Since U =[ I U2 I u,+ ] and VFAUF=[ V I V2 ],this yields

X2 2X 12 1\'2X( 2 + VFAUFB( (1))

Since A, and A2 are positive scalars, and xI, x2, cil and Ct2 are strictly positive vectors,
the vectors (xI, A2/AI, x2, A2) and (aA 2/A1, a 2) are strictly positive as well. Thus, equa-
tion (17) establishes that FA U F9 satisfies the second condition of theorem 3.2. We conclude
that FA U FB does indeed induce form-closure. Since the two fixturing steps require at most
0(N1

6) and 0((n - 1)N/ 6) time, the entire algorithm requires at most O(nN 6) time. 0
The theorem applies directly to assemblies without any cycles. However, given an

assembly with only a small number of cycles, one could "break" the cycles using the
following approach: suppose that an assembly has a single cycle in its contact graph, and
the removal of some node i from the graph eliminates that cycle. If fixtures acting solely
on object i are introduced to form close object i, treating object i as if it had no contact
with any other object in the assembly, then thereafter, object i is an immovable obstacle.
Treating object i as such, the new assembly is acyclic and can be quickly fixtured. Clearly,
this approach can be used only as long as the number of cycles in the graph is small.
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9 Conclusion
We have defined three varieties of fixturing for multi-body frictionless assemblies with
contact. We have explored the complexity of finding smallest sets of fixtures inducing
various types of stability on the assemblies. For the most part, finding minimal fixture sets
is shown to be NP-hard. This establishes that under the model where each fixture has some
preassigned cost, minimal-cost fixturing is mostly NP-hard as well. Based on the theorems
of Carathlodory, and Steinitz, simple polynomial-time algorithms have been presented for
finding small, but not necessarily optimal fixture sets. Finally, a characterization of when
lower bounds on fixturing sets can be realized is given in the guise of geometric degeneracy
in the force-space of the contacts and fixtures.

Much work remains however, choosing to minimize the number of fixtures is only one
of the many ways to optimize fixture design. For some applications, a minimal set of fixtures
may not necessarily be a good set of fixtures in practice. Following the lines of research on
single-object grasping, there are many factors to consider- for example, one might want to
consider the magnitude of forces exerted by the fixtures and contacts, to avoid situations in
which the fixture set theoretically yields stability, but only by exerting an enormous force
on an object. (This can arise if a pair of fixtures point in almost exactly opposite directions.)
Clearly, for some applications, the assumption of frictionless contact is too restrictive, and
attention needs to be given to the tangential friction forces arising at contacts and fixtures.
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