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ABSTRACT

A series of tests was carried out to develop a model of an
automatic pitch control system for a SWATH ship, and to study the
interaction of control surface (canard) with the ship in calm
water and in regular waves. In one series of tests, a canard was
instrumented to measure lift and drag; maximum lift on the canard
in waves was found to be significantly larger than that measured
in static tests. Tests in regular waves with pitch control

showed that a 50% reduction in pitch amplitude is possible in
following seas.
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NOMENCLATURE and SIGN CONVENTION (continued)

Frequency coefficient in a harmonic series
Phase lag, degrees

A calibration matrix

Reynolds number, Vc/v
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NOMENCLATURE and SIGN CONVENTION (Continued)

01, 05 Amplitudes of first and second harmonic of pitch, deg

é Pitch angular velocity, deg/sec

A Wavelength, ft

v Kinematic viscosity, ftz/sec
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INTRODUCTION

The advantages of Small Waterplane Twin Hull (SWATH) ships
over conventional hulls in applications requiring minimal
motions and high sustained speeds in heavy seas are well
documented. Because of its reduced waterplane area, the natural
periods of the motions of the SWATH are longer than those of
conventional hulls, effectively detuning it from the modal
periods of the most commonly occurring seaways. Additionally,
the wave forces on the submerged hulls of the SWATH are smaller
than those on a monohull ship of equivalent displacement,
because thf wave-induced velocity field decreases exponentially
with depth 5 [Superscripts refer to References on page 22].

SWATH hulls are typically fitted with fins to enhance
stability at high speed in calm water. The fins also provide
increased damping of motions in waves. Further reductions in
the motions when the vessel is underway are pOffif%e by actively
controlling the fins13 Theoretical analyses—*’ and limited
full-scale experience have indicated that an active control
system would significantly increase the already substantial
operating envelope of the SWATH vessel and would certainly
contribute to increased comfort of passengers and crew in all
sea states. However, prior to the present work no model tests
have been carried out to validate the theoretical work and to
study the positive benefits and limitations of active motion
control.

As part of its extensive research program on SWATH
hydromechanics being conducted at Davidson Laboratory, the U.S.
Coast Guard has undertaken the development of a towing tank
model of a possible SWATH pitch control system and a study of
the associated modeling laws. This pioneering work is the
subject of the present report.

To study the hydrodynamics of a SWATH with automatic pitch
control, the following four phase test program was developed in
which the major components of the system - hull and control
surfaces - were first tested independently and then assembled
for the final evaluation of the control system:

1. Fixed trim, free-to-heave tests of the unappended hull.
2. Tests of isolated canards.

3. Fixed trim tests in calm water and in waves with
instrumented canards.

4. Free~to-trim and heave tests in regular waves with and
without automatic control.

The unappended hull was tested fixed in trim, in calm water, in
the first phase. This was done to determine the relationship
between pitch moment and trim at various speeds. 1In the second
part of the program, the canards were tested alone on a
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groundboard at various speeds and angles of attack. The third
phase consisted of tests with an instrumented canard mounted on
the model. The tests were conducted in calm water and in
regular waves with the model fixed in trim and heave. In the
final phase of testing the model was run free to pitch and heave
in regular waves with and without active control. Phase 2 is
reported separately in Reference 1; phases 1, 3 and 4 are
reported herein.

Tests were carried out in the High Speed Test Facility
(Tank 3) of the Davidson Laboratory in January, March, May and
August, 1987; some of the tests were observed by Mr. James A.
White of the U.S. Coast Guard. Testing was funded under
Contract N00014-84~C-0644 (Task 7), Office of Naval Research.

MODEL

An existing 1/24-scale model of a U.S. Coast Guard SWATH
design, designated as SWATH 10, was used in these tests. With
the exception of the cylindrical midbodies of the lower hulls
and the wet deck, the model was constructed from pine. The wet
deck was made from 1/2 inch marine plywood and the hull
midbodies were made from foam-packed ABS plastic tubing. Figure
1 is a drawing of the configuration, which gives all major
dimensions (full-scale). Particulars are listed in Table 1.

Canard and stabilizer fins, fitted for phases three and
four of the tests, were made from plexiglass. Based on the
results of Reference 1, NACA 0015 section canards, and existing
NACA 0015 section stabilizers with an aspect ratio of 1.195 were
used for these tests. The canards were fixed at various angles
in phase 3 and active in phase 4. Figure 2 is a drawing of the
canards. .

To help induce a turbulent boundary layer, Hama strips were
placed on the lower hulls, struts and appendages of the model.
The strips consist of a double layer of electrical tape cut with
pinking shears to form a serrated leading edge. They were
placed on the hulls and struts at five percent of the hull
length aft of the nose, and five percent of the strut length aft
of the leading edge. On appendages, the strips were placed five
percent of the local chord length aft of the leading edge. The
Hama strips can be seen on Figure 3, which is a photograph of
the model running in calm water.

The model was ballasted to the 14.5 foot waterline,
corresponding to a full scale displacement of 591 long tons.
For the fixed trim tests (phases 1 and 3), the center of moments
was located 51.25 feet aft of the strut leading edge (the
nominal 1CG of the SWATH 10 configuration, as reported in
Reference 16) and 27.25 feet above the baseline (a convenient
location for the deck-mounted instrumentation, also consistent
with the tests reported in Reference 16). Measured pitch
moments were transferred to a point on the full-scale thrust
axis, which was taken to be on the centerline of the 1lower
hulls, 5 feet above the baseline. This was done to remove the
effects of thrust from the moment results.
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For the free to pitch and heave tests (phase 4), the model
was towed from a point 27.75 feet above the baseline (the "pivot
point"). The construction of the existing SWATH 10 model did
not permit towing from the thrust line, which would have been a
better arrangement. The towpoint was located at the apparent
longitudinal center of flotation, 63.25 feet aft of the strut
nose. This was done to minimize pitch-heave coupling at the
pivot point (the location of the pitch sensor, which produced
the input signal to the control system). Because the contract
Statement of Work limited the present study to pitch control, it
was desirable to eliminate coupling with heave.

An inclining experiment was performed to determine the
longitudinal GM, which was 24.45 feet. The natural pitch period
at zero speed in the water was 11.76 seconds. Prior to the
dynamic tests, the pitch gyradius of the fully equipped model
was determined to be 38.4 ft; this is close to the value of 38.2
ft reported in Reference 2 for this model. Other particulars
appear in Table 1. Details of the LCF determination and the
inclining test are given in Appendix A.

APPARATUS

Tests were conducted in the Davidson Laboratory High Speed
Test Facility (Tank 3). Figure 3 shows the apparatus used in
the fixed trim tests. A pivot box was mounted in the model at
the second deck level. Two screws on the pivot box permit the
adjustment of trim to any desired angle. Trim was measured by
means of an inclinometer, also located on the deck. Above the
pivot box was a moment balance, used to measure pitch moment,
and a stainless steel drag balance. These were attached to the
crosspiece of a free to heave apparatus. Heave, the vertical
motion of the towpoint relative to the static floating location,
was also measured.

For the third phase of the tests, the model was
instrumented to measure lift and drag on the starboard canard,
as well as the total drag and pitch moment on the model. The
fin balance was located inside the lower hull as shown on Figure
4a. Figure 4b is a photograph of the installation in the model;
the photograph is taken looking aft from a position forward of
the model (the hull nose has been removed). The angle of attack
of the canard was adjustable by means of a clamp on the shaft.
These tests were conducted at zero nominal trim; however, trim
was monitored using the inclinometer on deck. The phase three
tests were conducted with the model fixed in heave at the 14.5
foot waterline level.

The fourth phase of the tests employed an automatic pitch
control system. The system is shown schematically on Figure 5.
For these tests the model was free to pitch and heave but fixed

in surge, sway, roll and yaw. The rotary differential
transformer in the pivot box produced a voltage signal
proportional to pitch angle. This signal was passed to the

control box, mounted on the towing carriage. The output of the
control box to the servo motors was a signal 1linearly
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proportional to pitch angle and rate of change of pitch angle;
thus the fin angle was related to pitch angle as follows:

a = -910 + 925

where a is the canard angle of attack relative to the hull, ¢
and ¢ are the pitch angle and pitch rate, and g, and g, are the
gains (degrees per degree and degrees per (degrees per second),
respectively). It should be noted that a positive pitch angle
(bow up) gives rise to negative canard angle (leading edge
down). The gains were adjustable using potentiometers on the
control box, in the following ranges (model scale):

0 < g; £ 7.07 degrees/degree
0 < g, < 1.97 degrees/(degrees/sec)

The response of the control system to the input signal was
essentially instantaneous, due to a tight feedback loop of fin
position and rate to the servo motors. The output signal to the
servo motors was used to monitor the canard angle of attack.
Mean drag was measured during these tests, as well as pitch,
heave and canard angle.

A wave strut attached to the towing carriage, forward of
the model near the tank edge, was used in the phase three and
four tests to measure encounter period and to establish the
phase of the model forces and motions relative to the waves.

Voltage signals from the balances, proportional to forces
or moments, and from heave and pitch or trim transducers,
proportional to linear or angular displacement, were amplified
by signal conditioners on the carriage and transmitted through
overhead cables to a shore-based analog to digital converter and
MASSCOMP computer for processing and storage. Processed data
(for example, mean forces and moments in engineering units) were
printed out at tankside. Time histories of transducer signals
were monitored at tankside on an oscillograph recorder. All
data has subsequently been backed up from the computer disk to
one quarter inch magnetic tape.

Regular waves were generated using the dual-flap
hydraulically-driven wave machine? located at the end of the
tank. The wavemaker was controlled by a PDP-11 minicomputer;
desired wave lengths and wave heights were entered on a tankside
console to start a run.

All good runs were recorded on VHS videotape. Videotape
scenarios are given in Appendix B. In addition, still color
photographs were taken of selected runs.
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TEST PROGRAM

As explained above, the test program had four parts. The
program for each phase of the test is descriked below:

Phase 1: Calm water fixed trim tests of the unappended
model. Model free to heave but otherwise fixed.

Speeds: 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20 knots

Trim angles: -2, -1, 0, 1, 2 degrees

Measure: Drag, pitch moment, heave

Phase 2: Tests of canard fins on a groundboard. These
tests are reported in Reference 1.

Phase 3: Calm water and regular wave tests of model with
instrumented canard. Model fixed in all degrees of freedom,
including trim and heave.

a) Calm water tests

Speeds: 10, 15, 20 knots

Canard angles: 0, 5, 10, 15, 20 degrees
Canard aspect ratios: 1, 2

Measure: Drag, pitch moment, fin lift and drag

b) Regular wave tests: Head seas

Speeds: 10, 20 knots

Wave length/Ship length (LWL): 1, 1.5, 2, 2.5, 3, 3.5

Wave heights: 4, 8 ft (8, 12 ft for two longest waves)

Canard aspect ratios: 1, 2

Canard angle: 0 degrees

Measure: Mean drag and pitch moment:; mean and
oscillatory canard lift and drag

c) Regular wave tests: Following seas

Speeds: 10, 20 knots
Wave length/Ship length (IWL): 1, 2 (10 knots)

1, 2.5, 3.5 (20 knots)
Wave heights: 4, 8 ft (8, 12 ft for two longest waves)
Canard aspect ratios: 1, 2
Canard angle: 0 degrees
Measure: Mean drag and pitch moment; mean and

oscillatory canard 1lift and drag

The number of conditions in following seas was reduced
because of the impossibility of encountering a sufficient number
of waves for proper analysis in a tank of finite length.




TR-2601

Phase 4: Regular wave tests with automatic pitch control
system. Model free to pitch and heave but restrained in surge,
sway, roll and yaw.

a) Tests with inactive fins (baseline)

Speeds: 15, 20 knots

Headings: Head seas, following seas

Wave length/Ship length (ILWL): 1.5, 2.5, 3.5
Wave heights: 4, 8 ft (8, 12 ft for longest wave)
Canard aspect ratio: 1

Measure: Mean drag; heave, pitch

b) Tests with active fins

Speeds: 15, 20 knots

Headings: Head seas, following seas

Wave length/Ship length (LWL): 1.5, 2.5, 3.5, 4.0
Wave heights: 4, 8 £t (8, 12 ft for two longest waves)
Canard aspect ratios: 1, 2

Measure: Mean drag; heave, pitch, canard angle

Part b) of the phase four tests was conducted with the control
system optimized, that is, with the gains set to minimize the
amplitude of the pitch motion. To find the optimum settings, 10
runs were made in head seas and 15 runs were made in following
seas with various gain settings (see Results).

It was not possible to run all of the conditions in the
table above in following seas, in some cases because a
sufficient number of waves was not encountered for proper
analysis. In other cases a dangerous condition arose in which
the model attained a pronounced bow down attitude, eventually
plunging into the water. These results will be described in
more detail later.

Wave heights listed above are nominal values. Actual wave
heights (given in the data tables) were determined from the wave
machine calibration.

In addition to this test matrix, a series of runs was made
in calm water at two speeds with the canards oscillating, over a
range of frequencies, to study the response of the system to
sinusoidal excitation. These tests are described and the
results are presented in Appendix C.

TEST PROCEDURE
Calibration

All transducers were calibrated immediately prior to the
test. The drag and pitch moment balances were calibrated by
applying known forces and moments, taking readings, and fitting
a straight line to the results, the slope of which is the
calibration rate. The heave and pitch transducers and the
inclinometer used for steady trim were calibrated by setting
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known heave or trim displacements and taking readings. All
calibrations were well represented by straight line fits.

The two component fin balance was calibrated by applying
known weights in the direction of lift, drag, and combinations
of the two, taking voltage readings on both channels, and using
a multivariate least squares fit to express the digitized
voltage readings as linear functions of both the lift and the
drag. The resulting matrix of coefficients was inverted to
obtain the calibration rates. In addition, because the balance
was to be used to make dynamic force measurements, a dynamic
calibration was carried out, which showed the response of the
balance to be flat in the range of frequencies to be encountered
in the tests. The calibration procedure is explained in detail
in Appendix D, which includes calibration results, plots, and a
photograph of the dynamic calibration rig.

The wave machine was calibrated by running waves of the
nominal length and height past a stationery wave wire located
130 ft from the wave machine; wave heights and periods were
measured.

Fixed-Trim Tests in Calm Water

Zero readings were taken on all transducers, with the
exception of the trim inclinometer, with the model floating at
zero trim. The inclinometer reference (zero voltage) was
horizontal. The model trim was next set to the desired value
and a run was made. Data were collected in a 50 foot run length
after the model had reached steady speed, and the results
averaged for the time of the run. The resulting readings, minus
the zero readings, were multiplied by the calibration rates to
obtain measured quantities in engineering units.

Tests in Regular Waves

Zero readings were again taken on all channels with the
model floating at level trim, when the water was sufficiently
calm (generally in the morning before the first run and after
lunch break). To start a run, the desired wave length and
height were entered into the PDP-11 computer and the wave
machine was activated. For the head seas tests, the model was
started just before the waves reached the beach (located at the
opposite end of the tank from the wave machine). Data were
collected in a 110 foot run length after the model had reached
steady speed. For the following seas tests, the model was
started after a sufficient length of the wave train had gone by
so that the model would not overtake the waves before the end of
the run. Data were collected in an 80 ft run 1length; the
oscillograph traces were then carefully examined for the effects
of wave reflections from the beach which often occurred near the
end of a run in the 1longer waves. If necessary the time
histories to be processed were truncated to eliminate the
apparently corrupted portion.
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Preliminary tests in calm water with the model free to
pitch and heave showed that the model had a pronounced bow-down
tendency. This was due in part to the towing arrangement: The
model was towed from a point above the deck, introducing a bow-
down moment not present on the ship, where the thrust is applied
along the centerline of the lower hulls. In addition, the flow
over the hulls introduces a bow-down pitching moment; the high
pressure at the nose is indicated by the bow wave. The particle
velocities of the bow wave induce a downward force on the
canards. To achieve zero mean trim on the ship it was assumed
that the SWATH operator would adjust the stabilizers (the aft
fins), allowing the canards (controlled automatically) to
counteract the oscillatory pitch induced by waves. For the
model tests the stabilizers were set to -15° (the downward force
on the stern stabilizers brings the bow up). Final adjustment
to near zero mean trim was achieved by shifting a small amount
of weight on deck:

Speed Weight Distance
15 kt (5.17 f£fps) 1.50 1b 4 £t
20 kt (6.89 f£ps) 0.50 1b 4 ft

The weight shifts were symmetrical about the CG so that the
pitch moment of inertia was unaffected.

Because the weight of the model and apparatus exceeded its
displacement at the 14.5 ft waterline, it was necessary to
unload. This was accomplished by attaching weights to an arm
which applies an upward force, egual to twice the applied
weight, at the pivot point. During dynamic tests, this means
that the mass being accelerated by the waves was about 7 percent
greater than the mass of the model plus hydrodynamic added mass.
Since the effectiveness of the pitch control system was judged
by comparison of results for this same configuration with and
without control, the extra mass was not perceived to be of
critical importance in interpretation of the results.

Water temperature was monitored daily during all tests. A
tabulation of water temperatures is included as Appendix E.

DATA PROCESSING
Calm Water

For the calm water tests, the data, sampled at a rate of
100 Hz, were averaged over the duration of the run. The
results, minus the 2zero readings, were multiplied by the
calibration rates to obtain forces, moments and displacements in
engineering units.

he effect on the pitch moment of the height of the towpoint
above the full-scale thrust 1line was accounted for by
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mathematically transferring the thrust to the centerline of the
lower hulls:

M= Mp + Dh

where M is the reported pitch moment, f? is the moment measured
about the axis passing through the towpdint, and h is the height
of the towpoint above the centerline of the lower hulls, 1.8542
ft model scale. This is equivalent to transferring the moment
reference to the thrust line. All reported pitch moment data
contain this correction.

Regular Waves

In the regular wave tests, time histories of voltage
signals on all channels were recorded on the computer disk. The
fundamental period of the excitation, the wave encounter period,
was determined by counting the number of zero crossings in the
time history of the wave strut signal, as described in Reference
4. The signals from each channel were then fit to an expression
of the form

N N
Vi = ajo *+ £ aj, cos(2xnt/Tg) + £ by, sin(2xnt/Ty)

n=n, =ng
by the method of least squares, where Te is the encounter
period, N and n, are the orders of the highest and lowest
harmonics used in the fit, and the coefficients ajns bjp are the
amplitudes determined by the fit. The expression is then
written in the form

<
i
0
+

[ -

Cin cos(2xnt/Ty - 4 ip)
o

n

where C;, is the mean, C;,, is the amplitude of the nth harmonic,
and $in 1S its phase refhtlve to a specified reference channel,
which is the pitch channel in this report unless otherwise
noted.

For certain channels only mean quantities are of interest:;
thus, for drag and pitching moment, only the means C
(multiplied by appropriate calibration rates) are reported. For
other channels it was found that only the amplitudes of the
first and second harmonics, j1 and Cy were significant, so
that even though a four-term ser1es M 4) was used in the
fits, only the amplitudes of the first and second harmonics are
reported in addition to the means.
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Expansion to Full Scale

Mean drag and pitch moment, heave, wave height, and wave
period and frequency have all been converted to full scale as
noted in the Results section. Resistance expansion has been
carried out according to the method described in Appendix A of
Reference 2. Pitch moment was scaled up according to the
following formula: d

Mg = (pg/pp) My (LWLg/LWLy)4

where o, is the density of salt water at 59°F and pp 1s the
density of the tank water. Full scale heave and wave height
were obtained by multiplying model quantities by the length
ratio, and period is scaled by multiplication by the square root
of the length ratio.

RESULTS

Results of this investigation are presented in Tables 3
through 10. Table 2 is a brief directory of the data tables.

Fixed Trim Tests in Calm Water

Table 3 contains the results of the calm water fixed trim
tests of the unappended model (phase 1). The table contains run
number; model speed, drag and pitch moment; measured trim; full-
scale heave; model and ship resistance coefficients; and ship
speed, resistance, EHP and pitch moment. Figure 6a is a plot of
the behavior of pitch moment with speed; on Figure 6b the pitch
moment is plotted against trim at several speeds. The slopes of
the pitch moment vs. trim contours are plotted against speed on
Figure 7.

Fixed Trim and Heave Tests with Instrumented Canard

Results of the tests with the instrumented canard in calm
water are given in Table 4. The table lists run number; canard
angle of attack relative to the hull; model speed, drag and -
pitch moment; measured trim (nominal trim was zero degrees);
model scale lift and drag on the canard; model and ship
resistance coefficients; and ship speed, resistance, EHP and
pitch moment. The fin lift and drag coefficients are plotted
against angle of attack on Figure 8, which also shows the
results of the tests of the fin on a groundboard from Reference
1. Pitch moment is plotted against fin lift for two speeds and
two canard aspect ratios on Figure 9.

Tables 5 and 6 contain the data from the model fixed in
regular waves tests, with the aspect ratio 1 and 2 canards,
respectively. The tables have three parts. Tables 5.1 and 6.1

10

—
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contain all measured data in model scale. The tables list run
number; model speed; wave height, length and period:; encounter
period and frequency; mean drag and pitch moment on the model:;
mean, first and second harmonics of fin lift and drag:; and the
phase lag of the oscillatory forces with respect to the arrival
of the wave crest at the fin shaft. Thus a phase of zero
degrees for L,, say, would indicate that the first harmonic of
fin lift coincides with the wave crest at the shaft (actual
values are near 270°, as would be expected; see Appendix F, page
F2).

Tables 5.2 and 6.2 contain mean quantities from Table 5.1
and 6.1, expanded to full scale as described above. The tables
list run number; ship speed; wave length to ship length ratio;
wave height and period; encounter period and frequency; total
resistance coefficient; resistance; EHP; and pitch moment.

Tables 5.3 and 6.3 include quantities pertaining to the
instrumented canard, presented in coefficient form or in full-
scale units. Listed are run number; ship speed; canard Reynolds
number based on mean chord length; wave length/ship length; wave
height; encounter period and frequency; and mean, first and
second harmonics of canard lift and drag coefficients and their
phases with respect to the wave crest at the canard shaft.

Behavior of the first harmonic of canard lift (which was
the quantity of primary interest in this phase of the tests)
with incident wave length and height are shcwn on Figures 10 and
11 for the aspect ratio 1 and 2 fins, respectively. A
comparison is made with the results of a simple theory which is
described in the Discussion.

Free to Pitch and Heave Tests with Control System

Results of the fourth phase of the tests, which include the
automatic pitch control system, are presented in Tables 7
through 10. The first seven columns of each of these tables
contain (in full scale units where applicable): Run number;
ship speed; wave 1length/ship length; wave period; encounter
period and frequency; and wave height. Negative encounter
periods in following seas indicate overtaking waves. All phase
angles in these tables represent phase lags relative to the
pitch signal; thus the phase of the first harmonic of pitch is
always zero and is not listed.

Table 7 lists results for baseline tests with the control
system inactive; canards were fixed at zero degrees relative to
the hull. 1In addition to quantities described above, the table
gives the phase of the wave (arrival of the wave crest at the
pivot point); mean drag (model):; mean trim and heave; mean ship
resistance and EHP; and first and second harmonics of pitch and
heave, with phases.

Table 8 contains the results of tests of various control
system gains to minimize pitch motion. In addition to
quantities described above, this table contains the first
harmonic of the fin angle and its phase, and the gains g;
(degrees per degree) and g, (degrees per (degrees per second),

11
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full scale). These tests showed that the optimum gains
(settings resulting in the lowest pitching motion amplitudes)
were as tabulated below:

TABLE A. PITCH CONTROL OPTIMUM GAIN FACTORS.

9, 92
{displacement) =
Head seas 0 9.65 deg/(deg/sec)
Following seas 6.36 deg/deg 6.76 deg/(deg/sec)

Results of tests in waves with active control are given in
Tables 9 and 10 for the aspect ratio 1 and 2 canards,
respectively, with the gain settings in Table A. Tables 9.1 and
10.1 are for the head seas condition; Tables 9.2 and 10.2 are
for following seas. The upper portion of the tables list mean
quantities: model drag; trim:; mean heave; mean canard angle:;
and mean ship resistance and EHP. The lower portion of the
tables gives oscillatory quantities: first and second harmonics
of pitch, heave and canard angle, and phases. Phase angles are
again with respect to pitch motion.

Effectiveness of the pitch control system is shown on
Figures 12 and 13, which show nondimensional pitch amplitude
(normalized by maximum wave slope xH/)), against wave length,
for speeds of 15 and 20 knots, respectively. The effect of the
control system on heave motion (which no attempt was made to
control) is shown for 20 knots on Figure 14. Figures 15 and 16
compare motion results for the two canard aspect ratios used in
the tests,

DISCUSSION
Tests in Calm Water

Figure 6 shows that the pitch moment is an oscillatory
function of speed; this is evidently due to the influence of the
ship wave system. It can be seen that moment minima occur near
speeds of 10 and 15 knots; maxima are observed at 12 and 20
knots. Thus an increase in speed from 15 to 20 knots results in
a large change in pitching moment, from bow-down to bow-up. The
SWATH operator must be alert to this behavior and adjust the
canards and/or stabilizers accordingly.

Flgure 6b shows that the pitch moment on the unappended
SWATH is linear with trim in the range -2° to 2° and that the
ship is statlcally stable in pitch at least up to 20 knots.
Static stability is indicated by the slopes of the lines on the
plot, which are negatlve, indicating that the moment tends to
counteract any change in trim. The trend of static stability,
as indicated by pitch moment per degree of trim, with speed is
shown on Figure 7; extrapolation would indicate that the
unappended vessel could become statically unstable between 25
and 30 knots.

12
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Figure 8 contains the most important results of the
ingstrumented canard tests in calm water. The figure indicates
that the lift curve slope of the fin on the body is virtually
identical to that for the fin on a groundboard; thus the
combined effects of the free surface and the curvature of the
hull on the lift rate are apparently small. Due to the bow wave
there is a downward flow at the canards, inducing a speed
dependent negative angle of attack. The downward force on the
canards produces a bow-down moment which would add to the
generally bow down moment on the hull at zero trim indicated on
Figures 6a and 6b. Thus the canards, if not at least passively
controlled, will tend always to pull the bow down. This would
be destabilizing if the ship develops a negative trim (which is
the tendency of the unappended hull below 20 knots).

If the lift force on a canard is known, it might be assumed
that the pitch moment induced by this lift force is simply the
force multiplied by the distance from the pitch axis to an
veffective center of pressure" on the canard. This approach
does not account for fin-body interaction. To investigate the
validity of such an approach, a plot of pitch moment against fin
lift was prepared (Figure 9). It can be seen that the moment
increases linearly with the fin 1ift, and straight lines have
been fitted as indicated. The slopes of the lines are equal to
twice the distance from the moment reference point (on the hull
centerline, 51.25 ft aft of the strut leading edge) to the
effective center of pressure, since the lift is that on a single
canard and the moment contains the effects of both canards.
Results are summarized below:

TABLE B. LOCATION OF APPARENT CENTER OF PRESSURE

Speed Aspect CP
knots ratio location (ft)
15 1 65.77

15 2 50.08

20 1 76.50

20 2 59.23

The distance from the moment axis to the canard shafts is 45 ft;
thus the CP locations given above are forward of the canards.
It can be concluded that fin-body interaction cannot be
neglected when estimating the pitch moment due to the canards.
The fact that the apparent lever arm is larger than the
geometric one indicates that some of the low pressure induced
above the canard when at an angle of attack is '"spilling over"
onto the hull, so that the upward force induced by the fin is
larger than the force on the fin itself (this is the essence of
fin-body interaction). Additionally, the downwash induced by
the canards may interact with the stabilizers to induce an
increased bow-up moment.

13
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Tests Fixed in Regular Waves

An interesting aspect of the instrumented fin results in
regular waves was that the maximum oscillatory lift coefficients
measured were substantially higher than the stall values found
in the steady state tests. The data of Reference 1 show the
maximum lift coefficients of the NACA 0015 fins tested on a
groundboard to be between 0.7 and 0.8. Figures 10 and 11 show
that oscillatory lift coefficients approached 1.0 in the 12 foot
waves at 10 knots. In Run 111, for example, Table 6.3 shows
that the mean and first harmonic of lift coefficient were -0.316
and 0.968, respectively, so that during this run C; oscillated
between -1.284 and 0.652. No indication of stall was evident in
the oscillograph records, and for this particular run the
amplitude of the first harmonic of lift (0.49 from Table 6.1)
was practically identical to the RMS of the signal multiplied by

J2:
0.3549 x 1.414 = 0.50

indicating that almost all of the energy of the signal was
contained in the first harmonic. Thus the sinusoidal fit is a
good representation of the signal, which would not be the case
if stalling was taking place. It would therefore seem that the
oscillatory flow somehow delays the onset of stall.

Though data for airfoils or hydrofoils operating in
oscillating flows is relatively scarce (particularly for cases
in which flow angles are near the stall angle of the foils),
there is a fair amount of data for foils oscillating in pitch
and/or heave in a steady stream. The situations are different,
but it is expected that general <trends with frequency of
oscillation, for example, will be similar, particularly at low
frequencies where the effects of unsteadiness should be spall.

In the case of pitching oscillation, Halfman et al” point
out that "several investigators...have noted that...the stall
may occur at an angle of attack considerably above the static
stalling angle". More recently Wickens®, in an investigation of
an NACA 0018 airfoil oscillating in pitch, found that "“dynamic
stall...occurred about 5 degrees later than for the equivalent
steady flow case. This phenomenon resulted in an increase in
normal force of about 20%...when the wing was pitching to 39
degrees". This phenomenon is attributed by Ericsson and Reding
to the "accelerating flow on the leeward side of (the] pitching
airfoil ({which] causes a decrease in the adversity of the
pressure gradient, resulting in a large overshoot of the static
stall." They express the dynamic stall overshoot asag as

Aag = (c&/V) A€

'Examples of oscillograph records of 1lift on an oscillating
airfoil can be found in Reference 5: Records taken when stall
occurred were definitely non-sinusoidal and in one case not even
periodic.

14
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where c is the chord length, a is the rate of change of angle of
attack, V is the free stream velocity, and a¢ is a dimensionless
time lag due to the oscillation. The quantity in parentheses is
equal to the product of the pitching amplitude and the "“reduced
frequency", cw/V, where « is the frequency of oscillation.!
Ericsson and Reding’s analysis of the data of Reference 5
indicates that the value of A¢ is 2. The increase in maximum
lift coefficient would then be

(dC;/da) Aag = (dCL/da)(c&/V)Aé.

Referring again to the example of Run 111, the lift curve slope
of the aspect ratio 2 fin is given in Reference 1 as
0.060/degree. The measured C, amplitude would thus correspond
to an angle of attack amplitude of 16.139, and a maximum rate a
= 79.52 degrees/second. The formula above then gives the result

for this run, so that the stall would be delayed up to a Cy, of
1.2. This is roughly the magnitude observed in Run 111.

In Reference 1 it was concluded that the only important
Reynolds number related difference between ship and between ship
and scale model appendage lift was a reduction of maximum 1lift
coefficient at model scale. The present results indicate that
this reduction is counteracted by the effects of oscillatory
flow. The data from the tests in waves would thus appear to be
free of any scale effects on lift, particularly in head seas
where the encounter frequencies were high. In following seas,
the encounter frequencies were low but Tables 5.3 and 6.3 show
that the lift coefficients were generally well below the static
stall values.

The theory of two dimensional airfoils in non-unifogm
motion has been applied to sinusoidal oscillations by Sears”,
who treats both the case of a foil undergoing pitching and/or
heaving oscillations and the case of a foil penetrating a
sinusoidal gust. The problem of a fin moving in waves is
similar to the latter case but not identical, since in the gust
problem only the vertical velocity of the fluid is assumed to
vary, whereas in waves both velocity components vary. In the
tests described here the particle velocity was as much as 28% of
the model velocity, which cannot be considered negligible.
Hence Sears’ results are not directly applicable to the case of
a foil in waves.

A three-dimensional theory for predicting hydrodynamic
forces and moments on a hydrofo'ﬂ) moving in waves has been
presented by Tsakonas and Henry~“; the theory 1leads to an
integral equation which must be solved numerically. However,
they note that their results agree quite well with a "quasi-

TThe reduced frequency parameter occurs frequently in unsteady
airfoil theory, and is a dimensionless measure of the angular
excursion per chord length of travel at speed V.
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steady" prediction in which a time-dependent angle of attack is
computed based on particle velocities calculated from linear
wave theory, and simply multiplied by the steady-flow lift curve
slope.!! “Their quasi-steady theory is strictly only applicable
to the gust problem, since the above-mentioned effect of
particle velocity on the horizontal fluid velocity component
(more precisely, the horizontal component of the total fluid
velocity relative to the foil) does not seem to have been
considered. A unique, simplified quasi-steady prediction is
developed in Appendix F for the case in which the ratio of
particle velocity to ship speed is small (high speeds or low
frequencies) but which does not completely neglect the
horizontal particle velocities. It is emphasized that "“quasi-
steady" refers to the computation of angle of attack and not to
the maximum lift coefficient, which is affected by unsteadiness
as discussed above.

The results of the "quasi-steady" prediction of canard 1lift
in the high speed (20 knot) tests are shown on Figures 10 and 11
as broken lines. It can be seen that the theory generally
underestimates the lift, by an amount that increases with wave
height. The simple theory thus yields a conservative estimate
of canard 1lift at 20 knots. A more sophisticated theory, not
subject to the "small particle velocity” restriction, is
required for accurate predictions at lower speeds.

In following seas, the waves overtook the ship in all runs
except for the shortest waves and the highest model speed. The
overtaking waves become distorted they pass the ship, so it is
reasonable to expect that particle velocities associated with
the waves would be reduced near the bow (at the location of the
canards) . Videotapes of the phase three tests show that
considerable distortion of the waves does occur at 10 knots; the
waves appear to break just aft of the strut nose. At 20 knots,
the waves pass by without much distortion. This would account
for the lower canard lift coefficient in following seas at 10
knots and the near agreement of the lift coefficients in head
and following seas at 20 knots.

It should be reemphasized that these tests were carried out
with the model fixed in heave. When free to heave, the model
undergoes considerable sinkage (in excess of 5 feet under some
conditions) so that the measured fin forces are not necessarily
what would be expected were the model free to pitch and heave.

Tests with Automatic Pitch Control

The effectiveness of the automatic pitch control is shown
on Figures 12 and 13, for speeds of 15 and 20 knots,
respectively. The figures show a moderate reduction'in pitch

motion in head seas, and a large reduction in folloWﬁ391 eas.
This is in accord with previous theoretical predictions**’ and

TTIt should be noted that Tsakonas and Henry were surprised by
this agreement, and suggest that it might be somewhat
fortuitous.
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full scale trial datal3, but is somewhat surprising in light of
the force data (Figures 10 and 11) which indicate lower canard
lift in following seas. The increased effectiveness of the
canards in following seas may be due in part to the phase of the
particle velocities at the canards relative to the pitching
motion. For waves longer than about twice the ship length, the
wave~-induced pitch moment on the hull 1lags the wave by
approximately 90°. In head seas the flow over the canard acts
to reinforce this pitch moment, pulling the bow up on the face
of the wave and pushing it down on the back side. 1In following
seas, the situation is reversed as shown on Sketch A below.

& "~ Wave induced moment
Head seas

r R N A %
- ' o * 4

1 3

— Wave direction

Following seas

SKETCH A. PARTICLE VELOCITIES AND PITCH MOMENT IN
HEAD AND FOLLOWING SEAS.

It might also be noticed that these same observations apply to
the stabilizers; this would tend to worsen the pitch motion in
following seas. More will be said about this later.

The magnitude of the encounter frequency relative to the
natural fregquency of the vessel in pitch also has an important
effect on the magnitude of the motions. For an exciting moment
of a given amplitude, such as that induced by the moving
canards, the amplitude of the response will be dgreater at
frequencies below the natural frequency than at frequencies
above the natural frequency (in fact, the motion will approach
zero at high frequency). Reference to Tables 9 and 10 shows
that the encounter frequencies in head seas were in the range of
1 to 2 rps, whereas those in following seas were in the range of
0.2 to 0.3 rps. The zero speed natural pitch period of the
vessel is 11.76 seconds (Table 1), corresponding to a frequency
of 0.53 rps. The xﬁtural pitch period of a SWATH typically
increases with speed*”; thus the encounter frequencies in head
seas were well above the natural frequency of pitch motion.
Smaller motions would then be expected in head seas than in
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following seas, where encounter frequencies were near or below
the natural frequency of pitch.

Figure 14 shows that although no attempt was made to reduce
heaving motion, heave was also reduced by the action of the
control system, again to a greater extent in following seas.
Further reductions would be possible by using heave and rate of
change of heave as additional inputs to the control system.

The effect of aspect ratio of the canards on the
effectiveness of the control system is shown on Figures 15 and
16 to be small. Differences are insignificant at 15 knots; at
20 knots the aspect ratio 2 fins reduce heaving to a slightly
greater extent.

Large Motions in Following Seas

During several runs in following seas the model attained a
pronounced bow-down attitude, taking on water over the main deck
at the bow. This occurred only at the high speed (20 knots) in
the 8 foot waves, when the wave speed was close to the model
speed. When the model speed slightly exceeded the wave speed,
the model seemed to ride up over the first wave crest
encountered in a run, and plow into the back of the next wave.
Figure 17 shows one such occurrence. In longer waves, just
overtaking the model, the model survived the first encounter but
near the end of the run the stern seemed to be picked up by the
second overtaking wave, plunging the bow into the water.
Conditions under which these phenomena were observed are
tabulated below:

TABLE C. CONDITIONS FOR MODEL SINKINGS IN FOLLOWING SEAS

Run A /LWL Ship Wave Wave Automatic
speed, kt speed, kt height, ft control
85 1.0 20 15.1 8.24 no
88 1.5 20 18.3 8.26 no
97 1.0 20 15.1 8.24 no
101 2.5 20 23.5 8.66 not opt.
216 1.0 20 15.1 8.24 yes
217 1.5 20 18.3 8.26 yes
219 1.5 20 18.3 8.26 yes
220 2.5 20 23.5 8.66 yes

After run 101 a large coaming was placed on the deck to keep the
deck mounted electronic equipment dry during the swampings. The
coaming is visible in Figure 17 and in the videotapes.

A similar phenomenon was observed by Fein et al during
self-propelled model tests of the SWATH SSP Kaimalino:

"Largest motions were found in following seas when

ship speed was close to the wave speed. 1In that case
a large bow-down static trim occurred due to the
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action of the wave on the full span aft foil. This
condition, which could lead to the upper structure bow
being buried in the wave and propellﬁs broaching, was
later observed in full scale trials."

The following passage pertains to the full scale trials:

"The only case where deck wetness occurred was in
following seas when the wave speed approached the ship
speed and a large amplitude but gentle bow ‘plow-in’
occurred. Propeller broaching occurred in similar
conditions in quartering seas." 3

The severity of the "plowing in" in the present tests may
have been exaggerated by the towing method. As explained in
Test Procedure, the mean hydrodynamic moment on the hull and the
couple due to the height of the towpoint above the thrustline
were compensated for by setting an angle on the stabilizers and
shifting a small amount of weight on deck. When the bow begins
to plunge, the drag increases, giving rise to an increase in the
bow-down couple which is not compensated for. However, the
tendency for "plowing in" is in accord with the self-propelled
model and full scale observations quoted above.

In the discussion under Automatic Pitch Control above, it
was pointed out that in waves longer than about twice the ship
length, the flow over the stabilizers gives rise to a moment
acting to reinforce the wave-induced pitch moment on the hull.
This is the mechanism alluded to by Fein et al in the quote
above as a cause of the plow-in phenomenon. However, no plow-in
occurred in a 12 foot wave at a wave length to ship length ratio
of 3.5, in which case wave-induced stabilizer angles of attack
are slightly larger than for the shorter waves in which the
problem occurred. Clearly, further study of this potentially
dangerous phenomenon is warranted.

CONCLUSIONS

This hydrodynamic study of a SWATH vessel has provided much
unique data and has demonstrated the effectiveness of activating
the canards in reducing the pitching motion in regular waves.
Several other important conclusions can be drawn from the data
and discussions above:

1. The active control system employed in this study is most
effective in following seas, where reductions in pitch motion of
more than 50% were realized. This is in accord with previous
theoretical predictions and full-scale trial data for other
SWATH configurations.

2. When the vessel operates in following seas, at speeds nearly

equal to the wave speed, large amplitude pitching motions can
develop, possibly leading to the bow plowing into the waves.

19




TR~-2601

This tendency gas also been observed during full-scale trials of
SSP Kaimalinol>.

3. Measurements of unsteady canard lift in waves indicate that
a higher maximum lift coefficient is reached than during static
tests. No evidence of stall was detected in the data from these
tests; the lift produced by the fins in oscillatory flow is thus
expected to be fully representative of full scale canard lift.

4. The 1ift curve slopes of the canards on the hull are the
same as thfse found previously for the canards tested on a
groundboard-. Pitch moment data indicates that fin-body
interaction, and possibly canard-stabilizer interaction, cannot
be neglected in predictions of the moment due to canard
deflection, however.

5. Measured canard lift in regular waves is larger than that
predicted by a simple quasi-steady approach in which the angle
of attack is computed using particle velocities from linear wave
theory. The prediction improves with increasing speed and
decreasing wave height (that is, decreasing angle of attack).

6. The aspect ratio of the canards has little effect on the
performance of the SWATH in waves.

RECOMMENDATIONS

The results of this study have indicated that further work
is necessary in order to gain a better understanding of the
hydrodynamics of a SWATH in waves:

1. A potentially dangerous phenomenon has been observed in
following seas. 1In a situation where the ship just overtakes
the waves, bow plow-in took place quite quickly, occurring just
after the first encountered wave. A SWATH operator thus would
have a limited amount of time in which to take corrective action
if such a wave component were present in a seaway (the automatic
control system was not adequate to prevent this phenomenon). 1t
is recommended that a careful study of the behavior of a SWATH
in following seas be carried out, in regular and irregular
waves, to establish the conditions under which bow plow-in
occurs, and to explore ways to alleviate the problem. For these
tests, the model should be towed from a point on the propeller
shaft line, as recommended by the 18th ITTC 4, and should be
free to surge. This will minimize any influence of the towing
system on the behavior of the model.

2. Measurement of the stabilizer forces in calm water and in
waves is recommended, in light of their possible role in causing
bow plow-in in following seas. Tests with and without canards
should be conducted to assess the possible effect of the canard
trailing vortex system on the stabilizer forces. Flow
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visualization tests could also be conducted to study the
trajectories and strength of these vortices.

3. It is possible that further reductions in pitching and
heaving motions could be achieved by activating the stabilizers.
This possibility also warrants further study.

4. The control system should be extended to include heave
motion control. This would involve the use of heave amplitude

and rate as inputs to the control system in addition to pitch
amplitude and rate.
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TABLE 1

Ship Particulars

Strut length (LWL), ft

Hull length, ft

Hull diameter, ft

Maximum beam, ft

Displacement (14.5 ft WL), LT

Cross structure clearance, ft
(to 14.5 £t WL)

Strut wetted area, sq ft
Hull wetted area, sq ft

VCG, ft above baseline
ILCG, ft aft of strut nose

GM,, ft
Pi%ch period (zero speed), sec
Pitch gyradius, ft

24

125
124
10
59
591
10

2305
6710

18.98
51.72
24.45
11.76
38.4
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TABLE 2

Directory of Data Tables

Table Description
3 Unappended, fixed-trim tests in calm water
4 With instrumented canard in calm water

Tests Fixed in Trim and Heave in Regular Waves:

5.1 All data in model scale; canard aspect ratio 1
5.2 Mean quantities expanded to full scale; canard aspect ratio 1
5.3 Canard 1lift and drag expressed in coefficient form; canard

aspect ratio 1

6.1 All data in model scale, canard aspect ratio 2
6.2 Mean quan’ © expanded to full scale; canard aspect ratio 2
6.3 Canard 1lift 4 Jrag expressed in coefficient form; canard

aspect rat..

Tests Free to Pitch and Heave in Regular Waves:
T Baseline tests without active control; canard aspect ratio 1

8 Varying control system gains to minimize pitching motion;
canard aspect ratio 1

9.1 Head seas with optimal control gains; canard aspect ratio 1

9.2 Following seas with optimal control gains; canard aspect
ratio 1

10.1 Head seas with optimal control gains; canard aspect ratio 2

10.2 Following seas with optimal control gains; canard aspect
ratio 2
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TABLE 3
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TABLE 5.2

TESTS WITH INSTRUMENTED ASPECT RATIO 1 CANARD IN REGULAR WAVES.
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knots
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TABLE 6.2

TESTS WITH INSTRUMENTED ASPECT RATIO 2 CANARD IN REGULAR WAVES.
FULL-SCALE EXPANSION OF MEAN QUANTITIES.

Run Vel A/% H T Te we CTS RS EHP M
no. knots ft sec sec rps 1b ton-ft
Head seas
93 10. 1.0 4,20 4.95 2.97 2.11 0.00605 15496. 476. -327.5
95 10. 1.0 8.04 5.00 3.00 2.10 0.00854 21892. 673. =-388.4
97 10. 1.5 4.16 6.07 3.9 1.60 0.00571 14643, 450. -339.6
99 10. 1.5 8.16 6.07 3.93 1.60 0.00671 17201. 529. -357.9
100 10. 2.0 4,52 7.01 .75 1.32 0.00588 15069. 463, -345.7
103 10. 2.0 8.84 7.01 4,75 1.32 0.00655 16775. 515. -385.3
105 10. 2.5 8.56 17.89 5.52 1.14 0.00621 15922. 489. -386.9
107 10. 2.5 12.64 7.89 5.53 1.14 0.00788 20186. 620. =-511.8
109 10. 3.0 8.44 8,67 6.23 1.01 0.00616 15780. 485. -380.8
111 10. 3.0 12.64 8.67 6.24 1.01 0.00738 18907. 581. -505.7
113 10. 3.5 8.52 9.50 6.93 0.91 0.00638 16348. 502. -351.8
115 10. 3.5 12.80 9.50 6.94 0.90 0.00704 18054. 555. -U53.9
94 20. 1.0 4,20 4.95 2.13 2.96 0.007T4 79081. U4853. -435.6
96 20. 1.0 B.04 5.00 2.16 2.91 0.00808 82841. 5091. -U420.4
98 20. 1.5 h.16 6,07 2.90 2.17 0.00773 79287. u4873. -389.9
100 20. 1.5 8.16 6.07 2.91 2.16 0.00784 80424, u9u3. -356.4
102 20. 2.0 4,52 17.01 3.60 1.75 0.00769 78654, 4827. -397.5
104 20. 2.0 8.84 7.01 3.61 1.74 0.00779 79856. 4908. -370.1
108 20. 2.5 4,24 7.84 4.24 1.48 0.00760 T7659. u766. -382.3
106 20. 2.5 8.56 7.89 4,25 1.48 0.00772 79145, uB6u4. -345.7
110 20. 3.0 8.44 8.67 .86 1.29 0.00768 78719. 4838. -321.4
112 20. 3.0 12.64 8.72 4,87 1.29 0.00733 75165. u4620. -394.5
114 20, 3.5 8.52 9.50 5.48 1.15 0.00774 79081. 4853. -240.6
116 20. 3.5 12.80 9.50 5.47 1.15 0.00757 77581. U4768. -278.7
Following seas
179 10. 1.0 4,20 4.95 -14.41 -0Q.44 0.00549 T4OTA. 432. -310.7
180 10. 1.0 8.04 4,95 -13,98 =-0.45 0.00605 15496. 476. -315.3
181 10. 2.0 h,52 7.01 -13.24 -0.48 0.00549 14074. 432, -312.2
182 10. 2.0 8.84 T7.01 -13.15 -0.48 0.00632 16206. 498. -383.8
183 20. 1.0 4,20 4,95 15.97 0.39 0.00771 79003. 4855. -403.6
184 20. 1.0 8.04 4,95 16.92 0.37 0.00750 76664, 4705. -155.4
185 20. 2.5 4,24 7,89 -49.87 -0.13 0.00771 78797. UuB836. -u28.0
186 20. 2.5 8.56 7.89 -51.61 =0.12 0.00739 75527. 4635. -260.4
187 20. 3.5 8.52 9.50 -34.71 -0.18 0.00768 78512. 4818. -379.2
188 20. 3.5 12.80 9.50 -34.89 -0.18 0.00687 70474, 4331, -144.7
34




TR-2601

*6E€ 010°0
*66E  S00°0
"GEE S00°0
*6RE 000°0
‘gl 010°0
‘he 000°0
*12€ 000°0
Y 000°0
*got 020°0
*l28 000°'0
‘tSE Si10°0
‘9GSt S00°0
i 34 020°0
‘£S5 010°0
‘geLt 010°0
*l2t SQ00°0
‘092 610°0
‘662 S00°0
121 010°0
*2tl S00°0
‘g9L SiI0°0
‘Loz S00°0
‘oIt 6£0°0
*42€ 020°0
4} 650°0
‘te 020°0
‘€6  6S0°0
‘h01 6£0°0
*2tZ2 6£0°0
‘292 020°0
"h6 6£0°0
‘el 020°0
"8kl 6S0°0
‘691 020°C
aseyd <0y

*INITOI44300 OVHQ ANV 1417 QUVNVD

‘LEe
‘the
‘nte
‘6fe
‘eel
‘eet
*26e
‘892
‘wte
*652

‘201
‘RO1
11}
‘EE1
‘€Ll
‘nll
‘gg2
‘le2
16
@St
‘£i2
‘6ne
‘NS

68

‘I8

“ntl
‘gl
‘161
602
‘02
*GiE
*£EE
‘LGl
“48t

aseyd

61070
010°0
010°0
500°0
010°0
S00°0
020°0
020°0
020°0
020°0

020°0
510°0
520°0
510°0
$10°0
0i0°0
020°0
0i0°0
020°0
010°0
510°0
$00°0
6£0°0
650°0
6€0°0
650°0
650°0
650°0
650°0
6£0°0
6.L0°0
6to0
650°0
6€0°0

1a,

$10°0
510°0
510°0
0200

.610°0

020°0
000°0
000°0
000°0
000°0

010°0
§20°0
oL0°0
020°0
020°0
0£0°0
020°0
0to°0
020°0
0€0°0
020°0
0£0°0
020°
020°0
000°0
000°0
000°0
020°0
020°0
020°
020°0
020°0
000°0
0c0°0-

ueauw
a,

‘€6

‘9S

‘gt
“Lgl
*g8e
*E12
‘992
*091
‘862
11

29
°£S
86
*10t
“9hl
‘gni
clo2
‘g6l
*LS
‘utt
‘egl
‘0t

R1]}
‘ot

‘L9t
*6L1
*6£2
1t
*95E
GGE
'Sl
31

aseyd

S00°0 ‘092 OLE'O
000°0 °%9Z @n2°0
Sl0°0 °nee 262°0
S00°0 °092 hkl°0
S00°0 °1l6 220
S00°0 66 ELL°O
020°0 ‘8L2 wSH'O
000°0 °Lle LE2°0
020°0 °£92 €is'o
020°0 "992 9it°0
seas Buimoly
#h0°0 °892 OiIn°0
S10°0 "692 z2le*o
4h0°0 ‘892 6En°0
S10°0 °692 162°0
6l0°0 ‘692 9IE°0
500°0 °692 ¢€S1°0
020°0 °692 9RE°O
%00°0 “ile ElLi°0
G00°0 °‘El2 69t°0
000°0 °Slz ¢E61°0
010°0 °082 6&SE°0
000°0 °982 881°0
gEL°0 992 80670
650°0 °692 ElS°O
8E1°0 °992 §96°0
650°0 °g92 2£9°0
8EL°0 "S92 Lao°t
650°0 °g92 1.9°0
650°0 °892 o0SlL°0
020°0 ‘1Lz Slt'o
660°0 °692 018°0
020°0 -0l S6E°0
6L0°0 °l92 oll°0
000°0 °‘Ele Siy‘o
Seas pedH
€l ogeyd 1y

"SIAVM UVINOIY NI QUVNVD ¢

£°9 anavl

qil°0-
6t1°0-
611°0-
6E1°0-
6i1°0-
g€ 0-
962° 0~
9t 0-
9l2 0-
91€°0-

o4

861°0-
6€1°0-
g5st° 0~
Enico-
ghi‘0-
hE1 0-
8hi°0-
621°0-
ghi‘0-
g24°0-
Enico-
hel°o-
9t€ 0~
SLE-0-
91€°0-
SLE0-
9t 0-
6eE°0-
6st 0~
SlE-0-
S6E°0-
66E°0-
9E€ 0~
66t 0-

ueouw
T

81°0~
91°0-
gL o-
£1°0-
LE0

6£0

gh " 0-
gh°0-
Sh°0-
"0~

sl
SL° i
62° 1
62°1
gh°l
gn°t
LAY
LTAN !
91°2
L2
16°2
96°2
06°0
16°0
10°t
101
LI
LI
et
et”

09°1t
09°1
o1°2
112

eda
™

OIlvH 103dSY A3INIWNULSNI

68°nE~
(ZAS 1 3
19° 16~
18°6n-
26°91

L6761

S1°€L-
ne €=
86°€1-
e ni-

iy°s
8h°S
18°n
98°h
1T

QO »— T
O o N
* o &
Lalas X4

162

s o o o .
NMNMONTIT  NNOVOOOVNNN

O ~MmnNINNMMIT N NO O
OO NNANNAO ™~ — O
.

s -1

og-ei
25’8
-95°8
heh
40°8
02k
ng'8
es°h
ho°8
och

0g*2i
2s'g
W92t
th°g
958
he'h
he'g
es°h
9L°'g
91i°h
ho°g
0zt
0g°zi
es'g
h9°2i
LI
h9°ei
95°8
hg'8
es'h
91°8
9l n
ho°8
0z h

i

o——NNo--—(\;NMM

e e NN NNMAMAM e - - 0NN oo o

Y

4 )
enio
ehi'o
chl®o
hi‘o
ni°o
oo
tlo°o
1.0°0
120°0

hl0
2o
Lo
r{ g
chi®0
ehli‘o
Shi®o
ehl o
entL°o
enL o
ehi o
chli°o
1.0°0
tlo°o
il0°0
tlo°o
1L0°0
1l0°0
1lo°o
100
1L0°0
1o o
1.0°0
1L0°0

9 oy

‘02
‘02
‘02
*0e
02
‘02
‘0l
‘ol
‘0l
‘0l

‘02
*0e
‘02
‘02
T4
‘02
‘02
‘02
‘02
‘02
‘02
‘02
‘0l
‘0l

‘0l

-0l

ot
‘01
‘0l
‘ot
‘ol
‘oL
‘0%

18A

HLIM §1S31

881
18}
98!
sgl
hel
£81
4]}
181
ost
6L1

9l
hil
(21}
ott
901
80l
hol
201
001
86

96

kb

St

g
‘01 -

(91
601
Lo
soti
g0l
10!
66
L6
56
£6

_01X s30Ux “ou

uny

35




TR-2601

622
202
1314
ige
L1

c8

g2t
8t

2ne
She
w62
182
11:14
662

19
Ls
e
99
L62
cge
182
olLe
nitE
104
aG1
9n2
262
9L
sie

aseyd

»
CO0OO0O0O0OO0OOO0O0ODOO0O0

Ne= N e DNT O™
.

HNODVODONOTVOVWOD®
- o

cooooown N
COO0O0O0O0O0OOO0O0OODO0O

g;::nls-s o N & 8 8:&
.

ooN
©Oo0

00°0

J

z aseyd

g62
62
so¢
LIE
Ly
8t

t

662
10t
60¢
L€
2ot
gt

r44]}
10t
88
001
8
-1
68
ol
111
8014
(174}
604
coi
i
801

g2's 2lz S9°0
wg't 982 S2°0
96°1 692 12°0
26°t w2 SS°0
g6°0 211 wtE'0
2¢°y ot 1
€0 £9 gLo
02°'0 €S ti°0
986 GEE 6S°0
89t 1EE &E°O
20°t 9tE 65°0
96t €1 g81°0
oLl 622 2lL'0
w0°V 182 9k°0
oR'S 1€ 2L°0
o486 60t o0lL°0
o2'y 60t €£9°0
g89°2 &0t hHtE'0O
26°0 L6 92°0
00"t £62 l2°0
0%°0 862 S0°0
#k°0 €62 2L°0
21°0 062 &H0°O
9l Ent 6E°0
gh°z €€ nl°o
nl‘'0 6L ®0°0
20 16 10°0
g2°'0 00t 20°0
yi°0 628 10°0
3 8ap
z oseyd Cq

96°¢ €2
gt¢ w2
26°1 96
i1s'n 89
15°g 212
9t 291
Lty ni
10°t 66
wo'y 62
¢g°e Le
€2°n nl
22 sl
s £y
2€°t omi
S9°S On
26'6 Lt
89°n  6L1
gE‘t ol
€81 St
60°2 19
48'0 2L
€11 9le
L2'o n92
61 kBl
96°2 gt
Rl*1l S6
16°0 001
€S0 €1t
l2°o L1t
fap eseud
lg asaen

5669
LLLY
28l9
1tEL
0199
95tg
1313
1548
1681
8081
9nst
88l1
Losl
5681

Shs6
n6E6
0106
6n68
6298
0106
G228
£126
Eneg
£80E
6222
6L02
6181
0912
G061

dH3

*L OILvY 123d4SY QUVNYD

610411
h9noit
2nsoLt
LL16t)
giLg0l
2029€1
elsgnl
lgn6e !l
L220n
9626¢
Luion
6988¢
h926¢
1611y

99°G-
89°6-
ng G-
0S5 &~
08°01-
el s~
91°€L-
86°21-
02°6-
Wiy 6-
9¢€"6-
2t 6-
22 6-
neE* 6~

seas Buymort

085461
€21ESL
198911
LLgsh 1l
0z6Ent
1989n1
690nEL
9L1061
gEGEnEl
6199
h9tan
h60Sk
280K
2n69n
L6E L

qt
sy

85 h-
he h-
86 h-
ns'S-
89°6-
h0°9-
92°9-
28°9-
et 9~
gL e-
09°2-
89°¢c-
99°¢c-
ele-
hl°e-

ceas peaj
W

aaeay
uesu

gL‘0
06°0
W80
06°0

o4

[=] F\N\c\ggh.
ONOWNY = -

c s s & o &
OO0 O0O0DOOO

-

-3 MNMMNMO O
T OTXTO™®
Sedgge

fap
wiJgg
uesm

16°9
eLte
2l 8
£E€°6
09°8
£s-01
[+ MY
GL°0}
iyt
ne €
on°t
Ig°€
L1541
o't

68° 11
2L
g2 il
12° 1l
ottt
gzt
ge" ol
16711
o401
£2°S
g86°¢
SLE
11087
88°€
64t

QY
Seup

uedn

26"zt
89°8
gen
99°¢
80k
0e'h
ee’th
92 h
2621
89°8
99°8
gc'h
g9c'8
80°h

052t
0624
262l
89°8
99°'8
99°8
gk
92°8
80"k
262t
89°8
99°8
gcn
92'8
g0t

L{¢ M
%0°1L
S1°1
S1°l
gn°t
gn-t
UL
91
L2
co°1
co°1
et
1€
88”1
68°1

edd
m

12y st
9G1°nE-
L1657 25~
6E1°nS-
2ni°59

922" 6E

tiLest

£00°21

060° 12-
gl 12~
899" 12~
oig-le-
SLL 1t~
700" nE-

690°9
S90°9
41
Lig°S
lhe°h
Lhe™h
th2°h
51672
568°2
621°9
621°9
96L°h
18L°h
16€°¢
1EE°E

096

*TTOYINGD IAILOV LNOHLIM SIAVM HVINO3AY NI S1sil

L 3maveL

9n°6
94°6
he'L
ngl
L0°9
£L°s
56°h
S9°h
9n°6
9" 6
88"l
we°L
10°9
L0°9

05°6

. « s o o @
-~ NN O == NN

OO0 O00O0OO0NNODTOOOO0O0
DN NN N O O M N D NN

Or O e Om OO0~ —OO

NI AR INDNDN N O
N

—er NN MM~ NN MT

(VA

00°02
00°02
00°02
00°02
00°02
00°02
00°02
00°02
00°61
00°61
00761
00°61
00°61
00761

00°02
00°02
00°02

. 0070¢

00°02
00°02
00°02
00°02
00" 02
00° 61
00°61
00°6Gt
00°61
0061
00°51

s30uU)
184

66
£6
26
96
i8
het
L]
3]
[4]
6L
gl
LL
9l
sl

191
énlt
L9
a9
891
69
89
oL
1L
65
8s
19
09
29
€9

36

*ou
uny




&

TABLE 8
RUNS IN REGULAR WAVES TO OPTIMIZE CONTROL SYSTEM. CANARD ASPECT RATIO 1.
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APPENDIX A
Inclining Experiment

An inclining test was done just prior to the tests with the automatic
pitch control system, to determine the longitudinal GM. A five pound weight
was shifted on the deck to produce a moment about the pivot point. The trim
was then read using the inclinometer mounted on the deck. Results are
tabulated below.

Weight Moment Trim
shift, ft ft-1b deg
0 0 .076
0.25 -1.25 -.609
0.50 -2.50 -1.415
0.75 -3.75 -2.170
1.00 -5.00 -2.952
1.25 -6.25 -4.373
-0.25 1.25 .853
-0.50 2.50 1.602
-0.75 3.75 2.345
-1.00 5.00 3.101
-1.25 6.25 3.908
-1.50 7.50 4.580

A straight line was fit to the data in the range -5 s M £ 7.5, with the
following result:

© = 0.093 + 0.6033M
Using the theoretical relationship between trim and moment,
A-GML~@ =M
for small angles where A is the vessel displacement and 0 is in radians, one

obtains in the present case that

A1
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APPENDIX A
(Continued)

(1/4-GM ) (57.296 deg/rad) = 0.6033

and using the model displacement A = 93.22 1b,

GM; = 1.019 ft (model scale)
= 24,45 ft (full scale)

Determination of LCF

Before the free to pitch tests were conducted, a determination of the
longitudinal center of flotation (LCF) was made as follows: with the pivot
point at its initial loecation, 2.135 ft aft of the strut nose, a 5 lb weight

was placed at various stations on the deck and the resulting trim change
noted:

Location Trim Change (deg)
Pivot -1.545

5 in aft -0.246

6 in aft 0.000

9 in aft 0.813

12 in aft 1.597

The center of flotation is the point at which the addition of a weight
causes no trim change, which in this case is 6 in aft of the pivot. To
avoid coupling between heave and the measured pitch, which was used as input
to the control system, the pivot point was moved to the LCF for the free to
piteh tests, to 63.25 ft aft of the strut nose.

A2
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APPENDIX B

Videotape Scenarios
Videotape No. 1

Calm Water, Unappended, Fixed Trim

Run Velocity Trim Video

knots deg start
16 5 0 1:00
17 7 2:05
18 9 3:17
19 10 4:09
20 11 4:55
21 12 5:39
22 13 6:28
23 14 T:04
24 15 7:40
25 16 8:14
26 17 8:47
27 18 9:18
28 19 9:51
29 20 10:16
33 5 2 10:42
34 7 2 12:08
36 5 -1 13:20
37 7 14:53
38 9 16:00
39 10 16:51
40 11 17:39
3] 12 18: 21
y2 13 19:01
43 14 19:37
yy 15 20: 11
45 16 20:45
46 17 21:17
47 18 21: U7
48 19 22:10
49 20 22:37
51 5 1 23:02
53 7 24:32
54 9 1 25:33
55 10 26:25
56 1 27:07
57 12 27 : 47
58 13 28:24
59 14 28:56
60 15 29:37
61 16 30:11
62 17 30:40
63 18 31:10
64 19 31:36
66 20 32:05

B1




Run

67
69
70
A
T2
73
T4
75
76
77

79
80
81
82
84
85
86
87
88
89
90
91
92
93
94
95
97
98

TR~2601

APPENDIX B
(Continued)

Videotape Scenarios

8
5
7
9
10
1"
12
13
1L
15
16
17
18
19
20
5
7
9

10

11
12
13
14
15
16
17
18
19
20

Videotape No. 1

Velocity
knots

B2

Calm Water, Unappended, Fixed Trim

Trim
deg

Video
start




TR-2601

APPENDIX B
(Continued)

Videotape Scenarios
Videotape No. 2

Tests with Instrumented Canard; Zero Trim and Heave

Tests in Calm Water Varying Canard Angle

Run Velocity a Aspect Video Comments
knots deg ratio start

12 20 0 1 2:00

13 10 5 2:23

14 15 5 2:52

15 20 5 3:15

16 10 10 3:54

17 15 10 4:33

18 20 10 5:00

19 10 15 5:27

21 15 15 6:10

22 20 15 6:36

23 10 20 7:01

24 15 20 T:41

25 20 20 8:13

34 10 0 2 8:32

35 15 0 9:12

36 20 0] 9:43

37 10 5 10:09

38 15 5 10:51

39 20 5 11:19

42 10 15 T1:44

y3 15 15 12:15

4y 20 15 12:45

b5 10 15 13:09

46 10 10 14:03

47 15 10 14:43

48 20 10 15:12

49 10 20 15:30

51 20 20 16:46

52 20 20 17:06 Closeup of fin

53 15 20 17:30 Closeup of fin

54 10 20 18:00 Closeup of fin

B3
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APPENDIX B
{Continued)

Videotape Scenarios
Videotape No. 2

Run Velocity Aspect A/% H
knots ratio ft

Head Seas

66-T4
93 10 2 1 §.20
94 20 1 4.20
95 10 1 8.04
96 20 1 8.40
97 10 1.5 4,16
98 20 1.5 4,16
99 10 1.5 8.16
100 20 1.5 8.16
101 10 2.0 4,52
102 20 2.0 4,52
103 10 2.0 8.84
104 20 2.0 8.84
105 10 2.5 8.56
106 20 2.5 12.60
107 10 2.5 12.60
108 20 2.5 i, 2y
109 10 3.0 8.u4
110 20 3.0 8.44
111 10 3.0 12.64
112 20 3.0 12.64
113 10 3.5 8.52
114 20 3.5 8.52
115 10 3.5 12.80
116 20 3.5 12.80
117 10 1 1.0 4,20
118 20 1.0 4,20
119 10 1.0 8.04
120 20 1.0 8.04
127 10 1.5 4,16
128 20 1.5 4.16
129 10 1 1.5 8.16
130 20 1.5 8.16
131 10 2.0 4,52
132 20 2.0 4,52
133 10 2.0 8.84
134 20 2.0 8.84
135 10 2.5 b, 24
136 20 2.5 4.24
137 10 2.5 B8.56
138 20 2.5 8.56
139 10 3.0 8.4k
B4

Video
start

23:00

26:14
27:05
27:30
28:20
28:44
29:34
30:00
30:47
31:13
31:59
32:27
33:14
33:40
34: 11
34:51
35:38
36:08
36:55
37:19
38:07
38:34
39:21
39:46
40:3Y4
41:03
41:38
h42:05
42:32
43: 21
44:07
44:30
45:16
45:44
46:29
46:54
47:46
48:10
48:58
49:23
50:15
50: 40

Tests In Regular Waves with Instrumented Canard. Zero trim and heave; a=0°.

Comments

Preliminary runs
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APPENDIX B
(Continued)

Videotape Scenarios
Videotape No. 2

Tests in Regular Waves with Instrumented Canard. Zero trim and heave; a=0°.

Run Velocity Aspect A/ H Video Comments
knots ratio ft start
140 20 3.0 8.44 51:27
iR} 10 3.0 12.64 51:32
142 20 3.0 12.64 52:40
143 10 3.5 8.52 53:08
144 20 3.5 8.52 53:57
145 10 3.5 12.80 54:03
146 20 3.5 12.80 54:52
150 10 3.5 8.52 57:39
151 10 3.5 12.80 58: 31
152 10 3.0 8.44 59:18
153 10 3.0 12.64 1:00:08
154 10 2.5 8.56 1:00:55
155 10 2.0 8.84 1:01:46
Following Seas
163 10 1 1.0 4,20 1:03:02
164 10 1.0 8.04 1:03:57
165 20 1.5 8.16 1:04:54
166 20 2.5 8.56 1:05:26
167 20 3.5 12.80 1:05:58
168 10 1.0 .20 1:06:32
170 10 1.0 8.04 1:07:26
171 10 2.0 4,52 1:08:12
172 10 2.0 8.84 1:09:22
173 20 1.0 4,20 1:10:14
174 20 1 1.0 8.04 1:11:05
175 20 2.5 4,24 1:11:31
176 20 2.5 8.56 1:12:00
177 20 3.5 8.52 1:12:35
178 20 3.5 12.80 1:13:02
179 10 2 1.0 4,20 1:13:29
180 10 1.0 8.04 1:14:14
181 10 2.0 4,52 1:15:02
182 10 2.0 8.84 1:15:49
183 20 1.0 4,20 1:16:37
184 20 1.0 8.04 1:17:02
185 20 2.5 4,24 1:17:27
186 20 2.5 8.56 1:17:52
187 20 3.5 8.52 1:18:16
188 20 3.5 12.80 1:18:44
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APPENDIX B
(Continued)

Videotape Scenarios
Videotape No. 3

Tests with Automatic Pitch Control

Run Velocity Aspect A/L H Video Comments
Kknots ratio ft start
26-45 0:46 Preliminary runs

Baseline Tests Without Automatic Control. Head Seas.

46 15 1 3.5 8.66 4§:17
47 3.5 8.66 5:02
u8 3.5 8.66 5:48
49 1.5 4,10 6:38
59 3.5 12.92 7:18
60 2.5 4,28 8:02
61 2.5 B.66 8:37
62 1.5 8.26 9:15
63 1.5 4.08 9:52
64 20 3.5 8.68 10:37
65 3.5 8.68 11:08
66 3.5 12.92 T1:44
67 3.5 12.92 12.19
68 2.5 4,28 12:56
69 2.5 8.66 13:33
70 1.5 8.26 14:08
T 1.5 4.08 14: 44
Following Seas
72 15 1 0.58 4,08 15:20 No oscillations
74 1.5 y,22 16:34
75 2.0 4.08 17:13
76 2.0 8.26 17:56
77 2.5 4,28 18:47
78 2.5 8.66 19:37
79 3.5 8.68 20:26
80 3.5 12.92 21:15 Need more heave travel
81 3.5 12.9° 21:58 Need more heave travel
82 3.5 12.9. 22: 41 Need more heave travel
83 20 0.89 4,26 23:28
84 1.0 y,22 24:00
85 1.0 §.21 24:34 Model nosedives
87 2.5 4,08 25:00
88 1.5 8.26 25:30 Model nosedives
89 15 2.0 .25 25:45 4 in coaming added
90 15 2.0 8.50 26:31
91 20 2.0 4,25 27:20 Zero encounters
92 2.5 y. 28 28:00
93 3.5 §.68 28:33
94 3.5 12.92 29:07 No data

B6
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95
96
97

Run

98
99
100
101
103

104
105
106
107
108
109
110
11
112
113
116
117
118
119
120

Velocity

knots

TR-2601
APPENDIX B
(Continued)

Videotape Scenarios
Videotape No. 3

Following Seas

Aspect A/ H

ratio ft
3.5 12.92
2.5 8.66
1.0 8.24

Video
start

29:46
30:29
3:02

Comments

Model nosedives

Tests To Find Optimum Gain Settings; Following Seas

Velocity

knots

20

Aspect A/S H

ratio ft

1 4.08
4,08
4.08
8.66
4.28

NN — =
e o [ .
(ARG RS RS R

.

§.28
4.28
8.68
8.68
8.68
8.68
8.68
8.68
4.08
k.08
4.28
4.28
4,28
4.28
4.28

UVonuoguiuranugioaautmoivt g

MOV ,PLWWLWWWW NN
. . . o =

B7

Video
start

32:00
32:45
33:33
34:21
34:56

35:35
36:06
36:51
37:40
38:08

g, g2
2.12 0
no data
3.54 1.45
model nosedives
3.54 0 added PVC
windshield
3.54 2.4
3.54 4.83
3.54 2.1
3.54 4,83
4,95 4.83
7.07 4.83
0 4,83
zero encounters
4.95 4.83
k.95 6.76
5.66 6.76
6.36 6.76
7.07 6.76
6.36 T7.72
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APPENDIX B
(Continued)

Videotape Scenarios
Videotape No. 3

Tests in Following Seas with Optimal Control Gains

Run Velocity Aspect A/ H Video Comments
knots ratio ft start

121 20 1 2.5 4.28 yu:17

122 20 1.5 4.08 45:15

123 20 1.34 4.20 46:04

124 20 1.34 4.20 46:48

126 15 2.0 8.50 47:30

127 15 2.0 8.50 48:20

128 15 2.5 8.68 49:00

129 15 2.5 12.92 49:38

130 15 2.5 4,28 50:22

131 15 1.5 4,08 51:07

132 15 1.5 8.26 52:07

133 15 1.5 8.26 53:04 Servos off

134 15 1.5 8.26 54:09

Tests in Head Seas to Find Optimum Gain Settings

Run Velocity Aspect AL H Video 8, 8>
Kknots ratio ft start
135 15 1 3.5 8.68 55:03 3.54 1.93
137 15 3.5 8.68 56:20 3.54 4,83
138 15 3.5 8.68 57:02 3.54 6.76
139 15 3.5 8.68 5T:u44 4,95 6.76
140 15 3.5 8.68 58:26 3.54 8.69
141 15 3.5 8.68 59:08 3.54 9.65
142 15 3.5 8.68 59:40 4,95 8.69
143 15 3.5 8.68 1:00:33 0 9.65
144 20 3.5 8.68 1:01:15 0 9.65
145 20 3.5 8.68 1:01:48 3.54 6.76
146 20 3.5 8.68 1:02:22 Servos off
147 20 3.5 8.68 1:02:55 o] 6.76
Tests in Head Seas With Optimum Control Gains
148 20 1 3.5 12.92 1:03:27
149 20 4.0 12.50 1:04:02 .
150 20 4.0 12.50 1:04:33
151 20 2.5 8.66 1:05:05
152 20 1 2.5 4,28 1:05:40
153 20 1.5 8.26 1:06:15
154 20 1.5 4,08 1:06:48
155 15 4,0 12.50 1:07:20 Servos off
156 15 4,0 12.50 1:08:03 Servos off
157 15 4.0 12.50 1:08:47
B8
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158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
191
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APPE.DIX B
(Continued)

Videotape Scenarios
Videotape No. 3

Tests in Head Seas With Optimum Control Gains

Velocity Aspect A/% H
knots ratio ft
15 3.5 12.92
15 2.5 8.66
15 2.5 4,28
20 2 4.0 12.50
20 4,0 12.50
20 3.5 12.92
20 3.5 12.92
20 3.5 12.92
20 2.5 §.28
20 2.5 8.66
20 2.5 8.66
20 1.5 8.15
20 1.5 4.72
20 3.5 12.92
15 1.5 8.26
15 2.5 8.66
15 2.5 4,28
15 3.5 8.68
15 3.5 12.92
15 4.0 12,50

Tests in Following Seas With Optimal

15 2 1.5 8.26
15 1.5 4.08
15 2.0 4,25
15 2.0 8.50
15 2.5 8.66
15 2.5 4.28
15 3.5 8.68
15 3.5 12.92
20 1.34 4.20
20 1.5 4.08
20 1.5 4.08
20 2.5 4.28
20 2.5 8.66
20 3.5 8.68
20 3.5 12.92

B9

1

b ah b e e b b b b b e e emd ed wd e b ed o

PO N L A S i N S I T I S I Y

Video Comments
start

:09:32
:10:15
:10:57
:12:26
:13:02
:13:37
:14:09
:14: 42
:15:16
:15:53
:16:26 Controls not active
£16:57
:17:30
:18:05
:18:38
:19:17
:20:00
:20:42
:21:26
:22:06

Control Gain

:22:49
:23:31
:24:04
:24:40
:25:20
:26:00
:26:37
:27:17
:28:57
:28:30
:129:25
:30:14
:30: 42
:31:14
:31:U5




Run

216
217
219
220
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APPENDIX B
(Continued)

Videotape Scenarios
Videotape No. 3

Tests In Calm Water With Aspect Ratio 2 Canards Oscillating

Run Velocity Frequency Video
Knots Hz (model scale) start

193 20 2 1:32:21
194 2 1:33:56
195 1 1:34:25
196 .5 1:34:53
197 .75 1:35:20
198 .625 1:35: 47
199 .5 1:36:15
200 .3 1:36:41
201 R 1:37:11
202 .22 1:37:39
203 .15 1:38:07
204 15 1 1:38:35
205 .15 1:39:08
206 .625 1:39:43
207 .5 1:40:19
208 .4 1:40:54
209 .3 1:41:30
210 .25 1:42:05
211 .2 1:42:37
212 .15 1:43:12
213 .1 1:43:48
214 U5 1:U44:24
215 .55 1:45:00

Final Runs in Following Seas With Automatic Control

Velocity Aspect A/ H Video Comments
knots ratio ft start
20 2 1.0 8.21 1:45:52
20 1.5 8.26 1:46:U8 Nosedive
20 1.5 8.26 1:47:25 Nosedive
20 2.5 8.66 1:48:35 Nosedive
B10
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APPENDIX C
FORCED OSCILLATION TESTS

A brief series of tests was conducted in calm water to
observe the response of the SWATH model to a sinusoidal pitching
moment while underway. A signal generator was used to drive the
canards at various frequencies, resulting in constant amplitude
pitching motion for the duration of the run. The model was run
free to heave and pitch. A range of oscillation periods from
2.47 to 48.63 seconds (full scale) was investigated, at speeds
of 15 and 20 knots. Time histories of heave, pitch, and canard
angle were measured. A harmonic analysis of these signals was
carried out as described in the report under Data Processing.
Results are given in Table Cl below. The phase angles in the
table are with respect to the canard angle.

Pitch and heave amplitudes per unit canard amplitude and
their phases are plotted on Figures Cl1 and C2 for 15 knots and
on Figures C3 and C4 for 20 knots, respectively. Figures Cl1 and
C2 show an apparent heave and pitch resonance peak at a canard
period between 12 and 16 seconds. At 20 knots there is a peak
in the pitch motion at a canard period of just under 8 seconds
and a peak in the heave motion at a period of about 10 seconds.
Phase angles are near 90° at the resonance peaks, indicating
that the exciting moment (induced in part by the canards but
also influenced by the hull) is nearly in phase with the canard
angle.

Cl
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FIGURE C1 PITCH RESPONSE IN FORCED OSCILLATION TEST, V=15 KNOTS
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APPENDIX D
CALIBRATION OF FIN BALANCE

To measure lift and drag on a canard, a two-component
balance was designed which would fit inside of a lower hull
of a SWATH model (Figure 4). The balance consisted of a
strain-gaged 1lift spring wused in the previous tests
(Reference 1) and a specially modified drag balance.

The balance was calibrated on a tankside calibration
stand by application of known weights at the approximate
center of pressure location of the fins. The apparatus was
rotated so that lift, drag, and combinations thereof could be
applied. The digitized voltage readings were expressed as
linear functions of both 1ift and drag:

- e

The coefficients in the matrix [C] were determined by means
of a multivariate least squares fit. Inversion of this
matrix gives the calibration rates Rij:

L v
{} - — 1} ; (R] = [e]"1,
D 12

where off-diagonal elements Ry5, Ry; account for cross-
coupling.
Results of the calibration are summarized below:

Lift Lift Difference Drag Drag Difference
applied computed applied computed
0.000 0.003 0.003 0.063 0.064 0.001
0.000 0.002 0.002 0.125 0.126 0.001
0.000 -0.005 -0.005 0.250 0.252 0.002
0.000 -0.003 -0.003 0.500 0.497 -0.003
0.000 0.000 0.000 0.750 0.748 -0.002
0.000 0.001 0.001 1.000 0.998 -0.002
0.000 0.004 0.004 1.250 1.249 -0.001
0.985 0.989 0.004 0.174 0.176 0.002
1.970 1.972 0.002 0.347 0.352 0.005
0.940 0.933 -0.007 0.342 0.348 0.006
-0.940 -0.948 -0.008 0.342 0.347 0.005
0.500 0.507 0.007 0.000 -0.001 -0.001
1.000 1.000 0.000 0.000 -0.003 -0.003
3.000 2.997 -0.003 0.000 -0.001 -0.001

D1
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The calibration rates are:

Lift = -0.0070998 V4 - 0.0000739 V,
Drag = 0.0000141 V, = 0.0016039 V,

where V, and V, are the digitized voltage readings from the
lift and drag channels, respectively. The calibrations are
plotted on Figure D1.

Dynamic Calibration

Because the balance was to be used to measure unsteady
lift and drag in waves, a dynamic calibration was performed
in addition to the static calibration described above. This
was accomplished by mounting the balance on a scotch yoke
which could oscillate sinusoidally in a horizontal plane with
adjustable frequency and amplitude. Weights of various
denocminations were fastened to the balance at the approximate
center of pressure location of the fins, and time histories
of lift and drag were recorded for several frequencies of
oscillation in the range of encounter frequencies expected in
the tests. Readings were also taken with no weights fastened
to the balance to evaluate the "tare mass" of the balance
acting on the springs. Time histories of displacement and
acceleration were also measured. A photograph of the
apparatus is included as Figure D2.

Time histories of the signals were fit to a harmonic
series as described in Data Processing. The amplitude of the
dynamic force on the balance is given by

F=(W+ w) a/g
where W is the applied weight, w is the tare weight, and a is

the acceleration of the scotch yoke. Results are tabulated
below.

D2
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Lift Calibration

Added Radian Applied Measured
Weight Frequency Accel Tare Force Force “n Q

1b rps ft/sec2 1b 1b 1b rps

o] 11.38 14.35 - 0.05

0 13.87 21.32 - 0.08

0 15.46 26.49 - 0.10
0.56 8.20 7.45 0.03 0.16 0.16 196.2 .042
0.56 11.26 14.05 0.05 0.30 0.30 196.2 .057
0.56 13.78 21.05 0.08 0.45 0.46 196.2 .070
0.56 15.19 25.57 0.09 0.54 0.56 196.2 .077
1.06 5.91 3.87 0.01 0.14 0.15 132.9 .045
1.06 7.84 6.81 0.02 0.25 0.26 132.9 .059
1.06 11.04 13.51 0.05 0.49 0.51 132.9 .083
1.06 13.80 21.11 0.08 0.78 0.80 132.9 .104
1.06 18.12 36.39 0.13 1.33 1.40 132.9 .136
2.07 8.53 8.06 0.03 0.54 0.56 88.4 .097
2.07 11.62 14.97 0.05 1.01 1.06 88.4 .132
2.07 13.90 21.41 0.08 1.46 1.53 88.4 .157
2.07 15.25 25.78 0.09 1.75 1.85 88.4 .173

Drag Calibration

Added Radian Applied Measured
Weight Frequency Accel Tare Force Force
1b rps ft/sec? 1b 1b 1b

o 7.57 6.24 - 0.16
0 10.31 11.62 - 0.30
0 13.22 19.08 - 0.50
0 14.76 23.80 - 0.62
0 16.31 29.06 - 0.75
0 16.87 31.14 - 0.80
0 18.18 36.32 - 0.94
0 20.40 43.33 - 1.18
0.24 9.19 9.21 0.24 0.32 0.31
0.24 11.39 14.14 0.37 0.47 0.47
0.24 14.09 21.68 0.56 0.72 0.72
0.54 8.29 7.50 0.20 0.32 0.32
0.54 11.37 14.10 0.37 0.60 0.60
0.54 14.47 22.87 0.60 0.98 0.97
1.04 7.68 6.44 0.17 0.38 0.37
1.04 11.65 14.80 0.39 0.86 0.85
1.04 14.35 22.46 0.58 1.31 1.29

The natural frequency, wp, of the balance varies with

the applied mass. Natural frequencies of the 1lift spring

were

determined from oscillograph records taken while

"ringing" the balance. The results are included in the table
above, along with the ratio 0 = vw/w,.
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The frequency response of the lift balance is shown on
Figure D3, where gain (ratio of measured to applied force) is
plotted against the frequency ratio. The natural frequency
of the balance with the fin as used in the tests was
estimated using Figure D4, which is a plot of natural
frequency against weight on the springs. Using the known
weight of the fin (with shaft) and an estimated added mass,
the effective weight on the springs during the tests was
found to be about 0.40 1lb. According to Figure D4 the
corresponding natural frequency is 280 rps, or 44.6 Hz. The
maximum encounter frequency expected in the tests was about 2
Hz, so that the maximum frequency ratio would be 0.04S5.
Figure D3 shows that the response of the lift balance is
essentially flat in this range.

Results for the drag balance show a flat response for
the entire range of weights and frequencies used in the
calibration.
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Gain = L(measured) /L(applied)

TR-2601

FIGURE D3

Frequency ratioQ = w/w

FREQUENCY RESPONSE OF LIFT BALANCE
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APPENDIX E

Tabulation of Water Temperatures

DATE RUNS TEMPERATURE
(1987) (°F)

Phase 1: Tests of Unappended Model in Calm Water

1/29 12-36 73.0
1/30 37-95 73.0
2/2 96-103 73.2

Phase 3: Tests with Instrumented Canard

4/28 10-25 72.3
4/29 34-60 72.3
4730 65-83 72.3
51 88-120 72
5/4 127-155 72.3
5/5 163-188 72.5

Phase 4: Tests with Pitch Control System

8/18 45-71 74.9
8719 72-88 75.0
8720 89-113 75.3
8/21 116-145 75.2
8/24 146-177 T74.9
8725 178-206 74.6
8/26 207-220 T4.3
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APPENDIX F

COMPUTATION OF ANGLE OF ATTACK OF CANARDS INDUCED BY
REGULAR WAVES

The angle of attack of a canard, under the assumption that
the canard and model do not disturb the fluid, can be expressed

as
a = arctan (v/(u+V))

in head seas, where u and v are the wave-induced particle
velocities in the Thorizontal and vertical directions,
respectively. If the wave profile is written as

n = acos (kx - wt)

where x is increasing in the direction of wave advance and k is
it may be shown (see Reference Fl) that the

the wavenumber,
particle velocities are

u = u, cos wt

vV = =V, sin wt

at x=0 (for example), where
u, = aw cosh k(y+h) / sinh kh
Vo = aw sinh k(y+h) / sinh kh

and a is the wave amplitude, Yy is the vertical coordinate of the
point of interest (the canard centerline) relative to the calm
water surface, and h is the water depth. Thus

a = arctan [-v, sin wt/(V + u, cos wt)]
= [=(Vo/V) sin wt/(1 + (uy/V) cos wt)]

sin wt/[1 + (uy/V)cos wt] = F

be represented by a Fourier series
F =Aj + Aj cos wt + By sin vt + A, cos 2wt + B, sin 2wt + ...

As shown in Appendix G, the coefficients in the series have the
following form:
Ai =0
B; = -2(/1 - p* - i/ pit?
the coefficients have the

where g = u, /V. For small 3,
following asymptotic form (see Appendix G):
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B; ~ (-8/2)1i71
so that
By ~ 1
B, =~ ~8/2
By = 82/4

Thus if the particle velocity is sufficiently small relative to
the ship speed to justify neglecting B, and further terms, one
obtains

a = arctan [-B; (Vgo/V) sin wut)
or
tan a = (By V,/V) cos(uwt + x/2)

so that the angle (and thus the litt force in a "quasi-steady"
theory) leads the wave crest by 90° (or, equivalently, lags the
wave crest by 270°) which is in agreement with the test results.
In addition, in the tests the second and higher harmonics of the
measured fin 1lift were insignificant, which would justity
neglecting B, and higher terms in the Fourier series in the
present case.

In following seas the ship has velocity -V in the direction
of wave advance. Thus -V is to be substituted for V in the
formulas above for following seas. The only effect of this
change is to reverse the sign of the angle of attack. Thus in
following seas if the ship is overtaklng the waves, the angle of
attack lags the wave crest by 90° rather than by 270°. If the
waves are overtaking the ship, a negative phase angle is
interpreted as a phase lead; so in overtaking waves the fin
angle of attack leads the wave crest by 90° (or lags the wave
crest by 270°) as in head seas.

The canard lift coefficient is predicted by multiplying the
angle of attack from the expressions above by the steady-flow
1lift curve slope of the fin (including the "groundboard effect"
of the hull as discussed in the main text). This is referred to
as a "quasi-steady" theory, because effects of unsteadiness on
the angle of attack ("memory effects") are neglected.

Figures 10 and 11 show that this theory consistently
underpredicts the amplitude of the canard lift coefficient by
about 15% at a ship speed of 20 knots; the ratio of particle
velocity to ship speed was between .05 and .15 in these tests.
Predicted phase angles are in accord with the observations,
indicating that there is no appreciable time 1lag in the
development of lift in the range of observed conditions.
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APPENDIX G

EVALUATION OF AN EXPRESSION WHICH OCCURS IN THE ANGLE OF ATTACK
COMPUTATION
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1 Problem Statement
Consider the periodic function

F(t) = sinwt/[1 + fcoswt] 1)
and find its Fourier series of the form

F(t) = Ao+ Ay coswt + By sinwt + Agcos 2wt + Bysin2wt +...  (2)

2 Derivation

The coefficients of the Fourier expansion of F(t) are given by [1]

w [rlv
A = % et F(t)dt (3)
A= 2 [ P costiotie 0
B = 2 _";' F(2) sin(iwt)dt (5)

fori=1,...,00
Now, by definition of the function F(t), it follows immediately that

F(-t)=-F(t) (6)

and thus that F(t) is an odd function. Since the integration interval is
symmetric, it follows immediately that all the integrals involving the term
cos(iwt) must vanish because cos(iwt) is an even function, and therefore

Ai =0, ("
for:=0,1,2,...,00.
To find a form for the remaining Fourier coefficients, use the product

formula for sines [2]

2sin(2;) sin(2;) = cos(z; — 22) — cos(2; + z1) (8)
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to rewrite the expression for B; into the equivalent form
B; =Ci-1 = Cia (9)
where the quantity C; is defined by the integral

Ci= = _:; cos(iwt)/(1 + B cos(wt))dt (10)

Using the fact that the integrand is even and the integration interval is
symmetric, then it can be rewritten as

Ci= %’[/w cos(iwt)/(1 + B cos(wt))dt (11)

and then a change of variables to z = wt yields

Ci= % [ os(iz)/(1 + B cos(z))d (12)

which is an integral in standard form and can be looked up in an integral
table.

From [3] 3.613.1, provided that 8% < 1, then

Ci= (/1= P - 1)/B) (13)

fort =0,1,...,00. As examples, note that

Co = 1/\/1"'_162

G = (1-8-1)/(8y1- )

C: = (2-F-2/1-p2)/(B*/1-pY)

Cs = (—4+38+(4- )/ - )B1-8

Ci = (T-8F2+8'—42-FW1-B)/(V1-5)  (19)

Using these results in the expression above for B; yields explicit values
for the non-zero coefficients in the Fourier expansion, namely

B, = Ci.i—Cina
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(V1= =1)/8 1= B = (V1 - B2 = 1)/B1* [\ 1 = B2
= (WI-F -1/ 1-F

x[f? = (1 - B +1 - 2)/1 — p))/B?
= -2(/1-p~1)i/p" (15)

This finishes the calculation of the Fourier expansion.
As a final issue, consider the behavior of the coefficients as § goes to zero,

then
_2(ﬂ - l)i/ﬂi-b-l
~ —2(~p/2) [
~ (-B/2) (16)

which gives the asymptotic behavior of ine coefficients in the physically in-
teresting case when # becomes small.

B;
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