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Abstract:
In this paper we present a methodology for checking the local quality of recipes

for the recovery of stresses or derivatives from finite element solutions of linear
elliptic problems. The methodology accounts precisely for the factors which affect
the local quality of the recovered quantities, namely, the geometry of the grid, the

polynomial degree and the type of the elements, the coefficients of the differen-
tial equation and the class of solutions of interest. We give examples of how the
methodology can be used to obtain precise conclusions about the quality of a class
of recipes, based on least-squares patch-recovery, in the interior of complex grids,
like the ones employed in engineering computations. By using this approach we

were able to discover recipes which are much more robust than the ones which are
currently in use in the various finite element codes.

DTIC TP,1
~cuined 33

.Dv

2



1 Introduction

The subject of superconvergence studies techniques which can be employed to
increase, at a relatively small cost, the accuracy of quantities (derivatives of the
solution, strains, stresses etc.) recovered from finite element solutions. Because
of its obvious importance in finite element practice the superconvergence of finite
element approximations has been studied by several investigators in the mathe-
matical and the engineering literature; see for example [1-46] and the citations in
these papers.

We distinguish two types of superconvergence according to the way that the
values of the solution quantities are recovered, namely:

1. Direct superconvergence: The values of the solution quantities are obtained
by direct evaluation from the finite element solution at special points, the
superconvergence points for the solution quantity in the element (see, among
others, (6], [10], [13], [14], [47] and [50]).

2. Superconvergence via averaging: The values of the solution quantities at a
point are obtained by averaging the values of the finite element solution in a
neighborhood of the point. According to the definition of the neighborhood,
in which the averaging is computed, we have:

a. Global or subdomain averaging: The neighborhood is either the entire
domain (see [2], [3], [9], [11], [12], [15], [16-17], [42]) or a subdomain
which does not depend on the mesh-size (see [15], [16-17], [42]).

b. Local or semilocal averaging: The neighborhood is a mesh-cell of ele-
ments which are connected to a vertex, an edge or an element (local
h-neighborhood) or such a mesh-cell and a few mesh-layers around it
(semilocal h-neighborhood) (see also [46]).

In this paper we will study superconvergence via local averaging; the case of
direct superconvergence will also be considered (as a special case where the aver-
aging is the pointwise evaluation of the solution quantity directly from the finite
element solution). For a detailed study of direct superconvergence for meshes of
triangles and quadrilaterals see [47-50].

The objective of this paper is to develop computer-based methodologies for
checking the quality of recipes for the recovery of solution quantities. We will apply
the methodologies in the study of recipes based on least-squares patch-recovery
of the type given in [35-40]; these recipes recover the solution quantities in an
element from the finite element solution in the element and one mesh-layer around
it. It is also possible to define various recipes (see [41] and [44] and Section 4
below) which take into account the information about the data (the body-force,
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boundary-traction) and the differential operators (i.e. the differential equation, the
traction boundary-condition) and the quality of these recipes can be checked by
using exactly the same approach.

In the engineering literature the quality of recipes is often evaluated by observ-
ing their performance in a few example problems (benchmarks) (e.g. [24], [35-40],
[41], [43] and. [44]). This approach has serious shortcomings because the quality
of recipes is sensitive to the structure of the solution and the meshes employed.
The quality of the recovered solution quantities can be very different depending on
whether the meshes are translation-invariant or general, whether the meshes are
nearly equilibrated (or not) and whether the solution has singular points. The per-
formance of a recipe can be very different in the neighborhood of a singular-point,
at a smooth-boundary and in the interior of the mesh. Hence benchmark computa-
tions could motivate misleading conclusions unless each benchmark is more or less
representative of a precise class of computational problems and the conclusions are
employed for this class of problems.

In this paper we will define precisely the notion of the quality of the recipes
and we will present a theory-based computational methodology for the assesment
of the quality of the recipes in the interior of the domain and smooth solutions.
Similar approaches for checking the quality of recipes at smooth boundaries and
in the neighborhood of singular points will be given in forthcoming papers. The
approach takes directly into account the factors which affect the quality of the
recipes, namely:

a. The local geometry of the grid;

b. The coefficients of the differential equation;

c. The polynomial degree and the type of the elements (triangles, tensor-product
quadrilaterals, serendipity squares etc.);

d. The class of ,olutions of interest.

Below we will give illustrative examples of how the quality of a recipe is influenced
by these factors.

Following this Introduction we outline the model elliptic problems (Poisson's
equation and the elasticity problem). We give a new definition of superconvergence
and based on this definition we develop a theory for checking recipes in the interior
of any class of meshes and for any class of material coefficients and we give several
examples of application of the theory for studying the quality of recipes based on
least-squares patch-recovery in the interior of complex finite element grids. We
give examples of new recipes (which are similar, but less expensive, to the ones
given in [35-40]) which also employ the available information about the differential
equation and the right-hand side in the design of the recipe. By employing the
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methodology of the paper we were able to show that one of these recipes is much
more robust than the recipes in [35-401.

2 The model problems
We shall consider the vector-valued boundary-value problem

Lj(u) :=- a i~) = f, in fl

j=1

ui = 0 on rD 1

, j(u)nj - ,on rN

where i = 1, 2.

Here fl C R 2 is a bounded domain with boundary Ofl = I'D U rN;

n := (n, n2) is the outward pointing unit-normal on rN;

f,, i = 1,2. are the components of the load-vector (body-force);

i, i = 1,2 are the components of the normal-flux vector (traction) applied on rN;

rD o, rD nf rN = 0; U = (tit, U2 ) is the solution-vector (displacement);

1/u 0 0 . 2
%(u) : - i + ! ,) ' o.j(u) : aijikeke(u) , ij = 1,2 (2)

kJt=l

are the components of the flux (strain, stress);

aqkt, i, j, k, t = 1,2, are the material-coefficients (elastic constants) which in the
case of isotropic plane elasticity are given by aijke = P(bbj6 k1 + '5itbkj) + Abikbif

where 6bj is Kronecker's delta and A, p are Lame's constants.

We also introduce the scalar elliptic boundary-value problem (heat-conduction
in orthotropic medium), namely
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L'(u) -v u f in S1
kt=

u = 0 on I'D (3)

2

, qk(u)nk = nFN
k=1

Here f is the source function (heat-source); g the boundary-flux (heat-flux); qk(u)
2 N

KkqX x, k = 1,2 are the components of the flux-vector (heat-flux); Kke, k,t

1,2, are the entries of the thermal-conductivity matrix which is symmetric, positive
definite. Below we will let Km,, K. denote the principal values of the thermal-
conductivity matrix.

Let us now cast the problems in the variational form. Let us denote the space
of test-functions by

D. := I(v,,V2) Ivi EH'(nl), v, = 0 on roD I4

The variational form of the boundary-value problem (1) is now posed as:

Find U E HrD such that

2 2

Bn (u, v)=friv+j fivi VVEH 4  (5

where the bilinear form Bg : H1. x H'D -. R is defined by

Bn(u,v) : 2 jo O (6)
in ,k,1=laxt Oxk

The energy-norm over any subdomain S C 0 is defined by

111V111s := [Bs(vv) (7)

where Bs(u, v) has the obvious meaning.

In the case of the scalar elliptic problem (3) the bilinear form is given by

(u,v) : 2 Kk -- . The weak-solution of (3) satisfies:
k Cfl Ox6



FinduEHr',, (vEH1(Q)I V-0 on FD}suchthat

bo(u,) = Ifv + J f v E EH,, (8)

The energy-norm in any subdomain S C 0l is defined by IIIvIIIs Vbs(vv)

Let T = {T,} be a family of meshes of triangles or quadrilaterals with straight
edges. It is assumed that the family is regular (for the triangles the minimal angle
of all the triangles is bounded below by a positive constant, the same for all the
meshes; for the qu-,adrilaterals see conditions (37.40) in Ciarlet [52]). The meshes
are not assumed to be quasiuniform. We introduce the conforming finite-element
spaces for the scalar model problem (the corresponding spaces of vector-valued
functions for the elasticity problem are defined similarly):

SIM(T) := I{uE C°(n)l ul, ESh,(,k), k= 1,...,M(Th)}, (9

where S1,(rk) = P,(rk), for the meshes of triangles, while for the meshes of quadri-
laterals

Shp (rk (= w E C' Tk) I w o Irk E §(P'P)ei1 (10)

where f := (-1,1)2 is the master-element and F,. is the bilinear mapping of ir
onto rk; M(Th) is the number of elements in T, and

O<ij<p

Let P(X1 ,x 2) = c.. xrxf be a polynomial of degree p; noting that
O<m+n<p

1 1

"' , X2  bij i2 (12)
i d-O ij=O

we get
j -- ""J) " bi_,j )"= d,.. (3

P(XI, 1 X) C -( aiil-j2 ,., (3
O<m-+n<p i jO kl10 O_<<p

Hence any polynomial of degree p belongs to the span of the shape-functions ST(r )
on every physical quadrilateral element Tk.
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We let ShrD SP(Th)nHr1 denote the discrete test-space. The finite element
solution uh (for the heat-conduction problem) satisfies:

Find uk E S4D such that

bo(Uh,V) = infv,, + v ,, Sh, ,rD (14)

The error is e, :u - u-u. The finite element solution and the error for the elasticity
problem are defined similarly.

3 A new definition of superconvergence

The assessment of the quality of the recipes will be based on the following
new definition of superconvergence (see also (47-50]): Let {uh} be a one parameter
sequence of finite element solutions of a problem which are computed using a
sequence of meshes T = {Th) and let u denote the exact solution. Let us assume
that we are interested in the values of the linear functional F(u)(R) (i.e. the values
of the components of strain, stress or the gradient of the displacement) at a point
R. We will let Y'(uh)(i) to denote the recovered value of F(u)(R) obtained from
the averaging F which is assumed to be in the form

N

where {fi~ )4 is a set of points, which may include k, in an h-neighborhood of
R (as shown in Fig. 1) and j()ffi, are the coefficients corresponding to the
quantity F(u). If F(u) has several components it is understood that (15) holds
with a different set of coefficients for each component. Let us denote by

WI:= UT, rE Th (16)
REf

the mesh-cell which consists of the elements which include x in their interior or

boundary. (If R is at a vertex (resp. on an edge) w. is the set of elements connected
to the vertex (resp. to the edge)). We let

T (w) := max I F(u - u,)(x) (17)

Here " indicates the modulus employed for the quantity F(u). (If F(u) is a

scalar-quantity (one component of stress, strain or of the gradient) I. I is the

absolute value, if F(u) is a vector-valued quantity . is the vector-modulus,
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if F(u) is a second-order tensor denotes an invariant, like for example the
second invariant, the second invariant of the deviator, etc.)

We will be interested in the values of the error in the recovered quantity .F(uh)(R)
relative to the maximum error of the finite-element solution in w,, namely

r F(u)(R) - .1'(Uif)(X) if *(Wi) 4 0
;F;; u;W TA):= ' (18)

0 , if T(w 1)= 0

Let us note that the relative error with respect to %1(W.) has clear meaning. We
compare the quality of the recovered value at R with the maximum error in the
quantity computed directly from the finite element solution in the mesh-cell w1.

If the point R and the averaging " are such that

(R; F; ; u; wtTh) <0- as h -- 0 (19)
100

then .F(u)(R) will be called u-v7%-superconvergent relative to the exact solution u
and the family of meshes T. Given a class of solutions U, we let

Ki(R; F; Y'; U; wi, Th) = Trqax E(i; F; .; u; w1 , Th) (20)

denote the maximum relative error in .F(u) at R for the class U. The dependence
of 7i(i; F;. ; U; wX, Th) on U is very essential. In practical computation we know
a-priori some of the properties of the solution. For example if the distributed load
is zero we know that the solution satisfies the homogeneous differential equation.
Then we can restrict the set U to the set of solutions of the homogeneous differential
equation. (Below we will see that the quality of a recipe can be very different for
different classes U. Of course it is preferable that the quality of a recipe is good
for a large class U; then we can say that the recipe is robust.)

We will say that the value .F(uh)(k) is U-i%-supeconvergent if

W (iGI;F;'U;w ,T,) -- as h - 0 (21)
100

If, in addition, we have

l(k; F;Y; U;w, T) -- 0 as h - 0 (22)

then F(Uh)(iR) is U-superconvergent in the classical sense. It means that the rate
of convergence of .F(uh)(R) to the exact value F(u)(k) is higher than the global
rate of convergence of the quantity F(uh).

9



It is well known that classical superconvergence is very sensitive to the geometry
of the grid, the class of solutions of interest and the coefficients of the differential
operator (see for example [481 and [50] for direct superconvergence; the situation
is very similar for superconvergence via averaging). Let us note that if q in (21)
is very small (smaller than a tolerance) we can still practicully speak about a
superconvergent value (with a given tolerance), which is the re&aon for introducing
the notion of q%-superconvergence. Note that rl%-superconvergence, as classical
superconvergence, has asymptotic character for h -- 0. However, unlike classical
superconvergence, which holds only for special grids and a fixed set of coefficients
of the differential equation, rI %-superconvergence is well-defined for ant' classes of
grids and for an entire class of coefficients.

Remark 3.1. Note also that the notion of superconvergence can be understood in
different ways. For example we can be interested in the quantity.

b,({ 7};F;F;u; {r1,Th):= I {-- ,e{'d (22)

TE{?}

where {r} is a set of elements, {T,} is a set of points in each element. Then the
pointwise superconvergence is related to q = oo. Very often (see [49] for concrete
examples in the case of meshes with local refinements) we get 0q ---- 0 as h --- + 0
(in fact 0. , hi). Various authors are also calling this effect superconvergenice
(see e.g. [13, 141). The notion of superconvergence depends on its measure, e.g. if
measured in P-norm, q < oo, we may get superconvergence effects where for
q = oo there may be no superconvergence (see [491 for further details). Hence the
term superconvergence has to be properly defined.

Given a recipe ." and 0 <5 1< oo we will be interested in the rj%-sitperconvergence
regions of -F(uh) in the element r E Th for the class of exact solutions U:'

F(u,) ;.;(; r, Th) x E r 7i(x; F; Y; U; r, T) < 1-(23)

Given two recipes .F1 and Y2 and a point x we define the index of relative robustness
of the recipes at R.

VF(u)(; U;Y, P; T,Th) = W(R;F;F; U;r, Th) (24)7W(R; F; .T2; U;,r, Th) (4

Here we will assume that the denominator can be equal to zero only at isolated
points (this assumption that these points are isolated may be violated only for
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very special mesh-geometries like meshes of squares, triangles arranged in a three-
directional pattern, etc.) where the quotient is defined equal to oo (unless it is

0
equal to - in which case we will define it by continuity). We will be interested in
the regions in the element r E Th where 72 is more robust than Y', namely

A:F()(U;.F',;rTh) {x E TI VF(u)(x;U;Y 1 ,7 2;TrTT) > 1} (25)

Obviously the above introduced notions are defining exactly the (asymptotic)
quality of the recipe. Comparisons of recipes should be based on computations of
the above quantities, for the classes of meshes and solutions of interest, and not on
arbitrarily selected benchmarks.

One is interested to know a-priori the quantities defined above for classes of
solutions of interest. (In the practical computations in plane elasticity and heat-
conduction the class of solutions of interest is the class ( ( "harmonic" solutions
(i.e. the solutions which satisfy the homogeneous differential equation) with a
finite number of algebraic point singularities of the type r' at isolated points on
the boundary and material-interfaces). In this paper we will determine a-priori the
quantities defined in (18), (20), (23), (24), (25) under the following assumptions:

1. The grid is locally periodic with period h (details about how the limit h -, 0
is taken are given below);

2. We will study the superconvergence in mesh-patches in the interior of the
domain where the solution is smooth (It is approximated well by its local
Taylor-series expansion of degree (p + 1) where p is the polynomial degree of
the elements);

3. The global modes of the error (pollutions), in the elements of interest, are
negligible when compared with the magnitude of the error in the local best-
approximation (see [51] and [53]).

The detailed theoretical setting and the precise assumptions are given in [471
(see also the outline given below). Our theory has an asymptotic character i.e. it
gives the precise results when the mesh is sufficiently refined or the accuracy of
the finite element solution is reasonably high. The theory of this paper cannot be
applied when the ezact solution is unsmooth (in the mesh-cell or element of interest)
or when the mesh is coarse.

We now give an example to explain the meaning of the new definition of su-
perconvergence. Let us consider the Dirichlet boundary-value problem for the
Laplacian

11



Au=0 in 11:=(0,1) }
U =ii on 00l

where fi is the boundary-value corresponding to the exact solution u(x1 ,x 2) =

sin(Tx) sinh(WX2 ). We computed a sequence of finite element solutions {Uh} using
a sequence of meshes of skewed bilinear quadrilaterals {Th }. These meshes were
obtained by subdividing the square-domain fl into a uniform three-directional mesh
of triangles and by converting each triangle into three quadrilaterals by connecting
the centroid of the triangle with the midpoints of its edges. The reason for choosing
such a mesh instead of a regular mesh of bilinear squares is because we would like
to give an illustrative example of the new definition in a case where it is different
than the classical definition of superconvergence.

We considered the sequence of meshes {Th}, h - 4' 8' 16'the mesh T

is shown in Fig. 2a. We considered the mesh-cell w2h = (0.25 - h, 0.75 - h) x
(0.25 + h, 0.75 + h) which consists of four square subcells wj, i = 1,..., 4, as shown

in Fig. 2b. We identified points x7h, K = 1,... , 6, in each subcell wh. The points
with identical subscripts K have identical relative positions with respect to the
corresponding subcell. We computed the value of

K :=,.,max 0 i; ;';u;rk,Th), K = 1,. ,6

where .F is the'ZZ-1 recipe given in Section 8, rk' is the element where the point
xk belongs. In Fig. 3 we show the graphs of K versus 1 for K = 1, 2, 5, 6. These

values converge, for h - 0, to the asymptotic values which were determined by
the theoretical analysis of Section 5.

We also computed the rate of convergence for all the points. From theorem 2
and Remark 5.2 in Section 5 below we have

4

IF(u) - Y(uh) I =6K'P(UW10 +Ch1+' + o(hl+Uo), q' >0
i=1

where (K denotes the asymptotic value of the relative error at the point which
4

corresponds to K and "(U w') is the maximum error in F(u) in the assembly of

4

the four mesh-cells. We have "'(U W') = Coh + o(h); hence we expect the error
i=1

12



in the recovered quantity to converge to zero linearly, unless 6K is zero (i.e. the
point is a 0%-superconvergence point).

In Table 1 we give the values of the error in the recovered quantity max

I (F(u) - .F(uh)) (xT-h) I versus h. For the points with K = 1, 2, 3, 5, 6 we
employed Y = Yzz1 while for the point with K = 4 we let Y - FDIR. We note
that we have 3 = 0% and the values of the error in the recovered quantity at the
corners of the subcells are superconvergent with the rate two (i.e. ao' = 1). On the
other hand at the points which correspond to K = 1, 2 the error in the recovered
quantity converges to zero with the rate one. For K = 4 it appears that the rate
is two. This is because 6K = 0.0162% and eKCO = 7.128E-03 while C1 = 4.750
and hence the true asymptotic rate of the error in the recovered quantity cannot
be seen for the mesh-size considered here. We have

axI (F(u) - uh))() I = (07128 + 4.75) h2

We can detect the correct order of convergence when h is sufficiently small so that
the first term in the parenthesis becomes of the same order or overcomes the second

1
term; this is possible for h < 102-. Fig. 3 shows very clearly the preasymptotic

phase (for h large), where our theory is not applicable, and the asymptotic phase
(for h sufficiently small), where our theory predicts very well the pointwise values
of the relative error.

4 Recipes based on least-squares patch-recovery

Below we describe the ZZ-recipes which are now commonly used in finite element
codes. We also describe a new class of recipes which are similar to the ZZ-recipes
and also take into account the information about the differential operator and the
source term.

4.1 Definition of the ZZ-recipes

We will now outline the definition of the ZZ-recipes for the elasticity problem.
The ZZ-recipes for the orthotropic heat-conduction problem are defined analo-
gously (see also [36-40] for further details).

Let wx := 3 r' denote the patch of elements connected to vertex X, as

shown for example in Figs. 4a, 4b. For each patch wx we recover the patch-
projection &X , by solving the following problems:

a. Discrete least-squares:

13



x ff(Uh & - ZIL2(.x),.- , -- inf I I(u) - o1L2(wX),cl,{Yt} (26)
sj=1,3

where {y,= denotes a set of sampling points in wx and

Fo 2
I III2(x),~1{yI7 m1 [i,,k,1=1 ki (Y.)] (7

b. Continuous least-squares:

llo(u ) - &ZZIL2(.x),c_= inf II'(Uh) - JXIIL2(wx),co_ (28)

where

2L2(WX),C-1 := L/ k - (29)

X ij,k,1=1

In [36] cijk was chosen to be the material-tensor aij. It is also possible to define
the patch-projections by letting cijk, = jk6j,.

A continuous piecewise polynomial recovered stress ozz is obtained over each
element by combiniug the patch-projections &Xz which correspond to the vertices
of the element. In the examples the quantity fZZ was constructed as follows:

a. Linear (or bilinear) elements (p = 1).

The recovered CO-continuous piecewise-linear (or bilinear) flux-field fZZ over
the domain is constructed as

f ZZ(.x), = &XLx Ox(X) (30)
X

Here &x 1X is the value of the &X at the vertex X and Ox is the piecewise-linear
(or bilinear) basis function associated with this vertex. Here and below we omitted
the subscript ZZ from &xz.

14



b. Quadratic (or biquadratic) elements (p = 2).

For the quadratic triangles a piecewise quadratic Langrangian representation
of O1zz is constructed from

ofZZ(x)= Ox(x)+ (X ( y + &X 21l) Oy(X) (31)
x Y

where Y denotes the midside node for the edge X 1 X 2; Ox, $y are the Langrangian
quadratic basis functions associated with the nodes X, Y, respectively. For the
biquadratic quadrilaterals we let

ffzZ(x) = a&Xj X(X) + Ej (&.XI + &.X2 J) OY (X) I (32)
+ 1 .X Z+ &X + &X3 I + &X4 IZ) Z(X)

where X, Y, (x, ,y have the same meaning as before and Z and Oz denote the in-
ternal node and the corresponding shape-function, respectively, for the biquadratic
element.

The quantity ff ZZ for cubic elements is defined similarly.

Remark 4.1. For the linear triangles we employed sampling points located at the
centroids of the elements while for the quadratic triangles the sampling points are
taken at the midpoints of the sides. These points are the same as the ones given
in [36-39]. For the quadrilaterals we employed the mapped p x p Gauss-Legendre
points as sampling points for the discrete recipe; for the continuous version of the
recipe we employed the mapped 10 x 10 Gauss-Legendre quadrature rule.

4.2 Examples of "statically admissible" recipes

Here we give examples of alternative recipes which, like the ZZ-recipes, are
based on local least-squares and also take into account the knowledge about the
differential operator and the source term. Let us assume that we are recovering the
stresses from a finite element solution of the elasticity problem with a given body
force f. For each patch wX we recover a "statically admissible" patch-projection
&X by solving one of the following problems:

a. Least-squares fit for the stresses:

Find &XA E SSA such that

I1s(Uh) AIIL2(.x),C1_,{ye}7,J = IIf(uh) - UxAIIL2(WX),C-,,{y,}7;' (33)
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where SsA is the class of "statically admissible" stress-fields given by

SSA o-- = --€( u "I + u p ) I u"H E-P P+  and L(u'H) = 0, L(uP)-f (34)

Note that (33) defines a discrete statically admissible patch-projection. In the
computations we employed the same sampling points as the ones given above for
the ZZ-estimator. It is also possible to define a continuous statically admissible
patch-projection analogously as in (28), (29).

b. Least-squares fit for the displacements:

Find fsA E USA such that

HUh - USAIIL2(.x),{C,) 17 = inf 11uh - fix (35)ti aEUSA S =

where USA is the class of "statically-admissible" displacement-fields given by

UA := fuU"H+u p I u'E P+' and L(u"H)=O, L(uP)=f} (36)

The corresponding stress-field &x is computed from

&x :=0o(iA) (37)

Here {C )7= denotes the set of sampling points for the displacement. For the
quadrilateral elements we used the mapped (p + 1) x (p + 1) Lobatto-Legendre
points. For the triangles we used as sampling points the nodes of the Lagrangian
elements of degree p. It is also possible to define a continuous version of (35) by
employing the usual L-norm.

After a recovered stress has been obtained for each patch from the above recipes
a continuous piecewise polynomial recovered stress is obtained over the entire mesh
by combining the patch-projections as given in (30)-(32).

Remark 4.2. It should be noted that the cost of constructing the recovered-fields
using the above "statically-admissible" recipes is always less than the corresponding
cost in the ZZ-recipes because we minimize over a smaller set. For example, in the
case of elasticity and cubic elements the computation of &x for a patch require
the inversion of an 27x27 matrix. On the other hand the calculation of the &xA
for both recipes given above requires only the inversion of a 12x 12 matrix. This
difference is more pronounced for higher-order elements.

Remark 4.3. It is obvious that the quality of a recipe can be improved if all the
known properties of the exact solution are employed. Hence it is not surprising
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that the quality of the "statically-admissible" recipes is better than the quality of
the ZZ-recipes (see Section 8.6, below).

Remark 4.4. The fact that it is possible to recover fluxes with higher accuracy, than
by direct computation, makes it possible to construct a-posteriori error estimates
for the energy-norm of the error.

Remark 4.5. We do not address the higher-order recovery of the solution (i.e. the
temperature or the displacement-vector) although it could be done in a similar
way.

5 Outline of the theoretical setting

The theoretical setting will be outlined below for the class of locally periodic
meshes which are defined as follows. Let 0 < H < H o , xo = (z,0 z) E R ,

S(x 0 , H) {X = (XIX2) 1 Ix, -xl <H, i = 1,2} (38)

and assume H' is sufficiently small such that S(x ° , HO) C fl. Further, let y be a
set of multi-indices (i,j), x(i )  j-( )) E (1 and

c(x(h), h) := S(x('j), h) C S(xH), (ij) E (39)

be the set of the h-cells (or cells) which cover exactly S(x ° , H) as is for example
shown in Fig. 2a, 2b. We will refer to S(x, H) as the subdomain of periodicity of
the mesh centered at x0 . We will denote by " := S(O, 1) the unit- (master-) cell
6, the h-cell is an h-scaled and translated master-cell.

Let T be a mesh of triangles or squares on the master-cell (the master-mesh)
and ir "') be the mesh on c(x('j), h) which is the scaled and translated image of
T. Let T E T and T(x 0 , H) be the restriction of Th on S(xe, H) and T('h) the
restriction of T,(x,H) on c(x('ij),h). We assume that Tl("' ) - T('j) , (i,j) E 7
i.e. Th(x0 , H) is made by the periodic repetition of the h-scaled master mesh. The
family T = {Th } is a class of meshes which are locally-periodic in the subdomain
S(x0 , H). Outside the subdomain S(xe, H) the mesh is arbitrary; it could have
curved elements, refinements, etc.

Let Q be a polynomial of degree (p + 1) defined over the master-cell -and let
be the master-mesh. Then denote

P := Q _ QIT (40)

where QM is the interpolant of degree p of the function Q defined over the master-
mesh T (for which h = 1). Any polynomial of degree p on an element rk belongs to

17



S (Tk) and hence any polynomial of degree p on S(z ° , H) belongs to SP(T, (z ° , H)).
It follows that p defined in (40) is Z-periodic (this can be shown exactly as in [54])
and

P(1, 2) = p(-1,i 2 ), 1"21 < 1 (41a)

M(1 1 ) O= M(1,-1), P 11 < I (41b)

Let

Hp'ER(Z) :{u E H'(Z) I u satisfies (41) }(42)
and

Sp,PER(c) := {uE H'Er( )I UIf E S (i) V f E T} (43)

Further let ko E S'E (2) such that

ba', i) = ba(p, 0) V 6 E SLPER( ) (44a)

and

f (p - 1p)= 0 (44b)

Note that the function V' exists and is uniquely determined (we will compute it
numerically in the examples). Let us also define 0 E H1 (6) by

0 := p-V= Q- where w:= Q'NT+ (45)

Let 01, E HJER(c(z(ij), h)) be the function b, defined above, scaled and translated
onto the cell c (z (ij ), h) of the mesh in S(z ° , H) i.e.

Chz =h"' 0(i), !th()=h L i) , i = 1, 2, (46)

where F - z(j)), z E c(z(ij),h). It is easy to see that ?k& can be

periodically extended over S(xz° , HI).
In [47] we proved the following theorem for Poisson's equation based on the

theory of interior estimates (see [53]):

Theorem 1. Let H < H < H and assume that the following assumptions hold
with
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6p+1 + 16= p ' =p  I  o=6(6p + 1) (

Assume that the exact solution u satisfies

IID ullL.(S(,oH)) < K < 00, 0 < JcJ <p +2 (48a)

where a:= (ar,a 2 ), Dau:= IjX0" 8X*
2  lal := al + a2, and

22

Ra = 2 > 0 where a. (D~u)(x0 ) (48b)
ai=P+1

Further assume that the mesh Th is such that

IeIIL2(S(o,H),) <ChPH1 , with 1 _>(p+ 1)-E (49)

Moreover assume that the meshes Th in S(z ° , H) are such that

C 1H* < h < C2H* (50)

Then for any z E S(z0 , HI)

1 - W1 It"' (z)j +.\ChP+"o (51)

with vo > 0, JAI _< 1 and C independent of h.

Theorem 2. Let the assumptions of Theorem 1 hold; then

F(u) - .F(u)I - I F(Q) - '(ib) I + ACh,' (52)

with oro > 0, JAJ I 1 and C independent of h.

Remark 5.1. The theorems assume that the mesh is periodic and that the solution is
smooth in a small subdomain (i.e. S(z ° , H)) in the interior of the domain. Outside
the subdomain. we assume neither periodicity of the mesh nor smoothness of the
solution. The solution may have algebraic-type singularities at a finite number of
comer points or points of abrupt change in the type of boundary-condition. Here it
is only assumed that the pollution-error in a shrinking mesh-patch (i.e. T (x ° , H1 ))
in the interior of the subdomain is controlled (see [51]). This implies that the mesh
has been adequately refined in the neighborhood of all singular points.
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Remark 5.2. If we further assume that
I(i)= II F(u- u) > ChP, C >0 (53)

theorem 2 implies that: A point x, in the element f is an i?%-superconvergence

point for the averaging F if and only if 7((x,; F; F ; Q; f, 7) < where
100

(;F;.F"; Q; f, t): 6~ (k; F;.F";Q; f, t) (54)

where

I F(Q)(R) - F(tb)(k) , if () 3 00(*; F;.J'; Q; , T): I(P)M (55)

0 ,if 0

with

'P:= [F(O,)(a) I (56)

Here Q denote the class of all (p + 1)-degree monomials which occur in Taylor
series expansions of functions from U (see also Section 6 below).
Remark 5.3. Assumption (53) can be realized by imposing additional restrictions
on the values a. of the (p + 1)-derivatives of the solution at z0.This assumption
is reasonable because we are interested in a sufficiently large class of solutions U.

Remark 5.4. The proof of theorem 1 in [47] was based on various interior estimates
for the error in finite element approximations of Poisson's equation, especially the
results given in [53]. It is very plausible that analogs of these results hold for
finite element approximations of the elasticity equations and more general, elliptic-
systems because the main ideas of the proofs of these results carry to the general
case. To our knowledge the precise details for the elasticity equations are not
available in the open literature. Nevertheless we will assume the validity of the
analog of Theorem 1 for the equations of elasticity.

Remark 5.5. The above theoretical setting was also employed to.assess the quality
of a-posteriori error estimators in [54] and [55].
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6 The method of freezing the periodicity

Let us assume that for a given locally periodic grid with corresponding periodic
master-mesh T, given material orthotropy and given class of solutions U which are
smooth in the interior of the domain (i.e. the solutions which satisfy (48a)) we
consider

Q:= (Q I( 1,X2) = Q.(O1(,,, 2), O (X,,X2) =EflX1 +1-1 (57)
k=11= h~l t=0

the class of (p+ 1)-degree monomials which occur in all (p+ 1)-degree Taylor-series
expansions of functions from U. Here Qk, k = 1,...,nd denotes a set of linearly
independent monomials which form a basis for Q. For example, let us assume
that U is the class of solutions UG which are smooth in the neighborhood of the
subdomain S(x° , H); in this case we may choose

Qk(zXIX 2 ) := X1 2 k 1, < k < nd = p + 2 (58)

and we obtain the class of all (p + 1)-degree monomials QG.

If we are interested only in the sub-class of harmonic solutions UH (i.e. the
solutions in U which satisfy Au = 0) we will take Q as the two-dimensional linear
space of harmonic monomials of degree (p + 1) denoted by QH, namely,

2
QHf QH I QH(zIX2) = Fk Qk(X1l X2 )} , (59)

k=1

Q (x,,X2) = he(z+), Q2H(X , 2 ) = Im(z 1+,), Z = X1 + iX2 . (60)

For the elasticity problem the class of "harmonic" (p + 1)-degree monomials Q'
is a four-dimensional linear space. Explicit expressions for a set of basis monomial
are given in [50].

In the previous Section we outlined Theorem 2 which states that we can obtain
the asymptotic values of the error in the recovered quantity for any smooth solution
u in the interior of a periodic mesh-subdomain from the solution of the periodic
boundary-value problem (44), obtained using the master-mesh T over the master-
cell Z, with data obtained from the local (p + 1)-degree Taylor-series expansion Q
of the exact solution. In order to apply the results of the theoretical study to the
practical meshes, for which the mesh is not locally periodic (like for example the
mesh shown in Fig. 4a), the following technique of freezing the periodicity will be
employed:
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1. Let wo0 be an interior patch of elements of interest (shown shaded gray in
Fig. 4a). Define the s-layered patch of elements wh, s > 1, surrounding the
patch wo" by

W> U wX, wx U 7' (61)
XeN(1') XEN(.r')

where N(T"') denotes the set of the vertices of element 7T, wx is the patch of
the elements connected to vertex X. The patch w~h is shown with thick black
perigram in Fig. 4a. Note that the patch who with its surrounding s-layers is
meant as a pattern which may be repeated in other places in the grid.

2. Complete the patch w, to a periodic-grid over a slightly larger square periodic-
cell which encloses the patch as shown in Fig. 4b. The periodic-cell is then
scaled and translated to the unit master-cell .

3. Assume that the mesh in the neighborhood of element T is made from the
periodic repetition of h-cells obtained from the master-cell as shown in Fig. 4c
(by h-scaling and translation) and let h tend to zero. Based on the results
of the theoretical study, we have

/ 'V11 % - %

S F ) (U; .;I TO) = '(u) (Q;F;f, T) (62)

Iimo AF()(;.P',F; r, Th) = AF(.)(Q;FP, Y 2 ; ,T) (63)

where A, .A denote the quantities defined in the master-mesh in the master-cell.

Remark 6.1. The above limits hold for the locally periodic meshes under the as-
sumptions of the theoretical analysis outlined in Section 5 (see [47] for the details).
Hence for the general grids the limit should be understood for the mesh which is
constructed by freezing the periodicity (as is, for example, shown in Fig. 4c).

7 Determination of the q%-superconvergence
quantities

The asymptotic values of fi(x; F; Y-; Q; f, T) for a recipe F for a class of
solutions Q can be determined using numerical optimization. Let us consider a
uniform subdivision of the element T" into subtriangles with vertices at the set of
points '- := { 40=Z. The value of the relative-error function for the class Q at
the point 4k is
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nd

I F, a,(F(Q1 )(f) - -7t W
'(fk; F;; Q; ,t ) := max n •100 (64)

max aiF(Oj)(fj)j
j=1,...np ,~

where {Q, }!, is a basis of Q and {I, , }!,d, denote the set of finite-element solutions
corresponding to the Qj's according to (45). The function f-(k; F; F; Q; f, T) can
be defined for any point * E f by using linear interpolation in the subtriangles. The
1V%-superconvergence regions for the recipe .F in the element - can be approximated
from

"F(u)(Q; F; f, T) {IkE I H =(i; F;.F; Q; f, fl< 7%) (65)

We will call the above approach the direct approach. It is also possible to use a
simplified approach which avoids the use of numerical optimization at every point.
We define the function

1 F(Q,. - (bi 1

H"-(i; F;.'; Q;i;T) 1 (;F(Q )(x) - .F(tZj(x)), (66)

where

I ndmax E cii ,F(Obi(tj)j
7Z- := in j=l ..... n - =1 (67

The quantity Z.- can be computed using numerical optimization. Let

F(, " (Q;F;T):={ErI W * };F;;Q; <j10 (68)

denote the approximate regions of il%-superconvergence for the class of solutions
Q obtained by the simplified approach.

Remark 7.1. Note that
%q i

IV;(. (Q;.F;f,T) C f, T). (69)

Therefore the simplified approach results to a conservative estimate for the 71%-
superconvergence regions.
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The function VF(.)( c;U; .F-; .; -f, ), defined in (24), can be approximated by
computing the numerator and the denominator in (24) as in (59). Then approxi-
mations of the region A(U;.F; "'; *fT), defined in (25), can be obtained.

Remark 7.2. The functions defined in (64) and (66) depend on the set of points -.
To ensure good accuracy in the approximation of the q%-superconvergence regions
a sufficient number of points must be employed.

Remark 7.3. In eq. (64) we define the relative error by taking the maximum over
the class of solutions Q because we do not know the solution a-priori. Obviously we
have to us- all the information about the solution that we have in our disposition.
This is the reason that in (64) we compute the maximum for the class Q (i.e. the
class of polynomials of degree (p + 1) which satisfy the differential equation).

8 A model numerical study of recipes

We will now present a model study of the recipes given in Section 4 based on
the definition of superconvergence given in Section 3. We will compare the quality
of the recipes with respect to direct sampling (i.e. direct evaluation of the quality
F(u) from the finite element solution) based on the following criteria:

1. The gain in the value of the minimum relative error.

For a given recipe we will define the minimum value of the maximum relative
error for the class of solutions U in the element.

r!in(F; ';U; r, Th) = min*H(z; F;.Y;U; T, Th) (70)

In this measure we will say that recipe .F' is superior to recipe F 2 in the element
r for the class of solutions U, if

711n (F; Y;U; r,Th) < r4.in(F;" 2 ; U;r, Th) (71)

2. Gain in the i7%-superconvergence regions.

For a given recipe Y" and given 17, 0 < n < 100 we define the percentage area of
the element in which the relative error in the recovered quantity is less than tj%,
namely

rT,<n% (F;Y-; U;7, Th) := ;rH 100 (72)

Here the symbol I I indicates the area of the set. Given a value of i7, we will say
that .Y1 is superior to .-2 in the element T, for the class of solutions U if
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1411<, A(F; '; U; r, Th) > rn,< %(F; Y'; U;r %Th) (73)

S. Robustness of a recipe 1 relative to the recipe .F at an arbitrary point relative
to direct sampling

For a given recipe F 1 we define the percentage area of the element in which the
recipe is less robust than recipe Y2, namely,

r>,l(F;U;Y', -1;T, Th) = I'd 00 (74)

In this measure we will say that the recipe P- is more robust than the recipe .2
in the element r if

-rii> I(A ' ; rITh) < 'D>(;Y, ; 1 A TO) (75)

We will also define the maximum value of the relative robustness in an element,
namely,

VIF'(U; Y'," ,T&) = TqtxDF(u) (x;U ; " 2; r, Th) (76)

Below we will investigate the quality of the several recipes by employing the
above defined measures.

In the numerical examples we will employ three versions of the ZZ-recipe, and
the "statically-admissible" recipes introduced in Section 4. We will use the follow-
ing abbreviations:

1. ZZ-1: Discrete ZZ recipe, Fzz-i, defined in (26) with cijkt = aijkl.

2. ZZ-2: Continuous ZZ recipe, FZZ-2, defined in (28) with cijkt = aijkt.

S. ZZ-3: Discrete ZZ recipe, Yzz-3, defined in (26) with cijkj = 6ikjt.

4. SA-1: "Statically-admissible" recipe, .yS,-l, based on least-squares fit for the
displacements defined in (33)-(34).

5. SA-2: "Statically-admissible" recipe, .. sA-2, based on least-squares fit for the
displacements defined in (35)-(36).

6. DIR: Direct sampling recipe, YDIR, which means that the solution quantity
is evaluated directly from the finite-element solution.

We will employ the methodology of the paper in the study of these recipes.
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8.1 Influence of the choice of the solution quantity F(u)
and its modulus I I

In this Section we will show that the quality of a recipe depends on the solution
quantity of interest and the modulus employed. We considered the case of elasticity
problem in which one could be interested in the error in one stress component or
the errors in all the stress components. We employed three types of measures and
moduli to compute the errors in the stress components, namely:

(i) F(u) - o11(u) and 011(u) := I 1 (u).

(ii) F(u) = -1 (aij (u)) and I,(Oij (u)) :=I,(%(u))1, where I, (oj) := 1
+0' 22 + 0r33.

(iii) F(u) = oj(u) and I ()j ( J 2 (U,,(u)), where J 2 (o 1) "- \

1w h ere i : i - i O j)

We computed the 77%-superconvergence regions in the elements in w (shown

in Fig. 4a) for the stresses computed using the finite element solution (i.e. di-

rect sampling). In Figs. 6a, 6b, 6c we show the regions of ri%-superconvergence

"F(u)(Q";Y'DI';T ,T) for F(u) = o11(u), Ii(o,,(u)) and ajj(u), respectively.
The values of yiD(F;IF-vR; Q-H-; ;, Th) and r%<,,%(F; FDIR; Qur; i ,' T,) for the
three measures used in Figs. 6a-6c are given in Table 2a. It can be seen that when
F(u) = I, (oij(u)) or oj,(u), the percentage area of the element with less than 10%
relative error is small or zero. We also computed the tl%-superconvergence regions
for the stresses recovered using the recipe yzz-1. In Figs. 7a, 7b, 7c we give
the regions 72 )(Q"H; 'zz-1;T7i ,Th) for F(u) = or,(u), I,(0,ij(u)) and Orj(u),
respectively. In Table 2b we give the values of i/mn(F; .z-; Q"'; . , Th) and
rn<,,%(F; Jzz-1; Q""; ri , T,) for the three measures employed in Fig. 6a-6c. It
can be observed that when the three different measures are employed different
gains in the value of the minimum relative error and the 71%-superconvergence re-
gions are obtained. By comparing Tables 2a, 2b we observe that the ZZ-recipe
is much superior than the direct sampling in all the measures i.e. there are sig-
nificant gains in the minimum relative error and the 77%-superconvergence regions
especially for small -q%. For example, in the J 2-measure, which takes into account
all stress-components, we have for Fzz-1

?7L~,(aj;. ZZ-I; QH";;i ,Th) < 2.5%, T<2%(ri;ZZ1; QH";r i , T h) > 85%

while for direct sampling
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t~ ~ ; O_.,'ZR "~iTO > 10%, 7'W <21s9(arij; TDIR; Q'H";,"i , Th) < 9.5%

Similar gains are also observed in the other measures. Note however that the
minimum value of the maximum relative error in each element obtained from the
ZZ-recipes and the direct sampling are very similar.

8.2 Influence of the choice of the definition of the ZZ-
recipe

We now give an example to show how the methodology can be employed
to compare the quality of different recipes. In particular we considered the three
versions of the ZZ-recipe, namely .FZZ- I, -ZZ-2 and .ZZ-3.

We considered the elasticity problem and the elements in w4l (shown in Fig. 4b)
assuming biquadratic elements (p = 2). We first computed the i7%-superconvergence
regions for stresses which are recovered using .zz-1 and .ZZ-2. In Figs. 8a and
8b we show the regions V9.)(Q""; J ;TjT) for r = rZZ-1 and F = zz-2

respectively. In Figs. 8c and 8d we give the regions IV% (Q"H.:-.do,,(U)(Q ;F;Ti, Th) for T"

.Fzz-I andF = -ZZ-2. In Table 3a we give the values of -qYi,(aij; ; Q"H";, ri, Th)

and I<,% (ij ; Q"H"; ri , Th) for the three recipes -zz-' -z2 and -zz-3 It
can be seen that the quality of .zz-1 and FZZ-3 , using this measure, is almost the
same whereas the quality of FZz- 2 is superior to the other two, in this measure.

We also computed the regions in the elements where the recipes yzz-i, yZZ-2

and .zz-3 are less robust than the direct sampling. In Figs. 9a, 9b, 9c we show
the regions A,,(u)(Q" 1 '; F; :FDIR; r, Th) for " = .ZZ-1, .ZZ-2 and .ZZ-3 , re-
spectively. The dark regions in Figs. 9a-9c are the regions where the recipe F
is less robust than direct sampling. In this measure, yZZ-3 appears to be su-
perior to .zz-i and .zZ-2. However, this is not true when we employ F(u)
= aij to compute the regions of relative robustness A5 , (Q"H';.F; j'DIR; r, Th)

which are given in Figs. 9d, 9e, 9f we show the regions for " = .ZZ-, yZZ-2

and FZZ-3 . In Table 3b we report the values of "In",(Q"H"; ;yDR;r, T,) and
% ( "H"QuHf; ;. TDIR;r, Th) for " = FZZ-1, yZZ-2 and yZZ-3, respectively. It

can be seen from Figs. 9d, 9f and from Table 3b that the quality of Fzz-1 and
.zz-3 is about the same while the .zz-2 is superior to the other two, in this

measure.

8.3 Influence of the class of solutions and the material-
orthotropy

In this Section we give examples to show that the quality of the recipes depends
on the type of solution ("harmonic" or general) and the material orthotropy. We
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considered the problem of orthotropic heat conduction and the elements in wH1
(shown in Fig. 4b) assuming biquadratic elements (p = 2). We computed theq/%-superconvergence regions Z"% -. z-

q,(,)(Q;JZ ;;ri, Th) and the regions of relative
robustness A,(,)(Q; ..zz-1; 'R; ri, Th) for the recipe .zz-1.

We first considered the case of isotropic heat conduction and studied the qual-
ity of the recipe for the class of harmonic and feneral solutions. In Figs. 10a,
10b we give the q%-superconvergence regions R"7 (Q;.Fzz-1; r ' ,Th) for Q = QHP. Ou
and Q = QG respectively. Note that in this case qi(u) = -, and [ :

( X:) + ( ) It can be seen that for class of general solutions the 17%-

superconvergence regions are smaller than those for the class of harmonic solutions.
In Figs. 10c, 10d we give the regions of relative robustness AML (Q; ZZ-, DIR;

"i, Th) for Q = QH and Q = QG, respectively. We observe that the regions A&.
(Q; ,YZZ-, yDR;i , Th) for Q = QH are much smaller and are included in the

corresponding regions for Q = QG.
We now consider the case of orthotropic heat conduction with the principal ma-

terial directions oriented along the coordinate axes and K = 2. In Figs. 1la,

11b we show the regions of ?l%-superconvergence *12-u) (Q,.F , ,Th) for Q =
QH and Q = Q0, respectively. In Figs. 11c, 11d we give the regions of relative ro-

bustness AU(,)(Q; Izz-, .DR; , TP) for Q = QH and Q = Q0 , respectively. We
reported the values of L(i ; .zz-1; Q; " ; Tj,) and"7r< 1 o%(q,; .zz-; Q; r; Th) in
Table 4a and the values of 7v> (qi; Y'ZZ-,. 'DI; Q; -i ;Th) in Table 4b. From Ta-
ble 4a, it can be seen that the quality of the .Fzz-1 recipe deteriorates when the ex-
act solution is not "harmonic" and also when material orthotropy is introduced. In
Table 4b we observe that regions of relative robustness Aq,(u) (Q; hzz- -DI; r , Th)
are relatively large when general solutions are employed or when the material is
orthotropic. Thus, the robustness of the recipe Y"' is reduced when a larger
class of solutions and material-orthotropy are admitted.

We also studied the influence of material orthotropy on the recipe .zz-' in
meshes of triangular elements shown in Fig. 12. Here we considered the peri-
odic mesh of triangles shown in Fig. 12d (Criss-Cross Pattern) with p = 2 and
computed the values of 17!;.(qG, ';QG;.r,T) and i-i<j0%(qj,Y -; QG;rj ,T) for
Y = Fzz-l and Jr = .'D. These are given in Table 5 for K- = 1 and

K22
K = 10 with the principal material directions oriented along the coordinate-

K(22
axes. In Table 5 we also report the values of 2pFl(QG; yZZ-1,yDR; , TA) and
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Kii
r'r> 1(qi; QG; . ,YDIR; ,Th) for the case of - = 10. We observe that when

K22
the ZZ - 1 recipe is employed there is a significant gain in the minimum relative
error; for example the minimum relative error obtained with direct sampling is
greater than 25% while that of the ZZ - 1 recipe is less than 3%. Moreover there
are no 10%-superconvergence regions for the direct recipe while there are regions
of significant size for the ZZ - 1 recipe.

8.4 Influence of the polynomial degree of the elements
and the topology of the mesh and the element-type

We now give some examples to demonstrate the influence of element type
(quadrilateral or triangle, the degree p of the element) and the local mesh topology.

We first considered the elasticity problem and the elements in w41 (shown in
Fig. 4b). In Section 8.2, we used this mesh patch with biquadratic elements to
report the regions of relative robustness for .zz-. We now computed these regions
for p = 1 and p = 3. In Figs. 13a, 13b we show the regions ",,Au)(QH" ; .Pzz";
yrDIR;,ri ,T) for p = 1 and p = 3, respectively. In Table 6 we give the values of

VF' ) (Q'H"; -';YDR;T" , Th ) and rV1> ,(Q"1 ;.F 'zz. ' R;D' ,Th) for p = 1,
2 and 3. It can be observed that the regions of relative robustness A% (Q s".
.zz- -.yDR ; ,r T%) where the ZZ-1 recipe is less robust than the direct sampling

increase in size as p is increased.
We now consider the problem of isotropic heat conduction and the elements

in the mesh patch shown in Fig. 4c assuming = 1. We first computed the

/%-superconvergence regions of the derivative U of the finite element solution

(direct sampling) for the class of harmonic and general solutions. These are shown
in Figs. 14a and 14b. It can be observed that the rq%-superconvergence regions
for the class of general solutions are smaller than those for the class of harmonic

solutions. In Figs. 15a, 15b we show the q%-superconvergence regions of O

which is recovered using the recipe .zz-' for the class of harmonic and gen-
eral solutions, respectively We also computed the regions of relative robustness
A .(Q;l - ; YDI; ri , T,) in these elements; we observe that the regions where

the ZZ- 1 recipe is less robust than the direct sampling increase in size as the class
of solutions is enlarged. In Figs. 15c, 15d we give these regions for Q = QH and Q
= QO, respectively. It can be clearly seen that q/%-superconvergence regions and
the regions of relative robustness depend not only on the geometry of the element
but also on the topology of its neighborhood.

In order to study the effect of mesh topology in triangular elements, we con-
sidered the four periodic patterns shown in Fig. 12 (Regular, Chevron, Union-Jack
and Criss-Cross patterns). We solved the problem of isotropic heat conduction
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using these patterns. For p = 1, the ZZ-recipes give 0%-superconvergent deriva-
tives at all points in the elements of Regular, Union-Jack and Criss-Cross pat-
terns. For the Chevron pattern and p = 1, the derivatives recovered using the
ZZ-recipe are 0%-superconvergent only along the lines which pass through the
midpoints of the horizontal sides. In Fig. 16 we give the q%-superconvergence re-
gions . (Qa; y.zz-; . Th) in the elements of the Chevron pattern. The values

16_ _

of 1IMi(.-. ;'; Q;T ,Th) and 'r<o,%(-;Y'; , j,) for Y ZT- and "

F yDIR are given in Table 7. It can be observed that for .ZZ-1

wTII 109 .O zz- h T ) > 43%

whereas for direct sarrPling

r, 1 Ou; DIR. QG;. , T ).= 0%

Thus, the recovered derivatives in the elements of the Chevron pattern are not
exact at all points. However there is a significant gain in the minimum relative
error and percentage area of the element with 10%-relative error.

For p = 2, the recovered derivatives in the elements in all the four patterns
are not 0%-superconvergent except, perhaps, at isolated points in the elements.
In Figs. 17a-d we give the q%-superconvergence regions R".(QG; iZZ-; ,T )

for the four patterns. In Table 8 we give the values of i/mi.(Oxi h)

% .8u
and rij<1 %(, ; '; QG;7 ,TI) for . - FZZ- and Y = FD'. We also report

the values of (.aQG;.Fzz-;.'DIR;; ,Th) and r>1(QG;.ZZ-1;yDIR; ,TA)
in all the elements of the four periodic patterns. In Fig. 17e we show the re-
gions % (QG; YZZ.-1;. i, Tk) for the distorted Criss-Cross pattern. By compar-

ing Figs. 17c and 17e we observe that a small distortion of the uniform mesh has
caused the disappearance of 5%-superconvergence regions in one of the elements.

8.5 An example which shows that the results obtained
using the method of freezing the periodicity hold in
the actual meshes

We now give some examples to show that the numerical results obtained by the
method of freezing the periodicity are observed in actual finite element calculations.

We first give an example to show that the pointwise values of the maximum
relative error obtained by the periodic-mesh methodology are also observed in
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actual computations. We considered the problem of isotropic heat conduction
and studied the superconvergence in the patch w41 assuming biquadratic elements
(p = 2). We used the methodology of Sections 6 and 7 to compute the 17%-
superconvergence in the modulus of the gradient for recipe .zz-'. The points :k
where the maximum reltive error takes a minimum value'n the element are shown•~ • • "-.".g- "- U ZZ-I 1
in Fig. 18, i.e. 7 (k, i-;Fzz, ; Q ; f ',t) = (mU,n y1 Q;"; ,,Th).
The values of the maximum relative error at these points and the coefficients of
the harmonic monomials which correspond to the extremal values of the error at
these points are given in Table 9. We now check if these values of relative errors
can be observed in the mesh patch when solving a boundary-value problem in the
mesh shown in Fig. 5a. We solved a Dirichlet boundary value problem with the
data consistent with the exact solution

ISX(X, X2 ) = C,1(xT - U124) + a 2 (X3 - 3X2 X2 )

where the values of a, and a2 are given in Table 9. The values of a, and a2
were obtained to correspond to the maximum relative-error at the point xk in
the periodic mesh. The values of the relative error at xk, computed using the
mesh of Fig. 5a, are given in Table 9. It can be observed that the relative errors

at these points are close to the values of Q(:;; ,f,) (whichaz- -;Qs; ,T)(hc

are computed from the periodic-mesh). Therefore the conclusions made from the
methodology are also valid for finite meshes.

We now give an example to show that the error in the recovered quantity
,P'ZZ-'(uk) can be more than the error in quantity F(uh) computed directly from
the finite element solution at some points and for some solutions. We considered the
problem of isotropic heat conduction and studied the superconvergence in the mesh-
cell wyg assuming biquadratic elements. We used the methodology to compute the
regions A (QG;.Fzz-',.FDIR; fi, Th), i.e. the regions where -zz-I is less robust

than the direct sampling .FDIR. We chose one point Rk in each element in W4I
which lies in A.(Q 0 ; -zz-, b-rDIR; f, Th) (as shown in Fig. 19) and determined

the coefficients of the monomials which correspond to the maximum relative error
in the recovered quantity FzZ (uh) at this poin, (; .--;z" ; QG; ;T).

Ox 1'
These coefficients are given in Table 10b. We then solved the Dirichlet boundary
value problems using the mesh shown in Fig. 5a. The data for each problem is
consistent with the exact solution

3 2 2 3
tLEX('T1I -T2-- a,.xi + a2x, X2 + a3 X, x 2 + a4 X2

where the values of {a }4= are given in Table 10b. In order to compute the error
at the point Xk we chose the exact solution with the coefficients of the monomials
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corresponding to this point given in Table 10b. The values of the errors in the
solution quantity computed directly from the finite element solution and the errors
in the recovered quantity are given in Table 10a. We also computed the ratio
of the error in the recovered quantity j 'ZZ-(uh) - F(u) I to the error in the
quantity computed directly from the finite element solution I .FDIR(u) - F(u) 1;
these values are given in the last column of Table 10a. It can be observed that
error in the recovered quantity exceeds the error in the finite element solution by
a large factor, as it was predicted by the method of freezing the periodicity.

8.6 The quality of the "statically admissible" recipes

We will now give examples to illustrate that the "statically-admissible" recipes
defined in Section 4.2 are more robust than the ZZ-recipes described in Section
4.1.

We first considered Laplace's equation and the elements in the mesh-cell w
(resp. wj'4) shown in Fig. 4a (resp. Fig. 4b) assuming bi-cubic elements. We
computed the regions *(QH; '; T-i ,T) for the levels Yj = 0.5%, 1%, 2% for ."r
.yZZ-, pSA-1, 7SA-2. These regions are given in Fig. 20a, 20b, 20c (resp. Figs.

21a, 21b, 21c). We note that for the recipe .Fzz-1 the 2%-superconvergence regions
are very small or non-existent in most of the elements while for the recipes .F.SA-1
and FSA-2 the 2%-superconvergence regions cover most of the elements.

We also considered the elasticity problem and the elements in the mesh-cell
'4n which is shown in Fig. 4c. We employed biquadratic elements and computed
the regions IV,'! (Q ';;; ,TA) with 'i% - 0.1%, 0.5%, 1% for .rZZ-, .sA-i,

y'SA-2; these regions are given in Fig. 22a, b, c. We observed that the recipe SA-2
which employs the least-squares fit of the displacement is the most robust. For this
recipe the 1%-superconvergence regions cover almost completely all the elements
in w. Note also that both "statically-admissible" recipes are more robust than
the ZZ-recipe at all the points in all the elements.

9 Summary of conclusions

This study presented a new definition of superconvergence which extends
the classical definition to practical meshes. Using this definition we constructed a
methodology for checking recipes for the recovery of the stresses, fluxes or deriva-
tives from the finite element solutions. We employed the theory to assess the qual-
ity of a class of recipes known as ZZ-recipes and improved "statically-admissible"
recipes. The following conclusions were drawn:

1. The regions of small relative error (i.e. less than 10%) for the ZZ-recipes are
much larger than the corresponding regions for direct sampling.
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2. The performance of the recipes depends on the class of meshes, solutions and
materials of interest.

3. In general, we cannot say that a particular version of the ZZ-recipe is the
best.

4. Depending on the geometry of the mesh, the class of solutions and the
material-orthotropy significant regions of large relative error (greater than
50%) may exist for the ZZ-recipes.

5. The robustness of the ZZ-recipe relative to direct sampling decreases when
the class of solution is enlarged or material-orthotropy is considered.

6. It is possible to improve significantly the quality of the recipes by employing
the available information about the classes of admissible data. Among the
recipes tested in this paper the recipe SA-2, which employs a "harmonic"
least-squares fit for the displacement, is the best.

7. We recommend the use of any of the recipes tested here, especially the recipe
SA-2, for practical computations.

8. The conclusions obtained using the methodology of the paper, to validate
the recipes, hold for practical computations.

9. The methodology should be used, instead of random benchmarks, to assess
the quality any concrete recipe used in practical finite element codes for the
classes of meshes, solutions and materials of interest.

10. By employing the methodology of freezing the periodicity we can find the
regions of least-error for any recipe in the interior of any practical mesh for
the various solution quantities in the element.

11. The presented theory has asymptotic character. Hence the above conclusions
are practically valid when the solution is smooth and the mesh is sufficiently
refined. The cases of unsmooth solutions and coarse meshes will be addressed
in forthcoming papers.
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List of Figures

Fig. 1. Examples of geometrical quantities used in the definition of the recipes.
The value of the recovered quantity at the point k, shown here in the interior of
mesh-cell of bilinear elements, is obtained as a linear combination of the values of
the solution at the vertices {x}!f.

Fig. 2. An example to explain the new definition of superconvergence. (a) A
typical finite element mesh, bilinear elements, in the sequence of meshes. The
point (0.25, 0.75) and the mesh-cell consisting of four sub-cells (shown shaded);

,, W(b) The mesh-cell of size (2h x 2h) and the x1
h . Here we show the points x , x2

Fig. 3. An example to explain the new definition of superconvergence. Exact so-
lution UEX (XI, X2) = sin(irxl) sinh(7rx 2); bilinear Elements. Graphs of the relative
error at the points marked in Fig. 2b for various values of the mesh-cell size h. Note
that the values of the relative error converge to the theoretical values obtained from
the periodic mesh.

Fig. 4. The interior mesh-,-, -.. nployed in the study of the quality of the recipes.
(a) Mesh-cell w, consisting of taree elements shown with four surrounding mesh-
layers; (b) Mesh-cell W4 consisting of seven elements shown with seven surrounding
mesh-layers; (c) Mesh-cell wltt consisting of 20 elements surrounded by three mesh-
layers.

Fig. 5. The method of freezing the periodicity. (a) Mesh of skewed quadrilateral
with the mesh-cell w0h shown shaded gray; (b) The periodic grid obtained by com-
pleting the mesh-cell w h; (c) The locally periodic mesh obtained by the method of
freezing the periodicity.

Fig. 6. Influence of the choice of the solution quantity F(u) and its modulus .j
on the quality of the recipes: Elasticity problem, biquadratic elements, "harmonic
solutions, mesh-cell wl.
(a) The regions 7VY (""':'DIR;i , Th);'21(u)(Q ,j Ii

(b) The regions Rq"9, (Q6 , r ,T,), I (u) := O11(u) + u 22 (u);

(c) The regions ,, Q"W' 'DIR;;i T) where Q" = J2 (o,).
The levels of 7% employed are: 10%, 25%, 50% (dark, light and lighter gray,
respectively).

Fig. 7. Influence of the choice of the solution quantity F(u) and its modulus " I
on the quality of the recipes: Elasticity problem, biquadratic elements, "harmonic
solutions, mesh-cell wi.
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(a) The regions R"!(U)(Q"H.;.Fzz-; 'T ,Th);

(b) The regions 1'",)(Q) r;.Fzz-1;ri ,Th), 11(u) := o'1 (u) + u22 (U);

(c) The regions 7'1% (QHf";'zz-1; y ri ,Th) where I ij[ =J2(oi)
The levels of ql% employed are: 5%, 10%, 25% (dark, light, lighter gray, respec-
tively).

Fig. 8. Influence of the choice of the definition of the ZZ-recipe: rl%-superconver-
gence regions for the ZZ-recipes. Elasticity problem, biquadratic elements, "har-
monic" solutions, mesh-cell w4I.
(a) The regions %t)% (Q7Hw; Jr zz-1; , T;
(b) The regions I1() (Q ;"IryZZ-2; r/,T);

(c) The regions * RYu)(QH";. z;rj ,Th) where i2,. 9{ (Q,ff. Z-;.,, T ) whr i -J (j,

(d) The regions (u)( I hZ iT. ) where j 2(oi).

The levels of 17% employed are: 5%, 10%, 25% (dark, light, lighter gray, respec-
tively).

Fig. 9. Influence of the choice of the definition of the ZZ-recipe: Regions of relative
robustness of the ZZ-recipes with respect to the direct recipe. Elasticity problem,
biquadratic elements, "harmonic" solutions, mesh-cell Wil.
(a) The regions A.1,, )(QM";. -zz-1; -DIR ; ri' Th);

(b) The regions A, 11 ()(Q"H"; yzZ-2; .FD ; ri ,Th);

(c) The regions .A.,(u)(Q MH"; .yZZ-3; F ."R; ri, Th );
(d) The regions Ai,(u)(Qa . -; .ZZl yDIR ; ., Th);
(e) The regions .,,(.)(Q"H"; yZZ-2; y.IR;i , T);
(f) The regions A,,,(.)(Q" "'; y.ZZ-3; .IR;ri , TO)

The dark-regions indicate the areas where the ZZ-recipes are less robust than direct
sampling. In the regions given in (d), (e) and (f) the modulus I aij :=J2(i)
was employed.

Fig. 10. Influence of the class of solutions: Regions of 7%-superconvergence and
of relative robustness (with respect to direct sampling) for the ZZ-recipes. Isotropic
heat-conduction, biquadratic elements, mesh-cell w .
(a) The regions k (Q, Yzz-;ri ,Th);

(b) The regions -A!.% (Qr; Z. , Th);

(c) The regions A .(QH; Y ' , F"" ;ri , Th);

(d) The regions A A(QG; Y.ZZ-1, .rDIR; ri,Th).

The dark-regions indicate the areas where the ZZ-recipes are less robust than direct

sampling. Here the modulus j J- : ( + ) s l
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Fig. 11. Influence of the class of solutions: Regions of ir%-superconvergence
and of relative robustness (with respect to direct sampling) for the ZZ-recipes.
Orthotropic heat-conduction with K22 = 2, biquadratic elements, mesh-cell 41.

K11
(a) The regions u(QH; yMzU)1; Ti ,T);

(b) The regions R', (QG; Z'Z- 1; Ti ,Th);

(c) The regions Aq(U)(QH; ZZ-l, Y'DIR; Ti ,Th);

(d) The regions .Aq(O)(Q; .z -,.DIR; ri , Th).
The dark-regions indicate the areas where the ZZ-recipes are less robust than direct

sampling. Here the modulus q, := + q2 was employed.

Fig. 12. Periodic meshes of triangles. (a) Regular pattern; (b) Union-Jack pat-
tern; (c) Chevron pattern; (d) Criss-Cross pattern.

Fig. 13. Influence of the polynomial degree of the elements: Elasticity problem,
tensor-product quadrilaterals "harmonic"; solutions 'mesh-cell W4j. The regions
.,()(Q-H; yZZ-; 'DIR r, , T).

(a) Bilinear elements (p = 1);
(b) Bicubic elements (p = 3).
The dark regions indicate the areas where the ZZ recipes are less robust than direct
sampling.

Fig. 14. Influence of the topology of the mesh and the class of solutions: Isotropic
heat-conduction, bilinear elements, direct sampling.
(a) The regions "9 (Q; FDIR; ri ,Th);

(b) The regions R"(QG; J.D'; ri, Th);

The levels of q% employed are: 10%, 30%, 50% (dark, light, lighter gray, respec-
tively). Note the ir%-superconvergence regions for the general class of solutions
shown in (b) are smaller than the corresponding regions for the harmonic class of
solutions shown in (a).

Fig. 15. Influence of the topology of the mesh and the class of solutions: Isotropic
heat-conduction, bilinear elements, mesh-cell w4i.
(a) The regions 7R_% (QH; yzz-I; ri , Th);

(b) The regions i'(QG; y.zz-; ri , Th);

The levels of q% employed are: 5%, 10%, 25% (dark, light, lighter gray, respec-
tively). Note in contrast to the t?%-superconvergence regions for direct sampling
shown in Fig. 11 the 25%-region practically covers all the elements.
(c) The regions A"6 (QH; ".FZZ1; DIR;.i , Th);
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(d) The regions AIt (QG..Fzz--I; ,FTh ).

The dark-regions in (c) and (d) indicate the areas where the ZZ-recipes are less
robust than direct sampling. Note that the dark-regions for the general class of
solutions are larger than the corresponding regions for the harmonic solutions.

Fig. 16. Influence of the element type: Isotropic heat-conduction, linear triangular
elements, Chevron-pattern, discrete ZZ-recipe.

Fig. 17. Influence of the element type: Isotropic heat-conduction, quadratic tri-
angular elements, discrete ZZ-recipe.
(a) The regions IVS (QG; ZZ-1; r, Th) for the Chevron pattern;

(b) The regions w (QG; Fzz-';ri, Tt) for the Union-Jack pattern;

(c) The regions k'i% (QG; .ZZ-1; , , T) for the Criss-Cross pattern;

(d) The regions rZ%(QG; ,ZZ1; T) for the Regular pattern;

(e) The regions D"6 (QG; .1z-1;,-., Th) for the distorted Criss-Cross pattern. Note

that the slight displacement of the central node caused the disappearance of the
5%-regions from two of the elements.
The levels of 17% employed are: 5%, 10%, 15% (dark, light, lighter gray, respec-

tively). Here the modulus V :2 + (O)2 was employed.

Fig. 18. An example to show that the conclusions hold for general meshes. Mesh-

cell wj~j1 ard the regions 7ZI1% (QG;yZ7Z-1;; , T) for biquadratic elements shown

in Fig. 10b. The points of interest in these regions are marked and enumerated for
studying the relative error in the ZZ-recipe.

Fig. 19. An example to show that the conclusions hold for general meshes. Mesh-
cell wl 1 and the regions At (QG;Y'zz-;.F'D ; ri ,T A) for biquadratic elements

shown in Fig. 10d. The points of interest in these regions are marked and enumer-
ated for studying the relative error in the ZZ-recipe.

Fig. 20. Comparison of the robustness of the "statically-admissible" recipes with
the ZZ-recipe: Laplace's equation, bi-cubic elements, mesh-cell w.
(a) The regions 7V% (Q, .Fz-.,r , ,Th);

(b) The regions XW't (QH;, Th);

(c) The regions rW', (QH; -sA-., Th).
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The levels of V% employed are: 0.5%, 1%, 2% (dark, light, lighter gray, respec-
tively). Note that the 2%-superconvergence regions for the ZZ-1 recipe are almost
non-existent.

Fig. 21. Comparison of the robustness of the "statically-admissible" recipes with
the ZZ-recipe: Laplace's equation, bi-cubic elements, mesh-cell w 1 .
(a) The regions RY(QH; Y-ZZ-1; ri Th);

(b) The regions % (QH; SA-1; 7, Th);

(c) The regions (QH;SA-2;r ITh).

The levels of tj% employed are: 0.5%, 1%, 2% (dark, light, lighter gray, respec-
tively). Note that the 2%-superconvergence regions for the ZZ-1 recipe do not exist
in four elements from the mesh-cell.

Fig. 22. Comparison of the robustness of the "statically-admissible" recipes with
the ZZ-recipe: Laplace's equation, bi-cubic elements, mesh-cell wi.
(a) The regions IZ,% (Q"fHl .zz-;,T)

(b) The regions Z ().(Q H ,- j ,Th);• 14 ("Hf ' .. A-2. ;

(c) The regions IV (Q ,i,Th).

The levels of ti% employed are: 0.1%, 0.5%, 1% (dark, light, lighter gray, respec-
tively). Note that the 1%-superconvergence regions for the SA-2 recipe cover the
elements almost entirely.
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Rate of convergence of the
error in the gradient

Point x ; 61 = 19.7%

h F(u) -Fzz-(u/) F(u)- -YZZI(Uh)

h

0.25000 2.026 8.104
0.12500 1.179 9.432
0.06250 0.625 10.001
0.03125 0.333 10.640

Point :R2  62= 20.92%

h i F(u) -yZZ-'(u), F(u) - Z'Z-'(ui)
h

0.25000 1.917 7.668
0.12500 1.143 9.144
0.06250 0.613 9.808
0.03125 0.317 10.144

Table 1. Rate of convergence of the error in the gradient: Laplace's equation,
bilinear elements (p = 1), meshes consisting of mesh-cells shown in Fig.2a. The
locations of the points xj,..., &es with respect to the mesh-cell are shown in Fig. 2b.
Here F(u) denotes the value of the derivative of the exact solution yFZZ-4(uh) de-
notes the recovered derivative using the recipe described in Section 4 and FDIR (uh)
denotes the derivative of the finite element solution u%.
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Rate of convergence of the
error in the gradient

Point R3 , 03 =0.0%

h F(u) - yrZZ-I (uh F))-Fzl(h

0.25000 0.04993 0.800
0.12500 0.01840 1.178
0.06250 0.00449 1.149
0.03125 0.00116 1.188

point :R4  64 0.016%

h IF(u) - DIR1(uI F h)2.DR~

0.25000 0.27604 4.417
0.12500 0.06846 4.382
0.06250 0.01841 4.714
0.03125 0.00464 4.750

Table 1. (continued)
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Rate of convergence of the
error in the gradient

Point ,; Os = 20.21%

h F(u) - Fzz-,(u) F(U) - hZ-'(U)
h

0.25000 0.05367 0.215
0.12500 0.01977 0.158
0.06250 0.00616 0.099
0.03125 0.00249 0.080

Point R6 ; 6 = 30.25%

h F(u) - ZZ'(uA ) F(u) - Fzz-,(u )

0.25000 1.621 6.484
0.12500 0.933 7.464
0.06250 0.487 7.792
0.03125 0.242 7.744

Table 1. (continued)
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Elasticity problem

Discrete-ZZ Continuous ZZ Discrete-ZZ
with aij(Z - 1) with aik (ZZ - 2) with b5ik j (ZZ - 3)

1 2.45 11.96 0.19 61.37 2.17 12.94
2 13.21 0.00 2.74 22.27 13.62 0.00
3 14.10 0.00 3.32 37.16 13.89 0.00
4 1.72 43.30 1.61 54.01 1.95 42.22
5 2.16 48.37 3.11 68.94 2.09 48.81
6 9.31 0.18 7.59 10.47 9.33 0.18
7 8.93 3.27 4.30 39.31 8.84 3.33

Table 3a. Influence of the definition of the recipe: Elasticity problem, "Harmonic"
solutions, biquadratic elements (p =2), mesh-cell Wjh. rl%-superconvergence regions
for the three versions of the ZZ recipe. The values of 17n (7-) :=mi q(ai,;.r; Q~"; ,ri TO)

and Irl1,<1,% (oY iUr T)for y = )rZZI, FZZ-2 and FZZ-3.

49



Relative robustness of the ZZ-recipes
with respect to direct sampling

Mesh-cell of seven elements shown in Fig. 4b

Elasticity problem

Discrete-ZZ Continuous ZZ Discrete-ZZ
r with aGIk (ZZ - 1) with aijkt (ZZ - 2) with 6 sk 6 i2 (ZZ - 3)

1 1.87 4.81 0.64 0.00 1.80 4.79
2 2.31 11.21 1.79 5.15 2.09 11.09
3 1.44 9.44 1.32 3.20 1.46 9.52
4 1.39 6.47 0.83 0.00 1.36 6.33
5 2.09 10.39 1.54 5.61 1.98 10.34
6 1.61 3.01 0.94 0.00 1.59 3.01
7 2.42 17.00 1.05 0.13 2.42 17.59

Table 3b. Influence of the definition of the recipe: Elasticity problem, "Har-
monic" solutions, biquadratic elements (p =2), mesh-cell wl 1 . Regions of relative
robustness of the ZZ-recipes with respect to direct sampling. The values of F

max VF(u) (x; Q'H; ,.'F";Tri ,Th) and T' yo>l (Q H.F, ;'ri , Th) for .--

jyzz-1, yZZ-2 and yjZZ-s.
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q%-superconvergence for the discrete ZZ-recipe

Mesh-cell of seven elements shown in Fig. 4b

Orthotropic heat-conduction

Quip QG

i= K2 2  K2 2 K2 2 -= 2
K1 1  K11  K1 K11

mo10% (10% mn(r T*<10 7 ri<10%

'1 1.86 70.15 6.00 0.74 2.45 11.96 8.48 0.09
2 5.19 24.47 17.93 0.00 13.21 0.00 22.17 0.00
3 7.02 14.01 12.83 0.00 14.10 0.00 19.56 0.00
4 1.72 36.04 1.66 17.12 1.72 33.30 2.41 11.72
5 2.22 70.87 3.48 17.77 2.16 48.37 5.28 13.44
6 10.87 0.00 20.67 0.00 11.31 0.00 28.29 0.00
7 4.78 22.68 9.70 0.16 8.93 1.27 11.97 0.00

Table 4a. Influence of the solution type and material orthotropy: Orthotropic heat
conduction problem, biquadratic elements (p = 2), mesh-cell w~z. j7%-superonvergence
regions for the discrete ZZ recipe.zz-'. The values of %in(-) := 7i(qi; .. zz-; Q; ri Th)
and 77%<10% (qi;y'ZZl;Q; ,Th) for Q = Q"H" and Q - QG with the principal

material coefficients K 22  andK22
K 11  K11
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Orthotropic heat-conduction

Ti

-n=1 K__=_=
K22  K 2 2  K2

1 1.21 14.53 42.72
2 1.04 38.58 67.43
3 1.11 56.05 77.83
4 1.31 14.81 27.82
5 1.19 7.25 17.15
6 1.37 23.73 59.40
7 1.16 7.06 19.27

Table 4b: Influence of the solution-ty/pe and material orthotropy: Orthotropic
heat conduction problem, biquadratic elements (p = 2), mesh-cell wl'. Regions of
relative robustness of the ZZ-recipe.FY"'. The values ofrr',1 (q,; Q; yZ Y1,I;,TO)

Q GK2 K
for Q = Q"H" and Q Gwith material orthotropy =1 and "22 = 2.

11 K11
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i7%-superconvergence and relative robustness of the ZZ-recipe
with respect to direct sampling

Quadratic triangles (p= 2 )

Criss-Cross pattern

yFZZ-1 yrDIR

K1, = I K = 10 11 = I KL" = I0 K1=i

K22  K22  K22  K 22  K22

vtm ax
%F(-)

171 <1o% 1<1o% ! ) <1o% r) <°% x I007i<1O~ 'fint ini mni T<lo% x 100 D>

1 2.86 6.45 2.58 1.96 26.71 0.00 25.87 0.00 144.90 6.08
2 2.99 7.00 2.65 8.94 31.24 0.00 24.55 0.00 173.78 7.59
3 2.86 6.45 2.58 1.96 26.71 0.00 25.87 0.00 144.90 6.08
4 2.99 7.00 2.65 8.94 31.24 0.00 24.55 0.00 173.78 7.59

Table 5. Influence of material-orthotropy: Criss-Cross pattern. Orthotropic heat-
condiction, quadratic triangles (p = 2). Values of 77!in(r d ) and % < 10% for the class
of general " solutions and the recipe .Yz-' (columns 1-4) and the recipe .FDIR
(columns 5-8). In columns 9-10 we give the values of VFa.r and rD,>, for the case
K22-10.
Kll
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Relative robustness of .zz-l
with respect to .FDIR

Mesh-cell of seven elements
shown in Fig. 4b

Elasticity problem

p p= 2  p= 3

- DU) Di>1 F~-~;u)

1 0.94 0.00 1.14 9.37 3.34 42.36
2 0.58 0.00 2.28 15.53 2.92 79.31
3 0.61 0.00 2.12 19.04 5.65 82.91
4 0.50 0.00 1.50 13.64 3.64 33.17
5 0.47 0.00 2.95 6.24 3.38 20.97
6 0.57 0.00 1.54 20.98 4.82 67.92
7 0.55 0.00 1.36 10.53 2.90 29.76

Table 6. Influence of the p-order of the element: Elasticity problem, bi-p elements,
mesh-cell w4'. Regions of relative robustness of the ZZ-recipe .. zz- with respect to
direct sampling. The values of ' :n m F(u)(x; Q"H"; ZZ-1, - , Th)

VET

and T >1 (q;Q;.FZ-,YDIR;ri ,Th) forp = 1, 2 and 3.
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i7%-superconvergence and relative robustness
of the ZZ-recipe with respect to direct sampling.

Isotropic heat-conduction

Linear triangles (p = 1)

Chevron pattern

jrzz-1 jrDIR

1 0.00 43.97 43.68 0.00 23.20 0.00
2 0.00 43.97 43.68 0.00 23.20 0.00
3 0.00 43.97 41.91 0.00 22.59 0.00
4 0.00 43.97 41.91 0.00 22.59 0.00

Table 7. Influence of the topology of the mesh: Chevron pattern. Isotropic
heat-conduction, linear triangles (p = 1). Values of the minimum relative er-

ror i (r) := (--.; '; Q;ri , Th) in the elements for the class of general so-

lutions and percentage area of the element 4%<0 ( ; QG; r , Th) in which
ex,

the relative error in the recovered gradient is less than 10% for .F = .zz-,
and .F = Y-DIR (columns 3, 4). In columns 5, 6 we give the values PF( :
max DF(.) (x; QG;.'zz-,'FDIR;" i ,Th) and of rD>1 defined in (74).
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q%-superconvergence and relative robustness
of the ZZ-recipe with respect to direct sampling.

Isotropic heat conduction

Quadratic triangles (p = 2)

rzz-i yrDIR

r1 ' W<10% r< X10

Regular Pattern

1 0.0 100.00 26.07 0.00 13.02 0.00

2 0.0 100.00 26.07 0.00 13.02 0.00

Chevron Pattern

1 5.90 61.72 29.34 0.00 41.35 0.00
2 5.90 61.72 30.09 0.00 41.35 0.00
3 5.90 61.72 29.10 0.00 41.49 0.00
4 5.90 61.72 29.10 0.00 41.49 0.00

Union Jack Pattern

1 2.86 6.83 31.77 0.00 131.51 1.56
2 2.86 6.83 31.77 0.00 131.51 1.56
3 2.99 6.91 28.51 0.00 112.83 0.93
4 2.95 6.91 28.51 0.00 112.83 0.93
5 2.95 6.93 28.51 0.00 112.83 0.93
6 2.99 6.94 28.51 0.00 112.83 0.93
7 2.86 6.83 31.77 0.00 131.51 1.56
8 2.86 6.83 31.77 0.00 131.51 1.56

Criss-Cross Pattern

1 2.86 6.45 26.71 0.00 133.76 1.58
2 2.99 7.00 31.24 0.00 134.29 0.88
3 2.86 6.45 26.71 0.00 133.76 1.58
4 2.99 7.00 31.24 0.00 134.29 0.88

Table 8. Influence of the mesh-topology: Regular, Chevron, Union-Jack and Criss-

Cross patterns. Isotropic heat-conduction, quadratic triangles (p = 2). Values of
Tq~ (r,) and r.H<10% for the recipes Yzz-4 (columns 1, 2) and .'DIR (columns 3,

4). In columns 5, 6 we give the values of VF-aT and rD>.
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Coefficients of the cubic harmonic
solutions used in Table 9a

u( 1,zx2 ) = ad(X - 3xxz) + 0 2( 2 - 3 4X2)

Point k al a2

1 1.000 0.714
2 1.000 0.688
3 -0.577 1.000
4 -1.000 -0.796
5 -1.000 -0.796
6 -0.578 .1.000
7 -1.000 -0.578

Table 9b. An example which shows that the results obtained using the method
of freezing the periodicity hold in the actual meshes. Isotropic heat-conduction,
biquadratic elements (p, = 2), mesh-cell wl 1 . The coefficients of the solutions
employed to compute the errors at the points xk in table 9a (by solving a Dirichlet
boundary-value problem over the square-domain f? = (0,1)2 using the mesh shown
in Fig. 5a).
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Coefficients for the cubic solutions used in Table lOa

u(z 1 ,z ) = az + az X2 + a3zz2 + a4 2

Point a, a2 4 3  a4

1 1.00000000 .27931142 -.88763169 .92384722
2 -.05439094 -.02646028 .84947474 -1.00000000
3 .43162747 -1.00000000 -.93122513 .45706703
4 -.75131974 -.61557397 .42834683 1.00000000
5 .95275077 -.75780325 -1.00000000 -.79558135
6 -.24876338 .27911873 1.00000000 .59140203
7 -.29648689 -1.00000000 -.21416015 .97156428

Table lob. An example which shows that the results obtained using the method
of freezing the periodicity hold in the actual meshes: Isotropic heat conduction,
biquadratic elements (p = 2), mesh-cell wy,. The coefficients of the solutions
employed to compute the errors at the points Rk in Table 10a (by solving a Dirichlet
boundary value problem over the square-domain R = (0,1)2 using the mesh shown
in Fig. 5a). For example, to compute the errors at point x in Table 10a we
employed the exact solution u(z, X2) = z + 0.27931142x1x 2 - 0.88763169xp4 +
0.92384722x2.
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The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babuika, Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


