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Abstract

This paper describes the design of an implementation of the Transmission Control Protocol using
an extension of the Standard ML (SNL) language. S14L supports higher-order functions, modularity.
and type-safe module composition. We find that by using S14L we can achieve good structure
and good performance simultaneously. Good structure includes a modular decomposition of the
protocol stack and of the TCP implementation, a control structure that imposes a total ordering on
all events and processes them synchronously, and a test structure that allows component testing to
catch problems before system integration. Strategies that help achieve good performance include
using fast algorithms, using language constructs that make it easy to stage function evaluation.
and language implementation features such as compacting garbage collection.
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1 Introduction

The design of programming languages has made great strides in the past twenty years. However
most programs, and especially networking and systems programs, are still written in languages
that already existed twenty years ago or in languages that carry all the baggage of twenty-year-old
languages and have but few of the features of advanced programming languages. It is hard to find
significant systems projects implemented in advanced languages.

These statements raise the parallel questions of whether it is possible to improve the practice
of systems programming by using advanced languages, and whether advanced languages really are
well-suited to systems programming. The Fox Project is addressing both questions by producing
implementations of network code in the Standard ML (SNL) [12, 111 programming language.

It is common practice today to write systems and networking software in either C or C++. The
advantages of these languages include the speed of the compiled programs, the ability to express
low-level operations, and the compatibility with existing systems. These advantages are considered
more important than the drawbacks of these languages, including lack of modularity, lack of typing,
lack of automatic storage management for dynamic data, and in general lack of safety: type safety,
which prevents type and argument mismatches, storage safety, which prevents memory misuse,
and module safety, which prevents violations of data abstraction boundaries. Advanced languages
such as S4L address these problems, but have traditionally been considered too inefficient, and
insufficiently expressive of low-level operations, to be useful for systems programming.

The Fox Project has used an extension of SML to develop an implementation of the TCP/IP
protocol stack. Our goals have been to explore the advantages (and drawbacks) of developing
networking software in advanced languages and to study the features that advanced languages need
to allow the expression of operations common in systems software. We have chosen to implement
the TCP/IP protocol suite not because it is especially simple or well-structured, since it is neither.
but because it is relatively well-understood and frequently used and implemented, and can therefore
be taken to represent much of the common practice of systems programming.

In this paper, we concentrate on the design of our implementation of the TCP protocol and
on its realization in SML. In particular, we describe the implementation's module structure, which
reflects the structure of the specification, the control structure, which is synchronous except for the
order in which asynchronous events are queued, and the test structure, which allows detailed and
accurate component testing.

We claim that the combination of structured design and advanced languages can lead to im-
plementations of systems code that are more robust than currently available implementations, and
that the the software engineering cost of building and maintaining these implementations may be
substantially less than for current implementations. We also believe that structured implementa-
tions in advanced languages can be made to be as fast as comparable implementations in other 'o"
languages, though the maturity of our current implementation is as yet insufficient to demonstrate :
this. 0

Section 2 briefly describes some the features of SML that we refer to in describing our implemen- 0
tation; section 3 describes the general structure of our protocol stack; and section 4 describes in I -'.

detail the structured aspects of our implementation of TCP. Section 5 reports on and discusses the
performance of this implementation, Section 6 describes related work, and section 7 summarizes
our results.
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2 Programming Language

The Standard ML programming language is a typed polymorphic language with type inference,
automatic storage management and garbage collection, higher-order functions, and a well-developed
module system [12]. We treat each of these in turn.

In a typed language, only operations defined on particular types can be applied to values of
these types. For example, in SML it is impossible to dereference an integer or add two pointers.
SML is typed, but also polymorphic, so SML does allow functions that can be applied to values of
different types; the restriction is that the function implementation must be such that no knowledge
is required about the type. For example, the length function returns the length of its argument,
whether it be a list of reals, integers, or a list of elements of any other type. SML also has type
inference, which means the programmer almost never needs to explicitly specify the type of an
expression; the compiler automatically infers the most general possible type for each expression,
and only rejects the program if no legal assignment of types to expressions is possible.

Typing helps prevent type mismatches such as passing an Ethernet address to a function from
the IP layer.

Storage management in SML is automatic, as it is for C and C++ stack variables but not for C or
C++ heap storage. Because of typing, there is no way for a program to get at the bit representation
of a pointer. SML's garbage collector can take advantage of this to move data and compact the
heap, allowing the use of fast garbage collection algorithms [1]. With a compacted heap, heap
allocation can be fast (as fast as stack allocation or more so), and automatic storage management
can therefore be much faster than the heap memory management of C or C++ [21].

Automatic storage management is useful when memory requirements vary with time. For
example IP fragment reassembly may on occasion need buffers for reassembling a large number of
packets simultaneously, but normally won't. In such cases, manual storage management is often
slow, may be hard to use, and always poses the danger of storage leaks and memory misuse in
case of programming errors. In contrast, automatic storage management can be faster, is simple,
makes it harder to inadvertently program storage leaks and, in combination with a typing system.
completely eliminates memory misuse.

There is legitimate concern over the pauses that are often associated with garbage collection.
With a generational copying garbage collector such as provided by the SML/NJ compiler, however,
most pauses are short and generally interfere with the operation of a protocol no more than the
pauses imposed by the multitasking operating system. We return to this point in Section 5.

Higher-order functions are functions that are available as values at run-time, and functions
that may constructed and returned by other functions as their result. In languages with higher-
order functions, functions are constructed at run-time by associating predefined code with an
environment constructed at run-time; the association of a function and an environment is called a
closure. Higher-order functions can be used to stage a computation. For example, a function can
take one argument, perform part of the computation, and return a new function that will complete
the computation. In the closure of the returned function are the partial results from the earlier
part of computation. If the returned function is used multiple times, the cost of the first part of
the computation is amortized over the uses of the returned function. In languages that provide
higher-order functions, the partial results need not be available to any but the function that will
use them, thus preventing inadvertent misuse.

Our project uses higher-order functions to stage the send computation, for example. In each
layer of our protocol stack the call to send is staged so the early stage accepts a connection and
figures out which lower-layer send function to call, and the later stage can directly use this send

2



struct 1 sig I

struct 2 sig 2 functor F sig 3 struct 3

Figure 1: Geometric Analog of the SML module System.

function. Other optimizations are also possible.
Modules constructs in SML include signatures, functors, and structures. Signatures are interface

descriptors; structures are modules with types and values (values include functions); and functors
are modules that are parametrized by types, values, and structures, and yield new structures each
time they are instantiated with their parameters. Figure 1 shows how structures, functors, and
signatures fit together.

A structure satisfies a signature if it contains all of the values, types, and sub-structures specified
in the signature. A structure may satisfy multiple signatures, and conversely there may be multiple
structures that satisfy the same signature.

Functor instantiation is used to build new structures, and has the same purpose as the link
phase of conventional compilers. In our project, as discussed below, we use functor instantiation
to build protocol stacks using only the SML language, rather than a special linker/loader.

Our project uses an extended SML which has first-class continuations, 1-byte, 2-byte, and 4-byte
unsigned integer types, and in-lined byte arrays. Further extensions are under consideration.

Continuations are control constructs used to capture the notion of the "remainder of a com-
putation". Continuations are useful in implementing coroutines, events, timers, and other control
abstractions.

Unsigned integers of specified size are generally useful in implementing networking protocols;
the SML int type is inadequate in number of bits (31 bits on the MIPS), in being signed, and in the
operations it supports. The new types support bit-wise logical, shift, and arithmetic operations,
and specify the number of bits in a value independently of the machine's word size. We currently
use these logical and shift operations also to access the bits in a word.

On most implementations of SML, normal arrays contain pointers to the objects stored in the
array. Our project has added arrays of bytes stored in-line, giving S4L programs direct (but safe)
access to memory. These byte arrays can be used to memory-map devices or to communicate with
the operating system, so that each byte array provides a limited segment of unsafe memory that
can be used to store integers and integers of specified size. The Fox Project is currently studying
the possibility of using structured fiat types as an alternative to using byte arrays, but this work
is not reported here.

The SML/NJ compiler [2] provides continuations and byte arrays; our project has extended it
to support integers of specified size.
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signature PROTOCOL s 8ig
eqtyp. address

val active-open: address
* (connection -> incoming._essage -> unit)
-> connection

val send: connection -> outgoing-message-> unit

end
signature TCP_PROTOCOL = sig

eqtype lower.layeraddres8 (* not specified here *)
datatype tcp-address =

Address of {remotepeer: lowerlayer-address,
local-port: uby-te2,
remote-port: ubyte2}

include PROTOCOL
sharing type address = tcp.address

end

Figure 2: Derivation of Specific Signatures from the Generic Signature.

3 Structure of the Protocol Stack

The design of our protocol stack is modeled after that of the x-kernel [16], developed at the Univer-
sity of Arizona. In the x-kernel architecture each protocol presents essentially the same interface
to the outside world. This makes it possible to combine protocols in new and useful ways. for
instance by having an instance of TCP run directly over ethernet, without IP, or by replacing the
monolithic TCP protocol with a suite of protocols which together perform the same functions.

We have followed the x-kernel in having a single interface for all of our protocols; this common
interface allows protocols to be composed arbitrarily, for example by running TCP directly over
ethernet. Unlike the x-kerel, our interfaces are defined formally as signatures, and syntactic
compliance of an implementation with the interface is checked by the compiler to prevent type errors
and argument mismatch. Also unlike the x-kernel, the compiler can check that any composition
of layers is proper and that all the functions required of "the layer below TCP", for example. are
present as functor parameters before allowing the composition.

The general structure of our protocol stack, shown in Figure 2, has been described in detail
elsewhere [31 and will only be summarized here. We have a signature PROTOCOL which is generic
in that it is satisfied by all the modules implementing each of the protocols in the stack. From
this signature we derive specific signatures for each of the protocols such as IP, TCP, and Ethernet
by including the generic protocol, and thereby specifying all the objects specified by the generic
signature, and also sharing any types from the generic signature that are to be specialized in the
specific protocol. This style of derivation guarantees that all the objects required by the generic
signature are also required by the specific signature, and therefore that any structure that matches
the specific signature also matches the generic signature.

We define a protocol implementation as a structure that satisfies the corresponding protocol-
specific signature. This structure is usually created by instantiating (applying) a functor on specific
configuration parameters, such as the initial window size to be used for connections in TCP. One
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structure Device =

structure Eth = Eth (structure Lower Device ... )

structure Ip = Ip (structure Lover ='Eth ... )

structure StandardTcp a
Tcp (structure Lower = Ip

val do-checksumn = true .,.)
structure SpecialTcp =

Tcp (structure Lower - Eth
va do-checksuns - false ,..)

Figure 3: Assembling the standard TCP/IP stack and a non-standard stack.

functor Tcp
(structure Lover: PROTOCOL
structure Aux: IP.AUX
sharing type Lover.outgoingonessage = SendPacket.T

and type Lover.address = Aux.address
and type Lovor.addresspattern =

Aux. address.pattern
and type Lover. incomingsessage =

Aux. inconing-essage
and type Lover.connection a Aux.connection

val initial-window: int
val conpute.checksuns: bool
val abort._uninkonmconnections: bool
val user-timeout: int
structure Scheduler: COROUTINE
structure B: FOX-BASIS (* our utilities *)
val do-prints: bool
val do-traces: bool): TCPPROTOCOL =

Figure 4: The Functor Parameters for TCP.

of the parameters to every composable protocol is the protocol below it, specified as a structure
that satisfies the PROTOCOL signature. Since the PROTOCOL signature is satisfied by any protocol
that satisfies a specific signature, any valid protocol implementation can be used as the protocol
below any other protocol.

Figure 3 shows the assembly of some protocol stacks defined using this module structure. The
standard stack has TCP over IP over Ethernet, and checksums are enabled as required by the
standard. The special stack runs TCP directly over ethernet; this stack can only be used to
communicate among machines on the same Ethernet, and we can therefore turn off checksums
since the Ethernet's CRC1 makes the weaker TCP checksums redundant. 2

All this can be done with the x-kernel. In the x kernel, however, the stack is defined using
not the C language, but a specialized language with its specialized compiler. In our system, stack
composition is defined entirely in SKL.

The actual functor implementing TCP takes several parameters, as shown in Figure 4. The

'And the absence of routers which might corrupt the source address.
2A reviewer pointed out that widely available Ethernet implementations do not correctly implement the CRC. In

light of this, the TCP described here is only useful if there is specific knowledge that the Ethernet implementation
implements the CRC correctly. We have chosen to retain the example for illustration.
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signature IPAUX -
Sig
type connection
type address
type address-pattern
type incoming-.message

val hash: address -> int
va. eq: address * address -> bool
val makestring: address -> string
val detaultpattern: address-pattern
val info: incoming-message

-> {src: address, checksum: ubyte2,
data: ReceivePacket T}

(* check computes the pseudo-header checksum *)
val check: address -> ubyte2

val stu: connection -> int
end (* Sig *)

Figure 5: The Auxiliary Signature used by TCP and UDP.

first is the lower protocol; the second is an auxiliary structure which provides functions that TCP
requires from the lower layer, but that are not present in the PROTOCOL signature. The signature.
shown in Figure 5, is called IP.AUX to reflect the fact that these functions are traditionally either
supplied by the IP layer or dependent on the type of the IP address, and are required due to
TCP's dependence on values carried in the IP header. A structure satisfying this signature must
be supplied as a parameter to the UDP functor as well. Note that with this structure, any change in
the definition of IP (for example, from IP version 4 to version 7) will affect the IP implementation
and the Auxiliary structure, but not TCP.

The remaining functor parameters can be used to customize TCP. The parameter abort -unknown- connect c
is set to false when we wish to run our implementation for brief periods of time on a workstation
without disturbing connections that were set up by the resident operating system. The user time-
out specifies the length of time before hung operations fail. The scheduler structure provides the
thread creation and sleep operations needed to correctly implement TCP; as the signature name.
COROUTINE, suggests, this scheduler is non-preemptive, so thread switch will only occur when a
scheduler function is invoked and data structure locks are therefore not necessary 3 . In the current
implementation, the scheduler is implemented entirely in SML using continuations4 , and the cost
of a thread switch is the cost of only a few function calls: on a DECstation 5000/125, the cost of
a call to an empty function is about 1.2ss, whereas the time required by our scheduler to create a
thread, terminate the current thread, and switch to the new thread is approximately 30uss. This
time includes the time to update the scheduler data structures.

4 Structure of the TCP Implementation

We designed the TCP implementation to have the same structure as the TCP standard. This
structure has simplified the initial implementation and it is our expectation that it will simplify

3Synchronization is required in particular cases, such as to insure that no data is delivered on a connection until
after the corresponding open returns to the caller.

"Except for the code to read the system clock, which sometimes calls Mach.
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subsequent maintenance as well. For exa.aple, the receive procedure is described in the standard
as a procedure with branch points and merge points, but no loops (a directed acyclic graph). We
have implemented the receive code by implementing exactly the branches specified in the standard.
using functions as labels for the merge points. Not only does this structure make it easier to get the
code to conform to the standards, it also makes it easier to refer to the standard when modifying
the structure to make sure that the code still implements the correct procedure.

Since, as discussed by Clark and others [7], many of the costs of conventional TCP processing

are related to buffering, checking the data, and copying between layers, and are therefore unrelated
to performing protocol-specific tasks, we expect any performance penalty due to the clean structure
to be small compared to the total costs of the protocol implementation.

We have however implemented fast-path receive and send routines which handle the normal
cases quickly, and defer to the full code for the less common cases.

The standard description of the TCP protocol [8, 15] uses a connection state as well as a data
structure, the latter being referred to as a Transmission Control Block (TCB). We designed a
module, called Tcb, to define the types with which these data structures are represented and some
basic operations on values of these types. Each connection value returned by an open call has a
field to store the connection state, with a component of this variable to store the TCB (except in
state Closed). Parts of the signature of the Tcb module are shown in Figure 6.

Note in Figure 6 that the TCB data structure provides a field, to-do, which stores the ac-
tions that must be done on behalf of this TCP connection. One of the early design decisions of
this implementation was that the behavior of the implementation should be, whenever possible, a
time-independent sequence of discrete events. Timer expirations and message receptions are asyn-
chronous, but when these events occur they are synchronized by placing a corresponding action in
the to-do queue for the connection. Since this control structure is synchronous except for the exact
time and sequence in which actions are placed on the to-do queue, we call the control structure
quasi-synchronous. This structure is illustrated in Figure 7. The actions placed on the to-do queue
have type tcp-action, defined in the Tcb module and shown in Figure 8.

The control structure of our TCP is therefore very simple: executing an Gperation computes
the corresponding actions and queues them onto the connection's to-do queue.

Which thread execittes the actions on the to-do queue is a design decision; in the current
implementation, tue thread executing an operation then executes actions, one at a time. until at
least those actions it placed on the queue have completed execution. A different choice might lead
to a dedicated thread executing all of the actions for a connection. Actions are designed not to
wait; instead, they can start timers or queue other actions for later execution if other actions must
be performed at a later time.

With the quasi-synchronous control structure, only the exact sequence in which actions such as
Process-Data or Timer-Expiration are added to the queue is undefined; once the actions have
been placed on the queue the behavior of TCP is completely deterministic and testable.

The quasi-synchronous control structure and other top-level TCP operations are implemented
by the module Main.

Based on this control structure and the Tcb module, we have defined several modules to im-
plement the TCP state machine and the actions to be taken on receipt of a packet. The module
State performs the main state manipulations required on connection open, close, or abort, and
also when a timer expires.

The module Receive processes incoming segments and performs any necessary state manipu-
lations. Receive uses Resend to implement the round-trip time computations developed by Karn
and Jacobsen [15], and to remove acknowledged segments from the retransmit queue.



signature TCPTCB =

sig

structure Q: FIFO
structure D: DEQ
datatype tcp-tcb =

Tcb of {iss: ubyte4,

snd-una: ubyte4 ret,

queued: SendPacket.T D.T ret,

outrof-order: tcp.in Q.T ret,
(* todo contains the actions to perform *)

to_do: tcpaction Q.T ret}

datatype tcp.state =
Closed of tcpaction Q.T ret

I Listen of tcptcb * int
I SynSent of tcptcb * int

(* SynActive: active open SynReceived *)
I Syn.Active of tcp.tcb

(* SynPassive: passive open SynReceived *)
I SynPassive of tcp-tcb * int

I Estab of tcp-tcb
FinWait-1 of tcp-tcb * bool

FinWait_2 of tcptcb
Close-Wait of tcp-tcb

Closing of tcp.tcb

LastAck of tcp.tcb
Time-Wait of tcp-tcb

end (* sig e)

Figure 6: Excerpts from the TCB module signature.

synchronous to-do queue asynchronous
execution t addition

Figure 7: Quasi-Synchronous Control Structure.
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datatype tcp.action
User-Error of string

I Send-Segment of tcpout
I Process-Data of tcp.in
User-Data of ReceivePacket.T
Set-Ti er of tcp.ti.r * int
Clear-Timer of tcptimer
Timer-Expiration of tcp.tiner
ClosefAterSends
Completse Open of bool
Complete-Close of bool
CompleteSend of ubyte4

I Probe-Window
I DeleteTcb

Figure 8: TCP Actions.

~(order-dependent)

Action State Send Receive
(time-dependent) (time-independent) (time-independent) (time-independent)

Tcb- Resend
(time-independent) (time-dependent)

Figure 9: The Module Structure of TCP.

The module Send segments outgoing data and places corresponding Send-Segment actions onto
the to-do queue. Note that this subdivision is similar to that in the main specification for TCP.
RFC 793.

Thanks to their deterministic nature, each of these modules can be tested in isolation. For each
module we have written test code that is run whenever the code is modified; though tlte test code
does not offer complete coverage, it helps point out implementation defects by comparing the TCB
produced by the operation with the TCB expected in accordance with the standard. These test
programs can be extended to test for specific bugs that might be hard to reproduce in a complete
implementation. With these test modules we have been able to easily locate several minor bugs
that would have been time-consuming to locate with conventional techniques. It is not unusual for
us to make a significant change in the protocol implementation, let the compiler locate the syntax
and type errors and correct them, let the test modules locate the minor inconsistencies and correct
them, then run the protocol and watch it perform flawlessly.

The time-dependent operations are implemented by the module Action, which implements
timers and segment externalization and internalization. Figure 9 shows the complete module
structure of the implementation.

For an example of how our module and control structure work, consider receiving a non-empty
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packet from the network. The packet is delivered to TCP's handler, which calls the receive function
provided by the Action module. The receive function computes the checksum and decodes the
packet header, then places a Process.Data action containing the internalized segment onto the
to-do queue. When this action reaches the front of the queue, it is given to the Receive module
which processes the segment and, if the sequence number is the expected one, places onto the to-do
queue a User-Data action with the segment data (if the sequence number is not the desired one,
the packet is queued for later use, or discarded if a duplicate). The receive operatior .nay also put
onto the to-do queue a Send-Segment containing an acknowledgement and a Clear-Timer for the
ack timer, or else a Set.Timer for the ack timer if the ack is to be delayed. The User-Data action
delivers the data to the user when it reaches the front of the queue.

With the quasi-synchronous scheme, we have ac ualy built a custom scheduler as part of the
TCP implementation. One advantage of this is that we can easily redefine the scheduling priorities.
As currently defined, this scheduler is round-robin and only supports a single priority. By replacing
the current FIFO with a priority queue, we could specify that particular actions, e.g., actions which
affect the packet latency, be executed with higher priority than others.

5 Performance and Discussion

Since our architecture is inspired by the x-kernel architecture, we have chosen to compare the
performance of our protocol stack implementation with that of the x-kernel. In this way, both the
advantages and the disadvantages of running in user mode on top of the Mach 3.0 microkernel are
factored out, and only the differences due to the programming language used and to the details of
the implementation remain.

Other studies [7, 5, 91 have shown that the main obstacles to high throughput in real imple-
mentations and for present-day systems are data-touching operations such as copy and checksum.
We have optimized our code to copy data as little as possible. Our protocols copy data only once,
when delivering a segment to the micro-kernel or when delivering data to the user process5. though
the latter is not reflected in the benchmarks. The Mach 3.0 micro-kernel also copies the data to
and from the device, so altogether sending or receiving data causes it to be copied two times.

The copy routines are written in SKL and require approximately 300is per kilobyte for word-
aligned copies on a DECstation .5000/125; this is approximately one fifth the speed of the library-
supplied bcopy (clocked at 611ts per kilobyte) and may improve as the code is refined and the
compiler code generation is improved: the current compiler fails to optimize accesses to successive
elements of arrays and thus checks array bounds on every access and recomputes pointers on every
access.

The checksum code is also written in SML and is optimized using the techniques described by
Br-tden, Borman, and Partridge [4]. The current implementation requires as little as 343ps per
kilobyte for data aligned on byte-2 (short) boundaries; for comparison, the x-kernel's checksum
routine, which uses a slower algorithm, has been clocked at 375 ps per kilobyte.

The main loop of our checksum code is shown in Figure 10. The code accumulates up to 16
bits of overflows in the top part of the 4-byte sum; code outside the loop insures that no more
than 216 2-byte quantities are summed, and that n mod 4 = 0 and limit mod 4 = 0. The result
is re-normalized at the end of the loop. The input byte array, b, is declared in the scope of the
word-check function, and need not be passed in explicitly. The arguments to word-check are

'Additional copies might be required when using IP fragmentation or when the protocol above TCP (if any) is
using headers which will not fit in a segment. We have not optimized for these cases.
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fun word.check (n, accumulator, limit)
if n >- limit then
... (* check odd bytes, ronormalize *)

else (* the common path *)
let val byte4 - Byte4.sub (b, n)

val low - Byte4.& (byte4, 4uxffff)
val high - Byte4.>> (byte4, 16)
val resl = Byt.4.+ (high, low)

val sum = Byte4.+ (resl, partial)

(* tail recursive loop. *)
in word-check (n + 4, sum, limit)
end

Figure 10: Main loop of Checksum Computation.

fun start (handler, ms) ,
let val cleared n ref false

fun sleep 0 =
(Scheduler.sleep (ms);
if ! cleared then )
else handler 0)

val thread - Scheduler.Normal sleep

in Scheduler.fork (thread);

cleared
end

fun clear cleared a cleared := true

Figure 11: Implementation of Timers.

the current index of the computation, the partial result so far, and the limit. The caller of this
function must insure that n mod 4 = 0 and limit mod 4 = 0; any other values will lead to either an
exception being raised or an incorrect result. The notation 4ux is used to introduce a hexadecimal
4-byte constant value, and like all other Byte4 operations, is part of the extensions to SML made
within the scope of the Fox project.

Because this function is tail recursive, that is, the result returned is the result of the recursive
call, the compiler is able to implement this function using loops and keeping the arguments in

registers.
Another element that has proven to be slow in many implementations of TCP is the timer

code [7]. We have been able to write our own timer code in SKI., and it is simple and fast. The

entire code for starting a timer, clearing a timer, and tin'er expiration is shown in Figure 11.
The timer uses the Scheduler structure (module) mentioned above. This structure is part of

the Fox Net implementation. The fork operation and the Implicit exit at the end of the thread
each take unit time and are quite fast; the sleep queue, a priority queue Implemented as a heap, is

also quite fast.
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The implementation of start allocates from the heap a new updatable boolean cell and creates
a new closure for the function sleep. Creating such a closure is equivalent to a creating a new
sleep function with built-in pointers to the updatable cell and to the arguments to the function;
the ability to create such functions is part of the first-class functions pro 'ded by SML. The newly
created boolean is returned to the caller and can be changed to clear the timer. When the forked
thread gets to run, it sleeps for the specified time (Normal identifies the kind of thread), then only
calls the handler if the shared state has not been cleared.

The clear function is not pure, that is, works by changing the value of a variable.
A simple timer implementation such as this one depends for performance on having both fast

thread creation and switching, and fast heap allocation of the shared state.
To benchmark the throughput of the protocol stack, we have written a program which tries

to send large amounts of data in one direction as fast as possible, letting TCP's flow control
mechanisms reguiate the speed at which data is delivered. We standardize the TCP window size to
4096 bytes, which is a size used by many implementations, and leave the Mach buffer space at its
standard 24K bytes6 . The test consists of sending 106 bytes of data between a designated sender
and a designated receiver on an isolated 10Mb/s ethernet. The receiver starts a timer, sends the
designated sender a small packet specifying the amount of data desired, and stops the timer after
all the specified data has been received. The received data is discarded when it is received at the
application level.

Fox Net x-kernel ratio
Throughput (Mb/s) 0.6 2.5 0.24

Round-Trip (ms) 36 4.9 9.4

Table 1: Speed Comparison of TCP Implementations.

The results are summarized in Table 1, with the x-kernel numbers reflecting the performance of
x-kernel version 3.2. All numbers show the performance on 64MB DECstation 5000/125s running
the Mach 3.0 microkernel. It should be noted that top-performing TCP implementations can
substantially outperform both the Fox Net and the x-kernel implementations [10].

Although SML/NJ has a sampling profiler, it depends on features of Unix that are not supported
under Mach 3.0. Instead of using this profiler, we have installed hardware devices containing free-
running counters that can be mapped into the address space of the SML task and then read directly
from SML programs. One call each to the two functions which start and stop a timing counter
require 15/ts altogether to record the initial value of the counter, compute the difference between
the initial and the final value, and increase a counter. We call these functions to record the time
taken in specific parts of the TCP/IP stack.

A summary of the results of profiling is shown in Table 2. The time spent updating counters
is estimated by multiplying the number of times the counters were updated by the 15/is typically
required to update a counter. The miscellaneous figure includes buffer allocation and deallocation,
calling Mach to read the system clock, and other utilities. Some of the other figures may include
the time spent collecting garbage, since running counter(s) keep running while garbage is being
collected; there may also be other overlaps in the measurements. The major component that is not
profiled is the scheduler, since the 15ps counter update time would significantly affect our current
performance of 30pss to create and switch to a thread.

'This is the value currently used by default for installations of Mach 3.0 at our site.
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Sender Receiver
protocol TCP 29.0 27.5

IP 7.8 9.7
eth, Mach interf. 11.2 11.9

data touch copy 10.5 6.3
checksum 5.1 5.6

Mach Mach send 7.5 6.0
packet wait 15.8 9.3

other g. c. 3.4 5.0
misc. 4.7 7.3

counters (est.) 5.2 5.4
total 100.2 94.0

Table 2: Execution Profile (Percent of Total Time) of the TCP/IP stack.

It is interesting that garbage collection is not a very significant component of the cost. While
we have not measured the duration of individual garbage collections, we do know that the numbers
shown above reflect time spent doing minor collections. SML/NJ has a generational garbage
collector which can either collect objects in the nursery, or trace, collect, and compact all known
objects; a minor collection is a collection of the nursery. Since most of the nursery is garbage,
minor collections are usually quite fast; measurements by Nettles and O'Toole [14] on a faster
system (Decstation 5000/200) show pauses of under a hundred milliseconds on average for the
SML/NJ collector. The minor collection pauses are considerably shorter than the pauses imposed
by the operating system when running in user mode on top of Mach 3.0. Traces of the running
TCP show that these pauses do not substantially affect the performance of TCP.

Runs of over 5 MB often require at least one major garbage collection, which takes substantially
longer than the minor collection. We have observed, however, that the overall throughput on the
longer runs is the same or faster than on the shorter runs; our interpretation is that the amortization
of startup costs over a longer run more than compensates for the additional time and for the slight
disruption of doing a major garbage collection.

These profiling numbers, and the more detailed ones we use in optimizing, show that the
time spent in non-data touching protocol processing for TCP and for the other protocols is still
quite substantial, and very noticeably greater than either the copy or the checksum times. Since
our optimization of TCP is far from complete, this result is not unexpected. By comparison, the
implementation of TCP in the x-kernel is derived from the Berkeley code, which is highly optimized.

In implementing copy in SML, we have been hampered by poor compiler support for tight, un-
rolled, bytearray-accessing loops, and are substantially slower than comparable C code. For check-
sum on the other hand our implementation uses a better algorithm to overcome these limitations
and surpass the speed of the more basic x-kernel implementation. It is therefore not unreasonable
to expect that after optimization the speed of the Fox Net TCP will be somewhere between these
extremes, and perhaps close to that of the x-kernel TCP. In this context it is reassuring to note
that the throughput of communication using only the Fox Net IP is comparable to, and sometimes
greater than, that of the x-kernel implementation of IP (3].
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6 Related Work

The x-kernel project at the University of Arizona [16] has been mentioned in the preceding sections
as the model for the design of our implementation. In the x-kernel architecture each protocol
presents essentially the same interface to the outside world. The x-kernel has also developed ideas
that we have not (yet) made use of, such as virtual protocols.

Another feature of the x-kernel which we have used in our design is reversing the direction of the
receive call, so that received data is delivered to a higher layer by calling the higher layer's receive
handler. This has been described as upcalls by Clark [6]. With SML we can improve on this idea
by specializing on the connection information the handler supplied to the open call; the resulting
connection-specific handler can encapsulate pre-computed information about the connection.

Christian Tschudin [20] has presented an approach to dynamic protocol composition based on
a protocol stack environment. Interestingly, Tschudin uses an extension of Pascal for his work.
However, we believe that some of the features of SML which are not present in Pascal, such as
automatic type inference, polymorphism, automatic storage management, higher order functions,
and especially modules, are fundamental to our work. We also believe strongly that by producing
a complete implementation of a standard protocol stack we are able to demonstrate the usefulness
of our approach more convincingly than by using Tschudin's "toy environment".

The architecture of the MIT/Symbolics Lisp machine [13] is designed to execute Lisp efficiently,
and the entire operating system is written in Lisp. Unlike Lisp, SML has a type system that insures
that type errors are discovered at run-time, and this property is supported by the module system:
we believe the module system has been helpful in designing, building, and maintaining our code.
Unlike the Lisp machine, the Fox Net runs on stock hardware and, for the time being, on top of a
stock operating system.

The Erlang language [171 was developed at Ericsson and has been used in several telephony
applications, demonstrating that functional languages can be used for real-time systems. with
substantial resulting benefits in development time and overall maintainability.

We based our implementation on RFC 793 and RFC 1122 [8, 15]. W! have also relied on the work
of others to identify potentially expensive parts of the TCP specification. In their analysis of the
costs of TCP, Clark, van Jacobson, Romkey, and Salwen [7] argue that protocol-specific processing
is only a minor contributor to the overall cost of a protocol when the protocol is processing data
as fast as possible. This result is supported and extended by other studies; specifically, Kay and
Pasquale [9] show that on average significantly less than half the cost of TCP processing is in TCP-
specific protocol processing, even for short packets. Though (as pointed out to us by a reviewer)
the results of this study may not apply to the latest version of Berkeley TCP, the consensus is
that for large packets, which are important for high throughput, significant costs are instead data
copying and buffering, checksumming, timer execution, and system overheads; all these overheads
can be made substantially smaller through proper design. We believe good designs are more easily
achieved by using languages that support structured implementations than by using languages that
permit violation of abstractions.

Our implementation is built on top of the Mach 3.0 microkernel [18], and uses the Mach In-
terprocess Communication mechanism to send and receive packets. Maeda and Bershad [10] have
implemented a high-performance TCP on top of the Mach 3.0, and their performance is substan-
tially higher than ours. Their implementation is hardly comparable to ours, however, since they
used techniques, such as increasing window and kernel buffer sizes and adding special kernel traps
(a "fast path" to the device), that we have not (yet) used in our system.

The Standard ML language is defined by Milner, Tofte and Harper [12, 11]. Work on the
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language is actively continuing. Our project uses a modified version of the Standard ML of New
Jersey (SML/NJ) compiler from AT&T Bell Laboratories [2].

In the current implementation of TCP, higher-order functions are the only "functional" feature
of SML we have used. We have purposely tried to construct a conventional implementation of
TCP/IP that could be compared to other existing implementations. In the future, we may want
to provide different implementations and different protocols that may be better suited for use
by functional programmers. One example that we may want to imitate or re-implement is CML
(Concurrent ML), described by Reppy [19]. CML provides typed channels and lightweight threads
integrated into a parallel programming environment.

7 Summary and Future Work

We have found that SMlL is suitable for systems programming. Perhaps the greatest strength of SML
is its support for and enforcement of the concrete expression of abstractions that other programming
languages leave to programmer convention. We have seen how higher-order functions can be used
to express upcalls and staging of computation as well as encapsulation of state. Typing, module
signatures, and functor headers let us describe the behavior of modules abstractly without having
to describe the implementation, and are very useful for detecting inconsistencies when integrating
software developed by a team of programmers. Automatic storage management has been invaluable
in avoiding time-consuming storage errors, and we have been able to verify that even the SML/NJ
stop-and-copy garbage collector does not unduly interfere with performance. Finally, continuations
let programmers create their own specialized schedulers, and an implementation of a specialized
scheduler which can be faster than even a highly optimized implementation of a more general
scheduler.

The extensions to SHL we found necessary include continuations, primitive types for 1-byte.
2-byte. and 4-byte quantities, and byte arrays; continuations have been especially useful for cleanly
expressing fundamental ideas such as coroutines. Other people on our project are actively studying
further extensions to the language that may allow us to dispense with byte arrays.

Our implementation of TCP is structured along three orthogonal dimensions: the module
structure, the control structure, and the test structure. These structures have permitted one
programmer to design and implement a complete, standard, and correct implementation of TCP
in under three months. We believe the combination of structured design and advanced languages
can contribute substantially to the software development process for networking protocols. and can
lead to high-quality and high-performance implementations.

While the speed of our implementation is not yet satisfactory, and in particular is slower than
the x-kernel which is itself not a particularly fast implementation, we are still optimizing the code
and fully expect the speed to improve in the future. It is possible that once we have optimized
the code sufficiently, the garbage collector will disrupt the TCP performance, in which case we will
implement and use an incremental garbage collector with bounded pauses.

We also look forward to using our experience implementing TCP/IP to design and implement
new protocols, some along the lines of existing protocols, others using ideas from the functional
programming world to design interesting and useful network protocols.
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