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1. INTRODUCTION

The goal of the present work is the integration of active and passive control of structural

vibrations. First a procedure is developed to achieve maximum passive viscous damping in the

frequency range of interest. Then the active control is added to increase the effective damping to

the level required.

Passive damping is either viscous damping or that obtained with viscoelastic materials. It

is representable by devices connected between two structural nodes or between one node and

ground. It is achieved mechanically by special truss members which incorporate dashpots,

electo-mechanical devices, or viscoelastic elements where the viscoelastic material is deformed

in shear. Viscous damping is represented in matrix form as F = C z. Viscoelastic damping is
represented herein by (1) using a complex Young's modulus which is frequency dependent

[N3], where the F = G(w) or (2) by using the mini-oscillator approach to represent the

frequency dependence of the complex Young's modulus, as presented by McTavish and Hughes

[M2 1. The fractional calculus method propounded by Bagley and Torvik [B I I is of interest, but
has not been pursued in the present study. The active control investigated herein is mainly

constant gain, closed loop control. It is assumed to be achievable by control forces, in matrix

form, ofF =- G z - H z.

The second chapter presents analytical background. Much of control theory is written in

state space form, which for structural problems means reformulating n second-order differential

equationb into 2n equivalent first-order equations. Part of the cost is that n redundant first-order

equations have to be introduced and a corresponding amount of redundant information can be

produced. So some of the features of eigenproblems for both second-order and state space

differential equations are reviewed. Also, important relationships are presented between the

upper and lower portions of the right and left eigenvectors which, though easy to derive, are not

readily available in the literature.

A great deal of emphasis is put on sensitivity of the eigenproperties to damping and

control forces. This is summarized in the third chapter. The equations, initially derived by
others, for calculation of eigenvalue and eigenvector sensitivities are summarized including some

examples. A unique feature is the introduction of sensitivities calculated also from the invariants

associated with the similarity transformation between system coordinates and modal coordinates.

In the fourth chapter, optimization of passive damping is summarized. A ten bar truss is

used as a practical example and the optimization of both viscous damping and viscoelastic

damping is discussed in detail.

-1-



Chapter five deals with active damping and control and design of the [C+G] matrix to

achieve the desired combination of passive and active control. The existing theory of natural

modal control is reviewed. Two approaches are presented for designing the combination of

passive viscous damping and full state feedback control. The first is iterative and makes use of

eigenvalue sensitivities. The second is based on a perturbation formulation, where the desired
changes in eigenvalues are specified and the corresponding changes in the closed loop

characteristic matrix in state space are predicted. Restrictions on the choice of eigenvalues and

eigenvectors are discussed in light of related literature on eigenstructure assignment. The concept

of cost functions is reviewed and the relationship of solutions of the Riccati equation to the

present work is outlined.

2. ANALYTICAL BACKGROUND FOR MODAL THEORY
The purpose of this chapter is to review the modal theory and notation for structural

vibration problems, with emphasis on assumptions regarding symmetry and proportionality of

damping or control. First the second order differential equations of motion are outlined; second,

the state space form of the equations.

2.1 Second order differential equations of motion.
2.1.1 Eigenproperties and orthogonality with no damping.

With regard to nomenclature, a bold capital letter or any symbols in brackets [ ]

represent a rectangular matrix. A vector, or column matrix, is represented by a bold, lower case

letter such as z, symbols in braces { }, or an underlined Greek letter, as with !P. A diagonal,

Dsquare, matrix is represented by a superscript "D" on brackets, that is [ I.

The differential equations of motion for the case of no damping are

Mz + K z = F(t) (2.1)

Mz + K z = -Gz -Hz. (2.2)

where M is positive definite and symmetric, K is indefinite and symmetric and F(t) =- Gi -Hz.

i lie G and H are control matrices. The eigenvalue problem is

[-Mwo +KI= 0 (2.3)

The eigenvectors T r may be assembled into an n x n (D matrix. The orthogonality relationships

are

'TMI,= [M n D  (2.4)

-2-



and OTK* .[M (02 D (2.5)

2.1.2 Reconstruction of the M and K matrices from eigenvalues and eigenvectors.

Note that the M and K matrices may be reconstructed by using

M =)-T[MnJD 4b-1 (2.6)

and K__O-T[M i)] D -1. (2.7)

Further, we see that M "1 = 4[ M n 'D4DT (2.8)

and M" IK=4) [ 03 ] DO- (2.9)

2.1.3 Uncoupling of the differential equations and modal control.

The differential equations, Eqs. (2.1) and (2.2), are uncoupled by the coordinate

transformation

z(t) = 4D q(t) (2.10)

and pre-multiplying Eq. (2.1) by O T .

4 TM4)q +4 0KO q =4 F(t) =N(t) (2.11)
[MnI D 4 +[Mn1 D [(021DOq =-[g] 4I - [h] q = N(t) (.2D 2D (2.12)

The diagonal matrices on the left side of Eqs. (2.12) indicate decoupling, but if [g] and

[h] are non-diagonal, the equations are still coupled. If [g] and [hi are diagonal, which is called

natural control [M31, then the equations are uncoupled.

If the control matrices in N(t) are specified, and 4T F(t) = N(t), then F() is found. It is

efficient to use the orthogonality relationship, Eq. (2.4), to avoid inverting 4J.

F(t) = b-T N(t) = M4) [M n]'D N(t) = - M4 [Mn] D [[ g] i +[h]q] (2.13)

7hanging back to the z(t) coordinates

F(t) = WT N(t) = M0[ MnI'D N(t) = -M )[ Mn "D [[ g] i +[h] ('z

-3-



The differential equation with feedback is now

Mi + M O[ M n]D [I g] 1)- i +[h] (1-'z + Kz = 0. (2.15)

which is Mz + Gi +[H + K] z = 0. (2.16)

where G = M (b D[ gJ] 1)- and H= M I[ Mn]'D[ h] 0- (2.17)

Pre-multiplying Eq. (2.16) by M I

+ Ot Mn] "D [ g, 4 "4 - +[hi 'zJ +M- 1 Kz = 0. (2.18)

or z + M1 Gi+M'I [H +KJz =0. (2.19)
which is of the form

I i + C z+ Klz = O. (2.20)

2.1.4 Criterion for proportional damping or proportional control.

The question now addressed is whether the matrices H and G in Eq. (2.19) represent
proportional control. The test which applies is

is C1 K1 =KC 1  (2.21a)
9

MIG M"1 [H + K] M [H+K] M"1 G (2.2 1b)
Since G and H can be chosen separately, the Eq. (2.21b) is separated into two parts:

IIM? I MI
MGM " H =M_ HM G (2.22a)

I I? II
M1 G M-K = M 1 K M G (2.22b)

Now substitute for M IG and M-! K from Eqs. (2.18) and (2.19)

DD I ?D 2 D I I D -1
(I)[ M n'DI g] (I ol D 1 (0 [0n] D-I M-i M(DIM]-D [g4]0 (2.23a)
which reduces to

[MnI D gl [ 0 21 D •[2iD [ MnI-D[g (223b)
[M ni- n n dn Ig 22b

The answer is that Eq. (2.23b) does not represent an equality. However, the two sides of

the equation will be equal if [g] is diagonal, which is then a requirement for proportional control.

Then Eq. (2.23b) becomes the following equality

[ MnI-D I g 1 D = 1o)2] D I MI-D [I gD (2.24)

-4-



The advantage of proportional damping or proportional control is that the eigenvectors 0 do not

change, which means that the coordinate transformations which decouple the original matrices

will also decouple the closed loop equations. A direct way to check that this is true is to simply

look at the products C)TG (D and )TH 0.

The latter product 0THD= 0T M (D[ M nD [ h] (-1 0 (2.25)

reduces to 0TH0-- [h], (2.26a)

and, similarly, OTGO- [g]. (2.26b)

So, the open loop eigenvectors decouple the closed loop equations, but only if [h] and [g] are

diagonal matrices.

2.2 State space form of differential equations.

2.2.1 Eigenproperties for symmetric plant and control matrices.

The differential equations in state space form are

M* il +K* TI = - G* r1 (2.27)

1 r +A_ 1 =[M*I G* T_ (2.28)

00which defiies A 0. With G =0, Eq. (2.27) is written in detail as

M 0 {z(t)} +[C K] .i}=1I (2.29)
0 _K z (t) K 0 z (t) 0

The open-loop eigenproblem is

[IX- A_ ]WV=O (2.30)

Xt
and the solution to the homogeneous equations is Tr =_r e , where yr is the rth eigenvector.

The 2n eigenvectors may be arranged in columns in a 2n x 2n matrix, designated T , and the

following orthogonality relationships [N31 exist

qT M* T'=B D T K '=- BD A (2.31)
Dwhere the eigenvectors may be normalized so B =I. The matrix A is a diagonal matrix of

eigenvalues, Xr"

The W r are sometimes called the right eigenvectors, because many workers in the field of

control seem to be in the habit of using right and left eigenvectors, even though left eigenvectors

are not needed for decoupling if the plant and control matrices are symmetric. The concept of

-5-



left and right eigenvectors is explained in the next section.

2.2.2 Right and left eigenvectors
When both right and left eigenvectors are used, the convention herein is to designate the

rth right eigenvector by ur and the rth left eigenvector by vr . The left eigenvectors are the

eigenvectors associated with the transpose of the A matrix.

[IX- A ]v=O (2.32)
0

The right and left vectors are arranged in columns to form the U and V matrices, of size 2n x 2n.

Their properties are such that

VT A U =A (2.33a)
0

and VT U is diagonal. (2.33b)

Two normalizations are usually performed. The first involves the right vectors. There are

various choices for normalizing. If M and K are symmetric, U = WI and the right eigenvec-

tors may be normalized using, from Eq. (2.31),

UT M* U=B = I. (2.34)

In a more general situation, if UT M U is not diagonal, the individual vectors may be

normalized by

T
u r M u =1 (2.35)r a r

where Ma is an arbitrary matrix, to be defined. Among the possibilities are Ma = M or Ma = I.

The lower half of the U matrix represents the displacement mode shapes. In Chapters 3

and 5 a special normalization involving only the lower half of the U matrix is found to be

advantageous.

Having normalized the right eigenvectors, the left are usually normalized by making the

diagonal matrix indicated in Eq. (2.33b) equal to the unit matrix, or

VT U = I (2.36)

-6-



2.2.3 Relationships between upper and lower eigenvectors.

The complete eigenvector matrices, U and V, in the state space formulation of structural

dynamics problems are of size 2n x 2n while those for the second order differential equation

form are only it x it. Further, the eigenvectors in state space occur in complex conjugate pairs

for underdamped systems. The relationships between the various forms of the vectors has not
been documented well in the literature. The purpose of this section is to outline some of the

relationships between the portions of the eigenvector matrices. The right eigenvector matrix, U,
is first divided into two n x 2n matrices designated U and U1 , for the upper and lower portions

of the U matrix.

U =fU] (2.37)

From the characteristic equation with A denoting a general characteristic matrix,

AU=UA (2.38)

and filling in the submatrices of the A and U matrices, the following two sets of equations result
-C1 U1 -KU UuA (2.39a)

and U = UI A. (2.39b)

The second equation, (2.39b), shows how simply the upper right vectors are related to the lower

right vectors and is true even if C 1 and KI are unsymmetric.

The left eigenvector matrix, V, is subdivided similarly and substituted into the

characteristic equation

AT V=VA or VT A=AVT (2.40)

to yield -VTC + V T= AVT (2.41a)
ul I u

and -VT K 1 =AV . (2.41b)uI*

Here the relatidnship between the upper and lower left vectors is not so simple, unless C1 =0,

which is a situation discussed below, under section 2.2.5.

Equations which relate the left and right eigenvectors are derived from the orthogonality

relationships. The first involves the characteristic matrix A and the eigenvalues A.

It is VT AU =A (2.42a)

which yields - VTC U +VT U- VT K1 U 1 =A. (2.42b)

-7-



Making use of Eqs. (2.41a)and (2.41b) in (2.43),

AV T Uu + A V T U= A (2.43a)

so it must be that VT U + VTUI =1 (2.43b)u U II

The orthogonality relationships VT U = I can be written in several forms. Since the U

and V matrices are rectangular of size n x 2n, the submatrix products of interest may be n x n or

2n x 2n.

The forms which result in 2n x 2n product matrices are

VT U =and UTV = 1 (2.44)

and the submatrix product matrices are

VT U +V U1 =I (2n x 2n) (2.45a)

u T

and UT V  +UT V l I (2, x2n) (2.45b)

The forms which result in n x it product matrices are

T T
U V I or VU 1 (2.46)

,. U V T  UuV TI 0

In detail, UVT[UV T U r]V1 (2.47)

and VU u T (2.48)

If the eigenvectors occur in complex conjugate pairs, there is sometimes an advantage to

subdividing the upper and lower matrices accordingly with an overbar. as for U u meaning the

complex conjugate of Uup

- up up (2.49)
L -1

U = I = Up Up

The four submatrices are each n x n and can be inverted because the eigenvectors are assumed

here to be independent. The diagonal eigenvalue matrix A must be rearranged accordingly.

A l
A = J (2.50)

0 Ap
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2.2.4 Conversion from state space to quadratic form and implications.
Using the upper and lower eigenvector matrices, it is possible to return to the quadratic

form of the characteristic equations. The derivations are done without inverting the diagonal

matrix A, which may be singular.

For the right eigenvectors, using Eq. (2.39b), U is eliminated from Eq. (2.39a) to give

the quadratic form.

I U A2 +C 1 U1 A+K U = 0 (2.51)

Now, post-multiply (2.51) by A and, since Uu = UI A, a quadratic equation in terms of Uu is

I Uu A2 + CI U A+K IUU = 0 (2.52)

Doing the corresponding process for the left vectors, first pre-multiply Eq. (2.41a) by A,

and then use Eq. (2.41b) to eliminate VT,

I A2 VT+AVTC + VT K=O (2.53)

Taking the transpose yields

IV A +C T V A +K T V =0. (2.53a)
U 1 U I U

Comparing Eqs. (2.52) and (2.54), it is seen that the V are involved with the eigenvalue
U

T T
problem of the transpose matrices C1 and K1 . If the Cu and are symmetric, then V '
and U satisfy the same quadratic equation. Thus the corresponding eigenvectors may be equal,

or differ at most by a scalar multiplier, which can be different for each mode. An equation

involving only VI is not as simple, as shown in Eq. (2.53b).

~KT V A-2 + CT KTV A + V1 =0 (2.53b)

If the rectangular eigenvector matrices are subdivided into two square submatrices, which

are complex conjugates of each other, Eq. (2.51) becomes

AUp 0 X2  U p] 0 p " U/p =[0 0] (2.55)
LU1 P P'I [ A 2  J+CI[U1  P [ A0 P - J+i UIPu~j

and the results are the n simultaneous equation which state the eigenvalue problem of the second

order differential equations

U A2 +CU A +K !U = 0 (2.56a)
p p IU/p p I/p
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and U/p A + K U =0 (2.56b)

The Eq. (2.56b) is just the complex conjugate of Eq. (2.56a), since the plant matrices are real.

The orthogonality equation in Eq. (2.57) cannot be further simplified.

Vo Uu Y[ p up + Vupup =! (2.57)

Example 2.1

This example is for a 4x4 state matrix with viscous damping. The purpose is to she, the

numerical form of the individual matrices A Ap U and the product matrices in the

sponding quadratic equation.

1 0 0 0 0.4 -0.2 5 -4

M 0 2 0 0 K* -0.2 0.8 -4 4

0 0 -5 4 5 -4 0 0

0 0 4 -4 -4 4 0 0

-0.4 0.2 -5 4 (-0.1376+0.5289i) 0 0 0

0.1 -0.4 2 2 0 (-0.2624 + 2.5745 i) 0 0A =A=

1 0 0 0 0 0 (-0.1376-0.5289 i) 0

0 1 0 0 0 0 0 (-0.2624-2.5745 i)

A (-0.1376 + 0.5289 i) 0 1
p 0 (-0.2624 +2.5745 i)J

0.5144 + 0.0047 i -0.8572 +0.0139i 1
Uip = 0.6064 - 0.0020 i 0.3646 +0.0163 iJ

The individual matrices in the quadratic are 2x2 and the numerical values are listed

below.

UA +CU 1 A +K 1 U =0.

U A2  [-0.1334-0.0761 i 5.6414+1.0670i1
U/p P -0.1584 -0.0877 i -2.3697 -0.5997 i.
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C U~ -0.0 128 +0.0444 i 0. 1032 -1.0711 i]
C -0.0256 +0.1013 i -0.0740+0.5948 ij

[ 0. 1463 +0.0318i -5.7446 +0.0041 i1 U I
/ p=0.1840 -0.0135 i 2.4437 +0.0049 i

2.2.5 Special cases of combinations of C1 and K .

Special Case 1: C 1 and K1 are symmetric.

In general, if C = M " C and K = M-1 K, then neither C1 or K will be symmetric,

even though C and K are symmetric. An exception would be when M is equal to a scalar Ot

times the unit matrix, that is M= x I .

Another possibility for assuring that C1 and K1 are symmetric is to make a change in

coordinates, by weighting the original coordinates by the square root of the mass matrix. The

result is that

C= M "I C M " 2 and K1 =M/ K M "1/ (2.58)

which will be symmetric if C and K are symmetric. For this special case, CT = C and KT =

K 1, so it is seen by comparing Eqs. (2.53) and (2.51) that the Vu and U1 satisfy the same

equations. Thus, it could be that V = U1 , but it is more likely that they would differ by a scalar

factor because of the normalization. The following example demonstrates this effect.

Example 2.2

This example shows that the eigenvalues in V and UI differ only by a scalar multiplieru

when C1 = K1 = 0.

2 0 0 0 0.5 -0.2 6 -3

0 2 0 0 K* -0.2 0.4 -3 7

0 0 -6 3 6 -3 0 0

0 0 3 -7 -3 7 0 0
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-0.25 0.1 -3 1.5 (0.0652 + 1.3138 i) 0 0 0

0.1 -0.2 1.5 3.5 0 (-0.1598+2.1777i) 0 0A A=
1 0 0 0 0 0 (-0.0652 - 1.3138 i) 0

0 1 0 0 0 0 0 (-0.1598-2.1777 i)

U -0.0245 +0.7091 i -0.1078 + 0.9954 i1U  up =[ "U 0.0424 +0 .6003 i 0.0 567 - 1.1758 i

P I 0.5394 -0.0081 i 0.4583 +0.0159 i
/p U 'p [0.4574 +0.0096 i -0.5389 +0.0135 i 4

-0.0062 -0.4108 i 0.0073 - 0.2103 i1
V= V UP] 0.0073 -0.3484 i 0.0062 + 0.2473 i

0.5378 -0.0492 i 0.4580 - 0.0278 i
Ip - L0.4593 +0.0037 i -0.5391 +0.0445 i

The result is that Vu U but the individual vectors are related by scalar factors. Adding

another subscript for eigenvector number, Vup,= (-0.7616 i) U1PI and Vup2 = (-0.4589 i) Ulp2.

Note that two of the four vectors are given, to save space. The other two vectors are the complex
conjugates of the two that are given.

Special Case 2: : CI = 0 and KI is unsymmetric.

For this special case, the control forces are zero and there is no damping. It would not be

unusual for K to be unsymmetric. Then, from Eqs. (2.39),

- KU = UuA (2.59a)

and Uu = UIA. (2.59b)

The quadratic equation reduces to

- KIU, = UtA2  (2.59c)

From Eqs. (2.41) obtained from the characteristic equation

VT= AV T (2.60a)
I u

and "VT K =AVT (2.60b)U I C.
It is seen in Eq. (2.60a) that the lower left vector V1 is related simply to Vu , which is not the

case when C 1 0.
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One quadratic equation is "VT K A2 VT  (2.60c)or -KTV u =V A2

or KT VI = V A 2

and that with the V- KT (2.60d)

The form of . - A). ± i Co. so 0.=0 and ,=- i co. .The eigenvalues of
i i i i F I ii iT

K1 are the same as those for KI. but the left-hand vectors are still different from the right-hand

vectors.

Special Case 3: C1  0 and K1 is symmetric.

If K1 is symmetric with no damping, the upper portions of U and V satisfy the same

quadratic equations as the lower portion of U, but the lower portion of V does not. This is seen

by inspection of Eqs. (2.51) through (2.54). This means that the eigenvectors are "equal" but

they may differ by a scalar, depending on how they are normalized or where u ur = u l r r

u =V u A 2  (2.61)

U, =V U A (2.62)
V I A=V Vu A 2 = u = U! A (2.63)

The form of the orthogonality relations VT U = I in terms of submatrices is

VT U + V T  =I (2.64)
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Example 2.3
In this example, C1 = 0 and KI is symmetric. If K is symmetric, then M must be of a

special form such as M = 0 I, where 03 is a scalar, for K to be symmetric.

M=[' "] K=[ ' ] K,=M- K= [ 3 -1IM= 0 -3 7 KK=-1.5 3.5

The eigenvalues are

X1 =1.3150i, X2 =2.1842i, k3 = and X4 = '2

The eigenvectors are in the same order as the eigenvalues.

[0.7095 i 0.9983 i -0.7095 i -0.9983 i
U 0.6010i -1.1785i -0.6010i 1.1785 i

0.5395 0.4571 0.5395 0.4571
0.4571 -0.5395 0.4571 -0.5395

[-0.4103 i -0.2093 i 0.4103i 0.2093i

v -0.3476 i 0.2470 i 0.3476 i -0.2470 i
0.5395 0.4571 0.5395 0.4571
0.4571 -0.5395 0.4571 -0.5395
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2.2.6 Recovery of the C I and K1 matrices from the eigenproperties.

The A matrix can be recovered from the eigenproperties by pre-multiplying Eq. (2.42a)

by U and post-multiplying by VT, to produce Eq. (2.65),

UAVT A (2.65)

which, written out in terms of the submatrices is

U AVT u AVT [C K
U1A~ U ; T =[ I' I J (2.66)

2.2.7 Nonsymmetric control matrices, forced vibration problem.

To do a forced vibration problem with symmetric, or unsymmetric control matrices, G

and H, the matrix equations are

M 0 z (t) [C+GJ [K+HJ .(t) ( (267)

0 - [K+Hi z(t) [K+HI 0 z(t)j j 0 1(
The advantage of using this special form of the redundant equations is that, if the control

matrices are symmetric, the closed loop M* and K* matrices are again symmetric. The

shorthand forn: of Eq. (2.67) is

M* T+K* il = F*(t) (2.68)

or I- A* T =[M*-' F*(t) (2.69)

The equations are decoupled by substituting

rl (t) = U q(t) (2.70)

into Eq. (2.69) and pre-multiplying by VT.
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3. SENSITIVITY OF EIGENPROPERTIES TO INDIVIDUAL ELEMENTS IN THE
DAMPING AND CONTROL MATRICES.

An essential part of control of vibration of structures is the study of the sensitivity of the
eigenproperties, namely damping ratios, natural frequencies, and mode shapes, to elements in the

damping and control matrices. The differential equations are M z + C i + K z = - G i -H z,
where G and H are control matrices. The viscous damping matrix C is achieved through
passive mechanical, electromechanical, or other devices whose forces depend on the relative
velocities between two points on a structure or between one point and ground. It is assumed that
there is more freedom in designing the active control forces on the right side of the equation, so

that it is possible to apply a force G.. z. at i proportional to the velocity at j, for example. This

chapter deals with the sensitivity of eigenvalues and eigenvectors to changes in individual
elements, primarily in the C or G matrices.

An alternate form of the differential equation is M z + [C+GJ i + [K+HI z = 0, from
which the closed loop eigenvalues are determined. So, an approach to optimum control is this:
achieve as much damping as possible and practical through optimizing the parameters in the C
matrix and then add what more is needed in the G matrix. The idea is to design the C+G matrix
and the K+H matrix, rather than the individual matrices, keeping in mind how they are
physically achieved.

The publications that are closely related to the present study are summarized. The
optimization of viscous damping to minimize free vibrations has been studied by Neubert [N4],
Gilheany [Gl], Silverberg ISI], Mcloughlin [MI], and Inman and Andry [5], who give
additional referei'..es. Neubert 1N61 also presented an approach for optimum sizing and location
of viscous damping to minimize forced, random vibrations. Methods of active control are
summarized in the book by Meirovitch [M41. The need for passive damping in feedback
controlled flexible structures was emphasized by von Flotow and Vos [FI]. Venkayya and
Tischler [V 11 discussed the effect of frequency control on the dynamic response of structures.
Sensitivity analysis as related to modal control is the subject of the book by Porter and Crossley
[P11 in 1972, which summarized the methods that were developed to that time and presented
some practical examples for aircraft stabilization systems, cascaded vehicles, and economic and
manufacturing systems. Somewhat unique are the sections dealing with systems which have
confluent, or repeating, eigenvalues rather than distinct eigenvalue with linearly independent
eigenvectors, as assumed herein.
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The contributions of the present study that are summarized in this chapter are:

1. The current, classical methods for finding eigenvalue and eigenvector sensitivities are
summarized.

2. A direct mathematical relationship is presented between the coefficients in the complete
modal series method and Nelson's individual mode method for finding sensitivities of
eigenvectors.

3. A new method for finding eigenvalue sensitivities is presented, based on derivatives of
the invariants associated with the similarity transformations involved in the eigenvalue
solutions.

4. It is demonstrated that increasing damping may sometimes be deleterious, because some
modes may usurp, or hog, the damping with the result that damping ratios actually
decrease in other modes.

5. Several examples are given, that give an engineer a practical feeling for the sensitivity
of damping ratios and natural frequencies to changes in plant and control matrices.

3.1 Eigenvalue sensitivity.

In this section, methods are summarized in detail for finding the sensitivity of the
eigenvalues. It is assumed that the system is underdamped and the eigenvalues occur in complex

conjugate pairs. A typical pair of eigenvalues is X r ' I r= - r (or ± i (0Dr . Having the

derivative of this pair of eigenvalues with respect to input parameters, the derivatives of the
modal damping ratios r and natural frequencies wr are readily determined.

The eigenvalue derivatives are determined in two ways. In the first method, which was
developed during the present study, the eigenvalue derivatives are formulated from the
invariants in the similarity transformation. Since the input parameters and the eigenvalues appear
explicitly , these derivatives aid greatly in understanding the interaction. The second, standard
way, which is more convenient for numerical computations, is to take the derivative of the
characteristic equation. The derivative then involves the eigenvectors and the derivative of the
characteristic matrix.

The matrix equations are

Mz +Ci +Kz=-Gi.-Hz (3.1)
where the n x it matrices M, C and K are symmetric but G and H may be unsymmetric. The Eq.
(3.1) is multiplied by the inverse of M to produce

i +C i +K z=-M "1 [Gi.+Hzj (3.2)

where C=M'IC and K1=M IK. The matrices C1 and K are usually unsymmetric. The
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resulting closed loop equations are written in state space form as

I y(t)- Ay (t) = 0 (3.3)

where A = I (3.4)

The solutions of the homogeneous equations are of the form

y(t) = e U, (3.5)
and the eigenvalue problem to be solved is

[-lI+A]u =0. (3.6)

From Eq. (3.6) the eigenvalues Xr are determined and are here assumed to be distinct, with no

repeated eigenvalues. The right eigenvectors u r satisfy the relationship

[ XI+A]U =0. (3.7)

Since A is unsymmetric, there is also a set of left eigenvectors associated with the eigenvector
Tproblem involving A , which is the transpose of A. The eigenvalues Xr are the same as in Eq.

rr(3.7), but the left eigenvectors v r satisfy

[-Xr I+AT]vr =0, (3.8)

which can also be written in transpose form

v T  rI+A] =0. (3.9)

The orthogonality relationships between left and right eigenvectors are

V T U =0 for r s (3.10a)
r s

and v T u = 1 for r =s (3.10b)r" r

or, combining (3.1Oa) and (3.1Ob), VTU = I (3. 1Oc)
where U and V are 2n x 2n matrices of right and left eigenvectors. It can be shown that

V A U=A (3.1Od)
wnere A is a diagonal matrix of the eigenvalues.

Here Eq. (3. 10b) is the normalizing condition for the v r vectors, where the u r have first

been normalized according to

uT M*Ur =br" (3.11)
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3.1.1 Sensitivities of the eigenvalues using the similarity transformation invariant&

Some of the effects of individual elements in the control matrix can be anticipated from
knowledge of the relationship between the matrix A and the diagonal eigenvalue matrix A. The
matrices A and A are similar, in that they are related by a similarity transformation. The
invariants are those associated with similarity transformations, meaning that the matrices have
the same eigenvalues, their traces are equal, and their determinants have the same value. The
equality of the traces relates the system damping parameters to the modal damping ratios and
natural frequencies, as follows.

Tr (A)=Tr ( -(C+G )) =Tr (A)= Xr+.r = -2 r 0o (3.12)
r r

The fact that the determinants are invariant means that
1 22 2(AA-I2  (3.13)

so that, even though the w 's change due to changes in C+G, their product does not change if

the mass and stiffness matrices are not altered.

Fom Eqs. (3.12) and (3.13), relationships for the sensitivities can also be determined by
taking derivatives of both sides of the equations with respect to A... Thus the followingIi

amportant results are obtained.

B( Y t+.r) c3(., -2 ; o )

a(Tr (A)) -(Tr(C+G)) r r r r (
oBA.. oaA.. aA.. aA.. (.4

Ij Ii iJ 1
alM-KI= ( O2 (02 2

1 M' K. _ . (3.15)
aA.. BA..

Ii ii
The Eq. (3.12) is written in detail as Eq. (3.16) and taking the partial of (3.16) with

respect to A.. confirms Eq. (3.33), which is derived separately below.

2n 2n

X r A.l=All+ A22+ + A 2n2n (3.16a)

r=l =l
2n ar

and r IL=! (3.16b)

r=l "
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Example 3.1: System with One Degree of Freedom

For the simple one-degree-of-freedom system with a mass m supported by a spring of

stiffness k, a dashpot with damping rate c, and a control force of -g x the A matrix is

A = [ I(c+g) mk (3.17)

and the diagonal eigenvalue matrix is

A [ " l w+i +  Dl 0 D. (3.18)
1 0 -~w ioD! - I o

The following relationships are obtained by setting the traces and determinants equal,

-m l (c+g) = - 2 w, (3.19)

and mI k=C0+(2 2 (3.20)and~~ ~ mk= 1 D (0 I C1

Taking the partial derivatives of Eqs. (3.19) and (3.20) with respect to g, the results are

m "I = 2(C Iawl + wa"_I) (3.21)
ag I ag

and 0=w - (3.22)
1ag

From Eq. (3.22), if wl* 0, then aoI /ag =0 which shows that changing g does not result in a

change in CO.

Example 3.2: System with two degrees of freedom

If the system has two degrees of freedom, with the damping matrix CA-, and the mass
matrix is diagonal, the A and A matrices would be 4x4, as follows.

-Gll/M, -G,2/m, Kl/m, -K,/m,

A= -G -K] = -G2 1/m2  -G 2 /m 2  - K2 1/m2  -K 22m2 (3.23)

0 1 0 0

0 0 0
0X 00

and A= (3.24)
0 0 2

0 0 0 2
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From the traces and determinants, the following relationships arise.
2 2

22 12 -K )/(m m) = X X X X = 0 0) 3.5(K11K22 -KK 21/ 2 1 1 2 2 1 2 (3.25)

-Gi /m CG2 /m2= " XI XI X2 -, 2= -2 1 2 2w2 (3.26)

The fact that the eigenvalues must be real or occur in complex conjugate pairs is confumed by
Eq. (3.26), since the left side is real. Further it shows that if GH= G22= 0 and G12 * 0, then the

system will be unstable since C, and 2 must then be real and of opposite signs, with w I and W2

real and positive.

By taking the partial derivative of Eqs. (3.25) and (3.26) with respect to GII , equations

for the sensitivities are obtained.

0 12 + 1 (3.27)

and 1 + c 2 (3.28)
aGII11 11

An interesting situation arises according to Eq. (3.27), namely that a change in G could

produce changes in woI and w 2 and if one of them increases, the other must decrease.

3.1.2 Sensitivities of the eigenvalues in terms of the eigivectors.

To find the sensitivity of the eigenvalues X with respect to a parameter in location A..r

take the partial derivative of Eq. (3.7) with respect to A... The well known equation [RL,Wl]
ij

for solving for this derivative in terms of the eigenvectors and the derivative of A is given in Eq.
(3.29).

r -r (3.29)
aA j  rAi r"

The right-hand side of Eq. (3.29) is a scalar. Taking the partial of A with respect to Aii
results in a matrix having unity in the ij position and zeroes for all the other matrix elements.,
using v. to designate the ith element of the vector v an u. the jth element of ur, the Eq. (3.29)lrr jr r

becomes

A., = v u. (3.30)
BA.. ir jr

1J
The 2n x 2n sensitivity matrix S is now formed [PI 1, which shows how each element A .. affectsr Ij

the eigenvalue X
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S r -I =v UT (r~i,j 1,2,..2n) (3.31)
r = [ r r

The sums of sensitivity matrices are of interest and, from Eqs. (3.31) and (3. 10c), are

2n

Sr =VU U 1 (3.32)
r=l

where the U and V are 2n x 2n matrices made up of the right and left eigenvectors respectively.

Writing the Eq. (3.32) explicitly for the sum of the diagonal elements of the sensitivity
matrices shows a significant result in Eq. (3.33), which is the same as Eq. (3.16b).

2n 2 n a

Siir A= = 1 for i=j (3.33)
r=l1 r= l u

2n 2 nax
For the off-diagonal terms, Sijr= a A.r = 0 for i j. (3.34)

r=I r=l U

The product of two sensitivity matrices for two different eigenvalues is zero, as can be
seen from the following, which follow from Eqs. (3.10).

S S =v UT V UT =0 (rs) (3.35a)r S r r s s
S S =v U v uT =0 (r=s) (3.35b)

rr r r r r r
If the system is underdamped, the eigenvalues occur in complex conjugate pairs, and the

following relationships apply:

r + iOr ( 1-r) r r + i D (3.36a)

r= 2 and X + r =X 2C co (3.36b)r r r r r r r
If there are 2n eigenvalues, there are only n different modal frequencies cor. The cDr is the

modal frequency of damped free vibrations.

By differentiating the two expressions in Eq. (3.36b) with respect to A the derivatives

of the modal damping ratio and natural frequency, that is a Br/aA i and aor/ aA i, are readily

determined in terms of the derivatives of X and X .
r r
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EXAMPLE 3.3: Ten-bar truss with eight degrees of freedom

The ten-bar truss studied, and shown in Fig. 3. 1, is one that has been suggested by some

investigators as one of a group of "standard" trusses and was used as an example in references
[N41 and [N6]. It is not necessarily a practical truss, but is used for comparison purposes. The
truss lies in the x-y plane and has four moving nodal points, numbered 1, 2, 3, and 4, which are
free to move in the x- and y-directions. There are two anchored nodal points, numbered 5 and 6.
Each truss bay is square, 360 inches on each side. The cross-sectional areas are given in Table

3.1. The material of each bar is aluminum with a Young's Modulus E=l0x 106 psi. Half the mass
of each bar was lumped at each end of the bar in the present analysis.

(5] [61(71[9

/

/4 2/ [ 31 [ 41

Fig. 3.1 Ten-bar truss

Table 3.1. Areas of Truss Bars

Bar No. Area(in ) Bar No. Area(in 2)

m A m Am m
1 31.5 6 0.5
2 0.1 7 7.5
3 23.0 8 20.5
4 15.5 9 21.0
5 0.1 10 0.1

Optimization of passive viscous damping, representable by dashpots connected between
nodal points, was presented in IN41 and JN6] for this truss. In practice, the control forces

represented by the Gx would be superimposed on the damping forces generated by Ci. In order

to isolate the effects of the control forces, no passive damping is included in these first examples,
so the matrix C=0 initially.

It is assumed that a control force can be located at any of the four moving truss nodes and
that it is proportional to velocity at that or any other node, in the x- or y-direction. The positions
in the G matrix follow the numbering of the nodes on the truss. Thus rows 1, 2 and 3 correspond
to Ix, l y and 2x on the truss, where 2x means the displacement at node 2 in the x-direction.
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Hence G23 =G ly2x and G57=G3x.5x for example. The sensitivities of the eigenvalues to

individual elements in the G matrix were found using Eq. (3.12). The relationships in Eqs.
(3.22)-(3.23) help to understand and confirm the results, but they were not used directly in the
computations of sensitivities.

The modal damping ratios r of the closed loop system are of particular interest. For this

truss, it was found that the damping ratios in different modes are affected by various choices of
location and magnitude of GiU. In Fig. 3.2, the damping ratios 6, 5 and C. are plotted for both

positive and negative values of G55 . It is seen that for small, positive values of G55 the

damping ratios 5 and 6 are both positive and increase almost linearly with G55. All the modal

damping ratios are positive in this range and the system is stable. For larger values of G55, 6

increases at a faster rate and 5 decreases, but they remain positive. The curves are

antisymmetrical with respect to the origin.

1.8--

r=6

U.S--

r r=5

-~~~ 3-B --- - - - - -BE -BB 3-

r--8

-30Wn -2UU -lown U 13M ago@ 3000

G55 (lb s/in)

Fig. 3.2 Variation of C6' 5 and C. with G55
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X18- 3

'.4--

6.3-

* 55
(inlbs) r-6

1.1 -r5

r---5

r=8

-3 -a _1 a IM

GS (lb sfm)

Fig 3. a-'oG55 versus G5 for r = 6. 5 and 8

The sensitivities, or derivatives of C5" 6 and , with respect to G 55 are shown in Fig. 3.3.

These are related directly to the slopes of the curves in Fig. 3.2. When the sensitivity is positive,
the damping ratio is increasing. Thus for 6' the slope is .seen to be always positive, while for C,,

the slope is positive for small G 55 and negative for larger values.

The damping ratios of the same three modes are shown in Fig. 3.4 versus G77 * The

corresponding natural frequencies wr are shown in Fig. 3.5 and the damped natural frequencies

CODr are plotted in Fig. 3.6 versus G 77. It is seen that damping is highest in the 8th mode and that

8 approaches 1.0 or critical damping as G77 becomes large, while 5 and 6, as well as the

damping ratios for the other five modes, remain relatively small. 'Me range of the natural
frequencies for small damping is from 131 to 796 rad/s. When ;=1.0, the damped natural

frequency (wD8=0 and the modal frequency co,= 598 rad/s, so there is a decrease of about 25 % in

0o8 . At the same time the other seven modes all show increases of from 0.03 to 7.5 % for their

CO ,S.
r
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Fig. 3.4 5 6, ,and versus G7

s e e " ...... -.. . .... .. .. . . .

r--6

80iI- -

/N

//
//

600-

400-il I I I I I I l I I I I I I I I I I I I I I I

-3000 -8000 -1000 a 10s0 2000 3000

G77 (lb s/in)

Fig. 3.5 0, 0 6 6 and 08 versus G77
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Fig. 3.6 wD5, wD6, and oversusG7

r-5

G75 (lb slin)

Fig. 3.7 5, 6 and 1;versus 075
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It should be mentioned that it becomes difficult to trace the modes as the modal damping
ratio increases. The mode numbers are here decided in association with small control forces. If
the modes are ordered according to the magnitude of w Dr. the damped natural frequency, then

what was the eighth mode for small control forces becomes the first, or lowest frequency, mode
for large control forces.

In Fig. 3.7, the damping ratios are plotted for an input control force for G75 . The sensi-

tivities are not plotted, but are readily visualized as the slope of the r curves. The C5 and

sensitivities are positive for positive G75 but 6 shows a negative, decreasing trend in region.

Thus the system is unstable if only the G75 control force is applied. If it is desired to increase the

damping in modes 5 and 8 and decrease that in mode 6, then a positive G75 should be used. A

negative G75 would produce the reverse effect. The effect of G57 on the modal damping ratios is

similar to that of G75.

The relationships between r and G or Gi are nonlinear. The plots show a nearly linear

range only for small control forces. These nonlinearities are due to changes in mode shapes.
Large viscous damping or velocity-proportional control forces tend to stiffen the structure and
change the mode shapes. The eigenvectors are, in general, complex and their sensitivities are
readily calculated, as discussed in Section 3.2.

Because of the nonlinear behavior, the question arises as to how well the effects of G55'

G75, G57, and G77 superimpose. This is answered graphically in the plots in Fig. 3.8, where C6

is shown for the four control forces applied simultaneously, with G55and G77 positive but with

G75 and G57 negative, to increase 6 For the dashed line, the separate effects were added, while

for the solid line, the forces were applied simultaneously. It is clear that superposition applies
for small control forces only. Note that the range of the control force on Fig. 3.8 is much
smaller than on the previous figures. As the magnitude of the four control forces, applied
simultaneously, approaches 3000 lb s/in, the value of 6=1.77 and the damping ratios of all the

other modes are less than 0. 1, so mode 6 usurps the dissipation.
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simultaneous

6 surnmed

-.

-75- -- as@ a am 5 755

G55, -G75, -G, 7 and G77 (lb s/in)

Fig. 3.8 with effects of G,,, -G75, -O7 and G7 applied simultaneously (solid)

and superimposed (dashed)

Example 3.4 Effect of initial passive damping, ten-bar truss

Passive viscous damping, which is representable mathematically by dashpots connected
in parallel to each truss member, tends to produce dissipation in every mode of vibration and the
system is stable. If there is passive damping and only one active control force is added in an
off-diagonal position, such as G18, then the resulting motion can be stable or unstable,

depending on the relative magnitudes of the passive and active forces. Using the ten-bar truss as
an example, proportional damping was included by having a dashpot parallel to each truss

member, so the C = 0 K, with 0 = 3.1623x10 "4 s. Then the value of GI8 was varied from -200 to

200 lb/in s. The result is shown in Fig. 3.9 as a plot of and 4 versus G,,. The damping

ratios for the other six modes are not small, but they are affected little by G18. The solid line is

for the system with both viscous damping and the single control force. The dot-dash line
represents the values when the viscous damping is zero and only the single control force is
active. For the latter situation, the trace of C+G is zero, so 2 and 4 tend to have opposite signs

and the system is unstable. When the passive damping is added, the curves shift upward and the
system becomes more stable.
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Fig. 3.9 2and VSU ve 18u Gwt and without proportional passive damping.
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3.1.3 Summary and conclusions

1. The modal damping ratios, , I are odd functions of the G.. , so their sensitivities

,/cG ij are even functions. If there is no passive damping, the tend to be positive when

the diagonal elements Gii are positive. However, the can be positive or negative when

the off-diagonal elements G.. are positive.Ii

2. The are nonlinear functions of the various Gi. . For small control forces, the

relationship is nearly linear. The nonlinearity for larger G.. is due to a changes in modeIi

shapes.
3. In view of the changes in mode shapes, complex eigenvectors must be used and
proportional damping cannot be assumed except for small Cr"

4. The study emphasized the effects of individual elements G in the G matrix. If

combinations of the G.. are used, corresponding to mutiple control forces, their individual

effects superimpose accurately only for small control forces. This is because the changes in
mode shapes for individual G are not the same as for combinations of G.Y.

5. As has been well known previously, the addition of passive damping tends to have a
stabilizing effect in combination with the types of control forces considered herein.
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3.2 Sensitivity of the eigenvectors..

The sensitivity of eigenvectors to changes in the plant matrices is of interest when modal
solutions are used. Some of the instances where they are important are as follows:

1. In predicting changes in kinetic or potential energies, the modal derivatives appear ex-
plicitly.

2. When a perturbation technique is used for pole placement, it may be advantageous to
predict the change in eigenvectors.

3. If proportional damping is assumed, then the corresponding assumption is that the mode
shapes do not change. The eigenvectors derivatives indicate how much change, or error, is
acceptable in the plant matrix parameters in order to be able to assume that changes in mode
shape are negligible.

An important point is, even if mode shapes representing displacements do not change, the
eigenvectors in State Space do change if the eigenvalues change. This is because the upper right
vectors, for example, are equal to the lower vectors (the mode shapes) times the eigenvalue
matrix, even for non-symmetric plant matrices.

3.2.1 Sensitivity of the eigenvectors by the complete modal series method.

au.
The eigenvector derivative T- is written in short-hand as u iaki * For the derivative of

the ith vector, start by taking the derivative of [A - I] !] ui =0.

[A- iII Di' akl + [A, ak X-i 'akII IUi = 0 (3.37)

It is known that the derivative of the eigenvalue is found from

S'ak = v T  'akl ui (3.38)
It appears that the eigenvector derivative might be found by simply inverting the [A - X. I] matrix

in Eq. (3.37), but that matrix is singular and cannot be inverted, so another approach must be
found. Two possibilities are summarized. First, a common approach when working with
eigenvectors is to represent a solution in terms of a weighted sum of the eigenvectors [P1], so
that uiV ak. is expressed as

2nu" Va = 1 Y ii uji = U i" (3.39)

j=1 -
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The Eq. (3.39) requires that all the u. be known. Substituting Eq. (3.39) into (3.37) gives

2n
[A - X i 11 i + [A,aki - X1 , A/1] u = 0 (3.40)j=1 l

To solve for the y j pre-multiply Eq. (3.40) by VT and make use of the relationships

vT A u.=0 n;j (3.41a)
n j

vT A u.=X n=j (3.41b)

Thus, only the jrh term in the series is non-zero, with the result

(jX ) Yij= vT A, U. (3.42)

vAa u.

or J Ajak/ i for i *j. (3.43)
yi= (X.i - X.)

For i = j, the denominator of Eq. (3.43) goes to zero, so y.i must be found from a different

equation.

It is interesting to repeat the derivation more efficiently by substituting the matrix
representation of ui akl of Eq. (3.39) into Eq. (3.37) and pre-multiply by V T, the full matrix of

left eigenvectors.

VT[A"i 11 UYi =_V T Aa u. (3.44)

Now VTA U=A= X 2 (3.45). x 2 n

and suppose, for example, that i=2. Then Eq. (3.44) becomes

X2=- Y2 V A, akl u 2  (3.46)

;'2n" X2 J,1Y21
and Eq. (3.43) follows.

To determine Yii we may use the normalizing condition

Ix 2n 2n x 2n 2n x I

uT  M u. =b. (3.47)i I Iand take its derivative with respect to ak1.
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This gives UaT  Mu +u+ M u 0 uT Mui.ak/ 'aki i +  i.ak = 0(3.48)
If M is symmetric, the equation can be written

uT M, u. + 2u.T MU 0 (3.49)S A/ i.akl
and the derivative of the vector is replaced by its series form

T ~ T 2nuT uT MJ-yITi.u. =0 (3.50)U, M,ak/ ui + 2 ,i M iU10(.0

j=I
T 2n

or M'ak u + 2 b, yi + 2u, M y.i U. =0 (3.51)i A/ i J

J*i
yielding, finally, for yi.

UT 2n Ti 2 M Y. u. + M (3.52)Tii -  2b i i~ ' M akl U

J*1
Having tn. i the eigenvector derivative may be calculated from Eq. (3.39).

Before leaviog this derivation, it is worthwhile to contemplate the expression in Eq.
(3.47), namely, uT M u. = b.. One simplification would occur if the vectors were normalized

i I I

so that bi =1. A benefit would also accrue from prudent choice of M, such that uT M u. =0.Ij

For symmetric plant matrices, this would occur if M= M

3.2.2 Eigenvalue sensitivity by Nelson's single mode approach.

The disadvantages of the complete series approach are that all the modal vectors must be
known and summing them for each eigenvector derivative is tedious.

In developing Nelson's IN21 single mode approach, substitute Eq.(3.38) into (3.37) to
obtain

TI A - Xi !I ui, ak/ -A'ak/ ui + jvT A'ak/ui I ui (3.53)

=F.

Rather than use a modal series to represent the solution, Nelson represented ui , aklas the

sum of a homogeneous and a particular solution, namely

ui = hi + a..u. (3.54)

The contribution of Nelson is that the vector hi may be calculated directly, without knowing the
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remaining eigenvectors. Suppose that ui, akI is represented by

U.,W =0 +CE.U (3.55)h 21 1 Ub
where the sub 1 and 2 just mean portions of the vectors hi and ui . Then, the special form of

the vector hi is solved for by zeroing out the jth row and column of the [A - X i matrix. Since

the rank of the reduced [A - X i I must be 2n-1, the remaining (2n-1) x (2n-1) matrix may be

inverted. The appearance of the partitioned matrices is as follows,

[)k ) i llt11 0 A 131

A 31 0 [OA - Xi !]33 JIh 2, F 2  (.6

which is easy to program on the computer. By inserting the digit 1 in location jj on the main
diagonal of the matrix on the left, the matrix is restored to size 2n x 2n and h. 0 O is assured by

J

zeroing the F vector in the same row. The choice of which vector to designate as the jth row is
arbitrary, but to avoid numerical difficulties Nelson suggested finding the row where the compo-
nents of the vectors ui and v. are large by investigating the products of the absolute values

abs(ui) abs(vji).

The a U is found from the normalizing condition, Eq.(3. 11), after taking the derivative as

in Eq. (3.49) above

u.T M, T M U 0 (3.49)M akI ui + 2 i ui.aklUT M, u + 2uT M[h +a u I =0 (3.57)

so xii =-2- T M,a Ui + 2u.Mb (3.58)
ii 2b ( i akl I i

Here a simplification will result if M is chosen such that Maki --0.
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3.2.3 Relationships between the complete series approach and the single mode method.
In using the complete series representation, from Eq. (3.39), the eigenvector deivative is

given by

2nUi Vk A = I= ̂I ii U i = U ^fi (3.39)

By Nelson's single mode approach, the derivative is given by Eq. (3.45)

Ui A = hi + a.iui (3.45)

It is possible to represent h. as a series summation of all the modal vectors, weighted by a factor

Ti.., as

2n
Ui ak/ = T i .u + a.u1 (3.59)j=I j J 'u I

It follows that the series coefficients are related by

ij = tlmj for i *j (3.60a)

.ii = .ii + Oii for i =j. (3.60b)
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Example 3.5. Eigenvector sensitivity by the complete series approach

The matrices in this example are given in state space form.

1 0 0 0 0 05 -4

M 0 2 0 0 K 0 0 -4 (3.61)
10 0-5 41 5 4004 -4/ -4 00

~0 0 4-4 440

so A= [ *]I' K' 0 0 2 (3.62)
10 0 0

The right eigenvectors were normalized according to UT M* U =1. The sensitivities calculated
are those of the right eigenvectors with respect to A12 or u,a12 * The right eigenvectors are:

-0.3645 -0.3645 -0.6059 -0.60591

U -0.4284 -0.4284 0.2577 0.2577 (3.63)
0.6672 i -0.6672 i 0.2341 i -0.2341 i

L 0.7843 i -0.7843 i -0.0996 i 0.0996 i
The eigenvalues areX I. ),2---+ 0.5463 i ; X 3 X4= ± 2.5887 i.

The sensitivities .LI'at2=0 .1562 X2 ,a1 2=0.1562 XYa 12=-O. 1562 .4,a12=-0.1562

The values of yij are listed in matrix form, their subscripts determining their position in

the matrix.

0 0.1429i -0.1271 i 0.0828i 1

ly,! = - -0.1429 i 0 -0.0828 i 0.1271 i (3.64)
IJ -0.0460 i -0.0300 i 0 -0.0302 ii

0.0300 i 0.0460 i 0.0302 i 0 J

The partial derivatives of the right vectors are arranged in columns

-0.0253 i 0.0253 i 0.0460 i -0.0460 i 1
U _ui -0.0727 i 0.0727 i 0.0248 i -0.0248 i (3.65)

Ui,a1 2  [A  0.1445 0.0145 0.0036 0.0036

0.0912 0.0912 0.0156 0.0156
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Example 3.6 Eigenvector sensitivity by the single mode approach.

The plant matrices and the eigenvectors are the same as in Example 1. The matrices for

finding the ulal2 are.

0.3715 1
F = Aai2 U1 + [VT A, U Ul -0.0669 (3.66)1 a12I I 12 10. 1042 i

0.1225 i
The [A - kXI] matrix, after modification of the third row and third column is[-o0463~ 0 0

-0.5463i 0

Modified IA -X 1 1 = 0 0 0 1 (3.67)
0 0 1 0
0 1 0 o0

[0.3715 
Modified F -0.0669 (3.68)

0
0.1225 i

Now the matrix h is found by multiplying the inverse of the modified JA-X I] matrix times the

modified F matrix.

[0.1042 i

Thus0.1654 i (3.69)
0.0786

Since Ma12 =0 andb 1 . H)

a UT M h =0.2166 i (3.70)

0.0253 i
and u ~al2 hi+ 0!1Ul= 0.0727 i (.1

-0.1445 (

-0.0912
which agrees with the first column in the Eq. (3.65) above, obtained by the complete series
method.
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4. OPTIMIZATION OF PASSIVE DAMPING
4.1 Optimization of viscous damping.
4.1.1 Achieving uniform modal decay rates for free vibration problems.

In the present context, passive viscous damping is that representable by dashpots, which
may be connected to ground or between two points on a structure.

Mi+Ci +Kz= 0 (4.1)
In free vibration problems, it is sometimes desirable for the motion of each mode to decay at the
same rate. This may be achieved with mass-proportional damping, such that C = 2 a M. The
displacements are represented in terms of modal coordinates.

z(t) = 0 q(t) (4.2)

Then, if 4 TM 4b= !, the product OTC (b =a I and a typical equation for the rth mode
is

qr +2aqr +0)r qr =0. (4.3)

The eigenvalues are

X , X =-a ±i -a2 =-a ±iw(4)
r r r D (4.4)

so the decay rate is the same in each mode.

If the mass matrix is diagonal, of size n x n, then n dashpots are theoretically required. If
the system is three-dimensional, a dashpot is required at each mass in each direction, and one end
must be connected to an effective ground. Thus achieving mass-proportional damping may not
always be practical.

For stiffness-proportional damping, C= 13 K and Tci = 13 [0) ]D and the decoupled

equations are of the form
4 + p ) + W2 q =0

r r r r r
The standard form of the decoupled equations in terms of the modal damping ratio is

r + 2 C q + 02q = 0. (4.5)
r r r r r r

so the equivalent modal damping ratio is found from
2 C o =10 (0 2

2 r r r
which shows that the higher modes decay fastest, unless the r are designed so they decrease

with frequency. Practically, stiffness-proportional damping may be easier to achieve than
mass-proportional damping because mechanical devices can be connected between nodes, rather
than to ground. But then active control may need to be added to provide sufficient dissipation in
the lower frequency modes.

-39-



4.1.2 Critical damping for matrix equations

The idea of a critical damping matrix was presented by Inman and Andry [12] in 1980.
Usually the mass matrix M and the stiffness matrix K are positive definite, although K may be
positive semi-definite for a free structure which possesses rigid body modes.

Now change variables by letting x = M 1/2 z.

+M " I C M" I/2  + M'/2KM'I/2 x = 0 (4.6a)

x +C1 x +K x = 0 (4.6b)

Now critical damping is defined in reference [131 as Cl= 2 K1/.

The following cases are then possible:

1. If CI = t, the system is critically damped and each eigenvalue is

a repeated negative real number. All the eigenvectors are real.

2. If C I- CI is positive definite then the system is overdamped and each

eigenvalue is a negative real number. All the eigenvectors are real.

3. If C I- t', is negative definite then the system is underdamped and the

eigenvalues occur in complex conjugate pairs, each with a negative real part.

4. If CI- t, is indefinite or sign variable, then mixed damping occurs. At

least one mode will be overdamped and at least one mode will be underdamped.

Related references and concepts were summarized in the paper by Liang, Tong, and Lee
[Llwho give definitions for strongly complex and weakly complex eigenvectors. Caughey and
O'Kelly 1C2J gave a necessary and sufficient condition for decoupling of the Eqs. (4.6).
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4.1,3 Optimization of modal damping ratios, ten-bar truss example.
4.1.3.1 Formulation of the optimization problem,

In a practical truss, bars are connected at pinned joints. The viscous damping force F. on

pin j may be F. = Cm ( z* - z i+) if the dashpot is between stations j and j+l. If the dashpot is

con nected between station j and ground, then F. = C z.. It is expensive to connect damping
devices between each pair of nodes. So the questions to be addressed are:

1. Which modal damping ratios are to be maximized?
2. If a limited number of dashpots are to be used, where should they be connected

on the structure?
3. Once the best locations are determined, how much damping should be used at

each location?

For the underdamped situation, the complex eigen pairs are written as in Eq. (4.7), with

modal damping ratio.

X. .= W.0. ±j W3 (4.7)

The optimization problem is specified by defining appropriate objective functions.

Suppose it is desired to maximize the damping ratios of certain modes. Then the objective
function, OBJ, could be specified as

OBJ= a i i (4.8)

where the a . are arbitrary weighting factors to be chosen as positive real numbers or zero. In
!

addition a bound is put on the total amount of damping to be used. This is done by defining a
constraint function G( I), using weighting factors y and Cm as the viscous dashpot constants.

G() T -= 0.0 (4.9)

m
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4.1.3.2 Natural frequencies and mode shapes for proportional damping.

The ten-bar truss of interest lies in the x-y plane as shown in Fig. 3. 1, page 23 . The
connections are assumed to be frictionless pins. The nodes 5 and 6 are anchored and the other
four nodes are free to move, with x and y components of motion. The bar numbers are in

brackets. The bar material is aluminum with Em = 10 x 106 psi for each bar. The dashpots are

not shown, but each dashpot is connected between the same two nodes as a parallel bar, with the
same element number, so Cm is connected parallel to bar m. The axial stiffness of each bar is

A E
K = in . The bar cross-sectional areas are listed in Table 4. 1. The truss was originallym L

m

designed to carry heavy vertical loads at nodes 2 and 4. Consequently, the bars 2, 5, 6 and 10
have a much smaller cross-sectional area than the other s ix bars. The truss bays are square, 360
inches on each side.

The stiffness-proportional dashpot constant is arbitrarily defined as C = Am Km

where 3m is an factor to be chosen. If Pim is a constant, then the damping is stiffness
proportional. For the first example, all Om = 1.0. The mass matrix is diagonal, with half the
mass of each bar lumped at the node at each bar end. The damping ratios and natural
frequencies for this situation are given in Table 4.2. The damping factors for the higher modes
are the largest. The natural frequencies range from 131.13 to 796.21 rad/s and are well
separated.

The mode shapes for zero damping, or for proportional damping, are shown in Figs. 4.1.
For modes 1 and 3, the shapes are somewhat like lateral bending modes of the entire truss. For
the higher frequency modes, the stretching of the lighter bars, namely bars 2, 6 and 10,
dominates the motion.

Table 4.1 Member areas, lengths, stiffnesses, and damping factors for Pim= 1.0.

m A (in) Lm (in) Kgi (lb/in) Cin(lb-s/in)

1 31.5 360.000 875 N(X) 276.699 30
2 0. 1 360.000 2 778 0.878 41
3 23.A 360.(X)0 638 889 202.03441
4 15.5 360.0(K) 430 556 136.153 62
5 0. 1 360.(XX) 2 778 0.878 41
6 0.5 360.(XX) 13 890 4.39205
7 7.5 5(19.117 147314 46.58475
8 20.5 509.117 402 658 127.331 65

9 21.0 509.117 412479 130.43730
10 0.1 509.117 1964 0.621 13
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Table 4.2 Damped modal damping ratios and natural frequencies for P.= 1.0.

i i 0 i (rad/s)

1 0.02073350 131.1301
2 0.0274 1571 173.3921
3 0.0426 4408 269.7048
4 0.0515 5221 326.0448
5 0.0730.5049 462.0119
6 0.0948 6770 599.9960
7 0.1051 3561 664.9360
8 0.12589253 796.2143

4.1.3.3 Sensitivities of modal damping ratios and natural frequencies.

The first derivatives, a / acm were calculated by the methods of section 3.1.2, after

determining the derivatives of each eigenvalue a X i / C)Cm and its complex conjugate a Xi / amc
The derivatives of the damping ratios are tabulated in Table 4.3. There are 80 entries in the

table, since there are 8 modes and 10 bars. The total of each row and column is also given and
the sub-totals add to an overall total of 10.27867. There is a big variation in the magnitudes of
the sensitivities, which is the reason for listing values to six decimal places. The list of dashpot
locations in order of sensitivities is 2, 10, 6, 5, 4, 9, 3, 8, 1, 7. By bar stiffness, from smallest to

the largest, the order is 10, 2, 5, 6, 7, 8, 9, 4, 3, 1 . Thus, there is a direct correlation between
sensitivities and stiffnesses, with largest sensitivities going with dashpots parallel to bars with

lowest stiffnesses. Location 7 seems to be most out of order, but notice that there are two nega-

tive values in the column for bar 7. In a ranking of potential effectiveness according to the

absolute sum of the columns, the value for dashpot 7 would be 0.037637 and it would precede
dashpot 3 in the sensitivity list.
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MODE I.13 mao/s MODE 2. 73-39 RA.O/S

MODE 3. iscie aO/s MODE 4. uz..o ae/s

MODE 5. 46301 RAO/^ MODE 6. wsoo aos

.............

MODE 7. @eADam/% MODE 8, 79.a RAO/$s

......................-----. ................... ...

Fig. 4.1 Mode shapes of the undamped ten-bar truss.
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Table 4.3 Sensitivities x 102 at 1 m= 1.0.

m=l m=2 m=3 m=4 m=5 m=6
i

1 0.002 025 0.004 389 0.000 900 0.001 138 0.007 674 0.000 035
2 0.000 197 0.021 051 0.001 518 0.000001 0.154036 0.000238

3 0.000 180 0.004 650 0.005 255 0.010 230 0.006 373 0.000 355
4 0.000054 4.336 1(X) 0.000 037 0.000021 0.000486 0.000238

5 0.008992 0.045 043 0.004 783 0.001 471 0.007 432 0.001 360
6 0.011 616 0.0)9 531 0.005 680 0.0() 325 0.000 890 0.069406

7 0.0(X) 203 0.018 862 0.000) 531 0.0(X) 367 0.000 079 2.122 320
8 0.007 902 0.0(X) 946 0.017 544 0.051 749 0.0(X) 016 0.007 902

0.023 581 4.440 572 0.036 248 0.065 302 0.176 986 2.234 647

m=7 m=8 m=9 m=10 All m

1 -0.001 810 0.(X)6 954 0.001 747 0.007211 0.030 263
2 -0.012 466 0.000762 0.000 059 0.029 303 0.194 699
3 0.0)6 633 0.0)7 399 0.001 391 0.045 729 0.045 729
4 0.000 104 0.0(X) 117 0.000 000 1.853090 6.223040

5 0.003 230 0.014 265 0.012 294 0.039 581 0.138451

6 0.003 364 0.0)3 603 0.031 427 0.081 899 0.217 741
7 0.0LA 344 0.(X)0 039 0.001 667 1.164520 3.308 932

8 0.009 686 0.000 024 0.010 797 0.020 834 0.119 812
0.009085 0.033 163 0.061 254 3.197 829 10.27867

4.1.3.4 Modal usurping of damping; variation of 5 and C6 with C1 .

As the values of C M are increased and the damping becomes nonproportional, the mode

shapes change and the eigenvectors become complex numbers, so the eigenvalue derivatives
change. The variation of and C6 with CI is shown in Fig. 4.2. All the other Cm were taken

as zero. The plot shows that for 0 _ CI  _ 3, both 5 and C6 increase almost monotonically.

However, for C1 > 3, the rate of increase of C6 becomes larger while that of C5 decreases. The

slopes of these lines, which are the sensitivities, are plotted in Fig. 4.3, where it is seen that aC 5

/aC I changes sign and finally approaches zero as CI increases. So mode 6 usurps the increased

damping and mode 5 damping approaches zero, because of changes in mode shapes.
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Fig. 4.2 Variation of Cand '6with C1 .

-0.0001.

-0Z6/OC I = - - -- - - - -

-.0000-

.0004

0246 8 110 12 1'4 186

A,= Ct/'E/K
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4.1.3.5 Optimization of 3 with respect to C3 and C4 .

Now we return to the optimization problem stated at the beginning of this chapter. The
goal is to optimize the damping ratio of mode 3 by placing dashpots parallel to bars 3 and 4,
which are horizontal members at the bottom of the truss. The table of sensitivities shows us that
the 3 is quite sensitive to dashpots placed in these positions.

The objective function is taken as ; with the design variables C3 and C4 in the

constraint function G(I).

OBJ = 3

G(l)=C 3 +C 4 - CT 0.0
An advantage to limiting the design variables to two is that a two-dimensional plot can be shown
of the interaction tetween C3 and the two design variables. Contours for 3 = 0.05, 0.10, 0.15
amd 0.20 are shown in Fig. 4.4. The straight lines are constraint lines which were chosen to be
approximately tangent to the given contour lines. Thus each constraint line corresponds to a

different value of CT in G(I). The slopes would be -450 if the vertical and horizontal scales were

equal. Since the contour lines are convex toward the feasible region, the optimum solution,
which maximizes 3' will be along the constraint boundary line.

3500 -

3000 0.15

0.10C3.2
2500-

.,2000-

1500-

500- 0.05

0 200 400 600 800 1000 1200

C4 (lb-s/in)

Fig. 4.4 Variation of C3with C3 and C4 .
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The results are summarized in Table 4.4 for three values of CT , namely CT = 1157.3,

1838.5 and 2525.4 lb-s/in. The associated values of optimum 3 are close to 0.10, 0.15 and

0.20. It is interesting to note that, even though the increments in 3 are constant at 0.05, the

corresponding increments in C3 and C4 are not constant, indicating the nonlinear nature of the

optimization problem.

Table 4.4 Optimum values of 3 with C3 and C4 the design variables.

C 3  C 4  3 C T

160.928 996.373 0.099446 1157.301
719.33) 1119.184 0.147048 1838.514
1240.957 1284.475 0.201559 2525.432
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4.2 Representation and optimization of viscoelastic damping in structures.
4.2.1 Fitting curves to data for complex moduli of viscoelastic damping materials.

A great deal of data exists, in chart form, for the Young's Modulus and loss factor of
commercially available materials that are used for damping structural vibrations. Typically all
the data is presented in one nomograph as a function of frequency, reduced frequency and
temperatures. It is more convenient to represent the data in equation form, using only three short
equations and seven parameters for each material.

The basic equations are not new, but a method of fitting is suggested which is better than
currently used in the outside literature. A step-by-step procedure is outlined for finding the
seven parameters. As an example, specific values are given for the parameters for Soundcoat
601, which has a transition temperatures of 750 F. In reference IN71, curve-fitting is also done

for Soundcoat 606 and 609, which have transition temperatures of 125 and 1750 respectively.
The fit obtained is demonstrated in plots of Young's modulus E, loss factor il, and loss modulus
El which compare the fitted curves with experimental data which was supplied by the
manufacturer.

List of Symbols

aT =Shift factor depending on temperature T

0- Used for initial frequency shift at T=To .
C1  = Constant in equation for aT.
E= Maximum value of E, occurring at high frequencies
El Minimum value of E, occurring at low frequencies
E(o,T) = Real part of Young's Modulus

E*(w,T) = Complex modulus = E(o,T) 1I + j rl(o,T)
E(tT)(to,=T) Loss modulus

f o/27t = frequency (Hz).
n = Shape and magnitude parameter for E(co,T) and rj(w,T)
rlToT) = Loss factor
T = Variable temperature
To = Transition temperature for material
Too = Temperature parameter in equation for aT.

- Frequency (rad/s).
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4.2.1.1 Equations and parameters

There are three basic equations for the curve fitting, as given in Ref. [NI] . They are
expressions for the Young's Modulus E(wo,T), the loss factor q(w,T), and the temperature shift
factor rT.

E(w,T) =EI + Eu [I - I A ])n (4.10)

n i Eu( 3oxx)n
flO,)2(co,T) L (3xTfJ (4.11)

log aT = c(T-T) (4.12)
(T-TOO)

There are seven parameters involved, namely E1 Eu, CV, T, To , 0 and n. It can be

seen in Eq. (4.10) that the vertical position of the E(W,T) curve is controlled by EI and Eu.

Further, when o--O, E(w,T) = E/ and when w is large, E(w,T) =E . The shape of the curves and

also the magnitude of rl(o,T) are directly controlled by n. The (XT and 13 are factors of frequency

w and have the effect of shifting the curves.

Note that when T = To the value cLT= 1, so there is no temperature shift. The temperature

To is called the transition temperature of the material and the maximum value of TI(o,T) usually
occurs near that temperature. Thus the 13 may be used to locate the E(w,T) in the correct lateral
position on a frequency scale, when T=To . Then at other temperatures, the aT automatically

accounts for the temperature changes, if it is chosen correctly. Since the a.I, in Eq. (4.12)

depends greatly on two parameters, C1 and To, finding the best combination is not always easy..

The temperature T. is usually chosen somewhere in the glassy region and the value of C often

lies between 1 and 12.

In the book by Nashif, etal INII it is suggested that some of the fitting can be done by
knowing where the loss modulus E(w,T)i(w,T) reaches its maximum. From Eqs. (4.10) and
(4.11), the loss modulus is

n it Eu( pCL .) n

E(w,T) TI(w,T) =n 2 (4.13)2 [! +( P3(.0 T)n]

Taking the derivative with respect to co yields

(13OwaT)n =I at 13Ow for max. loss modulus. (4.14)
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Using this result in Eq. (4.13), the maximum value of the loss modulus is obtained.

[ E(,T) i1(wT)] x n EU (4.15)
8

It is suggested that, if the other parameters are known, then the value of n may be calculated
from Eq. (4.15). A practical problem arises in using this relationship for Soundcoat 601 because
the maximum of the loss modulus occurs at a frequency higher than the range covered by the
given composite plot. This was overcome by extending the frequency scale to f=l.0E8 and by
extending the straight temperature lines to the higher frequency range.

It is easier to find the maximum value of the loss factor, which occurs near the transition
temperature and is easily identified, as can be seen in Fig. 4.5. Hence, the derivative of the loss
factor I(CO,T) is needed with respect to (o. Taking the derivative and setting the result equal to
zero gives the following relationship.

2n E/(13WaI) = +- (4.16)

It is convenient to take the square root and define the resulting specific value of (13KLaT)n where

the maximum occurs as R.

(PLc ) n El 0E 5 - R (4.17)

The expression for the maximum value of loss factor is, in terms of R, and using Eqs. (4.10) and
(4.11I),

Tl(w,TCZ n 7cE = (4.18)T 2{EI+E R ]

For many practical materials R is small compared to I, or R << I because EI << E .

Taking advantage of these inequalities, Eq. (4.18) becomes

((o,TTr)max - nnE R (4.19)
2 {Et+EuR }

If it is also true that El << Eu R, then Eq. (4.18) may be simplified to Eq. (4.20), but Eq. (4.18) is
preferred for its accuracy.

n rEuR nit
2 ({E,T, nr7maE-R n 2 (4.20)
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The Eqs. (4.16) -(4.20) do not appear in Ref. INII and have been developed by the
writer. It appears that Eq. (4.20) may be used easily to find the value of n, but since n also
controls the "bandwidth" of the r1(w,T,x T ) curve, judgment is deferred until a fit of actual data is

attempted below.

4.2.1.1. Reading data from a composite plot or nomograph.

The data for Soundcoat 601 is shown in Fig. 4.5. There are three vertical scales. On
the right the value of frequency f in Hz is the ordinate; on the left, the values of E and 1i . On
the bottom horizontal scale the value of Y..f may be read. This value may be used to find aTr

In obtaining data from the plot for a certain temperature and frequency, the procedure is
to start with a combination of frequency f and temperature T, for example say f=1000 Hz and

T=75 0 F. So draw a horizontal line through f=10 3 Hz and find its intersection with the slanting

temperature line where T=75" F. Then drop a vertical line from that intersection point and mark
the crossing points on the E and il curves. The values of E and il are then read on the left hand
scales. But now an important point is this: if the vertical line is projected down to the horizontal
scale, the value of faT may be read and, knowing f, the value of xT is readily calculated. For

this example fa T = 103 Hz, so a.tT = 1 because both T and To = 750 F. If T=500 F, then the
value of o T =27, and the same value should result no matter what value of frequency f is taken

for this T.

In Table 4.5, the values of E, T" and Ej(o,T) are listed for Soundcoat 601 for a
temperature of 751)F.

Table 4.5 Dynamic Properties of Soundcoat 601
601

f(Hzl E(psi) 11E(psil 11

T=750 F
! 210 57 0.28
1() 360 180 0.50
100 1 260 945 0.75
1000 6900 6 900 1.00
4000 18 000 14 400 0.80
1 .(E4 30 9(X) 18 450 0.60
4.0E4 90 000 32 400 0.36
!.(E5 180000 43200 0.24
4.)E5 210 (X)O 37800 (.18
1 .E6 240 O() 31 2(X) 0.13
4.(E6 270 () 21 6(X) 0.08
i.(E7 300 000 19 5(X) 0.065
4.0E7 300 00(0 12 O(X) 0.04
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4.2.1.3 Step-by-step procedure for fitting equations to data.

Now the following procedure for determining the parameters is proposed.

1. Read the values of El and E from the curve of E vs f mr . For 601 the values are

El = 180 psi and Eu = 300,000 psi.

2. Read the value of ilia, from the curve. Use this to calculate n from Eq. (4.20). For
601, r1nax = 1.X) and the value of n = 0.637. To check using Eq. (4.18), R=0.02449
and n=0.669, which results from the more accurate calculation.

3. On the loss factor curve, at the transition temperature To , read the value of f aT at

which the loss factor is maximum. Since aT = I at the transition temperature, the

value of f,, = I ( X) Hz for 601.

4. Read the value of E at frequency (An = 2irf1 n at temperature To . This value of E
will be used to calculate P, the shift factor, when T = 1.

E(WLfn,T) =E+ + (E-In] (4.21)

or (13O0)n = Eu - 1 (4.22)
Eu+E - E(w n ,T)

For 601, E(On ,T) = 69(X) psi, so (3w) .669 = 0.022913 and 0=5.63E-07.

5. Next, account for the effect of the variable temperature T, by determining c. Since

the data for 601 is plotted versus f or, the value of oT may be read directly for each

frequency f at any temperature T. The values so determined are listed in Table 4.6 for
601. From any two pairs of values, T and o, the values of C, and T may be

calculated for use in Eq. (4.12), which may then be used to find the value of or for any

temperature.

Table 4.6. Values of oxT versus Temperature for Soundcoat 601

T( F) a.T

0 1.0 E7
25 3.0 E3
50 2.7 El
75 1.0

I (M 8.( E-2
125 1.2 E-2
150 2.0 E-3
175 4.3 E-4
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4.2.1.4 Results of curve-fitting for Soundcoat 601.

The values of aT at the highest and lowest temperature listed in Table 4.6 were used

to determine C I and Too, which are listed in Table 4.7. These values of C, and T., were then

used to calculate the cx.T at all temperatures.

Table 4.7 Listing of Parameters for Curve-fitting for Soundcoat 601

T 750 F

Eu  300,000
El 180
(E)max 43,200
at f= 100,000

Timax 1.00
at fi= 1000
R 0.02449
13 5.630 E-07
n 0.669

T - 115.75) F

C1  9.788

The correctness of 3 is best checked at the transition temperature, when aT =1.0. In

Figs. 4.5 and 4.6, plots of E, T1, and ETI are depicted versus f for 601 for three temperatures T=50,

75 and 1250 F. In Fig. 4.5, the comparison of the manufacturer's data (dotted) and Eq. (4.10)

fit (solid) is especially good for E(wo) at the transition temperature To=750 F and in the frequency
range near 1000 Hz. This shows that the value of 3 is well chosen. The shape of the curve at

higher and lower frequencies is not as good and depends in part on choice of n. At the other two

temperatures, T=50 and 125 'T the fit in the center region of the curves is excellent indicating
that the aT is about correct Again the fit is not as good at the ends of the curves.

Both the maximum value of T1 and the shape of the rl(O,T) curve depend on n. Plots

of Ti versus frequency f for the three temperatures are shown in Fig. 4.6. The maximum value
matches well and the shape of the curve is reasonable, but the fit near the ends of the curves is

not as good. On the log-log plot, the shape of the 71 vs. f is symmetrical and covers several

decades in magnitude while the experimental data is unsymmetrical and covers little over one
decade in magnitude.
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4.2.1.5 Improving the fit by modification of the equation for T).

The fit of r" depends greatly on the value of n, which affects both the magnitude of Ti

and the curve shape. A larger value of n produces an T1 curve of sharper curvature; a smaller n
flattens the 1 curve. However, if the value of n is increased over those listed in Table 4.7 for any
one of the three example materials, then the magnitude of the magnitude of the maximum of 11
will be too high. Hence it is suggested that the Eq. (4.11) for fT(w,T) be modified to include
another constant Cq to adjust the magnitude of rl(co,T) as in Eq. (4.23). Then the n may be used
mainly to control the curvature of effective bandwidth of the curve. Unfortunately the choice of

affects 3.

Tl(w,T) = CTnt Eu(kaT)"I (4.23)

2 E(w,T) I Ir lw)nty

The following procedure is therefore suggested for improving the fit of 1(wo,T). Follow

the usual procedure as outlined in the steps above to find n. Then modify n slightly to improve
the fit and call this value n, for "trial value of n". Use this value n, , in Eq. (4.24) to find 0. The
value of is calculated simply by taking the ratio of the n's or C = n / n . Some typical

numbers for several values of n1 are given in Reference [N71.

E .] E 0.5 (4.24)

4.2.1.6 Summary and conclusions

Based on the standard equations, a new procedure is suggested for calculating the
required parameters. The resulting parameters are listed in tabular form in Table 4.7 and curves

are presented showing that the fits for E and ET1 are good. The fit for Ti is not as good, but in

calculations using the complex modulus as E* = E(I+jTl) the value of E71 is important and not
the value of Ti itself. However, a method is suggested for improving the prediction of 11 and it
happens that the prediction of E and ETI is also improved, as demonstrated in Figs. 12-14, over

the frequency range of 1) to 106 Hz. The predictions are made for temperatures from 50 to

200"F.
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4.2.2 Representation of viscoelastic damping by complex modulus.

As has been explained, the complex modulus of practical ,damping materials varies
with frequency. However, in the frequency range where the loss factor is a maximum, the plot
of loss factor versus frequency is fairly flat. So, if the natural frequencies of the structure are in a
narrow range, reasonable estimates of the eigenproperties may be obtained by using the complex
modulus in that frequency range and assuming it is constant.

For simple structures, the element stiffness is proportional to Young's modulus of the

material. If the Young's modulus is complex, as E = E(l+iii) and the natural frequencies will

be of the form w 2 ( I + i T1 ). The eigenvalues found in the state space will be of the form of

=sqrt(-o n ( 1 + i T1)). Thus the loss factor for each mode is determined by the complex

natural frequencies and if the structure has the same loss factor throughout, each mode will have
the same loss factor and the eigenvectors will be real and the same as for the undamped structure.
This is demonstrated in Example 4.1

Example 4.1

M 101 K=( +.1 i) 3() -50 1
()2] L -50 400]1

The eigenvalues and eigenvectors of M- K are

Wo2 = 188.76 +i 18.88, o2 =311.24 + i 31.12
2

so T I = T12 = 0.10

[0.3029 0.95301

and 0.6739 -0.2142

The eigenvalues and eigenvectors in state space are

X1. = ± ( -0.6861 + i 13.7562) X 3.4=± (-0.88 10 + i 17.6639)

h 0.3029 0.3029 0.9530 0.9530 1]
[0.6739 0.6739 -0.2142 -0.2142] U I

In Example 4.2, the loss factors vary from 0.05 to 0. 10 for the elements in the stiffness
matrix. As a result, the loss factors for the two modes are found to be 0.054 and 0.096, as shown
in the Example. In addition, the mode shapes are complex.

Example 4.2

M= [I K- 300(1 + i 0.10) -50(1 +i 0.08)1
Theeigve 2] [-50 (1 i 0.08) 400( 1 +i 0.05)

The eigenvalues and eigenvectors of M- I K are
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22
21886 0.9 2 =-311.14 +i29.81

so I =0.054, T2 = 0.096

0.2988 - i 0.0263 0.9547 + i 0.0082 1
and (b = 2I T 0.6751+i0.0058 -0.2113 + i0.0186

From the state space, the eigenvalues are

X1=.2 ( -0.3705 + i 13.7476) 3.=± (-0.8441 + i 17.6594)

with Ul =[2 1 ? 1 2 2 ] and Uu= U/ A
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4.2.3 Overdamped mini-oscillator approach for representation of viscoelastic elements.

As mentioned above, the problem with mathematical representation of viscoelastic
damping is that the material properties, particularly the elastic moduli, vary with frequency.
Since, for free vibrations, each mode vibrates at its natural frequency, a different elastic modulus
should be used for each mode. But that does not result in a typical eigenvalue problem. For
forced vibration problems where the excitation is at a discrete frequency, the solution is
relatively simple using a complex modulus if only the forced vibration is of interest. If the
spectrum of the forcing frequency covers a spectrum of frequencies then, again, a different
complex modulus should be used at each freqency involved. McTavish and Hughes [M2] set up
a mathematical formulation by which the modulus of viscoelastic material is represented in terms
of a power series in the frequency domain. The terms of the series are factored into products of
quadratics, each quadratic appearing like that of single-degree-of-freedom system, but the idea is
much more sophisticated than just connecting extra oscillators to represent damping.

From the theory of linear viscoelasticity IC.31, the constitutive equation which could
represent the one-dimensional behavior of a material is

a(t) = G(t) c(o) + G(t--c) - T ) dr. (4.25)

Here G(t) is the stress response due to a unit step strain input, which is the definition of the
material relaxation function.

Taking the Laplace Transform of Eq. (4.25), the result is expressed symbolically as

F (s) = s 6(s) F (s) (4.26)
where s 6(s) is the material dissipation function.

The series presented in detail in IM2) is as follows, where the fraction represents the
behavior of over-damped mini-oscillators, with the proper choice of parameters:

sv(s) = I a k 2 2 2 (4.27)

k (s2 + 2 k (Ok+ 0k) I

where cOk> 0 and k > I, for overdamping in the mini-oscillators.

The complex modulus G*( ) = j w3 j) = G'((a) + j G"((o). The material loss factor
rT is defined by

YJ ((I))= w)(4.28)
G (w)

In IM21, the generalized viscoelastic finite element is represented as follows. The
global linear matrix second-order system consists of the following, where n, m, and I are
integers:

ne finite elements, subscripted 'i'.
ni material moduli, subscripted 'j'.

I i mini-oscillator terms, subscripted k".
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The stiffness, mass and damping matrices for the ith element are Ke., Me, and Ce. respectively.
The element stiffness matrix is represented as a linear sum of contributions from the mi moduli

Ke I GO K.. (4.29)i P ,j Ij

where Go is the equilibrium value of the jth modulus. Further, it is suggested that the e
Ii Ij

matrices may be diagonalized, using the eigenvector matrices R by

RT K.. R.. = A.. (4.30)
IJ IJ IJ I

where A.. is a diagonal matrix. Further, the relationships exist such thatIi

RT R.= !, so K. = R..A.. RT (4.31)
Ii ij Ii I i iJ

The mini-oscillator representation for thejth material of the ith element is

[i (s2 + 2 0)j k 'ijks) Isj 0 j(S + aijk (s2 +2 (4.32)
k=I ijk O) ijk

4.2.3.1 Finite element with two mini-oscillators to represent viscoelastic damping.

The finite element with two mini-oscillators to represent viscoelastic damping will

have the following differential equations[Me qIO0 G07
G KC +G° 2 ! K

W o(1 a 2G02 2 et-0 02G ° ~ Ke  i..22G2~

-2 1Ke 2 . K6~2

G) ( Ia l +  a 2 ) Ke GoK
e  (2GoG q f(t)

a G"K: aiG K 0 = 0 (4.33)

L al.G KC G2G ° K z2  0

Recall that the bold-face, lower case letters, here q. z I,  z2 , and f(t), represent column

matrices, or vectors.

For the ith bar undergoing only axial deformation, the stiffness matrix is

A. G? 1 -1

K.GK - li - (4.34)

AE
McTavish and Hughes I M21 suggest diagonalizing this matrix. Eigenvalues are X e =0, 2 AE

-61-



The matrix of normalized eigenvectors is

R = _ I (4.35a)

and R T KCR=A = A [20] (4.35b)

If the diagonalized Ke matrix is used, then a coordinate change is involved and the
physical picture of an actual mini-oscillator connected in the system becomes more obscure.
However, using the diagonalized matrix makes the computation slightly more efficient. To make
the change in coordinates, let z =R w and pre-multiply the second and third set of equations by

TR . Then Eqs. (4.33) become

me q 0 alG° 21Vl
°-G Ke wl W1

Me al - 2 H + o GKe

a2G K 1aJ K"W
2 2 2
2  2

G° 1+( al1 + a 2 )1 Kc a G('Kc R ot 2 Go°cR qf

aIG()RT K aG 0 A 0 = 0 (4.36)
a2GORT Ke 0 a2G 2 A w2 1 021

A =. [221
The matrix RKe [2! -]

4.2.3.2 Representation and optimization of viscoelastic damping in the ten-bar truss.

Viscoelastic material might be applied as a thin layer on the sides of a bar of square
cross-section. The present analysis assumes that there is an outer, rigid constraining layer,
which is anchored to ground, which is not entirely realistic. A more reasonable assumption
would be to represent the constraining layer as a rigid mass, free to move in the direction parallel
to the axis of the bar. The configuration might then be called a dynamic absorber, with the
viscoelastic material furnishing the stiffness and damping while the constraining layer is the
absorber mass, which is the idea pursued by Carabetta [CI I

A reasonable approximation to the shape of the real and imaginary parts of a practical
damping material is given by a two-term representation, based on the following values of the
parameters.

a, = 0.5 1 = 15.0 W I = 60,000

a2 = 1.5 2 = I0.0 2 = 10,000
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If the viscoelastic material is applied to the side of a truss bar and it is deforming
primarily in shear, then the area A. would be the glue area between the material and the bar and

the length I. would be the thickness of the viscoelastic layer, possibly in the range of 0.025 to

0.100 inches. In Table 4.8, the eigenvalues are listed for the ten-bar truss with two
mini-oscillators on each of bars 3 and 4. The mini-oscillator parameters are as shown above.
Since bars 3 and 4 are of different cross-sectional area, the AP/, for the viscoelastic layer were

iaken in the ratio

GA4/14= 0.8209.

GOA3/ 3

The modal damping ratios and natural frequencies are listed in Talne 4.8 for three

different choices for a parameter "par3" defined as par = 3/33 = 103, 1 and 10' . The
3 18.42

structural modes occur in complex conjugate pairs, as usual. The fictitious modes are
overdamped and the eigenvalues are real and negative. It is difficult to decide which pairs of
overdamped modes to take together for the purpose of computing equivalent damping ratios and
natural frequencies for the fictitious modes, but if the modes are not strongly coupled, the
eigenvectors aid in identifying the pairs. Thus the pairs were combined using the following
relationships

= 2 and ,+. =2 w
r r+l r r r+I r r

and the values of r and W r are calculated, with the results as given in Table 4.8. The

frequencies of the mini-oscillators themselves were 10,()0 and 60,000 rad/s so the results of the
pairings seem reasonable.

Table 4.8 Values of r and w r using overdamped mini-oscillators.

GOA .
r 3/3 103 104 105

par 3= 18.42

,r r r r r r

0.00099 131.17 0.00891 131.69 0.021 62 136.85
0.000 47 173.42 0.00441 173.75 0.019 37 178.10
0.006 26 270.76 0.053 80 281.73 0.078 11 366.37
0.000 02 326.05 0.000 22 326.07 0.000 46 325.72
0.001 36 462.56 0.014 19 467.50 0.194 19 642.52
0.000 91 600.52 0.007 22 604.55 0.058 28 556.67
0.000 13 665.05 0.000 57 665.69 0.002 02 664.77
0.010 37 809.80 0.079 10 940.63 0.141 36 1953.15

60.77 59,237. 65.57 54,905. 68.90 52,252.
10.01 59,962. 10.06 59,623. 10.62 56,438.
15.11 9,930. 16.70 8,979. 36.39 4,118.
15.0J5 9,968. 15.53 9,660. 23.28 6,440.
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For low modulus damping material, the results show that modes 3, 5 and 8 experience

the highest damping ratios, in the first column, for par3 = l0. This is in line with the sensitivities

calculated in Table 4.3 for viscous damping. When the effective material modulus is increased
by a factor of 10, the C r increase by almost the same factor for the structural modes, as shown in

the third column with par3 = 10. But when there is another increase, to 105 , the effect becomes

more nonlinear and there are large changes in the co r's. There is a stiffening effect from the

viscoelastic material, so some of the natural frequencies increase while others decrease as the

damping layer is stiffened. As the parameter par3 is increased to 106, the modal damping ratios

begin to decrease so those shown in the table are near the optimum values.

4.2.4 Design and optimization of viscoelastic damping.

The use of added viscoelastic damping is desirable but the behavior is still hard to
predict, for many reasons. Testing and test data is essential and it is difficult to perform tests of
viscoelastic material, taking into account the preload, temperature, frequency, previous loading
history, and damping mechanism. Having the material properties, then the following factors
must be considered..

1. The damping mechanism. The viscoelastic material damps best when deformed in shear.

2. Optimum configuration. In a truss, load-carrying members could include a slip joint
where the damping material transmits the axial load in shear. If the damping material has to
transmit all the structural load, then it must have appreciable shear strength at low
frequencies. Viscoelastic damping layers might be glued to the sides of bars used as truss
members, with a constraining layer used as a cover, If the constraining layer has the same
axial strain as that of the bar, then there is no shear deformation of the viscoelastic layer and
little damping is produced. Therefore patches of viscoelastic material have been suggested
by some investigators. These patches then have the appearance of dynamic absorbers,
where the viscoelastic material supports the absorber mass, which is that of the constraining
layer.

2. The temperature range. Viscoelastic materials have an optimum operating temperature,
so material must be chosen which has a high loss factor in that range.

3. Heating during operation. The energy is dissipated as heat, so arrangements must be
made to assure that heat generated can vented away.

4. Heating during fabrication. Some structural fabrication processes involve heating. Care
must be taken not to overheat the viscoelastic material. For example, some materials are

irreparably damaged if heated above 350( F.

5. Frequency range of operation. It is important that damping material is chosen which has
desirable properties in the frequency range where damping is required.

6. Optimum location in the structure. This topic is addressed in Chapter 2. The optimum
location for viscoelastic damping may, or may not be, the same as the optimum location for
viscous damping.

7. Optimum amount of viscoelastic material. This has to do with the area and thickness of
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individual pads of material.

With regard to the present investigation, in addition to the work summarized above, the
optimum design of constrained layer damping in beams was a topic of parallel study. Given a
beam material, such as aluminum or steel, then one must choose the damping material of
optimum thickness and optimum Young's modulus. Optimum designs are discussed in [N81,
based on formulas given in I N 1I.

A senior engineering student, Smith, did an honors thesis [S21 dealing with
optimization of the thickness and elastic modulus of an added damping and constraining layer in
a beam in bending. He made a finite element model and worked in the frequency domain, with
the assumption that the loss factor of the viscoelastic material was TI =1.0, which is a typical
value for some practical materials. He found effective loss factors i" as high as 0.38 for beam
bending modes, which correspond to modal damping ratio = 0.19. He also found modes in
which the constraining layer moved parallel to the beam axis, which was very efficient for
placing the damping layer in shear, with maximum = 0.42. An unexpected discovery was
that, due to thc low axial stiffness of the dampin- layer, additional low frequency modes are
produced in which the constraining layer moves out of phase with the beam. The maximum
modal damping ratio of C= 0.48 was reported. He called it a dynamic-absorber type mode,
because the damping layer is acting like an absorber spring, but it is a stretching of the
viscoelastic material which allows the constraining layer to move perpendicular to the axis of the
beam.

In another phase of the study, a senior engineering student, Carabetta [CI], studied
damping produced by four dynamic absorbers attached to an individual clamped-free truss bar
undergoing axial deformation. The dissipation can be maximized by tuning the absorber
frequency. An advantage of this arrangement is that the viscoelastic material does not have to
carry the static load in the truss member. The viscoelastic material provided the damping and
spring stiffness, in shear, and a rigid mass was attached. The dynamic modulus of the
viscoelastic material was represented by the mini-oscillator approach 1M21 described above,
using only one term in the series. Carabetta predicted modal damping ratios of C ranging from
0.10 to 0.57 Further study of the representation of practical viscoelastic material properties is
needed, but the results of this study of the dynamic absorber arrangement are very encouraging.
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5. ACTIVE DAMPING AND CONTROL.

In many practical situations, it is advantageous to augment passive damping with a
sufficient level of active control to achieve specified goals for the eigenvalues. If the purpose of
active control is to increase the damping ratio in certain modes, then the poles must be shifted.
An example showing the effect, on eigenvalue sensitivities, of superimposing of control forces
on viscous damping forces is given in reference I N91 and in section 3.1.2.

This chapter deals with the design of passive damping and active control, without the
use of observers to reconstruct the state. Emphasis is on designing systems with desirable modal

damping, using feedback control of the form - G z - H z. The control may devised in system
space, system modal space, state space or state nodal space.

Direct outputfeedbac control in system space is explained by Meirovitch [M4, p.252]. It
is advantageous to have as many actuators as sensors. The motion is sensed and control forces
proportional to velocity and/or displacement are fed directly back to the structure. For
semidefinite systems, with rigid body modes, one of the goals may be to stabilize the system
with displacement feedback. Quite often, the reason for adding control forces is to achieve a
desired level of dissipation for each mode, which means to place the closed loop poles in
specified locations in the complex plane.

An advantage of using modal coordinates is that the differential equations of motion are
decoupled. If they are recoupled due to the nature of the control forces, the control is called
coupled modal control. Another change in coordinates may be made to decouple the modal
equations. If the control forces are chosen so the modal differential equations remain
uncoupled, the control is called natural control and the associated damping is proportional. If the
passive damping is initially small enough to be neglected, natural control is readily designed and
an example is given in I M31 where the control forces are chosen in system modal space so the
closed loop natural frequencies are the same as those of the open loop structure.

Much 3f control theory was developed in state space, but :ot by engineers concerned
with structural dynamics problems. For example, Moore [M61 discussed the possibility of
designing the entire eigenstructure and presented related necessary and sufficient conditions for
prescribing both eigenvalues and eigenvectors. This idea was expanded by Andry, et al, [Al], for
three types of feedback, namely: full state, output and constrained output. Neither paper dealt
with the special form of the state equations for structural vibrations. However, an important
concept is that the mode shapes, as well as the eigenvalues, may be designed. Inman [131 gave a
related example, but in system modal space and not state modal space. Starek and Inman [S5]
presented a solution in state space to the so-called inverse problem, where mass, damping and
stiffness matrices are constructed based on changing all, or part of, the system eigenvalues and
eigenvectors, with rigid body modes included. They extended the formulation to include the
case where only a portion of the eigenvalues and eigenvectors are known. To assure that the
constructed system mass, stiffness, and damping matrices would be symmetric when solving the
inverse problem, Starek, Inman, and Kress IS61 started with symmetric matrices and applied
constraints to the chosen eigenstructure. Juang, Lim and Junkins liI considered the closed loop
control problem with either state or output feedback and used a QR decomposition to generate
the orthonormal basis that spans admissible eigenvector space corresponding to each assigned
eigenvalue. Neubert IN I I,N 121 considered the problem of combined damping and control and
full state feedback and presented two approaches, one based on using eigenstructure sensitivities
and the other based on a perturbation approach, which is shown to be related to the inverse
eigenvalue problem.

If the dimension of the control vector is less than that of the state vector, natural control is
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not possible and the modes are coupled by the control forces. If only a limited number of modes
are controlled, then the question of spillover arises.

In modern control theory, optimum timewise control forces may be found by way of an
objective function and solution of the Riccati equation. In the present chapter, an example from
[M41 is discussed where the optimum timewise control forces are determined in state modal
space. These control forces can then be converted to system space.

The contributions of the present study that are summdrized in this chapter are:

1. The equations for natural modal control in system space are given and related to the
criteria for proportional damping.

2. Examples are presented for designing symmetric or unsymmetric control matrices
using the eigenvalue sensitivities.

3. One-step perturbation methods are presented for designing the control and damping
matrices of a structure to produce desired changes in the eigenvalues or eigenvectors.

4. An example from reference 1M41, where the optimum timewise control forces were
found in state modal space by way of the Riccati equation, is discussed in light
of the present work.

5.1 Constant gain, closed loop control.
5.1.1 Uncoupling of the differential equations and modal control.

In system space, the differential equations are of second order. Excluding viscous
damping, Eqs. (2. 1), are uncoupled by the coordinate transformation

z(t) = (D q(t) (5.1)

Substituting Eq. (5. 1), pre-multiplying Eq. (2.1) by 4'T, and using C'TM4' = [Mn] D

,*TM4'q + (T K1 q _4_ F(t) = N(t) (5.2)
I M n l

D 4 +IM niD 1,02l Dq ="[gl I - [hl q = Nt 53

The diagonal matrices on the left side of Eq. (5.3) indicate decoupling, but if [g] and [h]
are non-diagonal, the equations are still coupled. If Igi and [hi are diagonal, which is called
natural control, then the equations are uncoupled.

If the control matrices in Nit) are specified, and 'T F(t) = N(t), then F(t) is found
through the use of the orthogonality reiationships, so

F(t) = -T N(t) = Md IMn -D N(t) =-M4' IMn) -D [ g, q +[hq (5.4)

Changing back to the z(t) coordinates

F(t) =V TN(t)= M4I MnI ' D N(t)=-M (D[ Mn D [I g D-1 Z +[hJ 4'z] (5.5)

The differential equations with feedback are now

Mz + M 01 MnI' D [I gI(D1 z+h ID'1 zI + Kz = 0. (5.6)

which is Mi + Gz +IH + K) z ( (5.7)
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where G =Mol M nI'D gJO "1 and H= M {MnI'D[ hi 0- (5.8)

Pre-multiplying Eq. (5.6) by M i

z+ 0 MnI' D [I gj 10-'i +1h1 0_'zJ +M "! Kz = 0. (5.9)

or z + M-1 GZ +M'IIH+KIz =0. (5.10)
which is of the form

l+C 7+K z =0. (5.11)

5.1.2 Criterion for proportional damping or proportional control.

The question is when do C I and KI represent proportional damping or control.

In matrix form the question is C I K, =K I C (5.12a)
I I? M .I -

or M_ G M"1 [H + K] M [H+KJ G (5.12b)

Since G and H can be chosen separately, the Eq. (5.12b) is separated into two parts:

MG M"! H = M! H M" G (5.13a)
I I? II

M1 G MK = M K M_ G (5.13b)

Now substitute for M -G and M"1 K by comparing Eqs. ',5.10) and (5.9)
[MlD[ g 1 2' I ?o~ 1)" D ?

ol~~ ~ dM I- I iW 01(01( = 02n DWd(b M1 M d 01 MnI-D[ g] (D-1 (5.14a)

which reduces to

D 2 D? 1021DIM D
IMn' I g1 InI = wlnI IMn ' I g I (5.14b)

The answer is that Eq. (5.14h _ not represent an equality. However, the two sides of
the equation will be equal if IgI is di, which is then a requirement for proportional control.
Then Eq. (5.14b) becomes the following equality

M ID I g1D 1 D D D (5.15)
Iw = F I I M~. g-(515

The advantage of proportional damping or proportional control is that the eigenvectors (b do not
change, which means that the coordinate transformations which decouple the original matrices
will also decouple the closed loop equations. A direct way to check that this is true is to simply

look at the products TG (D and ( TH (D.

The latter product 4 THO= T M 01 M nD I hi -D (5.16)

reduces to OTHqb= I hI, (5.17)

and, similarly, 06T(;cl= Ig I. (5.18)

So, the open loop eigenvectors decouple the closed loop equations, but only if [h] and [g] are
diagonal matrices.
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5.1.3 One-step methods for design of viscous damping and control in state space by
choosing eigenvalues and/or eigenvectors.

Natural modal control and the closely related IMSC method I M41 are usually presented
as a one-step method for designing control matrices in system space starting with plant matrices
where there is no viscous damping or where the viscous damping is proportional. One of the
usual features is that there is no change in mode shape from those the undamped, open loop
system. A perturbation method is presented in [M51 by which the changes are predicted in
eigenvalues and eigenvectors due to a small change in a real matrix A. The changes are predicted
using a eigenvectors of the unperturbed system. A different, more direct, approach was
developed as part of the present study and are presented as three separate methods.

The three methods require only one step. The goal is, given an initial system with or
without viscous damping, what is the change dA in the matrix A to achieve the desired
eigenvalues and eigenvectors. The matrix A is in state space and is unsymmetric. The desired
right and left eigenvectors U and V and the diagonal matrix of distinct eigenvalues, A, are
known or chosen.

More specifically, given the desired changes dA and dU, in eigenvalues and eigenvectors,
respectively, find the required change dA in the state space matrix A. The three methods are
arbitrarily numbered I, 11, and Ill. They are as follows:

Method 1. The sum IC + GI, initially zero, is designed to achieve a desired change in
eigenvalues using the eigenvectors and mode shapes of the undamped system.

Method If. The matrices C, and K I of the closed loop system are designed to achieve

desired changes in the eigenvalues with no change in mode shapes, but with the eigen-
vectors "corrected".

Method 111. The matrices C1 and K I of the closed loop system are designed to achieve

desired changes in the eigenvalues, mode shapes and eigenvectors.

First of all, the A matrix can be recovered from the given eigenproperties from the
relationship

U A VT = A (5.19)
The Eq. (5.19) is not new. with regard to recovering the original A from the eigen-

properties on the left side. However, some interest has been apparent lately in extending the
equation to specify desired eigenproperties. The in references 1S5], JS61 and [JI] are especially
relevant, as summarized on page 66. In the present work, an iteration approach, and a related
FORTRAN computer program were written early in the study. The idea was to specify a
'-"sired increment dA in A, estimate the corresponding increments in U and V, and use (5.19)
to find the corresponding dA. It was found that the iteration usually converged in one cycle but
the essential form of the A matrix was not always preserved. Further investigation led to the
formulation of the problem as a one step perturbation approach.

The basis of the perturbation approach is to take small variations are taken in the matrices
in the Eq. (5.19 ), as follows.

(U + dU)(A+ dA)(V T+dV) T = A + dA (5.20)

Expanding Eq. (5.20) gives
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U AV T+A dVT+ dU AV T+dUA dVT

U dAVT+UdA dVT+ dU dAVT+dUdA dV T =A+dA (5.21)

Taking advantage of Eq. (5.19) and dropping terms involving products of two or three small

variations, but keeping dU A dVT in some cases, the remaining terms are

UdA VT+U A dVT+ dU A VT + dU A dVT= dA (5.22)

If the changes in eigenvectors are small enough, the increments in the eigenvectors may
be negligible. Otherwise, some method is needed to estimate dV and dU, or an iteration process
must be used. If the dA is chosen such that there is no change in -igenvectors, then the result is
straightforward to carry out, and is simply

UdA V TdA for dU = dV= 0 (5.23)

At this stage it is important to divide the eigenvector matrices into their upper and lower
portions, as in Section 2.2.2 , that is [Uu

U = U] (5.24)

and recall that, in general, Uu = U/ A, so taking variations,

Uu+d U u 
= ( I +d UI ) (A+ dA) (5.25)

dUu = U dA+ dUI A+dUI dA (5.26)

So, if the mode shapes do not change and d UI =0, d U = UI d A * 0. So, even if the

mode shapes do not change, the eigenvectors in state space will change if the eigenvalues
change, because the upper it x 2n portion of the U matrix changes. Further, under the usual
normalization, the fact that the lower right vectors do not change may go unrecognized unless a
special normalization procedure is used. In this section then, the rth right eigenvector is
normalized using the it x it mass matrix M by

I.r nxn 1.rl Ixi

(5. UT M Ur= 1

Then U is found from Uu = U/ A (5.28)

and V from VT= U (5.29)

While the eigenvector matrices are square, and are assumed to be invertible because the vectors
are independent, their upper and lower portions are rectangular, of size it x 2n , and are not
invertible.

5.1.3.1 Method 1: Design of the sum of the matrices, [C+G].

In this method, the damping and control matrices are initially zero, so C= G = H = 0 and
the desired change dA in the eigenvalue matrix is given. The 2n x 2n matrix dA consists of
four n x it submatrices as shown here
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dA= dAUU dAl [ dC 0 (5.30)[dA lu dAI 0 0]

Taking dU= 0 and dV= 0, there results from Eqs. (5.23) and (5.24)

[ U d VT UdA VT1
dA= UdA VT = UdA T (5.31)

Now it happens U1 dA V/T * 0 but it is in the wrong position in the dA matrix, so in Method ,

the approach is to add it to dAUU and set dA 1 = 0. In fact, it is easily shown that, if C1 =0,

U1 dA VT = U dA VTU (5.32)
which follows from Eqs. (2.39b) and (2.41a) that give

T TUu = UA and AV u = VT whenC 1 = 0 (5.33)
Hence, in Method I. the desired change in CI is

dC I = U dAV T+U dA VT (5.34a)
I U U

with dKI =0 (5.34b)
In order to further understand the effect of perturbation, it is of interest to perturb the

other related equations, since the Eq. (5.21) came from perturbing the equation UA VT.

The new eigenvectors, U + dU and V+ dV, would be normalized so there results

(V T+dV T)(U+dU) = i (5.35)

Cancelling V TU = I and neglecting the products of increments, Eq. (5.35) becomes,

dVTu + VTdU =0 (5.36)

Taking variations in the characteristic equations involving the right eigenvectors yields

(A+dA)(U+dU) = (U+dU)(A+ d A) (5.37a)

A dU + dA U =U dA + dU A (5.37b)
Similarly, for the left eigenvectors,

AT dV + dA T V = V dA + dV A (5.38a)

dVTA + VTdA= dAV T + A dVT (5.38b)

Now, in the iteration process, it is noticed that, sometimes, the resulting dAuu =dA1 II so

the question is, under what conditions does this occur.

nx2n 2nx2n 2ux nx2n 2nx2n 2xn

U dA VT  U/ dA V T (5.39)

Three cases are of interest:
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Case 1: When C =0, the equality holds. This is seen from the relationships of

Section 2.2.2

Case 2: The equality holds for proportional damping, where CIK1 = I C1.

Case 3: The equality does not hold when the increment dA = yA. The four quarters of the
dA matrix are

U dAVT dC I  Uu dAVT =-dK (5.40a)

U, dAVT = dI U dA V T= 0 (5.40b)

So for this special case, the products will be

Uu dA VT =_-.1 UdA VT =YI (5.41a)

U dAVJ =-yK UldA VT =0 (5.41b)U I I
A difficulty occurs here because U/dAV =y 1. which means that the redundant

equation in state space is not maintained.

The above becomes more clear by the following example.

Example 5.1 One-step design of the [C+GJ matrix using Method 1.

For this example, the mass matrix M, K and the state space matrices M and K are

M=2(] K= 40
0l2 -50 4(X)j

2 0 0 0 0 300 -50

0 2 0 0 0 0 -50 400M K K-
0 0 -3(X) 50 3X) -50 0 0

0 0 50 -40) -50 401) 0 0

The characteristic matrix A, the eigenvalues A and the right and left eigenvector matrices are

0 0 -150 25 (0 + 11.8171 i) 0 0 0

0 0 25 -200 0 (0- 11.8171 i) 0 0A = A=
1 ) () C) 0 0 (0+14.5036 i) 0

0 1 ) 0 0 0 0 (0-14.5036 i)
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7.7199 i -7.7199 i -3.9247 i 3.9247i 0.0553 i 0.0553 i 0.0187 i -0.0187i

U= 3.1977 i -3.1977 i 9.4750 i -9.4750 i V -0.0229 i 0.0229 i -0.0450 i 0.0450 i
0.6533 0.6533 -0.2706 -0.2706 0.6533 0.6533 -0.2706 -0.2706
0.2706 0.2706 0.6533 0.6533 0.2706 0.2706 0.6533 0.6533

Because of the special choice of the mass matrix and the normalization procedure, it happens that
V, =U 1 , but this is not usually true.

For later reference, the sensitivity matrices are also recorded here. The S 2 = and S 4= S3 .

[0.4268 - 0.000() i 0.1768 + 0.00(X) i 0.0000 - 0.0361 i 0.0000O - 0.0 150 1i

S= 0.1768-0.(1(XX)i 0.0732+0.0000i 0.0000-0.0150i 0.0000-0.0062i
0.0000+5.0433i 0.00(X +2.0890 i 0.42(,3 - 0.0000 i 0.1768 + 0.000Oi
0.0000 + 2.089(0 i 0.000() + 0.8653 i 0.1768 - 0.0000i 0.0732 + 0.0000 i

0.0732 + 0.000() i -0. 1768 + 0.0000 i 0.0000 -0.0050 i 0.0000 +0.01221

S= -0.1768 + 0.000 i 1.4268 - 0.0000( i 0.000 + 0.0122 i 0.0000 - 0.0294 i
3 0.000( + 1.0620 i 0.000() -2.5639 i 0.0732 - 0.(X00 i - 0.1768 - 0.0000i

0.0000 - 2.5639 i 0.0001 +6.1898 i -0.1768 + 0.OO00i 0.4268 - 0.0000 i

The goal now is to determine the A+ dA matrix which will produce the following

specified changes dA in the eigenvalues:

(-4.30 + 0.0 i) 0 0

d A 1 (-0.30 + 0.0 i) 0

00 (-(1.50 +0.(0 i) 0

0 0 (0 (-0.50 +0.0 i)

Using Eq. (5.21), assuming temporarily that the changes in eigenvectors may be neglected,

UdAV T = d A  0.0707 -0.4707 0 0
0 0 -0.3293 0.0707
0 0 0.0707 -0.4707

The problem is that the A+dA will not produce a correct characteristic equation, since the
lower right corner of A+dA should be zero. However, the trace of A+dA will be the same if the
lower corner is added to the upper corner and 'he lower corner is made zero. So the modified dA
matrix will be designated dAG and the matrix AG = A + dAG.
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S0.1414 0 ] 065 0.1414 -150 25
dA 0.1414 -0.9414 0 0 A 0.1414 -0.9414 25 -200G 0 0 0G 1 0 0 0

0 0 0 0 0

The eigenvalues of AG are

-0.3(XX) + i 11.8133 0 0 0

AG = 0 -0.3(XX) - i 11.8133 0 0
0 0 -0.5000 + i 14.4950
0 0 0 -0.5000 -i 14.4950]

The real parts of the eigenvalues are those desired and the natural frequencies, 0o1 = 11.8171 and

0)3= 14.5036, are the same as those of the undamped, unperturbed matrix A. The mode shapes.

in U,. are unchanged as indicated by the dU listed next, but the upper halves of the right

eigenvector have changed.

-0.1960 -0.(X)25 i -0.1960 +0.0025 i 0.1353 +0.0023 i 0.1353 -0.0023 i

dU= GU -= -0.0812 -0.(X)10 i -0.0812 +0.0010 i -0.3299-0.0056 i -0.3299 +0.0056 i
[ 0 0

0 0 0
-0.1960+7.7174i -0.1960-7.7174i 0.1353 -3.9223i 0.1353-3.9223i

U ,T -0.0812 +3.1967 i -0.0812 -3.1967 i -0.3266 +9.4693 i -0.3266- 9.4693 i
G 0.6533 0.6533 -0.2706 -0.2706

0.2706 0.2706 0.6533 0.6533

Again, for later reference, one of the sensitivity matrices is recorded.

0.4268 + i 0.0108 0.1768 + i 0.0045 0.(X) - i 0.0361 0.0000 - i 0.0150

s 0.1768 + i 0.0045 0.0732 + i 0.0019 0.0000 -i 0.0150 0.(X)00 - i 0.0062
IG [ 0.00(X) + i 5.0449 0.00)0 + i 2.0897 0.4268 - i 0.0108 0.1768 - i O.O45]

0.(X)00 + i 2.0897 )0(9)O + i 0.8656 0.1768 - i 0.0045 0.0732 -iO.019

Example 5.2 Same example as 5.1, but with NxN matrices and natural control.

If the mode shapes do not change, then the same problem could be done by 2x2 matrices.

M=[2 0] K 3(X) -50l
0 2 -50 4(X)]

The eigenvalue matrices for MI K are

W2 [ 139.6447 ( = -0.6533 -0.27061
[() 210.35531 ] -0.2706 0.6533J
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where the 0 have been normalized by

0T = =M D =1.
If the modal control matrix Igi is specified, then the control matrix [GI in the original coordinate
system is calculated with the results as follows

_]-0.3 _0 ] G -0.6586 0.141410) -0.5 L 0.1414 -0.9414J

If this dA is added to A. the resulting eigenvalues are A+dA, as follows and the eigenvectors are

unchanged.

(-0.3 + 11.8133 i) 0 0 0

0 (-0.3- 11.8133 i) 0 0
A--

0 (1 (-0.5+14.4950 i) 0
0 0 0 (-0.5-14.950 i)

5.1.3.2 Method 1!: Design of the entire dA for initially damped or undamped systems.

Recall that, in general. U = UI A, so taking variations,

Uu+dUu = ( U+d UI ) (A+ dA) (5.42)

dU u = U1 dA+ dU A + d U, dA (5.43)

The Eq. (5.43) gives a general relationship for the change in the upper right eigenvectors
and shows that even if the mode shapes do not change and d UI =0, d U,,= U1 d A * 0 if the

eigenvalues change. So, even if the mode shapes do not change, the eigenvectors in state space
will change if the eigenvalues change, because the upper nx2n portion of the U matrix changes.
Further, under the usual normalization, the fact that the lower right vectors do not change may go
unrecognized unless a special normalization procedure is used. In this section, the right
eigenvectors are normalized using the n x n mass matrix M by, for the rth vector,

.r nl x ) I 1I

uT  M u = I =1 (5.44)r/ rl

Then U is found from Uu = U, A (5.45)

and V from VT U' (5.46)
While the eigenvector matrices are square, and are assumed to be invertible bc:ause the vectors
are independent, their upper and lower portions are rectangular, of size nx2n, and are not
invertible.

If the mode shapes do not change, then the following process may be used, which does
not appear in the literature. Let AG=A+dA and AG = A +dA. Then, if the lower right vectors

do not change,
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UG = U,[A+dA]] and VT =U G  (5.47)

and the corresponding state matrix for the closed loop system is

U [AIV =A (5.48)G G G G
where dA is the desired shift in the eigenvalues and dA represents the required change in A.

Since only MI CG and MI KG are needed, it is more efficient to use

-MI C = U A VT  (5.49a)G Gu G GuI T

-M KG = UGu AG VG (5.49b)
An important point is that the essential form of the A matrix is maintained, which requires that

TI =U GIA GVTG (5.50a)

U=U A VT (5.50b)
G/ G GI

The equations (5.50) are easily proved by multiplying (2.41a) and (2.41b) by UI and taking

advantage of Eq. (2.47).

Example 5.3 Design of damping and control matrices using Method H.

For this example, the mass matrix M, C, and K matrices are

1, ,] c[ 8 -4 [ 300 -401M= K =L0 2. L-4 3J 1-100 400j
The characteristic matrix A, tne ei 'envalues A and the right and left eigenvector matrices of A are

-8 4 -300 100 (-0.2656 + 12.8083 i) 0 0 0

2 -1.5 50 -150 0 (-0.2656 - 12.8083 i) 0 0
A=

1 0 0 0 0 0 (-4..4844+17.7483i) 0

0 1 0 0 0 0 0 (-4..4844-17.7483i)

-0.5288-5.5239 i -4.6636+16.0712 i

0.3861-8.1868 i (conj) 0.4283- 5.4188 i (conj)
-0.4302+0.0502 i 0.9136+ 0.0319 i

-0.6395- 0.0169 i -0.2927+ 0.0498 i

The second and fourth columns of U are the complex conjugates of the first and third columns,
respectively, and are denoted by the symbol "(conj)".
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0.0)20+0.0168 i 0.00 i 0-0.0257 i
-0.;0 12+0.0501 i (conj) 0.0028+0.0165 i (conj)

-0.1978+0.0557 i 0.4535-0.1059 i
-0.6511-0.0212 i -0.3042+0.1024 i

The desired eigenvalue matrix is
(-3.(XX) + 12.8083 i) 0 0 0

A /0 (-3.0004) - 12.8083 i) 0 0

0 0 (-5.50(O0+ 17.7483i) 0

() 0 0 (-5.5000- 17.7483i)
The corrected U matrix, use in the computation of AG is

0.6477-5.6612 i -6.6398+6.4644 1

U = 2.1349-8.1406 i (conj) 1.6878-2.4945 i i (conj)
G -0.4302+0.0502 i 0.9136+ 0.0319 i

[-0.6395- 0.0169 i -0.2927+ 0.0498 i

-10.63 2.15 -313.60 97.05

and AG U AG T 1.05 -6.37 47.60 -205.25and AG = UG AG VG =
GI 0 0 0

0 1 0 0

The resulting matrices are
C +dIC + G 10.63 -2.151

CI= [ = -2.10 12.74

-M K= K +d K+H [13.60 -97.051-- 95.20 410.50

5.1.3.3 Method 111: Design of damping and control matrices to achieve desired
eigenvalues and eigenvectors.

The state space equations with oUtlnufeedback are

1 11(t) - At)11 (t) = B u(t) (5.51)

where B, of size 2n x p. is the control matrix and u(t) is the p x i vector of timewise control
inputs. It is often economical to have the dimension of u(t) much less than 2n, to minimize the
number of controllers needed. The output w(t), with D the p x 2n output matrix, is

w(t) = 1) 11(t) (5.52)

If u(t) = w(t), Eq. (5.51 ) becomes
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!Il(t Ao  (t= BD 11(t) (5.53)

The Eqs. (5.53) and (2.28) have a similar appearance, but there may be more freedom in
choosing the elements of the two matrices B and D than the single matrix R.

Moore [4J is given credit for being the first to show that state feedback provides freedom
to choose not only eigenvalues, but eigenvectors. He derived necessary and sufficient conditions
for the existence of a D which yields prescribed eigenvalues and eigenvectors for the closed loop
system and presented a procedure for computation of D. The theorem states that:

Let I Ai I i = / -2n ) be a self-conjugate set of distinct complex numbers. There exists a

real 2n x m matrix ) such that

IA,+ BDIvI. = X . V. i = 1,2 ... , 2n (5.54)I I I "

if, and only if, for each i.
(i) V. are a linear independent set of vectors in the space of complex 2n-vectors.

(ii) v =V. when X. = X..I II I

(iii) Vi E span N

If D exists and B is of rank p, then D is unique. The N?.. is identified from the

definitions

S.=II-AoBJ and T . (5.55)

where the columns of T , partitioned to be compatible with S. for the product S .TX., furnish a

basis for the nullspace of S ..

The work of Srinathkumar 181 is also relative, because it was shown in [81 that for
controllable systems, a maximum of 2nxp eigenvector entries can be arbitrarily specified and that
no more than p entries in any one eigenvector can be chosen arbitrarily.

In the present paper, we choose p = 2n, with full state feed-back, which means all the
eigenvalues and eigenvectors may be specified, but care must be taken to choose independent
eigenvectors and the relationship between the upper and lower portions of the eigenvectors must
be kept in mind.

In general, the mode shapes and eigenvalues may be chosen, with the restrictions as
outlined above. In full state feedback, all the entries in UI may be chosen and we restrict upper

U so that U =U IA. The operation is represented by Eqs. (5.48)-(5.50).
u U

Example 5.4 Design of damping and control matrices using Method IH.

For this example, the mass matrix M, C, and K matrices are

-1 ] C= [4 ] = 402; -20]
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The characteristic matrix A, the eigenvalues A and the right and left eigenvector matrices of A are
-5 4 -40) 200) (- 1.400)4+18.6658 i i) 0 00

2 -1.5 50 -350 0 (-.4004-18.6658 i) 0 0
A = A

1 0 0 0 0 0 (-2.5996+27.1165 ii) 0
o 1 0 0 0 0 0 (-2.5996-27.1 165i)

-0.419+17.523 i -0.419-17.523 i 5.798-10.077 i 5.798+10.077i

U= - 1.937+ 4.851 i -1.937- 4.851 i -0.332+18.177i -0.332-18.177i
0.935- 0.048 i 0.935 + 0.048 i -0.389- 0.177 i -0.389+ 0.177 i

0.266+ 0.084 i 0.266- 0.084 i 0.665- 0.052 i 0.665+ 0.052 i

The goal is to design the mode shapes so the normalized modal amplitudes are

= [0.8165 0.8165 -0.5774 -0.5774
DI -_0.4082 0.4082 0.5774 0.5774]

in order to make the amplitudes in the ratio of 2/1 for the first two modes and -1/1 for the last

two. The desired A+dA is

(-6.00010+18.6658 i i) 0 0 0

0d (-6.(XX)0-18.6658 i) 0 0A+dA-=

0 0 (-8.00(X)+27.1165 i) 0

0 0 0 (-8.(X)0-27.1165 i)
The complete, designed, U D matrix is then

-4.899+15.241 i -4.899-15.241 i 4.619-15.656 i 4.619+15.656 i

u = -2.450+ 7.621 i -2.450- 7.620 i -4.619+15.656 i -4.619-15.656 i
0.8165 0.8165 -0.5774 -0.5774
0.4082 0.4082 0.5774 0.5774

-13.33 2.67 -522.71 276.60

and A=U A VT 1.33 -14.67 138.30 -661.01
G G G G 1 0 0 0

0 1 0 0
The resulting matrices are

[13.33 -2.671
-MC 1= C+dlC+(=L -2.67 14.67]

-[ 522.71 276.601
-MK K +d K + HIL -276.60 1322.02
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5.1.4 Shifting poles using eigenvalue sensitivities, symmetric and unsymmetric control.

Example 5.5 Design of symmetrical control matrix using sensitivities.

Suppose we start with an undamped system and then add a symmetrical C+G matrix.

0 0-i]A 0 0 2 -2

0 0 0

The eigenvalue~s are X'O X - +0.5463i and X2 X02 = + 2 .5 8 87 i

The eigenvectors are

0.2816i -0.2816 i -2.2183 i 2.2183 1
U 0.3310 i -0.3310 i 0.9436 i -0.9436 i

U) 0.5155 0.5155 -0.8569 -0.8569

0.6059 0.6059 0.3645 0.3645

The sensitivities S and S0 3 are given. Note that So2 = 9 01 and S04 o 3

[0.1329 0.1562 -0.2432 i -0.2859 i]
0.3123 0.3671 0.5718 i -0.6720 iS= 0.0726 i 0.0853 i 0.1329 0.1562|

-0. 1706 i 0.2(X06 i 0.3123 0.367 1J

[0.3671 -0.1562 -0.1418 i 0.0603 i
| -0.3123 0.1329 0. 1207 i -0.0513 i

S03 0.9504 i - 0.4043 i 0.3671 -0.1562

-0.806 i 0.3440 i -0.3123 0.1329 J

Now, the eigenvalues desired are

Xo , X M= -0.0820 ± 0.5399i and X 0' X)2 =-0.1680 ± 2.5842i

The changes in eigenvalues are

AX-Ol ,AX ()= -0.0820 + 0.0064 i and AX o2, AX 2 =-0.1680 ¥ 0.0045 i

The complex conjugates provide no additional information with regard to choice of changes in
the plant matrices. So there are four knowns, the real and imaginary parts of the changes in two
eigenvalues. The question is, which four matrix elements in the plant matrices should be chosen.
We choose C(, 1), C(2,2). K(l, 1) and K(2,2). The equations are

AX 01 = Sol(l) I) AA(l, ) + S 1(2,2)AA(2,2) + S0M(1,3) AA(1,3) +S0 1(2,4)AA(2,4)

AX 03 = S0 3(1, 1) AA(1, 1) + S 3(2,2) AA(2,2) + S03(1,3) AA(1,3) +S 03(2,4) AA(2,4)
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AX 0.1329 0.3671 -0.2432 i -0.6720 (H) 1
AX 02[ =0. !1329 0).3671 01.2432 i 0.6720 i AA(2,2)

AX 0 0.3671 0.1329 -0.1418i -0.0513i AA(1,3)
A041 0.3671 0.1329 0.1418 i 0.0513i j ,(2,4)

IAA(I,I)1 1-0.4336

AA(2,2) -0.0664
AA(1,3) 0.0326
AA(2,4) -0.00231

The resulting A matrix is

[-0.4336 0 -4.9674 4 1
A () -0.0664 2 -2.0023! L0( 0 0 [

0i 0 0

,OI, X 01= -0.0827 ± 0.5346i and X =-). 1673 ± 2.5734i

The eigenvectors are

-0.0367+0.2786i 0.2317-2.201 4i
U -0.0527+0.3227i ( -oni) 0.0418+0.95021 (conj)

0.5193-0.0117i -0.8577-0.0343i
0.6044+0.0050i 0.3666-0.0401 i

The sensitivities SII and S 13 are given. Note that S12 =9 I1 and S 14 = 13

0. 1363+0.0148i 0.1579+0.0221 i -0.0114-0.2531 i -0.0042-0.2948i]

= 0.3159+0.0443i 0.3658+0.0628i -0.0084-0.5896i 0.0114-0.6861i
0.0399+().0780i 0.0436+().0922i 0.1313-0.0949i 0.1561-0.1057i

-0.0288+().1682i -0.0395+0.1946i 0.3153+0.0051i 0.3666+0.0173i.

(0.3637+).)53 1i -0. 1579+).0006i 0.0 114-0.1421i 0.(X)42+0.061 i 1
/ -0.3159+0.0012i 0.1342-0.0206i 0.0084+0.1222i -0.0114-0.0514i

13 - 0.0399+().9502i -0.0436-0.4063i 0.3687-0.0085i -0. 1561+0.0271i

0.0288-0.8131 i 0.0395+0.3473i -0.3153+0.(X)93i 0.1334-0.0240i.J
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Example 5.6 Design of an unsymmetrical control matrix using sensitivities.

Given the Example 5.1 above, suppose it is desired to increase the damping in
eigenvalues I and 2 and decrease it in eigenvalues 3 and 4, so AXL=- 0.1 and AX3 = 0.1 The

starting matrix AG is that of Example 5.1 and the sensitivities used in the first trial are those of

the uidamped system The only element to be changed in A is A12 * From the sensitivity

matrix SI in Example 5. 1, the corresponding sensitivity is 0.1768. To find AA 12 use (0.1768)

AA 12 = -0.1 .T he result is AA12 = - 0.5656. Make this change in the matrix A and call the

resulting matrix A .

F -0.6586 -0.4242 -150 251[ 01414 -0.9414 25 -2(X)AI =[ 1 0 0 0
00

The rf-sulting eigenvalues are

X11 X1 = -0.3998 ± i 11.8070 X 2' KX2 =-0.4(X)2 ±i 14.5022

which have real parts very close to those desired. If an iteration process is used, the next step
would be to update the sensitivities. The new S matrix is

0.4253+i11.0262 0.1755+i0.0177 0.0010-i0.0361 0.0010 -i 0.0149 1
s 1787 - i 0.0293 0.0744 - i 0.0092 -0.0X030 - i 0.0150 -0.0010-i 0.0063

S= -0.2241 + i 5.0330 -0.1741 + i 2.0779 0.4264 + i 0.(X)45 0.1763 + i 0.0088
0.6236 + i 2.1048 0.2238 + i 0.8806 0.1763 - i 0.0588 0.0739 - i 0.0215

which shows that the sensitivities are now complex numbers, so a corresponding change in the
imaginary part sitould be demanded. The damping is not proportioni and a change in mode
shape is expected. The new right eigenvectors are:

-0.2171 + i 7,7170 -0.2171 - i 7.7170 -0.8304 - i 3.9956 -0.8304 + i 3.9956
U -0.2147 + i 3.12881 -0.2147 - i 3.1881 -0.6548 + i 9.4990 -0.6548 - i 9.4990

0.6535 - i 0.0037 0.6535 + i 0.0037 -0.2737 + i 0.0648 -0.2737 - i 0.0648

0.2703 + i 0.0090) 0.2703 - i 0.0X)90 0.6557 + i 0.0271 0.6557 - i 0.0271

[-0.0212 - i 0.0004 -0.9567 - i 0.0733 1
and dU = U -U -0.1335 - i 0.0086 (conj) -0.3282 + i 0.0296 (conj)

I G 0.(XX)2 - i 0.0037 -0.(X)31 + i 0.0648
-0.(0X)3 + i 0.0090 0.X)25 + i 0.0271
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Example 5.7 Same problem as Example 5.6, but using a variation of Method L

For this example. which is the same problem as done in Example 5.6, the idea of Method
I is used, but the eigenvectors used are UG and VG of the damped system of Example 5.1. The

desired eigenvalues are those given in AG , namely

[-0.4 +i 11.8133 0 0 0 ]
AG 0 -0.4 -i 11.8133 0 0

0 0 -0.4 + i 14.4950 0

0 0 0 -0.4 -i 14.4950

[ -0.7293 0.0707 -150.00 25.00

A(;,= U * A * T 0.0707 -0.8707 25.00 -200.00
A G G G [ .0000 0.0000 -0.0707 -0.0707

0.{XX) 1.00(X) -0.0707 0.0707

The 2 x 2 matrix in the lower right corner of AG, is non-zeio and not equal to the 2 x 2 matrix

in the upper left corner. Thus, in the spirit of Method I. we add it to the upper left comer and
zero the lower right corner, producing the modified characteristic matrix.

[ -0.8(X) 0.00(X) -150.00 25.001
0.(XAXX) -0.80(X) 25.0X) -200.00

Modified AG 1  .(XX) 0.0(XX) 0.00X) 0.0000

0.0000 1.(XXX) 0.(X)00 0.0000]

5.1.5 Nonsymmetric control matrices, forced vibration problem.

To do a forced vibration problem with symmetric, or unsymmetric, control matrices G
and H, the closed-loop matrix equations are

[ :1 j ~; } + [7 ] { {(t. (5.56)
0 -K z(t)I+ K 0 z (t)l 101

The shorthand form of Eq. (5.56) is

M* I +K r" = F(t) (5.57)

or il- A Tl =1M* l F(t) (5.58)

where A is the characteristic matrix for the closed-loop system and U, V, and A are,
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respectively, the right eigenvector. left eigenvector and eigenvalue matrices of the closed-loop

system.

The equations are decoupled by substituting

Tj (t) =U q(t) (5.59)

into Eq. (5.58) and pre-multiplying by VT

q *(t) + A q(t)=VT JM* 1 F(t) (5.60)
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5.2 Optimum damping and control by way of performance index and the Riccati equation.

5.2.1 Performance index and optimal control

An often-used form of a quadratic performance index for a controllable system isis

J = 1I 1  lt) Q(t) z(t) + z(t) R(t) z(t)] dt (5.61)

where Q is real, symmetric and positive semidefinite while R is real, symmetric and positive
definite. Finding the optimal solution involves solving the nonlinear Riccati equation, but which
can be transformed to a linear form. The behavior is a function of time, but at t=-tf the Riccati

matrix approaches a steady-state value. An numerical example of an optimal timewise solution
is presented on page 199 in reference [M41.

5.2.2 The Riccati equation and modal control.

If the system is undamped and the control is such that the rth modal equation is inde-
pendent of the other modal equations, the performance index may be written for each mode and
the total performance index is obtained by summing the modal performance indices. For the rth
mode, the performance index is given by

r [ uT(t)Qr ur (t)+t)] dt (5.62)

and the total performance index J is the sum of the modal performance indices.

n

= - ' r (5.63)

The Qr can be chosen so the first term in Eq. (1) is the sum of the modal kinetic and potential

energies of the plant. Again. the state space differential equations are

M 11 +K 1=F(t)=G +H* 1 (5.64)

Assume the eigenvalues A and the right and left eigenvectors U and V for the M" K matrix are

available. Hence we substitute (5.65) and pre-multiply (5.64) by M* '

il(t) = U q(t) (5.65)

with the result

U q(t) +M* K* U q(t) = M * F(t) (5.66)
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To decouple the equations, pre-multiply by VT and take advantage of the usual
orthogonality relationships.

q(t) - A q(t) =V T M* F(t) =V T M *- GUq +V T M * H Uq (5.67)

q (t) - A q(t) =Q(t) = VT M* 1 F(t) = IgI q(t) +1hI q(t) (5.68)

In general, the IgI and Ihi matrices will not be diagonal. If they are diagonal, the modal
control is natural. The real and imaginary parts of the modal control force Q(t) are designated
X(t) and Y(t), written as

Q(t)=X(t) + i Y(t) = VT M*' 1 F(t) = 1g] q(t) +[hI q(t) (5.69)

To return to the system coordinates, substitute from (5.65) for q(t)

VT M*' F(t) =igJ U- i l +[hI Ul T (5.70)

which gives F(t) =M* V'T[1g U'_ +[h] U' I J (5.71)

or alternatively F(t) =M * vT [X(t) + i Y(t)] (5.72)

The Example 5.8 is done next, to show how the optimum timewise modal control forces
and associated closed loop poles, found from a solution of the Riccati equation are converted to
control forces in the system coordinate system. In Example 5.9, the results are checked by the
natural modal control approach, given the desired closed loop eigenvalues. In example 5.10, the
same results are gotten by using Method 11.

Examrie 5.8 Conversion of modal control forces to system control forces.

The purpose of this example is to show how the optimum solution obtained from the
Riccati equation for a specific problem by Meirovitch IM41 related to the present discussion.
The plant matrices are

M=[l I ]and K=[5 4 ]

and the eigenvalues are XI, X2= I' i 0.5463 and X 3 X4= ± i 2.5887. In [M41 special

coordinates are introduced so that all the matrices will contain real numbers, rather than
imaginary numbers. The Q and R matrices used in the special form of the performance index
ar ! uken as the unit matri.. The real part of the control forces X(t) --0 and the imag:aary part is
of the form

Yt) aIa1
0 0 a.3 a 44 42 (t)

IrT2it) j

Having the control forces, the closed loop eigenvalues can be determined. An alternate approach
to that used in I M41 is to convert the timewise control forces in modal coordinates to system
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coordinates. Then the G and H control matrices can be identified directly. The k(t) and i r(t)

are related to q(t) by

qr M)= Vt) + i fr(t) and 4r = 4r(t) " ir(t)

To convert back to complex system coordinates, the complex conjugates come into play. The
conversions are written in matrix form, like

r~J1 I {'} 4with the inverse I rI . . q
The control forces in system coordinates are

Qlt)=[-0.4404 0.0990 -1.3705 0.0738 ] 2(t)

L0.0991 -0.7323 0.0738 -2.6304 z (t)

and the G and H control matrices are identified as

G [ 0.4404-0.0990 ] and H = 1.3705- 0.0738]

=-0.0991 0.7323 -0.0738 2.6304]

From this, the new A matrix is formed and the closed loop eigenvalues calculated.

The closed loop eigenvalues are

XI 1 X2 = -0.6419 ± i 0.4588 and X 3 X4 = -0.7009 ± i 2.5870

so (01= 0.5463 and w2 =2.5887

The changes in the eigenvalues are

d X I= -0.6419 - i 0.0875 and d X2 = -0.6419 + i 0.0875

dX = -0.7009 - i 0.0017 and d Y -0.7009 + i 0.0017
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Example 5.9 Same problem as 5.8, but using pole shifting by natural control method.

The goal of this example is to determine the required control matrices using the method
of natural modal control with n x n matrices, rather than in state space. The form of the
polynomial in X is

2+ g+(h + ) =0r gr r r r

and the given roots are
X =a ±ijP

r r r

or Xr ' r + i (h + w 2 r  "

so gr = 20tr

and h =p_ 2 + (r )2

The individual eigenvectors will be designated as p r and the n x n eigenvector matrix as
0.

(D=[0.5155 0.8569]

L0.6059 -0.3645]

The required diagonal modal control matrices are
1.2838 0

g =[ 0 1.4018]

and h [0.3241 0
0 0.4825

The corresponding control matrices in the original coordinates are

=[ 1.3704 -0.07371 and G= 0.4404 -0.0990]
-0.0737 2.6304] L-0.0990 0.7324]

so the K+H matrix is K+H=[ -2.451444-4.0990
-2.0495 2.3662



Example 5.10 Same as 5.8, but using Method 11.

Suppose we start with an undamped system and then add a symmetrical C+G matrix.

[0 0 -5 41
A 0 0 2 -2

o I (1 0 0

The eigenvalues are " () = ± 0.5463i and X 02 X 2 2.5887i

The eigenvectors are

[0.2816i -0.2816i -2.2183i 2.2183i]

U = 0.3310 i -0.331) 0 0.9436 i -0.9436 i
0.5155 0.5155 -0,85r-9 -0.8569

[0.6059 0.6059 0.3645 0.3645 J
The desired change in A is

-0.6419 - 0.0875 i 0 0 0

dA= 0 -0.6419 +0.0875 i 0 0

0 -0.7009 - i 0.iX) 17 0

0 0 -0.7009 + i 0.0017

-0.3309 + 0.2365 i -0.6006 + 2.2 168i
U= -0.3889 + 0.2780 i (conj.) 0.2555 - 0.09430i (conj.)

G 0.5155 -0.8569
0).60)59 0).3645

-0.5618 i -0. 1656 i

v = -1.3207 i (conj.) (1.1409 i (conj.)
G 0.2577 - 0.3606 i 0.4284 - 0.1161 i

0.6059 - 0.8477 i. -0.3645 + (.0988 i

AG = U I A +d Al VT

U G VG

-1.3704 0.0737 -5.4404 4.0989
A [ 0.0369 -1.3152 2.1495 -2.3662

1 0 0
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5.3 Summary and conclusions.

The present study has covered a range of problems related to the efficient representation
and design of damping and control forces for discrete systems. Some conclusions are given at
appropriate locations in the preceding portions of the report. A summary is given here in the
form of suggestions for further study, as follows:

1. Some forms of passive and active damping are achieved by devices representable by
viscous forces. However, viscoelastic damping is widely used and more work is needed
to develop more efficient analytical and computational techniques. The mini-oscillator
approach is readily adapted to present modal analysis methods and computer programs,
but a considerable increase in size of matrices is required. The fractional calculus
approach may be more efficient, but is not as easy to use. Complex numbers are readily
handled in present computer programs and the use of a complex Young's modulus is
efficient in some instances, especially if the modulus is fairly constant over the frequency
range involved.

2. Eigenvalue and eigenvector sensitivities may be used for constrained optimization
problems. Their use to achieve certain eigenvalues through design of dissipative
damping and control matrices has been demonstrated in the present study. They can also
be used to design eigenvectors, but eigenvectors tend to change rapidly with changes in
parameters and more study is needed in this area.

3. Direct design of damping and control matrices through eigenvector as well as eigen-
value assignment is very promising, as indicate by the methods and examples outlined in
Chapter 5. The literature on the inverse eigenstructure problem is relative and is
increasing rapidly. Eigenvector sensitivities can be useful in choosing the eigenvector
matrices and is an area worth further development.

4. Practical realization of the system and control matrices, while not a major topic of the
present report, has been mentioned in some of the papers published by the writer and in
many other papers. Maintaining data bases of properties of viscoelastic materials in forms
that are readily useful in computer programs for structural analysis is an ongoing task.
Graphical representation is helpful, but a listing of the parameters involved in
curve-fitting, as described in Chapter 3, would be directly useful to the analyst.
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