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ABSTRACT

A problem of continued interest concerns the control of vibrations in a flexible structure and the related problem
of reducing structure-borne noise in structural acoustic systems. In both cases, piezoceramic patches bonded to the
structures have been successfully used as control actuators. Through the application of a controlling voltage, the
patches can be used to reduce structural vibrations which in turn leads to methods for reducing structure-borne noise.
A PDE-based methodology for modeling, estimating physical parameters, and implementing a feedback control scheme
for problems of this type is discussed. While the illustrating example is a circular plate, the methodology is sufficiently
general so as to be applicable in a variety of structural and structural acoustic systems.
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under NASA Contract Number NASI-19480 while H.T.B., R.C.S. and Y.W. were visiting scientists at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23681. Finally, the research of D.E.B. was supported under NASA Contract Number NASI-19000.
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1. INTRODUCTION

In recent years, a great deal of work has been done on the development of control methodologies for structural
and structural acoustic applications using piezoelectric actuators. One such type of actuator consists of piezoceramic
patches which are bonded to the structure in the system of interest. Through the input of voltage to the patches,
in-plane forces and/or bending moments can be created which affect the structural motion and can ultimately be used
to reduce vibration levels or control structure-borne noise.

One method of determining the manner through which the piezoceramic patches can be incorporated as control-
ling elements in structural and structural acoustic systems is through distributed parameter models [1, 2, 3, 4, 5].
Alternative control approaches using piezoceramic patches for similar problems are illustrated in [6, 7, 8, 9, 10]. In
distributed parameter approaches, one typically models the physics of the system under investigation by a partial
differential equation (PDE) or system of PDE's at which point, infinite dimensional parameter estimation and control
results can be obtained. Corresponding finite dimensional approximations result from the discretization of the PDE's.
To date, numerous theoretical results concerning the modeling, estimation of physical parameters and feedback control
in structural and structural acoustic systems have been obtained with supporting numerical results demonstrating the
feasibility of the methods in 2-D and 3-D geometries (see [14, 15] for modeling results for a 3-D structural acoustic sys-
tem currently under investigation in the Acoustics Division, NASA Langley Research Center, and [2, 5] for numerical
examples demonstrating the PDE-based techniques for a model involving a 2-D slice of this setup). The experimental
success of the PDE-based parameter estimation techniques has also been demonstrated in studies involving various
flexible structures including beams [11, 12] and multiple component structures [13]. However, little experimental work
has been done on the estimation of physical parameters in more complex structures or structural acoustic systems,
and the PDE-based control techniques involving piezoceramic actuators have not previously been implemented.

This paper contains preliminary results obtained when distributed parameter techniques for parameter estimation
and feedback control were experimentally implemented on a circular plate. These results are intended to illustrate
techniques for implementing parameter estimation and feedback control through proof-of-concept experiments with an
isolated component from the structural acoustic system described in [14, 15] (the structure in that system is made up of
a hardwalled cylinder with a clamped circular plate at one end, and the control problem consists of using piezoceramic
patches on the plate to reduce the interior structure-borne sound pressure levels which result when the plate is
subjected to a strong exterior acoustic field). In addition to providing a preliminary test regarding the experimental
implementation of the PDE-based method for reducing structural vibrations, this also provides a first step toward a
feasible experimental implementation of the theoretical PDE techniques for full structural acoustic systems.

2. MATHEMATICAL MODEL

In this section, a brief discussion of the mathematical model used to describe the experimental setup is given
and the approximation techniques used to discretize the model are outlined. To simplify the presentation, a uniform
circular plate, clamped around its perimeter and subjected to an axisymmetric exciting force g(t, r), is considered (it
is emphasized, however, that all of the results and techniques presented here extend directly to the more general case
of nonaxisymmetric excitation and vibrations). Bonded to the plate is a centrally placed piezoceramic circular patch
which is used to damp the plate vibrations when a controlling voltage is applied (see Figure 1).

a U

Fig. 1. Clamped circular plate of radius a and thickness h with a centered circular piezoceramic patch of thickness T.
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For a thin circular plate of radius a, thickness h, and occupying the region 0lo, the weak or variational (energy)
form of the axisymmetric equations of pure bending motion is

phwt~fTdw + J 'Tw1Jdw + j MWid.& + J !Mtd&

= Ltch +

for all functions 7/E V (note that dw = r dr dO and the overbars denote complex conjugation). Here u; is the transverse
plate displacement, p is the plate density, y denotes the viscous damping coefficient, u(t) is the voltage applied to the
patch, and V (the space of test functions) is the subset of the Sobolev space H2 (fjo) satisfying the fixed boundary
conditions w = wr = 0 at r = a. The internal bending moments are given by

M, = +CD +r 2+ O -0 +TV-9

-/'a T raT 2 0-f r' jra~t '-  ,oW

IOW a2 W' [10 2 W 0w
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With E denoting the Young's modulus, the parameters D = 12-- v2U, CD and v represent the flexural rigidity, Kelvin-
Voigt damping coefficient and Poisson's ratio for the plate/patch structure. We point out that p, D, v and cV are
assumed to be piecewise constant to account for the change in material properties and thickness in the region occupied
by the patch (see [12] for the experimentally verified necessity of such an assumption). We also note that the Kelvin-
Voigt and viscous terms are used to model the natural damping of the plate motion as it vibrates. Finally, as discussed
in (16], the constant

KCB= 1 Ep, dsi(h + 2Tbz + T) (2)
21- v ,

results from the integration of the free stresses generated by the patch (here, Epe, T, Lp,, d3l are the Young's modulus,
thickness, Poisson ratio, and piezoelectric strain constant for the patch while Tbi denotes the bonding layer thickness).
Summarizing, the plate equation (1) contains (in order from left to right) an inertial term, a viscous damping contri-
bution, internal bending components which incorporate the stiffness and Kelvin-Voigt damping for the structure, the
external moment due to application of voltage to the patch, and the forcing term due to the exterior exciting force g.

To approximate the plate dynamics, a Fourier-Galerkin scheme is used to discretize the infinite dimensional system
(1). As detailed in [15], the plate displacement is approximated by

N

N(t,r, o) = E ZW.(t)B.(r, o) (3)
n=1

where B(r, 0) are cubic spline/Fourier basis functions. The substitution of the expansion (3) into (1) with orthogo-
nalization against basis elements yields the 2N x 2N matrix system

MNeN(t) = AN yN (t) + bNU(t) + GN(t)
mNYN(O) = po

or equivalently, the Cauchy system

e() =.AN () + BNU(t) + GN()(

YN(0) = YON

where yN(t) = [wN(t),... ,wN(t), tbN(1), - . , (t)] denotes the 2N x I vector containing the generalized Fourier
coefficients for the approximate displacement and velocity (again, see [15 for details concerning the discretization of
the circular plate equation and formulation of the matrices AN, BN and GN). In this form, the finite dimensional
parameter estimation and control problems can be discussed.
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3. PARAMETER ESTIMATION

The goal of the finite dimensional parameter estimation problem is to determine estimates of the "true" material
parameters p, y, D, V, CD and X given data measurements z (in the experimental results reported here, the data
was a time history of the normal acceleration obtained from an accelerometer mounted at the center of the plate).
Letting q = (p, y, D, V, CD, CB) and assuming that q E Q where Q denotes an admissible parameter space, the finite
dimensional parameter estimation problem is to then seek 4 E Q which minimizes

82N(ti,, i; q) - z, [2()
JN(q) = 2

subject to wN satisfying the approximating coupled system equations (hence the coefficients {wZ(t)} of wN must
satisfy (4)). In this case, we have (f, 8) = (0,0) since the accelerometer is located at the center of the plate. As
indicated previously, the material parameters p, D, v and CD are assumed to be piecewise constant in order to account
for the differing structural properties in the region of the plate covered by the patch.

The dimensions of the aluminum plate and piezoceramic patch are summarized in Table 1. This table also contains
"handbook" values for the Young's modulus, Poisson ratio and density of the plate and patch. We reiterate that while
the "handbook" values provide a starting point in the parameter estimation routine, they usually cannot be used in
the final system model with any accuracy due to nonuniformities in the plate or boundary conditions, variations in
materials, and the contributions due to the presence of the patch.

The following strategy was used to estimate the parameters for the experimental plate. An impact hammer hit
to the center of the plate was used to excite the structure and data was collected from a centered accelerometer
on the opposite side of the plate. The excitation of the structure in this manner provided a primarily axisymmetric
response with the purely axisymmetric component being measured by the accelerometer. Data obtained from off-center
accelerometers indicated that while slight nonaxisymmetric vibrations were present, their effect was minimal.

With a time history of the acceleration data, the minimization of (5) was performed subject to wN satisfying the
discretization of the PDE-based plate model. The estimated parameters p, y, D, v and CD are recorded in Table 2
and model-based results obtained with these values are plotted against experimental results in Figures 2 and 3. As
indicated by the results in Figure 3, four axisymmetric modes were excited with the primary response being in the
first two modes having frequencies of 57.9 hertz and 224.9 hertz, respectively. The results in both figures demonstrate
that the parameter estimates in Table 2 lead to a very close matching of the first two frequencies (the response of the
third axisymmetric mode is too weak to permit adequate comparison). The overdamping of the high frequency mode
is characteristic of the Kelvin-Voigt damping model and this leads to the very slight variation seen in the time history
when comparing the experimental data and model response.

In order to obtain the patch parameter CB, the system was excited via a voltage spike to the patch, acceleration
data was collected, and the above process was repeated (we point out that this technique alone can be used to estimate
all of the parameters but with a response that contains much higher frequencies than those excited by the hammer).
In comparing the estimated value of KB with that calculated from the expression (2), one notes an approximately 13%
difference in values (to calculate a value for KB, a bonding layer of thickness Tbt = T/5 was assumed). This falls well
within the 20% variation that is often associated with the "handbook" value of d31. The estimated values in Table 2
can then be used in the control method described in the next section.

Plate Properties Patch Pruperties

Radius a = .2286 "t (9") rad = .01905 m (.75")
Thickness h = .00127 rn (.05") T = .0001778 m (.007")

Young's Modulus E = 7.1 x 1010 N/ M 2  Ep, = 6.3 x 100 N/ M 2

Density p = 2700 kg/m p, = 7600 kg/m

Poisson ratio v, = .33 mpe = .31

Strain Coefficient d 1 = 190 x - 12 M/V

Table 1. Dimensions and "handbook" characteristics of the plate and PZT piezoceramic patch.
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Analytic Experimental % Variation

p. hickness Plate 3.429 3.157 8.6
(kg/ M2) Plate + Pzt 3.123

D Plate 13.601 11.017 23.4
(N • m) Plate + Pzt 11.178

CD Plate 2.158-4

(N . msee) Plate + Pt 2.210-4

Plate .33 .3304 0.1

Plate + Pzt .3271

7 (see. N/m) 15.566
106 (N/V) .013369 .015288 12.6

Table 2. Analytic and experimental values of the physical parameters.

Ptls Rapom to a Cwmd hI"21509..
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|-0

0 0.0 0.1 0.15 0.2 025 0.3 0.3 0.4
Thin (m)

Fig. 2. Time history of the experimental data and model response with estimated parameters,
(Experimental Data), - -- (Model Response).
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Fig. 3. Frequency content of the experimental data and thin plate model with estimated parameters,
x - (Experimental Data), o - - - (Model Response).

4. VIBRATION CONTROL

In considering the control problem, we will concentrate on the case in which the plate starts with an initial
displacement and velocity and is then allowed to vibrate until motion stops. It is also assumed that the only external
moments and forces being applied to the plate are the moments generated by the patch in response to an applied
voltage which implies that GN(t) = 0 in the approximate system equation (4). The goal in the control problem is to
determine a voltage u(t) which, when applied to the piezoceramic patch, leads to a reduced level of vibration.

4.1. Output Feedback Control

For the finite dimensional approximate system, the problem of determining a controlling voltage can be posed as
the problem of finding u which minimizes

JN(u) = j 4 (QNyN (t), y(t))R2N + (Ru(t), u(t))R} di

where yN (t) solves (4) and R is a weight which penalizes overly large voltages (this ensures that realistic voltages are
determined). As seen in [2], energy considerations suggest that a diagonal matrix multiple of the mass matrix MN is
an appropriate choice for the nonnegative matrix QN. Under suitable conditions, optimal control theory can then be
used to show that the optimal controlling voltage is given by

u(t) = -KN yN(t) (6)

where KN = R-(BN)TBIN and UN is the solution to the algebraic Riccati equation

(AN)T HN + UN AN _ IIN BN R-(BN)TIIN + QN = 0.

We remind the reader that in this finite dimensional formulation, yiN (t) is a 2N x I vector which contains the generalized
Fourier coefficients { w(t)} and f nZ(t)) for the approximate plate displacement and velocity (see (3)).
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A disadvantage to the feedback law (6) is that it requires knowledge of the displacement and velocity everywhere
on the plate in order to be implemented. In reality, however, one usually is able to measure data only at a small
number of locations on the plate and from these values, one must reconstruct (e.g., see [17]) or estimate the state
(displacement and velocity) before using it to determine the controlling voltage. This yields a feedback law of the form

u(i) = -KNJ(t (7)

where yN, (t) solves the state estimator or compensator equation

S(t) = [AN - FNCN _ BNKN ] y(j) + FNyb(t) (8)
'N()= (8).

(compare to the original finite dimensional system (4) with the expression (7) for the voltage). Here CN is a matrix
specifying the points where displacement or velocity data is observed. The matrix FN has a form similar to that of
the gain KN and is given by FN = PN(CN)TN;-l where N, is a design matrix which is related to the effect of noise
in the data (this is the "optimal" state estimator in the case of certain types of noise in the state and observation
equations), and pN solves a second algebraic Riccati equation

ANpN + PN(AN)T - PN(cN)TN,,1CNPN + M = 0

(the matrix M ' is also a noise-related design parameter). The vector yo6 (t) contains the generalized Fourier coefficients
for the observed state (in this case, observed at the origin) and it is from this information that the state is approximated.

4.2. Experimental Implementation

As mentioned in the last section, data for these experiments was obtained with a centered accelerometer, and
the first step in the algorithm for determining the controlling voltage at time t k was to integrate the accelerometer
data to obtain velocity values. This step is very sensitive to the presence of DC gains in the data processing and
was accomplished using the second order filter described in [18]. After projecting the velocity values into the finite
dimensional subspace in which the dynamics are being approximated to obtain yob, the solution to (8) was stepped
from time tk-l to tk to obtain the state estimate y,"(tk). This value was then multiplied by the gain KN to produce
the controlling voltage (tk) to be fed back into the system. By computing the gains and component matrices offline,
the voltages could be calculated in real time thus permitting this feedback method to be implemented experimentally.

As a preliminary test into the feasibility of implementing this feedback control scheme, a series of experiments were
conducted in which the plate was excited with a centered impact hammer strike and the vibrations were recorded both
with and without controlling voltages being applied. In all cases, the same electronic setup was used with the control
cases differing only in that the calculated voltage (7) was fed back into the system whereas it was simply calculated and
stored in the uncontrolled cases. Representative plots of the plate velocity (integrated from the data recorded by the
centered accelerometer) for the uncontrolled and controlled cases are given in Figure 4. The voltage (from (7)) yielding
the controlled results is plotted in Figure 5. Finally, the force delivered by the hammer impact in the uncontrolled
and controlled cases is recorded in Figure 6. As indicated by the results in this latter figure, the force delivered in the
two cases was nearly identical (a slight double hit was always present when an impact hammer was used to excite the
axisymmetric modes). By comparing the velocity levels in the two cases, it is noted that a significant reduction was
obtained in the controlled case with a controlling voltage having a maximum value below 60 V. Quantitatively, the
application of the controlling voltage leads to a 47% reduction in maximum velocity levels by time T = .5 sec and a
reduction of 73% by T = I sec.

We point out that these results are typical of those recorded in a series of experiments and hence represent the
typical reductions in vibration levels that were obtained when the controlling voltage was fed back into the system in the
manner described above. While implementation procedures are not yet optimal, these preliminary tests demonstrated
that vibration levels could be effectively reduced when the PDE-based control scheme was implemented, and they
indicate directions for future experimental tests to further improve the technique and methodology.
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Fig. 6. The force delivered by the impact hammer in the uncontrolled and controlled cases, (Controlled Case),
- - - (Uncontrolled Case).

5. CONCLUDING REMARKS

In this paper, the experimental implementation of a PDE-based parameter estimation and feedback control strategy
for structural and structural acoustic systems has been considered. The structure under consideration was a thin
circular plate with a centered piezoceramic patch. After modeling the structure by thin plate equations with piecewise
constant parameters (to account for the material variation in the region of the patch), the problem was discretized
using a Fourier-Galerkin basis to obtain a form that was useful for implementing a feedback control scheme. The
first experimental step was to then estimate the physical plate and patch parameters through a data fitting technique.
With the estimated parameters in the system model, output feedback control results were used to obtain a feedback
law which provided a voltage to be applied to the patches. When experimentally implemented, this control technique
led to a reduction in the plate vibrations. While the implementation procedures are not yet optimal, this provided
a test as to the feasibility of implementing a PDE-based method in this manner as well as indicated directions for
further experimental research with both structural and structural acoustic systems.
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