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Abstract

Distributed continuous media applications that incorporate digital audio and video require predictable
response from the operating system and the network. Much recent research in communication networks
focuses on providing predictable service at the network level, but current operating systems do not
typically provide end-to-end predictability. Our aim is to offer operating system support for predictability
while still maintaining the dynamic, easy-to-use environment of a general purpose operating system.
We explore the use of a resource reservation mechanism in the operating system with the idea that
this mechanism can be used to support higher level quality of service management policies. We also
employ a protocol software structure that uses priorities, preemptive packet servicing, and reservation
enforcement to allow the reservation scheduling policy to make fine-grained scheduling decisions to
control the protocol processing activities. By reserving resources such as buffers, computation time
for application-level activities, and computation time for protocol processing, our system can support
predictable behavior for distributed real-time application programs. We implemented our reservation
mechanism using the Real-Time Mach operating system as a base, and we present performance results
which demonstrate that our approach provides predictable network service to distributed multimedia
applications.



1. Introduction

Applications that transfer and process digital audio and video data in real-time must be designed for
predictable behavior, and these programs also require predictable behavior from the operating system
and network services that- they use. Networking researchers are actively exploring ways to provide
predictable network service [1, 2, 3, 21]. This work has been very successful; many networks have
been designed to deliver predictable service to the host interface. The problem arises, however, when
the operating system gets involved in the communication path. General purpose operating systems are
not designed to move time-constrained data from the network interface to the user-level programs in a
predictable way. Consequently, multimedia packets from the network may be subject to unpredictable
delays before being delivered to the user, and multimedia packets generated by user applications may
be delayed in the operating system before being transmitted to the network. Non-time-constrained data
packets may also interfere with real-time computations that do not involve the network.

To provide predictable end-to-end performance that will enable user applications to depend on
timely delivery of continuous media data, the operating system must be designed to cooperate with
the network in supporting time constraints. There are many ways to design an operating system to do
this. For example, the system can be static with a fixed schedule in the form of a timeline [ 12], it can
use a schedulability analysis based on detailed measurements of the computation times and resource
requirements of all system components [7], or it can reserve resources in order to isolate real-time
activities from unpredictable interference from other activities. In our current work, we have chosen to
explore the resource reservation approach, with special attention to how processor time can be reserved
for processing network packets. We have developed a novel reserve abstraction which provides the
operating system mechanism for reserving resources [ 14].

In this paper, we describe how we can use resource reserves and scheduled protocol processing along
with a predictable low-level network service to provide predictable end-to-end behavior in a distributed
multimedia system. We demonstrate these ideas which we implemented in the context of Real-Time
Mach [201.

1.1. Scheduling protocol processing

Coordination between processor scheduling and network packet handling is very important for end-to-
end predictability in distributed multimedia systems. Many systems use the notion of priority to support
predictability, and one major issue is how priority inversions affect the performance of more important
activities. Priority inversion occurs when a higher priority activity is forced to wait for a lower priority
activity to execute [17]. For example, a priority inversion occurs when a high priority packet goes into
a FIFO queue behind a low priority packet. Priority inversion can be a major cause of unpredictable
behavior in real-time communication systems [ 19].

The software structure used for protocol processing in the operating system determines the degree of
priority inversion and thus the level of predictability. At one extreme, the 4.3 BSD operating system uses
"software interrupt" processing for executing protocols for incoming network packets [8]. This gives
protocol processing higher priority than any schedulable activity in the system, higher than any system
or user processes. For fast response to network packets and for high throughput, this is a good design
choice, but the problem is that a deluge of low priority data packets can effectively take over the processor
for an extended period of time, regardless of the importance of any of the schedulable activities. The
system is thus vulnerable to unbounded priority inversion. At the other extreme is the method used in the
ARTS real-time kernel where the protocol processing software was structured using preemptible threads
[18]. Each thread handled a different packet priority class, and the priority of the thread matched the
priority of the packets it handled. For predictable performance, the protocol processing software should
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be sensitive to packet priority as well as the priority of other activities running on the processor.

Several principles guide the design of predictable protocol processing software [151:

1. use packet priority for queueing,

2. schedule protocol processing against other system activities using packet priority,

3. use a preemptive control structure to reduce interference and priority inversion,

4. partition resources such as protocol data structures to reduce interference among priority classes,
and

5. limit the context switching overhead of the preemptive control structure.

The multi-threaded protocol software mentioned above enhances the predictability of protocol pro-
cessing, but at the expense of additional context switching. A protocol processing mechanism recently
implemented for the Mach operating system [13] is amenable to application of these principles. This
user-level library implementation of TCP/IP and UDP/IP was originally done to speed up the fast path
in the Mach networking code by reducing the number of IPC's and context switches required to send
and receive packets. This design also happens to satisfy our principles for predictable network commu-
nication, and with the resource management functionality provided by our reservation mechanism, we
achieve predictable end-to-end performance.

1.2. Predictability in the operating system

To support a predictable network service, the operating system must cooperate with the network in
scheduling networking activities. Two common approaches to predictable systems are: static real-time
scheduling for guaranteed service and statistical multiplexing techniques for (mostly) good service and
high utilization. Static real-time scheduling requires a fixed schedule or a fixed priority scheduling rule
based on careful measurement of the execution times of each component in the system. This approach is
less appropriate for the dynamic, flexible, easy-to-use environment that we want to support. Statistical
multiplexing, on the other hand, is flexible and better suited to a dynamic environment, but this method
requires a fairly large number of activities to realize the benefits of statistical sharing. Many modern
operating systems are designed to run only a few concurrent programs on a single microprocessor. On
personal workstations, only a few concurrent programs are active at a single time., and on multiprocessors,
it is common to think more in terms of allocating processors to applications rather than multiplexing
applications on single processors. With so few activities being scheduled, statistical multiplexing does
not offer the predictability it might when the numbers are larger.

Our approach is to strike a compromise between static real-time systems and statistical multiplexing.
Since resources are to be shared among only a few activities, we cannot depend on statistical assurances
that the resources will be available when they are needed. We use a resource reservation mechanism
to ensure resource availability. The reservation mechanism does not preclude resources from being
multiplexed among several activities, as long as the resource can be scheduled in such a way that it is
available to the reservation holder during the interval of time it is reserved. Some resources are difficult
to schedule in this way. Physical pages, for example, cannot easily be multiplexed since the "context
switch" to copy out data from a page and copy in new data is quite time-consuming. This argues for
physical pages being allocated directly rather than being multiplexed, and reservation in this case means
that the physical resources are tied up when reserved and cannot be used by other activities. We call
this type of reservation a dedicated reservation. Processors, however, can be multiplexed fairly easily;
the context switch time is not as large. So reservation for processors means that the processor resource,
measured in terms of computation time, must be available at the time the reservation holder needs it,

2



and this type of reservation does not preclude the resource being used by other activities, including
background activities. We can think of this as a reservation of capacity rather than a reservation of a
discrete resource, and we call it a scheduled reservation.

Since reserving discrete resources is a pretty straightforward proposition, we have concentrated on
how a reservation mechanism for the processor would work. The reservation mechanism has four parts:

1. an interface to specify reservation requests,

2. an admission control policy,

3. a scheduling algorithm, and

4. a mechanism to enforce reservations.

In Section 3, we will discuss these issues in more detail to provide some background for our work on
predictable protocol processing. A more complete description of the design and implementation of this
reservation system can be found elsewhere [14].

1.3. The rest of this paper

Section 2 discusses how different protocol processing software structures can impact the scheduling
of packet processing. In Section 3, we give a more detailed description of the processor reservation
mechanism that we have implemented, focusing on the features of this mechanism that enable better
control over packet scheduling. Section 4 gives the results of some performance experiments which
demonstrate the predictable behavior we can achieve. In Section 5, we present some concluding remarks.

2. Protocol software structure

A predictable network service depends on how the protocol processing for network packets is handled
as well as how these activities are scheduled. In this section, we look at several different approaches to
protocol processing software design, and we identify and discuss the advantages and disadvantages of
these approaches.

2.1. Software interrupt vs. preemptive threads

Traditionally, protocol processing software is designed to take packets from the network interface and
immediately begin processing them at high priority. For example, 4.3 BSD protocol processing is done
at a "software interrupt level" which executes at a higher priority than any schedulable activities in the
system (like processes) but at a lower priority than hardware interrupts [8]. Unfortunately, network
packets associated with a low priority activity may flood the protocol processing software and execute
while higher priority processes are delayed. This is an example of priority inversion [6, 15].

To prevent this kind of priority inversion, it is necessary to associate priorities with packets so that
they can be queued and serviced in priority order. It may also be helpful to be able to preempt the
processing of one low priority packet in favor of a higher priority packet, especially if the computation
time required for protocol processing is significantly more than that required for a context switch. One
approach, used in the ARTS real-time kernel, has preemptible threads to shepherd packets through the
protocol software [181. This is similar to the method used in the x-kernel [5], but unlike the x-kernel
threads, ARTS protocol processing threads were preemptive. This approach provides fast response to
high priority packets and prevents low priority network activities from interfering with high priority
work on the processor.
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2.2. Mach 3.0 networking

Hard real-time systems such as the ARTS Kernel are built for static task sets which can be analyzed
offline. These systems do not provide the dynamic, easy-to-use operating system environment for which
we argue in Section 3. Mach 3.0 [16] and Real-Time Mach [201 provide a general purpose computing
environment with some basic real-time capabilities. Networking support in Mach 3.0 is mainly provided
by the UX server which implements the 4.3 BSD operating system personality on top of Mach 3.0 [4].

Net
App

Net
App

Net
ServerAp

Network driver

RT Mach 3.0,

Figure 1: Networking with the UX Server

Networking in the context of the Mach 3.0 UX server is accomplished by calling the 4.3 BSD
networking primitives which are handled by the UX server. The UX server interacts directly with the
network device drivers to send and receive packets. As shown in Figure 1, this makes the UX server a
single point of contention for all activities that are using the network. Unfortunately, the networking code
inside the UX server does not support priority. In sum, this software does not satisfy our requirements
for priority and preemptibility in predictable protocol processing software.

Another problem with networking under the UX server of Mach 3.0 is that the interprocess com-
munication (IPC) required between the application and the UX server and between the UX server and
the network device drivers adds overhead to network communication. This decreases throughput and
increases latency. To alleviate these problems, Maeda and Bershad created a library implementation
of TCP/IP and UDP/IP sockets [13]. Their library handles the protocol processing for sending and
receiving packets and interacts with the network packet filter [22] and network device drivers directly.
The library can be linked in with applications that use the networking calls, so each application can do
its own protocol processing in its own scheduling domain (i.e. within its own threads). The library only
interacts with the UX server to create and destroy connections and for a few other control operations.
The fast path for sending and receiving packets is confined to the library itself (and the device drivers).
Figure 2 illustrates their networking software structure.

Maeda and Bershad report that their socket library yields much better performance in terms of
throughput and delay than the UX server sockets implementation [ 13] . Coincidently, their implementa-
tion also satisfies our requirements for effective scheduling of protocol processing. By including the code
in a user library, the computation is done by the user thread at the user's priority. It is also preemptible
since it runs in user mode and shares nothing with other threads in other applications.
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Figure 2: Networking with the Socket Library

2.3. Reserved protocol processing

Since the socket library enables the protocol processing computation to be scheduled under the priority
of the application and since it is also preemptible, we can effectively apply the processor capacity
reservation system to programs which do socket-based communication. Compared with a UX server
socket implementation, the library partitions the data structures and control paths of all of the networking
activities and places them in independent address spaces where they tend not to interfere with each other.
In the UX server, these different activities are forced to share the same queues without the benefit of a
priority ordering scheme, and other activities such as file 1/0, asynchronous signals, etc. may interfere
with the protocol processing, thus delaying packets as a result of other operating system activity that is
not even related to networking.

In the socket library, these components do not interfere with each other, so the reservation mechanism
(to be described in Section 3) is free to make decisions about which applications should receive how
much computation time and when. The control exercised by the reservation scheduler is not impeded by
additional constraints brought on by the sharing of data structures and threads of control. We therefore
expect very predictable networking behavior from applications that use the socket library with the
reservation mechanism.

3. Reserves for operating systems

The goals of the reservation mechanism that we use to support predictable network service are to:

" schedule multiple real-time activities,

" handle non-real-time activities along with real-time activities,

" isolate real-time activities from interference from non-real-time activities,

" support dynamic program creation and termination,

" offer feedback to applications about timing performance, and

" allow dynamic adjustment of timing requirements.
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There are many ways to attack this issue, including a direct approach where applications communicate
to the system information about timing requirements, execution times of code segments, and user
preferences for making load-shedding decisions. In this scenario, the system scheduler makes the
appropriate scheduling decisions to satisfy the high level requirements and preferences. Making decisions
based on a myriad of user preference rules is a very difficult problem, and the difficulty is exacerbated
by the fact that the direct approach does not incorporate any structure to help organize the problem.

We believe that we can fruitfully apply the principle of separation of policy and mechanism [101 to
the problem of managing operating system resources to ensure quality of service (QOS) requirements
for distributed applications. We separate the mechanism for controlling resource consumption from the
policy that determines how the resource capacity should be allocated, and we are left with the separate
questions of how to deliver resource capacity to programs (the mechanism) and how to determine which
programs should receive some measure of the capacity (the policy). To provide the mechanism to
deliver resource capacity, we have introduced an operating system abstraction called a reserve which
represents a reservation of capacity. For discrete resources like physical pages, reserves represent sets of
the resources that have been allocated and dedicated to the reservation holder. For processors, reserves
represent processing capacity.

Since processor capacity reserves present a more delicate problem than reserves for discrete resources,
we focus on processor reserves. In our system, processor capacity requirements are specified by two
numbers which indicate how much computation time is required per period of real time. For example, a
program might be designed to execute for 3 ms every 10 ms, yielding a utilization of 30%. A capacity
requirement of 30 ms every 100 ms results in the same utilization but very different timing requirements,
so the additional information about the granularity of the requirement is important.

3.1. Admission control and scheduling

The processor capacity specification method described above is used to make reservation requests of the
system. Programs may issue requests for reservations, and the system uses an admission control policy
to decide whether an incoming request can be accepted or not. In our case, we base our admission control
policy on the real-time scheduling analysis of Liu and Layland [11]. They showed that the behavior of
periodic programs with bounded computation time and fixed period could be predicted by summing the
utilization factors for all of the programs. In particular, they gave a schedulable bound for two different
scheduling algorithms: rate monotonic scheduling and earliest deadline first. A schedulable bound is a
utilization level below which the scheduling algorithm can guarantee that all programs will be able to
complete their computations within the corresponding period, i.e. before the next period starts and a new
computation begins. If the total utilization of a task set falls below the bound, the task set is guaranteed
to be schedulable. If the utilization is greater than the bound, the task set may or may not be schedulable.

The schedulable bound for the rate monotonic scheduling algorithm is 69% although this is a
pessimistic value for a pathological task set. Lechoczky et al. used an exact schedulability criterion to
determine that for randomly generated task sets, the average schedulable bound is 88% [9]. This means
that we can expect a task set with total utilization less than 88% to be schedulable. The schedulable
bound for earliest deadline first is 100%, meaning that any task set that does not overload the processor
can be scheduled.

The notion of schedulable bound is particularly useful for defining an admission control policy for the
periodic scheduling framework we use in our reservation system. If we use rate monotonic scheduling,
we can admit reservation requests that result in a total reserved utilization of less than 88%. For earliest
deadline first scheduling, we would ideally be able to accept reservation requests summing to 100% of
the processor, but in practice, it is probably a good idea to leave about 10% of capacity as a cushion
against certain kinds system overhead that are difficult to reserve like cache miss penalties and clock
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interrupts. So a utilization bound of about 90% would be appropriate for use in the admission control
policy when using either rate monotonic or earliest deadline first scheduling.

3.2. Enforcement

One of the assumptions in a periodic scheduling framework is that the computation time be bounded. A
program must not exceed its stated computation time during any one period since this might interfere
with other programs' reservations. A system may rely on programs to behave properly, or it may enforce
this assumption by tracking the usage of programs and refusing to schedule a program that has consumed
its computation time for a period. This issue of enforcement is a key point that separates hard real-time
systems from general purpose operating systems. For hard real-time, system designers typically measure
the execution characteristics of the programs and use those measurements to construct timelines or
perform a scheduling analysis to determine whether the system is feasible. Since the task set is static
and well-characterized at design time, no enforcement mechanism is required.

To make real-time scheduling policies accessible in a general purpose environment, we would like
to avoid this tedious and difficult measurement and analysis process. We also want to avoid the rigidity
of a statically defined task set. It must be possible to dynamically execute and terminate programs in a
general purpose operating system, and we prefer an adaptive negotiation process between programs and
the system to dynamically measure and adjust execution time and resource requirements.

In order to provide the additional usage measurement functionality and to isolate programs from
interference by other programs, we use an enforcement mechanism. The mechanism measures the usage
of each program and uses the program's reservation information to make sure that the usage does not
exceed the reservation during any reservation period.

3.3. Quality of service using reserves

The reservation mechanism described above provides a foundation on which more sophisticated QOS
policies can be implemented. Reserves give us an intermediate abstraction of resource capacity that
handles the details of making low-level scheduling decisions and that isolates activities from interference.
Thus QOS management need only be concerned with where to allocate resources without worrying about
what scheduling decisions have to be made to allocate resources, whether activities will interfere with
each other's timing, and how to enforce the QOS parameters that are in effect. We assume that such a
QOS manager would coordinate resource reservation in the network as well as the resource reservation
mechanism in the operating system.

To illustrate the workings of a QOS manager in relation to the reservation mechanism, consider a
manager that coordinates QOS requests and negotiations among all the applications in a system (shown
in Figure 3). Each application must be able to give information about the timing requirements of its
computation and how long the computation takes. It may also provide minimum and maximum resource
capacity requirements along with some indication of its importance to the user to help the reservation
manager make decisions about how to allocate resources. A toolkit provided with the reservation
manager could be used to measure the computation time required by the application. This information
is then passed along to the reservation manager which will make a policy decision about whether the
request should be granted.

4. Performance evaluation

We have implemented the processor capacity reservation mechanism described in Section 3 using Real-
Time Mach version MK83 with the UX42 version of the UX server. For organizing the information
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Figure 3: QOS Manager

associated with reservations, we introduced a new kernel abstraction call a reserve. In particular,
our reserves are processor capacity reserves, and they contain information about processor capacity
reservations that have been granted by the system. They also contain usage statistics which are used by
the reservation system and which are available to the application. The usage numbers can be utilized by
the application to learn about its execution behavior, computation time, etc. and to adapt its behavior if
that is desirable.

Maeda and Bershad's socket library [ 13] is also available in the MK83/UX42 .ersion of the system,
and we use this library with our reserves to show how operating system networking can be predictable
if the software is structured and scheduled properly.

Our tests use four different configurations of the RT Mach 3.0 system running on Gateway 2000
486 machines (66 MHz). We show the behavior of several task sets using UX server sockets with time-
sharing scheduling and with reservation scheduling. We also show the behavior of the same task sets
using the socket library with time-sharing scheduling and with reservation scheduling. These dimensions
are illustrated in Figure 4.

Software Scheduling
Structure Time-sharing Reservation

UX Server

Socket Library

Figure 4: Test Case Dimensions

In each of the system configurations, we run several task sets. In the first, we have a single thread
which is periodically transmitting several UDP packets (10 packets every 40 ms); this is the activity
that is intended to be predictable. This thread has no (substantial) competition from other application
programs (other than those normally running under Mach 3.0/UX). We measure the processor usage of
this thread wh;ch correlates with the number of packets sent, and that is the information that appears in
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the graphs. In the subsequent task sets, we measure the usage of the same packet transmitting thread, but
we introduce competition in the form of several additional non-real-time threads which are doing various
kinds of operations. In the second task set, the competition is comprised of 5 compute-bound threads. In
the third, the 5 competing threads are making standard U1O calls (stdio), and in the fourth task set, there
is a competing low-priority thread sending 10 UDP packets every 40 ms. In the fifth task set, all of these
competitive elements are combined. These task sets are summarized in Figure 5. The aim in structuring
the synthetic benchmarks this way is that we can examine the interference caused by different types of
competing activities, and we can also look at the interference that arises from an integrated task set with
the various types of activities combined.

Task Set Measured activity Competitive activity
(a) Predictable transmitter No competition
(b) Predictable transmitter Arithmetic competition (compute-bound)
(c) Predictable transmitter Stdio competition
(d) Predictable transmitter Background networking competition
(e) Predictable transmitter Combined competition

Figure 5: Task Set Summary

In the following sections, we present measurements of the processor usage of our single predictable
thread. We find that the different types of competition affect the behavior of this thread in different ways,
depending on the competition and on the system configuration.

4.1. RT Mach 3.0/UX server with time-sharing scheduling

In this experiment, we use RT Mach 3.0 with the UX server providing the networking service to
applications. The scheduling is Mach time-sharing. Figure 6 shows the configuration of the system
and the structure of the task sets. The figure includes the combination of all types of competition, but
different task sets include only portions of the competition. In the figure, the communication paths are
represented by bold arrows.

NRT Mach 3.0

Figure 6: RT Mach 3.0/UX Test Case Structure

The task set definitions with respect to the components in the figure are as follows:

App App



(a) Net App with no competition.

(b) Net App with Arith Apps in competition.

(c) Net App with Stdio Apps in competition.

(d) Net App with Bg Net (background network) App in competition.

(e) Net App with all competitive components.

The same task set definitions will be used for the following three experiments as well.
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Figure 7: RT Mach 3.O/UX (Mach Time-sharing Scheduling) Measured Behavior

In Figure 7(a) we see the usage (percent of the processor) of the Net App in isolation. Part (b) of the

figure shows the effect of interference from the compute-bound threads. The time-sharing scheduling

policy allocates long durations of time to the competition. In Part (c), we see that the stdio competition

looks much the same. Part (d) shows that the UDP competition is not very strenuous in terms of

computation time, and so the behavior of the Net App is fairly predictable, but when we combine all of

the types of competition in Part (e), we see that the resulting interference makes the Net App's behavior
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unpredictable. The interference is substantial; there are periods of up to 1 second where the compuLation
time the Net App receives is virtually nil. This is caused by the fact that the Mach time-sharing scheduling
algorithm tends to give large durations of computation time to compute-bound programs. Also, the Net
App's message processing is done by the UX server which has to do I/O processing for the Stdio Apps
and additional message processing for the Bg Net App as well. This tends to delay service for the Net
App, reducing the amount of time it has to do useful work.

4.2. RT Mach 3.0/UX server with reservation scheduling

The system structure for this experiment is the same as above (see Figure 6), the difference is the
scheduling policy. We use reservation scheduling here instead of Mach time-sharing scheduling. The
point is to demonstrate that simply using reservation scheduling does not solve the problem; the software
structure is very important for predictable behavior.

The task definitions are the same as the previous experiment.
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Figure 8: RT Mach 3.0/UX (Reservation Scheduling) Measured Behavior

Figure 8(a) shows the Net App in isolation, and the behavior is very regular and predictable. The

11



behavior is also (fairly) predictable with arithmetic competition (b), stdio competition (c), and background
network competition (d). The combination of these types of competition in Figure 8(e), however, reveals
the effect of the interaction between the main Net App, the Stdio Apps, and the Bg Net App which all
share the UX server. Since UX services all of these applications and since it does not have priorities
internally, these clients interfere with each other. We can see this reflected in the performance of the Net
App which is very erratic. This experiment shows that reservation scheduling is not enough to ensure
predictability when resources such as the UX server are being shared.

4.3. RT Mach 3.0/socket library with time-sharing scheduling

The tasks in this experiment use the socket library for networking. The task set is the same as in the
previous two experiments except for the changes in communication pattern implied by the socket library.
The new software structure appears in Figure 9 which shows that, when sending packets, network
applications now communicate with the network device driver directly instead of through the UX server.
The scheduling for this experiment is Mach time-sharing.

Net drivr
App App.~~s do

Apps

RT Mach 3.0,

Figure 9: RT Mach 3.0/Socket Library Test Case Structure

Figure 10(a) shows the Net App in isolation. In parts (b) and (c), we can see that the Net App is
sensitive to interference from the arithmetic and stdio competition, but it suffers only a little interference
from the Bg Net App in part (d). For part (e) where the competition is a mixture of all three types of
activity, the interference is severe. Much of this interference comes from the time-sharing scheduling
policy sometimes giving preference to the compute-bound threads and sometimes to the I/O-bound
threads.

4.4. RT Mach 3.0/socket library with reservation scheduling

The final synthetic benchmark experiment uses the same task set as the others, it uses the socket library,
and the scheduling policy is reservation scheduling. This is the system configuration which has all of
the desirable features we discussed in Sections 2 and 3.

In Figure 11 (a), we see the Net App in isolation. Parts (b), (c), and (d) show that the Net App
suffers little or no interference from arithmetic competition alone, from stdio competition alone, or
background network competition alone. And in Figure 11 (e), we see that even in the case where all
of the various types of competition are combined, this system configuration provides very predictable
behavior for the real-time Net App. Although the usage varies a little in this case, the variations are not
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Figure 10: RT Mach 3.0/socket library (Mach Time-sharing Scheduling) Measured Behavior

nearly as damaging as the variations in the previous experiments. These slight variations are due to the
unavoidable sharing of low-level system resources such as network interrupt handlers.

5. Conclusion

We have described an operating system resource reservation model and an implementation of the model
in Real-Time Mach 3.0. This reservation system addresses the need for the operating system coordination
with predictable networks which is essential for end-to-end predictability in real-time multimedia appli-
cations. One of the two major components of the predictable end-to-end system is a protocol processing
software structure that exhibits the features necessary for good real-time performance: priority schedul-
ing and preemptibility. The other is a processor reservation and scheduling mechanism that incorporates
timing constraints, usage measurement, and reservation enforcement. We measured the performance of
the system for several different task sets, and these numbers demonstrate that our approach provides
predictable behavior in a general-purpose distributed operating system.

While the numbers for these experiments are quite promising, we continue to evaluate the perfor-
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Figure 11: RT Mach 3.0/socket library (Reservation Scheduling) Measured Behavior

mance of our resource reservation approach in different kinds of network load scenarios, with other
protocol implementations, and in other areas of the operating system including the paging system and
the window system.
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