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Abstract

In this paper we present results from a six-month empirical study of the high availability aspects of the Coda File System. We
report on the service failures experienced by Coda clients, and show that such failures are masked successfully. We also explore
the effectiveness and resource costs of key aspects of server replication and disconnected operation, the two high availability
mechanisms of Coda. Wherever possible, we compare our measurements to simulation-based predictions from earlier papers
and to anecdotal evidence from users. Finally, we explore how users take advantage of the support provided by Coda for mobile
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1. Introduction

Providing high availabiliryis a dominant theme of current file
system research. Examples of systems with this goal include
Coda( 18], Echo[6], Ficus[14]. HA-NFS(2}, Deceit(22], and
FACE[3]. Now that serious use of such systems is feasi-
ble, it is appropriate to ask how well their high availability
mechanisms function in practice. This paper is our attempt
to answer this question for the Coda File System. To the best
of our knowledge, this is the first empirical study of a highly
available distributed file system.

Empirical studies of file systems have a long history,
stretching back to the 1970s. Early studies of timeshar-
ing file systems such as those by Siritter{26], Smith{23],
Satyanarayanan{15, 16], Ousterhout[13}, and Floyd[4, 5)
formed the basis for our initia! understanding of file sys-
tem usage. This understanding was crucial to the design of
distributed file systems such as AFS(7] and Sprite[12]. In
1991, Baker et al.[1] examined Sprite with a view to estab-
lishing how closely its real usage matched predicted usage.
More recently, Spasojevic and Satyanarayanan(24] reported
on the use of wide-area AFS.

In this paper, we report on data collected from Coda over
a 6-month period. During this time, Coda was relied on daily
by a community of almost 40 users. Our data shows that fail-
ures do occur in practice, and that Coda’s high availability
mechanisms are effective in masking them. We establish that
users do take advantage of Coda’s high availability mecha-
nisms, and that the resource overhead of these mechanisms
is modest under conditions of real use.

Our paper begins with a brief overview of Coda. We then
discuss the factors that intfluenced our data collection strategy
and present its design. The bulk of the paper is a presentation
of our measurements, Wherever appropriate, we point out
ways in which these measurements corroborate or contradict
simulation predictions and anecdotal user observations. We
conclude with a brief summary of results.

2. The System Studied

Coda, a descendant of AFS, was designed to offer continued
access to data in the face of server and network failures.
In this section, we provide a short overview of Coda; further
details can be found in earlier papers[9, 11, 17, 18, 19, 20, 25).

Clients view Coda as a single, location-transparent
shared Unix file system. The Coda name space is mapped
to individual file servers at the granularity of subtrees called
volumes(21]. At each client, a user level process, Venus,
caches data on demand on the client’s local disk. An in-

kernel VFS driver{10], called the MiniCache, intercepts and
forwurds file references to Venus,

Coda uses two distinct, but complementary, mechanisms
1o achieve high availability. Both mechanisms rely on an
optimistic replica control strategy. This offers a high degree
of availability, since data can be updated in any network
partition. The system ensures detection and confinement
of conflicting updates after their occurrence, and provides
mechanisms to help users recover from such conflicts.

The first high-availability mechanism, server repiica-
tion, allows volumes to have read-write replicas at more than
one server. The performance cost of server replication is
kept low by caching at clients, and through the use of paraliel
access protocols.

The second high-availability mechanism. disconnected
operation, allows continued read and write access to cached
data even when no server is accessible. Disconnections may
be involuntary or voluntary. Involuntary disconnection typi-
cally occurs when there is temporary communication failure.
Voluntary disconnection occurs when a user deliberately iso-
lates a client from the network. This mechanism is especially
valuable for mobile computing: a user may be isolated be-
cause no networking capability is available at the remote
location, or to avoid use of the network for economic or
power consumption reasons.

3. Measurement Strategy

In this section we first describe the key factors that influenced
our measurement strategy, and then describe the data collec-
tion architecture that we developed to address these factors.
We complete the section with a description of the hardware
and user environment in which our data was collected.

3.1. Considerations

A dominant factor influencing the design of cur data collec-
tion was the desire to study the system over a long period of
time. Such a long-term study is valuable because our user
community is expected to grow, thereby increasing the di-
versity of use of the system. Further. mobile computing is
a new mode of interaction, and people’s use of the sysiem
may change as they grow more familiar with it. and as the
portable computers on which Coda runs improve.

Long-term data collection makes it likely that what is
collected may have to change over time. Because Coda
is a system undergoing active development, appropriate re-
finements to the instrumentation will be necessary as new



functionality is added and improvements are made. Other
changes to the instrumentation may be warranted by our own
improved understanding of the system based on early mea-
surements.

These considerations have two implications. First, the
data collection mechanism has to be flexible and easy to
administer. Second, the data analysis software has to cope
with data collected over a very long time, spanning many
different versions.

Another major factor influencing our design is the need
to minimize the impact on users. Data collection should not
require active intervention by users, especially in a long-term
study. Nor should it degrade performance or reduce avail-
ability noticeably; otherwise, users may alter their behavior
to cope with these shortcomings.

A final factor in our design was the need to avoid los-
ing data in spite of the wide range of failures experienced
by clients and servers. A particularly challenging problem
was to extend the data collection to voluntarily disconnected
portable mackines that might not be reconnected to the net-
work for many days.

3.2. Measurement Framework

Figure 1 illustrates the data collection architecture that we
developed in response to the concerns described in the previ-
ous section. Both Coda clients and servers are instrumented.
The data they collect is shipped to a central data collector,
which spools it to a log on disk. Once a day, a reaper process
reads this data and inserts it into a relational database. This
two-stage collection process removes the database from the
critical path of data reporting by clients and servers.

Data collection is subject to a wide range of failures.
For example, the data collector may be down for hardware
or software reasons. A client or server may fail, causing
buffered data to be lost. There may be a network outage that
prevents a subset of the clients and servers from contacting
the data collector. An especially common form of network
outage in Coda is the voluntary disconnection of a portable
computer, sometimes for days.

We provide robustness in the face of such failures through
two buffering strategies, On servers and connected clients,
we buffer the data in volatile memory and periodically flush it
to the data collector. The frequency of flushing, currently two
hours, is a compromise between minimizing lost data and re-
ducing collection overhead. If the collector is down, servers
and clients retain data until a future flush succeeds, On dis.
connected clients, which may be turned on and off many
times before reconnection, we buffer collected data in non-

volatile storage until reconnection. We use the recoverable
virtual memory (RVM) transactional mechanism for this pur-
pose because of its clean failure semantics[20]. Since RVM
resources are precious on a resource-poor portable computer,
we strictly and conservatively cap its usage; this favors avail-
ability of the system over completeness of the data collected.
In combination, these robustness mechanisms have proved
to be quite effective — in our experience, the number of oc-
casions on which we have lost data has been negligible.

Our architecture minimizes the performance impact of
data collection on clients and servers. We summarize data at
the clients and servers whenever doing so is inexpensive and
results in minimal loss of information. Such summarization
reduces the total amount of data that must be stored as well
as the burden of shipping data. The collected data is only
processed offline, after it resides in the database.

We emphasize flexibility throughout the data collection
process. The bulk of the data collector’s implementation
is independent of the specific data being collected. When
changes are made to a data type. only a small portion of the
collector needs to be recoded. When the data collected is
changed, we ensure that only upgraded clients and servers
are able to report data; all others are rejected with an advi-
sory message. Thus, both system administrators and users
soon learn of obsolete clients and servers. This is important
because it would be administratively difficult to atomically
update all nodes, especially where some of them may be
disconnected.

Our use of a relational database as the permanent reposi-
tory of collected data provides us with an open-ended mech-
anism for framing questions long after the data has been
collected. It also provides us with a scalable tool for storing
and manipulating large quantities of data at a fine granular-
ity. By including version information with the data and in
post-processing queries, we are able to cope with multiple
generations of data.

3.3. Coverage

Our data collection took place in a system with 40 clients,
of which 1§ were portable machines. There are 39 user ac-
counts, roughly 25 of which are used regularly. The user
community is comprised of Coda developers as well as other
computer science researchers. There & = 10 file server., or-
ganized as one triply-replicated set of | ‘oduction servers, one
triply-replicated set of beta test servers, and four indepe.adent
alpha test servers. Each production server holds almost 1.4
GB of data, while each of the beta test servers holds about
1.1 GB. Data on both the production and beta servers are reg-
ularly used by our entire user community. Alpha test servers
are only used by Coda developers.
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Figure 1: Data Collection Architecture

Data collection began in March 1992. There was an
initial test period lasting 6 months, after which the data was
analyzed and the collection software revised. Another re-
vision was made 10 months later, based on the results of a
second test period. The data presented in this paper cotre-
sponds to the third major revision of our collection software.
This collection began in July 1993, and covers a period of
six months'. Where appropriate, we highlight data that has
changed significantly since this paper was submitted for pub-
lication. That data covered only the first three months of this
study.

4., Results

We present our observations as answers to a set of questions
that reflect on the high availability aspects of Coda. Our
discussion begins in Section 4.1 with a characterization of
observed failures. We ask, “How often are service failures
experienced by the system?” We then address the question,
“How successful is Coda in masking these failures?”

Next, in Sections 4.2 and 4.3, we examine the two Coda
mechanisms that mask failures: server replication and dis-
connected operation. For each we ask, “How well does this
mechanism work?” and, “How expensive is this mechanism,
in terms of resources consumed?”

Finally, in Section 4.4, we ask, “Is voluntary discon-
nected operation used as anticipated?” Since voluntary dis-
connected operation is a new model of computing, we would
like to better understand it from the user’s perspective,

1Ar exception 10 this is the data presented ia Section 4.2 on resolution.
The instramentation for this data is more recent, and the data was oaly
coflecred for four months.

4.1. Profile of Failures

We characterize observed service fajlures in_Coda in three
steps. First, we classify the set of failure states based on their
severity. Next, we examine the longevity of those states.
Finally, we show how data access degrades in each of the
states.

4.1.1. Volume Connectivity

As we noted in Section 2, the Coda name space is broken
into subtrees called volumes. Each volume is stored on a
set of servers, known as that volume's volume storage group
(VSG). At any point in time, a client con contact some subset
of the VSG known as the accessible volume storage group
{AVSG).

We classify the connectivity of volumes based on the
ratio of AVSG size to VSG size, as seen by each client. Note
that different clients may be in different states of connectivity
with respect to the same volume. A volume whose AVSG is
equal to its VSG is fully connected. A volume whose AVSG
is empty is disconnected. All other volumes are partially
connected.

We draw a distinction Uetween two types of partial con-
nectivity. If a volume’s AVSQ is larger than half its VSG.
it is majority connected. Otherwise it is minority connecred.
An optimistic replication scheme is necessary to provide
read/write access to volumes that are minority connected or
disconnected. Either an optimistic or a pessimistic scheme
can provide read/write access to majority or fully connected
volumes,

Table 1 shows the amount of time, weighted by vo!-
ume usage, clients have spent opersting in varying levels of



. . Percent
Failure Stat.: ) of Time
Fully Connecied 92.3%
Majority Connected 4.4%
Minority Connected 1.2%
Disconnected 2.0% |

Table 1: Distribution of Failure States

connectivity. Optimistic replication was essential over 3%
of the time. The high availability mechanisms as a whole
were necessary nearly 8% of the time. Our environment has
also become more stable over the past three months; these
percentages were much higher over the first half of this study.

4.1.2. Longevity of Failure States

Associated with each volume on a client is the notion of the
cutrent session. A session is defined as the maximal period of
time over which the AVSG for the volume does not change.
Each change in connectivity between a client and a server
ends the client’s current session for each volume stored on
that server, and begins a new one.

We divide sessions into two categories, transient and
non-transient. We consider sessions that are less than 15
minutes long to be transient. These sessions are typically
due to network glitches. They may also be due to the gradual
detection of a partition between a client and several servers.
We chose 15 minutes because it was the smallest number
that clearly exceeded the typical durations of transientevents
recorded in our data. It is also under the minimum server
restart time. Of the sessions we have observed, 54% of them
have been 15 minutes or fess. However, these short transient
sessions account for only 1% of the total observed time.

Figure 2 shows the distribution of the lengths of non-
transient sessions. Fully connected sessions, shown in Fig-
ure 2(a), are the most common and tend to be longest-lived.
These sessions never last more than 22 hours because of our
server restart policy. Each server is restarted every night so
that consistency checks performed at startup can catch cor-
ruptions at most one day after they happen. The shutdown
times are staggered to reduce the likelihood of complete dis-
connection.

Since all of our servers are located in the same room,
partial connectivity is due to server, not network, failure,
Figure 2(b)shows that partially connected sessions are mostly
short. These short sessions often occur when a server fails
and is quickly brought back on line. However, there are
some sessions that lasted much longer; these stem from more

serious problems pefalling a server. The histogram for the
complete six moath z:udy is more heavily skew.d toward
short server outede > ihan that observed during the irst three
months.

Disconnected sessions, shown in Figures 2(c) and 2(d),
also tend toward shorter durations. Many of these short pe-
riods correspond to network partitions, Some of the periods
correspond to occasions when all servers crash due to op-
crator error, power failure, or software bugs. These shont
disconnections are instances of involuntary disconnection.

Most of the longer session lengths in Figure 2(c) are due
to voluntary disconnections. Users sometimes work at home
on their laptops, and often take them along on extended trips.
As Figure 2(d) shows, some of these voluntary disconnec-
tions can last many days. The longest recorded disconnected
session was over four days in duration. Many of our users
have actually operated on their laptops away from the net-
work for even longer periods. However, those longer periods
have involved powering down their laptops, thus resulting in
multiple sessions rather than one long session.

4.1.3. Masking Failures

How do these failures affect a client’s ability to satisfy
file requests? We estimate this by measuring the change in
failure rates of the most frequently occurring file system op-
erations on clients during various states of connectivity. Note
that operations can fail even when fully connected because
of application or user errors, or by programs like the shell
probing search paths for system binaries.

Table 2 compares the success rates for the most frequent
operations at clients for various states of connectivity. For
the gatattr, access, open, and close operations. de-
graded connectivity hardly affects success rate.

At first glance, the data for 1ookup seems anomalous.
In all states of connectivity, its success rate is the lowest
of all operations. This is partly because a 1ookup typicaily
precedes other operations on an object; failure of the 1lookup
suppresses the later operations, Compounding this is the fact
that the data for Thble 2 is collected after the MiniCache
has filtered out many successful 1ookups{25). Combined.
these two factors account for the high observed failure raie
of lookup.

The m:ssage of Table 2 is that as connectivity degrades.
the success rates of operations barely decline. In other words,
the user does not experience a corresponding increase in
failures. This confirms that Coda does indeed provide high
availability of data in the face of service failures.
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lookup

58%

getattr >99% >99% 99% >99%
access 9% 9% >99% %
open >99% >99% >99% 9%
close >99% >99% >99% >99%

This table shows the seccess remes of the five MmOst Common operations seen by Venss. Connecdvity decvesses from left 1 right in the wble. The consimently lower
socoess rases for Lookup are explained in Section 4.1.9.

Table 2: Operation Success Rates by Connectivity.



Note that this analysis does not take into account the sec-
ondary effects of failures upon the file references generated
by a user. For example, not being able to open an editor will
result in only one error reflected in our data, but this failure
will prevent the user from generating those references that
would have resulted from use of the editor. Unfortunately,
we know of no way to quantify such secondary effects of ser-
vice failures. Anecdotal evidence suggests that once users
become proficient at hioarding, the process of advising Venus
which files should be cached, such task-disabling failures are
rare.

4.2. File and Directory Resolution

Replicas in Coda may lose coherence because of update ac-
tivity during server or network failures. Resolutionis the pro-
cess of restoring coherence to all replicas of an object. In the
vast majority of cases, resolutionmerely involves overwriting
a stale replica with the most current one. However, because
Coda uses optimistic replication, more than one replica of
an object may have been updated during a partition. In the
case of directories, many such instances of divergence can
be resolved automatically by the system. All other instances
of divergence, whether file or directory, result in resolution
failure, with the replicas being marked in conflict.

In this section, we ask how often resolution is invoked
and how often it succeeds. When directory resolution resuits
in conflict we examine the causes of failure. Since directory
resolution is based on an operation logging strategy, we also
ask how much log space is consumed. We then compare our
cbservations with earlier predictions of log growth based on
trace-driven simulation.

4.2.1. Frequency and Outcomes of Resolution Attempts

Our measurements show an average of one resolution request
per volume per client every five hours. Table 3 shows the re-
sults of resoluticns we have measured. The table shows that
resolution succeeded over 98% of the time, requiring virtu-
ally no work in many cases. These situations corresponds to
weak equality, where the replicas are actually equal, but their
version information does not reflect this fact. The circum-
stances under which this can happen have been explained
clsewhere{ 18]). Another common event is runt forcing. This
corresponds to situstions where an empty file replica was
created via a previous resolution of the parent directory.

As shown in the table, there were 21 directory resolution
anterrgxs that had to be aborted due 10 our deadlock avoidance
policy. These attempts are neither successful nor result in a
conflict.

| Files  Directories |

Pre————

["Aucmpts 3,761 3,009
Successes 3,721 2934
Weakly Equal 17 2,288

Runt Force | 2,410 NA

: Other 594 646
Conflicts 40 54
Deadlock Avoidance NA - 21

This table shows the resuks of file and directory resolutons observed by our collecuon
fi For ful ions we further classifv our data into umgle resola-
tions (“weakly equal” and “runt force™). and more complex ones (“other”). Note that
romi forcing docs not apply to directones. We also show, {or directones, how many
resolution anempts could aot proceed Jue to our deadlack avondance policy

Table 3: Resolutions

Table 3 indicates a conflict rate of about 1.3%. only
slightly larger than that predicted by an earlier study based
on AFS[9). This discrepancy is partially due to limitations
in our implementation of directory resolution, as elaborated
in the next section.

4.2.2, Causes of Directory Conflicts

An attempt to resolve a directory can fail for twoe classes
of reasons: semantic conflicts. arising from true non-
serializability, and spurious conflicts, anising from limitations
of our current implementation. Table 4 details reasons for
directory conflict as observed at individual replica sites par-
ticipating in a resolution attempt. Since these observations
must be inade at the replica sites themselves. as opposed to
the resolution coordinater{ i 1], they give an upper bound on
the total number of conflicts. For example, suppose client A
updates file £oo on replica A, and client B updates the same
file foo in on replica B, which is partitioned from replica
A. When the partition is healed, both replica A and rephica
B will record a conflict, when only one semantic conflict is

present.

Semantic conflicts can be further classified into name-
name, remove-update, and update-update conflicts. A name-
name conflict arises when objects with the same name are
created in a directory in different partitions. The removal of
an object in one partition, and its update in another, resuits
in a remove-update conflict. An update-update conflict re-
sults when the same object is modified in different partitions.
The observed number of each of these types of conflicts is
presented in the left hand column of Tadle 4.

M are three implementation limitations leading to
spuriousconflictsinCoda. First, resolutionof cross-directory



Semantic Spurious

Conflicts Count Conflicts Couln_J
Name-Name 24 | Rename 26
Remove-Update 12 | Log Wrap 261 .
Update-Update 6 | >1opagation 0

This table shows the breakdown of causes for directory resoludon faitures. The lefthand
columa shows semantic conflicts, arising from non-serializability: the conflicts listed
in the right hand column arise from limimtions in our current implementation. These
conflicts are not mutually exclusive, a~d are upper bounds on the fumber of actual
conflicts due to our instrumentation methodology. Hence, the sum of the numbers in
this table may exceed the number of falied directory resolutions reported in Toble 3.

Table 4: Conflict Types Observed by Replicas

renames is not currently supported. Second, resolution logs
are of finite length and may wrap-around during long par-
titions with intense update activity. Third, propagation of
a previously detected directory conflict to newly accessible
replicas is counted as a separate conflict by our accounting
mechanism. The right hand column of Table 4 shows the
observed impact of each of these limitations.

4.2.3. Size of Directory Resolution Logs

Since Coda uses a log-based approach to directory resolution,
it is important to ask how much space is consumed by these
logs in practice. Figure 3 shows the distributionof maximum
size, or high-water mark, attained by each volume's log each
day. The figure indicates that log growthis quite modest, with
a mean high-water mark of 19KB. Although a few instances
of high-water marks over 250KB were observed, the vast
majority were under 200KB.

A previous study, based on trace-driven simulation of the
resolution subsystem [11], predicted a maximum log-growth
of 3.3MB per volume per day. Our observations indicate that
this grossly overestimates true log growth - the largest value
we have observed is 385KB per volume per day. That study
also predicted that 99.5% of all resolution logs would grow
less than 240K B per day. This is completely consistent with
the results in Figure 3 which indicate that over 99% of all
operation logs grow less than 240KB per day.

4.3. Disconnected Operation

Mutations made during disconnected operation st a Coda
client are recorded in a per-volume replay log. Coda employs
many cancellation optimizations{8) to reduce the amount of
log space used. Upon reconnection, the client transparently
invokes reintegration of each modified volume. If a volume's

Samples in Graph = 61,113
Avenage High-Water Mark = 19.0 KB]

percent of volume sampies

Q.01 Y v g Y v v
0 50 100 150 m 250 300 350 i g
kilobyws
This graph shows the distribution of the i lution log size reached each day

by each volume. The high-water mark is reset each morning 10 the current log size.
Note that the y axis is log ) scaled.

Figure 3: Daily High-Water Marks of Resolution Log Sizes

log is successfully replayed by the servers, they proceed to
backfetch the contents of modified files. If replay fails, the
log and associated files are saved in a closure, for the user to
inspect and replay manuaily.

In this section, we ask how large replay logs become, and
how effective the optimizations are in reducing log growth,
We also examine the outcomes of reintegrations and their
latency.

43.1. Size of Replay Logs

Figure 4(a) shows the observed replay log sizes at the end of
the corresponding disconnected sessions. The distribution is
skewed toward the low end, and has a mean of 21 records.
This reflects a much greater use of the system than observed
in the first half of this study where the mean was just over half{
that; in other words, more data is mutated while disconnected.
The distribution has a long tail, with a maximum value of
1,466 records.

The high-water mark of a replay log's length could be
different from its final length because of explicit deletion of
objects created during that session. Such a deletion elimi-
nates all earlier log records for the object. Figure 4(b) shows
the distribution of observed high-water matks. As expected.
this distribution is shifted to the right of Figure 4(a), with a
mean of 26.3 records.

Log optimizations prove to be very effective. Figure 4(<)
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Figure 4: Replay Log Lengths

Attempts 461
Successes 400
Log Records Committed | 6,666
New Files Created | 1,290

___MB Backfetched | 176 |

Failures ~ "— 61 |
Confirmed Server Disappearances 14
Log Records Saved in Closures 89

This table shows the breakdownof reintegrationresalts, as well as details of sucoessful
and failed reintegration. For successful reintegrations we show the total number of
log records committed, how many of those log reccrds were creations. and how much
data was backfetched by the servers. For failures, we give the number of log records
that were saved in closures. We also give the number of failed reintegrations that arc
known to be due to server or network failure rather thas for semantic reasons. There 13
one anomalous case not included in these figures: it is explained in Section 4.3.2.

Table 5: Reintegrations

shows the distribution of lengths that the logs would have
reached had optimizations not been applied. This distribution
is substantially shifted to the right of Figure 4(a). On average,
replay logs without optimizations would have been over 2.5
times longer than the logs actually encountered in Coda.
This corroborates earlier estimates, based on trace-driven
simulation, that indicated that unoptimized logs wouid be
between 2 and 3 times the length of optimized logs{19]. This .
result is also consistent with anecdotal evidence from our
users, who claim to often work disconnected on a small set
of files, but overwrite them frequently.

4.3.2. Reintegration

Table 5 shows a summary of the reintegration attempts
in data volumes we have seen so far; we do not include
numbers from test volumes. Over 85% of all reintegration
attempts succeeded. On average, each successful reintegra-
tion involved replay of just over 16 records and backfetching
of about 450KB of data. Since most of these reintegrations
were to triply-replicated data, the effective amount of new
data created during a disconnected session is at least 150KB.

The high number of failed reintegrations was initially
surprising to us, because it contradicted anecdotal evidence
that users rarely experience reintegration failure. From our
raw data we are able to confirm that aimost one quarter (14
out of 61) of the reintegration failures are due to a server
disappearing during reintegration. Some of the remaining
47 failures may also be attributable to this cause, but we are
unable to confirm this. However, even if all 47 failures were
due to conflicting updates, we conjecture that many would be
due to multi-machine activity by the same user. As a resuii.
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This graph shows the distribution of lamencies measured at the client for successful
reimegrations. As discussed in 4.3, this lasency includes the time for replay at all
AVSG members as well as the backfetching of file contents by them. There is one
outlier not pictured here, as detailed in Section 4.3.2.

Figure 5: Reintegration Latency Distribution

the high rate of reintegration conflicts would not prima facie
contradict our earlier predictions of much lower likelihood
of conflicts between different users{9].

One anomalous event is not included in the above analy-
1. A user who was unfamiliar with the write-sharing seman-
tics of Coda ran simulations on five machines which logged
information to a single Coda file. He was unaware that, un-
like traditional Unix. Coda detects concurrent write-sharing
and preserves the first and all later updates. This preservation
1s done by treating the later updates as failed reintegrations,
and saving the data in closures. In this case, the simulations
ignored failed reintegrations and pushed on blindly. causing
|88 (ailed rerntegrations over the course of one evening!

Figure $ shows the distnbution of observed reintegration
latencies. The vast majonty of reintegrations had latencies
of ten seconds or less, though there are some outliers beyond
90 seconds. There was also one outlier at just over seven
minutes. this data point was elided from the graph for read-
ability, but is reflected in the mean. We conjecture that the
outlier was due to repeated transient network faifure. The
low overall latencies corroborate our users’ experience that
most reintegrations are barely noticeable, contributing to the
transparency of disconnected operstion.
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This graph shows the laptop CPU consumptionfor disconnected sessions. a per-volume
conceptas discussed in Section 4.1.2. The dotted line represents the average numberof
minutes consumed per hour, deterimined by dividing total CPU usage by total elapsed
time. The solid line represents the observed CPU consumption of an idie laptop which
caches this paper, the data collecuon source code. and the X11. GNU Emacs, and
TXsoftware collections: a typical cache set in our environment.

Figure 6: CPU Usage During Laptop Disconnections

4.4. User Behavior While Disconnected

In this section, we ask how users take advantagze of voluntary
disconnected operation. We address this question in three
ways. First, we examine the CPU consumption on discon-
nected portable computers. Second, we look at mutation
activity during voluntary disconnections. Finally. we com-
pare the VFS operation mix during connected sessions and
voluntary disconnected sections.

Qur data collection has no way of accurately recording
whether a disconnection is voluntary or involuntary. Rather,
this distinction has to be inferred. We have strong anecdotal
evidence indicating that almost all voluntary disconnections
occur on portable machines. Further, network partitions tend
to last well under an hour, and simultaneous failure of all
servers is rare. Therefore, we classify those disconnected
sessions on portable computers [asting longer than one hour
as voluntary.

44.1. Total CPU Usage

Figure 6 depicts total CPU consumption as a function of the
duration of disconnection. Some of this CPU activity is gen-
erated by Venus in the process of cache management; on an
otherwise idle machine, Venus' CPU usage increases with the
number of files cached. To estimate this inherent overhead,
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Figure 7: Replay Log Lengths at End of Voluntary Discon-
nections

we measured the CPU consumption of an idle laptop with a
typical complement of cached files. The observed utilization
of 5.0% is shown by the solid line in Figure 6.

The dotted line in Figure 6 corresponds to the average
observed CPU consumption, and corresponds to a utilization
of 10.3%. This is sufficiently higher than the baseline amount
of 5.0% to confirm that users do indeed work during voluntary
disconnections — they don't just take their laptops home and
leave them idle!

4.4.2, Mutation Activity

Figure 7 shows the distribution of replay log sizes for volun-
tary disconnected sessions. Earlier, we presented Figure 4(a),
which showed the corresponding distribution for both volun-
tary and involuntary disconnected sessions. The average
number of records in the two figures is quite different: 8.8
records while voluntarily disconnected versus 21 records in
all disconnected sessions. The distributions are also quite
different; the tail of Figure 7 is much shorter, indicating that
user mutations span a narrower range of files during volun-
tary disconnections. An alternative way to interpret this data
is that users restrict their mutation behavior when voluntarily
disconnected.

4.4.3. Operation Mixes

Anecdotal evidence suggests that during voluntary discon-
nections, our users typically perform interactive tasks ruther
than compute-intensive tasks. We were curious to see if our

10

data confirmed this.

In our data collection, the best indicator we have of us-
age patterns is the mix of VFS operations observed during
a session. Figure 8 compares the observed frequency of
VFS operations during connected and disconnected sessions.
The two operations with significant differences. vget and
resolve, are generated entirely within Venus and are inde-
pendent of user activity. All other operations appear about
as frequently in connected and disconnected sessions. Thus,
the posited difference in user behavior is not reflected at this
level. We conjecture that instrumentation at a higher level of
abstraction than VFS operations will reveal the difference.

5. Conclusion

This study set out to examine the value, effectiveness and
impact of the high availability aspects of Coda in day-to-day
use. Our study spanned a period of 6 months, and involved
serious use by a computer science research community of
modest size. During this period, we found that Coda clients
do experience various kinds of service failures, but that Coda
is able to mask these failures effectively. Our empirical ob-
servations confirm many earlier simulation-based predictions
on resource usage. They also confirm much anecdotal evi-
dence from our user community.

At the same time, our study has also produced some sur-
prises and suggested avenues of furtherinquiry. For example,
we did not anticipate the large number of transient sessions.
We were also surprised by the substantial number of reinte-
gration failures due to self-conflict. Another surprise is the
tendency of users to limit mutation activity while voluntanly
disconnected. A disappointing aspect of our results is their
inability to corroborate the strong anecdotal evidence from
users that they perform substantially different tasks when vol-
untarily disconnected. These suggest further evaluation of
how mobility effects user behavior, and how Coda's support
of mobile computing helps or hinders this behavior.

Coda is being enhanced along many different dimen-
sions. It will soon support the ability to use low-bandwidth
communication links. It will also offer improvements to res-
olution, reintegration, and cache management. More power-
ful, lighter-weight portable Coda laptops will soon be avail-
able to our user community. Finally, our user community
continues to grow in size and diversity.

Itis difficult to predict what the cumulative effect of these
chauges will be. The data collection mechanism described
here s an integral part of our system, and its impact on users is
negligible. We therefore plan to continue our data collection,
and to periodically revisit and evolve the analysis presented
in this paper.
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The operations and corresponding opcodes in this table are: opew (1), closs (2), rdwr (1), Joct] (4), select (3), getatar (6), secatr (7), access (B), resdlink (9), frync (10)
inactive (11), lookup (12), crease (13). remove (14), link (15), renams (18), midic {17), rondie (18), symiiak (19), resddis (20), vget (21), resolve (22), and ressrgrase
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Figure 8: VFS Operation Mix During Connected and Disconnected Operation
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