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Abstract

In this paper we present results from a six-month empirical study of the high availability aspects of the Coda File System. We
report on the service failures experienced by Coda clients, and show that such failures are masked successfully. We also explore
the effectiveness and resource costs of key aspects of server replication and disconnected operation, the two high availability
mechanisms of Coda. Wherever possible, we compare our measurements to simulation-based predictions from earlier papers
and to anecdotal evidence from users. Finally, we explore how users take advantage of the support provided by Coda for mobile
computing.
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1. Introduction kernel VFS driver( 101. called the MiniCache, intercepts and
forwards file references to Venus.

Providing high availabilifyis a dominant theme of current file Coda uses two distinct, but complementary, mechanisms
system research. Examples of systems with this goal include to achieve high availability. Both mechanisms rely on an
Coda( 181, Echo[6], Ficus[ 141. HA-NFS[21, Deceit(221. and optimistic replica control strategy. This offers a high degree
FACE[3). Now that serious use of such systems is feasi- of availability, since data can be updated in any network
ble. it is appropriate to ask how well their high availability partition. The system ensures detection and confinement
mechanisms function in practice. This paper is our attempt of conflicting updates after their occurrence, and provides
to answer this question for the Coda File System. To the best mechanisms to help users recover from such conflicts.
of our knowledge, this is the first empirical study of a highly
available distributed file system. The first high-availability mechanism. server replica-

tion, allows volumes to have read-write replicas at more than
Empirical studies of file systems have a long history, one server. The performance cost of server replication is

stretching back to the 1970s. Early studies of timeshar- kept low by caching at clients. and through the use of parallel
ing file systems such as those by Siritter(261, Smith[23], access protocols.
Satyanarayanan 15, 16], Ousterhout[13), and Floyd[4, 51
formed the basis for our initial understanding of file sys- The second high-availability mechanism, disconnected
tem usage. This understanding was crucial to the design of operation, allows continued read and write access to cached
distributed file systems such as AFS[7] and Sprite 121. In data even when no server is accessible. Disconnections may
199 1. Baker et al.[ I I examined Sprite with a view to estab- be involuntary or voluntary. Involuntary disconnection typi-
lishing how closely its real usage matched predicted usage. cally occurs when there is temporary communication failure.
More recently. Spasojevic and Satyanarayanan[241 reported Voluntary disconnection occurs when a user deliberately iso-
on the use of wide-area AFS. lates a client from the network. This mechanism is especially

valuable for mobile computing: a user may be isolated be-
In this paper, we report on data collected from Coda over cause no networking capability is available at the remote

a 6-month period. During this time, Coda was relied on daily location, or to avoid use of the network for economic or
by a community of almost 40 users. Our data shows that fail- power consumption reasons.
ures do occur in practice, and that Coda's high availability
mechanisms are effective in masking them. We establish that
users do take advantage of Coda's high availability mecha-
nisms, and that the resource overhead of these mechanisms
is modest under conditions of real use.

In this section we first describe the key factors that influenced
surs phefaers eg tinwitha fourdamclleo naeten our measurement strategy, and then describe the data collec-

discuss the factors that indluenced our dati collection strategy tion architecture that we developed to address these factors.
and present its design. The bulk of the paper is a presentation We complete the section with a description of the hardware
of our measurements. Wherever appropriate, we point out and user environment in which our data was collected.
ways in which these measurements corroborate or contradict
simulation predictions and anecdotal user observations. We
conclude with a brief summary of results. 31 Comsideraton

2. The System Studied A dominant factor influencing the design of our data collec-
tion was the desire to study the system over a long period of
time. Such a long.term study is valuable because our user

Coda, a descendant of AFS, was designed to offer continued community is expected to grow, thereby increasing the di-
access to data in the face of server and network failures. versity of use of the system. Further, mobile computing is
In this section, we provide a short overview of Coda; further a new mode of interaction, and people's use of the system
detailscan be found in earlier papers(9. 11,17,18.19,20.25]. my change as they grow mom familiar with it. and as the

portable computers on which Coda runs improve.
Clients view Coda as a single. location-transparent

shared Unix file system. The Coda name space is mapped Long-term data collection makes it likely that what ts
to individual file servers at the granulaity of subtrees called collected may have to change over time. Became Coda
volwmes(21]. At each client, a user level process, Venus. is a system undergoing active development aprop at re-
caches data on demand on the client's local disk. An in- finements to the instrumentation will be necessay as new
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functionality is added and improvements are made. Other volatile storage until reconnection. We use the recoverable
changes to the instrumentation may be warranted by our own virtual memory (RVM) transactional mechanism for this pur-
improved understanding of the system based on early mea- pose because of its clean failure semantics[20]. Since RVM
surements. resources are precious on a resource-poor portable computer,

we strictly and conservatively cap its usage; this favors avail-These considerations have two implications. First, the ability of the system over completeness of the data collected.

data collection mechanism has to be flexible and easy to In combination, these robustness mechanisms have proved
administer. Second, the data analysis software has to cope to be quite effective - in our experience, the number of oc-
with data collected over a very long time, spanning many casions on which we have lost data has been negligible.
different versions.

Our architecture minimizes the performance impact of
Another major factor influencing our design is the need data collection on clients and servers. We summarize data at

to minimize the impact on users. Data collection should not the clients and servers whenever doing so is inexpensive and
require active intervention by users, especially in a long-term results in minimal loss of information. Such summarization
study Nor should it degrade performance or reduce avail- reduces the total amount of data that must be stored as well
ability noticeably; otherwise, users may alter their behavior as the burden of shipping data. The collected data is only

to cope with these shortcomings. processed offline, after it resides in the database.

A final factor in our design was the need to avoid los- We emphasize flexibility throughout the data collection
ing data in spite of the wide range of failures experienced process. The bulk of the data collector's implementation
by clients and servers. A particularly challenging problem is independent of the specific data being collected. When
was to extend the data collection to voluntarily disconnected changes are made to a data type, only a small portion of the
portable machines that might not be reconnected to the net- collector needs to be recoded. When the data collected is
work for many days. changed, we ensure that only upgraded clients and servers

are able to report data; all others are rejected with an advi-
sory message. Thus, both system administrators and users

3.2. Measurement Framework soon learn of obsolete clients and servers. This is important
because it would be administratively difficult to atomically
update all nodes, especially where some of them may be

Figure I illustrates the data collection architecture that we disconnected.
developed in response to the concerns described in the previ-
ous section. Both Coda clients and servers are instrumented. Our use of a relational database as the permanent reposi-
The data they collect is shipped to a central data collector, tory of collected data provides us with an open-ended mech-
which spools it to a log on disk. Once a day. a reaper process anism for framing questions long after the data has been

reads this data and inserts it into a relational database. This collected. It also provides us with a scalable tool for storing
two-stage collection process removes the database from the and manipulating large quantities of data at a fine granular-
critical path of data reporting by clients and servers. ity. By including version information with the data and in

post-processing queries, we are able to cope with multiple
Data collection is subject to a wide range of failures. generations of data.

For example, the data collector may be down for hardware
or software reasons. A client or server may fail, causing
buffered data to be lost. There may be a network outage that 3.3. Coverage
prevents a subset of the clients and servers from contacting
the data collector. An especially common form of network
outage in Coda is the voluntary disconnection of a portable Our data collection took place in a system with 40 clil-nts.
computer, sometimes for days. of which 15 were portable machines. There are 39 user ac-

counts, roughly 25 of which are used regularly. The user
We provide robustness in the face of such failures through community is comprised of Coda developers as well as other

two buffering strategies. On servers and connected clients, computer science researchers. There P z 10 file serve.. or-
we buffer the data in volatile memory and periodically flush it ganized as one triply-replicated set of j oduction serve , one
to the data collector. The frequency of flushing, currently two triply-replicated set of beta test servers, .ind four indepeadent
hours, is a compromise between minimizing lost data and re- alpha test servers. Each production server holds almost 1.4
ducing collection overhead. If the collector Is down, servers GB of data, while each of the beta test servers holds about
and clients retain data until a future flush succeeds. On dis- 1. 1 GB. Data on both the production and beta servers are reg-
connected clients, which may be turned on and off many ularly used by our entire user community. Alpha test servers
times before reconnection, we buffer collected data in non- are only used by Coda developers.
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Figure : Data Collection Architecture

Data collection began in March 1992. There was an 4.1. Profile of Failures
initial test period lasting 6 months, after which the data was
analyzed and the collection software revised. Another re- We characterize observed service failures in.Coda in three
vision was made 10 months later, based on the results of a steps. First, we classify the set of failure states based on their
second test period. The data presented in this PAMg corre- severity. Next, we examine the longevity of those states.
sponds to the third major revision of our collection software. Finally, we show how dat access degrades in each of the
This collection began in July 1993. and covers a period of states.
six months'. Where appropriate, we highlight data that has
changed significantly since this paper was submitted for pub-
sication. That data covered only the first three months of this 4.1.1. Volume Connectivitystudy. 411 oueCnetvt

As we noted in Section 2. the Coda name space is broken
into subtrees called volumes. Each volume is stored on a

4. Results set of servers, known as that volume's volume storage group
(VSG). At any point in time, a client can contact some subset
of the VSG known as the accessible volume storage groupWe present our observations as answers to a set of questions

that reflect on the high availability aspects of Coda. Our
discussion begins in Section 4.1 with a characterization of We classify the connectivity of volumes based on the
observed failures. We ask. "How often are service failures ratio of AVSG size to VSG size, as seen by each clien. Note
experienced by thr system?" We then address the question, that different clients may be in different states of connectivity
"How successful is Coda in masking these failures?" with respect to the same volume. A volume whose AVSG is

equal to its VSG is fully connected. A volume whose AVSG;
Next, in Sections 4.2 and 4.3, we examine the two Coda is eat is Sis fnlcoed. A volume woe AVSG

mechanisms that mask failures: server replication and dis- is empty is diconnected. All other volumes am parally

connected operation. For each we ask. "How well does this
mechanism work." and, "How expensive is this mechanism, We draw a distinction Ltween two types of partial con-
in terms of resources consumed?" nectivity. If a volume's AVSG is lager than half its VSG.

it is majority connected. Otherwise it is minority comseced
Finally, in Section 4.4. we ask. "I voluntary discon- An optimistic replication scheme is necessuy to provide

nected operation used as anticipated?" Since voluntyd read/write access to volumes that ae minority comnected or
connected operation is a new model of computing, we would disconnected. Either an optimistic or a pessimistic scheme
like to better understand it from the user's perspective, provide reawrite ace to majority or faflly coected

volumes.

'An e uqeou m di Is ie da umnmmd Is Sec a 4.2 an I'm
71w rmounistewmAw " d m is mm mem im a o* Thble I shows the mount of time, welhd by vol-
cole"Id for * maot ". ume usage. clients have spe operating In vuylag levls of
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serious probleat twfelling a server. The histogram for the
Failure Sta! PComplete six month :udy is more heavily skewJ toward

of_____short server ota, than that observed during the .1rm three
Fully Connected 92.3% months.
Majority Connected 4A%
Minority Connected 1.2% Disconnected sessions, shown in Figures 2(c) and 2(d).
Disconnected 2.0% also tend toward shorter durations. Many of these short pe-

riods correspond to network partitions. Some of the periods
correspond to occasioni when all servers crash due to op-

Table 1: Distribution of Failure States erator error, power failure, or software bugs. These short
disconnections are instances of involuntary disconnection.

connectivity. Optimistic replication was essential over 3%of te tme. he ighavaiabiity echniss asa woleMost of the longer session lengths in Figure 2(c) are due
were necessary nearly 8% of the time. Our environment has to voluntary disconnections. Users sometimes work at homewere necoesaryoearlyb8 ofe the at. Ourenionnt hs on their laptops. and often take them along on extended trips.also become more stable over the past three months; these As Figure 2(d) shows, some of these voluntary disconnec-
percentages were much higher over thefirsthalfofthisstudy. tions can last many days. The longest recorded disconnected

session was over four days in duration. Many of our users
have actually operated on their laptops away from the net-4.1.2. Longevity of Failure States work for even longer periods. However, those longer periods

have involved powering down their laptops, thus resulting in
Associated with each volume on a client is the notion of the multiple sessions rather than one long session.
current session. A session is defined as the maximal period of
time over which the AVSG for the volume does not change.
Each change in connectivity between a client and a server
ends the client's current session for each volume stored on 4.1.3. Masking Fallure
that server, and begins a new one.

We divide sessions into two categories, transient and How do these failures affect a client's ability to satisfy
non-transient. We consider sessions that are less than 15 file requests? We estimate this by measuring the change in
minutes long to be transient. These sessions are typically failure rates of the most frequently occurring file system op-
due to network glitches. They may also be due to the gradual erations on clienu during various states of connectivity. Note
detection of a partition between a client and several servers. that operations can fail even when fully connected because
We chose 15 minutes because it was the smallest number of application or user errors, or by programs like the shell
that clearly exceeded the typical durations of transient events probing search paths for system binaries.
recorded in our data. It is also under the minimum server
restart time. Of the sessions we have observed, 54% of them Table 2 compares the success rates for the most frequent
have been 15 minutes or less. However, these short transient operations at clients for various states of connectivity. For
sessions account for only 1% of the total observed time. the getattr, access, open. and close operations. de-

graded connectivity hardly affects success rate.
Figure 2 shows the distribution of the lengths of non-

transient sessions. Fully connected sessions, shown in Fig- At first glance, the data for lookup seems anomalous.
ure 2(a). are the most commnn and tend to be longest-lived. In all states of connectivity. its success rate is the lowest
These sessions never last more than 22 hours because of our of all operations. This is partly because a lookup typically
server restart policy. Each server is restarted every night so precedes other operations on an object; failureof the lookup
that consistency checks performed at startup can catch cor- suppresses the later operations. Compounding this is the fact
ruptions at most one day after they hsppen. The shutdown that the data for lable 2 is collected after the MiniCache
times are staggered to reduce the likelihood of complete dis- has filtered out many successful lookups[25]. Combined.
connection. these two factors account for the high observed failure rair

of lookup.
Since all of our servers ar located in the same room.

partial connectivity is due to server, not network, failure. The nk.,m e of T&bWe 2 is that as connectivity degrades.
Figure 2(b) shows that partiallyconnected sessions are mostly the success rates of operations barely decline. In other words.
short. These short sessions often occur when a server fails the user does not experience a corresponding increase in
and is quickly brought back on line. However, there are failures. This confirms that Coda does indee provide high
some sessions that lasted much longer. then stern from mor availability of data in the face of service failures.

4



9® I Total Ssu.ons. a163.104 ITota Ssons - U+ ]
Mea 9M hotm Ma .4h

A AjI

0 2 4 6 3 tO i2 14 16 Is 20 22 24 0 2 4 6 8 10 12 14 16 iI 20 22 >24
Session Lenth - Hors Session Leng - Hows

(a) Fully Connected (b) Partially Connected

- I ' 6 4 h = 'I I"'4I

.1 1oa1eso .3TtlSsin
A

' I
0 2 4 6 4101214161320 22>24

Session Lenth -Hours s.U. -
(c) Disconnected (d) Disconnected -24 hours or longer

Thhe guit ihwdus ii d wot'udon of she I ot eeloes, Ia per- volumecpsr idisceued I SecKdom 4.1.. Elhwecl bIckhawe -duiw (mrn eof im
loqer dm ebecbm beko. bet lss d. m orqemed I ofbowso uE doitcoordima lbs b I M (c)co oemd k pum
dun 23 boon in dmirnloe ie pp in PRguw 2(d) *,ons dwedisatbdoao o aydwcs.w @&Hr imol slmbg kie -ie. W4tses edi I
dwiMsi sbgiruv accoululh for 99% o(obe rvudctienl op eutOa Also ace det yh I mm Ica M0 s eabd

Figure 2: Longevity of Non-Transient Sessions

Fully Majority J Minority
Operation Connected Connected Connected Disconnecte

lookup 58% 75% 94% 86%
getattr >>99% 99 >99
access 99% 99% >99% 99%

open >99% >99% >99% 99%
close >99% >99% >99% >99%

cecs mli. for lOOtwI uuaplihd ia Sedo d.3

Table 2: Operation Suvom Ram by Connectivity.
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Note that this analysis does not take into account the sec-
ondary effects of failures upon the file references generated _Files Directories
by auser. For example, not being able to open an editor will Attempts 3,761 3.009
result in only one error reflected in our data, but this failure Successes 3,721 2.934
will prevent the user from generating those references that Weakly Equal 717 2.288
would have resulted from use of the editor. Unfortunately. Runt Force 2.410 NA
we know of no way to quantify such scondary effects of ser- Other 594 646
vice failures. Anecdotal evidence suggests that once users Conflicts 40 54
become proficient at hoarding, the process of advising Venus Deadlock Avoidance NA 21
which files should be cached, such task-disabling failures are
rame. Ti table tbhwi fhe minks of ile and directory resolu)uo observed by ow colleaton

softwawr. For maaful reolutions we further cLabsfv our data ,am unve re-ola-

om ('weakly equar id 'two fore'), and more complex on Codser). Noie ta

4. File and Directory Resolution run fot" does n a pl, t directore,. We also ,tiow. for dirxoe. how ny

naoudto mps could aou proceed Jue to our dcadhck avoidance pohcy

Replicas in Coda may lose coherence because of update ac-
tivity during server or network failures. Resolution is the pro- Table 3: Resolutions
cess of restoring coherence to all replicas of an object. In the
vast majority ofcases, resolution merely involvesoverwriting Table 3 indicates a conflict rate of about 1.3%. only
a stale replica with the most current one. However, because slightly larger than that predicted by an earlier study based
Coda uses optimistic replication, more than one replica of on AFS[9]. This discrepancy is partially due to limitations
an object may have been updated during a partition. In the in our implementation of directory resolution, as elaborated
case of directories, many such instances of divergence can in the next section.
be resolved automatically by the system. All other instances
of divergence, whether file or directory, result in resolution
failure., with the replicas being marked in conflict. 42.2. Causes of Directory Conflicts

In this section, we ask how often resolution is invoked
and how often it succeeds. When directory resolution results An attempt to resolve a directory can fail for two classes
in conflict we examine the causes of failure. Since directory of reasons: semantic conflicts, arising from true non-
resolution is based on an operation logging strategy, we also serializability, and spurious conflicts, arising from limitations
ask how much log space is consumed. We then compare our of our current implementation. Table 4 details reasons for
observations with earlier predictions of log growth based on directory conflict as observed at individual replica sites par-
trace-driven simulation. ticipating in a resolution attempt. Since these observations

must be made at the replica sites themselves, as opposed to
the resolution coordinatorf lI]. they give an upper bound on

4.2.1. Frequency and Outcomes of Resolution Attempts the total number of conflicts. For example., suppose client A
updates file foo on replica A. and client B updates the same
file foo in on replica B. which is partitioned from replica

Our measurements show an average of one resolution request A. When the partition is healed, both replica A and rplica
per volume per client every five hours. Table 3 shows the re- B will record a conflict, when only one semantic conflict is
suits of resolutions we have measured. The table shows that present.
resolution succeeded over 98% of the time, requiring virtu-
ally no work in many cases. These situations corresponds to Semantic conflicts can be further classified into name-
weak equalixt where the replicas we actually equal, but their name. remove-update. and update-update conflicts. A name-
version information does not reflect this fact. The circum- name conflict arises when objects with the same name ame
stances under which this can happen have been explained created in a directory in different partitions. The removal of
elsewherel 81. Another common event is rntforcming. This an object in one partition, and its update in another, results
corresponds to situations where an empty file replica was in a remove-update conflict. An update-update conflict re-
created via a previous resolution of the parent directory, suits when the same object is modified in different partitions.

The observed number of each of these types of conflicts Is
As shown in the tabe there were 21 directory resolution presented in the left hand column of Table 4.

attempts that had to be aborted due to our deadlock avoidance
policy. These attempts we neither successful nor result in a Ther ae three implementation limitations leading to
conflict. spurious conflicts in Coda. First. resolution o fcros-dreclorv

6



Sem antic 1 Spurious C n Ata M ar 1 90 K
Conflicts Conflicts Count a A! h.W aeMrk9.0KB'

Name-Name 24 Rename 26
Remove-Update 12 Log Wrap 26
Update-Update 6 ?1 opagation 0

Thistableshowss ebtsdownofcamsfordiorresoludonfa!me. The left hand
coiuus shows semantic conflicts, Qrisng from mo-seralizabiity: the conflicts hoted
in the nght hand column arise from limitations in our current implementation. These

conflicts we mnr mutually exchuive. a d am upper bounds on dhe number of actual
conflicts due to our instrumentmion methodology. Hence. dhe sum of the numbers in 0.1
this table may exceed the number of failed directory resolutions reponed In Table 3.

Table 4: Conflict Types Observed by Replicas

.0 10 I0 200 250 315 350 &Ml

renames is not currently supported. Second, resolution logs Thislgraphdwstdisuributionofdthe nimumresolutionlogsizemacbedeachday
are of finite length and may wrap-around during long par- by each volume. The high-waer mark es each morning to the current log size.
titions with intense update activity. Third, propagation of Note that they axis is log incmaled.
a previously detected directory conflict to newly accessible
replicas is counted as a separate conflict by our accounting Figure 3: Daily High-Water Marks of Resolution Log Sizes
mechanism. The right hand column of Table 4 shows the
observed impact of each of these limitations.

log is successfully replayed by the servers, they proceed to
backfetch the contents of modified files. If replay fails, the

4.2.3. Size of Directory Resolution Logs log and associated files are saved in a closure, for the user to
inspect and replay manually.

Since Coda uses a log-based approach to directory resolution, In this section, we ask how large replay logs become, and
it is important to ask how much space is consumed by these how effective the optimizations are in reducing log growth.
logs in practice. Figure 3 shows the distributionof maximum We also examine the outcomes of reintegrations and their
size, or high-water mark, attained by each volume's log each laet s
day. The figure indicates that log growth is quite modest, with latency.
a mean high-water mark of 19KB. Although a few instances
of high-water marks over 250KB were observed, the vast
majority were under 200KB. 4.3.1. Size of Replay Logs

A previous study, based on trace-driven simulation of the
resolution subsystem [ I 11, predicted a maximum log-growth Figure 4(a) shows the observed replay log sizes at the end of
of 3.3MB per volume per day. Our observations indicate that the corresponding disconnected sessions. The distribution is

this grossly overestimates true log growth - the largest value skewed toward the low end, and has a mean of 21 records.
we have observed is 385KB per volume per day. That study This reflects a much greater use of the system than observed
also predicted that 99.5% of all resolution logs would grow in the first half of this study where the mean was just over half
less than 240KB per day. This is completely consistent with that; in other words, more data is mutated whiledisconnected.
the results in Figure 3 which indicate that over 99% of all The distribution has a long tail, with a maximum value of
operation logs grow less than 240KB per day. 1,466 records.

The high-water mark of a replay log's length could be
4.3. Disconnected Operation different from its final length because of explicit deletion ofobjects created during that euion. Such a deletion elimi-

nates all earlier log records for the object. Figure 4(b) shows
Mutations made during disconnected operation at a Coda the distribution of obsered high-water mars. As expected.
client are recorded in a per-volume replay log. Coda employs this distribution is shifted to the right of FIgure 4(a). with a
many cancellation optlmlzationsf8J to reduce the amount of mean of 26.3 records.
log space used. Upon reconnection, the client transparently
invokes reintegration of each modified volume. Ifa volume's Log optimiations prove to be very effective. Figure 4(-)
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L tempts 461
Smoons in Go-351J Successe 40
Averag Records 21.0 Log Records Committed 6,666

New Files Created 1,290
MB Backfetched 176

Failures _61'

2r Confirmed Server Disappearances 14
Log Records Saved in Closures 89

This wble sh ws de breakdownof rinsepadourelts as well as details of smccessful
and failed re itagrson. For successful reinegrsions we show the toai number of
log records commited. how many of dtoe log recerds we os, aml bow muach
data was beckfetched by the server. For failures we give the number of log recmns

10 20 30 40 50 60 70 80 90 >100 thatweruavedlnclosures. We alsgiedwnumeroffaikdreinegraionsthat ar
CML Records known to be dus so scieror networ failurdia. forsemanticremons.Theres(a) Records at End of Session kont ut o ,i~ a o eo,

one anomalous case nm included in Olm figures: it i explained in Section 4.3..

Sessions in Gph - 351 Table 5: Reintegrations
, Average Recor, -26.3

shows the distribution of lengths that the logs would have
reached had optimizations not been applied. This distribution
is substantially shifted to the right of Figure 4(a). On average,
replay logs without optimizations would have been over 2.5
times longer than the logs actually encountered in Coda.
This corroborates earlier estimates, based on trace-driven
simulation, that indicated that unoptimized logs would be
between 2 and 3 times the length of optimized logs[ 191. This
result is also consistent with anecdotal evidence from our

0 10 20 30 40 50 60 70 SO 90 >100 users, who claim to often work disconnected on a small set: CML Records
Rof files, but overwrite them frequently.~(b) Record High-Water Mark

.110 Sssis n Gmp ' 3511

Averge ecois 4.443.7. Reintegration

Table 5 shows a summary of the reintegration attempts
in data volumes we have seen so far, we do not include
numbers from test volumes. Over 85% of all reintegration
attempts succeeded. On average, each successful reintegra-
tion involved replay of just over 16 records and backfetching
of about 450KB of data. Since most of these reintegrations
were to triply-replicated data. the effective amount of new
data created during a disconnected session is at least 150KB.

o to 20 30 40 50 60 70 80 90 >100 The high number of failed reintegrations was initially
(c) Records Without OCttmRzctiod surprising to us, because it contradicted anecdotal evidence

that users rarely experience reintegration failure. From our
Thes .M tapiw ow dseeotle, of orplay log sians audft vcaso, ,lmna. Mg- raw data we am able to confirm that almost one quamter (I A
um (s) show l ,si tu " of dicowCd s ,ons. Mpm 4(b) #Am out of 61) of the reintegration failures ae due to a server
de afsmb, ooi of ,g high-m, mek. Migue 4(a) Oweos w log slat would be disappearing during reintegration. Some of the remaining
,,ditt opdf~uol 47 failures may also be attributable to this cmie but we are

unable to confirm this. However, even if all 47 failum wee
Figure 4: Replay Log Lengths due to conflicting updates, we conjecture tha mnwy would be

due to multi.mohie sactivity by the sale user. As a result.
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This graph shows the dimtbusiou of latecies meastued a the clieat for successful This graph shows the laptop CPU consumptionfor disconnected sessions. a per-volume
r -mions. As discussed in 4.3. this lalncy incaudes the tisne for replay at all concepta discussed in Secuon 4.1.2. The dotted line represents the average numberof

AVSG ,eI s as well as the backfetchia of file coeants by them. Them is one minuts consumed per hour. deteritmined by dividing total CPU usage by total elapsed

oulier am pictured here, as demiled in Section 4.3.2. tite. The solid line represents the observedCPU consumption of an idle laptop which

caches this paper, the data collecuon source code. and the XI1. GNU Emacs. and

Figure 5: Reintegration Latency Distribution 16Xaoftware collections: a typical cache set in our environent.

Figure 6: CPU Usage During Laptop Disconnections

4.4. User Behavior While Disconnected

In this section, we ask how users take advantage of voluntary

disconnected operation. We address this question in three
the high rate of reintegration conflicts would not prinafacie ways. First, we examine the CPU consumption on discon-
contradict our earlier predictions of much lower likelihood nected portable computers. Second, we look at mutation
of conflicts between different userst9]. activity during voluntary disconnections. Finally, we com-

One anomalous event is not included in the above analy- pare the VFS operation mix during connected sessions and

sis. A user who was unfamiliar with the write-sharing seman- voluntary disconnected sections.

tics of Coda ran simulations on five machines which logged Our data collection has no way of accurately recording
inform ation to a single Coda file. He was unaware that. un- whether a disconnection is voluntary or involuntary. Rather.
like traditional Unix. Coda detects concurrent write-sharing this distinction has to be inferred. We have strong anecdotal

and preserves the first and all later updates. This preservation evidence indicating that almost all voluntary disconnections
is done by treating the later updates as failed reintegrations. occur on portable machines. Further, network partitions tend
and saving the data in closunre. In this case. the simulations to last well under an hour. and simultaneous failure of all
ignored failed reintegrations and pushed on blindly. causing servers is rare. Therefore, we classify those disconnected
188 failed rentegrations over the course of one evening! sessions on portable computers lasting longer than one hour

Figure 5 shows the distribution of observed reintegration as voluntary.

latencies. The vast majority of reintegra tions had latencies
of ten seconds or less, though there are some outliers beyond " T C
90 seconds. There was also one outlier as just over seven
minutes ; this data point win elided from the graph for read-
ability, but is reflected in the im. V conjecture that the Figure 6 depicts total CPU consumption as a function of the
outlier was due to repeated transient network failure. The duration of disconnection. Some of this CPU activity is gen-
low overall latencis corroborate our users' experience that erated by Venus in the process of cache management; on an
rms rintepratwms we bwely noticeable, contributing to the otherwise idle machine. Venus' CPU usage increases with the

trapammy of disconnected operation. number of files cached. To estimate this inherent overhead,

9



Snrdata confirmed this.
| Avenaue Rcords- .3I

.In our data collection, the best indicator we have of us-
age patterns is the mix of VFS operations observed during
a session. Figure 8 compares the observed frequency of
VFS operations during connected and disconnected sessions.
The two operations with significant differences. vget and
resolve, are generated entirely within Venus and are inde-

C4 1 pendent of user activity. All other operations appear about
as frequently in connected and disconnected sessions. Thus,
the posited difference in user behavior is not reflected at this
level. We conjecture that instrumentation at a higher level of

0 10 20 30 40 5o 60 70 8o 90 1oo abstraction than VFS operations will reveal the difference.
CML Records

This graph shows the distribution of replay log sizes for all disconnected sessiona on

portable compuers lasting one hour or longer. 5. Conclusion

Figure 7: Replay Log Lengths at End of Voluntary Discon- This study set out to examine the value, effectiveness and
nections impact of the high availability aspects of Coda in day-to-day

use. Our study spanned a period of 6 months, and involved
we measured the CPU consumption of an idle laptop with a serious use by a computer science research community of
typical complement of cached files. The observed utilization modest size. During this period, we found that Coda clients
of 5.0% is shown by the solid line in Figure 6. do experience various kinds of service failures, but that Coda

is able to mask these failures effectively. Our empirical ob-
The dotted line in Figure 6 corresponds to the average servations confirm many earlier simulation-based predictions

observed CPU consumption, and corresponds to a utilization on resource usage. They also confirm much anecdotal evi-
of 10.3%. This is sufficiently higher than the baseline amount dence from our user community.
of 5.0% to confirm thatusers do indeed workduring voluntary
disconnections - they don't just take their laptops home and At the same time, our study has also produced some sur-
leave them idle! prises and suggested avenues of further inquiry. For example,

we did not anticipate the large number of transient sessions.
We were also surprised by the substantial number of reinte-

4.4.2. Mutation Activity gration failures due to self-conflict. Another surprise is the
tendency of users to limit mutation activity while voluntarily
disconnected. A disappointing aspect of our results is their

Figure 7 shows the distribution of replay log sizes for volun- inability to corroborate the strong anecdotal evidence from
tary disconnected sessions. Earlier, we presented Figure4(a), users that they perform substantially different tasks when vol-
which showed the corresponding distribution for both volun- untarily disconnected. These suggest further evaluation of
tary and involuntary disconnected sessions. The average how mobility effects user behavior, and how Coda's support
number of records in the two figures is quite different: 8.8 of mobile computing helps or hinders this behavior.
records while voluntarily disconnected versus 21 records in
all disconnected sessions. The distributions are also quite Coda is being enhanced along many different dimen-
different: the tail of Figure 7 is much shorter, indicating that sions. It will soon support the ability to use low-bandwidth
user mutations span a narrower range of files during volun- communication links. It will also offer improvements to res-
tary disconnections. An alternative way to interpret this data olution, reintegration, and cache management. More power-
is that users restrict their mutation behavior when voluntarily ful, lighter-weight portable Coda laptops will soon be avail-
disconnected, able to our user community. Finally, our user community

continues to grow in size and diversity.

4.4.3. Operation Mixes It is difficult to predict what the cumulative effect of these
chaulges will be. The data collection mechanism described
here is an integral part of our system, and Its impact on users is

Anecdotal evidence suggests that during voluntary discon- negligible. We therefore plan to continue our data collection,
nections, our users typically perform interactive tasks ruther and to periodically revisit and evolve the analysis presented
than compute-intensive tasks. We were curious to see If our in this paper.

10
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