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Abstract

Equivalent change in percentages, probabilities, or other variables
belonging to a finite interval cannot be properly determined using
methods appropriate for the real or positive real numbers, since these
may require a variable to fall outside its interval of definition. A gen-
eral theory for determining equivalent change on any open interval
G of real numbers is developed. Properties for measures of change
are proposed which give G a group structure order isomorphic to the
naturally ordered additive group of real numbers. Different group
operations on G determine numerically different measures of change,
and numerically different results for equivalent change. Requiring the
group product on G to be a rational function of its factors yields famil-
iar results for equivalent change on the real and positive real numbers,
and a function recently proposed by Ng when G is the open unit inter-
val. Ng's function is not uniquely characterized by his twelve 'reason-
able' properties, but is uniquely determined when the group product
on G depends rationally on its factors. Geometrical interpretations
of these results for the real numbers, positive real numbers, and the
open unit interval are also given.

1. Introduction. The measurement of change and the determination of
equivalent change are common to many areas of human endeavor. Consider
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three examples:

[1] The balance in a bank account changes from -$200 to $150. A sec-
ond account dontains $150. What new balance in the second account gives
a change in its balance equivalent to the change in the first account?

[2] The enrollment in a course changes from 30 students to 20 students.
A second course has 9 students. What new enrollment in the second course
gives a change in its enrollment equivalent to the change in the first course?

[3] A teacher adjusts the test score of a student from 50% to 75%. A
second student has a score of 80%. What new score for the second test gives
a change in its score equivalent to the change in the first test?

The following question is common to each of these examples:

[Q] Variable x changes from x, to X2. Given yi, what new value Y2 of y gives
a change in variable y equivalent to the change in variable x?

Common answers to it are obtained from

Y2 - yI = X2 - z (equal differences) (1)

and
Y2 = (equal proportions). (2)Y1 X1

They work best when x and y are real numbers or positive real numbers
respectively. Equations (1) and (2) are what most people apply to examples
[1] and [2] to obtain the answers $500 and 6 students. Answering question
[Q] for example [3] is not quite as straightforward for when variables x and
y belong to a finite interval, as percentages and probabilities do, (1) and (2)
no longer yield valid answers. To see this, suppose x and y represent the
first and second test scores respectively in example [3]. Then z: = 50%, X2
= 75%, and y, = 80%. 'Equal differences' gives y2 = 105%, while 'equal
proportions' gives y2 = 120%. Both answers are unacceptable since the score
y cannot exceed 100% without falling outside its interval of definition.

Surprisingly, no agreed upon method for determining equivalent change in
percentages and probabilities appears to exist. Such a method would answer
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question [Q] on the unit interval by expressing Y2 as a function of zI, x 2 , and
yl, in the same way that (1) and (2) give

Y2 = X2 - XI + yI (3)

and

Y,2 = X1 (4)

for the real and positive real numbers respectively. Ng [1] gave twelve 'rea-
sonable' properties for such functions when variables x and y belong to the
unit interval. He gave the specific function

X2yI(1 - xI)
- xI(1 - x 2) + y(x- ) (5)

as an example satisfying his properties and claimed that it was, in some un-
specified sense, the most natural answer to question [Q] in this case. Ng also
raised the question of uniqueness: to what extent do his properties uniquely
characterize the answer in (5)? No definite conclusions about uniqueness
were reached though, and no reasons were advanced for calling (5) the most
natural answer to question [Q]. Ng, however, stated his confidence that (5)
"provides one (if not the only) acceptable function for equivalent changes
that may lead to widespread practical application in many fields." (Ng [1],
p. 300) The purpose of this paper is to develop a general theory connecting
the answers to question [Q] in (3), (4), and (5), to explain what the word 'nat-
ural' means, and to show that Ng's properties do not uniquely characterize
the answer in (5).

We shall assume that variables x and y belong to an open interval G of
the real numbers R, perhaps infinite. Equations (3), (4), and (5) are then
possible answers to question [Q] when G = R, RP- , and (0,1) respectively,
where R Tw is the set of positive real numbers and (0,1) is the open unit
interval. To see how an answer to question [Q] is determined, note, that each
side of (1),for example, is a measure of the change occurring in the variable
appearing on that side. Equivalent change in x and y occurs when these
measures of change are equal. Solving for y2 in terms of xI, X2 , and yj then
gives the answer to question [Q] appearing in (3). A similar pattern occurs
in going from (2) to (4). The process of obtaining these answers begins with
the notion of a measure of change defined on the set G.
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In the next section we propose several general properties for measures of
change on the open interval G; these properties are sufficient to give G an
ordered group structure which is isomorphic to (R, +), the naturally ordered
additive group of real numbers. Group operations on G allow us to define
a measure of change on G. Since there are many possible group operations
on G which give it a group structure order isomorphic to (R, +), there are
many possible measures of change on G and a unique answer to question [Q]
does not exist.

We shall denote by (G, *) a group defined on G with group product .

Perhaps the 'simplest' conceivable group product on G is one which depends
rationally on its factors. In section 3 we show that a one-parameter family
of groups exists on G, each member of which has a group product depending
rationally on its factors. Every member of this family of groups is order
isomorphic to (R, +) and can be denoted by (G, *e.) where e. E G is the
identity element of the group (G, *e.) and serves as a parameter indexing the
family. Though different values of the parameter eo E G determine different
group products *e. and different measures of change on G, every group in
the one-parameter family {(G, *e.) : e. E G} determines the same answer
to question [Q]. This is the sense in which (5), (4), and (3) are the most
natural answers to question IQ] when G = (0,1), R P' , and R respectively:
to ensure appropriate properties for measuring change on the interval G,
a group structure must exist on G which is order isomorphic to (R, +).
The resulting measure of change and answer to question [Q] determined by
the group structure on G are simplest when the group product depends
rationally on its factors. Under these conditions, (5), (4), and (3) are the
unique answers to question [Q] when G = (0,1), R P ", and R respectively. The
same approach yields unique answers to question [Q] when G is an interval
of the form (-oo, a), (a, b), or (a, oo), where a, b E R and a < b.

In section 4 the results of sections 2 and 3 are summarized and used to
formulate a set of properties leading to a unique answer to question IQ] on
any open interval G. Geometric interpretations of the answers in (3), (4),
and (5) are also given. In an appendix we examine Ng's twelve properties
and the extent to which they constrain answers to question [Q] on the unit
interval (0,1). We show that his properties do not lead to a unique answer
to question IQ] on (0,1) and give some examples of this nonuniqueness.

The existence of a method to determine equivalent change on G allows
one to determine which variable undergoes the greatest change. For example,
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using (5), the answer to question [Q] in example [3] is y2 = 12/13 : 92.3%.
Thus we can say that when y2 < 12/13 the change in y is less than the change
in x, but when y2 > 12/13 the change in y is greater than the change in x.
However we caution that the answer Y2 = 12/13 in this example, like the
answers given earlier for examples [1] and [2], is not unique and depends on
the group operations chosen for (G, *). As we shall see, X1 * z 2 represents
the element of G obtained by changing z by the amount z 2 (or X2 by the
amount z 1). Since G is an open interval of R, for given X1 ,X 2 E G we
feel intuitively that the 'simplest' definition of X1 * Z2 should employ only
the usual field operations of R-addition, subtraction, multiplication, and
division-to form X1 * X2 from x, and z 2. This means that the group product
X1 * z2 depends rationally on its factors. Hence, our intuition impels us to
call (3), (4), and (5) the most 'natural' answers to question [Q] when G = R,
R P0 , and (0,1) respectively. Indeed, it is difficult to think of answers for
examples [1] and [2] other than the 'natural' ones. We emphasize again that
the answer to question [Q] on the open interval G is not unique and arises
from the specific choice of group operations in (G, *), a group on G which is
order isomorphic to (R, +).

Finally, we remark following Ng [1], that other notions of equivalent
change may exist. For example, the age distribution of students in school
implies that it may be easy to reduce juvenile illiteracy to as low as 5%,
say, while it is substantially more difficult to reduce adult illiteracy below
15%. So, in some sense, it may be reasonable to say that reducing adult
illiteracy from 15% to 14% is equivalent to the reduction of juvenile illiteracy
from 15% to 5%. But since juvenile and adult illiteracy both start at 15%
(z1 = Y1 = 15%), clearly both must increase or decrease to the same percent-
age in order to register equivalent changes in a mathematical sense. As in Ng
[1], it is this mathematical sense of equivalent change which is discussed here,
since specific conditions, contingencies, and peculiarities associated with in-
dividual variables in particular problems cannot be incorporated into a single
theory.

2. Properties of Measures of Change. To answer question [QJ we
need a way to represent changes occurring in variables defined on G. Our
fundamental assumption is:
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[A] For every ordered pair of elements (z, z 2) E G there is a unique element
of G representing the change in variable x from x, to X2.

How does one measure the change in variable x from x, to x 2? Our approach
first changes both x, and x2 by an amount calculated to make the new value
of x, equal to some chosen reference element of G. A symbolic representation
of this process might look like x, i-+ x, * x 2 - 2 * xj. The new value

of X, is x, * Xz1 , an element of G to eventually represent no change, and the
new value of X2 is x2 * XI . Since z and x2 each change by the same amount
in this process, the measure of change between them remains the same and
equals the change from x, * xj1 (the reference element of G) to x 2 * XI"1.
We then take the reference element x, * x "1- as origin and define this latter
change to be z 2 * Xj1 itself, so that the change in variable x from z to x2

is the element X2 * xI"'. But given G, how can the operations * and (.)-' be
defined? This question will be answered in (15).

We denote the change in variable x from xi E G to X2 E G by X2 i1X.

Assumption [A] implies that / is a binary operation on G:

[Po] For every ordered pair (xI, x 2) of elements in G, X2/ 1X is defined so that
X2/X1 = z is a unique element of G.

Given xi E G, assumption [A] and property [Po] imply that a unique element
xl/xl E G exists which represents no change in variable x from x1 to xi. We
shall require the element xl/xl to represent no change for every element in
G:

[PI] For every x 1,x 2 E G, XI/3X = x2 /x 2.

Property [PI] singles out a unique element xl/zl E G to represent no change;
we call it the identity element of G. As suggested above, the identity element
may be used as a reference element from which to measure change. For
X2 E G, the change from the identity xj/XI to z 2 is X2 /(zXl/x). By property
[PI] this change depends only on X2, so taking the identity element xl/zl as
origin, we let X2 itself represent the change in variable x from xl/xl to X2 :

[P 2] For every X1 ,X 2 E G, z 21(z/IX) = X2.

For X, X2 E G, the change in variable x from z 2 to X3 should, in some
sense, be the inverse of the change in variable z from z 3 to X2.Since property

[P2] implies (X2 /zl3 )/(z/X) = X2/X 3, we shall require:
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[P 3] For every z 2,X3 E G, (XI/ 1 )/(X2/X 3 ) = z 3/X2.

These properties suggest a unary operation of inverse (.)-' defined on G by
-1= (z/z)/x,. (6)

If x1 E G represents a certain change, xi "1 is the inverse change. By using
properties [P2] and [P3], we can show that

(XIT -l  (xl'/xl')/xl
= (z1'/x1')/[(X,/z1)/ d

= XI/(X1 /x1 ) (7)

- X 1 .

Expressed in terms of the inverse operation, property [P31 is (X2 /x 3 ) - -
X 3 /X 2 •

Next, we define a binary product * on G by

X2* X1 "- 1 (8)

for x1 , X2 E G. The measure of change in variable z from x, to x2 is then

X21X, = X2 /(X') 2 = X2 (9)

giving the method of measuring change introduced following assumption [A].
Necessary for its success is the assumption that the change from xi E G to
X2 E G remains invariant when these elements are each combined with z
using the binary operation /. In other words, if x, '-+ x/x1 and z 2 '-+ x 2/X 1,
then (X2/z 1 )/(XI/ 1 ) = X2/x1 . This is property [P2]. Additionally, we shall
require the measure of change between two elements X2, X3 E G to remain
invariant when each is combined with any element x, E G using the binary
operation / :

[P4] For all X1,,X 2 , X 3 E G, (X2/X,)/(z 3/ 1X) = X2 /X 3 .

Property [P4] gives the set G and the binary operation / a certain homo-
geneity with respect to the measurement of change.

Properties [PO]-[P 4] are sufficient to ensure that the set G with the unary
operation of inverse (.)-1 and the binary product * is a group; see, for exam-
ple, Hall [2], p. 6. Whittaker [3] has shown that a group structure on the set
G can be inferred from a binary operation / on G satisfying property [Po]
and a stronger form of property [P4]:
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[P'4] For all ZI 2 ,y 1 ,y 2 E G, (X2/z1 ) = (Y2/yI) if, and only if, there is a
z E G such that Y2 = z 2 /z and yi = zi/z.

Assumption [A] gives the elements of G an additional role as measures of
change on G, so the group product z * X2 has two possible interpretations
depending on the particular roles given to its factors X1 , X2. If z 2 E G and
x, represents a measure of change, the product z1 * z 2 could be interpreted
as the new element of G obtained by changing z 2 by the amount xz. Under
this interpretation (9) implies that the change in variable z from X2 to z * X2

is
(X1 * X2)1X2 = (XI * 2) * = * (X2 * X2l) = x1, (10)

since the product * is associative and X2 * X21 is the identity element of
(G, *). However, if xi E G and X2 represents a measure of change, the group
product X1 * X2 might also be interpreted as the new element of G obtained
by changing x, by the amount X2. Under this interpretation we should have

* = X* * = (11)

Now the second equality in (11) is valid for all X1, X 2 E G if and only if the
group (G,*) is abelian, or commutative. When expressed in terms of the
binary operation /, (11) becomes

[Ps] For all X1, X2 E G, X22 = X1/(XI/z 2).

Whittaker [3, p. 637] gives properties [P0], [P41, and [Ps] as necessary and
sufficient conditions for the group (G, *) to be abelian. However the reasons
for adopting property [P5] are not immediate so we will not assume it. The
group (G, *) does not obviously have to be abelian, but considerations of
order will require it to be so.

The interval G inherits the natural linear order < of the real numbers
R. Since G is a nonempty open interval of R, each Dedekind section of G
determines one and only one element. Suppose a, b E G and a < b. If xi E G,
we claim that a natural requirement is

x, * a < x, * b, (12)

no matter which interpretation is given to the group product: inequality
(12) reflects necessary properties of change on the set G. To see this, note
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that when measures of change appear on the right in the group product and
elements of G on the left, x, changed by amount a is less than or equal to
x, changed by amount b and (12) should hold. Conversely, if measures of
change appear on the left in the group product and elements of G on the
right, then since a and b are each changed by the same amount X1 and a < b,
(12) should again hold. For X1 ,X 2 , a, b E G, and a < b, a repetition of this
same argument indicates that we should also require

x, * a * X2  x,* b * X 2  (13)

Clearly the validity of (13) for all X1, X2 E G also implies a < b. These
considerations of order suggest the following property for the group (G, *):

[0] For a,b EG, a <bif and onlyif x1 *a*X 2 :5 x*b* 2 forevery
X 1 ,X2 E G.

Property [10] makes (G,*) a linearly ordered continuous group. In this context
the adjective continuous means that each Dedekind section of the set G
determines one and only one element of G. We now recall the following result:

Theorem. Suppose (G,*) is a continuous linearly ordered group which is
not trivial (i.e., which consists of more than just the identity element).
Then (G, *) is order isomorphic to (R, +), the naturally ordered ad-
ditive group of real numbers; that is, there exists an order preserving
isomnorphism between (G, *) and (R,+).

For further references and proofs of this theorem, see Minassian [4], Fuchs
[5), and Loonstra [6). A different approach, beginning with the functional
equation in property JP4] and leading to essentially the same conclusion, is
given by Aczdl [7], pp. 273-278. The theorem implies that (G,*) is abelian so
that both interpretations of the binary product X1 * X2 considered previously
are valid: Xr1*X 2 is the element of G obtained by changing x, by the amount x2
or by changing X2 by the amount x1. The theorem also implies the existence
of an order preserving isomorphism between (G, *) and (R,+), that is, an
increasing bijection f R -+ G satisfying

*f_ 1 (X1 *X 2) f fI'(XI) + f1 '(X2 ), (14)

for all X1 , X2 E G

9



What group products * are possible, and what choice do we have for
bijections f : R -+ G satisfying (14)? Since the sets G and R have the
same cardinality, any bijection f : R -+ G induces a group structure on G
isomorphic to (R, +) with group product and inverse defined by

X*X2 -f(f-(XI) +f-'(X2)),

(15)

(Xl) -I =f-f-l(X)),

for XI, X2 E G. To be an order preserving group isoniorphism, the bijection
f must be strictly increasing and hence continuous. The inverse map f-1 is
strictly increasing and continuous too. Consequently any increasing bijection
f : R -+ G induces group operations on G through (15) and, at the same
time, becomes an order preserving group isomorphism between the induced
group (G, *) and (R, +) which is also a homeomorphism.

Clearly there are many possible group products on the set G. Precisely
what constitutes a 'natural' group product for G will be examined in the next
section. For the moment, iet us see how the induced group (G, *) determines
an answer to question [Q]. We define the change in variable x from x, to X2
and the change in variable y from yj to Y2 to be equivalent if they are equal:

X 2 / X-- Y12/y. (16)

Equation (9) allows (16) to be written in terms of the induced group opera-
tions:

X2 * X Y2 * YI. (17)

The notion of equivalent change in (16) and (17) generates an equivalence
relation on G x G, the set of ordered pairs of elements of G. We write
(X1, x 2 ) (Y, Y2) if, and only if, (16) and (17) are satisfied. Now suppose we
are given XI, X2, and Yi E G. The value Y2 of y answering question [Q] must
make (y, y2) - (z, X2 ), or z * X I = Y/2 * -. Solving for Y2 then gives

Y2 =X 2*X 1 *y (18)

as the answer to question [Q]. Since there are many possible group products
on G, there are many possible measures of change (9), and many possible
answers to question [Q] of the form (18).
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3. Unique Answers to Question [Q]. For a given open interval G, any
increasing bijection f : R -+ G induces, through (15), a group structure on G
order isomorphic to the additive group of real numbers (R,+). Though essen-
tially only one group structure for G exists, individual bijections may induce
different group products which determine numerically different measures of
change on G and numerically different answers to question [Q]. It is possible,
however, for two increasing bijections and the group operations they induce
on G to determine the same answer to question [Q]. Two groups, (G, o) and
(G, *), will be called equivalent if they determine the same answer to question
[QI. We shall denote equivalence of these groups by (G, o) - (G, *). By (18),
(G, o) =_ (G, *) if and only if

x2 o (xI);' o y1 = X2 * X 1 Yi (19)

for all X1, X 2, Y1 E G, where o and (.)-1 are the group operations of (G, o) and
* and (.)-I are the group operations of (G,*). Since the results of section 2
imply that the group structure appropriate for measuring change on G and
answering question [Q] is order isomorphic to (R, +), the equivalence relation
- partitions the set of all group structures on G order isomorphic to (R,+)

into disjoint equivalence classes. Two groups belong to the same equivalence
class if and only if both yield the same answer to question [Q1.

Suppose e. E G is the identity element of (G, o) and (G, o) - (G,*).
These groups are both order isomorphic to (R, +), so they are isomorphic
to each other. Since they are equivalent, though, the relationship between
them takes a special form. If we put z = e. in (19), then

X2 0 y1 = Z * Y * eo (20)

for X2, y E G. (Note that e-1 in (20) is the inverse of e. with respect to the
group (G, *).) If we put X2 = e. and y, = eo in (19), we conclude that

(Xi)o = X * e. * e. (21)

for X, E G. Conversely, the group (G, o) defined by the operations in (20)
and (21) has e. E G as its identity element and is equivalent to the group
(G, *). It follows that the equivalence class of the group (G, *) with re-
spect to the equivalence relation a is the one-parameter family of groups
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{(G, *e): eo E G} whose members's group operations are defined by
X1 *eo X2 = X- * X2 * eo1

(22)

(X)O1= Xj 1*e,* e,.

The parameter e. E G indexing the family {(G, *,.) : e. E G} is the identity
element of the group (G, *..) and determines its group operations through
(22). Every member of this one-parameter family of groups necessarily de-
termines the same answer to question [Q]-that given in (18). Equation (22)
implies that the equivalent groups (G, *,,) and (G, *) are isomorphic with
isomorphism

f:G -+ G; f,. (x) = x * e., (23)

so that

XI *eX2 =fe(f() * f,(X 2 )) = X* X2 * e
(24)

(X) -1  = feo([f 1 (Xi)]- ) - xj1 * eo *

for x1, X2 E G. When e. is also the identity element of the group (G, *) (23)
and (24) imply that the map fe. : G -* G is the identity and the groups
(G, *,.) and (G, *) are identical.

What distinguishes the familiar answers to question (Q] for G = R in
(3) and G = R P " in (4)? To obtain (3), we can take (G,*) = (R,+), so
that Xl * X2 xI + X2 and the measure of change in x from x, to x2 is the
difference X2 * 1 = X2 - xI. Thus equivalent change is synonomous with
equal differences, as in (1). To obtain (4), we can take (G,*) = (RP0 , .),
so x1 * X2 = z X2 and the measure of change in x from x, to x2 is the
ratio or proportion z 2 * - fl. Thus, equivalent change is synonomous
with equal proportions, as in (2). To see what is special about these group
products, measures of change, and answers to question [Q], consider G = R,
for example, and the increasing bijection f : R -+ G; x i-+ x'. The group
(G, *) induced on G by the bijection f has group operations given by (15):

X* X2= ( 1/3 + X /3 )3,

(25)
X-1 -XI,

12



for z 1 , X2 E G. The corresponding measure of change and answer to question
[Q] determined by the group (G, *) are given by (9) and (18) respectively:

=1 1/3  1/]3
X2 * X X

(26)

Y/2 = X 2 * X- * YI=[~' I 4/3 _ i+y

What is most evident about the group product in (25) and the measure of
change and answer to question [Q) given in (26) compared to those deter-
mined by (R, 4-) is their lack of rational dependence on Xl, X2, and Yi- It is
rational dependence of the group product on its factors which gives a par-
ticularly simple form for the new element X1 * z 2 obtained by changing the
element xz, say, by the amount z2. (We shall see that this rational depen-
dence also carries over to the measure of change and the answer to question
[Q] determined by (G, *).)

For a given interval G, what, then, is the most general increasing bijection
f : R -+ G whose induced group product * defined on G by (15) dep -ds
rationally on its factors ? We would like

x 1 * X2 = R(xiX 2 ), (27)

where R is a rational function of z 1 , X2 E G. If we combine (27) with (15),
this means we are seeking increasing bijections f : R -+ G which satisfy the
equation f [f 1(XI) + f- 1 (X2 )] = R(x1 ,X2 ), (28)

for X1,X 2 E G. Let z = f(ul) and X2 = (u2) for U1,U2 E R. Then (28)
implies that any increasing bijection f : R -+ G which induces a rational
group product on G must satisfy the equation

f(ui + U2)- R(f(ul),f(u 2)), (29)

for all u1, u2 E R and some rational function R. Simply put, the increasing
bijections we seek, necessarily continuous, must satisfy a rational addition
theorem.

L.E. Dickson [8], W. Alt [9], and A. Kuwagaki [10] have shown that
the only continuous functions satisfying a rational addition theorem on an
interval are those of the form

Ax+B Ae + B
f()-C + D' Ce + D' (30)

13



where A,B,C,D, and c are arbitrary (perhaps complex) constants; see Aczdl
[7], p. 61. Hence, if f : R -+ G is an increasing bijection with one of
the forms in (30), the resulting induced group (G, *) is order isomorphic to
(R, +) and the induced group product * in (15) depends rationally on its
factors. It is the open interval G which determines the appropriate map in
(30).

For G = R an increasing bijection from R to G of the form (30) must be
an afline map of the form

f.:R--+G; x-+Ax+B, (A>O,BER). (31)

For G = R P ", the map

fon : R -+ G; x -+ eeAx+B, (A>O,BER), (32)

is the only increasing bijection from R to G of the form (30). Finally, the
map

eA+B

is the only increasing bijection from R to G of the form (30) for G = (0,1).
The two-parameter families of maps defined by (31), (32), and (33) for A > 0
and B E R axe related. For each A > 0, B E R, the maps fal and f#2 are
determined from f=, by

= exp o

(34)

f02 = r ofol =ro exp of.,

where exp : R -+ RPs; x i e' is the exponential function and
x -- (35)r : RP' -+ (0, 1); x - x-1-)
+ X

is a linear fractional transformation.
To investigate the group operations, measures of change, and answers to

question [Q] determined by these families of increasing bijections, we first
consider G = R. Given A > 0 and B E R, the group operations induced on
G by a map in (31) are

X1 * X2 = f,(f/ (--) + f.-' 2 )) = XI + X2 - B,
(36)

zj = f.(-f;1 (x)) = -xi + 2B,

14



for XI, X2 E G. Note that the group operations defined in (36) depend on
the parameter B only. We shall denote the one-parameter family of groups
on G determined by the operations in (36) by {(G, *B) : B E R}. The group
operations in (36) associated with (G, *B) will be denoted by *B and (.) '
where

XI*BX2 = Xl+X2-B,

(37)
(x,)B' = -x, +2B,

for xI,x 2 E G and B E R. The parameter B E R used to index the
family {(G, *B) : B E R} is the identity element of the group (G, *B). The
group operations in (37) result from (22) if in those equations we take e =
B and (G,*) = (R,+). Hence, when G - R and B E R, the groups
(R, +) and (G, *B) are equivalent, (R, +) (G, *B), and the equivalence
class of (R,+) is the one-parameter family {(G, *B) : B E R}. The measure
of change determined by (9) and the group (G, *B) is

X2 *B (X1)B' = X2 - xI + B, (38)

a translate of the difference z 2-z 1 . Finally, from (18), the answer to question
[Q] common to each of the groups (G, *B), B E R, is

y2 = X2 *B (XI)B *B Y l (X 2 - X + B) + y - B = X 2 - XI + yl. (39)

This is the 'equal differences' result in (3). We conclude that the 'equal
differences' value of y2 in (3) is the appropriate unique answer to question
[Q] when G = R and the group used to determine a measure change on
G, necessarily order isomorphic to (R, +), has a group product depending
rationally on its factors.

When G = R P , A > 0, and B E R, a map of the form (32) induces the
following group operations on G:

XI*Z = pl~h'(.,)+h'(X))=XX2

(40)

X-I = ho,(-h ;(x))= -.
xI

15



Again, the group operations in (40) depend only on the parameter B E
R, or equivalently the element eB E R". The one-parameter family of
groups on R P " determined by the operations in (40) will be denoted by
{ (G, *eE): eB E RP", B E R}. The group operations in (40) associated with
(G,*eg) will be denoted by *, and (.);2, where

XIX2
ZI *e B X 2 =-

(41)
e 2

B

=
2:1

for : 1, X2 E G and eB E G. The identity element e8 of the group (G, *,B) has
been chosen as the parameter indexing this one-parameter family. Again, the
group operations in (41) result from (22) if in those equations we take e. = eB ,

and (G, *) = (RP" , -), the multiplicative group of positive real numbers.
Hence the groups (RP", .) and (G, *,) are equivalent, (RP", - ) - (G, *e)
for all eB E G, B E R. When G = RP" the equivalence class of the group
(RP, -) is the one-parameter family of groups {(G, *e): eB E RP, B E R}.
The measure of change determined by (9) and the group (G, *,) is

X2 *e- (:). eX a2  (42)a:1

a dilatation of the proportion fl The answer to question [Q] in (18), common
to each of the groups (G, *,a), eB E G, is

eB x 2 Y = :2  (43)
Y2 = X2 *eB (XI)A * I B  

- X1

This is the 'equal proportions' result in (4) . We conclude that the 'equal
proportions' value of y2 in (4) is the appropriate unique answer to question
[Q] when G = RP" and the group used to determine a measure change on
G, necessarily order isomorphic to (R, +), has a group product depending
rationally on its factors.

When G = (0,1) the group operations induced on G by a map in (33) are

=I * X2 - hp2(h-(xi) + h-(X 2)) --- 2 a )01X2 + (1 - :)(1 - 2)e'
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S= -(44)

1 + (e-2 B - 1)zi"

The one-parameter family of groups on (0,1) determined by the operations
in (44) will be denoted by {(G, *r(rv)) : r(eB) E (0, 1),B E R}, where

r(eB) e (45)

is the identity element of (G, *,(,s)) and the map r: R P" -+ (0, 1) is defined
in (35). The group operations in (44) associated with (G, *r(,D)) will be
denoted by *r(,e) and where

XIX2
XI *r(eB) X2 XIX2 + (1 - XI)(1 - X 2 )eB'

(46)
-1 1 -Z

(= ( -"1 + (e - 2 B - 1)xl'

for XI, X2 E G and B E R. They result from (22) if in those equations we set
co = r(eB), and define the group (G, *) by

XlX2
:1 *3X2 = X12 + (1 - XI)(1 - X2)'

(47)
(x:) - 1 = 1-X

for XI, X2 E G. Thus for B E R the groups (G,*r(eB)), r(eB) E G, and (G,*)
are equivalent, (G, * =(a))= (G, *), and when B = 0 the two groups are iden-
tical. For G = (0,1) the equivalence class of the group (G, *) defined by (47)
is the one-parameter family of groups {(G, *r(eB)) r(eB) E (0, 1), B E R}.

The measure of change determined by (G, .r(eB)), r(eB) E G, and (9) is

)-I =2(1 - X:)
-T2 *,.(el) (-T),.(e) = X2(1 - XI) + xI(l - x 2)eB' (48)

and the answer to question [QI common to each member of this one-parameter
family of groups is, from (18),

X2y1(1 - X) (49)
Y/2 -T~2 *P(eD) (z1)r-D) *r(eB) 3/i XI(l -32) + Y1(3:2 X51 49
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This is the result in (5). We conclude that the value of Y2 in (5) given by
Ng (11 is the appropriate unique answer to question (Q] when G = (0,1) and
the group structure used to determine a measure of change on G, necessarily
order isomorphic to (R, +), has a group product depending rationally on its
factors.

4. Properties leading to (3), (4), and (5). In this section we sum-
marize sections 2 and 3 by formulating a set of properties for determining
equivalent change on G which leads to a unique answer to question [Q]. We
also give geometrical interpretations of the answers to question [Q] in (3),
(4), and (5) for G = R,R P", and (0, 1) respectively.

Given an open interval G of R, we assume that for every ordered pair
(XI, X2) of elements of G there is a unique element of G which represents the
change in variable z from x, to X2 (Assumption [A]). We assume that a mea-
sure of change exists on G, the binary operation /, which satisfies properties
[Po] - [P4] of section 2, and, upon considering the notion of order, that the
resulting group (G, *) satisfies Property [0]. Then the theorem of section 2
implies that the group (G, *) is order isomorphic to (R, +). Now any increas-
ing bijection f : R -+ G induces such a group structure on G through the
group operations in (15), and different bijections induce different measures
of change (.9) and different answers (18) to question [Q]. Motivated by (1)
and (2), we call simple any group product on G which depends rationally on
its factors. Restricting attention to simple group products narrows the class
of possible bijections down to those given in (30). Some calculation then
implies that when G = R,R P , and (0,1) and the group product in (G, *) is
simple, (3), (4), and (5) respectively arise from (18) as the unique answers
to question [Q].

Figures 1, 2, and 3 give geometrical interpretations of the answers to
question [Q] in (3), (4), and (5). Each figure shows two copies of the set G,
G. for variable x and G. for variable y. Given X1,X 2 E G,, and yl E G., to
determine the answer to question [Q] we begin at Yi E G,, and use the map

T : Gv -+ G.,; y 1+ Y * X1 * y1 (50)

to 'transfer' to ZI E G : T(yi) = z. Once at zi E G., the map

C : G. - G.; z -+z *x (51)
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'changes' x, by the amount X2 * X 1 and moves us to x2 E G,: C(zI) = z 2.
Next we use the inverse of the map in (50),

T -1 :G-+G; y/-4y*xj "1 *yi, (52)

to 'transfer' back to Y2 E G,:

Y2 = T-'(X2) = X2 * X1"1 * yi. (53)

This is the answer to question [Q] in (18). If we combine (50), (51), and (52),
the answer to question [Q] on G is given by Y2 = T o C o T(yi), where the
map

T - o C o T: G - Gy; y -z 2 *x' y (54)

'changes' variable y E G3 by x2 *X 1 , the change occuring in variable x E G,.
When G = R, from (39), (50), (51), and (54) we have

T : G G -; x F x+(xi-y),
; x X+ x+ 2 - xI), (55)

T-1oCoT:Gv-+G,; y - + yx 2 -x 1 ,

so that the maps in (50), (51), and (54) are translations. When G =R p ,

(43), (50), (51), and (54) give
Xl

T :GGs,-G.,; x 1-4 xY1

C : G.- G.; x X (56)
X1
X2T- 1 oCoT:G -Gv; y - y--,

so the maps in (50), (51), and (54) are dilatations. Finally, for G = (0,1),
from (49), (50), (51), and (54) we have

T :Gv -+ G.,; x 1- 00-Y

C G(X 2)(1 - X1 ) (57)

x1 (1 - z 2) + x(x 2 - xI)

T-1 o C o T: Gj , G,; y '-

X1 ( X2) + Y(X2 - X'
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and the maps in (50), (51), and (54) are linear fractional transformations.
Figure 3 and (57) imply that the answer to question [Q] in (5) is geometrically
determined by projection from a point P. The points 0 and 1 in G, and G. are
fixed under projection from P, and P itself is determined by the intersection
of the lines through xi E G., y1 E G, and 1 E G,, 1 E G. (the acute angle
between the two copies of G affects the location of P but does not affect the
answer y2). Once P is determined, the answer Y2 E G, is obtained as the
projection of z 2 E G. from P to G.. This geometrical interpretation implies
that the cross-ratios of the points {0,z 1,X2, 1} and {0,yIy2, 1} are equal,
that is

R(o,x1;x 2 ,1) R(O, yi; y 2 ,1 ), (58)

where

R(x,y;z,t)- z - t (59)
z-y t-y

see Burn [8, p. 43], for example. A combination of (58) and (59) yields the
value for Y2 given in (5).

Appendix. In [1], variables z and y belonged to the closed unit interval
[0,1], and the answer to question [Q] was assumed to have the form

Y2 = F(xz, y1, X2 ), (60)

where F : [0, 11 -+ [0, 1] is a map from the closed unit cube [0, 1]' to [0,1].
Ng gave twelve 'reasonable' properties he felt the map F should have, and
showed that the answer in (5) has all of them. We have seen in sections 2, 3,
and 4 how the answer to question [Q] in (5) is determined. In this appendix
we shall examine the extent to which Ng's twelve properties constrain pos-
sible answers to question [Q] on G = (0,1). The results of section 2 imply
that measurement of change on G requires a group structure (G, *) order
isomorphic to (R, +). e will assume that the answer to question IQI is
given by a combination of the group operations in (15) and (18):

Y2 = X2. X *Y,

= f(f_1(z)-f'(X1) +f- 1eY)) (61)
= P(x1,y 1 ,x 2),
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where f R G G is the increasing bijection inducing the group structure
(G, *) on G and the map P : G' -+ G is defined in terms of the bijection
f by the third equality in (61). What constraints do Ng's twelve properties
put on the map P in (61), and more specifically, what constraints do they
put on the increasing bijection f : R -+ G on which F depends? We shall
see that only one of Ng's properties, Property 9, puts a real constraint on
the increasing bijection f : R -- G.

Before we compare the properties postulated by Ng for the map in (60)
with those of the map P in (61), we must reconcile a difference in their
domains. In Ng [1], the domain and co-domain of the map F in (60) are
defined to be the closed unit cube [0,1]' and the closed unit interval [0,11
respectively. In (61) the domain and co-domain of the map F are the open
unit cube G- and the open unit interval G, where G = (0,1). Now the
function proposed by Ng in (5) is not defined everywhere on [0,1]' (the points
(0,0, 2) and (1,y1,l), for example, do not belong to its domain), so it is clear
that the domain of F needs modification. Since f : R -+ G is an increasing
bijection, the extended real numbers -oo and oo (the greatest lower and
least upper bounds of R) correspond to the numbers 0 and 1 (the greatest
lower and least upper bounds of G) respectively. The numbers 0 and 1 are
also the greatest lower and least upper bounds for measures of change on
G, a"d play roles for G analogous to the roles played by the extended real
numbers -oo and oo for R. They cannot be included in the group (G, *) in
exactly the same way that the extended real numbers -oo and oo cannot be
included in the additive group (R, +). We therefore modify Ng's properties
appropriately so that the domain and co-domain of the map F in (60) agree
with those of the map P in (61). Ng's first two properties are

PROPERTY 1 (COMPLETENESS). F(.) exists for all zx, yl, and
X2 between and inclusive of zero and one.

PROPERTY 2 (UNIQUENESS). For each and every value of
(XI, y1 ,X 2), F(.) is unique.

We change 'inclusive' in Property 1 to 'exclusive' as mentioned above. Prop-
erty 2 is satisfied by (60) and (61) since both are maps.

Recall from section 2 that we defined an equivalence relation - on G x G,
the set of ordered pairs of G:
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(xI, x 2 ) - (YV, Y2) if and only if x 2 * X " =Y * yi (62)

Clearly (Xl,X2) -, (Y1,y2) if and only if Y2 is defined by the map P in (61).
A second relation - on G x G can be defined by the map F in (60):

(XI,X 2) ; (y,,y2) if and only if y2 = F(xi,y1,X2). (63)

Ng's next three properties are

PROPERTY 3 (INTERCHANGEABILITY).
F(X2,F(x,,yi,x 2),x1) = y,.

PROPERTY 4 (PARITY). F(xi,y, X2) = x2 for all x, = yi and
all X2.

PROPERTY 5 (IDENTITY). F(xl,yl, X2) = y1 if X2 = X1 .

Property 3 holds for the map P in (61), since Y2 = F(x 1 ,y 1 ,x 2) iff (XI, X2 )

(Y1,Y2) iff X2 * X = Y2 * Yi-I iff x, * X2-1 = y * y2' iff (X2,XI) - (y2,Y1)

iff Y1 F(x , y2, Xl) (where iff stands for 'if and ouly if'). Properties 4 and
5 also hold for the map P in (61). Property 4 states that when x and y
have the same initial value, X1 = yi, the final value Y2 of y giving a change
in y equivalent to the change in x must be equal to the final value x2 of
x. Property 5 states that if variable x remains unchanged, variable y also
remains unchanged.

The next property considered by Ng is

PROPERTY 6 (LIMITATION). F(x1 , yl, 0) = 0; F(xl, yl, 1) = 1.

We modify Property 6 so that the domain of the map F in (60) agrees with
the domain of the map F in (61):

PROPERTY 6' (LIMITATION). For x,,yi E G,

lim F(xl,y1 ,X 2) = 0 , lim F(x,,yI,X 2) -1.
Z2-0+ X2 -+1

0
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Property 6' is satisfied by the map F in (61) because, for fixed xl,yj E G,
f- 1 (x 2) -4 -oo as X2 -+ 0+ and f-'(x2) -+ oo as X2 --+ 1- since f : R -+ G
is an increasing bijection. This property illustrates the role of 0 and 1 as
the greatest lower and least upper bound respectively for change on G; if
xi E G, and X2 -+ 0+, variable x undergoes the largest decrease possible.
For variable y, starting from yi E G, to undergo an equivalent change we
must have y2 -+ 0+ too. Similarly, if x 2 -+ 1-, we must have Y2 -+ 1-.

PROPERTY 7 (MONOTONICITY). (i) F(xi, yl, x2 ) monton-
ically increases in x2; (ii) F(xl, y1, x2) monotonically increases
in y1 and decreases in x, except when it has already reached its
limiting points (e.g., when Y2 = X2 = 1).

Disregarding the qualification in part ii) of Property 7 which has been dis-
cussed previously, we note that this property is also satisfied by the map P
in (61) since f : R -4 G is a monotone increasing bijection.

For fixed xj,yi E G, Ng defined the function f' : G - G by f (x)
F(xl,yi,x) His next property discusses the smoothnes- of the function f:

PROPERTY 8 (DIFFERENTIABILITY). Each and every func-
tion fi(x) is continuous and differentiable at all points [of its
domain].

From (61), the map fi : G - G is defined for xi,yi E G by

f(x) = f(f 1 (x) - f- (xI) + f-1 (y)), -4)

for x E G. It is continuous since f : R - G is a homeomorphism, and its
differentiability can be ensured by requiring f to be a diffeomorphism. Note
that when the group product * induced on G by the bijection f depends
rationally on its factors, the function fi in (64) is given by (5) with X2 = X
and is a diffeomorphism.

Ng's first eight properties require little of the increasing bijection f
R -+ G defining the map P in (61). The next property is the first, and only
property of Ng's to impose a substantial constraint on f.

PROPERTY 9 (COMPLEMENTARITY).
F(1 -1x,1 - y1, 1- X2) = 1 - F(xi,y1 ,x 2).

23



If x is the probability/percentage of event X, then 1 - x is the probabil-
ity/percentage of non-X. Similarly for y. To understand Property 9, consider
the following example given in Ng [1]. Suppose the male employment rate
changes from 90% to 99% and we believe that the female employment rate,
starting at 70%, must increase to, say, 77% to undergo an equivalent change.
Then we must also accept that when the male unemployment rate changes
from 10% to 1%, the equivalent change for female unemployment, starting
from 30%, must be to decrease to 23%.

If we use (61) to express Property 9 for the map F in terms of group
operations, we must require

(1 -x2)*(1 - X) (1 -y) = 1 -(x 2 1*xj *y), (65)

for X1,x2,y E G. For a E G, set x,= ,y= a, and x2 =1 - a in (65) to
obtain

a*a (1-a)=l-[(1-a),- a]. (66)

Since (G, *) is abelian (66) implies

a*(1-a)= 1*1' (67)

for a E G. When expressed in terms of the increasing bijecon f: R -+ G,
(67) takes the form

f (-'(a) + 1-'(1 - a)) = f (2f -1 (68)

for a E G. Ifwe put a = -x for xE H ,-1), (68) implies that the map
h)-- R; h(x) = f-' (x + ) -- (-) (69)

is odd:
h(-x) = -h(x) (70)

for x E - Since f : R -+ G is an increasing bijection, the map

h : (-, ) 2- R in (69) is also an increasing bijection. Thus if the answer
to question [QI determined by the map P in (61) is to satisfy Property 9, the
increasing bijection f : R -+ G defining F must be given by

f(x) +h-' (x-ff-1()) (71)
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for x E R, and its inverse f G -+ R by
f-'(x) =f- (1) + h (x - ),(72)

for x E G, where h - R is an odd, increasing bijection and
f- 1 (1) E R. Conversely, when f- ( ) E R and h (- , ) -+ R is an

odd, increasing bijection, the increasing bijection f : R -+ G defined in (71)
determines, through (61), an answer to question [Q] satisfing Property 9.

We note that the answer to question [Q] in (5) satisfies Property 9, since
for A > 0 and B E R each of the increasing bijections f,02 : R -+ G in (33),
determines, via (69), the same odd, increasing bijection

h' . (73)

2

Any odd increasing bijection h :(-, ) -+ R defines an increasing

bijection f : R -+ G in (71) whose resulting map P in (61) satisfies Property
9. If this increasing bijection f : R -+ G is not a member of the family
of maps in (33), the group product on G defined by (15) will not depend
rationally on its factors and the answer to question [Q] it determines in (18)
will not be given by (5). For example, take

1 +tan !X JR;±xia+ og (74)h : H ? \1 -tan ExJ

If we choose f- 1 ( ) = 0 in (71), the increasing bijection in (71) determined
by (74) is

f : R -+ G; x 2- tan -'(e'). (75)

The group operations induced on G by the increasing bijection in (75) are

Xi*X2 = - tan-i(tanxitan 1 2),

(76)
Xj1 - 2tan-l(cot 1 ),

for x, E G and the answer to question [Q] satisfying Property 9 is, by (61),

Y2 = F(X 1,1 X2) =tan-, (tan12 2 tan 2Yi) (77)25 tan Ex "
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The next two properties ensure that the relation z defined in (63) by the
map F in (60), is symmetric and transitive respectively.

PROPERTY 10 (ANONYMITY).
F(yi, xi, F(-,, Y1, X2)) = x2.

PROPERTY 11 (TRANSITIVITY). If Y2 = F(x1 ,yi,x 2 ), and
Z2 = F(xl, z1, x 2 ), then Y2 = F(zi, yi, z 2).

The map F in (61) satisfies them since y2 = P(Xz,yi,x 2) if, and only if,
(xI, x2) - (Y1, Y2), where - is the equivalence relation defined in (62). Since
Property 4 implies that the relation ; is reflexive, Properties 10, 11, and 4
together imply that ; is an equivalence relation too.

Ng gave one further property to "narrow down the permissible functions
defining equivalent changes, preferably to a unique function Y2 = F(xi, Y1 , x 2)
or a unique family of functions y = f'(x)". (Ng [1], p. 298) This was

PROPERTY 12 (MONOTONICITY IN dy/dx). If x, is larger/smaller
than Yi, then dy2/dX 2 monotonically increases/decreases in x2.

Ng argued that this was a reasonable property for the answer to question [Q],
and he showed that (5) has it. However, as the next example shows, Property
12 together with the previous eleven do not suffice to uniquely determine the
answer in (5). Consider the increasing bijection given in (75). Through (61)
it determines the map F given in (77), and this latter map satisfies Ng's
first eight properties. Property (9) is also satisfied by F since (75) and (69)
together determine the odd, increasing bijection h : (-2, ) -+ R given in
(74). Properties 10 and 11 are satisfied by the map F in (77) too. Direct
calculation from (77) yields

d2y 2 _ irK 2 [-K2] sin 7x 2 cos z 2  (78)

2a (cOs2ZX2 +K2 sin2 7rX 2 ) 2 2'

where
K-tan z/iK 2tan (79)tan zx"

Hence if x, is larger/smaller than yi, K in (79) is smaller/larger than one
and d2y 2/dzX in (78) is greater/less than 0. This implies that dy2/dz 2 mono-
tonically increases/decreases with respect to z 2. Therefore the map F in (77)
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satisfies all twelve of Ng's properties, yet is not the answer to question [Q]
found in (5).

(
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