e e

\ Asi,{ . ‘. . Y . '

- Computer Science

AD-A282 641

HARRNAmNE

» g

o -

vy L - E W B § & A —— &

A Practical Approach to Drawing Undirected Graphs

Daniel Tunkelang

June 1994
CMU-CS-94-161

A
M
o)
U

s @ % e

.‘-“ ne g

$g4-23891
RN

DTI@ QUALITY INSPECTED 8

£

Kzgwﬁmi‘i

Best
~ Available

Copy

A Practical Approach to Drawing Undirected Graphs

Daniel Tunkelang Accesion For)
June 1994 NTIS CRA&I }}J
CMU-CS-94-161 DTIC TAB S
Unannounced J

Justification

By _# 50
Distripution
School of Computer Science Avaitabiiity Codes
Carnegie Mellon University T 1 Aval o o - s
Pittsburgh, PA 15213 Dist Specis!

|

N |

Written while the author was working at AT&T Bell Labs in Murray Hill, N1J.
This paper is largely based on the author’s Master’s Thesis, supervised by Charles
Leiserson at the Massachusetts Institute of Technology and Mark Wegman at the
IBM T. J. Watson Reseatrch Center.

. npprove \
e i

Keywords: algorithms, graphs, graph layout, graph drawing

Abstract

Although there is extensive research on drawing graphs, none of the published
methods are satisfactory for drawing general undirected graphs. Generating
drawings which are optimal with respect to several aesthetic criteria is known
to be NP-hard, so all published approaches to the problem have used heuristics.
These heuristics are too slow to be practical for graphs of moderate size, and
they do not produce consistently good drawings for general graphs. Moreover,
they rely on general optimization methods, because problem-specific methods
require a deeper theoretical understanding of the graph drawing problem.
This paper presents an algorithm to generate two-dimensional drawings of undi-
rected graphs. The algorithm uses a combination of heuristics to obtain draw-
ings which are near-optimal with respect to an aesthetic cost function. The
algorithm is incremental in nature. but preprocesses the graph to determine an
order for node placement. The algorithm uses a local optimization strategy that
effectively manages the trade-off between speed and output quality. Finally, the
algorithm uses a variety of techniques to speed up computation of the aesthetic
cost function.

The paper discusses this algorithm in the context of previous work and open
problems. The algorithm is compared with the “force-directed” algorithm of
Fruchterman and Reingold and the simulated annealing algorithm of Davidson
and Harel in terms of output quality. Finally, the paper considers what work is
necessary to create a truly effective algorithm for drawing undirected graphs.

1 Introduction

Many disciplines of science and engineering use graphs to represent systems
comprised of a large number of interacting components, especially when the
individual components are simple. Physicists and chemists rely on graphs to
model interactions between many particles, as in the case of molecular struc-
ture. Electrical engineers use them to represent Very Large Scale Integrated
(VLSI) circuits. The widest use of graphs is in computer science and soft-
ware engineering. Graphs are used to represent both hierarchical and relational
databases. In artificial intelligence, graphs are used to implement semantic
networks and other knowledge representations. Computer Aided Software En-
gineering (CASE) tools use graphs to represent control flow and module depen-
dency in large programs. The common thread of all these applications i< that
they use graphs to model systems where the number of components is large but
the components themselves are simple.

In order to manipulate the data represented by a graph, a person needs a
way to visualize the graph. After all, representations which might be perfectly
acceptable to a computer are often incomprehensible to human beings. A person
needs a representation of the graph which is not only visual, but readable. The
conventional and intuitive way to represent a graph visually is to draw nodes
as boxes and edges as line segments connecting the boxes. There are an infinite
number of such drawings for any given graph, since the placement of boxes is
arbitrary. Nonetheless, some drawings are more “aesthetic” than others. The
next paragraphs will develop the concept of an aesthetic drawing.

This paper assumes that three principles govern the aesthetics of drawing
graphs: edge lengths should be uniform; nodes that are not adjacent should be
far away from each other; and the number of edge crossings should be small.
These principles are intuitive, and people can usually pick out the more aesthetic
of two drawings of a graph by inspection. These criteria are a good approxi-
mation to what most people concerned with graph drawing intend by the word
“aesthetic.”

These aesthetic criteria, however, are competitive. A simple example illus-
trates this competitiveness. Figure 1 shows two drawings of the cube: in the
first, which appears three-dimensional, the edge lengths are uniform: in the
second, there are no edge crossings. Which of the two is more aesthetic? The
answer clearly depends on the context. The aesthetic principles provide criteria,
but do not specify their relative weights.

Sometimes, aesthetics depend on context-specific issues. In a VLSI circuit,
for example, all edges must be either horizontal or vertical. In a hierarchical
database, members of equal rank should appear at the same height in the draw-
ing. In a drawing of a directed graph, there might be a preferred orientation for
edges. Even in these and other examples, however, the three general aesthetic
criteria will often apply, in conjunction with the context-specific factors.

2@.@—@_%
anuch’ T —8-6—1

Aesthetic drawings of graphs are not only more appealing to the eye; they
also convey information more effectively than their less aesthetic counterparts.
An aesthetic drawing often allows a human to perceive the general structure
of a graph. Either of the drawings in Figure 1 conveys the symmetry of the
cube far more clearly than the mess in Figure 2. Indeed, the skeptical reader
might spend a few minutes verifying that they are all drawings of the same
graph. Aesthetic drawings are not only pretty; they cre practical as a means of
communicating structure.

A general purpose graph drawing algorithm must handle the standard aes-
thetic criteria robustly while remaining flexible enough to accommodate the
context-specific needs of particular applications. In the absence of further infor-
mation, the algorithm should generate drawings that conform to the standard
aesthetics. When an application imposes different or additional requirements,
the algorithm should, within reason, easily adapt to them. The algorithm pro-
posed in this paper strives to achieve this flexibility.

Figure 1

2 Previous Work

Graph drawing algorithms fall into two fundamental categories: those for di-
rected graphs and those for undirected graphs. The most popular approach for
drawing directed graphs is the layering method of Sugiyama, Tagawa, and Toda.
Although this paper is concerned with drawing undirected graphs, the layering
strategy is particularly relevant, because the node-ordering strategy of the pro-
posed algorithm is in some sense a generalization of layering. For undirected
graphs, most approaches, including the algorithm described in this paper, are
based on the spring embedder model of Eades. A more complete listing of work
on graph drawing and related problems appears in the annotated bibliography
of Eades et al. [DETT93].

Most of the published algorithms for drawing directed graphs are variations
of the layering method of Sugiyama, Tagawa, and Toda [STT81]. This method
creates layers which it draws as equally spaced rows, assigns each node of the
graph to a layer so that most edges are oriented upwards, and permutes the
nodes on each layer to minimize edge crossings and edge lengths. An edge can
only connect nodes on adjacent layers; hence, when adjacent nodes occupy non-
adjacent layers, the method creates a path of dummy nodes on the intermediate
layers.

The layering method is popular because it is produces acceptably aesthetic
drawings and is fast enough to use on large graphs, i.e. graphs where the total
number ol nodes and edges is on the order of a thousand. On the other hand,
the layering method has several drawbacks. The dummy nodes cause edges to
bend. Also, the layering method performs badly on graphs with many cycles,
since these graphs defeat the goal of producing a mostly upwards drawing. The
essential advantage and disadvantage of the layering method is the hierarchical
structure it imposes on a graph: when this model is appropriate, the method
is fast and produces aesthetic drawings; when it is not, the drawings do not
reflect the intuitive structure of the graph. A good, high-level reference for the
layering method is [EX89].

Most algorithms for general undirected graphs view drawings as simulated
physical models of the graphs. The most popular approach is Eades's spring
embedder model, in which nodes act like mutually repulsive charged masses and
edges act like springs subject to a force law [Ead84].! Hence, ail nodes repel
one another, while the spring force exerts an attraction between adjacent nodes.
This model embodies two of the three aesthetic criteria—making edge lengths
uniform and keeping nonadjacent nodes far apart. Eades's algorithm generates
a random drawing and then performs optimization on it until it reaches a stable
local optimum.

1 Actually, there are earlier papers on force-directed placement in the VLSI literature, for
example {KS80], [BQ79].

Several papers have proposed variants of Eades’s model. Kamada and Kawai
fuse the attractive and repulsive forces into a single spring force which obeys
Hooke’s Law [KK89]. There is one such spring between every pair of nodes,
and its ideal length is proportional to the graph-theoretic distance between
the nodes. Davidson and Harel use the spring embedder model for part of their
aesthetic cost function but do the optimization with simulated annealing[DH91].
Fruchterman and Reingold’s “force-directed placement” algorithm mixes the
spring embedder and simulated annealing approaches[FR91].

All of the published algorithms for drawing general undirected graphs are
heuristic. Indeed, the individual problems of achieving uniform edge lengths and
of minimizing the number of edge crossings are both NP-hard [EMW86] [GJ83]
[MO85). Hence, an optimal solution is for all practical purposes unachievable.
Rather, people have proposed a variety of heuristics to produce near-optimal
drawings of graphs. In general, their algorithms have some theoretical founda-
tion, but the only way to evaluate their performance is experimentally.

3 Problems with Existing Algorithms

The published algorithms for drawing undirected graphs have three fundamental
problems: they are too slow, they do not produce consistently good drawings;
and they are not based on a solid theoretical foundation. Given the previously
cited hardness results, no practical (i.e. polynomial time) algorithm is likely to
produce optimal drawings.

The published heuristics, however, have a variety of problems. Not only are
the algorithms slow, but their time bounds are either unknown or arbitrary.
Eades’s spring embedder aigorithm and its variants place nodes randomly and
then perform local optimization on the drawing. The optimization involves iter-
ating either according to a fixed schedule or until achieving a stability threshold.
In either case, the algorithms do not have meaningful bounds on running time.
With output quality, the situation is far worse: none of the algorithms have
any bounds for how the drawings they produce compare to drawings that are
optimal (with respect to some aesthetic cost function). In practice, the out-
put quality of existing algorithms is inconsistent for general graphs. Sometimes
the user can tune a drawing algorithm by using it interactively and varying its
parameters, but this approach is at best a partial solution. The fundamental
problem is that there is not enough theoretical understanding of graph drawing,.
Much of the work on drawing undirected graphs has involved throwing general
optimization methods at the problem, e.g. Davidson and Harel’s simulated an-
nealing algorithm. Given that the optimization problems are NP-hard, general
methods are unlikely to produce good drawings efficiently. Rather, it is neces-
sary to better understand the theory of graph drawing and thereby design more
specific heuristics.

For special cases of graphs, there is a better understanding of the theory.
Eades and Wormald have shown that the linear-time median heuristic for draw-
ing bipartite graphs on two layers produces at most three times the optimal
number of edge crossings [EW91]. This result is especially relevant to the lay-
ering method for directed graphs, since any pair of adjacent layers is a bipartite
graph drawn on two layers. There are also many results on drawing planar
graphs (see [DETT93]).

4 Proposed Algorithm

This section describes the proposed graph drawing algorithm in detail. It first
describes the aesthetic cost function and its computation. It then discusses the
incremental strategy for node placement. Finally, it describes the algorithm’s
local optimization procedure. Figure 3 outlines the algorithm in terms of these
components. .

A key feature of the algorithm is its modularity. All of its components
are independent and are therefore easy to replace. This modularity gives the
algorithm a flexibility which is crucial to its utility across the wide range of
graph drawing applications.

1. READ GRAPH FROM INPUT STREAM AS LIST OF NODES AND EDGES.

2. COMPUTE NODE ORDERING FROM MINIMAL HEIGHT SPANNING TREE.

3. FOR EACH NODE N, IN THE ORDER DETERMINED BY STEP 2:
SAMPLE DRAWING SPACE TO FIND INITIAL PLACEMENT FOR N.
PERFORM LOCAL OPTIMIZATION AT N AND ITS NEIGHBORS.

4. PERFORM LOCAL OPTIMIZATION AT EVERY NODE FOR FINE-TUNING.

OUTPUT DRAWING AS EITHER TEXT OR GRAPHICS.

Qn

Figure 3

4.1 The Aesthetic Cost Function

The graph drawing algorithm seeks to satisfy three aesthetic criteria: uniform
edge lengths, even distribution of nodes, and a minimal number of edge cross-
ings. This subsection describes both the quantification of these aesthetic criteria
and the computation of the aesthetic cost function which the algorithm uses to
place and move nodes.

4.1.1 The Components of the Cost Function

The aesthetic cost function is a weighted sum of three components. each cor-
responding to an aesthetic criterion. The first two components are spring em-
bedder forces: an attractive force between adjacent nodes and a repulsive force
between all pairs of nodes. As noted in [FR91], there is a simple relationship
between the target edge length and the weights assigned to the attraction and
repulsion components. The third component of the cost function is the number
of edge crossings. The algorithm assigns default weights to these components,
but one can easily modify them in order to vary the aesthetics of the output.

Target Edge Length

The algorithm assumes that there is an target edge length, computed accord-
ing to a Euclidean metric and measured in units of grid cells on the drawing
space. This length is denoted by ! and determines the ratio between the weights
of the attraction and repulsion components of the cost function. In general,
the smaller the value of {, the faster the algorithm; on the other hand, a larger
value can significantly improve the quality of the output. For reasons of com-
putational efficiency, /, like all parameters of the algorithm, must be an integer.
The results section discusses the issue of choosing an target edge length and the
influence that this choice exerts on the performance and running time of the
algorithm.

Attraction between Adjacent Nodes

In accordance with the spring embedder model, there is an attractive force
between adjacent nodes. If d is the edge length, then the associated cost is

fald) = wed?®

As in [DH91] and [FR91], the algorithm uses the square of the length, rather
than the length itself, to reduce the amount of computation. Computing the
length would require that the value of the cost function have a floating point rep-
resentation, and would also involve taking a square root. In contrast, computing
the square requires only two multiplications and one addition, and does not in-
troduce floating points into the algorithm. Experimentation has not shown any
benefit from using the more computationally expensive operations.

Repulsion between All Pairs of Nodes

The node repulsion component is the same as that in [DH91]:

fold) = 2

Again, using the square of the distance reduces computation and allows the
algorithm to avoid the use of floating point representations. Nodes can never
occupy the same cell in the drawing, so there is no issue of dividing by zero.

Relationship between [, w,, and w,

Consider the simple graph of two nodes connected by an edge. If the edge
length is d, then the sum of the attraction and repulsion costs is

Wy
fa(d) + fr(d) = wad2 -+ d_2
The optimal edge length is the value of d that minimizes this sum.? Setting
the first derivative of the sum to equal zero:

2wad—2% =0

Solving for d yields:

Wy

d=
Since the target edge length { is, in fact, the target optimal edge length:

l= ¢/ —

Wq

Edge Crossings

The edge crossings component of the cost function is a constant multiple of
the number of crossings in the drawing. If n is the number of edge crossings,
then the associated cost is

fe(n) = wen

4.1.2 Computation of the Cost Function

Since the placement and local optimization procedures repeatedly invoke the
cost function to determine the best position for a node, the procedure thaec
computes the cost function is the inner loop of the algorithm. Therefore, the
methods for computing the cost function represent an attempt to optimize as
much as possible. All computation is in integer arithmetic. Moreover, because
the drawing process never modifies more than one node at a time, the algorithm
can compute the cost function increnientally, determining only the difference in

2Technically, this argument is only valid for the simple case described — a graph of only
two nodes connected by an edge. Nonetheless, it is a reascnable approximation for general
graphs.

cost due to placing or moving a node. To make the computation yet more
efficient, the algorithm maintains an auxiliary data structure called a uniform
grid [AFKN89] to speed up the average case computation of the number of edge
intersections. The uniform grid also allows the algorithm to approximate the
node repulsion component by ignoring far away nodes, as in the “grid variant”
of [FR91].

Incremental Computation

A completely naive computation of the cost function for a drawing of V
nodes and E edges would require O(E) operations to compute the attraction
component, O(V'2) operations to compute the repulsion component, and O(E?)
operations to compute the number of edge intersections. Since, by assumption,
the graph is connected,® V is O(E), so the total amount of time to compute the
cost function this way is O(E?) operations.

The algorithm, however, never needs to compute the total cost of a drawing
from scratch. Rather, it can compute the difference in cost that results from
placing or moving a node—the only operations it can perform on a drawing. If
the degree of the node is d, then this incremental method requires only O(d)
operations to compute the attraction component, O(V') operations to compute
the repulsion component, and O(dE) operations to compute the number of edge
crossings. Again, the dominant cost is that of computing the number of edge
crossings, so the total is O(dE) — much better than O(E?).

Uniform Grid Technique

Incremental computation of the cost function is a vast improvement over
the naive method, but it is not efficient enough. The problem is computing the
number of edge crossings, since the algorithm must check if any of the d new
edges intersect any of the £ edges in the drawing. In practice, however, the
number of edge intersections is much less than d£. Under the approximation
that the edges have mean length { and that their positions and orientations
are independently and identically distributed random variables, there is a much
more efficient method to compute the number of edge crossings.

The uniform grid technique is described in [AFKN89]. The idea is simple:
overlay the drawing space with a coarser grid, called the uniform grid. For
example, if the drawing space were a 64 by 64 grid, the uniform grid might be
an 8 by 8 grid, where each cell of the latter would correspond to an 3 by 3
section of the drawing space. Each cell of the uniform grid maintains two lists:
one of the nodes in that cell, and one of the edges that pass through that cell.

31f the graph is disconnected, the algorithm draws each connected component separately.

Figure 4 illustrates the uniform grid technique for a simple example. Here,
the 16 by 16 drawing space is overlaid with a 4 by 4 uniform grid. Each cell
of the uniform grid maintains a list of the nodes and edges in that cell. For
example, the only occupied cell in the top row of the uniform grid contains the
node node! and the edges I and 2.

Every operation on the drawing space—placing, moving, or deleting a node
or an edge-——tequires updating the uniform grid accordingly. The update for the
node lists is trivial, since a node can only occupy one cell; for the edge lists, the
algorithm determines which cells the edge occupies and updates them. Hence,
the overhead for placing or moving an edge is proportional to the number of
uniform grid cells it occupies.

EDGES} 1,2

EDGlés 1 \\EDGES 2

1 X
EDIGESt 1 EDGESt 1,] EDGE§\2.3

L
EDGES} 1,4 _|LEDGES 3

Figure 4

[AFKN89] presents a simple method to enumerate edge crossings using the
uniform grid technique; the procedure presented here is an adaptation of that
method for incremental computation. To determine the intersections of a given
edge with all other edges in the drawing requires two steps. The first is to
compute which uniform grid cells the edge occupies. The second is to determine,
for each of these cells, if the given edge intersects any of the edges which occupy
that cell. The procedure enumerates the intersections it finds, ignoring the
dupiicates.

The key to using the uniform grid technique is choosing an appropriate
coarseness ratio. If the uniform grid is too fine, it is no more effective than
using the original drawing space. If it is too coarse, it becomes an unstructured
list of the nodes and edges in the drawing. The best choice for this ratio is Cl,
some constant multiple of the target and, by assumption, average edge length.
This choice implies that the expected number of uniform grid cells occupied by
an edge is O(1). The expected number of edges that occupy a uniform grid cell
is O(%), where s is the length in original grid cells of a side of the drawing
space. Hence, if s is proportional to VE and the uniform grid is coarser by a
factor of /, then the algorithm can compute the number of intersections of a
given edge with all other edges in O(1) expected time,* and the overhead for
operations on the drawing is O(1) expected time per placement or moverment of
an edge. The expected space overhead for the uniform grid is O(E).

As stated previously, this analysis depends on the assumption that the edge
lengths and positions are independently and identically distributed random vari-
ables; this assumption is at best an approximation. Nonetheless, the uniform
grid technique is an effective heuristic in practice.

The algorithm can also use the uniform grid technique to implement the “grid
variant” described in [FR91], which approximates the repulsion component of
the cost function by ignoring far away nodes. If the algorithm only considers
the repulsive force for nodes within a constant radius of the given node, then it
can compute the repulsion component in O(1) operations.

4.1.3 Modifying the Cost Function

While it is easy to modify the weights for each component of the cost function:
it is also possible to make much deeper modifications. For example, an attempt
to apply the algorithm to directed graphs would require that the cost function
prefer a downwards orientation of edges. Another possibility is that the cost
function might include a component for repulsion between nodes and edges, as
in [DH91). In fact, the design of the algorithm permits substantial flexibility in
choosing the details of the cost function.

4This result seer:. nore intuitive when one considers that, given the assumptions, the
expected number of intersections for a given edge is O(1).

10

The only requirement for the cost function is that it be expressible as a
function of the nodes n; and the edges ¢; in the {ollowing form:

ST Ea)+ D Fele) + 3 faa(ming) + 3 feleise) + D faclnive;)
i i i i,j i1,j

In other words, the cost function may only contain terms that depend on
a single node or edge, a pair of nodes or edges, or a node and an edge. This
property guarantees that the algorithm can compute the cost function in an
efficient incremental manner, giver that the placement and movement procedure
can only affect the position of a single node. In the general case, computing
the change in cost will require O(dE) operations, dominated by the third term
(pairs of edges) in the sum. Indeed, computation is faster for special cases, such
as the: algorithm’s “standard” cost function described previously.

Although this framework for the cost function is highly flexible, there are
some important properties of drawings which it cannot consider. Determining
overall symmetry in the drawing, for example, requires a function that depends
on all the nodes of the graph. The restrictions on the cost function reflect an
inevitable tradeoff between flexibility and efficiency.

Another consideration is the issue of integer versus floating point represen-
tation. In general, the former is more efficient, but the latter may ~ffer more
flexibility and accuracy.

4.2 Placing the Nodes
4.2.1 Order of Node Placement

The basic idea is to draw the graph from the center outwards. To do so, the
algorithm must first determine which niode to label as the center of the graph
and then perform a breadth-first traversal of the graph, starting at that node.
This process enumerates the nodes of the graph in decreasing order of centrality.
The only challenge is to determine the center.

Graph theory provides a useful definition of the center of a graph. Let
our graph be G = (V, E); then a center of G is any node ¢ that minimizes
maxyev d(c, v), where d(vy, v2) is the length of shortest path connecting vy and
va. Then, to enumerate the nodes in order, we simply take a breadth-first
traversal of the graph starting at one of its centers.

An example illustrates this ordering intuitively. Consider the “star of David”
graph in Figure 5. The thirteen nodes fall into three categories: the center
(labeled 1), the six inner corners adjacent to the center (labeled 2), and the
six outer corners (labeled 3). Figure 6 shows the breadth-first traversal of the
graph as a rooted tree.

11

To compute a center, the algorithm performs a breadth-first traversal of
the graph from every node and picks one which produces a tree of minimal
height. Each traversal takes O(E) operations, so the total running time is
O(V E) operations.

4.2.2 Initial Placement of Nodes

The problem of initially placing a node in the drawing is a tradeoff of quality
versus speed. To be guaranteed the best initial placement for a node, the algo-
rithm would have to compute the cost of placing that node in each unoccupied
cell on the drawing space. Since the number of cells in the drawing space is
proporttional to the number of edges of the graph, this procedure would require
O(E) evaluations of the cost function for each node placement. This cost is
unacceptably high; accordingly, the algorithm samples intelligently at far fewer
cells and allows the local optimization procedure to fine-tune its guess.

The sampling procedure used in the current implementation is similar to the
“template” method described in {Wat89]. The algorithm always places the first
node in the center of the drawing space. When initially placing a node, the
algorithm iterates through the list of its placed neighbors.® For each neighbor,
it considers the template of cells exactly one ceil or ! cells away from the node
in each of the eight compass directions. The sampling procedure also considers
the template around the barycenter® of the neighbors. Finally, the algorithm
samples the four corners of the drawing space. If all of these cells are occupied,
the algorithm gives up and suggests using a larger drawing space. Otherwise,
it places the node in the sampled cell which offers lowest cost for placing the
node.

5The node-ordering procedure guarantees that all other nodes other than the first will have
at least one of their neighbors placed before them.

SThe barycenter of a set of points is the geometric analogue of the center of mass of a set
of equal point masses,

12

X XX
X X
X
X X
X
XX
X X X X
XX
X
X X
X1 X
X X X
XXX X
Figure 7

Figure 7 illustrates this sampling procedure. Here, the new node to be placed
is adjacent to nodes p and ¢, and ! is 4. The sample points are marked with
X’s.

The number of cells sampled in this method is proportional to the node's
degree, and the algorithm must compute the cost function for each sample point.

There are other sampling strategies for node placement. One approach is
to randomly generate the sample points. Experimentation showed that this
approach 1s less effective than the template method. Another approach is to
use the topology of the drawing, e.g. pick one sample point from each region of
the drawing. This approach looks promising: its main disadvantage is that it
requires that the algorithm maintain the topology of the drawing. A topological
approach also may require that the edges bend.

13

4.3 Local Optimization

The local optimization procedure is the most critical component of the algo-
rithm. Even if the node-ordering and initial piacement prccedures were perfect,
the algorithm would still need local optimization to correct mistakes made be-
cause of incomplete information. Without local optimization, the algorithm
would make mistakes like the one depicted in Figure 8. The optimal way to
draw a path of three nodes is to place them equally spaced on a straight line,
but the optimal way to draw a cycle of four nodes is as a square. An incremen-
tal algorithm, however, cannot make this “realization” until it places the fourth
node, by which time it is too late to correct its earlier mistake of placing the
first three nodes on one line. Moreover, the initial placement procedure is not
perfect, so local optimization can make up for its inaccuracy by immediately
improving the initial guess.

(nodel
(node2]

When the algorithm performs local optimization at a node, it samples near
the current position using the same sixteen-cell template as the initial placement
procedure.” If any of these cells have a lower cost than the node’'s current cell,
the algorithm moves the node to the better cell. This algorithm repeats this
process until the node is in a position which is locally optimal with respect its
template.

Whenever the local optimization procedure succeeds in moving a node, it
calls itself recursively on the neighbors of the improved node. This recursion
propagates the optimization process throughout the drawing when one improve-
ment fires off a chain of improvements in its neighbors, their neighbors, and so
forth. Since the placement of a node is most likely to influence the costs asso-
ciated with its previously placed neighbors, the recursion allows the algorithm
to use the new information to correct earlier mistakes.

Figure 8

"The sampling procedure for local optimization, like that for initial placement, can ecasily
be changed.

14

The running time of this recursively propagated local optimization procedure
depends on how much the algorithm can improve the drawing. An unsuccessful
attempt to perform local optimization at a node performs only a constant num-
ber of computations of the cost function. Accordingly, the ratio of number of
operations spent in local optimization to the number of successful improvements
is, in the worst case, constant. The algorithm essentially gets what it pays for:
if it spends a large portion of its running time performing local optimization,
then the drawing actually needs the improvement. Another way to look at this
running time is to say that some graphs are just more difficult to draw than
others, and that this difficulty, which shows in the corrections to the initial
placement of nodes, determines the running time of the algorithm.

After initially placing a node, the algorithm immediately performs local
optimization at that node and at its neighbors. After the algorithm has placed
all the nodes, it fine-tunes the drawing by performing local optimization at every
node.

5 Results

This section illustrates the performance of the algorithm, both qualitatively
and quantitatively. The qualitative part is a study of drawings produced by the
algorithm. The quantitative part defines a trio of measures for the quality of a
drawing and compares the proposed algorithm with those of [DH91] and [FRS1]
on a test set of graphs.

This paper does not discuss the concrete running time of the algorithm,
because it is by necessity machine dependent. The analysis in [Tun92] shows
how the algorithm performs when implemented on an IBM RS-6000 workstation.
Typical running times for graphs of under a hundred nodes are less than three
seconds. The implementation of [FR91] runs at a comparable speed, but it uses
a fixed schedule of iterations, so its running time is a function of the number of
nodes. The simulated annealing algorithm of [DH91] is too slow to be practical
in its present form.

5.1 Examples

The drawings presented here illustrate the strengths and weakness of the algo-
rithm. All drawings use the defauit settings for the cost function. A table at
the end provides quantitative information about the examples.

One problem with existing graph drawing algorithms is that a small change
in the choice of parameters can drastically affect the output. To quote Fruchter-
man and Reingold, “the algorithm should work reasonably well almost always,
without the user having to fiddle with options” [FR91}. Accordingly, the pro-
posed algorithm only expects the user to choose one parameter—the target edge
length {~as a quality control setting. A low value for ! suffices for most sparse

15

graphs, which require very little local optimization. For dense graphs, a larger
{ can substantially improve the drawing quality. At the same time, increasing
{ slows down the algorithm, since the fineness of the drawing results in more
local optimization. A small change in { rarely has a significant effect on the
performance of the algorithm.

The examples here are IKTEX files produced by the proposed algorithm and
directly incorporated into this document. The implementation of the algorithm
consists of less than a thousand lines of ANSI C. Since the code is portable and
deterministic, it is quite machine-independent.®

5.1.1 Planar Graphs

Trees

The proposed algorithm treats trees like all other graphs; that is, it draws
them according to the standard aesthetic criteria, rather than the conventional
format for rooted trees. The node-ordering strategy ensures that the algorithm
draws the tree breadth-first, starting from its graph-theoretic center. The results
are aesthetic, crossing-free drawings. Figure 9 shows a complete binary tree of
thirty-one nodes. Another example of a highly symmetric tree, Figure 10 shows
a complete 2-3 tree of twenty-one nodes. Figure 11, a Fibonacci tree of thirty-
three nodes, shows how the algorithm performs on an asymmetric tree.

Planar Meshes

The proposed algorithm handles planar meshes much like it handles trees:
its node-ordering strategy finds the center and allows the initial placement of
nodes to be almost perfect, so that the aigorithm avoids being bogged down
in local optimization. Figure 12 shows a triangular mesh of thirty-six nodes.
Figure 13 shows a square mesh of twenty-five nodes.

Polyhedra

In the default settings, the algorithm draws graphs of polyhedra so that
they appear to be projections of three-dimensional shapes.? Figures 14 to 16
illustrate how the algorithm draws a cube, a dodecahedron, and an icosahedron.

5.1.2 Non-Planar Graphs

Figures 17 to 20 are examples of classic nonplanar graphs. Figure 17 is Aj,
the complete graph on six nodes. Figure 18 shows a nine-node torus, while
Figure 19 shows the sixteen-node torus or hypercube. Finally, Figure 20 shows
a three-level pyramid or multigrid.

3With the exception of the choice of constants discussed in the previous section.
21t is possible, by varying the settings, to obtain crossing-free drawings of polyhedra; see
[Tun9?j.

16

5.1.3 Random Graphs

Figures 21 and 22 demonstrate the performance of the proposed algorithm on
random graphs. The two drawings, a tree, and sparse graph, are aesthetic but
lack structure—which makes sense for drawings of random graphs. Attempts
to produce an aesthetic drawing of a random dense graph were futile.

Figure 9 Figure 10

|

E, EI: 73] X0 U] LA (A
gm!it!ﬁi.!. A
l"Al X1 [AY ’—‘l’.‘ .

g‘l'b"d'l.'ﬂ'l?ﬂ'l‘-’l’l"
u [XY X LA L2

Y
’!AJ‘!AJ’IAJ LA

&ﬂ EYARLY.ILY

\d "AV“"I‘!'
Sgdgd

S

Figure 11 Figure 12

17

1]

el

L%J

Figure 13 Figure 14

Figure 15 Figure 16

18

Figure 17

Figure 19

19

Figure 20

5.1.4 Quantitative Summary of Examples

Figure | Description Nodes | Edges | |
9 Complete Binary Tree 31 30 3
10 Complete 2-3 Tree 21 29 3
11 Fibonacci Tree 33 32 3
12 Triangular Mesh 36 84 2
13 Square Mesh 25 40 2
14 Cube 8 12 1
15 Dodecahedron 20 30 2
16 Icosahedron 12 30 4
17 Ke 6 15 1
18 Torus 9 18 8
19 Hypercube 16 32 2
20 Pyramid 14 36 2
21 Random Tree 32 31 2
22 Random Sparse Graph 33 40 3

5.2 Quantifying the Quality of a Drawing

In order to compare the performance of graph drawing aigorithms objectively,
it is necessary to define quantitative measures for the quality of a drawing.
Such measures must take into account the three aesthetic goals: uniform edge
lengths, node distribution, and minimal edge crossings. As thie introduction
notes, however, these criteria are competitive, and there is no reasonable way to
assign absolute weights to these three criteria. Instead, the quality of a drawing
will consist of three values, each of which reflects one of the criteria.

20

The drawing must be normalized, since the quality of the drawing should be
independent of the choice of overall scale. Dividing all of the coordinates by the
mean edge length yields a drawing where the mean edge length equals 1, hence
referred to as the normalized drawing.

The measure of the uniformity of edge lengths, denoted @, is the variance
of the edge lengths in the normalized drawing. The lower this value, the more
uniform the edge lengths. In the optimal case, when edge lengths are all equal,
the variance equals zero.

The measure of node distribution, denoted @2, is the sum, over all pairs of
nodes, of node repulsion costs in the normalized drawing. The node repulsion
cost from any pair of nodes is the reciprocal of the square of the distance between
them, just as in the cost functions of both the proposed algorithm and that of
[DH91].

Finally, the measure of edge crossings, denoted @3, is simply the number of
edge crossings in the drawing.

These three measures make it possible to quantitatively compare the quality
of two drawings of the same graph. If a drawing achieves lower values than
another in all three categories, then the first is unambiguously the more aesthetic
of the two. Otherwise, only an intelligent (and biased) observer can decide which
criteria are more important for drawing a given graph.

5.3 Comparison with Published Algorithms

Here the proposed algorithm is compared with those of [DH91] and [FR91] on a
test set of thirty graphs. All three algorithms were run strictly in their default
settings, i.e. there were no changes in parameters, command-line or otherwise,
among the thirty test graphs. Not allowing the settings to vary ensured that
the comparison would be both tractable and fair. The choice of graphs for the
test et is necessarily arbitrary, but the fact that many of the test graphs were
used as examples in [DH91] and [FR91] implies that these graphs are “typical”
in the field.

The test set of graphs is divided into four groups according to size and
density. For each category there are two tables. The first gives verbal and
quantitative deseriptions of the graphs. The second shows how each algorithm
performs on the those graphs—the running times and the three measures of
quality for the drawings. As defined above, @1, @2, and @3, denote the uniform
edge length, node distribution, and edge crossing quality measures, respectively.
The lower these values, the better the quality of the drawing.

In order to make the tables readable, the graphs in each group are first
numbered in a table and then referred to by those numbers in a subsequent
table which shows the performance of the three algorithms on them.

21

5.3.1 Small, Sparse Graphs

These are graphs of about sixteen nodes with an average degree of at most three:

Description Nodes | Edges
1 Path 16 15
2 Cycle 16 16
3 | Complete Binary Tree 15 14
4 K33 6 9
5 Dodecahedron 20 30
6 Square Mesh 16 24
7 Random Tree 15 14
8 Random Graph 16 20

The performance results for the three algorithms:

I Proposed Algorithm (FRo1] [DH91}

& Q2 Q3 (95} Q2 | Qs Q Q2 | Qs
1 0 .0858 0 L0031 | .2393 1 0081 | .2079 0
2 0012 1 1124 0 0009 | .1114 0 0055 | .2222 0
3 0005 | .1297 0 0055 | 1561 0 0073 | .3070 3
4 .0082 { .5090 1 0058 | .4670 3 .0093 | .4981 1
5 0037 { .2643 9 .0009 | .2684 6 0034 | .3659 14
6 0007 | .1841 0 0023 | .3416 7 .0066 | .2827 3
7 L0001) 1231 0 0048 | 1677 1 .0108 3126 0
8 0011 | .1629 1 0031 | 1640 1 .0028 2356 2

On these graphs, the proposed algorithm performs better than the other two

with respect to all three measures.

5.3.2 Small, Dense Graphs

These are graphs of about sixteen nodes and an average degree of at least four:

Description Nodes | Edges
9 Wheel 13 24
10 | Triangular Mesh 15 30
11 Hypercube 16 32
12 Ks 6 15
13 [cosahedron 12 30
14 Ky 12 66
15 { Random Graph 16 40

| 18 | Random Graph 16 64

22

The performance results for the three algorithms:

| Proposed Algorithm {FR91] [DH91]

Q| @ | O 1)) Q | Qs Q Q | @
9 .0036 | .2925 0 0036 | .3431 5 0064 | .3327 0

10 .0001 | .2015 0 L0006 | .2029 g 0045 | .3505 12
11 .0089 | .5125 10 0001 | 4670 24 0072 | 4798 35
12]} .0119 }| .8257 3 .0051 | .5418 15 0136 ; .9182 4

13 0143 | .5481 6 0021 | 4151 23 0060 | .4765 20
14 .0040 | 1.461 | 185 0021 | 7418 | 391 0041 | 1.503 | 214
15 L0061 | .6249 22 .0017 | .3810 36 0062 | 6187 42
16 0042 | 8606 | 117 0017 | 5445 | 160 0039 | .8617 | 164

Here, the algorithm of [FR91] is best at minimizing Q; and Q-, the spring
embedder components of the cost function, but it does not do as well with
Q3, the number of crossings. This result is not surprising, since Fruiiterman
and Reingold’s algorithm was not explicitly avoiding crossings. The proposed
algorithm performs similarly to that of [DH91] with regard to Q; and Q2, but
does much better than both [DH91] and [FR91] in terms of Q3.

5.3.3 Large, Sparse Graphs

These are graphs of fifty to sixty nodes with an average degree of at most three:

Description Nodes | Edges
17 Path 48 47
18 Cycle 48 43
19 | Complete Binary Tree 83 62
20 Fibonacci Tree 54 53
21 Hexagonal Mesh 54 7
22 Square Mesh 49 84
23 Random Tree 63 62
24 Random Graph 60 80

The performance results for the three algorithms:

|| Proposed Algorithm [FR91] [DH91]

2] Q2 Qs 9] Q2 | Qs Qx Q2 Qs
17 0 10329 0 .0016 | .1672] 0071 | 3474 36
18 L0021 | .0474 L .0021 | 1719 16 .0068 | .3983 41
19 0005 | 0677 0 0018 | .1316 18 0071 | 3395 80
20 0005 | 0661 0 0025 | 1743 12 .0049 | 3465 71
21 .0008 | .0939 5 .0011 | .2170 26 0060 | .4599 | 165
22 .0004 | .0921 0 0009 | 1622 | 22 0039 | .3591 130
23 0009 | 0638 0 0024 | .1410 13 0065 | 4124 37
24 L0029 | .1642 20 0011 | 2095 | 44 0030 | .3842 | 135

23

For large sparse graphs, as for small ones, the proposed algorithm is best for
all three measures.

5.3.4 Large, Dense Graphs

These are graphs of about sixty nodes and an average degree of at least four.
There are not many interesting moderately dense graphs of this size in the lit-
erature; hence three of the six test graphs are randomly generated ones. More-
over, the implementation of the algorithm of [DH91] is not configured to handle
graphs of over 100 edges.

#* Description Nodes | Edges
25 Wheel 61 120
26 Torus 64 128
27 | Triangular Mesh 55 135
28 | Random Graph 60 120
29 { Random Graph 60 150
30 | Random Graph 60 180

The performance results for the two algorithms:

[# i Proposed Algorithm (FR91{

195 Q2 Qs s Q: | Qs
25 ,0053 | .4415 57 L0020 | 4270 | 143
26 0037 | .2591 116 .0007 | .2818 | 168
27 .0000 | .0906 g L0005 | .1400 41
28 0033 | 4707 163 .6609 | .3333 | 291
29 0038 | .7621 404 L0006 | .4216 | 495
30 0029 | .8944 | 828 0007 | .5341 | 992

As with the small dsuse graphs, the algorithm of [FR91] does better with
respect to the spring embedder measures, but the proposed algorithm achieves
substantially fewer crossings.

5.3.5 Summary of Comparison

The spring embedder measures favor the proposed algorithm for sparse graphs
and [FR91] for dense ones. [FR91] performs almost as well as the proposed
algorithm for small, sparse graphs, but achieves notably worse results for larger
ones. [DH91] achieves significantly worse results on both sets of sparse graphs.
On dense graphs, small and large, [FR91] achieves the best results for the spring
embedder measures. The proposed algorithm and [DH91] perform similariy on
small, dense graphs. Logically, these measures should favor the spring embedder
model of [FR91).

24

The edge crossing measure strongly favors the proposed algorithm over the
other two. Although the authors of [FR91] express concern with minimizing
edge crossings, their algorithm does not explicitly avoid them. In contrast,
the proposed algorithm explicitly includes edge crossings in the aesthetic cost
function and succeeds at producing drawings with very few crossings, except for
very dense graphs. For small graphs, [DH91] and [FR91] perform similarly in
terms of edge crossings; for large graphs, [FR91] achieves far fewer crossings.

None of the three algorithms produce satisfactory drawings for most large
dense graphs. It is unclear whether these graphs are inherently ugly, or whether
the algorithms are simply not up to drawing them well.

6 Conclusion

The proposed algorithm produces conventionally aesthetic drawings for moder-
ately sized graphs at an acceptable speed, and it is flexible enough to accommo-
date a wide variety of aesthetics. Nonetheless, there is still plenty of room for
improvement, especially for drawing larger and denser graphs. The proposed al-
gorithm, like other algorithms for genearal undirected graphs, does not separate
the problem of determining an embedding from the problem of choosing exact
coordinates for nodes. A two-phase approach that separates these steps seems
promising. Any approach with provable output properties would be a great
step towards understanding the theory of graph drawing. Hopefully the ideas
proposed in this paper will help push forward the horizons on this problem.

References

[AFKN89] V. Akman, W. R. Franklin, M. Kankanhalli, and Narayanaswami.
“Geometric computing and uniform grid technique.” Computer-
Aided Design, 21(7):410-420, Septemnber 1989.

[BQ79) M. Breuer and N. Quinn. “A forced directed component placement
procedure for printed circuit boards.” [EEE Trensactions on Cir-
cuits and Systems, 26(6):377-388, 1979.

[DETT93] G. DiBattista, P. Eades, R. Tamassia, and I. Tollis. Algorithms for
drawing graphs: an annotaled bibliography. Technical report, Brown
University, June 1993.

[DH91] R. Davidson and D. Harel. Drawing graphs nicely using sitmulated
annealing. Technical report, Department of Applied Mathematics
and Computer Science, Weizmann Institute of Science, April 1991.
Revised version.

25

SNV |

(Ead84)

[EMW86]

[EW91]

[EX89]

[FR91]

(GI83]

[KK89]

[KS80]

[MO8S5)

[STTS1]

[Tun92)

[Wat89]

P. Eades. “A heuristic for graph drawing.” Congressus Numeran-
tium, 42:149-160, 1984.

P. Eades, B. McKay, and N. Wormald. “On an edge crossing prob-
lem.” In Proceedings of the Ninth Australian Computer Science Con-
ference, pages 327-334. Australian National University, 1986.

P. Eades and N. Wormald. Edge crossings in druwings of bipartite
graphs. Technical report, Department of Computer Science, Univer-
sity of Queensland, December 1991. to appear in Algorithmica.

P. Eades and L. Xuemin. “How to draw a directed graph.” In
Proceedings of the IEEE Workshop on Visual Languages (VL '89),
pages 13-17, 1989.

T. Fruchterman and E. Reingold. “Graph drawing by force-directed
placement.” Software — Practice and Ezperience, 21(11):1129-1164,
November 1991.

M. Garey and D. Johnson. “Crossing number is NP-complete.”
SIAM Journal of Algebraic end Discrete Methods, 4{3):312-3186,
1983.

T. Kamada and S. Kawai. “An algorithm for drawing general undi-
rected graphs.” Information Processing Letters, 31:7-15, April 1989.

Joseph B. Kruskal and Judith B. Seery. “Designing network dia-
grams.” In Proceedings of the First General Conference on Social
Graphics, pages 22-50, Washington, D.C., July 1980. U. S. Depart-
ment of the Census. Bell Labs Technical Report No. 49.

Z. Miller and J. Orlin. “NP-completeness for minimizing maximum
edge length in grid embeddings.” Journal of Algorithms, 6:10-16,
1985.

K. Sugiyama, S. Tagawa, and M. Toda. “Methods for visual under-
standing of hierarchical systems.” IEEE Transactions on Systems,
Man, and Cybernetics, SMC-11(2):109-125. February 1981.

D. Tunkelang. An aesthetic layout algorithm for undirected graphs.
Master’s thesis, Massachusetts Institute of Technology, 1992.

H. Watanabe. “Heuristic graph displayer for G-BASE.” Interna-
tional Journal of Man-Machine Studies, 30:287-302, 1989.

26

