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FOREWORD

At the present time, thousands and thousands of people around the world deal with ice,
snow and permafrost. They are scientists, educators, engineers, navigators, meteorologists
and others. While a small fraction of these people contribute to the knowledge base in ice
physics, all of them use knowledge from it frequently. Moreover, successful applied research
is based upon fundamental science—one more reason for ice specialists to have a textbook
on ice physics on their desks.

The first modern ice physics text was Fletcher’s book on The Chemical Physics of Ice (1970).
Fletcher’s book is in typical textbook format: it is reasonably brief and easy to understand.
He touched on a few of the most important topics, but not all of them.

The most comprehensive book on ice physics to date was published by Hobbs in 1974.
Hobbs considered almost all of the basic aspects of ice as understood at that time. Moreover,
he described and compared several (sometimes opposing) viewpoints. This fundamental
and rather large (837 pages) book is commonly known as the “Ice Bible” by specialists in the
field. In 1974 and 1975, two CRREL monographs on ice were produced by John Glen. These
were briefly and clearly written and reviewed almost all ice-related subjects. This work was
(and in some respects still is) a magnificent introduction to ice.

Finally, in 1981 Maeno wrote a simple, popular book for the express purpose of attracting
people’s attention to the subject.

During the past 20 years, a significant amount of new experimental and theoretical work
has appeared, dramatically changing our views on ice physics. As a result, we are now able
to formulate physical laws using more simple and direct methods. We have found some of
the physical models used in the past to be completely wrong. The physics of ice is a much
better developed subject than it was 20 years ago.

For the above reasons, we feel the time is ripe for a contemporary book on ice physics,
incorporating the known and proven with almost 20 years’ worth of material not covered by
previous works.

We have tried to prepare a “readable” book, and not one that requires the reader tobe a
uniquely educated person. It is our intent to present the material in such a way that any
reader attracted by the title Ice Physics will be able to comprehend it. This is quite difficult for
a book dedicated, not to a particular field of knowledge, but to a specific material. Indeed,
for ice it means we have to consider a wide variety of subjects, including quantum chemistry,
solid state physics, the theory of elasticity, ionic conductivity, synchrotron x-ray topogra-
phy, crystal growth, the physics of surfaces and more.

The primary goal is to produce as simple a book as possible without sacrificing scientific
accuracy. Experimental facts, physical ideas and theories will be strongly organized and
bound together cohesively. The reader will be introduced to a wide variety of material ona
step-by-step basis. Then the picture will be whole.

Toaccelerate publication, this book will appear firstin the form of a series of joint CRREL~
Dartmouth reports, later to be published in CRREL’s Monograph series, on:

1. The structure of ordinary ice

Part I: Ideal structure of ice. Ice crystal lattice
Part II: Defects in ice

Volume 1: Point defects

Volume 2: Dislocations and plane defects




2. Electrical properties of ice
Part I: Conductivity and dielectric permittivity of ice
Part II: Advanced topics and new physical phenomena
3. Optical properties
4. Electro-optical effects in ice
5. Thermal properties
6. Mechanical properties of ice. Elasticity and anelastic relaxation. Plastic properties.
Fracture of ice
7. Electromechanical effects in ice
8. Surface of ice
9. Other forms of ice and their properties
10. Ice in space
11. Ice research laboratories
The reports will be prepared in a sequence convenient to the authors. The present is the
fourth in the series.




NOMENCLATURE

This Nomenclature section incorporates that of
Volume 1, Point Defects.
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T ¢ =

lattice constant

Burgers vector

magnitude of Burgers vector

lattice constant

diffusion coefficient

diffusion coefficient of hydrogen in ice
diffusion coefficient of interstitials
self-diffusion coefficient

(va?) exp (‘5-‘L

diffusion coefficient of vacancies

electric displacement vector

proton charge

relative dielectric permittivity

strain

energy of creation of a pair of Bjerrum
defects

energy of creation of an ion pair
activation energy of static conductivity 6
activation energy of high-frequency con-
ductivity 6.,

energy of a defect creation

defects’ electric charge (i=1, 2,3, 4)
formation energy of interstitials

kink formation energy

activation energies of protonic defects’
motion(i=1,2,3,4)

dielectric permittivity of vacuum
activation energy of self-diffusion

static dielectric permittivity ( < < wp)
activation energy of partial conductivity
of i-type defects (i =1, 2,3, 4)
activationenergy of Debyerelaxation time
activation energy

high-frequency (@ < < wp) dielectric per-
mittivity

strain rate

free energy

= 3.85k8T 700

frequencies

fault vector

NHL0

free energy of defect formation
free energy of kink formation
free energy of kink motion
force acting on i-type of defects
diffraction vector

activation volume of formation of pro-
tonic defects

activation volume of protonic defects’
motion

separation of the Peierls troughs
=1,-1,-1,1 fori=1,2,3,4

flux density of defects (i=1, 2, 3, 4)
displacement current

drift current

electric current density

Boltzmann constant

unit vector parallel to a dislocation line
mobility

mobility of i-type of defects
concentration (in m3)

concentration of dislocations

D-defect concentration

concentration of water molecules in ice
concentration of defects (i=1, 2, 3, 4)
number of kinks per unit length
L-defect concentration

concentrations of vacancies

pressure

electric charge of carriers

rate of heat generation

distance

oxygen-oxygen distance in ice lattice
(2.764)

entropy

conductivity

normal stress

Bjerrum defect conductivity—op= 03+ 0;
configurational entropy

vibrational entropy

partial conductivity of i charge carrier
ionic conductivity—a;,, = 0y + 6




kink entropy

static or low-frequency conductivity (o <
< wp)

high-frequency conductivity (> > wp)
temperature

shear stress

time

mean time to reorient a hydrogen bond
= wp ! Debye relaxation time

lifetime of charge carriers

internal energy

activation energy of motion of interstitials
activation energy of ionic motion

S5

)

wxﬁﬁei

dislocation velocity

drift velocity

activation volume of formation of inter-
stitials

activation volume of motion of interstitials
kink velocity

molecular volume in ice (3.3 x 10-23 cm?3)
number of configurations of a system
circular frequency

Debye frequency

configurational vector

=1/ N0

= np/Mpo




Structure of Ordinary Ice Iy,
Part II: Defects in Ice
Volume 2: Dislocations and Plane Defects

VICTORF. PETRENKO AND ROBERT W. WHITWORTH

INTRODUCTION

Dislocations are line defects in crystals and are
most easily visualized in terms of the slip of one
plane of atoms over another by a single lattice
spacing, as illustrated in Figure 1. In the interme-
diate stage shown in this figure, the line BC is the
boundary between the slipped region ABC and
the remainder of the slip plane. Thisboundary line
isadislocation line, or dislocation for short. The pres-
ence of the dislocation results in an elastic distor-
tion throughout the whole crystal, but the disrup-
tion of the lattice is greatest along the core BC. The
lattice vector by which slip has occurred on the
plane ABC is known as the Burgers vector b of the

Figure 1. Production of slip in a crystalline
material by the glide ofadislocation BC across the
slip plane. The amount of slip is given by the
Burgers vector b. The magnified portions show
the arrangement of atoms around the screw com-
ponent at B and the edge component at C.

dislocation. Where the dislocation lies parallel tob
as at B, it is said to have screw orientation, and
where it is perpendicular to b as at C, it has edge
orientation;in general, adislocation willhave both
screw and edge components. An edge dislocation
has dangling bonds at its core, as seen in the
enlarged region around C shown in Figure 1, and
canbe thought of alternatively as the line at which
an added half-plane of atoms terminates within
the crystal. There are no dangling bonds on a
screw dislocation, but the lattice is distorted in
sucha way thata path passing once round the core
advances by one Burgers vector.

From the way in which we have introduced
them, it is clear that the motion of dislocations on




theslip plane is associated with plastic deformation
of the crystal. Such motion of the dislocation is
known as glide, but it represents only one aspect of
the properties of dislocations. Dislocations may be
incorporated into a crystal as it is grown, affecting
the topology of the whole lattice, but with little
effect on plastic deformation. The core of a disloca-
tion may be displaced perpendicular to the glide
plane by the adding of atoms to or removing of
atoms from the end of the extra half-plane; this is
known as climb.

The properties of dislocations are described in
many books and articles. For a very clear discus-
sion of the basic geometry, we recommend Read
(1953), and for a comprehensive discussion includ-
ing many aspects relevant to ice, Hirth and Lothe
(1982). A beautifully illustrated book describing
dislocations in ice is that edited by Higashi (1988).

DISLOCATIONS IN THE ICE STRUCTURE

Basal dislocations

It is now well established that crystals of ice
deform by slip on the basal plane (0001) (Glen and
Perutz 1954), and that macroscopic slip on any
other plane is difficult (Higashi 1969, Duval et al.
1983). The Burgers vectors for slip on the basal
plane are the three lattice vectors of the form (a/3)
<2110>, but in macroscopic experiments slip can
occur in any direction by a combination of disloca-
tions with these three vectors (Kamb 1961). We will,
therefore, consider initially only basal dislocations
of this type. Because of the hexagonal symmetry,
the simplest dislocations are those that lie parallel
or at 60° to the Burgers vector; these are screw and
60° dislocations respectively.

s -
[1010]

Figure 2. Projection of the structure of ice on the (1210)
plane, showing the basal planes of the shuffle set and of
the glide set; 1and Il aredifferent kinds of (1010) planes.
Only oxygen atoms are shown.

_Figure 2 shows the ice structure projected ona
(1210) plane with the basal plane horizontal. Slip
can, in principle, take place between two kinds of
planes called the glide set and the shuffle set. The
planes of the shuffle set are more widely spaced
and were originally thought to be the natural slip
planes, but the planes of the glide set fit over one
another in a way that resembles the packing of
close-packed metals. Cr: such planes, adislocation
may lower its energy by dissociating into two
partial dislocations, separated by a stacking fault
(see the Stacking Faults section). This dissociation
is illustrated in Figure 3a, in which the open and
shaded circles represent oxygen atoms on adjacent
basal planes of the glide set; the screw dislocation
in Figure 3b is shown dissociating into two partial
dislocations of Burgers vectors by and b, of the
type (a/3) <1100>. Slip by b, corresponds to mo-
tion of the shaded atoms in Figure 3a from B to C,
creating the stacking fault, and slip by the further
amount b; removes the fault, resulting in a netslip
by the full Burgers vector b = b; + b,. Both the
partial dislocations associated with a screw dislo-
cation have a 30° character. Figure 3c shows the
dissociation of a 60° dislocationintoanedgeand a
30° partial dislocation. The dissociation leadstoa
reduction in the elastic strain energy of the dislo-
cation, and this reduction is balanced by the ener-
gy required to create the stacking fault. From esti-
mates of the stacking fault energy, Fukuda et al.
(1987) have estimated that in ice screw disloca-
tions on planes of the glide set would dissociate
into partial dislocations separated by about20nm.

In many semiconductors with structures relat-
ed to that of ice, the dissociation of dislocations on
the basal plane has been observed directly in the
electron microscope, and slip is therefore assumed
to occur on planes of the glide set (see George and
Rabier 1987). There is no such direct evidence for
ice; and, as the bonding is quite different, we can-
not presume that the same conclusion applies.
However, as we will see, indirect evidence sug-
gests that dislocations do in fact glide on planes of
the glide set.

If a straight dislocation lying on its glide plane
moves forward by one Burgers vector over part of
its length, the step so produced is called a kink. An
example foran edgedislocationisshowninFigure
4. The most elementary step in the process of glide
is for a kink to move along the dislocation by one
lattice spacing, asshownby thebroken line. Figure
4 also shows a jog at which the dislocation makes
astep from one glide plane to another. For a dislo-
cation with an edge component, the formation of a




a. Positions A, B and C of possible (0001)
layers of molecules in the ice structure.

o]
b-aa [1210]

b, 34 [0110]

b. Screw dislocation.

b, "31;;3 (1100)

) e
==3 [1210
b 33[ ]

b, =34 [1100]

1 )
b, =34 [0110] ¢. 60°dislocation.

Figure 3. Dissociation into two partial dislocations. Screw and 60° dislocations on planes of the glide set can
dissociate into partial dislocations with the Burgers vectors by and b, separated by a stacking fault, shown
shaded.

Figure 4. Edgedislocation containing a kink on its glide
plane and a jog at which it makes a step from one glide
plane to another. The broken line shows an elementary
step in the motion of the kink.

jogoritsmotionalong thedislocation requires that
atoms ve added to or removed from the end of the
extra half-plane, and this is what is involved in
climb. In this process, the dislocation acts as a
source or sink of vacancies or interstitials. In theice
structure, the simplest jog would take the disloca-
tion from a glide to a shuffle plane; a full jog must
span two layers of atoms (see Fig. 2).

Kinks and jogs are in general quite different in
character. However, a pure screw dislocation has
the property that it can, in principle, glide on any
plane containing its Burgers vector, and in this
case whether a particular step behaves asa kink or
a jog depends upon which plane is being consid-
ered to be the glide plane.

Figures 5a and b show the arrangement of mol-
ecules on the two sides of the basal glide plane at
an edge and a 30° partial dislocation in the ice
structure (Whitworth 1980). Open circles repre-

e S—eSE ——————




—> [1120]
a. Dislocation core for edge dislocations with dangling

—P [1120)

c. Possible way in which the core in Figure 5a can be
reconstructed to link up the dangling bonds.

sent molecules above the glide plane and shaded
circles represent those below. The extra half-plane
is above the glide plane, and the dislocations in
both of the diagrams include kinks. There are
dangling bonds on the molecules above the glide
plane at the edge dislocation, and on both sides of
the glide plane for the 30° dislocation. With some
changes to bond lengths and bond angles, and
with some local elastic distortion, it is possible to
link up these dangling bonds, except at the kinks,
as shown in Figures 5c and d. This is known as
reconstruction, whichis generally believed to occur
in semiconductors. Calculations by Heggie et al.
(1992) suggest that it probably happens in ice, too,
although there is more than one possibility about
how the reconstruction might occur for the 30°
dislocation.

—> (1120}
b. Dislocation core with 30° partial dislocations and
dangling bonds.

—p (1120}

d. Possible way in which the core in Figure 5b can be
reconstructed to link up the dangling bonds.

Figure 5. Positions of molecules above and below the (0001) glide plane for partial dislocations in ice.

Nonbasal dislocations

Dislocations with the basal Burgers vector
(a/3) <2110> can in principle glide on the non-
basal planes that include this vector, such as
{0110} or (0111}, and in the Dislocations Associated
with Plastic Deformation section, we will report
observations of edge dislocations that glide on
such planes. Thereis again more than one possible
typeofglide plane, such as the sets of (1010) planes
markedIand Il in Figure 2, but thereis noevidence
to show which of these is operative.

Inaddition we may expect dislocationsin which
the Burgers vector has a [0001] component. Such
dislocations have been observed in ice, usually in
the form of loops lying in the (0001) plane. Such
loops are called prismatic and are formed by the
condensation of point defects. There is no evi-




dence that these dislocations can glide or that ice
can be deformed plastically by slip in the [0001}

DIRECT OBSERVATION OF
DISLOCATIONS

General

Since the earliestexperiments of Webb and Hayes
(1967), X-ray topography hasbeen extensively used
for thestudy of dislocations inice. Itisundoubtedly
the most suitable technique for use with this mate-
rial, and, of all materials, ice has been the one most
fruitfully studied by this method. We will first try
to explain why this is so.

For other materials the most powerful technique
for observing dislocations is usually the transmis-
sion electron microscope. However, in the case of
ice, the preparation and handling of suitable thin
specimens presentenormousdifficulties, and, even
when prepared, the specimens have a very limited
life in the electron beam. Although there have been
reports of such experiments (Unwin and Muguru-
ma 1972, Falls et al. 1983), no significant informa-
tion has been obtained in this way. It is possible to
produce etch pits on ice (Higuchi 1958) that can be
useful in orienting crystals, but these do not nor-
mally correspond to the points of emergence of
dislocations. Particular kinds of etch pits and other
etch features do appear to be related to dislocations
(e.g., Muguruma and Higashi 1963, Sinha 1977),
but the information obtained from such experi-
ments is very limited compared with that from
other crystals, such as LiF.

In contrast, X-ray topography has been used to
reveal dislocations in the interior of crystals thatare
a few millimeters thick and to observe their motion
during annealing and while under stress. This is
possiblebecauseice, havingalow molecular weight,
is sufficiently transparent to X-
rays of wavelength less than
about 0.9A, and ice crystals can
be grown with a low enough
dislocationdensity, thatindivid-
ual dislocations can be distin-
guished insuch largespecimens.

X-ray beam

Dislocation

A further reason why ice is suit-
able for dynamic experiments

e—i

X-ray topography technique

The form of X-ray topography that is the sim-
plest and the most easily explained has only be-
come possible with the availability of intense,
highly collimated beams of “white” X-radiation
from a synchrotron source. If such a beam falls on
a single crystal, as shown in Figure 6, it produces
Laue diffraction spots, in which there is a one-to-
one correspondence between a position on the
spot and the position at which the X-rays passed
through the crystal. Local misorientations of the
lattice within the crystal, such as occur at disloca-
tions, change the diffraction conditions slightly
and result in contrast in the Laue spot. Each spot is
therefore an image of the crystal in which disloca-
tions are visible, and these images are called topo-
graphs. The topographs can be recorded on high-
resolution photographic film or plates, and ob-
served in real time at lower resolution with an X-
ray sensitive TV camera.

The imaging conditions depend on the diffrac-
tion vector g, so thatadislocation of Burgers vector
bwillnotappear in atopograph for whichbothg:b
=0and g-(b x1) =0, where lis a unit vector parallel
to the dislocation line. This makes it possible to
identify the character of each dislocation.

The resolution depends on the degree of colli-
mation of the incident beam, which can only be
satisfactorily achieved with a synchrotron. With-
out this collimation, we have to use monochro-
matic radiation, and, with a conventional X-ray
source, the beam divergence for a reasonable in-
tensity is then too high for Bragg’s law to be satis-
fied over the whole crystal at once. Provision has
then to be made for scanning the crystal across the
beam, and the most commonly used arrangement
is the Lang (1959) camera, which has been used
extensively in all but the most recent work on ice
(see review by Higashi 1988). Because of the scan-

| Central spot
(very bright)

on dislocations is that they can
be moved slowly under stress,
whereas in many materials dis-
locations move suddenly by
large distances once some criti-

cal stress is reached. tion topography.

Figure 6. Principle of synchrotron white-beam X-radia-
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ning, the exposure time, which is typically a few
seconds using a synchrotron, becomes minutes or
hours, depending on the power of the X-ray gen-
erator.

Observations made by topographic methods
fall into three groups—dislocations grown into
the crystal, dislocations produced during plastic
deformation and dislocations introduced ormodi-
fiedby diffusion processes. The last of these groups
was considered by in Volume 1, Point Defects (Pe-
trenko and Whitworth {1994} see section on Molec-

ular Effects).

Grown-in dislocations

Allnormally produced crystals (produced with-
out special precautions being taken) or grains
within polycrystals contain stable networks of
grown-in dislocations, which often form arrays
constituting low angle boundaries. In ice almost
allsuch dislocations have thebasal Burgers vector,
and their concentrations are appreciably lower
than those found in metals and other commonly
occurring solids. Examples of good quality ice
from the Mendenhall Glacier are described by
Fukuda and Higashi (1969), but other naturally
occurring ice can be much less perfect (Fukuda
and Shoji 1988). For the study of individual dislo-
cations by topographic methods, much lower dis-
location densities are needed, and much attention
has been given in Japan to the growth and exam-
ination of such crystals (Higashi et al. 1968, Hi-
gashi 1974, Oguro 1988). Single crystals that are
several centimeters in diameter and typically 10
cm longare grown in glass tubes thatare seeded by
growth through a capillary. The latest refinement
of thismethod is that of Ohtomo et al. (1987). Good
crystals contain less than 100 dislocations with
(a/3) <2110> Burgers vectors per square centime-
ter, but there are usually also a few circular or
spiral loops that have [0001] Burgers vectors and
lie on or close to the basal plane (Fig. 7). These
loops, which are of prismatic character, have been
studied by Oguroand Higashi(1981), and itisnow
believed that they are formed by the condensation
of interstitials (Oguro et al. 1988). Crystals with
significant concentrations of impurities are usual-
ly much less perfect (Oguro 1988), but the grains
within polycrystals grown slowly under carefully
controlled conditions can be remarkably good (Liu
etal. 1992).

Dislocations with plastic deformation
Manyexperiments have been described in which
dislocations were observed to move and to multi-

Figure 7. Topographprojected on the (0001)
plane showing concentric dislocation loops
inanas-grown crystal of ice. The variation of
contrast round the loop is an in-"ication of its
prismatic character. The othe. slocations
seen are typical of the low-density random
network in a as-grown crystal (from
Oguro 1988, used with permission of Hok-
kaido University Press).

ply under an applied stress. Such motion repre-
sents an extremely early stage of deformation;
once any significant macroscopic strain is pro-
duced, the dislocation density becomes too high
fortopographicobservations. In early experiments
(e.g., Fukuda and Higashi 1973, Jones and Gilra
1973, Mai 1976, Fukuda et al. 1987, Fukuda and
Higashi 1988) much information was lost, because,
as was found subsequently, the dislocation struc-
ture changed after unloading in the time that was
required to obtain the topographs. In more recent
work, especially that using synchrotron radiation,
it is much easier to identify different kinds of
dislocations in the topographs.

Figure 8 is a topograph showing dislocations
projected on the basal plane in a crystal that had
been subjected to acompressive stress in a vertical
direction (Ahmad and Whitworth 1988). Features
with 120° angles as at A and B are dislocations
gliding onthebasal plane. These dislocations glide
as almost straight segments in the screw and 60°
orientations, butthe cornersrapidly becomecurved
after the stress is removed. Very occasionally, for
example in a collapsing loop, basal dislocations in
edge orientation have also been seen. The long
narrow loops like those at C and D have basal
Burgers vectors parallel to their lengths and lie on
nonbasal planes oblique to the plane of the topo-




graph. The tip of the loop is an edge dislocation on
the nonbasal plane, and the long segments in the
figure are screw dislocations. The loop E is a pris-
matic loop of the type shown in Figure 7.

Similar features to the nonbasal loops at C and

lms~ ————
— ‘/ N

Figure 8. Topograph projected on the
(0001) plane showing dislocations in-

P troduced by a compressive stress pro-

ducing ashear stress on this plane in the
vertical direction. The diffraction vector
is 1100; A and D are loops in the basal
plane. Cand D showedge dislocation seg-
ments on nonbasal planes lying oblique to
the plane of the topograph, which are
dragging long screw dislocations behind
them. E is a prismatic loop of the kind
shown in Figure 7 (from Ahmad and
Whitworth 1988).

D have been reported in the work of Fukuda et al.
(1987) (see also Fukuda and Higashi 1988), but the
nature of this nonbasal glide is best revealed in
crystals stressed parallel to the basal plane, as
shown in Figure 9 (Shearwood and Whitworth

1989). This shows dislocations propagating froma
scratch on the back surface of a crystal with the
orientation shown; the edge dislocations move on
{1010} planes, but the screw dislocations that they
leave behind do not glide on these planes. The
separation of the screw segments of loops, such as

} 100
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Figure 9. Sequence of topographs (left) showing edge disloca-
tions propagating on the (0110) and (1010) planes from a
scratch on the surface of a crystal oriented as indicated above
to prevent basal slip (from Shearwood and Whitworth 1989,
reproduced courtesy of the International Glaciological Soci-
ety from Journal of Glaciology, 35(120): 202).
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Cin Figure 8, arises from glide on the basal plane.
Hondoh et al. (1990) have also studied nonbasal
slip in specimens with the [0001] axis perpendicu-
lar to the stress.

We conclude from these observations that all
glide dislocations have Burgers vectors in the bas-
al plane, and that loops expanding on this plane
take up a hexagonal form made up of screw and
60° segments. The screw segments cannot cross-
glide on nonbasal planes, but edge dislocations
can glide easily on nonbasal planes containing
their Burgers vector. These characteristics are prob-
ably unique to ice, and are relevant to its high
degree of plastic anisotropy.

a. Tracings of the positions of the loop.

Figure 10. Hexagonal dislocation loop expanding on the (0001) plane after successive loadings (from Shearwood and
Whitworth 1991).

DISLOCATION MOBILITY

Experimental observations

The mostdetailed measurements of dislocation
velocities are those of Shearwood and Whitworth
(1991), who obtained sequences of topographs
showing the positions of dislocations between
successive applications of stress. Figure 10 shows
tracings of such positions for a loop expanding on
thebasal plane, and Figure 11 shows the projection
on thebasal plane of an edge dislocation moving to
the lower left on a nonbasal plane. For the stresses
up to 1 MPa used in these experiments, the dislo-
cation velocity vqg was found to be directly propor-
tional to stress 1; the velocities per unit stress for
basal screw, basal 60° and nonbasal edge disloca-
tionsin pureiceare plotted as functions of temper-

b. Topographic image traced as the sixth line in Figure 10a.

Figure 11. Two topographs and a sequence of tracings
showing the motion of a pointed dislocation loop gliding
to lower left on a nonbasal plane (from Shearwood and
Whitworth 1991).
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aturein Figure 12. The results fornonbasal disloca-
tions are consistent with the observations of Hon-
doh et al. (1990). Earlier results, such as those of
Yamamoto and Fukuda (quoted by Fukuda et al.
1987) and Mai (1976), do not distinguish among
different types of dislocations, and were probably
subject to recovery in the time taken to obtain the
topographs. There is no evidence to support the
nonlinear dependence of velocity on stress report-
ed by Mai.

In so far as the Arrhenius plots in Figure 12 are
straightlines, the activation energies fordislocation
glide (actually from plots of In(v4T/1) vs. 1/T) are
asin Table 1.

Another technique, whichin principle provides
information aboutdislocation mobility, isinternal
friction. Many experiments (e.g., Vassoille et al.
1978, Tatibouet et al. 1986) have observed a contri-
bution thatincreases with temperature, isenhanced
by plastic deformation and often depends on am-

Table 1. Activation ener-
gies for glide of disloca-
tions in pure ice (after
Shearwood and Whit-

worth 1991).
Activation
energy
(eV)
Basal screw 095 = 0.05
Basal 60° 0.87 £ 0.0¢

Nonbesal edge 063 £ 0.04

Figure 12. Dislocation velocities per unit stressvq/tin
pure ice as functions of inverse temperature 1/T for
screw and 60° dislocation segments on the basal plane
and for edge segments on nonbasal planes (after Shear-
wood and Whitworth 1991).

plitude. This effect can reliably be attributed to
dislocations and might be usable for distinguish-
ing among the motion of kinks, the nucleation of
kinks and breakaway from pinning points, but
thereare too many disposable parameters forusto
draw conclusions from the observations.

Peierls model for basal dislocations

The fact that, under stress, dislocations on the
basal plane glide quickly into hexagonal form and
then glide as straight segments is strong evidence
for motion across a Peierls barrier, as is also ob-
served in materials such as silicon (George and
Rabier 1987, Nadgornyi 1988). Theenergy of adis-
location willbe minimized whenitlies along a par-
ticular line in the crystal lattice, and a step on the
dislocation between two such lines constitutes a
kink, as in Figures 4 and 5. The kinks can glide
along the dislocation, and under stress their mo-
tion will carry the dislocation forward until it
consists of almost straight segments along the
directions of minimum energy. Inice these are the
screw and 60° segments seen in Figure 10. To ad-
vance further, double kinks must be thrown for-
ward across the Peierls barrier and then move
sideways until they reach the end of the segment
or are annihilated by other kinks. A computer
simulation illustrating this behavior is shown in
Figure 13. The dislocation velocity is given by

va= hnyoy 1
where ny . number of kinks per unit length
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Figure 13. Computer simulation of glide of a dislocation across a Peierls barrier
by the nucleation of kink pairs and by the glide of the kinks along the dislocation.
The dislocation is gliding upwards in the figure and successive positions are
shown above one another. The original position for each case is indicated by the

marks at the edges of the diagram.

vy = their velocity
h = separation of the Peierls troughs.

According to the standard theory of this kind of
dislocation motion (Hirth and Lothe 1982), in the
limit of low stress(thah <<kgT, whereais thelattice
parameter and b is the Burgers vector), 4 is linear-
ly proportional to stress. It depends on both the
activation free to form an isolated kink Fy
and that to move it F,;, according to the equation

e Bl

kgT

The quantity v is a characteristic frequency that
cannot be more than the Debye cutoff frequency.
The free energy Fy can be written in terms of the
energies and entropies of formation [Ey(T) - TSi],
and the measured activation energy for glideis the
temperatureindependent partof (Ey + E,). Howev-
er, with the above experimental values and other
known , the entropies of activationturn
out to be remarkably high (for details see Shear-
wood and Whitworth 1991). This model indicates
that dislocations seem able to move more easily
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than .The contributions arising from kink
nucleation and kink migration can in principle be
separated by studying the motion of curved seg-
ments (Hondoh 1992), but this has not yet been
successfully achieved.

Proton disorder

A unique feature of ice, first recognized by Glen
(1968), is that the disorder of the protons presents
inprinciple an obstacle to the glide of dislocations.
This arises quite simply, because, if two planes of
moleculesarelinked by randomly oriented hydro-
genbonds, they cannotbe sheared over one anoth-
er and still link up correctly. The idea is easily
understood by considering a 60° dislocation on
planes of the shuffle set as shown in Figure 14,
where the positions of the protons are disordered.
For the dislocation to glide to the left, bond DD’
must be broken and D’ joined to C. This presents
no problem, but for motion to the right, C must
link to C’, which would create a D-defect. There is
not sufficient energy from the stress to create this
defect, and there is in general no local rearrange-
ment of bonds that will avoid the formation of a
defect somewhere. In practice we expect glide to




Figure 14. Section in the (1100) plane of a 60° dislocation on a
plane of the shuffle set in the structure of ice, illustrating the
of the disorder of the protons according to the model

of Glen (1968).

occur by the motion of kinks along the dislocation,
with each step of the kink involving a single ex-
change of bonds like the onejust considered. There
will be a 50% chance of the bonds being mis-
matched at each step.

Glen therefore proposed that the rate-limiting
step for dislocation motion may be the rate at
whnchbmdsaremndonﬂyreonmtedbynmor

defects, as in the process of dielectric
relaxation. It is important to realize that the stress
cannot force the reorientation of therequired bonds
asthedislocationa . Thisidea was quan-
tified for kinks on the shuffle plane by Whitworth
et al. (1976) and Frost et al. (1976). The stresses
involved are always such that they impose a small
bias on the random motion of the kinks; the kinks
are not pushed up against the mismatched bonds.
With this assumption, the kink velocity vy for
reorientations by Bjerrum defects is given by

v, = §13a’ )

2t kpT
where 1, is the mean time to reorient a bond.

For dislocations on planes of the glide set, the
obstadepresentedbyprotmdmordermaybeless
severe. Provided the core is not reconstructed,
molecules B and C in Figures 5a and b are free to
rotate about the single bond, perpendicular to the
glide plane, as they switch their linkages from G
and H to A and D. For a kink on an unreconstruct-
ed partial dislocation, Whitworth (1980) showed
that

=1240 Y3¢4
o e 1. @

If the partial dislocation is reconstructed, the bar-
rier presented by proton disorder will be much
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greater, but this situation has not been analyzed
theoretically. In all cases where a Peierls barrier is
present, proton disorder will affect the rate of kink
nucleation as well as the kink mobility, but it can
only make the theoretical velocity less than that
predicted from eq 2. A theory has also been devel-
oped for a flexible dislocation line (Whitworth
1983). This does not seem to be applicable to dislo-
cations that glide as straight segments, but may be
applicable for nonbasal edge dislocations.

The quantity g, is the mean time for the reorien-
tation of bonds close to the dislocation core, and, if
we assume that the ice rules are applicable, this
will take place by the motion of Bjerrum defects or
ions. Inbulkcrystal, thistimeis approximately the
same as the Debye relaxation time 7p, but Shear-
wood and Whitworth (1991) have shown that, for
dislocations to move at the observed rate, the
appropriate value of 7, must be much shorter than
this. A critical experiment to establish the possible
relation of the dislocation velocity to the bond
reorientation rate in bulk ice is to measure veloci-
ties in doped ice. This was first attempted for HF
doping by Mai et al. (1978), who found a small
effect, but much less than icted. Using HC1
doping, Shearwood and Whitworth (1992) found
no significant effect under conditions where 7
was known to have been reduced by more than a
factor of 10.

From all that we know about the disorder of the
protons in ice, it is essential that there be a process
for the reorientation of bonds at the dislocation
core that retains compatibility with the ice rules in
the surrounding material. It could arise from an
enhanced concentration or mobility of ions or

j defects near the core. Interstitials or va-
cancies should not be directly involved as they do
not change the proton disorder. Perez et al. (1978,
1980) postulated that the dislocation core was in
some sense noncrystalline, thereby avoiding the




obstacle presented by the ice rules. Their particular
model has several adjustable parameters, and these
take unphysical values that depend on the nonlin-
earity in their observations of v4(7). The fact that
dislocations glide as straight segments in crystal-
line orientations indicates that the core must retain
much of its crystalline character. The precise way in
which dislocations overcome the barrier presented
by proton disorder is at present unknown, and, as
we will see in the Doped Crystals and Electrical Effects
section, there is conflicting evidence about whether
proton disorder is rate limiting.

There is no evidence for a Peierls barrier to the
motion of nonbasal edge dislocations, and this is
consistent with their having a lower activation en-
ergy for glide. However, the limitations presented
by proton disorder are in principle equally impor-
tant in this case (Whitworth 1983, Shearwood and
Whitworth 1991). The most significant fact about
nonbasal slip is the complete absence of any glide of
screw dislocations on the nonbasal planes at the
stresses used. This is strong evidence that the screw
dislocations are dissociated into partial disloca-
tions on the basal plane, and provides circumstan-
tial evidence for basal slip being between planes of
the glide set.

Weertman (1963) proposed a further mechanism
by which the disorder of the protons in ice will
inhibit the motion of dislocations: anelastic loss,
which arises from reorientation of molecules in the
stress field of the dislocation as it moves. Any such
effect will constitute a barrier additional to those
already considered, and seems likely tobe compara-
tively small.

ROLE OF DISLOCATIONS IN
PLASTIC DEFORMATION OF
SINGLE CRYSTALS

Pure crystals
For the plastic deformation of a crystal on a
single slip system, the strain rate € is given by the
equation
€= ¢Ngbvg (5)
where Ny = density of mobile dislocations (length
per unit volume)
b = Burgers vector
v4 = dislocation velocity
¢ = factor depending on the orientation of
the slip system.
If several slip systems operate together, their contri-
butions to the strain rate must be summed. Crystals
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of ice normally deform almost exclusively on the
basal plane, and Figure 15 shows the form of the
stress-strain curve for such deformation in con-
stant strain rate tensile tests (Higashi et al. 1964).
The peak followed by a yield drop arises because
Ny is injtially small and the constant deformation
rate requires a high value of vy, but as N4 increases
during the deformation, the stress necessary to
maintain a smaller v4 becomes smaller. Eventual-
ly, deformation may proceed at constant stress.
There is little work-hardening in ice, and in the
steady-state region there will be a balance among
dislocation multiplication, emergence from the
surface and recovery processes.

Strain rate
€x 105min-1)

Stress t (Kgenri)

2

3
Strain ex 102

Figure 15. Stress—strain curves for tensile
deformation of single crystals of ice at =15°C
and at the constant strain rates shoun (after
Higashi et al. 1964).

The corresponding behavior to Figure 15 in a
creep test at constant stress would be an initially
accelerating creep leading to a constant strain rate.
Higashi et al. (1965) have reported this kind of
creep in a very special bending geometry, but in
tensile tests continuously accelerating creep is
observed, for which € e #* with m = 1.5 to 2. The
macroscopic deformation of ice depends critically
on the initial state of the crystal and the conditions
of the experiment, but results are generally fitted
to the empirical equation

& = o exp (- EAsT) )
where for single crystals n = 2. There is some dif-
ficulty in determining a value for the activation
energy E, because values deduced from constant-
strain-rate tests depend on the value of n, while
strictly comparable conditions are difficult to
achieve in creep tests at different temperatures.




Table 2. Activation energies forplastic deformation
of single crystals of ice at temperatures of ~10 to
-50°C.
Activation
Type of energy E
(V) _Reference
Higashi et al. (1964)

Readey and Kingery (1964)
Higashi et al. (1965)

Tensile—constant € 0.68
Tensile-constant € 0.62
Bending creep 0.68

Tensile creep 0.68 Jones and Glen (1969a)
Terwile creep 0.80 Homer and Glen (1978)
Tensile creep 0.62 Ramseier (unpublished)*
* From Weertman (1973).

Table 2 summarizes values deduced by different
authorsindifferent ways from tests onsinglecrys-
talsin therange-10to-50°C. There are many more
data on polycrystalline ice, but this deforms very
differently and other considerations will be rate
limiting. For a detailed review of creep in ice, see
Weertman (1973).

Theinteresting fact that emerges from this table
isthat the values of E are all less than those in Table
1 for the glide of dislocation segments on the basal
plane in this range of temperatures. Extensive
studies of silicon reveal no such discrepancy, but
it does exist in some other semiconductors (Rabier
and George 1987). There are two possible reasons
for the difference. Either the dislocation density
for steady-state creep increases with falling tem-
perature, or, under deformation conditions, the
dislocations do not glide as straight segments. If it
is easier to create kinks within the deforming
material than under the near-perfect conditions of
topography experiments, the activation energy
should be reduced. Macroscopic deformation is
such a complicated process thatit isnotsurprising
that there is considerable variation among exper-
iments.

Crystals oriented with the stress perpendicular
to the [0001] axis can be deformed by slip on {1100}

planes, but this requires a stress of some 50 times
that for slip on the basal plane, and after such
deformation voids are created in the specimen
(Muguruma et al. 1966). We have seen in topo-
graphic experiments that edge dislocations move
very easily on these nonbasal planes, but screw
dislocations were not observed to glide off the
basal plane. This means thata dislocation loop that
starts to move on a nonbasal plane cannot expand
to cover the whole plane; slip will be confined to
narrow strips bounded by screw dislocations as
seen in Figure 9, and macroscopic slip will be very
difficult. Hondoh et al. (1990) reproduce a figure
showing that such slip is associated with very
short slip lines, which correspond well with this
interpretation.

To produce macroscopic deformation, it is not
sufficient that dislocations should glide. There
have to be processes by which dislocations can
multiply on their slip plane and by which slip can
be transferred from one slip plane to another. The
standard mechanism is the Frank-Read source
(see Read 1953). An example of such a source is
illustrated in Figure 16a, in which dislocation seg-
ments spiral around a fixed point where the dislo-
cation makes a step from one glide plane to anoth-
er. Ahmad et al. (1986) observed such a source in
topographic experiments on ice, and Figure 17
showsanexample. Innormal materialsmany such
sources are generated by the cross slip of screw
dislocations off their primary glide planes, but the
immobility of screw dislocations on the nonbasal
planes in ice means that this does not occur. How-
ever, a feature of ice is the high mobility of edge
segments on nonbasal planes, and this means that
the segmentS, which acts as the fixed center of the
Frank-Read action in Figure 16a, may not remain
fixed but more often glides away from the original
dislocation, trailing screw segments behind it as
shown in Figure 16b. This leads to features such as

Figure16. Operation ofa Frank-Read source on the basal plane (), and what happens
iniceifthelinking segment S does not remain fixed but glides rapidly on the nonbasal

slip plane (b).




Figure17. Sequence of topographs projected on the (0001) plane showing operation of a Frank-Read source in ice. This
corresponds to Figure 16a (from Ahmad et al. 1992, used with permission of Hokkaido University Press).

v

Initial

K % v N

Figure 18. Sequence of topographs projected on the (0001) plane showing dislocation multiplication
arising from the fast edge segments such as A on a nonbasal plane oblique to the plane of the figure. The
section at B, which develops hexagonal features, is on the basal plane and glides more slowly. In the last
two topographs the dislocation loops have cut the surface at upper left (from Ahmad et al. 1992, used
with permission of Hokkaido University Press).
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C in Figure 8 and to multiplication of the kind
shown in Figure 18. Thebehavior of nonbasal edge
dislocations that cut the surface is also very signif-
icant (Ahmad et al. 1992, Shearwood and Whit-
worth 1993).

Doped crystals and electrical effects

Jones and Glen (1969b) found that doping ice
with HF produced a remarkable softening in both
creep tests and constant-strain-rate tests at —60 to
-70°C (Fig. 19). The softening was observed bothin
crystals doped before deformation and when HF
was diffused into the specimen part way through
thetest. NH,OH produced asmall hardening. Naka-
mura and Jones (1970) deformed HCl-doped ice,
but at higher temperatures, and observed a soften-
ing, though the effect was much less than with HF.
All of these observations indicate a strong corre-
lation in the effects of the dopant on the deforma-
tion rate and on the rate of bond reorientation as
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Figure 19. Test results from pure single crystals of ice and
crystals doped with HF at the concentrations given. Temper-
ature is —70°C (after Jones 1967).

observed in dielectric experiments. This led to
Glen's (1968) hypothesis that proton disorder is
the rate limiting process for dislocation glide.

The topographic observations of Shearwood
and Whitworth (1992) showed no effect of HCl
doping on the mobility of dislocations at a level of
doping that produced a ten-fold decrease in 7p,
but this doping was very much less than that
which gave the large effects observed by Jonesand
Glen. A further complication is that strain rate de-
pends on the product of dislocation density and
dislocation velocity, and Jones and Gilra (1972)
found that diffusing HF into ice, as was done in
some of the experiments referred to, produced a
large increase in dislocation density.

An alternative way of changing the concentra-
tions of point defects that gives rise to bond reori-
entation is the application of an electric field (Pe-
trenko and Schulson 1992). By applying electric
fields to thin specimens undergoing deformation




inshear, Petrenko and Schulson (1993) have shown
thata reduction in the high-frequency conductivity
leads to a corresponding reduction in creep rate.
We have already seen that dislocation glide in-
volves the reorientation of bonds near the core.
There is considerable evidence that under certain
conditions changing the bond reorientation rate in
the bulk of the crystal can have an effect on the
dislocation mobility.

Differentkinds of electrical effects can ariseif the
dislocations carry a net charge. Such a charge is to
be expected where there are dangling bonds, be-
cause the numbers of bonds with and without
protons do not have to be equal. In equilibrium any
such charge will be screened by a surrounding
cloud of excess electrical point defects of opposite
sign (see Whitworth 1975), but during deformation
adislocationmaybecomeseparated from thischarge
cloud. Petrenko and Whitworth (1983) observed
small transverse electric currents associated with
the tensile deformation of previously bent crystals,
and interpreted them as ascribable to dislocations
carrying a net positive charge of at least 0.002 pro-
tonic charges per atomic length. Itagaki (1970) has
reported X-ray topographic experiments in which
dislocations appear to move in an alternating elec-
tricfield. In cases where thesign of the civarge could
be identified, it was positive, but it is difficult to
deduce magnitudes from suchexperiments. A prob-
lem withany experiment of this kind is that the field
should be maintained for a sufficient time to move
the dislocations by an observable amount, but in
this time the field is largely eliminated by polariza-
tion and conduction in the ice. If the dislocation
cores are indeed reconstructed, as suggested in the
Basal Dislocations section, then any core charge will
be confined to kink sites or perhaps to Bjerrum type
defects trapped in the reconstruction.

STACKING FAULTS

Structure of stacking faults in ice

The crystal structure of ice consists of (0001)
planes of molecules stacked above one another as
illustrated in Figure 2. If the positions of these
layers in their planes are denoted by the letters
A,B,C, as defined in Figure 3, the hexagonal struc-
ture of ice Iy, follows the sequence

AABBAABBAABB....
The C positions are unoccupied, resulting inempty

channels running through the structurein the [0001]
direction. Stacking faults ariseif the stacking across

16

the planes marked “glide” in Figure 2 departs
from the perfect sequence. For a general discus-
sion of such faults, the reader is referred to Hirth
and Lothe (1982) or a similar text. To simplify the
discussion, we will denote each pair of layers such
as AA by the single letter A, and the stack-ing is
then that familiar in hexagonal close packing

ABABABAB....
Cubic ice (ice L) has the stacking
ABCABCABC...

but is energetically unstable relative to ice I},

A stacking fault is a planar defect normally ly-
ing on a (0001) plane of the glide set. It mustextend
to the surface or terminate at a partial dislocation
with a Burgers vector equal to the displacement
required to create the fault. To distinguish among
the possible kinds of faults, itis useful tointroduce
Frank’s notation, which concentrates not on the
absolute location of the layers A,B,C but only on
the stacking relative to the layer below. Thus, the
equivalent stackingsof Bon A,ConBand AonC
are all denoted by the symbol A, while the inverse
stacking of A on B, Bon C or C on A are given the
symbol V. The hexagonal stackings ABABAB...,
BCBCBC... or CACACA... are then all denoted by

AVAVAVAV...
whereas cubic stacking would be
AAAAAAAA... or VVVVVVVV....

Thereare foursimple ways of introducing stack-
ing faults into ice, and these are illustrated in
Figure 20. The first is to shear a B layer overan A
layer into a C position. This changesa Aintoa V
giving the fault

l
BABACBCB... .

VAVVVAV
This fault is illustrated in Figure 20a, in which it
terminates in a partial dislocation of the Burgers
vector (a/3) <1010>. When a perfect (a/3) <1120>
dislocation dissociates into two Shockley partial
dislocations on a (0001) plane of the glide set,
according to the equation

(a/3) <1120> — (a/3) <1010> + (a/3) <0110>




c. C layer added.

d. Clayer added followed by shear above theadded layer.

Figure 20. Projections of structure of ice I on a (1210) plane showing stacking faults in the right-hand portion of
each diagram terminating at an appropriate dislocation in the center.

as described in the Basal Dislocations section, this is
the type of stacking fault ribbon that will be formed
between them.

The other types of faults require the addition or
removal of alayer A, B or C, which consists of two
planes of molecules. If an A layer is removed, the
B layers on opposite sides of it can only link to-
gether if there is a displacement of one-half of the
crystal over the other by an amount (2 /3) <1010>,
generating the fault

{
VAVVVAV

This fault is shown in Figure 20b. The dislocation
surrounding it has both prismatic and glide com-
ponents, and its Burgers vector is (1/6) <2023>.
Unlike the case just described, the addition of a
C layer to the perfect ABAB... structure does not
necessitate any shear, and the fault generated is

{
ABABCABCB...
AVAAAAVA

This fault is illustrated in Figure 20c; it is sur-
rounded by a prismatic dislocation loop of Burg-
ers vector (c/2) {0001). The fault contains four




consecutive A-type stackings, which resembles
cubicice. Itcanlowerits energy by a shearbetween
the C and the A layer at the point marked {,
yielding the fault

d
ABABCBCBC...
AVAAVAVA

which is shown in Figure 20d. Examination of the
AV sequence shows that this is the same stacking
as in Figure 20b, but the nature of the bounding
dislocation corresponds to an interstitial rather
thana vacancy-type prismaticloop. Stacking faults
are often classified as intrinsic if perfect stacking is
maintained up to the plane of the fault and extrin-
sic if it is not; on this basis the faults of Figures 20a,
b and d are intrinsic and only the higher energy
fault 20c is extrinsic.

Observations of stacking faults
Stacking faults of macroscopic dimensions can
be observed by X-ray topography and have been
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studied extensively in ice by the group at Sapporo.
Their work is reviewed by Fukuda et al. (1987),
Oguro and Hondoh (1988) and Oguro et al. (1988).
Stacking faultsin ice are energetically unstable and
never remain in crystals that have been well an-
nealed and observed at the temperature of anneal-
ing. However, a few large-area faults do occur in
freshly grown crystals (Hondoh et al. 1983), and
their formationis enhanced by doping, particularly
with NH, (Oguro and Higashi 1973).

Figure 21 is an example of a topograph of pure
ice cooled to —45°C. The dark areas correspond to
stacking faults parallel to thebasal plane. The large,
irregular faults originate from the growth of the
crystal, while the smaller patches are prismatic
loops formed during cooling. The presence of con-
trast within the area of the fault shows that the fault
vector f satisfies the condition g-f # 0 or an integer,
where g is the diffraction vector of the topograph.
With g = <1010> this means that the faults must
have a shear component. The bounding disloca-
tionshavea [0001] component, and careful analysis
shows that the faulted loops formed on cooling are

Figure 21. X-ray topograph projected ona (0001)
plane of a crystal of pure ice cooled rapidly to
—45°C, resulting in the production of faulted
prismatic dislocation loops by the condensation
of interstitials (from Oguroetal. 1988, used with
permission of Hokkaido University Press).




interstitial in character (Hondoh at al. 1983). It
appears that an interstitial loop with the Burgers
vector (c/2) [0001] does in fact lower its energy by
taking the sheared form of Figure 20d rather than
that of Figure 20c. The stable prismaticloopsshown
in Figure 7 are presumably perfect dislncations,
with the Burgers vector c[0001] including two dou-
ble layers of molecules within the loop; such dislo-
cations will have high energy and will almost cer-
tainly be dissociated, but the stacking fault ribbon
between them is unresolvable in topography.
Asdescribed in Volume 1, Point Defects (Petren-
ko and Whitworth [1994), see section on Molecular
Defects), very detailed studies of the growth and
shrinkage of faulted and unfaulted dislocation loops
have yielded the best available parameters for the
formation and self-diffusion of interstitials in ice
(Goto et al. 1986, Hondoh 1992). The energy of a
(1/6) <2023> fault has been determined to be 0.31
mJ m~2, which is 3 x 104 eV per molecule in the
plane. This is assumed to be the lowest energy type
of fault because it has only two adjacent A’s in the
stacking sequence. The shear fault with three A’s is
estimated to have twice this energy, and on this
basis the separation of the Shockley partial disloca-
tions formed by the dissociation of a perfect (a/3)
<1120> dislocation on a basal plane has been esti-
mated by Hondoh et al. (1983) to be 20 nm for a
screw dislocation and 46 nm for an edge disloca-
tion. Observation of such dissociation requireselec-
tron microscopy and has not yet been achieved in
ice.

GRAIN BOUNDARIES

Structure

Naturaliceis polycrystalline and theboundaries
between theindividual crystals (or “grains”) canbe
considered as planar defects within otherwise per-
fect material. We will briefly describe the intrinsic
properties of this class of defects, but will not here
consider their role in the macroscopic properties of
polycrystalline ice.

Examination of polycrystalline samples shows
grains of many shapes, sizes and orientations, de-
pending on the history of the material (e.g., Matsu-
da and Wakahama 1978). In well-annealed ice, the
boundaries are fairly flat, which is a necessary
condition for minimizing the surfaceenergy. With-
in a single grain, or within a piece of ice that is
nominally a single crystal, there will often be sub-
boundaries, across which thereis a latticemisorien-
tation of at most a few degrees and often very much
less. These boundaries are made up of arrays of
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dislocations in accordance with geometrical prin-
ciplesthatapply toany crystalline material (see for
example Read 1953 or Hirth and Lothe 1982).
Except for elastic interactions with one another to
form a stable structure, these dislocations behave
as individual dislocations within a single crystal.
A suitable sub-boundary will migrate by the glide
of these dislocations under an appropriately ori-
ented stress, as has been observed inice by Higashi
and Sakai (1961).

For large-angle boundaries, the concept of an
array of dislocations is not applicable, and there
must be an interface across which the bonding
departs greatly from that in a perfect crystal. For
some particular orientations, the bonding may be
lessirregular than for others, and the grain bound-
ary energy will depend on the relative misorienta-
tion of the grains and on the location of the bound-
ary between them, ashasbeen observed by Suzuki
and Kuroiwa (1972).

A commonly assumed condition for the forma-
tion of any special type of low energy boundary is
that the lattice points for the two half-crystals
should match up with one another in a periodic
way along the plane of the boundary. The Coinci-
dence-Site Lattice (CSL) model, which has been
described in relation to ice by Higashi (1978) and
Hondoh (1988), has this property, but other re-
quirementsimposed by the model arenot general-
ly thought to be significant (Sutton 1984). A favor-
able configuration in ice is one in which the grains
are rotated relative to one another by 34.1° about
the[1010] direction, and such aboundary in which
the grains are joined across their (1211) planes is
illustrated in Figure22. Hondoh and Higashi (1978)
have grown bicrystals containing this type of
boundary and have shown by X-ray topography
that the boundary is not flat, but is made up of
facets that make small angles to one another. They
propose thata facet that makes a small angle to the
exact(1211) plane will contain an array of intrinsic
grain boundary dislocations of the small Burgers
vector shown in Figure 23; between these disloca-
tions the lattices will match exactly as in Figure 22.
Experiments on the diffusional motion of bound-
aries during strain-free annealing have shown
variations with the type of boundary and some
tendency to form facets with particular orientations
(Hondoh and Higashi 1979, Nasello et al. 1992).

Other examples of misorientations that satisfy
the CSL conditions are 47° about [1010] and 21.8°
about[0001). Thelatteris thoughttolead tocertain
types of 12-branched snow flakes (Kobayashi and
Furukawa 1975). These special cases can also be
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thought of as growth twins, though in ice they are
notusually formed in the ways commonly associat-
ed with twinning. It must be remembered that the
coincidence of a number of lattice points across an
interface does not ensure that hydrogen bonds link
up in a manner even approximating that in the
perfect crystal, and there must be considerable dis-
order of the molecules in this region. The thickness
of this noncrystalline or ‘liquid-like’ region is not
known. In this connection it is relevant tonote that,
close to the melting point, liquid water is presentin
polycrystalline ice in veins that liealong the lines of
intersection of grain boundaries (Mader 1992, Nye
1992), and this will be in equilibrium with the
internal structure of the boundaries themselves.

Grainboundaries canmoveinanumber of ways,
according to principles that are generally applica-
ble to all materials. Under a shear stress a pair of
suitably oriented grains may slide over oneanother
on theboundary (Ignat and Frost 1987), but in other
cases shear can occur by the migration of the bound-
ary perpendiculartoits plane. Thishas been report-
ed for a 34° [1010] boundary by Hondoh (1988), and
explained in terms of the glide of intrinsicboundary
dislocations of the type shown in Figure 23.

The motion of grain boundaries, or of disloca-
tions within them, leads to a characteristic peak in
the low-frequency internal friction (Perez et al.
1979, Tatibouet et al. 1987). Boundaries also move
by diffusive processes in which molecules in one
grain are rearranged in the lattice structure of the
other, and this is what happens when ice recrystal-
lizes during large-scale plastic flow.

Being places where there are irregularities in the
lattice, grain boundaries can act as sources and
sinks of point defects and dislocations. We have
already referred to the formation of faulted disloca-
tion loops by the condensation of interstitials on
cooling. Near a boundary there is a zone where
these loops are not formed because the excess inter-
stitials are lost to the boundary (Liu et al., in press).
In the very early stages of deformation, stress con-

Figure 23, Edge dislo-
cation in the boundary
produced by shear in
theplane of the bound-
ary by the small Burg-
ersvector shown. This results in the displacement of the
boundary downwards in the right-hand part of the
diagram.

centrations form at grain boundaries, and disloca-
tion loops are nucleated from them (Hondoh and
Higashi 1983, Liu et al. 1993).

Electrical properties of grain boundaries
in doped ice

Electrical measurements on monocrystalline
and polycrystalline samples of ice lead to the con-
clusion that these types of ice differ significantly
even when the concentrations of impurities aver-
aged over the volume are the same. Asice doesnot
exhibit any anisotropy of conductivity, we are led
to conclude that the grain boundaries make an
appreciable contribution to the conductivity.

The most obvious reason why this may be so is
that the impurities segregate to the boundaries,
and particularly to the triple intersection lines
where three grain boundaries meet. Mulvaney et
al. (1988) and Wolff et al. (1988) investigated the
impurity distribution in polycrystalline Antarctic
ice using a scanning electron microscope with a
cold stageand an X-ray microanalysis facility with
a spatial resolution of 10 nm and a detection limit
of 5 mM (equivalent to 490 ppm for H,SO,). They
found that, although the volume average concen-
trations were quite small 982 ppbforNa*,320ppb
for CI-, 764 ppb for SO; and 41 ppb for NO;
according to ion-chromatography and atomic
absorptionspectroscopy), the concentration of SO
attriplejunctions was 25 M within an area of 1 m?.
This concentration is close to the eutectic temper-
ature (4.9 M freezing at ~-73°C), so that such triple
junctions remain liquid at very low temperatures
and form anetwork of filaments of extremely high
electrical conductivity. Wolff and Paren (1984)
have suggested that the d.c. conductivity of polar
icecould be caused by the presence of acidicliquid
layers at the grain boundaries. They showed that
it is plausible that these impurities will concen-
trateat the triplejunctions, and, using reliable data
for H,SO,, HNO, and HCl concentrations at the
South Pole, they derived the correct magnitude




and temperature dependence for the conductivity
of such ice.

The differences between the electrical proper-
ties of monocrystalline and polycrystalline ice seem
to persist in nominally pure samples. This sug-
gests that the grain boundaries may have an en-
hanced conductivity because of the presence of a
‘liquid-like’ layer, such as has also been proposed
for the free surface (see the future report on the
Surface of Ice). However, at present this is just
speculation, and experiments on genuinely pure
boundaries will be difficult to achieve.
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