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ABSTRACT

A methodology for esuumating physical parameters in a class of structural acoustic sys-
tems is presented. The general model under consideration consists of an interior cavity which
is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic
patches are bonded to or embedded in the structure; these can be used both as actuators and
sensors in applications ranging from the control of interior noise levels to the determination of
structural flaws through nondestructive evaluation techniques. The presence and excitation
of the patches, however, changes the geometry and material properties of the structure as
well as involves unknown patch parameters, thus necessitating the development of parameter
estimation techniques which are applicable in this coupled setting. In developing a framework
for approximation, parameter estimation and implementation, strong consideration is given
to the fact that the input operator is unbonded due to the discrete nature of the patches.
Moreover, the model is weakly nonlinear as a result of the coupling mechanism between the
structura! vibrations and the interior acous‘ic dynamics. Within this context, an illustrating
model is given, well-posedness and approximation results are discussed and an applicable pa-
rameter estimation methodology is presented. The scheme is then illustrated through several
numerical examples with simulations modeling a variety of commonly used structural acoustic
techniques for system excitation and data collection.
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1 Introduction

The recent success of piezoceramic materials as sensors and actuators in applications involv-
ing structural vibrations has spawned intense study into questions regarding the modeling
of piezoceramic actuator/sensor interactions with underlying structures, the optimal design,
placement and number of actuators/sensors to be used, and the development of effective con-
trol strategies in a variety of environments. When bonded to or embedded in a thin structure
(beam, plate or shell), piezoceramic patches derive their actuating capacity from the piez-
electric property that an induced voltage produces a strain in the material thus leading to
the potential for producing in-plane forces and/or moments when the patches are mounted in
pairs. Conversely, their sensing capabilities are due to the dual piezoelectric effect; namely, a
mechanical force leads to the generation of a proportional voltage across the element which
can then be used to measure accumulated strain.

However, the bonding or embedding of patches in the underlying structure changes not
only the geometry of the structure but also physical properties such as the density, stiffness,
Poisson ratio and damping coefficients, when indeed, many of these parameters are unknown
even for the homogeneous, uniform host structure material. This necessitates the development
of effective parameter identification methods to be used when estimating system parameters in
applications such as experimental model validation, the determination of optimal placement
and number of patches, the use of piezoceramic patches in nondestructive evaluation (NDE)
techniques, and the implementation of model-based control schemes. We point out that the
estimation of physical parameters in this setting differs from that considered in much of the
previous literature (see [6] and the references therein) in that here the patch contributions
to the system lead to unbounded (discontinuous) input and output operators due to the fact
that the patches cover only discrete portions of the structure.

Parameter estimation methods for distributed parameter systems involving unbounded
operators have been developed and tested in the case in which piezoceramic patches are used
as sensors and actuators when bonded to a transversely vibrating beam [15, 16]. There, fit-
to-data techniques involving PDE models were developed which could be used to estimate
unknown beam parameters given various data forms. Moreover, in that setting, results per-
taining to convergence and continuous dependence on data were obtained in a variety of cases
involving physically tractable methods for exciting the system and measuring data.

In this work, we develop an analogous methodology which can be used for estimating
physical parameters in structural acoustic systems. In the systems of interest, an exterior
noise source is separated from an interior cavity by a thin elastic structure (a beam, plate
or shell). As energy is transferred from the exterior field to the structure, vibrations develop
whiich then lead to unwanted interior noise through acoustic/structure interactions. Control of
this unwanted interior noise is accomplished through sensing and actuating via piezoceramic

patches which are bonded to the structure. Before model-based control schemes can be imple-
‘mented, however, the physical parameters of the structure (which now includes the patches)

must be estimated from data which is collected both on the structure and from the acoustic
response in the enclosed cavity. Although similarities exist between the problem of estimat-
ing physical parameters for the isolated structure and that involving the structural acoustic
system, the hyperbolic contributions due to the acoustic component sufficiently change the
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problem dynamics so as to warrant in-depth stud, of techniques for the latter coupled system.
Finally, we note that although the initial impetus for developing distributed parameter esti-
mation techniques for structural acoustic systems was motivated by model-based noise control
considerations, the same techniques can be used when performing vibration analysis or using
NDE methods to determine structural flaws in these coupled systems.

The structural acoustic problem used here to motivate and illustrate the development of
an appropriate parameter estimation methodology consists of a 2-D enclosed cavity which is
separated from the perturbing exterior noise field by a thin beam. This model represents
a 2-D slice from a 3-D model for several experimental apparata being used in the Acoustics
Division, NASA Langley Research Center, to test modeling, parameter estimation and control
strategies. We add, however, that the methodoldgy being presented is equally valid for es-
timating parameters in inany 3-D models representing various experimental setups currently
in use (see the models in [9, 10]). This 2-D model was chosen simply because it simplifies
the discussion and more clearly illustrates the process involved in developing the parameter
identification techniques.

The mode’ being used to illustrate the methodology is weakly nonlinear due to the manner
in which the structural vibrations couple with the interior acoustic fields. While linearization
provides a very good approximation to the system dynamics (see [1]), we retain the non-
linearity here so as to illustrate some of the general analytic assumptions which are made
when extending well-posedness and parameter convergence results for the corresponding lin-
ear problem to a weakly nonlinear problem of this type. This also facilitates the demonstration
of numerical techniques which can be used when simulating, testing and implementing the
parameter estimation scheme in the nonlinear problem. In discussing parameter estimation
methods for structural acoustics problems of this type, our emphasis is on the formulation of
the problem in a manner which is conducive to approximation and implementation both in
the linear and nonlinear forms as well as under a variety of damping assumptions.

In the second section of this presentation, a model for the 2-D system being used to
illustrate the parameter estimation method is presented. Details regarding the modeling of
the acoustic and structural components as well as coupling conditions are given, and care is
taken to motivate the assumptions which lead to various damping conditions in the system
model. In formulating the strong form of the system model, details are also given regarding
the interactions between the piezoceramic patches and the underlying structure (beam) as
well as the weakly nonlinear interactions between the beam and the interior acoustic field. To
provide a formulation which is conducive to approximation in the context of unbounded input
operators as well as facilitates the discussion of well-posedness results, the weak form of the
system equations is then developed and posed in terms of sesquilinear forms and the bounded
operators which they define. Finally, we show that the solution trajectories can be expressed
in terms of a semigroup on an appropriate space and within this framework, the assumptions
underlying the well-posedness results for the linear and nonlinear problems are discussed.

A discretization method suitable for simulations and the implementation of the parameter
estimation method is outlined in Section 3. This discussion is kept relatively brief since details
regarding the corresponding finite dimensional system for the linearized problem can be found

~ in [1). However, the section does provide additional details concerning the discretization of the

nonlinear component of the operator and a brief algorithm for carrying out this discretizetion
is included.
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A parameter estimation scheme suitable for data consisting of displacement, velocity or
acceleration measurements on the beam, voltage measurements from the patches, or pressure
measurement inside the cavity is presented in Section 4. Assumptions on the form of the
unknown parameters are discussed and conditions leading to convergence and continuous
dependence on data results for the linear and nonlinear problems are outlined.

In Section 5, numerical examples demonstrating the parameter estimation techniques with
a variety of data types and methods for exciting the system are presented. Specifically,
examples are given in which the force to the system is provided by a numerically simulated
acoustic source, simulated voltage inputs to the patches, and a simulated hammer impact
to the beam. The simulated data under comparison in the examples consists of acceleration
values of the beam, voltage (accumulated strain) values from the patches, and voltage values
in conjunction with interior acoustic pressure values. The conclusions from this study and
physical considerations concerning the implementation of the method are summarized in the
final section of the paper.

2 System Model

The model of interest consists of an exterior noise source which is separated from an interior
cavity Q(t) by a common elastic boundary I'g(2) that is modeled by an Euler-Bernoulli beam
as depicted in Figure 1. The beam is assumed to have length a, width b and thickness A.
The Young’s modulus, mass density (in mass per unit volume) and damping coefficient for
the homogenecus beam are denoted by Ej, pp and cp;, respectively. Due to the nature of the
exterior forces and the manner in which the patches are excited, we will be considering only
transverse vibrations w(¢,z).

Bonded to the beam are piezoceramic patches which are mounted in pairs as depicted
in Figure 1. In this discussion, it is assumed that the patches have thickness T', width b,
Young’s modulus E,., density py., and damping coefficient cp,,. Moreover, it is assumed
that the bonding layers for each patch have equal thicknesses, Young’s moduli, densities and
damping coefficients, and these parameters are denoted by Ty, Eye, poe and cpye, respectively.
We emphasize that these assumptions are made solely for clarity of presentation, and similar
results can be obtained in an analogous manner for the more general case in which the patches
and bonding layers have differing thicknesses and material properties (see, for example, [12)).

Finally, we assume that inside the cavity, there is a region @ = UY2 Q3; which provides
a first approximation to the interior objects (eg., passengers, seats, storage compartments)
which disrupt and damp the interior acoustic fields. This region is assumed to have positive
measure and is taken to be small as compared to Q(t) (see Figure 1 where Ng = 4).

2.1 Acoustic Component

We consider first the acoustic wave dynamics inside the cavity £(¢). The variables of interest
to us are the pressure P, density p, and the velocity U, each of which can be represented in




w(t,x)

f
FiGg. 1. The 2-D domain.

terms of a mean and fluctuating component

P(t,Z) = Ry(Z) + p(t, %)

o(t,3) = po(3) + it )

0(t, %) = Uo(3) + (t, %)
(here we have taken ¥ = (z,y) and are assuming that the rate of sound travel is sufficiently
rapid so that little heat transfer takes place). For the range of magnitudes involved in these
problems (< 140 dB), it is usual to assume linear relations when considering constitutive laws
and force balancing [20], and we make that assumption throughout the analysis which follows.

In the region Q(2)/Q, air damping is omitted due to the relatively small dimensions of the

type of experimental cavities being simulated. Hence in that region, an increase in pressure

brings about a proportional strain with the ratio defined as the bulk modulus of elasticity Ey
where

E,="7'.”§ or p=—E;V-§ (2.1)

(8(t; %) denotes the displacement of the center of gravity of an infinitesimal element of the
medium and satisfies 5; = #). On the other hand, the maerial objects lumped in € will
provide some medium damping and here we assume that a change in pressure yields

p=—EV.5-dV.3 (2.2)

where £ and d denote the bulk modulus of elasticity and damping coefficient of the medium

in . We point out that this use of a generalized Hooke’s law in which stress is proportional to




a linear combination of strain and strain rate is done under the assumption that relatively low
acoustic frequencies are excited (< 1000 Hz). and is similar to the constitutive law leading to
Kelvin-Voigt damping of vibrations in elastic materials. We also emphasize that this damping
model should be considered as a first approximation to the actual ucoustic damping mechanism
in the medium €2, and depending on the specific materials involved, the manner of acoustic
excitation, and the geometry of the physical system, more comprehensive models may be
required to accurately describe the medium damping,.
Force balancing in the acoustic cavity yields the rclation (the Euler equation)
2 -
o =~V (23)

where ~
oo Ee0wd
p , TEN
denotes the equilibrium density of the medium ((2.3) is equivalent to the linearized momentum

equation in fluid dynamics). By taking two time derivatives of (2.1) and (2.2), the divergence
of (2.3), and eliminating cross terms, one arrives at

32

9r_Eip, . Feq)/f

o b5 (2.4)
Fp_E, 4

at2=—l-):AP+;A})g N ze.

Taking the curl of the mome. .tum equation (2.3) and noting that @ = 5, we obtain Z(V x
poit) = 0. Hence the vorticity & = V X potl is constant in time in £(¢). Under the assumption
that the initial vorticity &(0) is zero, we may conclude that V x po@ = 0 for all time or that
the flow is irrotational in (¢). Thus in §(¢), there exists a scalar velocity potential ¢ such
that

po’l_l‘ = —V¢ . (2.5)
The flow is more complex near and in the region { as a result of the viscous effects and
medium damping. This can potentially lead to rotational components in the acoustic field
which in general necessitates the use of a vector potential. As a first approximation, however,
we are assuming that the rotational components near and in  are negligible and a relation
of the form (2.5) will be used throughout the acoustic cavity (t).
Substituting (2.5) into the momentum equation (2.3) we find

04 _
w{& 7)o

which implies that p = — since no acoustic sources or sinks are present in Q(¢). Use of this

pressure expression (actually p, = @) after differentiation in time once in equations (2.1),
(2.2) then yields

P4 _ B . )
= 5 00 . Teq)/f
P¢_E

e -A¢, , Teq.




Finally, hardwall boundary conditions are assumed since the experimental apparatus being
modeled has concrete walls. With 7 denoting the outward unit normal to the cavity and ¢(7)
and d(Z) denoting the speed of sound and damping coefficients g ~u by

o= [ B TEROR g (0 2o
E/lp , T€N dfp , &

the acoustic response can be modeled as

2

9¢_ang+ddd  , (59) €N >0,

Bt (2.6)
Vé-f=0 , (z,y)el,t>0.

We emphasize that this model was derived under the assumption that the only acoustic
damping in the cavity occurs in the region € and hence d(Z) = 0 in the rest of the chamber,
ie. for ¥ € Q(t)/2. Moreover, we have assumed that the flow is irrotational in the region

(t).
2.2 Beam Component

Through force and moment balancing, the equation of motion for the transverse displacements
w of the beam are found to be

M
pwy + -—a?.;(t,:v) = —di(t,z,w(t,z)) + f(t,z) 20<z<a,t>0,
) ow ow
. ’LU(t,O) = _6—:;(t, 0) = w(t, a) = %(t, a) =0 t>0 ,

where M is the total beam moment, f is the force due to pressure from the exterior noise field
and 4,(t,z, w(t,z)) is the backpressure due to the ensuing acoustic waves inside the cavity
(this latter term is in general nonlinear since its effect occurs on the surface of the vibrating
beam). For pairs of patches having edges z; and x,, the density of the structure is

p(z) = pohb + 20 (poeToe + ppeT) Xpe(ir) (2.7)
where the characteristic function

1, 518z

w@={

, otherwise

localizes the patch effects between the endpoints z; and z, (see [11, 12] for details).
The general beam moment

M(t,z) = M(t,z) — Mp(t, )

consists of an internal component M, depending on material and geometric properties of the
beam and patches, and an external component M, (the control term) which results from the
_ activation of the patches through an applied voltage (see Figure 2).

L A

6




For a beam undergoing pure bending motion with out-of-phase excitation of the patches,
the inter::al and external moments are given by

0w Pw

M(t,2) = BI(@) 55 + col(z) e
Mpe(t,2) = K:BVXpe(m)

¢

where V is tle voli. e into the patches. As shown in [11], the stiffness, damping and control
constants fi; the combined structure are

Kb 20
El(z) = Bypy + 5 [Bucasse + Lpeiape] Xpel2)
I3b 2b
cpl(z) = CDb_;E + 3! [CDbeasbe + chea3P8] Xpe() (28)

K2 = Epobdsy(h +2Toe + T) .

The c:.nstants agye and ac, . given by azy = (/24 Tye)® — (R/2)® and aspe = (R/2+ The+T) -
‘h/2 -+ T, result from the integration of stresses through the bonding layer and patch, and
ws i & pi uceramic constant which relates the amount of strain produced in the patch to
the '~vel U voltage being applied.

A tais point it is worth commenting further on the damping term cp,. which is taken to
be a combination of the Kelvin “/oigt damping coefficient for the patch and the damping which
results from the production of current when the structure vibrates. This latter contribution to
vhe damping results from the piezoelectric effect of the patches which dictates that a voltage
is proluced when the patch is subjected to in-plane strains. Under the assumption that the
Kelvin-Voigt (material) and electrical dampirg have approximately the same types of effect
in the patch, we have combined the two into the coefficient ¢p,, which must be considered to
be unknown and like the other parameters, must ultimately be estimated using data fitting
techniques with experimental data when considering actual applications. We also point out
that the expression (2.8) can easily be generalized to include the possibility of diffe.ing material
properties in the two patches or bonding layers (again, see [11, 12]).

The fuct that the patches generate a voltage when strained implies that they can be used
as sensors as well as actuators. Specifically, the voltage produced by the patches when the
beam bends is

z2 OPw Ow

, 0
Vi) =k* [ " S hakde = K5 |22 (20) = 5= (6 2) (2.9)

where the sensor constant X5 depends upon piezoelectric material properties as well as the
geomet, - and size of the patch (see [18]). Hence the voltage provides a measure of accumulated
strain in the beam (see Figure 2) thus enabling the patch to serve as a sensor in a variety of
applications involving the measurement of beam vibrations.
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F16. 2. Acoustic cavity with piezoceramic patches; (a) fized domain Q and boundary I'\JTo; (b) patch
generation of pure bending moments, and (c) patch sensing of accumulated strain.

2.3 Coupling Conditions

In the model discussed thus far, the structural and internal acoustic responses are coupled
thiough the backpressure ¢;(t,z,w(t,z)) on the surface of the beam. A second coupling
equation is the continuity of velocity (or momentum) condition

1
we(t,z) = ;;VqS(t,:z:,w(t,:z:))-j, 0<z<a,t>0

which results from the assumption that the beam is impenetrable to air. We point out that the
velocity condition provides a form of damping to the beam which is similar to that obtained
with the incorporation of viscous (air) damping effects (modeled by a terin of the form yw, in
the beam equation). As noted in the examples, the internal Kelvin-Voigt damping in concert
with the coupling effects due te the continuity of velocity and backpressure causes a beam
response which differs somewhat from that observed with an uncoupled, undamped beam
having the same dimensions.

The model we have developed has nonlinearities in the (i) variable domain Q(t), (ii) back
pressure term —@:(t, z, w(t,z)), and (iii) velocity term ;—!VQS(t,x,w(t,w)) - 3. Under an as-
sumption of small displacements (w(t,z) = w(¢,z) + § where @ = 0) which is inherent in
the Euler-Bernoulli formulation, the variable domain §(¢) can be approximated by the fixed
domain © = [0, 4] x [0, 4] as shown in Figure 2. Note that with this assumption, the velocity
term %—Vd)(t,x,w(t,x)) - j can be approximated by the normal term --V¢(t,z,w(t, z)) - i
which arises when developing the weak form of the equation. The fully nonlinear form of the
back pressure coupling term is retained throughout the fallowing discussion.

8
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2.4 Strong Form of the System Equations

For the coupled system in which s pairs of patches are bonded to the beam and excited out-
nf-phase, the acoustic, structural and coupling components just discussed can be combined to
yield the approximate nonlinear model

¢tg=62Ad)+dA¢t (x,y)EQ,t>0,

V- =0 (z,y)el,t>0,

;)l—-VqS(t,m,w(t,w))-ﬁ:wt(t,:c) 0<z<a,t>0,
!

2 2 03
pWy + i‘ (Efa—?ﬁ + CDI—Q—w—>

dz? Ox? d0z20t (2.10)
0* g l<z<a,
==t 3, 0(t,2)) + f(t,2) + 55 g’ci wtxee(z) ’
w(t,0) =g——l—:(t,0)=w(t,a)=%g(t,a)=0 t>0 ,

$(0,2,y) = go(z,y) , w(0,z) = wo(x)
¢t(0’xa y) = ¢1(.’E, y) ) wt(O’m) = wl(w) .

Here u;(t) is the voltage being applied to the ¢t

function over the it* patch.

We point out that the piezoceramic material parameters K7 (see (2.9)) and K2, : =
1,--+,s as well as the beam parameters p, EI and c¢pl are considered to be unknown znd
are estimated using inverse problem techniques as discussed in later sections. While the
expressions given in (2.7) and (2.8) can be used.as starting values in the parameter estimation
routines, experimental evidence (see [15, 16]) has indicated that the final parameter values
can vary quite significantly from the analytic values due to the contributions from the bonding
layer, variation in the measurement of physical constants, and nonuniformities in the various
materials. This combined with the lack of analytic expressions for the damping constant
necessitates the estimation of these parameters before model-based control strategies can be
implemented.

We also emphasize that the parameters K2, p, EI and cpl are piecewise constant in na-
ture due to the presence and differing material properties of the bonding layer and patches
(see (2.8) as well as the results in [15]). This leads to difficulties with the strong form of the
system equations since it necessitates the second derivatives of the Heaviside function (equiv-
alently, derivatives of the Dirac delta) thus yielding an unbounded control input operator.
The differentiation of the discontinuous material parameters also leads to difficulties when ap-
proximating the dynamics of the coupled system. To avoid these problems, it is advantageous
to formulate the problem in weak or variaticnal form (the use of the variational form also
permits the use of basis functions having less smoothness than required for those used when
approximating the solution to the strong form of the equations).

patch and xp., denotes the characteristic




Finally, we note that in the case of no acoustic cavity damping (d = 0), the model (2.10)
is completely equivalent to the nonlinear models that are the basis of the investigations in
[1, 8, 10, 11] if one replaces the coupling terms ps¢, and & = —V ¢ in those models by ¢, and
7= -—;%V(ﬁ, respectively. That is, the potential used in those references differs from the one

used here by a multiplicative factor ;17.

2.5 Weak Form of the System Equations

An appropriate choice for the state of the second-order problem (2.10) is the pair (¢,w)
consisting of the acoustic potential and beam displacement. It follows immedsately that with
this choice, the state for the problem in first-order form is Z = (¢, w, ¢, ) which contains the
pressure (since p = ¢) as well as the beam displacement and velocity.

The state space and space of test functions are taken to be the product spaces H =V x H
and ¥ = V x V where the Hilbert spaces /i and V are given by H = L*(Q) x L*(T) and V =
H () x H3(To). Here L*() and H'(f) denote the quotient spaces of L? and H! over the con-
stant functions and HZ(I'o) is given by HZ(To) = {¢ € H*(Ty) : ¥(z) = ¢'(z) = 0 at x = 0,a}
(the use of the quotient space results from the fact that the potentials are determined only
up to a constant). From energy considerations, the H and V inner products are taken to be

<( v )( 5 )>H=/sz£3¢5dw+ﬂoﬂbwnd7
((£):(5)), = fwe-veass [ Erprurias

while the product space inner products are given by

<( $ )( I >>H =(®,T)y +(¥,A)y
<( $ )( I )>v= (9, T)y + (T,A)y .

Integration by parts in a manner analogous to that in [1] in combination with the approx-
imation of the variable domain Q(t) by the fixed domain @ = [0,4] x [0,£] and the use of
‘Green’s theorem then yields the nonlinear first-order variational form

|5 (9), 60+ [ ()

. 2, 2
+/ﬂv¢ Vfdw-i—/ro EID*wD*ndy

. | 1 (2.11)
+ /ﬂ 54 V4 Ve + /F o {epI D* D%y + [$(w)n — e} dy

= | Y KPui(t)xpe, D*ndy + / fndy
To

Fo i1
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for all ¥ = (¢&,1) € V. We point out that in this variational ‘orm the derivatives have been
transferred from the plate and patch moments onto the test functions. This eliminates the
problem of having to approximate the derivatives of the characteristic function and the Dirac
delta as is the case with the strong form of the equations.

The system (2.11) can be formally approximated by replacing the state variables by their
finite dimensional approximnations and constructing the resulting matrix system, and it is in
this form that we will consider approximation strategies in Section 4. In order to discuss the
well-posedness of the problem, however, it is advantageous to pose the problem in an abstract
Cauchy format as discussed in the next subsection.

2.6 Abstract First Order Formulation

Following the theoretical work in [2, 3], it is advantageous to formulate the problem in terms
of sesquilinear forms and the bounded operators which they define (see also [1, 10] for further
examples detailing the abstract formulation of structural acoustic systems in this manner).
We begin by pointing out that the Hilbert spaces H and V form a Gelfand triple V «— H ~
H* — V* with pivot space H (further details concerning the basic definitions and fundamental
functional analysis theory here can be found in [22]). For ® = (¢,w) and ¥ = (¢,79) in V, we
then define the sesquilinear forms o; : VxV = C, 1 =1,2 by

o1(®,0) = / V- Vedw + / EID*wD*pdy
Q To (2 12)

| .

02(®, V) = /ﬂ 5d V4 Vedo + /F {epI D*wD?y + gy — wé]} dy .

With these definitions, it is straightforward to show that o7 and o, satisfy various conti-
nuity, symmetry and coercivity conditions. Namely, o; satisfies

lo1(®, ¥)| < &1|®]v|¥|v , for some ¢ € R (bounded)

Re 01(®,9) > c;|®|? , for some c; >0 (V-elliptic) (2.13)

o1(®,¥) = 0,(¥, D) (symmetric)

for all ®,¥ € V (.he boundedness results from Schwarz’s inequality for inner products in
conjunction with equivalence results for various Sobolev norms, while the V-ellipticity and
symmetry of oy follow directly from the fact that oy(®, ¥) = (@, ¥),).

The behaviour of o, depends upon the form of damping in the cavity . If damping is
included in a region ) having positive measure as discussed in Section 2.1, then o, satisfies

lo2(®, ¥)| < c3|®|v|¥|v , for some ¢z € R \bounded)

(2.14)
Re 02(®,®) > c4|®|} , for some ¢4 >0 (V-elliptic) .

11
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The V-ellipticity follows from the fact that

Reox(#,8) = | Zlid|v¢|2dw+ [ el (D)’ d

Q
> k /ﬂ IVé[2dw + kz /F El (D*w)’ dy

> Py

with the final inequality resulting from the observation that there exists a constant ks such
that k; f5 |Vé|2dw > ks Jq [V¢|?dw for all @ € V. On the other hand, if the cavity is taken

to be completely open with no medium damping assumed (hence meas(2) = 0 and d = 0
throughout ), then one can only establish the weaker H-semiellipticity condition

Re 0'2(@,@) 2 C4I(I’I?.1 y C4 2 0

for o2 (in this case ¢4 = 0 since o2(®,®) contains no acoustic components when damping is
omitted in the cavity). As discussed in the next section, the inclusion of medium damping
within the subregions Q and the resulting V-elliptic behavior of o5 yields stronger semigroup
results than those obtained when acoustic damping is omitted.

To account for the patch contributions when a voltage is applied, we let U denote the
Hilbert space containing *he voltage inputs and we define the operator B € L(U,V*) by

(Bu, W)y, y = /F 3" KBuixpe, D*ndy

0 i=1

for ¥ € V, where (-,-)y. is the usual duality pairing. Finally, the external forcing and
nonlinear perturbation terms are given by F = (0, f/ps) and G(z,2) = (0, —¢:(w)) where
di(w) = du(t, z,w(t,z)) = Pult, z,w(t,z)) — de(¢,z,0) denotes the nonlinear perturbation to
the linear coupling term.

With these definitions, we can write the system (2.11) in the abstract weak or variational
form:

(zlt(t)’ "II)V‘,V + Uz(zl(t), \I") + al(z(t)’ ‘I’) = (Bu(t) + F+ G(z, zt)’ \I”)V',V (2'15)

for ¥ in V. We reiterate that the state for the problem in second-order form is given by
z(t) = (¢(t,‘7 ')’w(ta )) in V< H.

To pose the system in first-order form, we form the product space terms Bu(t) = (0, Bu(t)),
F(t) = (0,F()) and G(Z(¢)) = (0,G(2(t), z(t))) in V* = V x V* and define the operators
Ay, Az € L(V,V*) by

<A,"I), ‘I’)V‘,V = 0';((1’, ‘I’)

fqr i = 1,2 (the existence of A; and A, is guaranteed by the boundedness of o; and o3).
Then, for the state Z(t) = (2(t), z:(t)) = (¢, w, d,w) in H =V x H, the weak form (2.15) is
formally equivalent to the system

Z,(t) = AZ(t) + C(t, 2(t)) (2.16)
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in V* where
C(t, 2(t)) = Bu(t) + F(t) + G(Z(1)) (2.17)

and
dom A={@=(T,A)eH:Ae V,AiT+ A;A € H}

[ 0 I (2.18)
A=

—A1 -—A2

(further details concerning the formulation of the first-order system in the linear case can
be found in [1]). The representation (2.16) is formal in the sense that the manner in which
differentiation and the resulting solution exists has yet to be specified. This will be discussed
next in the context of proving well-posedness results for the system model.

Finally, in discussing well-posedness results and parameter convergence in the sections
which follow, it proves useful to compare the nonlinear system with that which results when
both coupling terms are linearized. The latter is found by replacing the term (¢, z,w) by
#4¢(t,,0) in the various expressions for the coupled system (equivalently, take G(z,2) = 0).
This yields the second-order variational form

(2a(t), O)ye v + 02(2e(2), ) + 01(2(2), ¥) = (Bu(t) + F, )y, y (2.19)
for ¥ € V and consequently the first-order system
Z,(t) = AZ(t) + Bu(t) + F(2) (2.20)
in V*.

2.7 Model Well-Posedness

The first step in determining the well-posedness of the semilinear system model is to argue
that A generates a semigroup on H. As noted earlier, the sesquilinear form o; is V-elliptic,
continuous and symmetric while o3 is continuous and V-elliptic if damping is included in the
region § or H-semielliptic if damping is omitted in the cavity. In both cases, the Lumer-
Philips theorem (with arguments similar to those given in pages 82-84 of [2]) can be used to
prové that the operator A defined in (2.18) generates a Cy-semigroup 7 on the state space H.
The semigroup satisfies the exponential bound |7 ()| < e“* for t > 0 (where in fact, w = 0 due
to the fact that A is dissipative as shown in [2]). Moreover, if medium damping is included
in the region § (which implies that &, is V-elliptic), the semigroup 7 is analytic on .

For the problem thus posed, the state lies in H which implies that the semigroup T
generated by A : dom A C H — H is defined on H. The nonlinear forcing term C(¢, Z(t)) =
Bu(t)+ F(t)+G(Z(t)), however, lies in V* rather than H since the control term B € L(U, V™)
defines the product space control term Bu(t) = (0,Bu(t)) € {0} x V* Cc V x V* = V.
To remedy this, “extrapolation space” ideas and arguments similar to those presented in
[3, 4, 19] are used to extend the semigroup 7 () on H to a semigroup 7 (¢) on a larger space
W* O.{0} x V* s0 as to be compatible with the forcing term.




As detailed in [10], the space of interest is defined in terms of dom A* where

dom A" = {x = (8, V) € H|¥ € V, A1 — ALV € H}

-y
A*x = .
X (A:@—A;\v)

Specifically, the space W = [dom A*] is taken to be dom .A* with the inner product
(@, \I’)W = {(Ao — AP, (X0 — A*)lI’)'H

for some arbitrary but fixed Ao with Ag > w (recall that the original solution semigroup
satisfies the bound [7(¢); < e“!). As proven in [4], the resulting W norm is equivalent to
the graph norm corresponding to A*. Moreover, we have that {0} x V* C W* = [dom A*]*
(see [10] for details).

From the definition of A* and the equivalence of the W norm with the graph norm corre-
sponding to A*, we can define A® € W* by

(48) (x) = (8, A"x)y,

for all © € H, x € W. With this definition and the Riesz representation theorem, it is
shown in [10] that A is an extension of the original operator A from dom A C H to all of H.
Finally, as proven in [4], the operator A is the infinitesimal generator of a Co-semigroup 7 (t)
on W* which is an extension of 7 (¢) from H to W* (note that 7 (2) is also analytic if medium
damping is included within the region (2).

Having extended the operator A and hence the generated semigroup to a space which is
compatible with the forcing function, we are now in a position to discuss criteria on the input
terms F' and B which guarantee the existence of a unique solution to the system model. In
the corresponding linear problem, under reasonable regularity conditions on ¢ — u(t) and
t > F(t), one can immediately argue the existence of a unique strong solution to the system
in terms of the extended semigroup 7~'(t) For the semilinear problem of interest, however, the
nonlinear nonhomogeneous terms must satisfy certain continuity criteria in order to obtain
similar results. For example, if we let X denote the reflexive Banach space W* and assume
that C: [0,T] x X — X defined in (2.17) is continuous in ¢ on [0, T] and uniformly Lipschitz
continuous on X, then the integral equation

. t . 0
Zt)=T(t)2, +[) T(t—s) ( Bu(s) + F(s) + G(2(s)) ) ds (2.21)

is well-defined for Bu + F + G(Z2) € L*((0,T),V*). Moreover, for Z(0) = 2o, the solution
Z(t) of (2.21) is a unique mild solution to (2.16) (see Theorem 1.2, page 184 of [21]). In
addition, if C : [0,T] x X — X is Lipschitz continuous in both variables, then it follows from
Theorem 1.6, page 189 of [21] that (2.21) provides the strong solution to (2.16) interpreted in
the W* sense.

The required continuity of the nonhomogeneous terms Bu and F' is demonstrated in [10]
and hence the remaining question concerns the Lipschitz continuity of the nonlinear coupling
term G(z,2:) = (0,—¢:(w)). If we assume that the input terms F and Bu are sufficiently
smooth so as to assure the necessary continuity in G(z,z), then the nonlinear system is
well-posed. These results are summarized in the following result.




Lemma 1. (Well-Posedness of the Nonlinear System) Consider the nonlinear system
represented by (2.15), (2.16) or (2.21) and assume that F' and Bu are sufficiently smooth
so that C(¢, Z(t)) = Bu(t) + F(t) + G(Z(t)) is Lipschitz continuous in both ¢ and Z.
Then (2.21) with Z, € H is the unique strong solution to (2.15) both when acoustic
damping is assumed in the region Q and when no damping is present in the cavity (in
which case, o3 is only H-semielliptic).

These results can be further extended when acoustic damping is assumed in the region
and hence o is V-elliptic and 7 is analytic. In this case, the mild (and thus strong) solutions
to (2.20) are guaranteed to be equivalent to the weak or variational solutions to (2.19) for
sufficiently smooth nonhomogeneous terms. The following theorem summarizes this result for
the linearized problem.

Theorem 1. (Linearized System: Equivalence of Solutions) Consider {he system rep-
resented by (2.19) or (2.20) and suppose that the mappings ¢ — u(t) and ¢t — F(t) from
[0,T) to R and V*, respectively, are Lipschitz continuous. Furthermore, assume that
medium damping of the form (2.2) is present in the region Q C Q. Then for each
Zy € H = dom A, we have that (2.20) taken with Z(0) = 2, has a unique strong
solution given by (2.21) with G(Z) = 0. Moreover, this strong solution is equal to the
weak solution of (2.19).

The proof of the equivalency between strong and weak solutions follows that given in [3]
for general second-order systems with unbounded input terms. We point out that numerous
numerical results have indicated similar results for the nonlinear problem and the case in which
damping is omitted in the cavity even though we have not extended the results equating the
strong and weak solutions to cover those cases.

3 State Approximation

The modeling and well-posedness discussion thus far has been for the infinite dimensional non-
linear structural acoustic system. In this section we discuss a Galerkin scheme for discretizing
the problem which can be used when simulating the system dynamics, estimating the physical
parameters, and calculating control gains (see [1]). This is accomplished by approximating
the beam displacement and acoustic potential by spline and spectral expansions, respectively.

3.1 System Approximation

As detailed in [1] where the corresponding linear problem was considered, cubic splines are
suitable for discretizing the beam displacement since they satisfy the smoothness requirement
as well as being easily implemented when adapting to the fixed-end boundary conditions and




patch discretizations. Specifically, the approximate beam displacement is taken to be the

linear combination

n-1

wM (t, ) Z w; (8) B (z

where B™ is the i** cubic spline which has been modified to satisfy the boundary conditions.
The acoustic potential is approximated by the Galerkin expansion

My My

¢Vt z,y) =3 Y o5t Pf(y)

j=0 =0
i+3#0

where P?(z) and P/(y) denote the standard Legendre polynomials that have been scaled
by transformation to the intervals [0,a] and [0,4], respectively. The condition ¢ + j # 0
eliminates the constant function thus guaranteeing that the set of functions is suitable as a
basis for the quotient space. We take {By(z,0)}p, = {P?(2)Pf(y)}iioy bejgo Where m =
(mz+1)(my+1) — 1.

The m and n — 1 dimensional approximating cavity and beam subspaces are taken to be
H" = span{BP"}", and H} = span{B!'}}7, respectively, where B™ and B} are the "
cavity and beam bases described above. Defining N = m+n -1, the approximating state
space is then taken to be HY = H™ x H} and the product space for the first order system is
HN = HN x HV.

By restricting the infinite dimensional system (2.11) to HN x H", one obtains the nonlinear
finite dimensional system

My 0 1[N C 0 My IN(t) 0 0
N SN = N N (N AN | oay e oy
Lo MY [N —4Y -4 (wV¥) | | V) B 200

MY 0 [ 9N0) 'gl”]
o MY]|MNo)y| Lo

with
MY = diag[M{}, M{j] ,
MY = diag{MN, MY, AV (w':"(t)) = { ° A ]
219 47422} » 2 A;I;Vz (wN(t)) A%
AY = diag[A}, AN)
and

vol0,8Y" , BV =0, B

The vector 9V () = (¢ (2), Y (2), - - -, dN(2), wi (), wd (2),- - -, w]_,(¢))T contains the Nx1 =
(m +n = 1) x 1 approximate state coefficients while u(t) = (uy(£), - - us(t))” contains the s
voltage values. The matrices M)} and A} are the mass and stiffness matrices which arise when
solving the uncoupled wave equation with Neumann boundary conditions while M}, A, and
AY, are the mass, stiffness and damping matrices which arise when solving the damped beam
équation with fixed boundary conditions. The matrices M}y and M} result from the choice

B L T T D A T
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of V inner product (see [1]) The contributions from the coupling terms are contained in the
matrix A31 and operator AY(w™N(t)) while the control, forcing and initial terms are contained
in Bév , FN(t) and §', respectlvely A more detail description of the various component
matrices can be found in [1].

The equivalent finite dimensional Cauchy equation is then

V() = AV (y7 (1)) + BVu(t) + FN(2)
yV(0) =

with the various operator definitions following from those given above. As with the infinite
dimensional problem, it will also be useful to consider the corresponding problem

gV (t) = ANyN(t) + BNu(t) + FN(2)
yN(0) =g

when considering issues such as parameter convergence. The linear operator A" is obtained
by considering the linearization of AY(w™(t)) as discussed in [1].

(3.1)
(3.2)

3.2 Algorithm for Constructing the Nonlinear Component

The determination of state trajectories involves the repeated construction of the nonlinear
operator AN (y"(¢)). Although most of the components of this operator need to be constructed
only once, the (n — 1) x m matrix AY,(w"(t)) must be determined at each step in the solution
of the ordinary differential equation (ODE) (3.1) and hence its formation must be made as
efficient as possible.

We first point cut that for 7,5 = 1,---,m,, my, this (n — 1) X m matrix has the entries

[4% (" ®)] /B" z)P¥(z) P! ("fw,(tB ))

J=1

where the integrals are evaluated via a Gaussian quadrature rule of the form

/a f(z)dz ~ chkf(:z:k) .
0 k=1

Here n, is the number of quadrature points and . is the quadrature weight. These quadratures

~ and hence the formation of the matrix can be efficiently accomplished in the manner outlined

in the following algorithm.
Numerical Algorithm for Creating the Nonlinear Component AJ, (w” (t)):

1. Create the matrices AY, , AY  and Af},;1 which have the components

[A32a] k(i) s [A32aw .—ckB,’:(:v, [A32b11 = P}(z:)

(hence dim A}, = ngx(n—1), dim AY, = (n—1)xn, and dim Ay = ngx (ma+1)).
These matrices need to be formed only once and can be created before solving the ODE
system.
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2. With the notation o denoting Hadamard or componentwise multiplication, perform the
following operations in the ODE solver:

& = A wN(t) ,dim 2 =mngx 1

forj=1:my+1

b= Pf(:z:) , dim b = 1y X 1
A%bj‘z (wN(t)) =bx ones(l,my + 1) , dim Aé"zm (wN(t)) =ny X (Mmge+ 1)
M (00 = Ay Al (0¥0) i ALy (0¥(0) = my X (a4 1)

indl=(j-1)-(mz+ 1)+ 1

ind2=j-(mz;+1)

: AY, (u;N(t)) (:yindl : ind2) = A:%bj (wN(t)) , dim AN, (wN(t)) =ngXm
end

AY, (wN(t)) = psAYw - AN (wN(t)) , dim A%, (wN(t)) =(n—-1)xm.

By creating the matrices AY,, , A, and ALY, , offline, the time needed to solve the ODE
‘ system is reduced thus improving the efficiency of the scheme for parameter estimation and
: conitrol applications.

4 Parameter Estimation Problem

The goal of the parameter estimation problem is to determine the “true” material parameters
po, El,cpl and K7, KB ,i=1,---,s, given data measurements 3 from some observable sub-
space Z of the state space. To pose this mathematically, we let ¢ = (g3, EI,cpl,KB,.-- KB,
K$,--+,K%) and assume that ¢ € Q where Q denotes an appropriately chosen admissible
parameter space. The parameter estimation problem is to then seek § €  which minimizes
2
J(q) = |Ca|Cr {2 (i, 0)} - 2] (4.3)
given pointwise temporal measurements 2, = £(t;) at given points on the beam and in the
’ cavity, Note that this minimization is performed subject to Z = (4, z, ¢,w) satisfying the
coupled system equations (2.11) or (2.15). Depending on the experimental apparatus, the
B data observations may consist of position, velocity, acceleration, or accumulated strain mea-
surements at points on the beam as well as pressure measurements inside the cavity. The form
of the operator C; depends upon whether one is performing the estimation procedures in the
time domain or in the frequency domain. In the time domain, C; is the identity whereas it is

& the Fourier transform for estimation in the frequency domnain.
_ For time domain estimation with data consisting of position, velocity, or acceleration
v measurements at points Z on the beam, the fit criterion functional to be minimized is

2

0¥ .
—(ﬁ—(ti,i; q) - & (4.4)

J() =Y

t
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with » = 0,1 or 2. On the other hand, if a patch with endpoints at z; and x; is used to collect
accumulated strain measurements, an appropriate functional is

J(g) =3

1

Jw __(?iv_ 2

xS (Td;(ti,w'l;q) 5 (ti,xl;(l)) ~% (4.5)

(see (2.9)). Here the data consists of the voltage measured across the patches. The patch data
can also be combined with pressure measurements p, at points (Z,7) in the cavity to provide
a fit criterion functional

J(q)=2{

i

) 0 [
o (E‘Z‘(ti,mz; q) - %(ti,ml;q)> — %

+ |e(ti, 2,9) - ﬁslz} (4.6)

which in some cases has more sensitivity than that in (4.5) which considers only strain mea-
surements.

The above fit criteria can also be used with data that has been transformed to the frequency
domain (in which case C; is the Fourier transform), and this is indeed a common procedure
for starting the optimization process with data in which several frequencies are excited (see
the comments in the examples as well as [13, 14]). In this case, optimization is qualitatively
performed in the frequency domain until frequencies match sufficiently so that the optimization
routines will converge with the time domain data.

To facilitate the estimation of the material parameters p, EI and cpl, we now make some
assumptions regarding their spatial behavior. Because the beam and patches are considered
to be homogeneous as well as uniform in width and thickness, it is reasonable to assume that
the density, stiffness and damping parameters of the combined beam /piezoceramic patches are
piecewise constant in nature (see for example, {15]). A suitable partition is then taken to be
{zx} = {0,a} U{Qij};‘z!l:.zu’s where the 2s points {a;;} are the endpoints of the s piezoceramic
patches. Finally, we assume that these parameters have the form

2s+1 .

p(z) = ) aBi(e) y ,01 = C3 =" = Cgs41
k=1
2s5+1

EI(.'Z?) = Z ékBk(w) N E] = ~3 E RN 625+] (47)
k=1

2541

CDI(-”") = Z ékék(w) , G =C3= = ép
k=1

yvhere the piecewise constant basis functions are defined by By(z) = H(z — z—1) — H(z — z4).
The:coefficient constraints ¢; = ¢3 = -+ = ¢z541, and so on, result from the uniformity of the
béam in areas not covered by patches. Finally, we recall from the definitions (2.8) and (2.9)
that the patch parameters K2,--. KB, and K$,.--,KS are simply constants which depend
on piezoelectric properties, the geometry and size of the patch, and patch and bonding layer
properties.

Although Q is finite dimensional with the above assumptions on the parameters, the min-
iinization of the fit criteria in (4.4), (4.5) and (4.6) involves an infinite dimensional state
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and hence is not immediately tractable. With the Galerkin schemes of the the last section,
however, corresponding minimization problems involving the state approximations can be de-
veloped and used when estimating physical parameters with these fit-to-data techniques. With

wl, ¢V and HY C V defined in the last section, finite dimensional functionals corresponding
to those in (4.4), (4.5) and (4.6) are

9" wN 2
']N(q) = Z W(ti, T q) - % y V= 0’ 1a2 ) (48)
s [OwV w Nk
) =S e (Gt 0) - Gt — (49

and
ow" duwl ?
NeY — SEZ7 (4. moeag) — 2 (4. e — 3.
J (q) Z{’C (ax (tnwihq/ 833 (t,,(l!],(])) Z;

t

+ |¢£V(t,',:i, g) - ﬁir} ’ (4‘10)

respectively. The approximate beam displacement w" and acoustic pressure p;¢N at the
various points are found by solving either the nonlinear finite dimensional system (3.1) or the
system (3.2) if one is considering the linearized problem.

The following theorem taken from [16] specifies conditions under which convergence and
continuous dependence (on data) of the solutions to the linearized finite dimensi-nal parameter
éstimation problems involving the functionals (4.8), (4.9) and (4.10) can be expected.

Theorem 2. (Linearized System) Let Q be a a compact subset of a metric space Q with
' metric d and assume that HV C V approximates V in the sense that for each ® € V,
there exists @V € HV such that

|0 - Y| <e(N)—0as N—co. (4.11)

Furthermore, assume that o1(q) and o3(q) defined in (2.12) are V-elliptic, continuous,
and satisfy the continuity with respect to parameter condition

|o:(9)(®, ¥) — 0:(§)(®, V)| < (g, I@Iv[¥|v , for &, ¥ eV (4.12)
for i = 1,2 and ¢, § € @. Finally, assume that
g~ (Bu+ F)(t;q) is continuous from Q to L*((0,T), V") . (4.13)
For arbitrary ¢V such that ¢V — ¢ in Q, one then has the convergence

zN(t;qV) — 2(t;q)  in V norm (4.14)
zN(t;¢V) - 2(t;q) in V norm .

for t > 0. Here z and z, are solutions to the linearized system (2.19) and zV and =V
solve the corresponding linear finite dimensional system in HV.
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In our problems the admissible parameter space @) is taken to be a compact subset of
the metric space @ = [Lo(0,a)]* x [R*]?> with elements satisfying the coefficient constraints
specified in (4.7) as well as the physical constraints p >0, EI > 0 and ¢pl > 0 on (0,¢). In
considering the remaining hypotheses, we note that the sesquilinear forms satisfy the ellipticity,
continuity and parameter continuity conditions as long as damping is assumed in some region
1 C Q (see (2.13) and (2.14)). Moreover, the input term (F + Bu)(q) satisfies the condition
(4.13). Finally, the convergence condition specified in (4.11) is satisfied as a consequence of
the approximating properties of the cubic splines and Legendre polynomials in a Galerkin
setting (see [6] for further details).

Hence, for the linearized problem with acoustic damping in 2, a subsequence of solutions
@" to the problems involving the minimization of the functionals (4.8) with v = 0, 1, (4.9) or
(4.10) subject to (3.2) will converge to a solution § of the original problem of minimizing the
functionals (4.4), (4.5) or (4.6) subject to (2.19). The convergence in the case involving the
minimization of (4.8) with acceleration data does not follow directly from this theorem but
can be obtained using results from the theory of analytic semigroups in a manner analogous
to that used in (7).

With boundedness and Lipschitz continuity assumptions on the nonlinear coupling term
G(Z), similar results can be obtained for the nonlinear problem as summarized in the following
remark. '

Lemma 2. (Nonlinear Damped System) Consider the system with the nonlinear input
term Bu(t) + F(t) + G(Z(t)). If, in addition to assuming a continuity condition of the
form (4.13) (with Bu+ F replaced by Bu+ F' 4+ G(Z)), we also assume that G(Z(t)) is
continuous in ¢, uniformly Lipschitz continuous in Z, and displays at most affine growth
at 0o, then convergence results analogous to those summarized in Theorem 2 can be
obtained for the nonlinear system.

We point out that these continuity assumptions on G were also made when discussing the well-
posedness of the nonlinear system. Details concerning these conditions as well as arguments
leading to the proof for the nonlinear case can be found in [5].

As indicated previously, the assumption of medium damping inside the cavity is often
inappropriate in applications of interest. While we have not extended Theorem 2 to include
the case in which acoustic damping is omitted, extensive numerical tests have indicated that
parameter convergence and continuous dependence of the parameters on data is being obtained
in the same manner exhibited by the system having both acoustic and structural damping.
This is demonstrated by the results in the following examples for the nonlinear 2-D structural
acoustic system in which cavity damping is omitted.
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5 Numerical Examples

To test the parameter estimation methodology, the general problem
by = AP (z,y) €N, t>0,

Vé-a=0 (2,9)€T,t>0,

Vé(t,z,w(t,z)) -7t = pyw(t,z) 0<z<.6,t>0,

d? O*w Pw
POt G (Ela 7 + ol 5o 2at>

= 2, 06,2) + (b)Y KR als) e
d =1 ’
w

w(t,0) = 3-(t,0 )=w(t,.6)=%£(t,.6)=0 t>0

¢(0,w7 y) = ¢t(0,w, y) = w(Oa-'B) = wt(oaw) =0

was considered. The cavity was assumed to have z and y dimensions ¢ = .6m and £ = 1m
with a beam at one end having length .6 m, width .1 m and thickness .005 m (see Figure 3).
The density and Young’s modulus for regions of the beam devoid of patches were taken to be

= 2700 kg/m? and E = 7.1 x 10! N/m? which yields p = 1.35 kg/m and EI = 73.96 Nm?
for the linear mass density and stiffness parameter (see Table 1 for a compilation of the
structural parameters for the system). The Kelvin-Voigt damping parameter was chosen to
be cpl = .001 kg m3/sec. Finally, the values p; = 1.21 kg/m® and ¢ = 343 m/sec were used
for the atmospheric density and speed of sound.

In the examples, we consider a system in which the bounding end beam has bonded
to it a centered piezoceramic patch covering 1/3 of its length as shown in Figure 3. The
patch is assumed to have thickness T = .000508 m and width b = .1 m (we point out
that the chosen thickness value corresponds to 20 mil which is a commercially available
thickness for piezoceramic patches). The Young’s modulus and density were taken to be
Eye = 6.3 x 101° N/m? and p,e = 7650 kg/m® which are reasonable for a patch made from
G:1195 piezoceramic material.

From (2.7) and (2.8), we see that the density and stiffness coefficient in the region of the
combined beam and patch (Region 2) will be greater than that of the beam (Region 1) (see
Figure 3). We also assume that the damping coefficient will be slightly larger in Region 2
than Region 1.

For testing purposes, the structural parameter values in regions covered by the patches were
chosen as specified in Table 1. As seen there, the constant KB = E,.bda; (h + 2Ty + T'), which
arises when modeling the actuation due to the patch, was taken to be K& = .0067 Nm/V
(this latter value was obtained by assuming a bonding layer of thickness Ty, = .0001 m and
taking da; = 1.9 x 1071° m/V which is the value specified for G-1195 piezoceramic material).
Tl;e constant X° which arises when using the patches as sensors was taken to have the value
K2=170V.
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F1G. 3. Acoustic chamber with one centered 1/3 length patch.

The following examples demonstrate the numerical estimation of the material parameters
p, EI,cpl, KB and K% using various techniques for exciting the system and observing the
response. In the first example, the natural frequencies for the fully coupled system were de-
termined by simulating an impulse hammer impact to the center of the beam. The knowledge
of these natural frequencies was then used when choosing the frequencies of the exciting forces
in the other examples. In the second example, a periodic uniform forcing function (model-
ing a uniform exterior acoustic pressure field) was applied to the beam for a short interval
of time and then set to zero. This forcing function was chosen so that three system modes
were initially excited and then allowed to begin decaying due to the damping the beam. The
acceleration of the center of the beam was used as data for estimating the material parameters
ps EI and cpl (since no voltage was applied in this example and the patch was not used for
sensing, K2 and K5 were not estimated). In the third example, the system was excited by
the application of a periodic voltage into the patch. Again, the system was excited for a short
time interval and then allowed to freely decay in epergy. Acceleration data at the center of
the beam was used to estimate the four parameters p, EI,cpl and KB. The patch was used
both for actuating and sensing in the fourth and fifth examples. In Example 4, a periodic
voltage was applied for an initial time interval after which the system energy was allowed to
decay. During the decay interval, two sets of data were calculated and a comparison was made
between the results obtained when each was used for recovering the parameters p, EI,cpl, K2
and K5. The first data set consisted solely of the voltage produced by the patches during vi-
bration (and hence contained strain measurements) while the second contained a combination
of voltage measurements from the patch and acoustic pressure values from inside the cavity.
Finally, a simulated voltage spike to the patches was used to excite the system in Example 5
(with an effect similar to that observed when an impulse hammer is used to excite the system)
with the patches again being used as a sensor throughout the remainder of the time interval.
Thus in the last two examples, the “smart material” aspects of the structure were utilized in
determining its physical parameters.
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True Values Initial Values Initial Values

(Set 1) (Set 2)
p Region 1 1.35 1.4 1.4
(kg/m) | Region 2 2.115 2.0 2.0
EI Region 1 73.96 74.0 75.0
(Nm?) | Region 2 125.4 125.0 127.0
epl Region 1 001 .0008 .0001
(Nm?sec) | Region 2|  .00125 .0008 0091
KB (Nm/V) .0067 007 .01

K3 (V) 170.0 172.0 175.0

TABLE 1. (a) True values of the material parameters; (b) Set 1 of initial guesses for the material
parameters; (c) Set 2 of initial guesses for the material parameters.

Example 1: System Dynamics

In order to determine the system dynamics with the parameter values in Table 1, the
forcing function f was chosen to simulate an impuls> at the center of the beam; that is,

f(t,z) = 6(x - .3)é(¢) .

‘This models the force that would be delivered by a centered impulse hammer hit. After the

fnitigl impulse, the system was allowed to run unforced through time T' = 8/60.
The beam acceleration obtained with m, = m, = 12 and n = 16 basis functions at the
point X = .3 is plotted in Figure 4 with a corresponding frequency plot in Figure 5. The first

four system responses occur at 62.9,179.7,342.1 and 397.9 hertz.

For comparison, we note that the analytic natural frequencies of the first two symmetric
modes of an isolated, homogeneous (no patches), undamped beam having the same dimensions
as those in this system are 73.2 and 395.6 hertz while those of the uncoupled acoustic cavity
are 171.5 and 343 hertz (the analytic undamped beam and cavity frequencies are given by

) [ET
fi_ -

T oma?\ p

c [(n\? [m\?
fmft”"é'\/(z) +(7) ym=1l---,n=0--,

. A =4.7300, Ay = 7.8532, - -+ (5.1)

and

_respectively). The differences between the observed and analytic values are due to the presence
-of the patches on the beam, the internal damping in the beam, and the coupling between the
‘beam and acoustic field dynamics.
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The frequencies observed here can also be compared with the system values 65.9,181.3,
343.9 and 387.8 hertz which were obtained when no patches were bonded to the plate and
linearized coupling conditions were assumed (see [8]). It can be seen that the increased stiffness
due to the presence of the patches manifests itself at the higher frequencies (397.9 hertz versus
387.8 hertz for the uniform beam) whereas the increased density is more of a factor at the
lower frequencies (62.9 hertz versus 65.9 hertz for the uniform: beam). This can be explained
by comparing the bending shapes of the first and third beam modes and noting that the
increased stiffness is more of an influence on the third beam mode while the increased density
more directly influences the first mode.

Beam Response to an Initial Impulse
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FiG. 4. The beam response to a centered impact.
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Fic. 5. The beam frequency response to a ~entered impact.




Example 2: Periodic Acoustic Excitation, Acceleration Data

In this example, a uniform (in space) periodic force modeling an acoustic plane wave was
used to excite the system and acceleration data was used to estimate the parameters p, E1
and ¢p! (KB and K% were not estimated since we were not applying voltage to the patch or
using the patch for sensing). Specifically, the forcing function was taken to be

I sin(1207¢) + sin(360m7t) + sin(8007t) , 0<¢<1/60
)=
0 , 1/60<t<8/60

which initially excites the first,second and fourth system modes and then allows the oscillations
to begin dying away due to the damping in the beam (see Figures 6 and 7).

The parameter estimation was performed with data which was generated by calculating the
acceleration of the central point of the beam at 498 uniformly distributed points throughout
the time interval [0,8/60] (hence » = 2 in (4.8)). The acceleration was determined by using
a second-order central difference on the displacements which were obtained by solving the
nonlinear finite dimensional system (3.1) and evaluating w" at the points (.3,#), tx =
k- 6_0(%56_)’ k=2,..-,499. Due to the relatively small number of frequencies being matched, all
identification procedures were performed in the time domain which implies that C; in (4.3)
was taken to be the identity.

To test the algorithm and software, noisefree data was first generated using 120 acoustic
and 15 beam basis functions (m, = my = 10, n = 16). Using the initial parameter choices
in column 5 of Table 1, the parameters were estimated using the same basis choice with the
optimization being performed via a Levenberg-Marquardt routine. As derr ~strated by the
recovered values in the third column of Table 2, very accurate estimates ot the parameters
can be obtained when using the same number of basis functions when generating the data
and estimating the physical parameters.

To provide more realistic simulations, data was then generated using 168 acoustic and
19 beam basis functions (m, = m, = 12, n = 20) with 120 acoustic and 15 beam basis
functions again being used for estimating the parameters (the use of a larger number of basis
functions when generating the data has the effect of adding numerical noise to the values being
approximated in the optimization routine). The parameter estimates obtained with noisefree
data and data to which 10% relative noise was added are reported in Table 2. While these
results were obtained with the initial values in column 5 of Table 1, they are representative
of those obtained with a variety of initial guesses (for this method of system excitation and
observation, the optimization routine converged for a relatively large range of initial values).
Time and frequency domain plots of the data containing 10% noise and the acceleration
obtained with the estimated parameter values of Table 2, column 5, are given in Figure 6
and 7. We note that in these figures it is essentially impossible to distinguish between the
time data and the model response with estimated parameters with the graphical resolution
used. These plots reinforce the observation that reasonable estimates of the parameters can be
obtained with acoustic excitation and acceleration data with or without noise in the simulated
data.
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No Noise No Noise 10% Noise

(Data Set 1) (Data Set 2) (Data Set 2)
5 |Region1| 1.3500 1.3499 1.3469
(kg/m) | Region2| 2.1150 2.1149 2.1181
El Region 1 73.960 73.836 72.130
(Nm?) | Region 2 125.400 125.584 130.716
epl Region 1 .001000 .001005 .001023
(Nm?sec) | Region 2 .001250 .001232 .001091

TABLE 2. Estimated values of p, EI and cpl; (a) Data generated with m, = my = 10,n = 16 and
no noise added to data; (b) Data generated with m; = my, = 12,n = 20 and no noise added to data;
(c) Data generated with m; = my = 12,n = 20 and 10% noise added to the data.

System Response to an Initial Periodic Force
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FiG. 6. The system response to an initial periodic force. The solid line denotes the data containii g
10% noise while the dashed line is the model response obtained with the recovered parameter values
in column § of Table 2.
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System Response to an Initial Periodic Force
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F1G. 7. The system frequency response to an initial periodic force. The solid line (with z’s) denotes
the data containing 10% noise while the dashed line (with o’s) is the model response obtained with
 the recovered parameter values in column 5 of Table 2.
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Example 3: Periodic Patch Excitation, Acceleration Data

A second means of exciting the system is through the application of an out-of-phase voltage
to the piezoceramic patches. The driving voltage here was taken to be

u(t) =

sin(1207t) + sin(360xt) + (.1)sin(8007t) , 0<t<1/60
0 , 1/60<t<8/60

which initially excites the first four system modes and then allows the oscillations to begin
dying away due to the damping in the beam (see Figures 8 and 9). Because the patch excites
the higher frequencies more efficiently than did the simulated sound field of the last example,
the magnitude of the 400 hertz contribution was reduced to better balance the system response.

Acceleration data obtained in the same manner described in the last example was used to
estimate the four parameters p, EI,cpl and K2 and the estimates obtained with no noise and
10% noise added to the data are summarized in Table 3 (see Table 1 for the true parameter
values). Figures 8 and 9 contain the time and frequency domain results for the case in
which the data contains 10% noise. In both cases, the choices m, = m, = 12,n = 20
and m, = my = 10,n = 16 were used when generating the data and estimating parameters,
respectively. Also, while similar results were obtained with a relatively large variety of starting
parameter values, the parameter values reported here were obtained wiih the initial choices
in column 3 of Table 1.

No Noise 10% Noise
p Region 1 | 1.3502 1.3425
(kg/m) | Region 2 | 2.1211 2.0973
El Region 1 | 73.139 73.449
(Nm?) | Region 2 | 128.179  124.741
epl Region 1 | .000997  .000849
(Nm?sec) | Region 2 | .001256  .001787
KB (Nm/V) 006771 006654

TaBLE 3. Estimated values of p, EI,cpl and K; (a) No noise added to the data; (8) 10% noise
added to the data.

In comparing the results obtained with noisefree data with those obtained under the same
conditions (same number of basis functions and noisefree data) in the last example, we note
an approximately 2% change in the estimated value of the stiffness parameter in the region
covered by the patches. This difference appears to be due to the fact that the “true” data
is calculated with a Jarger number of basis functions and hence with more accuracy than the
solutions being obtained during the parameter estimation. The resulting “numerical noise”

anifests itself more strongly in ¢his case since the patches are more effective than the acoustic
" field at exciting high frequency oscillations which require greater accuracy to resolve (this
" tendency is also noted in the remaining examples where patch activation is used to excite the
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system). We point out that when the same number of basis functions are used for generating
data and estimating parameters, the results are essentially identical to those in column 2 of
Table 2 with highly accurate estimates of the physical parameters. Finally we note that the
“numerical noise” due to the differing discretizations combines with random noise added to the
data to simulate the noise which is present when real data is used to estimate the parameters
in a physical experiment.
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. Fig. 8. The system response to an initial periodic voltage. The solid line denotes the data containing
, 10% noise while the dashed line is the model response obtained with the recovered parameter values
| in Table 3.
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Example 4: Periodic Patch Excitation, Patch and Pressure Data

In the previous two examples, acceleration data modeling that which would be obtained
from a centered accelerometer was used in the estimation of the physical parameters. In this
as well as the next example, both the excitation of the system and the sensing of the beam
dynamics are performed with the patches, thus utilizing their “smart material” capabilities.
The beam data in this case consists of the voltage that is produced when the patches strain
during vibration (hence the criterion functional (4.9)) as well as data consisting of voltage
measurements in combination with pressure measurements from within the cavity (with the
criterion functional (4.10)).

Here a periodic driving voltage was applied to the patches for the first 1/5 of the time
interval [0,10/60] of interest after which the system wa. allowed to begin decaying in energy.
Specifically, the input voltage was taken to be

u(t) =

sin(1207t) + sin(3607t) + sin(8007t) , 0 <t <2/60
0 , 2/60<t<10/60

with the frequencies again chosen so as to strongly excite the first, second, fourth and sixth
system modes (see Figure 11). During the final'3/4 of the time interval, the voltage produced
by the patches as well as the acoustic pressure at the cavity point (.6,.1) were calculated at
750 uniformly distributed times throughout the interval [5/120,10/60]. These values were
then used as our simulated data.

The estimated values of the parameters parameters p, EI,cpl, KB and K are recorded in
Table 4. In the first four simulations, 168 cavity and 19 beam basis functions were used to
calculate the data while 120 cavity and 15 beam basis functions were used in the estimation
of the physical parameters. The values in columns 3 and 4 were obtained with data consisting
of the 750 voltage values generated by the piezoceramic patches while data consisting of both
voltage and acoustic pressure values was used to obtzin the results in columns 5 and 6. Finally,
the results from a simulation in which 120 cavity and 15 beam basis functions were used for
both the generation of data and estimation of parameters are reported in column 7 of Table 4.
The data for this latter simulation consisted of the previously described combination of voltage
and pressure values.

It is first noted that when the same number of basis functions are used for the generation
of data and estimation of parameters, highly accurate results can be obtained for a variety of
initial starting values when using a combination of voltage and pressure values as data (the
results in column 7 of Table 4 were obtained with the initial values in column 5, Table !).
This is consistent with the results reported in Example 2 and described in the Example 3. As
discussed in the latter example, the use of a larger number of basis functions when determining
the data adds a form of “numerical noise” since the data is calculated with greater accuracy
than are the solutions obtained during parameter estimation. Hence, although no random
noise was added to the data, the estimated values in columns 3,5 and 6 of Table 4 differ
slightly from the “true” values listed in Table 1 but are consistent with those obtained in the
1ast example (see column 3, Table 3).

_ The effects that the accuracy of the initial guesses had on the estimated parameters can
be seen by comparing the results in columns 3 and 4 (voltage data) as well as in columns 5
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and 6 (voltage and pressure data). The parameter values in columns 3 and 5 were obtained
with the highly accurate initial choices of column 4, Table 1 while those in columns 4 and
6 were calculated with the less accurate values in column 5, Table 1 which could reasonably
have been obtained by first visually fitting the data in the frequency domain. As observed, the
change in starting values led to fairly large changes in the recovered parameter values when
purely voltage data was used, whereas almost no change was noted when the data consisted
of voltage and pressure values.

The variation in the recovered parameter values obtained with voltage data can partially
be attributed to the flatness of the criterion functional with strain observations as compared
to that seen with acceleration data. The inclusion of pressure values in the data adds rich-
ness as a result of the added information about the acoustic state as well as the fact that
higher frequencies are more easily observed in the pressure data than in the stain values (see
Figure 10). Due to the added information in the data containing strain and pressure values,
a wider range of initial guesses could be used since the optimization routine was less like to
become stuck in local minima.

Siml Sim2 Sim3 Sim4 Sim$
p Region 1 | 1.3501 1.3745 1.3502 1.3502 1.3500
(kg/m) | Region 2| 2.1207 2.1476 2.1230 2.1231 2.1150
El Region 1| 73.178 76.319 72.910 72.908 73.960
(Nm?) | Region 2 | 128.022 123.546 129.041 129.051 125.400
epl Region 1 | .000992 .000283 .000989 .000988 .000999
(Nm?sec) | Region 2 | .001274 .000431 .001295 .001297 .001250
KB (Nm/V) 007274 .006709 .006767 .006766 .006700
K3 (V) 158.749 85.832 172.018 171.977 169.999

TABLE 4. Estimated values of p, EI,cpl, KB and K5; (a) Sim1: voltage data and the initial guesses

" of Table 1, column 5; (b) Sim2: voltage data and the initial guesses of Table I, column 6; (c) Sim3:
‘voltage and pressure data with the initial guesses of Table 1, column 5; (d) Sim4: voltage and pressure

dita with the initial guesses of Table 1, column 6; (e) Sim5: voltage and pressure data generate with
same number of basts functions used in parameter estimation, initial guesses of Table 1, column 6.
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Fic. 10. The system response to an initial periodic voltage. The solid line (with z’s) denotes the
data containing 10% noise while the dashed line (with o’s) is the model response obtained with the
recovered parameter values in Table 4, column 6.

Example 5: Patch Impulse Excitation, Patch Data

The input voltage in this example was taken to be a narrow triangle which simulates a
voltage impulse to the patches. As demonstrated by the strain and pressure plots in Figure 12,
this causes the excitation of multiple system modes which through time decay in energy due
to the damping in the beam.

The data was generated using 168 cavity and 19 beam basis functions, and a comparison
was again made between the results obtained with data consisting solely of voltage values
(using the criterion functional in (4.9)) and data made up of both voltage and pressure mea-
surements (with the criterion functional in (4.10)). In both cases, the data was calculated at

900 uniformly spaced points throughout the time interval [1/60,10/60]

The parameter values obtained with 120 cavity and 15 beam basis functions and strain

(voltage values) data are given in Table 5. The initial guesses of column 5, Table 1 were
iised to obtain both the results containing 10% random noise and those to which no noise was
added (the noisefree results can be seen to be quite close to those obtained in the last two
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examples). Finally, plots containing the time and frequency domain results for the case in
which 10% random noise was added to the data are given in Figure 12.

We point out that with this means of system excitation, a much wider range of initial
guesses led to convergence to the reported values than was the case in the last example where
a periodic voltage was used to excite the system. This appears to be due to the fact that a
larger number of frequencies are excited and observed in the strain data which in turn leads
to “richer” data. On the other hand, the large number of frequencies observed in the pressure
field (see Figure 12) made it difficult to use pressure values in combination with the voltage
as data since an extremely good initial guess was required in order to obtain convergence
of the optimization routine (in this case, one must work nearly exclusively in the frequency
domain at first since any deviation in the density and stiffness parameters leads to frequency
changes (see (5.1)) that make estimation in the time domain very difficult). We also noted
that similar problems were encountered when acceleration data was used with this number of
frequencies excited due to the fact that the acceleration provides a more sensitive measure of
beam movement than do the patches which measure accumulated strain. Hence, with a large
number of frequencies excited, the role of the patches as the sole sensors in the structural
acoustic system appears to improve, and in some cases this method of data observation may
be preferable since the matching of a smaller number of observed frequencies may lead to a
more tractable optimization problem.

No Noise 10% Noise
p Region 1 | 1.3516 1.3534
(kg/m) | Region 2| 2.1236 2.1218
El Region 1 | 73.261 73.969
(Nm?) | Region 2 | 128.156  126.152
cpl Region 1 | .000993 .000959
(Nm?sec) | Region 2 | .001273  .001334
KB (Nm/V) 006677 006188
K3 (V) 173.200  183.266

TABLE 5. Estimated values of p, EI,cpl,KB and K5 using strain data; (a) No noise added to the
data; (b) 10% noise added to the data.
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6 Conclusions and Implementation Issues

In this paper, a parameter estimation methodology for structural acoustic systems in which
piezoceramic patches on the structure act as sensors and actuators has been presented. While
illustrated throughout this presentation in the context of a 2-D acoustic cavity with a thin
beam at one end, the methods developed here are equally applicable in many 3-D distributed
parameter models (such as those in [9, 10]) of actual experimental devices currently being used
to test various modeling, parameter estimation and control schemes involving piezoceramic
actuators and sensors. Recently, these estimation methods have been successfully used as an
integral part of feedback control techniques with experimental data - these findings will be
reported in a future report.

The emphasis in developing this parameter estimation methodology was on providing a
scheme which was amenable to approximation and implementation under a variety of damping
assumptions. In doing so, conditions leading to well-posedness and parameter convergence
results for both the linearized and original noiilinear problem were formulated, and suitable
numerical techniques for approximating system dynamics and implementing the parameter
estimation schemes were developed.

To illustrate the method, several numerical examples illustrating a variety of techniques for
exciting the system and generating data were presented. Throughout the examples, emphasis
was placed on simulating exterior forces and generating data in a manner consistent with that

~ used in actual structural acoustics experiments and applications. This was done so as to gain

insight regarding the effectiveness of the parameter estimation method in various settings. The
first step in the examples was the determination of the natural frequencies for the symmetric
(in ) modes of the coupled system. This knowledge was then used when determining driving
frequencies so as to evoke particular system responses in the later examples. Moreover, by
comparing the results for the system under investigation with comparable results obtained for
the structural acoustic system in which no patches were bonded to the beam as well as analytic
values of the natural frequencies of the uncoupled beam and acoustic wave, the qualitative
effects of coupling, damping, and material changes due to the presence of the patches were
determined.

A simulated acoustic source was used to excite the beam, and hence the system, in the
second example with data consisting of acceleration values calculated at the center of the
beam. While the numerical simulations demonstrated the success of the method for both
noisefree data and data to which random noise had been added, this means of exciting the
system in a manner that can be accurately simulated will be difficult to implement. This
is due to the fact that although speakers can be used to create multiple frequency acoustic
forces of the type used in the example, it will be difficult, if not impossible, to cleanly cut the
acoustic excitation at a given time since the speaker and room will continue to reverberate
and echo even after the power is cut. This echo or reverberation will be difficult to simulate in
‘the system model thus making parameter estimation through this means of system excitation
,di'ffivéult to use in practice.

A more readily simulated means of exciting the system is through the application of a
__prescribed voltage to the patches and this was the input in the remaining examples (by altering

.. _the frequencies and magnitude, this voltage can be tailored so as to evoke a desired system
“tesponse). In the third and fourth examples, a numerically simulated multiple frequency,
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periodic voltage was used to initially excite the system at which point the voltage was cut and
the system energy was allowed to begin decaying due to the damping in the beam. In addition
to being more accurately simulated numerically, this also proved to be a more effective means
of exciting high frequency responses in the system than was the acoustic excitation. A short
duration triangular input was applied to the patch in the final example to simulate an initial
voltage spike.

In the third example, acceleration values on the beam were used as data, whereas voltage
values (measuring accumulated strain in the beam) and voltage values in combination with
acoustic pressure values were used as data in the fourth and fifth exaniples. In these examples,
it was found that when only a few system frequencies were excited (thrc- or four), the accel-
eration data was sufficiently sensitive so as to permit effective parameter estimation whereas
highly accurate initial guesses were needed in order to use beam data containing only strain
information (which qualitatively has the properties of displacement data). By augmenting the
strain data with pressure measurements, however, sufficient information was added so as to
again lead to successful parameter identification with a range of initial values. On the other
hand, the excitation of large number of system frequencies through the simulated voltage
spike to the patch led to strain data which was sufficiently “rich” so as to permit success
of the method while the introduction of pressure data led to a failure in the optimization
routine due to the very large number of frequencies in the pressure measurements. Hence the
success of the method with strain measurements comprising part of the data depended partly
on the number of excited frequencies; for a small number, the strain measurements had to be
supplemented with acceleration or pressure values in order to ensure parameter convergence
for data containing any noise.
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