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PROCRUSTES: A FEATURE SET REDUCTION TECHNIQUE

INTRODUCTION AND BACKGROUND

The primary objective of this technical report is to introduce a new method, called Procrustes

ordering, for feature reduction and interpretation. In this report, Procrustes ordering is used

in conjunction with a new variation of Fisher's method called "smoothed" Fisher; however, it

can be used in conjuction with any feature-based classification pattern recognition method.

The canonical form for an automatic pattern recognition system contains three major

components: a measurement system to convert the input into a form for further processing,

a feature extractor that represents characteristic information and compresses the input,

and a cla.sifier that categorizes the input data based on computed features. When the

different event catagories (or classes) have known unique measurable characteristics, the

categorization (or classification) problem is straightforward. Typically, features that separate

the classes are unknown and the canonical procedure for implementing a pattern recognition

system is usually undertaken in the following (supervised) manner:

1. A collection of exemplars of each event is compiled. (Note: The set of available exem-

plars from all classes is called the design set.)

2. Features (i.e., real-valued functions of the data) are defined to measure class specific

properties of each exemplar. (Note: The set of all features is called the feature set, and

the values of the features extracted from one exemplar is called a feature vector.)

3. A classifier is trained on the feature vectors of the design set.

4. Unknown events are classified using the trained classifier.



This procedure is clearly imperfect, but it is the method of choice when adequate event

models are not available. Poor feature sets cause a number of difficulties for automatic clas-

sification. In the pattern recognition literature, it is well known that too many features will

decrease overall classification accuracy. The presence of this limitation is determined by the

ratio of the number of features to the number of samples in the training set. Theoretical

studies based on idealized Gaussian class assumptions (see, e.g., Foley [1], Jain and Waller

12J, or Streit [3)) show that this counter-intuitive "performance peaking" phenomenon is due

to the "curse of dimensionality." Moreover, empirical studies support the occurrence of peak-

ing in many diverse applications where Gaussian assumptions do not hold. Peaking affects

all classifiers, whether neural network or classical. Identifying features that do not enhance

classification performance is another important problem in feature set design. Superfluous

features contribute "opportunities" for misclassification and should be eliminated to improve

system robustness. Small numbers of exemplars for one or more of the signal event classes

greatly exacerbate these problems. The complexity and cost of feature measurement sys-

tems is directly related to the number of computed features. Consequently, from both a

performance and economic perspective, it is important to have effective feature reduction

algorithms.

In some applications the measured events exhibit variations due to differences in gen-

erating mechanisms, changing noise backgrounds, and measurement system performance.

Feature sets that work well in one environment and fail miserably in another cannot form

the basis for a robust classification system. It seems inevitable that robust systems will re-

quire adaptive in situ feature set selection and the continual compilation of event exemplars.

Given a list of features that are known to be useful in certain situations, feature selection
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for a current design set is indistinguishable from feature reduction as it is understood in

this report. Therefore, adaptive feature selection is feature reduction on an evolving design

set. Clearly, feature reduction algorithms must be computationally fast if adaptive feature

selection is to be undertaken in situ.
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FEATURE REDUCTION AND INTERPRETATION

Overview of Feature Reduction Algorithms

A commonly used feature reduction method is a classical method attributed to R. A.

Fisher that dates to the 1930s (see[4I). It does not linearly order the individual featuies

in terms of their relative importance to classification, but it is very fast computationally.

Fisher's method derives a new set of features that are linear combinations of the original fea-

tures. These new features are optimal for Bayesian classification in the case of homoscedastic,

Gaussian distributed classes. In the statistical literature, Gaussian mixtures that have a com-

mon covariance matrix are called homoscedastic mixtures. The span of the derived features

is called the multiclass Fisher projection space (FPS). The FPS maximally separates the

class means relative to the class variances. This geometric interpretation greatly facilitates

intuition and strongly indicates that the FPS is a good space for feature reduction. If the

classes are linearly separable in the FPS, then Fisher's linear discriminator, defined on the

FPS, can be used for classification. The use of the FPS does not guarantee linear separabil-

ity; however, the maximal separation property of the FPS suggests that it is a good reduced

feature space for nonlinear classification problems. The distinction between the traditional

use of the FPS for linear discrimination and the use of the FPS for feature reduction fol-

lowed by nonlinear discrimination is fundamental. The FPS is unlikely to contain any of the

original features in its span, and methods for selecting subsets of the ornginal features for

classification by exploiting their relationship to the FPS do not appear to be discussed in

the literature. The feature reduction method described in this report, Procrustes ordering,

chooses a subset of the original feature set that best approximates (in the least squares sence)
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the FPS.

The ideal feature reduction and interpretation method should have several properties.

These incude the following:

1. It should preserve the natural interpretation of the original features. Features that have

natural signal interpretations (e.g., bandwidth, duration, spectral level, etc.) may not

be readily interpreted if they are modified. The FPS fails in this regard because the

derived features are linear combinations of the original features.

2. The computational complexity and storage requirements of the feature reduction method

should be small enough to enable fast computation for in situ applications.

3. The feature reduction method should be compatible with nonlinear and non-Gaussian

discrimination problems.

4. The reduction method should provide intuitive interpretations that facilitate problem

understanding and insight. The FPS is very successful when measured by this criterion.

5. The reduction method should satisfy an optimality criterion of some kind in specialized

problems. For instance, linear discrimination in the FPS is optimal in homoscedastic

Gaussian multiclass problems.

The optimal feature set is the set with the lowest classification error rate. The direct

algorithm for solving for this optimal set is called the exhaustive combination method (ECM)

because it examines all possible combinations of features. To find the best feature set from

n features by the ECM requires examining all 2n possible feature subsets. The ECM is

clearly impractical for in situ application unless the number of features is small because
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the number of possible feature combinations grows exponentially with n. For instance, the

example presented in this report contains 70 features, and to find the best 15 features,

the ECM requires examination of approximately 7.2 x 10"' feature sets. Finding the best

subset (of any size) requires examining 270 5 1.2 x 1021 feature sets. A branch and bound

(BAB) technique, developed by Narendra and Fukunaga [51, also yields an optimal feature set

choice, and is more efficient than the ECM because it does not examine directly all possible

feature sets. Many alternative methods of feature subset selection have also been studied

and reported in the literature (see [6] - [ll]). The ECM, BAB and the other techniques cited

here were not investigated in this report because of limited resources.

Linearly ordering the individual features by some measure of their importance to correct

classification is a natural approach to feature reduction. Such orderings are easily thresh-

olded for various purposes, including feature reduction. One readily available ordering is the

single feature classification performance ordering (SFCPO). The SFCPO ranks the features

by the classification performance when each feature is used alone. The classification method

employed for these one dimensional problems can be any suitable multiclass classifier, includ-

ing probabilistic neural networks trained by maximum likelihood methods. This ordering is

quite good at optimizing classification performance, as the example presented later shows,

and it does not have severe computational overhead. When measured against the above five

ideal properties, the SFCPO satifies the first three criteria but not the last two. The SFCPO

is used in this report as a benchmark algorithm for comparison purposes.

The selective addition method (SAM) chooses a feature order in the following way. The

first feature is the feature with the lowest classification error, when only singleton feature sets

are used for classification. The second feature is the feature that, in combination with the
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first feature already selected, yields the lowest classification error. The third and subsequent

features are selected similarly. The SAM is significantly less computationally intensive than

the ECM, but it is still not fast enough for in situ application, as shown by the example.

Hold-out studies of the SAM to establish confidence limits -n classification performance were

not undertaken in this report because the required computation time was prohibitive.

A relative of the SAM is the selective deletion method (SDM), that proceeds by deleting

poor features one at a time in a manner analogous to the SAM. Although the SDM is not

studied in this report, its computational requirements are very similar to the SAMs. Unlike

the ECM, both the SAM and the SDM result in a linear ordering of the features from best

to poorest in terms of their relative contribution to classification. These two linear orderings

are not, in general, the same.

The Procrustes ordering is a linear ordering of the individual features that requires less

computation and provides improved classification performance relative to the other tech-

niques examined in this report. The Procrustes ordering satisfies the five criteria presented

previously. In particular, Procrustes ordering provides a natural geometrical connection be-

tween feature order and the FPS which allows geometrical insight. The Procrustes ordering

is obtained from the Procrustes angles between the original features and the FPS. The Pro-

crustes angle is defined to be the smallest angle between a given feature and any non-zero

vector in the FPS (see equation (12)). It is a measure of linear independence between a

feature and the FPS. If the angle of a particular feature is near zero, the feature is nearly in

the span of the FPS; however, if the angle is near 90 degrees, the feature is nearly orthogonal

to the FPS. Intuitively, features with small Procrustes angles are good features for classi-

fication, whereas, features with large Procrustes angles are poor features for classification.
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Further discussion of the Procrustes ordering and angles is provided elsewhere in this section.

The remainder of this section is devoted to several topics. First, a review of probabilistic

neural networks (PNNs) and maximum likelihood (ML) training algorithms is provided.

Next, a detailed description of a variation of Fisher's method called "smoothed" Fisher is

discussed. Finally, the Procrustes ordering is described in detail.

Review of SPNN and Maximum Likelihood Training

Probabilistic neural networks are based on kernel, or Parzen window (see [4] Section

4.3), estimates of probability density functions (PDFs). Nonlinear discriminant functions for

classification are derived from Parzen window estimates of the class PDFs by substituting the

estimated class PDFs directly into a Bayesian classifier. Parzen window PDF estimators are

readily interpretable in statistical terms, and remarkably, can be mapped onto a feed-forward

neural network structure. The neural network interpretation of Parzen window estimators

was first discussed and named PNNs by Specht 1121. The primary virtue of Specht's PNN is

that it trains almost immediately with little computational effort. Its primary drawback is

that it requires as many neural network nodes as training data.

The use of maximum likelihood methods to train PNNs, to significantly reduce the PNN

size, was first discussed by Streit [13]. ML training of PNNs is extremely fast compared with

the standard back-propagation method for training feed-forward neural networks. PNNs

that use radially symmetric kernels are Radial Basis Function (RBF) networks. Maximum

likelihood trained PNNs are as efficient as RBF networks and may represent the sample

data better than RBF networks trained by nonprobabilistic methods. Consequently, ML

training is important because it enables small sized, statistically robust PNNs to be rapidly
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trained on large data sets. Streit's PNN is used in this report and it is referred to herein

as SPNN. For a full discussion of SPNN, complete with a mathematical derivation of the

training algorithm, the reader is referred to [141.

SPNN assumes that the training samples are statistically independent and that the class

labels are known and correct (i.e., SPNN uses supervised training). 1 he objective of ML

training is to estimate the parameters in a mixture Gaussian approximation to the class

PDFs. There is no loss of generality in using mixture Gaussians to approximate class PDFs

since every continuous PDF can be approximated arbitrarily closely by such a mixture.

SPNN's ML training algorithm estimates class PDFs simultaneously for all classes by ex-

ploiting cross-class data pooling ideas that originate in Fisher's work (see [141). Simultaneous

PDF approximation is made possible by requiring a common covariance matrix across all

classes.

Automatic pattern recognition systems are often plagued by data poverty problems.

Typically, one or more event classes have too few exemplars in the training set to enable

satisfactory event models to be trained. SPNN mitigates these problems by cross-class

pooling of the training data. Cross-class pooling enables sparsely represented events to

"borrow" structure from well represented classes. Done properly, cross-class pooling has

its greatest effects on the most sparsely represented classes and has very little effect on well

represented classes. SPNN's training algorithm is a robust data-sensitive method for treating

the data poverty problem.

Let M 2! 1 denote the number of classes, let Cj = {Xkj} denote the training set available

for class j, and let Cj comprise TI samples. Let C = C1 U... U CM denote the pooled labeled
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training set. The appropriate likelihood function for C is derived in [141 and is given by

M T,
L(CIA) =I atg,(XkIlA,), (1)

j-1 k=1

where gj(XJAj) denotes the PDF for class j, aj denotes the a priori probability of class j,

Aj denotes the parameters defining the PDF of class j, and A = A, U... U AM. Because

gj(XIA,) is a homoscedastic mixture Gaussian PDF it takes the form

ci
gj (X Jj) = •, N (X, jk, Ej,), (2)

where Gj is the number of Gaussian mixture components in class j, 7r j is the mixing propor-

tion of the 0~h Gaussian component in class j, N(.) represents a normal density function, /j

is the mean vector of the il component in class j, and E.,,j is the covariance matrix com-

mon to all class PDF mixture components. Consequently, the parameter sets to be trained

are given by
M 0

A U{c,•Aj where A- U {1r-i, j, EAd,."} (3)
j= -1 1 jI

Training SPNN is equivalent to estimating the parameter vector A using maximum likelihood

methods. The ML algorithm for SPNN is derived using the Expectation-Maximization (EM)

method. The details are provided in [14J, together with references to the general literature.

The ML estimates of the a priori class probabilities are given by

= Tj (4)
°--TI + T2...- + TM"

Note that no iteration is required by the estimates in equation (4). This expression implicitly

conveys a very important message for exemplar (data) screening because it shows that the a

priori class probabilities are proportional to their representation in the pooled training set.

If the exemplars are so heavily screened that proportional representation is inadequate, the
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estimates in equation (4) should be neglected and a priori probabilities estimated in some

other way. The iteration for the remaining parameters is independent of the parameters

{aj}. The details of the recursions for 7ri,, iij, and E,, are also given in [141.

Smoothed Version of Fisher's Method

A variation of Fisher's method, referred to here as "Smoothed Fisher," is used to derive

the FPS. The reason for the word smoothed is simply that SPNN is used to estimate class

PDFs from the available feature vector samples, and the exact'expressions for the parameters

(mean vectors and covariance matrices) of these estimated class PDFs are then used in

Fisher's method. hl contrast, the usual formulation of Fisher's method uses the class sample

means and (pooled) within-class sample covariance matrix. Smoothing the feature vector

sets using SPNN reduces the effects of outliers on the FPS.

After ML training, SPNN yields an estimated mixture Gaussian PDF for each class. It is

readily shown that the expression for the mean, Xj, of the j3 estimated class PDF, g,(XIAj),

is given by
cj

i==1

and that the expression for the covariance matrix of gj(XIAj,) is

0i
Ej= Ejr rj(i - X AY- YA(6)

where ir j,/j, and Ek,,j are estimated by SPNN training. Similarly, the estimated PDF,

L(X I,), of the pooled training set is the "mixture of mixtures" given by

M Gj
L(XIA) = ij 7 i N (X,1I, ,). (7)

j=l iffl

11



The expression for the pooled training set's mean is

M cXP,= (8)

and its covariance matrix is

M C, M
=P, E 1MW + ajc ~7r(,I,(N - X)A - X)) + E cj(XI - X.) (X; - p)

= + H + , (9)

From the previous equation, it is seen that there are three major contributors to the "pooled"

or global covariance matrix. From the discussion in [4], the sum of the first two terms, EA,,•t

and E..n.,, is a measure of the "within-class" scatter. The third term, Ed.,, is a

measure of the "between-class" scatter and will be referred to as the "spread-of-the-means"

matrix. By inspection of the last equation it is clear (c.f., [4]) that maximizing the between-

class to within-class "smoothed" variations requires maximizing the Rayleigh quotient given

by

J(w) = + (10)

where w E R1. The quotient, J(w), is the same as the formula given by Duda and Hart

[4, Section 4.11] except that the smoothed mean and covariance matrix estimates given by

equations 5, 6, 8, and 9 replace sample means and covariance matrices. Maximizing the

Rayleigh quotient, J(w), is equivalent to solving the following generalized eigenproblern,

E-•t w = A(E1t,.te + I a )w. (11)

The matrix Ei,,., + E is full rank because SPNN provides a full rank estimate of

. Consequently, the solution of the generalized eigenproblem (11) poses no conceptual
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difficulties; however, the numerical solution should be carried out using the QR algorithm

[15, Chapter 9, page 9.10] to avoid the numerical ill-conditioning that typically accompanies

covariance matrix formation. Because SPNN is coded using the QR algorithm, equation (11)

is solved without the need to form covariance matrices directly.

Fisher's feature reduction method cannot yield more than M-1 derived features, due to

the rank of E ,. The "spread-of-the-means" matrix, , in (9) has at most rank M

because it is the sum of M outer products. However, one degree of freedom is lost because

the global mean, X,', is estimated; hence, the rank of Ed..,. is at most M-1. Therefore,

there are at most M-1 nonzero eigenvalues of the generalized eigenproblem (11). The span

of the eigenvectors corresponding to the largest k, 1 :_ k :5 M - 1, nonzero eigenvalues is the

Fisher projection space of dimension k, denoted FPS(k). The rank of the FPS(k) is exactly

k because the eigenvectors spanning FPS(k) are linearly independent. If the context is clear,

FPS(k) will be written simply as FPS.

Procrustes Ordering

The Procrustes ordering of the feature set is defined for every FPS(k), for k = 1,2,..., (M-

1). The ordering of most interest is the one resulting from the largest dimension FPS -

FPS(M - 1). The cosine of the angle, 0, between an arbitrarily specified nonzero vector,

X E R1, and the FPS(k) can be defined relative to the original coordinate axes or the co-

ordinate axes defined by the FPS(k). The two methods differ by a linear transformation,

LV, where L is the Cholesky factor of the "within-class" scatter matrix (see appendix). The

difference is important for determining a null hypothesis for significance testing. For this
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reason the angle relative to the FPS was chosen and is defined by

= COS- 11 W'LL; 21 (12)11 Llxj 112'

where W is a matrix whose columns are the nonzero eigenvectors that define the FPS. The

angle, q, is uniquely defined if it is restricted to lie between 0 and 90 degrees, and it is the

same angle for all vectors in the subspace spanned by x. When x is taken to be the jU4 feature,

that is, x = fj =_ (0,... ,0, 1,0,. .. ,0)9, the angle is defined to be the Procrustes angle, 0j,

of the j1 feature. The dependence of Oj on the dimension k of the FPS is suppressed in the

notation. A depiction of the geometry of the Procrustes angle is given in figure 1. As is clear

from this figure, the Procrustes angle is related to least squares approximation. The least

squares approximation to the j1 feature vector, fi, is the orthogonal projection of fj onto

the FPS(k), and the Procrustes angle is the angle between f1 and its orthol;onal projection.

The Procrustes ordering of the feature set is defined by ranking the feitures by increas-

ing numerical size of their Procrustes angles. The first feature in the Procrustes ordering,

therefore, has the smallest Procrustes angle, and the last feature has the largest angle. In-

tuitively, features with "small" Procrustes angles are "nearly" in the linear span of the FPS,

and features with "large" angles are "nearly" orthogonal to the FPS. Because the FPS is a

good space for feature reduction, it is natural to think that features with small Procrustes

angles are "better" for classification than features with larger angles.

One way to decide whether or not the Procrustes angle of a given feature is significant

is to apply a statistical significance test. In a significance test, one is, in effect, testing

a single hypothesis against all other hypotheses, with no particular alternatives in mind.

To formulate an appropriate hypothesis, consider the process of feature generation. In most
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complex classificatiozz! problems, unique class characteristics are unknown; therefore, it is left

to the feature set designer to determine the set of features that captures the class differences.

The resultant feature set will be a union of two subsets; the knowledge-based set and the

intuition-based set. The knowledge-based feature set is defined to be those features that are

derived from known measurable class differences, whereas the set of intuition-based features

is the "intelligent guess" set. For most complex classification problems the cardinality of

the knowledge-based set is small compared to that of the intuition-based set; therefore,

the underlying model should be dominated by the intuition-based set. Because Procrustes

ordering is independent of feature vector length, the model adopted in this report is that

the feature vectors are random with a uniform distribution on the unit sphere in R1. The

feature evaluation/selection process then becomes the process of determining the subset of

these "randomly" generated features that "happen" to best approximate the FPS. In keeping

with the idea of Procrustes, the set of features that approximates this subspace is the set

determined by those features with the s angle with that space. Assuming this is an

accurate model of the feature generation process, thresholding the upper tail of the resulting

PDF will enumerate those features that are poor for classification.

Denote the PDF of the Procrustes angle, q, between a fixed k dimensional subspace of

R" and a uniformly distributed random variable on the unit sphere in R1, by P,,k(,t). It

can be shown [161 that the random variable t = cos2'O is beta distributed, with parameters

- and VlY, so that after a change of variables Pu,,&(4) is given explicitly by

= 2r(2) coshl 0sin-k-l 0, (13)rqr' k -k'

where 0 5 1 • -. Therefore, under the above feature generation model, a feature is
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considered to be poor for classification at a significant level / if it lies on the upper '6% tail

of Pn,k(O). A plot of P,,k(O) for the example considered in this report is given in figure 2.

As is clear from figure 2, for these particular choices of n and k, (n = 70, k = M-1 = 10),

the PDF is &pproximately Gaussian. Unfortunately, for the example in this report, the data

was no longer available at the time the model for the hypothesis was completed. Although

as an academic exercise, simple synthetic problems were generated to confirm the utility of

this hypothesis, the practical utility of this test can only be determined by its application to

real problems.

16



n= normal vectors

f.= feature i

(0O,O...) 01= Procrustes Angle ej

Sb = basis vectors~r
Smoothed Fisher Subspace

Figure 1. Geometric Interpretation of Procrustes Angles

0.9

0.6

0.5

0.4

01.
I

Pmmism Aqi. (4hpsu)

Figure 2. PDF of the Procrustes Angles (n=70, k=-10)
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APPLICATION OF PROCRUSTES ORDERING TECHNIQUE

This section describes the application of Procrustes linear ordering to a multiclass,

multidimensional, acoustic signal classification problem. A comparison of the classification

results and the computational requirements associated with each of the methods is analyzed.

The data set is comprised of eleven event classes on which 70 feature measurements were

available. There were a total of 249 exemplars available for this experiment. The distribution

of class training and testing exemplars is provided in table 1.

Table 1: Distribution of Training and Testing Exemplars

Class Number Training Samples. Testing Samples

1 16 15

2 15 14

3 21 21

4 15 15

5 10 10

6 10 09

7 10 09

8 06 06

9 04 04

10 07 06

11 13 13

Total 127 122
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Statistical Hold-Out Study

As discussed previously (refer to Feature Reduction and Interpretation section), small

data sets often pose severe difficulties on automatic classification. Additionally, when ex-

ploring the utility of new techniques, or measuring the performance of existing algorithms,

careful consideration must be given to the conclusions that can be drawn from small data

sets. That is, given the reality of limited data, every effort must be made to statistically

quantify the results and to resist the temptation to generalize these conclusions beyond those

supported by the data. There are a number of accepted resampling techniques that attempt

to extend the utility of small data sets by exploiting the variability of different subsets of the

data. One such method is that of performing "hold-out" studies; this technique is used to

assess the performance of the linear ordering feature reduction methods considered in this

report.

Typically, ,he data is divided into disjoint training and testing sets by randomly sampling

the original data according to a uniform distribution. A trial is defined as the assessment

of the classifier performance based on a training and testing set pair. By resampling the

data, a number of trials are generated and an average performance is observed. The purpose

of this hold-out procedure is to reduce the bias and variance associated with performance

estimates based on a small data set, and therefore, provide a better method of comparing

reduction techniques.
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Feature Selection Across Multiple Trials

A high level diagram of the test methodology that was used to perform the multiple

trials for Smoothed Fisher and Procrustes is provided in figure 3. The performance curves

for the Procrustes ordering, Smoothed Fisher, and SFCPO are plotted in figures 4, 5 and

6, respectively. Figure 7 shows the relative performance of all the techniques considered in

this report. These plots resulted from twenty independent trials of different training and

test sets derived from the original data. The output of each trial was a prioritized list of

the candidate features. In general, the list changed as a function of the data used for each

trial. The underlying motivation behind these reduction techniques is to select the subset

of features that provides the most robust discrimination capability. Therefore, reconciling

these conflicting linear orderings is necessary to obtain the desired subset of feaures.

The first step in addressing this issue is to examine the consistency of the orderings across

trials. For this part of the study, 100 trials were examined. Intuitively, the number of times a

particular feature is highly ranked (i.e., has a small Procrustes angle) across trials should be

an indication of the relative importance of this feature. Histograms were plotted to display

the features that were consistently ranked in the top m (m=l, 2, ... 35) positions. For m=1l,

feature 23 occurred 98 times which suggests that this feature is always important. The

number of "active" features (i.e., features that appear at least once in the top m rankings)

increases nonlinearly with m. For m-=-, there are only 2 active features; however, 27 features

become active for m=5. Figures 8(a), 8(c) and 8(e) are histograms for values of m=12, 25,

and 35, respectively. Note that for m=12, approximately 90% of the features occurred at

least once over the 100 trials. This result is somewhat surprising; however, it supports the
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notion of increasing the utility of the data set by resampling to exploit the variability within

the data.

Of the active features, those that appear consistently in the top m positions are thought

to be of most importance for classification. To examine this, a thresholded version of the

histogram is constructed. This is accomplished by varying a threshold between 0 and the

total number of trials (100 in this example) and simply counting the number of times the

threshold is exceeded on the histogram. Figures 8(b), 8(d), and 8(f) are the thresholded

versions of the histograms in figures 8(a), 8(c) and 8(e), respectively. Recall from figure 4

that the peak of the classification curve based on the Procrustes ordering occurred for 26

features; however, because of the variability introduced by the application of multiple trials,

this number is only an estimate. It was hoped that because 90% of the features are active in

the top 12 positions, thm.3holding the histogram would enumerate a set of desirable features

on the order of 26. From figure 8(a) and 8(b), it is clear that although the features are

adequately represented, a distinct feature subset is not observable. Increasing m to 25, we

notice the original feature set is now divided into two subsets. This is indicated by the flat

portion of the curve in figure 8(d). Because we currently lack the theoretical tools to support

the significance of this apparent "breakpoint," we looked for confirmation by examining the

case for m--35. Figures 8(e) and 8(f) show that 23 features occur 98% of the time. This

flat characteristic, which is present at roughly the same number of features that lead to the

maximum classification performance, appears to point to the "breakpoint" between features.

This breakpoint defines features that are important for classification and those that can be

ignored for this data set. Additionally, the fact that the flat portion of the curve occurs over

a wide range of threshold values (between 40 and 65 for m=25, and between 88 and 98 for
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m-=35) supports the idea of a distinct separation between the feature subsets.

The 23 "best" features can be identified from figure 8(e) as those features that were

ranked in the top 35 positions greater than 90 times in the 100 trials. The feature indices

are as follows: 1-8, 10, 11, 17, 22-26, 28, 29, 37, 41, 42, 44, and 45. The average classification

performance based on this feature set for 20 trials is 86.6% with a standard deviation of 2.37

(86.5% +/- 2.74 for 50 trials). Comparing this to the performance based on the Procrustes

ordering for the entire 70 dimensional feature set and 20 trials (85.8% +/- 2.08), we see

an insignificant difference in the mean performance level and only a slight increase in the

variance. A small increase in variance is a reasonable tradeoff for a reduction in feature set

size from 70 to 23 dimensions. This favorable comparison validates the multi-trial, Procrustes

based, feature selection process.
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Computational Complexity

As presented earlier, one of the most desirable properties of any feature reduction tech-

nique is low computational complexity. Table 2 presents the measured (and predicted) times

associated with the three different stages of the feature reduction process. These stages are

as follows:

1. Prioritization - which refers to providing an ordering of features based on the perfor-

mance from a single, 70 dimensional trial.

2, Evaluation - which involves the generation of a performance curve based on linear

combinations of the prioritized features to determine the subset that provides the best

performance. In other words, the prioritized order is sequentially tested (i.e., feature

rankings (1), (1,2),... (1,2,3,... k),.. . (1,2,3,... 70)) and the performance is plotted as

a function of k, the feature index.

3. Statistical analysis - which involves performing multiple trials. In this example, 20

trials were performed.

The times associated with Smoothed Fisher are not as impressive as they may initially

seem because the computational complexity increases as the cube of the feature dimension

size, n, and since n is bounded by the number of classes minus one for Fisher, this result

is misleading. Also, note that since Fisher forms a linear combination of all the features,

a prioritized ranking of individual features is not available. The times associated with the

SFCPO require each of the features to be evaluated independently to determine the prioriti-

zation. This difference, although present, is negligible for the evaluation stage (300 minutes
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vs. 310 minutes). The times associated with the SAM were estimated from the computation

for only 35 features. For the SAM, the result of the prioritization stage is also the final

evaluation; therefore, a time of zero was recorded in the table. Based on this discussion, and

the results in table 2, Procrustes provides the best performance at the lowest computational

cost.

Table 2. Computational Comparison

Reduction Computational Time Required Statistical

Technique Prioritization Evaluation Analysis

Smoothed Fisher NA 12 min 4 hrs

SFCPO 10 min 5 hrs 99 hrs

SAM (estimated) 48 hrs 0 80 days

Procrustes 30 sec 5 hrs 96 hrs
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CONCLUSIONS AND RECOMMENDATIONS

Procrustes ordering of the feature set is proposed as a feature reduction and interpreta-

tion method. Procrustes ordering is new and has not been previously proposed or studied in

the pattern recognition and classification literature. Consequently, the central investigation

in this report focuses on the effectiveness of Procrustes ordering for feature selection for non-

idealized problems with real data. The conclusion of this investigation is that Procrustes

ordering of the feature set significantly outperforms the commonly used and accepted alter-

native linear ordering, SFCPO, on the 11 class, 70 feature example presented in this report.

This conclusion is considered statistically significant because this investigation is based on

extensive and careful statistical trials using a hold-out methodology.

Procrustes ordering is defined in terms of the Procrustes angles between the features

and the classical multiclass FPS. Because of the strong geometrical and analytic character

of this relationship, Procrustes ordering is a natural extension of and complement to the

fundamental ideas of the FPS. A significance test of the Procrustes angles based on a feature

generation model was proposed. Unfortunately, because the original data was lost, this

significance test was not applied to the example presented in this report.

The utility of Procrustes ordering for nonidealized real data is established only for the

example presented. To establish that Procrustes ordering and the significance test are widely

useful, the performance of the algorithm must be studied statistically in many different prob-

lems of considerable variation in character, size, and application domain. It is recommended

that additional studies of Procrustes ordering be undertaken.

The statistical methodology proposed in the example section is an experimental method

31



of determining fixed feature set selection for a multi-trial statistical study. The difficulty is

that each trial produces an ordered feature set, and the ordering varies from trial to trial.

Reconciling these feature set orderings to find an effective fixed feature set is a subtle and

easily underestimated task. The experimental methodology proposed for the example is

intended to facilitate this task; however, it is not based on a theoretical statistical model.

The experimental methodology seems sound and sensible, and it suggests that interesting

theoretical models can be developed that will support the methodology. Unfortunately,

theoretical models of this sort are unknown to the authors. It is recommended that a

theoretical study of the experimental statistical methodology be undertaken. Such a study

could develop useful analytical tools for the general feature reduction problem and would be

applicable to any hold-out study resulting in conflicting feature orderings.

Finally, it is recommended that Procrustes ordering be studied in conjunction with SPNN

and the smoothed FPS. Procrustes ordering is compatible with SPNN, as the discussion

shows. Such an investigation should encompass a statistical hold-out trial methodology, as

was done in the example, and should address the problems associated with fixed feature

set selection from multiple trials, model order selection, and data poverty. These issues

cause multiple and conflicting effects, and untangling them all poses interesting practical

and theoretical problems.
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APPENDIX

Derivation of Procrustes Angle

Given the generalized eigenproblem

Aw = ABw, (A-1)

where B is n x n, positive definite, symmetric matrix, form the Cholesky decomposition of

B, B = LL, and substitute

Aw = ALLtw

AL-t(Ltw) = AL(LVw). (A-2)

If we define y = Ltw (i.e., forward transform or rotate the original eigenvectors) and C S

L-lAL-t, the result is the familiar eigenproblem given by

CY = . (A-3)

Compute the singular value decomposition of C, C = UEV.t Note that the eigenvectors of

C are the columns of V. Let W, denote column i of V. Suppose p > 1 singular values are

0 0. Define the n x p matrix

W = [WIW 2 ... W,] E R"XP. (A-4)

Note that the p x p matrix, WgIV, is the identity matrix, MP'C, because the columns of 17V

are orthonormal.
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At this point, the problem of finding the Procrustes angles involves projecting the original

features, xi E e, E R"X1, where e, denotes the standard basis, onto the p-dimensional Fisher

projection subspace and measuring the angle between the original feature and the projection.

First, to be consistent, the original features must be forward transformed, since it was

necessary to "forward transform" the eigenvectors, w, to solve the generalized eigenproblem.

This is given by

1i = Ltxi. (A-5)

Using a least squares approach (see (17j, pages 106-107), the projection of i onto the column

space W is given by

roj ,, = W(WtW)-1Wtij. (A-6)

However, since the matrix, W"IP is orthogonal, W'W = I and the projection reduces to

projg,ii wwvrt±i

= WW'LtnX. (A-7)

The angle between any two vectors, a and b, is given by

a'b
11 a 11211 b 112' (A-8)

Let a =i and b=Wr t  then

Ila 112 (is

- ((L'xt)t(Lx•x))i

- II Ltxi 112 (A-9)
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and

II b 112 =

= II WtLtx 112 (A-10)

Substituting into equation (A-8) gives the expression for the Procrustes angle

0i= -{ iCost-' 11}' L i 112 (A-11)

A-3



REFERENCES

[1] D. H. Foley, Considerations of Sample Size and Feature Size, IEEE Transactions on

Information Theory, vol. IT-18, 1972, 618-626.

[2] A. K. Jain and W. G. Waller, On the Optimal Number of Features in the Classification

of Multivariate Gaussian Data, Pattern Recognition, Vol. 10, 1978, 365-374.

[3] It L. Streit, An Upper Bound on Feature Vector Dimension as a F-unction of Design Set

Size For Two Gaussian Populations, NUWC-NL Technical Memorandum No. 921048,

10 March 1992.

[4] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley & Sons,

New York, 1973.

[5] P. M. Narendra and K. Fukanaga, A Branch and Bound Algorithm for Features Subset

Selection, IEEE Transactions on Computers, Vol. C-26, No. 9, September 1977, 917-922.

[6] A. N. Mucciardi and E. E. Gose, A Comparison of Seven Techniques for Choosing

Subsets of Pattern Recognition Properties, IEEE Transactions Computer, Vol. C-20,

September 1971, 1023-1031.

17] J. Kittler and P. C. Young, A New Approach to Feature Selection Based on the

Karhunen-Loeve Expansion, Pattern Recognition, Vol. 5, December 1973, 335-352.

[8] T. M. Cover and J. M. Van Campenhout, On the Possible Orderings in the Measurement

Selection Problem, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-7,

September 1977, 657-661.

R-1



[91 A. K. Jain and R. Dubes, Feature Definition in Pattern Recognition With Small Sample

Size, Pattern Recognition, Vol. 10, 1978, 85-96.

[101 C. Chang, Dynamic Programming as Applied to Feature Subset Selection in a Pattern

Recognition System, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3,

No. 2, March 1973, 166-171.

[11] F. Z. Brill, D. E. Brown, and W. N. Martin, Fast Genetic Selection of Features for Neural

Network Classifiers, IEEE Transactions on Neural Networks, Vol. 3, No. 2, March 1992,

324-328.

[12] D. F. Specht, Probabilistic Neural Networks for Classification, Mapping, or Associative

Memory,in Proceedings of the IEEE International Conference on Neural Networks, Vol.

I, San Diego, California, July 24-27, 1988, 525 - 532.

[13] R. L. Streit, A Neural Network for Optimum Neyman-Pearson Classification, in Pro-

ceedings of the International Joint Conference on Neural Networks, Vol. I, June 17-

21,1990, San Diego, California, sponsored by IEEE and Neural Network Society, 685 -

690.

[14] R. L. Streit and T. E. Luginbuhl, Maximum Likelihood 7Trining of Probabilistic Neural

Networks, to be published in IEEE Transactions on Neural Networks. (See also NUSC-

NL Technical Memorandum No. 911277, 30 December 1991).

[15] J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart, UNPACK Users' Manual,

Society of Industrial and Applied Mathematics, Philadelphia, 1979.

R-2



[161 R. A. Vitali, Personal Communication, Department of Statistics, University of Con-

necticut, Storrs, 7 September 1992.

[17] G. Strang, Linear Algebra and its Applications, Academic Press, Inc., New York, 1976.

R-3/R-4
Reverse Blank



INITIAL DISTRIBUTION LIST

Addressee No. of Copies

Office of Naval Research 321W (T. G. Goldsberry, L. Jacobi, N. Harned) 3
Defence Science and Technology Office, Sonar Sys. Div. (Dr. Ross Barrett) 1
Defence Science and Technology Office, Radar Tech. and Sys. (Dr. Douglas Kewley) 1
Cooperative Research Centre for Sensor Signal and

Information Processing (Dr. Douglas Gray) I
ARLtUniversity of Texas (Dr. Gary Wilson) 1
ORICON (Dr. Joseph Presley) 1
Tracor Applied Sciences (Dr. Thomas Leih) I
Nichols Research Corp. (Dr. Leonid Perlovsky) 1
Norden Systems (Dr. Israel Metal) 1
APL/Pennsylvania State University (Dr. David Hall) 1
Raytheon Corporation (Dr. Stanley Chamberlain) 1
University of Connecticut (Dr. R. Vitali) 1
University of Massachusetts, Dartmouth (Dr. C. Chen) 1
MIT Lincoln Labs. (Dr. Richard Lippmann) 1
Harry L. Hurd Associates, Inc. (Dr. Harry Hurd) 1
Naval Submarine Base (Dr. Thomas Hanna) I
Science Applications International Corp. (Dr. Charles Katz) 1
DTIC 2


