
NAVAL POSTGRADUATE SCHOOL L
Monterey, California

AD-A282 550

STA? DTIC
ELECTE

VIA JUL 2 71994
SF

94-23828, T SIS

HI FI AUDIO TAPE TO SUN WORKSTATION
TRANSFER SYSTEM FOR DIGITAL AUDIO

DATA

by

Arie Gal Gartenlaub

March, 1994

Thesis Advisor: Charles W. Therrien

Approved for public release; distribution is unlimited.

DTIe IScTEDB

94 7 2G 109

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instuction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Infomation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Managent

and Budget, Paperwork Reduction Project (0704-0181) Washington DC 20503.

1. AGENCY USE ONLY (Leave blnk) j2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I March 1994 Master's Thesis

4. TITLE AND SUBTITLE HI FI DIGITAL AUDIO TAPE TO SUN 5. FUNDING NUMBERS

WORKSTATION TRANSFER SYSTEM FOR DIGITAL AUDIO
DATA

6. AUTHOR(S) Arie Gal Gartenlaub

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

II. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRACT (mirimusm 200 words)

This thesis describes a subsystem developed to provide for the transfer of digital audio signals from a
SUN SPARCstation 10 workstation to a digital audio tape (DAT) and vice versa. The new system
expands the audio recording/reproduction options available in the laboratory by integrating an analog
tape deck and a digital tape deck with the SUN workstation. The desired connection enables working
with a larger audio bandwidth to achieve better audio performance and resolution in comparison to the
present workstation audio capabilities. Performance measurements of the audio signal-to-noise ratio have
shown an improvement of about 45 dB in the audio reproduction capability and about 35 dB in the
audio recording capability. Total harmonic distortion for the new system is below the limit of the
measuring instrumentation (less than 0.1%).

14. SUBJECT TERMS DAT, DIGITAL AUDIO TAPE, DIGITAL RECORDING, 15. NUMBER OF
SUN WORKSTATION, AES/EBU, SPDIF, REAL-TIME UNIX PAGES 133
APPLICATION. 16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

HI F1 DIGITAL AUDIO TAPE TO SUN WORKSTATION
TRANSFER SYSTEM FOR DIGITAL AUDIO DATA

by

Arie Gal Gartenlaub
Lieutenant Commander, Israeli Navy

B.S., Technion Haifa, Israel, 1987

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 1994

Author: C O C el 6 A/ 4
Arie Gal Gartenlaub

Approved by: (L w "

Charles W. Therrien, Thesis advisor

Murali Tummala, Second reader

Michael A. Morgan, Cltirman

Department of Electrical and Computer Engineering

ii

ABSTRACT

This thesis describes a subsystem developed to provide for the transfer of

digital audio signals from a SUN SPARCstation 10 workstation to a digital audio

tape (DAT) and vice versa. The new system expands the audio

recording/reproduction options available in the laboratory by integrating an analog

tape deck and a digital tape deck with the SUN workstation. The desired

connection enables working with a larger audio bandwidth to achieve better audio

performance and resolution in comparison to the present workstation audio

capabilities. Performance measurements of the audio signal-to-noise ratio have

shown an improvement of about 45 dB in the audio reproduction capability and

about 35 dB in the audio recording capability. Total harmonic distortion for the

new system is below the limit of the measuring instrumentation (less than 0.1%).

Acceiio: For

NTiS CFVA&I
DTC 1C AB [0
U I-.J: I O, . :'(cw !.j .

J ;stt~ction

By

Distrib tioI.

Availability Codes

Avail and I or
Dist Special

iii

TABLE OF CONTENTS

I. INTROD UCTIO N ... I

A. SOUND PROCESSING/RECORDING AND THESIS GOAL 1

B. HUMAN PERCEPTION, HEARING AND SPEECH 2

1. Human hearing characteristics 3

2. Hum an speech 4

C. HI FI AUDIO SOURCES AND AUDIO USE 5

D. MAGNETIC RECORDING HISTORY REVIEW AND PRINCIPLES . 7

1. Magnetic recording historical review 7

2. M odem tape formats 8

E. DIGITAL AUDIO 9

1. Quantization and signal quality 9

2. Harmonic distortion due to quantization 13

I1. BACKGROUND ON DAT AND STANDARDS OF DIGITAL AUDIO 16

A. S-DAT AND R-DAT 16

1. S-D A T .. 17

2. R -D A T .. 18

B. DIGITAL AUDIO TRANSMISSION FORMATS 21

iv

C. AES/EBU AND SPDIF FORMATS 23

1. Subfram e structure 24

2. The AES/EBU professional standard 25

3. The SPDIF consumer format 27

III. SYSTEM DESCRIPTION 29

A. GENERAL SYSTEM CONFIGURATION 29

1. System recording/reproduction options 31

B. THE INTERFACE HARDWARE 33

1. Interface board 33

2. AES/EBU Daughter Module 37

C. THE SYSTEM SOFTWARE 39

1. Main program "runsave" 43

2. Main program "runplay" 45

3. Data structure and double buffering method 47

4. Audio file structure 49

5. Subprogram "sp2ae-save" 50

6. Subprogram "sp2aejplay" and header inclusion 52

D. RETRIEVING AUDIO FILES INTO MATLAB 55

IV. PERFORMANCE TESTS 57

A. AUDIO REPRODUCTION PURITY PERFORMANCE 57

V

B. AUDIO RECORDING PERFORMANCE 63

C. SOFTWARE PERFORMANCE TESTS 72

V . CON CLU SION ... 74

APPENDIX A. OPERATING INSTRUCTIONS AND USER GUIDE 76

A. CAPTURE and DIGITIZATION OF AUDIO DATA 76

1. Hardware setting 76

a. Capturing from the DAT 76

b. Capturing sound from the analog cassette player 77

c. Speech capture using a microphone 77

2. Software operation 78

B. PLAYBACK OF AN AUDIO FILE AND RECORDING ON TAPE 79

1. Harware setting 79

a. Playback for monitoring setup 50

b. Playback and recording an audio segment on DAT 80

c. Recording on analog tape 81

d. DAT dubbing mode 81

2. Software operation 82

C. DUBBING FROM ONE TAPE TO THE OTHER AND RECORDING

EXTERNAL ANALOG SOURCES 83

vi

APPENDIX B. THE DAUGHTER MODULE REGISTERS 85

A. THE CONTROL AND CONFIGURATION REGISTERS 85

1. User control register 85

2. Configuration register 85

3. AM ELIA control register 86

4. Interrupt register 87

B. STATUS REGISTERS 88

1. Status register I 88

2. Status register II 90

C. DATA REGISTERS 91

APPENDIX C. SOFTWARE LISTINGS 95

A. MAIN PROGRAM "runsave.c" 95

B. MAIN PROGRAM "run_play.c" 99

C. SUBPROGRAM "sp2ae-save.c" 104

D. SUBPROGRAM "sp2ae_play.c" 110

LIST OF REFERENCES .. 118

BIBLIOGRAPHY ... 119

INITIAL DISTRIBUTION LIST 120

vii

LIST OF FIGURES

Figure 1 A simplified look at the human ear. [Ref. 1] 2

Figure 2 Quantization steps and PDF of the quantzation error. [Ref. 1]11

Figure 3 S-DAT mechanism. [Ref. 1]. I

Figure 4 R-DAT, the cassette and the head. [Ref. 2] 19

Figure 5 Close look at the tracks and scan format of the R-DAT head. [Ref. 1] 20

Figure 6 Specifications for various recording/playback modes of DAT. [Ref. 1] 21

Figure 7 AES/EBU and SPDIF block format. [Ref. 121 24

Figure 8 AES/EBU serial interface subframe format.[Ref. 12] 24

Figure 9 SPDIF C flag block format.[Ref. 1] 28

Figure 10 General block diagram of the system configuration 30

Figure 11 Analog connections of the audio matrix 32

Figure 12 The LSI interface board block diagram. [Ref. 10] 33

Figure 13 The Interface Memory Map (for 64K X 32 SRAM). [Ref. 10] 35

Figure 14 Main board data bus connection to the DM bus 37

Figure 15 AES/EBU Daughter Module block diagram. [Ref. 12] 38

Figure 16 The software main block diagram 41

Figure 17 Data flow stages between the DAT I/O port and the system disk 42

Figure 18 Flow chart for the program "runsave.".. 44

Figure 19 Flow chart for the program "run_play.".. 46

viii

Figure 20 Data base connected list and the unit structure 47

Figure 21 Double buffering method block diagram 49

Figure 22 Flow chart for program "sp2aesave" 51

Figure 23 Flow chart for program "sp2ae_play.".. 52

Figure 24 The header signal as recorded on the start of an audio segment 54

Figure 25 An audio segment captured using the 32-bit mode 56

Figure 26 Output signal from the SUN speakerbox; the marker is on the signal. 59

Figure 27 Output signal from the SUN speakerbox; the marker is set on a noise

peak .. 60

Figure 28 Spectrum of the I kHz sinusoidal output signal from the DAT 60

Figure 29 Noise only output from the DAT with zero output signal 61

Figure 30 Output signal from the SUN speakerbox; the marker is on the first order

difference intermodulation product.............................. 62

Figure 31 Spectrum of the output signal from the DAT. (The intermodulation

products are under the measurement floor of the spectrum analyzer.) 63

Figure 32 FFT of the 1 kHz input signal through the SUN workstation microphone.

.. 6 5

Figure 33 FFT of the 1 kHz signal recorded through the DAT input 66

Figure 34 Photograph of the spectrum of the 1 kHz input signal to the DAT 67

Figure 35 FFT of the two-frequency signal recorded through the SUN microphone

input ... 68

Figure 36 FFT of the two-frequency signal recorded through the DAT input 69

ix

Figure 37 Spectrum of the two-frequency input signal measured by the spectrum

analyzer .. 70

Figure 38 FFT of the two-frequency input signal recorded through the SUN

m icrophone input 71

Figure 39 Channel 0 and Channel I Input Data Registers. (Ref. 121 92

Figure 40 Channel 0 and I Output Data Registers. [Ref. 12] 93

x

LIST OF TABLES

Table I TOTAL HARMONIC DISTORTION FOR VARIOUS VOLUME LEVELS

AND QUANTIZATION WORD LENGTH 15

Table II BYTE 0 OF THE A ES/EBU STANDARD. [Ref. 11 26

Table III AMELIA REGISTER MAP 36

Table IV THE AUDIO FILE STRUCTURE 50

Table V HEADER MESSEGE FORMAT 53

Table VI AUDIO REPRODTCTION PERFORMANCE MEASUREMENTS ... 58

Table VII AUDIO RECORDING PERFORMANCE MEASUREMENTS 64

Table VIII AMELIA CONTROL REGISTER CONFIGURATION 86

Table IX INTERRUPT REGISTER CONFIGURATION 87

Table X STATUS REGISTER I CONFIGURATION 89

Table XI STATUS REGISTER II CONFIGURATION 90

Table XII 16 BIT MODE DATA REGISTER CONTENT 91

Table XIII CHANNEL REGISTER FLAGS 94

xi

L INTRODUCTION

This chapter presents information on human hearing and speech, high fidelity audio,

a historical review of magnetic recording, and digital audio techniques. Motivation for this

thesis is provided by discussing the benefits of enhanced audio accuracy.

A. SOUND PROCESSING/RECORDING AND THESIS GOAL

The digital signal processing laboratory (DSP lab) at the Naval Postgraduate School,

Department of Electrical and Computer Engineering uses the SUN family of

workstations based on the UNIX operating system. Many of the signals processed and

analyzed are in the audio frequency range. The present system provides telephone line

quality signal recording, storage and playback. That is, the audio signal processed using

the above equipment is bandlimited to 4 kHz and quantized to 8 bits, thus limiting the

processing accuracy. Some of the processing algorithms developed in the DSP lab require

analysis by listening, and some of the audio signals processed have bandwidth wider then

4 kHz. The system developed in this thesis provides a way to record and process 16 bit

digital audio with sampling rates up to 48 kHz so that the entire audible spectrum is

covered. Using Digital Audio Tape (DAT) standards in conjunction with a professional

quality DAT machine provides the highest possible audio quality. The sounds recorded

on the DAT can be used also for demonstration and comparison when access to a

workstation is not possible.

• i l I I1

B. HUMAN PERCEPTION, HEARING AND SPEECH

When evaluating an audio system one should keep in mind that the system's main

intent is to interface with the human ear and mind. Most of the desired parameters of any

audio system will be derived from this fact.

Hearing is the second most important source of information (after vision) to the

human brain. The bandwidth of audio perception is narrower then that of vision but is still

wide enough to deliver large quantities of information. Hearing enables us to

communicate, without even seeing one another. It enables recognition of persons we are

talking to and grasping more information than is in the spoken words. We can often tell

a person's intention by the intonation of his or her speech; the sound contains more

information then if we had written down the words.

The hearing process takes advantage of mechanical media movements. Those

movements, when they correspond to an intelligible message, convey audio information.

The hearing process can be divided into several stages or levels. The first level is the

SEIC!CUL.AR CANALS

PIA HAMMER COCHLEAR FLUID

N\-\W BASI.AR
,., ; see , ,,,'./ : r MEMBRANE

'EARDRUM STIRU COCHLEA IUNCOILED

I FOR ILLUSTRAtION)
rOTR EAR MIDDLE EAR INNER EAR

Figure 1 A simplified look at the human ear. [Ref. 1]

2

human ear which transduces the audio waves into electrical signals that are later sent to

the brain via the nerve system. Figure 1 illustrates the construction of the human ear. The

audio waves arriving at the ear are condensed through the ear canal to the eardrum. The

waves are mechanically transferred to the middle ear and from there to the inner ear. The

inner ear then translates the acoustic wave into electrical pulses that are sent to the brain.

The cochlea located in the inner ear contains tiny hair-like receptors that resonate at

different frequencies which overall comprise the entire audible spectrum.

1. Human heaning cbmteistics

The two most important parameters extracted from the audio information are

the frequency and the amplitude of the sound, or the sound level. This is the information

most needed to understand a vocal message. Although the human audible frequency

spectrum is between 20 Hz and 20 kHz, sounds are not received uniformly in this range.

The best human reception is in the 3 kHz to 4 kHz region.

Human amplitude reception capability spans a wider range than human

frequency reception capability. In the frequency domain we are dealing with a ratio of

103 or 30 dB between the highest and lowest audible frequencies. In the amplitude domain

the dynamic range (ratio between the hearing threshold and very high amplitudes that are

still not harmful) is about 10"2 or 120 dB. The least audible sound pressure level is about

0.0002 dyne/cm2 ; this is considered to be the zero reference level or 0 dB Sound Pressure

Level (SPL). With this reference a quiet home has 35 dB SPL, the Niagara falls have

about 96 dB SPL, and the threshold of feeling pair. is considered to be 140 dB SPL. The

3

pressure level is relative to the source power, and the power is relative to the square of

voltages or currents. [Ref. 11

Although frequency and amplitude as mentioned are the primary recognition

parameters, if we want to add localization to the hearing process we need both of our

ears. The human brain uses the time or phase difference between sounds to estimate the

location of the sound source. Again, this recognition is not uniform across the entire

audio spectrum, but is better at the higher frequencies.

2. Human speech

Whenever human hearing is discussed the production of human voices are

mentioned as well. The voice production capabilities (dynamic range and frequency

bandwidth) of human beings are generally reduced as compared with human hearing. The

spectrum of regular speech does not usually extend above 4 kHz while singing might

reach 10 kHz (including harmonics). Speech information is conveyed with very good

comprehension through 4 kHz bandwidth channels, such as telephone lines.

Speech signals are comprised of voiced sounds (vowels) and unvoiced sounds

(consonants). Voiced sounds are characterized by the pitch period ; voiced sounds are

produced by motion of air through the vocal cords, which can be simulated by a pulse

generator. The pulses are shaped and given their specific spectral content by the mouth-

throat cavity. The unvoiced sounds are created by pressing air through the teeth, tongue

and lips. Voice production levels (amplitudes) are also much more condensed in dynamic

range than those of hearing.

4

C. III F1 AUDIO SOURCES AND AUDIO USE

Audio plays a great part in daily life. Audio and video systems are widespread these

days and the two senses of hearing and vision are often connected. Audio use can be

divided into some gross categories, namely

1. Individual communication,
2. Entertainment,
3. Professional civil use,
4. Military uses.

The first two categories are self explanatory; the other two categories include listening to

medical equipment that uses audio, and military systems that have audio output, for

example ECM, EW, and Sonar systems.

Many standards are associated with audio and audio transmission. As mentioned

earlier telephone lines have a 4 kHz bandwidth. Radio broadcasts in the AM band have

5 kHz bandwidth, and FM radio broadcasts have 15 kHz bandwidth. The term Hi Fi itself

is not a standard. Using the term "Hi Fi" or High Fidelity for describing a feature of an

audio system indicates that the system reproduces the audible spectrum very accurately

and with very low distortions. The multimedia encyclopedia [Ref. 4] defines high fidelity

as follows:

The term high fidelity (frequently shortened to hi-fi) has been in common usage
since the 1950s and refers to the electronic reproduction of sound that corresponds
closely to an original source or recording The ideal is to minimize unintentional
inaccuracy or distortion by using a long series of recording and reproducing
processes. The equipment used must have a wide frequency response: that is, the
range of frequencies over which the signal is reproduced with minimal distortion
must cover at least the range audible to the human ear, 50 to 15,000 hertz. The
equipment is constantly improving: from the monophonic LPs of mid-century, to

5

STEREOPHONIC RECORDING, to the highly sophisticated digital processes
available in HiFi VCRs, compact disc players, and DAT (digital audio tape) cassette
decks.

In the above definition of High Fidelity the 50 Hz to 15 kHz bandwidth is stated,

but good audio system specifications usually meet the complete 20 Hz to 20 Khz

bandwidth. The larger the bandwidth of a signal (within the audio spectrum) the better

it can be distinguished from a similar signal. For example, while communicating through

a telephone at the 4 kHz bandwidth is sufficient for most purposes, when one wants to

be certain about a certain word said the other person may be asked to spell the word.

When one wants to classify sounds other than the human voice, for example musical

instruments or sounds produced by underwater sonar monitoring equipment, it is even

more important to have large audio bandwidth with low noise and distortions.

In consumer oriented audio systems the sound sources until recently have typically

been analog devices such as (audio) cassette recorders, video cassette recorders (for video

and audio signals), and LP records. For professional applications reel-to-reel magnetic

tape has long been a standard because of its wide bandwidth, long play time, and multi

channel capability. With the success of the Compact Disk (CD) and its sub-technologies

(e.g., the Laser Video Disk) both consumer and professional segments are moving towards

all-digital recording and reproduction methodology. This has led to the invention and

subsequent success in the consumer market of the Digital Audio Tape (DAT).

6

D. MAGNETC RECORDING HISTORY REVIEW AND PRINCIPLES

The magnetic recorder was the second tool developed to store and reproduce audio

signals. The first was the gramophone which developed into the modem phonograph

record player. This latter technology is slowly vanishing with the introduction and

development of the CD. However magnetic recording is simply moving from analog to

digital.

1. Magnetic econing historical review

Magnetic recording techniques became very popular in recent decades, mainly

because of the ease of recording and reproduction of magnetic signals. This is true for

audio signals as well as for digital data.

The principles of the magnetic field and the theory behind it were originated

in Maxwell's laws and Faraday's reasearch. The first use of magnetic fields for signal

recordings was described by Oberlin Smith in 1888. This was followed by the first

practical patent issued to a Danish inventor named Valdemar Poulsen in 1898. Poulsen's

device, called the Telegraphone, used a steel wire for recording. [Ref. 3][Ref. 41

The sound quality of the first wire recorders was inferior to cylinder and disk

records. A few experimental recorders started to use 1/2 inch wide steel tape instead of

the wire during the 1920s and 1930s but not with a lot of success due to the fact that the

tape was very heavy and costly. In 1928 a German patent was issued for a light weight

paper tape coated with iron powder. This tape provided superior qualities over the all-steel

tape. AEG Telefunken developed the Magnetophone (an early version of the audio tape)

while another German company, BASF, worked on the tape. The paper tape was replaced

7

by a cellulose film and the iron powder was replaced by iron oxide. The Magnetophone

sound quality was not very high; it was most adequate for speech but not for music.

The next improvment was the introduction of the "AC bias". This was first

disovered in the US in 1927 but was not incorporated in the Magnetophone untill 1939.

This AC bias was the key to high fidelity magnetic recording. The ultrasonic bias

overcomes the nonlinearity in recording and reproduction of signals due to the hysteresis

characteristics of the magnetic substance. In the US, Ampex Corporation was one of the

leading companies in the magnetic recordering field. The Ampex machines started with

a tape speed of 30 inches per second. This speed repeatedly halved with equalization

circuit improvement to 15, 7-1/2, 3-3/4 and finally 1-7/8 inches per second. The last tape

speed is a valid standard today for cassette tape recorders while professional studio units

continue to use reel-to-reel systems at 7-1/2 or 15 inches per second. Additionally

development of smaller magnetic heads enabled an increase in the number of tracks

recorded on the tape. Cassette tapes contain two tracks in each direction, while wide reel-

to-reel studio tapes can contain as many as 48 tracks. [Ref. 4]

2. Modem tape formals

In reel-to-reel tape technology the tape is spooled off a supply reel and

rewound on a takeup reel after passing the record/playback heads. During the 50's and

60's many attempts were made to enclose the supply and takeup reel into a single

enclosure. Philips introduced the compact cassette in 1964, which since became an

international standard and a very successfull one. The cassette invention led to the

development of car audio tape players, "walkman" and portable "boom-boxes" all through

8

the 1970's and 80's. By 1983 the compact cassette was the most successfull and popular

medium for recording music. The compact cassette concept was then carried over to the

micro-cassette, the VCR cassette, and finally to the DAT cassette.[Ref. 41

L DIGITAL AUDIO

When digital techniques were developed they were adopted for audio signals as well

as for other fields. This led to a whole line of digital audio formats that differ in

bandwidth (sample rates) and quantization. The telephone line standard remains at 4 kHz

as it was developed before the digital audio era, and the quantization was set to 8 bit

PCM. This standard is known to provide sufficiently good human voice quality and at

the same time is economical. High Fidelity digital audio standards are much more

elaborate than the telephone digital audio standard. The bandwidth is set at 20 Hz to 20

kHz, which requires at least a 40 kHz sample rate (according to the Nyquist theorem); it

provides for two channels (stereo); and in order to get good signal to noise ratio and

dynamic range it has 16-bit quantization. The CD sampling frequency is set to 44.1 kHz

while the standard sampling frequencies for DAT are 48 kHz in the normal mode and 32

kHz in the long play mode. A rate of 44.1 kHz is also provided for direct digital

compatability with CD.

1. Quanization and signal quality

To record and store an analog signal digitally an Analog to Digital Converter

(ADC) is used. In the reverse process a Digital to Analog Converter (DAC) is used to

9

regenerate the analog signal. The ADC converts the analog signal into discrete levels that

are represented by a binary word.

The number of bits in the digital word dictates the number of discrete levels

the continuous signal is divided into. The number of levels L is given by

L = 2()

where n is the number of bits in the sampled word. The value Q of a quantization step

is given by

Q_ V=1-F V~(2)
L

where V.. and V.,i here are assumed the largest and the smallest voltage level,

respectively, to be converted. The least significant bit determines the accuracy of the

quantization and its value is equal to the quantization step Q. The quantization error is

the difference between the actual value of the signal and the value that is represented by

the binary word. For linear quantization, used in most 16-bit audio devices the

quantization error is uniform through all the dynamic range and is given by

E IQ (3)

10

The best signal to quantization error performance of an n-bit system would the.i be

Vpm _ LQ 2 = 2"(
- =-={ 4)

Eq I I
2 2

where Vptp is the peak-to-peak value denoted earlier by: V..- V.,. . For a 16-bit system

this becomes 2' 7or about 98 dB. The distribution of error assuming that the signal is

totally uncorrelated with the sampling process can be thought to be uniform having the

PDF shown in Figure 2.

Quantization steps and quantization error PDF.

P(E)

2 Q levels E

2 2

Q - quantization step; n - number of bits

Figure 2 Quantization steps and PDF of the quantzation error. [Ref. 11

I!

The estimated error energy is therefore

Q

27

-Q (5)
2

The mean error voltage would then be

= - Q (6)

Using a sine wave signal as reference we get

V _ LQ 2'Q 28'Q (7)

2I 2V

and finally the signal to quantization error ratio would be

Von _ V)2 2 1.5 = 6.02n+1.76 [dill (8)

Vq Q

For example, use of 16 bits yields about 98 dB SNR, 12 bits yields 74 dB and 8 bits

yields only 49.9 dB. Another important fact that should be noticed is that the result is

12

computed for full scale signals. For a signal smaller in amplitude than VRS the SNR

achieved would be worse.

When a small number of bits is used in the ADC, audio systems frequently

use a nonlinear encoding scheme to improve the signal to quantization error performance.

For example human speech is usually low in amplitude for the unvoiced sounds and much

louder for the voiced ones. Common quantization schemes such as A-law or 4-law

attempt to exploit these characteristics to improve the system signal-to-noise ratio

performance. In these methods the quantization is finer near the zero amplitude level and

larger for large amplitudes. A disadvantage that occurs is the fact that this is not a linear

process. Thus if it is not perfectly compensated for in the DAC, it leads to undesired

distortion that was not present in the original signal.

2. Harmonic distortion due to quarlizatdon

The Total Harmonic Distortion (THD) is a figure of merit that measures the

energy of the harmonics created by nonlinearities in the system relative to the original

signal energy. For a full scale signal the equations and results achieved in section E. I

above are valid, but for smaller signals the calculation and the results are different.

The full scale signal will be considered as the 0 dB reference level (having

peak to peak unit amplitude). The peak to peak amplitude of the signal in dB is

VdB = 20ogjo(V.,) (9)

13

or

VA~ = I (10)V*,ad = 10 20 = IQ

Where Q is the quantization step and I is number of steps. The power of the signal

assuming a sinusoid is

___ 2 12Q2 (1P - 8 8 "

The noise power as before is

_ Q2 (12)

THD (as a percentage) is then given by

Q2
THD%- P!!×100- 12 400 2×100 (13)

Pa1,,11 11Q 2 3V2
8

Finally THD as a function of the input peak-to-peak voltage in dB is

THD% - 2 x100 (14)

3(2"1O 20)

14

Some numerical values for a linear quantization scheme are given in Table I below. The

THD values for 8-bit A-law or p-law are different due to the nonlinear quantization

scheme, The THD is higher in the high amplitude levels and lower in the low amplitude

levels (this is later supported by the measurements described in chapter IV).

Table I TOTAL HARMONIC DISTORTION FOR VARIOUS VOLUME LEVELS
AND QUANTIZATION WORD LENGTH.

Volume level THD %
[dB] 8 - bits 12 - bits 16 - bits

0 0.2 0.016 0.001

-20 2.6 0.16 0.01

-40 26 1.6 0.1

15

IL BACKGROUND ON DAT AND STANDARDS OF DIGITAL AUDIO

The DAT or digital audio tape is the result of a mixture of several technologies. The

evolution of digital audio, the development of better media for storage of digital data,

development of better and more capable audio processing chips that can operate in real

time at data rates desired for High Fidelity audio use, and finally the VCR technology

were all very important to DAT development. The techniques of storing large quantities

of digital audio that were first developed for the world wide consumer audio market were

quickly adopted by the computer world because of their inherent inexpensive large scale

storage capacity. For example a small DAT cassette is capable of storing about 1.38

Gigabytes and a CD can store about 0.5 Gigabyte of digital data. [Ref. 2] [Ref. 9]

A. S-DAT AND R-DAT

In order to store two channels of High Fidelity digital audio with 16 bit accuracy

using a maximum sampling frequency of 48 kHz, the net rate of the recording is required

to be

Bftr = 48xlC0x2x16 = 1.536x106 bits/s (16)

The demand for large recording bandwidth is obvious when one considers the net

bitstream. Even with the use of efficient modulation schemes having bit rates less then

I Hz/Bit/sec, the required bandwidth is on the order of 1 MHz. The large bandwidth

16

required can be met by one of two techniques. The first, which is borrowed from the

VCR technology is to increase the head-to-tape relative velocity in order to gain the

desired bandwidth; the second is to divide the high rate data stream into streams of

slower rates each of which feeds to an individual track of a multitrack recording head.

The first technique is called R-DAT or Rotary scan head DAT; the second is called S-

DAT or Stationary scan head DAT. Both techniques have been standardized and are

available on the High Fidelity audio consumer market. There are advantages and

disadvantages to each technology. These technologies are described briefly below.

1. S-DAT

The Stationary head DAT is based on principles similar to those of Frequency

Division Multiplexing (FDM), where many narrowband channels are delivered through

a wideband channel by modulating them on subcarrier frequencies. In the S-DAT the

wideband data rate is divided into discrete channels each having a proportional bandwidth.

For example if we have a channel with a data rate of 1.536 x 106 bits/s (as computed

above) and we have a 20 track S-DAT, each individual channel will support 1.536x 106/20

= 76.8 Kbjis/s. This rate is manageable by a stationary head, and this rate is about the

same as the bias frequency that is used in analog tape. Linearity is not kept because the

data is binary and only saturation conditions are used. Figure 3 illustrates the SDAT

mechanism. An advantage of the S-DAT is the ability to record and play on a regular

cassette tape; this was the motivation for developing the S-DAT technology. Another

advantage has to do with the fact that since the head is not moving the mechanism and

17

control are slightly easier to manufacture. Among the disadvantages is the fact that S-

DAT is more vulnerable to crosstalk and noise.

View of S-DAT
cassete and UM C "

staionary head TA" D CAMAN

FIgum 3 S-DAT mechanism. [Ref. 1]

2. R-DAT

The R-DAT uses VCR scanning head technology. The R-DAT is the more

common type in the professional and high end consumer markets and is the technology

used for this thesis. We will hereafter use the term DAT to refer to the R-DAT. The

advantage of using the rotary head technology was not in its simplicity but rather in the

fact that it was well understood and in wide use for VCR's. Thus there had been a lot of

savings in mechanical development. The DAT head has a diameter of 30 mm, and

revolves at 2000 RPM. There are 2 or 4 heads in a DAT recorder. The 2-head DAT was

the first to be used; the 4 head was developed later and permits better reading and error

proofing of the digital data.

18

Figure 4 R-DAT; the cassette and the head. [Ref. 2]

Figure 4 shows the rotating head of the DAT, and the tape wrapped around

it. The DAT's cassette is sealed and is 73 mm x 54 mm x 10.5 mm in size. Thus it is

smaller then an 8 mm video camcorder cassette.

Figure 5 shows the track pattern of the DAT, head and the tilt angle of the

head in relation to the track. On each track, which is 13.591 pm wide, there are some

special areas. The subcode is on a part of the track which the DAT uses to record its own

auxiliary data such as music ID, fast search codes, and various other information. The

ATF or Automatic Track Finding area is used to synchronize the Phase Lock Loop (PLL)

19

, , , i I I II

a 4,iia VV1I

ieee~TC Id" *E'd

IV

\ K..
TpI lllC I## le* Op@I~i If ' I

Figure 5 Close look at the tracks and scan format of the R-DAT head. [Ref I]

control of the head servo in order to lock very precisely on the track. The main area of

the tape is used for sound recording. Due to the fact that recording is not continuous in

time, storage and buffering for data compression and expansion is used.

Figure 6 gives some typical DAT specifications like sampling rates, data

transfer rate, modulation scheme, error correction type, and record time. The modulation

scheme used is called "8 to 10" since each byte is represented by 10 bits on the tape. This

spreading reduces the DC recorded on the tape. For example if there is a long series of

l's in the audio sample this modulation scheme will break it into interlaced l's and O's

and thus reduces the DC recorded on the tape. This technique does not have to be used

in analog recording because the average of an analog signal recorded with the bigh

frequency bias is zero.

20

IOAI _ O C 09 MODE1 PR ECORDED TAPE i V,

STAO aUTO., 1 2 1 OPTION 3 I ,MLM TRACK wOE ThA

0Mmm WAMP I 1 2 2 1 2 I 2
ISome 6POUNCV IWO; A 44
CUANTWTIOdI OTNUMII Irlo 1 1 , jL Ii IA, 1,12 00UiPMAXAI12OK NEARI 1iSLP4EARI 16I1LPEA

INIM j&OMN 0P0 501 t 61.0 SF0A 61'
Wrlm-C 110016MI SPR MiW01 11 1 lid .2 ?s

T tMMnISMl RATE IMIPSI 246 I 24 12 I 24 246
UCODS C*PAC?' 531 I 72 2731 I .1 3nn 2731 273 1

MODLATOIO 61M *- 0 CONWM45"ON
OoPIM svm1 7 DOULE RED-OLM CODO
mPCKImS s$siu AREA SHA*SIG ATWCI UK iwm 73A , torS

1 SISIM I 120 1. - 24 2 1o ,o
TAPE WI0T4 Iml 36'
TAPE 1191 METAL. PODE OXIE TARS

TAPE III lw**e $is011 I 4.1$ @ Is I 12=2
TI P604 ,-- I 1 '-' 2041
TRAK ~s~~ V 3219.5 W 23M r

SM 0 S5 CPW CU1CATeI4 f0380 WAA~
OM AoAT0u4 Mr6 noao 2=6 2000
011ATWE SM.UOII I 3133 I -W 15' 3133 3133 3121

!'KDAZUTW AIL :28

Figue 6 Specifications for various recording/playback modes of DAT. [Ref. 1]

Correction codes are use to ensure high quality and reliability of the signal

reproduction. As stated earlier the data is recorded very densely on the tape, and the crude

Bit Error Rate (BER) is rather high. This is overcome by using error correction coding

however.

1. DIGITAL AUDIO TRANSMISSION FORMATS

The development of the digital recorder introduced the need to develop data transfer

protocols that would maintain the digital advantage of immunity to noise. These protocols

for example enable one to record directly from the optical output port of a CD player with

the appropriate interface. To accomplish this and to enable a variety of additional data to

be transferred, the protocols developed contain auxiliary information, such as sample rate,

whether preemphasis is used on the audio signal and the preemphasis characteristics,

21

copy prohibition codes, indexing of music for fast search, and even space for user defined

data.

With the possibility of duplicating music with the highest possible quality the issue

of copyright infringement arose. Actually, the issue arises also for analog recordings but

there is little that can be done to prevent copying of music recorded in analog form.

However the manufacturers realized that with the all-digital recording scheme, they could

actually inhibit copying of music digitally. Thus a copy inhibition feature was written into

the (consumer) standard.

Although several standards have been developed only two will be discussed in detail

here. These are the SPDIF (Sony Philips Digital Interface Format) used for the domestic

consumer machines and the AES/EBU format used in professional applications. AES

stands for Audio Engineering Society, and EBU stands for European Broadcasting Union,

the two organizations that created the professional DAT standard for audio studio and

broadcasting station machines. Other audio protocols that will not be further discussed

here include the SDIF-2 also developed by Sony, PD by Mitubishi, MADI (an extension

of AES/EBU) for multiple channels of audio, DBS for Direct Satellite Broadcast and

CADA, a standard for Cable Digital Audio. In all of these systems the digital audio is

sent serially over a net or from one machine to another. It should be noticed that the

structure of the data sent that way is different from the structure of the data actually

recorded on the tape. Every machine or interface that conforms to one of the standards

mentioned above can manipulate the data in any desired fashion internally but has to

adjust to the correct configuration on transmission or reception. All the error codes and

22

control mentioned above (such as the Reed-Solomon codes, data interleaving, ATF and

Sub codes) are internal and in most cases this information is not available outride the

DAT. Internal standards were set to make the recorded cassettes transportable between

different manufacturers.

C AES/EBU AND SPDIF FORMATS

In both the AES/EBU and SPDIF formats the audio samples are organized into

blocks. Each audio sample consists of 32 bits taken together, called a subfrwne. Two

audio samples, corresponding to left and right channels in the stereo case, comprises a

frane. Then 192 frames are gathered into a block. The beginning of each block is

marked by a unique preamble, and each channel has a separate preamble. The channels

are denoted by A and B (rather then left and right): the block start preamble is denoted

as Z; the preamble for channel A is denoted by X; and the preamble for channel B is

denoted by Y. The first channel A subframe of a block starts with Z; the rest of the

preambles are Y and X consecutively, until the 19 2 " frame; and then it repeats. Figure

7 shows the structure of the block and preambles. The overall bit rate of transmission is

between 2.048 Mbit/sec for the 32 kHz sample rate and 3.072 Mbit/sec for 48 kHz The

detailed structure of the preamble differs for the AES/EBU and SPDIF formats. The two

standards also differ in their hardware physical interface and connector type.

23

The AESIEBU Block format

00 ch C CiBf ChAJ ChB CAChA kiCh B Ch A Ch 13

frame 190 frame 191 'from subI*L.. frame I frame 2

frame 0
X - Channel A preamble___________
Y - Channel 8 preamble Block Start
Z - Block start preamble

Figure 7 AES/EBU and SPDIF block format. [Ref. 1 2J

1. Subfrome structus

Each audio sample has 32 bits. The subframe structure is shown in Figure 8.

The first 4 bits, which comprise the preamble, are used for synchronization. (Since the

data is sent on a single line the communication is asynchronous.) The next 4 bits carries

auxiliary audio and other data; a specific interpretation is not provided by the standard.

Th1e AESIEBIJ subfirame

32 bits

4 bits 4 bits' 20bits I bt

SYC Auxiliary L MVU C P1

SYNC audio data S AUDIO DIGITAL SAMPLE S VU C

I I3 1 _

SYNC: The preamble for the V: Audio sample validity bit.
subframe. U : User data bit.

Auziliary data contain information about C: Chanuel status bit.
the channel number. P: Subframe parity bit

Figure 8 AES/EBU serial interface subframe format IRef. 121

24

The audio sample itself can be a maximum of 20 bits long although there are applications

that use 24 bits for the audio sample. In this case the auxiliary bits are used as part of

the audio word. As mentioned earlier CD and DAT use 16-bit audio samples, so the

standards support these formats easily.

The flags of the audio samples also convey important information. The most

important is the C flag which delivers the channel information and is transmitted with

every sample or subframe. The C flag is identical for the two subframes within the same

frame. All the flags taken together in a block create the whole message which is 192 bits

long and will be called the C-flag block. The 192 bits of the C-flag block conform to the

standard in which they are delive-ed whether it is AES/EBU or SPDIF.

2. The AFS/EBU pmfeusional sandod

The AES/EBU codified as the ANSI S4.40-1985 is the professional standard

for data exchange between professional audio devices. The AES/EBU provides for

conveying two channels of periodically sampled and uniformly quantized audio signals

on a single twisted wire pair. The format was designed to support data transmission up

to 100 meters in distance.

The signal is a biphase self-clocking Manchester code, which saves the need

for a separate line for clocking. The twisted-pair cable is designed to improve the noise

immunity of the data. The hardware characteristics conform to the IEEE RS-422A

standaid. The AES dictates use of transformers for better isolation with a required

impedance of 90 to 120 ohms and a voltage level of 3 to 10 volts peak-to-peak. The line

25

mI I I i

is actually a shielded twisted-pair cable with XLR type connector as used with other

professional audio equipment; pin I is ground and pins 2 and 3 carry the signal.

The C flag block described earlier is organized into 24 8-bit bytes (192 bits

total). The C flag block contains the information pertaining to the channel. The C flag

block rate is about 250Hz. The most important bytes in the block are byte 0 and bytes 22

and 23. Byte 0 contains the information shown in Table I below.

Table I BYTE 0 OF THE A ES/EB U STANDARD. [Ref. 1]

bit 0: 0 - the data is in the consumer (SPDIF) format
I - professional format of block

bit 1: 0 - Normal audio mode
I - Non audio mode (example: master synchronization device)

bits 2,3,4: 0 0 0 - No emphasis indicated receiver default is enabled
1 0 0 - No emphasis used receiver default disabled
I1 0 - 50/15 ps emphasis (CD format)
11 1 - CCITT J17 emphasis (6.5 dB at 800 Hz)

bit 5: 0 - Source frequency un locked
I - Default and source frequency locked.

bits 6,7: 0 0 - Sampling frequency not indicated 48 kHz is the default.
0 1 - 48 kHz sampling frequency.
1 0 - 44.1 kHz sampling frequency.
I 1 - 32 kHz sampling frequency.

Byte 0 was very important for the development of the software in this thesis. Byte 22

contains information on unreliable samples in the audio block while byte 23 .contains the

channel status data cyclic redundancy check character (CRCC) of the bytes 0 tlumu 22.

26

The associated generating polynomial for the CRCC is G(X) = X8 + X4 + X3 + X' + 1,

where X is a dummy variable in the Galua field; hence the binary divisor word is

100011101. [Ref 1]. The other bytes convey information such as channel mode and audio

sample length (bytes 1,2), addressing information (bytes 6 to 13), sample index (bytes 6

to 13), and the time of the day (bytes 18 to 21). Bytes 3 to 5 are reserved for future use.

3. Me SPD[F consumer fonnat

The SPDIF consumer format is very similar to the AES/EBU professional

format. The 192 frames per block and two subframes in every frame is maintained as is

the overall subframe structure. The difference arises in the C block information and its

structure. The C flag block is arranged in twelve 16-bit words (again a total of 192 bits)

with interpretation as shown in Figure 9. The copy prohibition bit mentioned earlier is

the second bit of the control field. Another field that is not specified for the AES/EBU

professional standard is the clock accuracy field. The professional standard assumes the

clock used is of high accuracy and its tolerance is small. Detailed discussion of the

formats can be found in Reference 1.

The hardware connection is also different. This format, being consumer

oriented uses a less expensive interface. The line is a coaxial cable with an RCA type

connector and is designed for short length. A high impedance is allowed on the order of

50 kMl

27

PH 1

is SOUM NIJUSER C4M#*AL PW~N co

'CmWSWEW CATEORYI C0011

I0M6II0M61 2.ciEW"M loom ~
I CagowSI. me a * 0,0000111: 2C0w.4 PcmA wOMOn'egew0 ala ftmua 12 C" GONs. I10000W. 2aisuWi OAT

V a ow. Hn" am iq ~ w 0-0
2 P4l00FAm HIU400.7

4 L " aEI
Glowmu.0~ to SO LC E 1,1111501

E~~~~:f lift 'N e000 istc

N0W 00t60 @1052

Git 8 1 c:Nno ll,.wii~

am0 O" ot M . lo'

stat 11 oft~ at ~2om w.

I4 Inmt.q v loft

QOMCK AcUAY

01O: tmrwl

V bit optional
Channel status left - channel status right. pending status number
Control bit 2 - copy permit
Control bit 3 - pre-emphasis
Sampling rate bits in channel status
Data bits 4-27 to rate
Clock accuracy in channel status
Bits 28-29 to source accuracy

Figure 9 SPDIF C flag block format.[Ref. 1)

28

HI. SYSTEM DESCRIPTION

This chapter describes the 16-bit digital recording/reproduction system. The

description highlights the general system configuration, the hardware of the interface and

the operating software. The major difficulty in developing the High Fidelity signal

recording and reproduction system was the fact that high data rates are involved with the

process -ad the fact that the "rocess runs in the UNIX operating system environment

w' . ,s -)t real time ,- :ated. The desired High Fidelity recording/reproduction

capability had to be incorporated with no change in the kernel of the operating system or

to the general network architecture. This requirement along with the high rates of the

digital audio data stream (3 Mbits/sec) required use of a dedicated microprocessor board

designated to handle the data transfer in real time. The special microprocessor board also

acts as an interface between the different data protocols, namely, the one used by the

DAT and the one used by the SUN workstation and UNIX environment.

A. GENERAL SYSTEM CONFIGURATION

The recording/reproduction system is comprised of a SUN SPARC 10 workstation,

an interface board based on the Texas Instruments (TI) TMS320-C30 microprocessor, a

Sony DAT model PCM-2700A which conforms to the AES/EBU professional standard,

on analog cassette tape recorder, a patch-cord board, a mixer/preamplifier, a power

amplifier and a set of studio monitor type speakers. IN the main mode of operation digital

29

microphone digital audio

Analog Audio iital udio
Tape Tape (DAT)

digtadadi

audio Speaker

xdio MatrixS

analog audio iIanalog audio microphone
Mixer/]Left] Right

Pre-am lifie
l~e-mpife[rSpeaker / Speaker]

(C h anne A) (C h anne B)
Iower

IAmplifier j

Figure 10 General block diagram of the system configuration.

audio data transfer takes place between the DAT and the SUN workstation. The other

parts of the system provide a high quality listening environment for critical evaluation of

the sound. The analog tape recorder provides a capability to both record and capture

sound on standard audio cassette for compatibility with external systems that do not have

DAT capability. Figure 10 shows the system configuration and connections between the

individual blocks comprising the system. The audio output from the SUN workstation

speakerbox is also connected. This provides for playing the normal 8-bit sound files using

MATLAB or the SUN audio tools through the sound system. Reproduction of this audio

output is enhanced via the preamplifier/mixer, power amplifier and speakers, however.

30

1. System nrcording/repnrduction options

With this new system the options for receiving and storing sound signals have

been considerably widened. In addition to the normal SUN workstation audio mode (8

kHz sample rate with 8-bit quantization) the new system provides 32 kHz, 44.1 kHz, and

48 kHz sample rates for two channels of audio, with 16-bit quantization at the 44.1 and

48 kHz sample rates and 12-bit (non-linear quantization) at the 32 kHz sample rate. The

options for capturing data and storing in digital form are as follows:

* Digital audio data prerecorded on the DAT can be read into the SUN

workstation and stored in a data file.

* Analog audio prerecorded on the analog tape can be digitized by the DAT

and then transferred and stored as mentioned above.

* A microphone can be connected to the analog tape, amplified digitized by the

DAT and stored at the SUN workstation.

" The SUN microphone using the normal audio mode of the station can also be

used as before.

The options for High Fidelity reproduction and recording of digital data are:

0 16- or 32-bit digital audio files sent to the DAT can be converted to analog

signals for monitoring and critical listening.

* Digital audio files from the workstation can be recorded directly on the DAT

(no D/A conversion needed).

* Digital audio files can be converted to analog audio signals by the DAT and

then recorded on the analog audio tape cassette.

31

The analog connections of the system are illustrated in Figure 11. There are

two analog outputs from each of the tape recorders. Each of the output ports of each of

the tape recorders feeds an input channel of the analog audio mixer/preamplifier and an

analog input of the other tape recorder. This connection allows recording from one tape

recorder to the other tape recorder without having the signal pass through the mixer. This

direct recording capability saves additional distortion to the recorded signal that might be

introduced in the analog mixer/preamplifier.

digital 1/0 analog
1o StlN- P IDAT Inputs Analog Tape

Recorder Recorder

analog analog outputs

Audio patch panel

ongnI connection

channel I 1channel I channel $ channel 4

IAudio Mixer / Pre-Amplifier

ontpt I output 2 outputs to power amplifier

Figum It Analog connections of the audio matrix.

32

B. THE INTERFACE HARDWARE

The interface board is based on the TI TMS320-C30 micro-processor and a daughter

module which serves as the AES/EBU and SPDIF transceiver. The TMS320-C30 board

conforms to the S-Bus architecture of the SUN workstation. Figure 12 shows a block

diagram of the interface board. The interface board and the daughter module are described

separately below.

DSP-LINK'C OR SCSI

2K x 32 SRAM

40MMO 51K x 32

atuffersOM

C

SBus TMS320C30 - -
Slave Floating Point At a

Interface Processor ouglmiteI 33 MHz MO"

Figum 12 The LSI interface board block diagram. [Ref. 101

1. Inteface board

The main component on the board is the TI TMS320-C30 microprocessor. The

board has 32-bit data bus internally. The daughter module (DM), which interfaces the

board to the AES/EBU or SPDIF data stream, is shown enclosed in a dashed line in

33

Figure 12. The main data and address buses on the board are buffered from the host bus

thus enabling different processes on the host and on the board to occur simultaneously.

Transferring data in real time between the host and the board is done through the Dual

Port Random Access Memory (DPRAM). All the other devices, memory, and the TMS

registers are accessible by the host, but the TMS320-C30 must be halted to avoid bus

conflicts. The ID PROM on the board contains the access codes. These codes are read by

the host at system boot up, and the board is assigned a device number and a virtual

address. Access to a peripheral device is done using the Memory Mapping method, i.e.,

each device has an address in the memory space of the TMS320-C30. Selecting a device

is done by placing its address on the address bus. This address is then decoded and an

ENABLE signal is sent to the device along with a read or a write signal. The memory

map of the board with 64k SRAM is shown in Figure 13. The DPRAM is mapped

between 400000 Hexadecimal (H) and 4007FF H in the address space. The DPRAM

address is calculated absolutely in the programs for the TMS and calculated relatively

in the programs for the host process.

34

Memory Type Size (words) Wait States Address (hex)

Bank 0 (U1) 64K 0 0000001
to OOFFFF

Bank 1 (U2) 64K 0 010000
to OIFFFF

Bank 0 and Bank I 3968K o 020000
Reflections to3FFFFF

Dual-Port RAM 2K 1 400000

to 4007FF

Dual-Port RAM 62K 1 400800

Reflections _ to 40FFFF

Not Used 4032K 410000
_ Ito 7FFFFF

DSPLINK SK 2 800000

__ I to 801FFF

Reserved 8K 802000

_ I to 803FFF

AMELIA 8K 2 804000

to 805FFF

Reserved 8K 806000

I _to
807FFF

On-Chip Pen- 6K Internal 808000

pherals I I to 8097FF

RAM Block 0 1K Internal 809800
to 809BFF

RAM Block 1 1K Internal 809C00

to 809FFF

Bank 0 and Bank 1 4056K 0 80A000

Reflections to BFFFFF

Dual-Port RAM 4096K C000(0O

Reflections to FFFFFF

Figum 13 The Interface Memory Map (for 64K X 32 SRAM). [Ref. 101

35

The Application ModulE Link Interface Adaptor (AMELIA) is the daughter

module (DM) concept used by Loughborough Sound Images Ltd. (LSI). It is an irner bus

that connects the main board to different plug-in modules and is mapped into the memory

space of the main board. The DM used in the system is a module whose I/O conforms

to the AES/EBU and SPDIF DAT standards. The address space of the AMELIA is

between 804000 H and 805FFF H although the system in its present configuration uses

only a small portion of this. The detailed address map of the AMELIA as reflected in the

board Memory Map is given in Table IIn. The rest of the AMELIA address space is also

not in use. Table III is specific for the AES/EBU DM and could be slightly different for

Table EI AMELIA REGISTER MAP.

Location (hex) Read access Write access

804002 channel A input data channel A output data

804005 *NU Timer 1

804006 channel B input data channel B output data

804008 NU User Control

80400A AMELIA status AMELIA control

80400B Interrupt status Interrupt Mask

80400F NU Configuration

*NU denotes Not Used.

other types of daughter modules. The data bus hardware configuration of the board is such

that all AMELIA registers are cotnected to the higher 16 bits (out of 32 bits) of the bus;

36

the lower 16 bits can be ignored. This fact needs to be considered in the programs written

for the board, and the data in and out from the AMELIA should be shifted 16 bits left

when writing and 16 bits right when reading. Figure 14 presents the data bus connection

between the main interface board and the DM.

Main board and daughter module data bus connection

bit 31 MSB MSB bit 15

daughter moduleMain board 16-bit data bus
32-bit data bus and registers

bit 16 LSB bit 0

the lower 16 bits are set to '0'
bit 0 LSB

Figunt 14 Main board data bus connection to the DM bus.

2. AES/EBU Daughter Module

The AES/EBU D24AES daughter module provides a digital audio interface

to any equipment that conforms to the AES3 professional balanced data format and to

the consumer CEI IEC 958 standard unbalanced data format, also known as SPDIF. A

functional block diagram of the module is illustrated in Figure 15; both receive and

transmit modes of operation are depicted. The main component of the DM is a digital

audio transceiver. This transceiver conforms to the digital audio standard and is the device

37

audio transceiver. This transceiver conforms to the digital audio standard and is the device

that is connected to the digital line in and digital line out of the DAT. The data that

arrives from the DAT is locked on to and decoded by the transceiver. The output of the

transceiver is a parallel 16 bit word originating from the incoming serial digital audio

transmission. The reverse procedure takes place when a digital audio sample is

transmitted; the sample is sent as a parallel word to the transceiver which is then

translated and sent out serially.

The D24AES DM has two main modes of operation, the 16-bit mode and the

32-bit mode. These modes of operation are programmed via the Control Register. In the

OUM4AIES

G~~~emdt CIO*_____

_ OIUUIIC? _ _ _

I~~ELWLV% Clms S ____

C14 8 , 1 1m h"

_WW- I W"

Flgue 15 AES/EBU Daughter Module block diagram. [Ref. 12]

38

16-bit receive mode each audio sample is filtered by the transceiver, all framing is

stripped off, and only the 16 most significant bits are transferred to the user. In 16-bit

transmit mode, i.e., when the data flow is from the board to the DAT, only the 16-bit

audio sample should be sent to the transceiver; all necessary framing is added by the

transceiver in this mode of transmission. The 16-bit mode is the simpler of the two

modes of operation. The advantage of the 16-bit mode is its simplicity and that it requires

only 16 bits of storage per data sample. The disadvantage of this mode is that the

transceiver adds default framing to the audio sample. This default framing allows data

transfer to the DAT used in the system only at the 48 kHz sample rate, which may or

may not be desired. The more general mode is the 32-bit mode. In this mode the program

receives complete information for the audio sample including the flags and up to 24 bits

of audio sample data. Due to the hardware configuration and the different data bus width

of the board and the DM (Figure 15), two read cycles need to be executed in order to

fetch the entire digital data word, and when transmitting data two write cycles are

required to write the entire digital word into the transceiver. The program on-board the

TMS320 has to properly set the C flag. (The C flag is the most important flag for proper

system operation and is described in Chapter II). Appendix B provides additional

information about the register structure and bit content of the AES/EBU daughter module.

C. THE SYSTEM SOFTWARE

The operating system (host) software and the software for the digital interface were

written in the C language as part of this thesis. The host software is divided into two

39

main programs, one for storing a digital audio segment prerecorded on DAT to the

system's disk, called "run-save," and another for playback/record (to DAT) an au'iio file

stored on the system's disk called "runplay." These programs will be referred to as

"main programs" or "main processes." Each of the main programs has a subprogram

associated with it, which are designed to run on the interface board. The subprogram of

"runsave" is called "sp2aesave" while the sub-program of "runplay" is called

"sp2ae_play." In the SUN UNIX file system the source codes for the above programs

have the ".c" suffix, the main executable programs file have no suffix, and the

subprogram object files have the ".out" suffix. Figure 16 illustrates the general software

block diagram, relationship between the main program and the subprogram, and the data

flow. Note that the main programs control the subprograms. The control of the

subprograms is done by first downloading the subprograms to the interface board at a

certain point in the execution of the main programs and then controlling the start and the

end of the execution of the subprograms.

40

main C program subprogram

digital audio serial digital

file r s sp2ae save
saveaes- audio input

on the disk e

interface control from main program

main C program subprogram

playback serial digital
of r -nPlay IIsp2ae play

of M
pre-recorded audio output

UNIX user control from main program

interface

Figum 16 The software main block diagram.

41

The aim of the subprograms is to control the data transfer between the Input/Output

(I/O) port of the DAT and the SUN workstation in realtime. The data transfer between

the serial DAT I/O port and the SUN workstation is done in a few stages using the

"Double Buffering" technique described in detail later in this chapter Figure 17 illustrates

the data transfer process between the system disk and the digital audio 1/O port. A

gradual data transfer is needed to synchronize the real time fixed rate data stream of the

DAT to the non-real time UNIX operating system. The main program builds an array for

the entire audio segment in the RAM of the SUN workstation When storing an audio

segment from the DAT, the entire array is filled and then sent to the disk. In outputing

to the DAT the array is read from a file completely and then sent to the interface and

entire audio segment
arra,

... double buffer

----..-- --- data blocks transfer s serial

system 's d ltital

dik- ------- - , E l 1- a-- - dio-

i

S

system's work-station TMS 320 board daughter module
disk

Figure 17 Data flow stages between the DAT I/O port and the system disk.

42

from there to the DAT. The data is transferred between the interface and the array in

blocks of 960 32-bit words. The audio array although dynamically allocated is designed

to contain an integer number of such blocks; thus the recording/playback time resolution

is 20 msec at the 16-bit mode and 10 msec at the 32-bit mode assuming a 48 kHz sample

rate.

The main C programs use some library functions from a library provided with the

interface hardware. These C library and header files are called "sdsp30lib_st.c" and

"sdsp30lib.h" respectively. The functions used in developing the main programs assist

with data transfer and control of the board. The subprograms "sp2ae save" and

"sp2ae_play" were also written in C and debugged using the TMS320 assembler language.

The TI TMS 320 software development kit was used to compile and link the written C

source code of the subprograms. A debug software monitor "smon30" from LSI was used

to examine the real time processes.

1. Main pmgumm "nan_save"

The program "run-save" retrieves an audio segment from the DAT and stores

it on the system's disk. Figure 18 illustrates the flow of the program. The first hardware

check is meant to insure that no other process is using the interface, in which case an

error might occur. The data structure for storing the entire audio segment is allocated

dynamically. The data structure is explained later in the chapter in detail. Dynamic

allocation is used to respond to the need for varying record time specified by the user at

run time. The whole audio segment is recorded in the audio array and is then sent to the

disk. Disk access is very slow compared to the other processes, thus it is done after

43

storing the entire audio segment in the data array. When the available memory is not

sufficient to contain the desired data segment the user is informed about the n aximum

check hardware prompt user and exit
for interface availability when hardware

failure occurs

user dialog.
1. set input and bit mode
2. set recording time
3. set header option

create dali base for prompt user when
entire audio segment memory is not sufficient

download modes and prompt User and exit
subprogram to TMS if subprogram is not
board and str running found
subprogram

read data from TMS
DPRANI buffers
in real time

terminate recording - prompt user for the audio
process, create file and segment length anid
store Ihe audio array in permission to store the
the file data on disk

d o-ave" end

Figure 18 Flow chart for the program "runsave."

44

length segment that can be stored in the accessible memory. The user provides the name

of the file in which the audio segment is stored, which should have suffix ".dau." If no

suffix is specified ".dau" is appended automatically.

2. Main program "rimplay"

The program "runjplay" is the main C program for playing and/or recording

(on DAT) an audio file which was previously stored on the disk. The functional flow of

the program is illustrated in Figure 19. The structure of the program is very similar to

"runsave" with some changes. The length of the audio array in this case is determined

by the length of the audio file. The data from the file is read entirely into the data array;

then the data from the array is sent in blocks to the real time process which is running

on the interface board. The "run_play" program contains another related feature which is

not shown in Figure 19. This feature is meant to check the hardware of the interface. A

second DAT, using the SPDIF port, can be connected to the interface, and digital audio

can be transferred from one DAT to the other through the interface. This is mainly a

debug feature; when working properly there is no distortion of the sound recorded on

the main DAT. This feature is run using the 32-bit mode.

45

check hardware prompt user and exit
for interface availability when hardware

failure occurs

user dialog: get input ole
I. set output and bit mode J prompt user and exit
2. set sample rate - 6 if input file was not
3. set header option f round

4. set framing option

create data base and read prompt user when
in the audio ale memory is not sufficient

download modes and prompt user and exit
subprogram to TIMIS j- if subprogram is not
board and start running found
aubprogram

send data to TWIS DPRM J
buffers in real time

terminate playback
process, create ile and
store the audio array in
the file

@fron._py end
(:];; p my

Figue 19 Flow chart for the program "run_play."

46

3. Data structuue and double buffeting method

The data structure dynamically created during run time is comprised of a

connected list. Each element of the list is a C structure consisting of an array which

contains 1920 32-bit words (10 AES/EBU blocks or two real time buffers sent or

received from the sub-program), a flag word that denotes if the local array was filled, and

a pointer to the next structure. Figure 20 illustrates the structure and the list connection.

The pointer of the last structures points to 'NULL'. [Ref. 51

The connected list data base structure

array Hcad of list
1920 structure.
32-bit
words
ruI flag

pointer

The pointer points to the
next structure.

The full flag denotes that . . . I "Tailu or list
the array is rull. structure.

Each array contains 2 buffcrs sent rroim the TMS double buffering
process.

- "NULL"

Figure 20 Data base connected list and the unit structure.

47

A double buffering technique is used to fill this structure because there is a

need to coordinate the two processes with two different rates of data transfer. Oni is the

rate between the interface and the DAT tape which is fixed and known; the other is the

rate at which the data is finally stored on the system's disk, which is unknown and

random due to the scheduling provided by the UNIX operating system and other processes

that can occur simultaneously. The real time data transfer rate can be thought of as the

customer, and the UNIX data transfer rate can be thought of as the server. The basic

assumption that enables the whole process of data transfer to succeed is that the mean rate

of servicing is faster than the rate of data entering the system. To fill gap times in

service availability, buffers are used to store the data until the server is available. Then

the server can process and fetch the whole buffer very rapidly. Double buffering is used

when simultaneous access to a single buffer can lead to conflict errors. With the use of

two buffers, when one buffer is filled by the fixed time process the other buffer can be

read by the random time process. After the completion of servicing the buffers are

switched, and the second buffer is filled by the fixed rate process, and the first is serviced

by the server. This avoids any conflict. Figure 21 illustrates the double buffering data

transfer and control used in the program. The flags and the buffer switching is done by

the fixed time processes. The status is constantly read by the host, and when a buffer is

ready its contents are transferred via the UNIX system to the storing program, or

rewritten in the case of playback program.

48

Double buffering data transfer

ready A

buffer
A data The TMS process

main array sets the READY flag
host L when a buffer is filled
process or totally read out,reads th ot
ready ready B - the other buffer's flag

is set to NOT READY*
flags buffer & t

B data__
array

Figur 21 Double buffering method block diagram.

4. Audio file structure

The structure of the disk file in which the audio data is stored is related to the

bit mode of operation (16-bit mode or 32-bit mode). In the 16-bit mode each audio

sample is represented by 16 bits, and only the audio sample itself is stored as a 2's

complement (signed) integer. The data samples are interleaved, i.e., the first sample is

from channel A, and the second sample is from channel B. This repeats until the end of

the file. In the 32-bit mode the audio and framing data are both stored. The first 16 bits

is audio from channel A. This is followed by the audio from channel B, then 16 bits of

framing for channel A, followed by 16 bits of framing for channel B. This repeats until

49

the end of the file. The data file format is summarized in the Table IV below. At the

sampling rates used by the DAT, the audio files can be quite long. For example, a 10

second audio segment recorded at the 48 kHz sample rate would produce 480000 32-bit

words in the 16-bit mode and 960000 32 bit words in the 32-bit mode. Even the 16-bit

mode data file leads to a size on the order of a megabyte of data.

TaMe IV THE AUDIO FILE STRUCTURE.

The audio file structure in the 16-and 32-bit modes

16 - Bit mode 32 - Bit mode

audio sample channel A 16 bits audio sample channel A 16 bits

audio sample channel B 16 bits audio sample channel B 16 bits

_ ___raming data channel A 16 bits

___framing data channel B 16 bits

audio sample channel B 16 bits framing data channel B 16 bits

5. Subprogram '%p2sesave"

The real time sub-progrn "sp2ae-save" transfers data from the DAT to the

host process "runsave" via the double buffering scheme. The program flow chart is

shown in Figure 22. The modes of operation are set prior to program execution by the

host process in specific designated addresses. The sub-program reads those preset modes

and sets the hardware configuration accordingly. A delay loop of about 1/2 second was

added to ensure stabilization of the Phase Lock Loop (PLL) in the receive mode. This

50

time was established after a few preliminary trials. The data transfer can start immediately

after this loop. The process is signaled to start the recording by a flag sent from the host

when the user hits the ENTER key. A header feature was added to synchronize the start

of a desired data segment within 1 sample. The need for header and its implementation

are described in the next subsection. The data to the host is sent through the DPRAM

using the double buffering method described earlier.

Sread modes of operation 1
set registers amd hardware
accordingly

start the daughter moduleI opieration

wait for 11IL lock and delay
loop finish to ensure

stabilizationI

search for header or block start to synchronize
audio segment start (if desired)

execute data transfer from
DAT to Iost process
until terminated by host

"osp2ae-save" end

Figure 22 Flow chart for program "sp2ae save".

51

6. Subprogram ' p2ae_piny" and header inclusion

The "sp2ae_play" process is the subprogram for "run play". This pIogram

transfers data from the host process to the DAT output port for playback or recording on

a tape. The flow diagram is shown in Figure 23. This program creates the header that is

meant to be the synchronization signal when retrieving the file again. The program also

~ create a s dedtato

rend modes of ailwration
sc regihdtrs and hardware
accordingly

start the danghter mdtde
Operation

[Create and send idle data to
ensFre DAT syncronia li laand stabiltion

ccrea e eder nd nulry r umming for r 3mes

aother ha 48 k (i desired)

start daa trans5er from
the hostl proem.w to PAT
until terminated by host

Figure 23 Flow chart for program "sp2ae_play."

creates default framing which is necessary to enable playback, using the 32-bit mode, of

a file stored previously in 16-bit mode in sampling rates other than the 48 kHz sample

. 52

rate which is the default rate for the specific DAT used in the system. A serial message

of zeros is sent to the DAT prior to the actual data transfer to let the DAT synchronize

on the proper mode of operation and to allow the internal PLL circuity to become stable.

The header feature was added to help the user precisely locate the start of

recording of an audio segment. It is very difficult to start the tape playback precisely

using the controls on the DAT. The precision might be on the order of half a second

which will introduce about 24000 additional samples. Thus without some kind of

additional help it is practically impossible to locate the exact beginning of the desired

audio segment. The header is a unique pattern recorded on each of the two channels; each

channel has a different unique word, and both words need to appear simultaneously to

declare the start of a header block. The header structure is illustrated in Table V and

consists of a block of unique words (192 words) recorded on each channel followed by

a block of zero words. The probability of a false header start declaration is 2"32. (In trials

Table V HEADER MESSEGE FORMAT.

192 header unique word j 192 zero word Following audio segment

using the header with different types of audio segments a false header was never

declared.) The unique header word for channel A is eeeeH and for channel B 111 1H. The

53

absolute values are the same, but the sign is opposite. Figure 24 illustrates the header

recorded on each of the channels when the audio data is later retrieved into MATLAB

and plotted. Note that the header option operation is suitable for retrieving data from a

DAT but not from the analog tape recorder.

Channe4 A the audio wnd hader signal

4 0-I

2000 i *

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Channe B the audo and hedw sgnal

40001

2000

-2000

0 0 01500 2000 i i 2500 3i60 3500T 4000 4500

Figun 24 The header signal as recorded on the start of an audio segment

54

D. RETRIEVING AUDIO FILES INTO MATIAB

The audio files used by the "run_play" and "runsave" programs can easily be read

into MATLAB. Two MATLAB functions were written, "retrieve dat.m" which reads a

"*.dau" file in the MATLAB workspace, and "storedat.m" which stores a vector of

sound data into a "*.dau" file that can later be sent to the DAT for playback. When a file

is brought into MATLAB it is in matrix form. If the file was recorded in the 16-bit mode

then the matrix has two rows (one for each channel) and a number of columns equal to

the time in seconds multiplied by the sample rate. If the file was recorded in the 32-bit

mode the matrix has four rows. The first and second rows are the audio data f., channels

A and B respectively while the third and the fourth rows are the corresponding framing

data. Figure 25 illustrates the matrix rows as plotted in MATLAB.

55

x 104 Channel A audio2

0 1 2 3 4 5 6 7 8 9 10

x 104

x W Channel B audio

1 ii,,... .,,, ,,. ,. ,..I .. t 1i10 2 3 4 5 6 7 8 9 10
xloe

Channel A framing
40

04 I 1, I1. I I- I - -1
0 100 200 300 400 500 600 700 800 900 1000

Channel B framing

0 100 20 300 400 500 600 700 80 900 1000

Figuue 25 An audio segment captured using the 32-bit mode.

56

IV. PERFORMANCE TESTS

This chapter describes the measurements made to test the performance of the digital

audio system. The measurements focused on two major subjects: purity of audio

reproduction and purity of audio recording. The header synchronization capability of the

system was also tested for proper operation. The measurements were made in the audio

band between 20 Hz and 4 kHz. This bandwidth was chosen in order to compare the

results to the present audio capability of the SUN workstation, which provides 8-bit

digital audio only in this band, and which serves as the reference.

A. AUDIO REPRODUCTION PURITY PERFORMANCE

The audio reproduction performances were tested to measure the following

parameters:

* Signal to noise ratio.

* Total Harmonic Distortion.

* Reproduction linearity (Intermodulation products).

The equipment used to measure these parameters included an HP 3582A audio frequency

spectrum analyzer and an HP 334A audio frequency distortion analyzer. The measurement

procedure was as follows. Discrete frequency sinusoidal signals were synthesized in

MATLAB. The signals were then sent for audio reproduction to the preamplifier. The

57

input signal to the preamplifier was the signal measured in order to avoid any distortion

or interference that night be added by the preamplifier. The signals to the preamplifier

were sent through the interface output to the DAT, which provided A/D conversion, and

from the analog balanced output of the DAT to the preamplifier (Chapter III, Figure 10).

The reference measurement was made by sending the same signals from the SUN

workstation through the speakerbox to the preamplifier input where the reproduced analog

signals were again measured. The frequencies of the sinusoidal signals synthesized were

I kHz and 1.5 kHz while the sampling rates were 8 kHz for the SUN workstation and

speakerbox, and 48 kHz using the DAT. To provide some of the results shown here the

monitor of the spectrum analyzer was photographed. Table VI summarizes the results.

Table VI AUDIO REPRODUCTION PERFORMANCE MEASUREMENTS

Measured parameter Audio reproduction Audio reproduction
using the SUN using the DAT output.
speakerbox output. 16-bit linear,
8-bit pi-law, 48 kHz sample rate
8 kHz sample rate

Signal to noise ratio 50.6 dB 94.9 dB

THD [0/o 1.2% less then 0.1%
(the limit of the meter)

Signal to 42 dB for the highest more then 66.8 dB.
Intermodulation product intermodulation product (Measurement was
ratio. signal. limited by the dynamic

range of the spectrum

analyzer.)

58

The following figures provide photographs of the spectrum analyzer monitor for the

various measurements. Figure 26 shows the spectrum of the I kHz sinusoidal signal seen

with the noise as measured at the output of the speakerbox. The marker is on the signal.

Figure 27 is the same as Figure 26 with the marker located on a high peak of the noise.

The difference between the marker values in Figure 26 and Figure 27 (-15.8 dB - (-66.4

dB)) is the signal-to-noise ratio i.e., signal peak power to noise peak power (50.6 dB).

Note the center frequency of the signal reproduced by the speakerbox is 980 Hz and not

1 kHz because the sample frequency used in MATLAB to synthesize the signal was 8192

Hz and the speakerbox sample frequency is 8 kHz exactly. This is of no consequence in

the measurements however.

Figure 26 Output signal from the SUN speakerbox; the marker is on
the signal.

59

Figur 27 Output signal from the SUN speakerbox; the marker is set on

a noise peak.

Figure 28 Spectrum of the 1 kHz sinusoidal output signal from the

DAT.

60

Figure 28 shows the spectrum of the I kHz sinusoidal signal as reproduced by the DAT.

The noise is not seen in Figure 28 due to the high signal-to-noise ratio and the dynamic

range of the spectrum analyzer which is 80 dB. Figure 29 shows the noise only. In order

to measure the noise a zero level signal was sent to the output of the DAT. This enabled

us to reduce the measurement level of the spectrum analyzer, so the noise could then be

measured.

Figure 29 Noise only output from the DAT with zero output signal.

61

Figures 30 and 31 show the intermodulation products created when two sinusoidal

signal were synthesized and sent to the audio ports. The frequencies used were

approximately 1 kHz and 1.5 kHz. The first order difference signal is approximately 500

Hz. Several significant intermodulation product terms can be noticed in the measurement

of the SUN workstation audio reproduction (Figure 30). For the DAT the level of any

intermodulation product terms were beyond the minimum display limit of the spectrum

analyzer. The measurement level could not be reduced due to the requirement that both

of the signals should be present to make the measurement.

Figure 30 Output signal from the SUN speakerbox; the m, s on the
first order difference intermodulation product.

62

Figum 31 Spectrum of the output signal from the DAT. (The
intermodulation products are under the measurement floor of the spectrum
analyzer.)

B. AUDIO RECORDING PERFORMANCE

The seccnd important quality required.-, m , - e system is the accuracy of recording

an external signal. The parameters measured are:

* Signal c noise ratio.

* Recording linearity.

The measurement procedure was as follows. A signal generator was connected to

the input as a source providing a lkHz sinusoidal signal. The signal was recorded into

a file on the workstation disk. The spectrum of the signal was measured by the HP

63

spectrum analyzer to serve as a reference, and the monitor of the spectrum analyzer was

photographed. The signal was then retrieved from the file into MATLAB. In MATLAB

an FFT was performed, and the result of the FFT was compared to the input signal

spectrum. The recording linearity of the system was measured by a similar procedure,

but this time a combination of two signal generators having two discrete frequencies were

used as the source.

The SUN workstation audio input is a microphone level input, so the source signals

were injected to the preamplifier directly from the signal generators, the signal was

amplified and send to the speakers, the microphone was put near one speaker, and the

signal was recorded. The measurements are summarized in Table VII.

Table VII AUDIO RECORDING PERFORMANCE MEASUREMENTS.

SUN audio tool DAT input recording
recording 16-bit linear
8-bit pt-law 48 kHz sample rate

Measured parameter 8 kHz sample rate

Signal to noise ratio. 50 dB direct input greater than 85 dB
20 dB using microphone using direct input

recording.

Highest intennodulalion -30 dB - 79 dB
product.

64

Figure 32 shows the FFT of the input signal recorded through the SUN microphone.

The audio signal driving the microphone was from the speakers when a I kHz signal was

input to the preamplifier. There are a lot of undesired spectral lines probably originating

from the equipment noise in the room (neon noise, computer cooling fan noise, and other

ambient noise). We expect the signal would be considerably cleaner if it could be injected

electrically. Unfortunately the "line in" of the speakerbox is not supported by the SUN

software, and injecting the signal from the signal generator directly into the microphone

input can produce many undesired harmonics due to the large impedance mismatch which

drives the input of the speakerbox to nonlinear operation.

The nput sound twough Sun muocone

input: 1KHz

S-60 ..

.100-

.m00 10 2o0 30o 40o S 50 60 700 8000 9000
frequency Hz

Figum 32 FFT of the I kHz input signal through the SUN workstation
microphone.

65

Figure 33 illustrates the magnitude of the FFT of the I kHz signal recorded through

the DAT input as computed in MATLAB. Although there are some harmonics that

accompany the signal, these harmonics originated in the signal generator. Figure 34 shows

a photograph of the signal generator input as measured by the audio spectrum analyzer.

The FFT of the signal in MATLAB follows the input signal very accurately. The values

of the FFT were normalized to the peak power value. Both measurements used a

rectangular window.

FFT of I KHz input Sound #Waugh DAT
0

-20

-100-

-12C p 9500 1000 1500 2000 2500 3000 3500 4000 4500 S00fruency lHz]

Figure 33 FFT of the 1 kHz signal recorded through the DAT input.

66

Figure 34 Photograph of the spectrum of the I kHz input signal to the
DAT

67

Figure 35 illustrates the FFT of the signal comprised of two discrete frequencies that

was recorded through the SUN microphone. The spectral line noise is again high. The

first intermodulation difference product is marked with a point and an arrow. There are

also spectral lines in the 60 Hz vicinity that are very high (20 dB below the signal) which

are generated by the equipment in the recording room.

The input sonW OIvough Sun microphone

0

Input: 1KHz and 1.5KHz

-20 .

140

cc -so-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
frequency IHzl

Figune 35 FFT of the two-frequency signal recorded through the SUN microphone
input.

68

Figure 36 illustrates the FFT of the signal that was recorded through the DAT input.

The signal is comprised of two frequencies, 1 kHz and 1.5 kHz. The signal was injected

into the DAT analog input and then sent to the SUN workstation through the interface.

The sample rate used is 48 kHz. The harmonics that appear in the FFT of the signal again

originate in the signal generators. The signal intermodulation product that can be related

to the DAT is the signal at the frequency 3.5 kHz, which is 78 dB blow the 0 dB

reference level. Figure 37 shows the spectrum of the input signal as measured by the

HP spectrum analyzer. The FFT of the signal in MATLAB and the spectrum analyzer

both used a rectangular window. As mentioned earlier, direct connection of the signal

FIT of 1KHz and 1.5KHz input signuls through DAT

o

-10 .

-20-

-30-

3-40-

.50-

2 [-60 - ..

-70.

-80-

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
frequency [Hz)

Figure 36 FFT of the two-frequency signal recorded through the DAT input.

69

generator output to the microphone input leads to production of multiple harmonics and

is thus unsatisfactory.

Figure 37 Spectrum of the two-frequency input signal measured by the
spectrum analyzer.

70

Figure 38 illustrates the FFT of the two-frequency signal when it was injected

directly into the microphone input. The original signal consists of I kHz and 1.5 kHz

sinus waves. The many intermodulation products are due to the nonlinear operation when

the signal generator is directly plugged into the SUN station microphone input.

FFT of 1 KHz and 1.SKHz recorded through the SUN microphone input

-10

-20

U

E--0" I 1! i
0

-70S-70 ..

.100
0 1000 2000 3000 4000 50o 6000 7000 8000 900

frequency (Hzl

Figum 38 FFT of the two-frequency input signal recorded through the SUN
microphone input.

71

C. SOFTWARE PERFORMANCE TESTS

The system operating software was tested for proper operation. The test procedure

for the software is mainly operational. The system audio recording and reproduction

performances were tested for proper undistorted operation.

Software counters were introduced in the main programs (during the development

and debug stages) to indicate whether the application is fast enough in order not to lose

any data sent in realtime. The counters indicated the number of times that the main C

program tries to reach a buffer of data until the buffer is ready to be transferred by the

realtime process that runs on the TMS board. The counter values varied with the change

in the sample rate and the bit mode as expected. (The 32-bit mode is twice as fast as the

16-bit mode, and the data buffers are filled in half the time.)

The programs were allowed to record for various time durations, and the audio

result of the recording was monitored for proper reproduction. The general results are that

the system operates without any loss of data for about 30 seconds for the highest sample

rate (48 kHz and 32-bit mode). The length of proper operation of data transfer is related

to the application load on the system. When the workstation was loaded by many

processes the proper operation time was reduced; when there were only a few tasks and

none of these are time demanding the proper operation time was extended. The Windows

background program was found to place a medium load on the system even if some of

the applications were in the icon format. Better performance and longer uninterrupted

recording time weree achieved when the program was run outside of the windows environment

72

The header synchronization was tested for accurate synchronization of a segment.

When the header was used the accuracy of the segment start was found to be p-ecise to

within one sample.

The last test was the extraction of the AES/EBU or SPDIF framing data from some

audio samples recorded with the AES/EBU format or with the SPDIF format and

comparing this data to the standard tables of the format described in Chapter II. The

results of the framing data extraction showed perfect match to the standards.

73

I I =MOM"

V. CONCLUSION

The system developed and investigated in the course of this thesis considerably

enhances the audio recording and reproduction capability of the SUN workstation used

in the DSP lab for sound processing. The use of a smaller quantization step and extended

sample word as well as the higher sample rate was proven to provide better signal-to-

noise ratio and larger bandwidth for the analog audio signals. The audio reproduction

performance was enhanced by more than 40 dB, and the recording performance was

enhanced by more than 30 dB. In addition, using 16-bit linear quantzation improves the

system linearity, which is of great importance to the audio evaluation of signal processing

algorithms. The performance achieved assists in capturing audio input data much more

precisely and cleanly for later processing as well as provides exceptionally clean output

for monitoring and direct digital recording. The number of options for recording and

reproducing audio data were increased, and the audio tools were integrated into a

complete hardware/software system.

The real time operating regime, which the TMS interface board uses, demands

programming considerations that are much different from a non-realtime C program. Two

methods of handling data transfer service requirements, namely, the interrupt method and

the polling method, were tested in the course of the software development. The polling

74

method proved to be more efficient for this application and provided higher undisturbed

throughput to the non-realtime UNIX application running on the host workstation.

The UNIX environment in which the new audio application tools perform is not the

ideal operating system. Although the throughput of the workstation S-bus is sufficient to

support the high data rate required for High Fidelity audio transfer associated with the

DAT format, the non-realtime UNIX operating system does not support this application

in an optimal way. The host program running under UNIX and providing the data transfer

has no control over the scheduling of time slices and is subject to interruption and

subsequent loss of data. The maximum uninterrupted audio data transfer time is thus

limited and depends on the applications load on the system. For direct digital recording

of data segments lasting more then a half minute, therefore, it is advisable to ask remote

users to log off of the workstation and to operate from the command line (i.e., not under

the windows environment) to minimize interruptions.

To avoid some of these disadvantages, two approaches could be considered:

" Using some other (real time) operating system or modifying the kernel of the UNIX
system in such a manner that will give higher priority to the host program
controlling the realtime application.

" Enlarging the DPRAM buffer space on the interface board to the order of 100k
words to compensate for the time loss introduced during application switching by
the operating system.

The system as tested performed very accurately for short duration audio signals, such as

transient signals or short speech segments however.

75

APPENDIX A. OPERATING INSTRUCTIONS AND USER GUIDE

Appendix A describes the operation of the system and can be used as a guide for

the beginning user. The user is advised to read the DAT PCM 2700A operation manual

and the analog tape user manual for proper operation of these devices.

A. CAFTURE and DIGITIZATION OF AUDIO DATA

This section describes the hardware setting and the software operation in order to

save an audio segment onto the system disk for later use.

1. Hanuwam setting

The system can record the following audio sources:

" Audio segments prerecorded on a DAT cassette in digital format.

* Audio segments prerecorded on analog cassette.

" Speech using a microphone connected to the analog tape deck, which is amplified
and then sent to the DAT for digitization.

In all of the operation modes the audio is sent digitally from the DAT to the workstation.

S Capurng from the DA T

Capturing a digital audio segment prerecorded on a DAT cassette is the

simplest mode of operation. The software procedure to save the data in digital form is

76

started (see subsection 2. below) and the DAT is operated in playback mode at the

appropriate time.

b. Captunng sound from the anaog cassete player

To capture an analog audio segment from the analog tape the hardware

setting is as follows:

1) The DAT input selector is set to analog input. Then the INPUT MONITOR
switch on the front panel is set to INPUT.

2) The analog cassette player is then operated in the playback mode. The audio levels
should be adjusted not to reach the o,,erload level of the analog tape and the DAT
input.

The tape is then played back to the software that saves the data in digital form.

r Speech c twe uWing a microphone

The following setting should be made to capture speech or sound

through the microphone:

1) A microphone is connected to the microphone input of the analog tape deck.

2) The analog tape deck is set to RECORD mode with the PAUSE button pressed.

3) The input level is adjusted not to exceed the overload input limit.

4) Steps 1,2 of subsection b above are then reapeted.

The sound is then recorded thrcugh the microphone to the software that saves the data in

digital form. Note if the microphone output level is low a line amplifier is required to be

connected in series between the microphone output and the tape deck input.

77

2. Softwam opemion

The software is operated after the proper hardware audio settings have been

made (see above). The recording program called "runsave" should be accessible from

every directory for any user in the DSP SUN network. (If this is not the case notify to

the system administrator.) The software is invoked by entering the program name

(run-save) at the command prompt. The software is controlled from menus. (When the

program is invoked it automatically checks to see if the interface board is responding and

if no other application is using the interface; if the board is not ready the program is

terminated with an error messege to the user). The first menu screen is:

Select mode of operation:
I - AES/EBU 16 bit
2 - AES/EBU 32 bit
3 - SPDIF 16 bit
4 - SPDIF 32 bit

The default is the AES/EBU 16-bit mode, which is most used. AES/EBU 32-bit mode

is used only if the user wishes to store the framing information along with the audio data.

Using modes 3 or 4 (SPDIF) requires other DAT settings on the rear panel (see DAT

instructions manual). The second menu question is the length of the sound segment to

be captured in seconds. A number is expected here (not necessarily an integer). The time

is rounded to the nearest 10 or 20 millisecond segment depending on the bit mode. The

user is nol asked about the sample rate, this parameter is adjusted automatically by the

hardware of the interface. For prerecorded digital data this parameter is the same as the

data recorded; for data recorded from the analog tape deck or microphone the sampling

rate is set manually on the DAT deck. The third menu question asks whether a header is

78

prerecorded with the audio segment. The header choice should be selected only if a

header already exists. If the user choses the header option when a header was not

prerecorded the recording is not executed and the program hangs. (Use AC to terminated

the program.) On completion of recording the user is informed of the length of the

captured audio segment in words and asked if the captured data should be saved. If the

answer is NO the program is terminated. If the answer is YES (the default) the user is

asked for a file name. Thr. user should enter the name of the file without extension. The

extension "dau" is added automatically. The data is stored in the user's current directory

and the user is prompted about the form in which the data is to be stored in the file.

B. PLAYBACK OF AN AUDIO FILE AND RECORDING ON TAPE

The playback procedure is similar to the sound capturing procedure but the steps

are reversed in order. The playback modes are:

" Playback of an audio file for listening or monitoring.

" Playback of an audio file and recording it on the DAT.

* Playback of the audio file and recording it on the analog tape.

" Direct digital dubbing mode. This mode requires a second DAT and is for hardware
check.

1. Hmwan setling

The hardware setup in the playback mode depends on the mode of operation.

The digital audio data transfer is from the SUN workstation to the DAT via the digital

inputs of the DAT. The PCM 2700A professional DAT deck has two digital audio inputs.

79

The input selection function is split between the rear panel switch (which determines

whether an AES/EBU or an SPDIF format DAT will be the input) and a switch on the

left side of the front panel (which determines whether an analog signal or a digital signal

is the input, and the sample rate in the case of analog input signals). Tile selector

positions should be set on AES/EBU for the rear switch and DIGITAL INPUT for the

front switch.

a& Playback for monitoing setup

The setup for this mode is done by the following steps:

1) Set the INPUT selector on the rear panel to AES/EBU.

2) Set the INPUT MONITOR switch to INPUT.

3) Set The INPUT selector on the front panel to DIGITAL.

4) Adjust inputs I and 2 of the preamplifier/mixer and the master volume control to
the desired sound level.

5) Start up the software to play the desired sound (see subsection B.2.).

b. Playback and recording an audio segment on DA T

To playback and record an audio segment on DAT, first follow steps I

to 3 in subsection a. Then proceed as follows:

1) Press the RECORD button on the front panel. This will set the DAT to the
PAUSE mode.

2) Start up the software (see subsection B.2. below) and proceed through the menu.

3) When prompted to start the DAT press the PLAY button.

80

4) At the end of recording press the STOP button.

r- Recording on analog tape

To record on analog tape first follow steps I to 3 of subsection a Then

proceed as follows:

1) Set the input of the analog tape deck to rear balanced input.

2) Press the RECORD and PAUSE buttons simultaneously. The tape deck should
enter the record mode but the tape should not be moving

3) Start up the software (see section B.2.) and proceed through the menu.

4) Press the play button when prompted by the software.

5) At the end of the recording press the STOP button.

Notes:
" The header option is not usable when recording a signal on the analog tape.

" The input recording level should be set in advance by operating the software when
the deck is in the record pause mode before recording in order not to exceed the
overload level. The user is advised to make some trials to set the optimum level.

d DA T dubbing mode

The last operating mode is DAT dubbing for hardware check. In this

mode two DAT recorders are required, one as a source for digital audio data and the other

as a receiver. Normally for this mode the source DAT is operated with SPDIF output

(most commercial DAT recorders are adequate for this purpose) and the SPDIF input

cable from the interface are connected to the digital output of this DAT. The receiver

81

DAT is the PCM 2700A which is normally operated in AES/EBU mode. It is possible

that another professional deck could be used as the source that provides AES/EBU

(balanced output). In this case the AES/EBU input cable from the interface would be

disconnected from the PCM 2700A and run to the source DAT and the SPDIF or

AES/EBU output cable would be left on the PCM 2700A which would then be operated

either in SPDIF or in AES/EBU input modes. The source DAT is set to play and the

receiver DAT is set to record. Digital data is then transmitted through the interface.

2. Softwar operation

The software for playback and record procedure is called "run_play" (see

details in Chapter III section C). This program like the "run_save" program should be

available from any user directory and is also menu driven. In the first menu screen the

user is asked for the desired mode of operation.

This is the Main Menu. Please enter the desired option number:

1 - 16 Bit Mode file sent to the DAT.
-------- This will set the sample rate to 48 kHz -----

2 - 32 Bit Mode file send to the DAT.
------ chose this option if the data sample rate is other then 48 kHz ---

3 - DUBBING from one DAT to another (for hardware check)
----- this sets the 32-bit mode automatically ----

The subsequent events are based on the option selected.

Option 1 - 16-bit mode

After chosing this option the user is asked for the file name. The file name should be

entered without the extension which defaults to ".dau". The user is then asked whether

to add the special header pattern to the recorded segment (yes/no answer is expected). The

82

user is then prompted to answer that the DAT is ready. Hitting the ENTER key causes

the playback to begin.

Ontion 2 - 32-bit mode

When this option is chosen the user is asked for the file name and then asked to select

a sample rate (multiple choice). Then the user is asked whether to include a header (see

the 16-bit mode above) and finally if the data file contains framing information to be sent

to the DAT. If the file does not contain framing information default framing is created

by the program. This option enables the user to play back data recorded in the 16-bit

mode at sample rates other than the 48 kHz standard. The user is then prompted to answer

that the DAT is ready. Hitting the ENTER key causes the playback to begin.

Onlion 3 - DUBBING from one DAT to another

This is the hardware check option and is not normally selected. When it is chosen the

user is then asked about the source DAT, whether the source DAT is connected to the

AES/EBU port or the SPDIF port, and should respond accordingly. (See section 1.d.

above.)

C. DUBBING FROM ONE TAPE TO THE OTHER AND RECORDING EXTERNAL

ANALOG SOURCES

Since the output of each tape in the system is connected to the input of the other

tape deck (see Figure 11), dubbing from one tape deck to the other is done by playback

of the source tape and operating the other tape in the record mode. When dubbing to the

83

DAT, analog balanced input should be selected on the DAT. When the audio signal

source is from an external device the input channels of the destination tape should be

disconnected from the matrix and connected to the external audio signal source. (Refer

to the tape deck operation manuals for regular recording procedures.)

84

APPENDIX B. THE DAUGHTER MODULE REGISTERS

This appendix summaries the configuration of the control registers of the daughter

module and the information that can be obtained from the status registers. The control and

status registers are mapped in the AMELIA address space and the programming of the

registers is crucial for proper execution of the TMS programs. The addresses referred to

later are relative addresses in the interface board address space. The data that is referred

to in the various registers is in the upper 16 bits.

A. THE CONTROL AND CONFIGURATION REGISTERS

The Control and Configuration registers are the registers that the program writes to.

For proper operation of the daughter module the sequence of programming is;

programming the User Control Register then programming the AMELIA Control Register,

and finally programming the Configuration Register.

1. User contol egister

The User Control Register address is 804008 Hexadecimal (H) and the content

that should be written to the register is AOOO H.

2. Configuration register

The Configuration Register address is 80400F H and the content that should

be written to the register is 8FF8 H. This register should be programmed after the

AMELIA Control Register.

85

3. AMELIA control register

This register sets all the operating modes for the data transfer. The register

address is 80400A H; Table VIII summaries the configuration of the register.

Table VIII AMELIA CONTROL REGISTER CONFIGURATION.

Cit7 I I I bit 0
CM7 CM6 CM5 CM4 0 (CM2 CMl 1 CMO

CM1 CM0 Trnsmit Fequency

0 0 PLL Clock
0 1 32 kHz
1 0 44.1 kHz
1 1 48 kHz

Chu PLL Input

0 Receiver word clock
I External word clock

CM4 & CM6 Mode of Openution

0 32 Bit Mode
1 16 Bit Mode

CMS Receiver Input

0 SPDIF
I AES/EBU

CM7 AMELA Status Register to be mad

0 Status Register I
Status Register I

86

Bits CMO and CMI determine the sample rate sent out to the DAT. In the dubbing and

receive modes the rate is determined by the PLL. Bit CM2 sets the PLL input to lock on

the DAT data or other external word clock. In the "sp2ae save" program it is set to be

locked on the received data. Bits CM4 and CM6 determine the mode of operation; the

user indirectly sets these bits according the desired 16- or 32-bit mode selection. Bit CM5

is the input source to the interface corresponding to whether one uses a SPDIF or an

AES/EBU DAT. Bit CM7 indicates what information is presented when reading the Status

Register address. (It is detailed in the Status Register section below.)

4. Interupt register

This register address is 80400B H for writing and reading. The configuration

of this register is summarized in Table IX.

Table IX INTERRUPT REGISTER CONFIGURATION.

Ibit 2 bit 1 bitO0
UNLOCK TDE RDF

RDF Input Data Register full
Channels 0 and I are ready to be read

RDF bit is used when the interface is in receive mode.

TDE Output Data Registen empty.
Channel 0 and I are ready to be written again.

TDE bit is used when the interface is in transmit mode.

UNLOCK The PLL loses lock on input signal
This bit is used for monitoring the PLL.

87

The Interrupt register is used both for writing and reading. Writing '1' to a particular bit

enables an interrupt to be issued from this source; hence it is used as Mask register.

Reading the Interrupt Register gives the status of the register and clear its content. The

Interrupt Register can be used when programming in the interrupt methodology or the

polling methodology.

B. STATUS REGISTERS

The Status Register address is 80400A H (same as for the AMELIA Control

Register). There are two registers: Status Register I (SI_ and Status Register II (SI_).

Access to the content of the registers I or II is determined by CM7 of the AMELIA

Control Register (Section A.3).

1. Status ngister I

Status register I can be read when bit CM7 of the AMELIA Control Register

is set to '0'. The content of the register is specified in Table X. SI0 and SII are important

when working in the 32 bit mode to determine what part of the whole 32 bit word is

being transferred. The word is manipulated according to this information.

88

Table X STATUS REGISTER I CONFIGURATION.I bit3 bit2 bit I bit0

S13 S12 S11 S10

SIO & SII are used only in the 32-bit mode.

SlO Dat Registen Clio and Chl mceive made
0 First 16 bits of serial data have been received indata input registers.
I Second 16 bits of serial data have been received

in the registers.

SHi Data Registen Clio and Cli tummit mode
0 First 16 bits should be loaded in the ChO and Chl output registers.

Second 16 bits should be loaded in the ChO and
Chi output registers.

SD Digital Audio Input Pesent
0 Valid signal is not present at the receiver.
I Valid signal is present at the receiver.

S3 PLL locked
0 PLL is not locked on the input signal

PLL is locked on the input signal.

89

2. Status .ugister I

Status register II can be read when bit CM7 of the AMELIA Control Register

is set to '1'. The content of the register is specified in Table XI. Bits SIIO and SIIl refer

to the 32 bit mode and to the C flag. These bits are CRC check of the entire C flag block.

S112 and SI13 contain the information about the sample rate of the received signal.

Table Xi STATUS REGISTER II CONFIGURATION.

bt3bit 2 I bit I bitO0
1 SH3 SI12 Sill SIlo

SIIO & SIII are used only in the 32-bit mode.

SIlO CRCCtor Channel Status Block 0
0 Invalid CRCC for last block of Channel 0 data to receiver
I Valid CRCC for last block of Channel 0 data to receiver

sm CRCC for Chanel Status Block 1
0 Invalid CRCC for last block of Channel I data to receiver
I Valid CRCC for last block of Channel I data to receiver

sin sI Input Signal Sampling Rate
0 0 No signal detected by the receiver.
0 1 32 kHz
1 0 44.1 kHz
1 1 48 kHz

90

C DATA REGISTERS

The data registers are located in addresses 804002 H and 804006 H for channels 0

and I respectively. The data registers contain the actual digital audio sample word. These

registers are read in the receive mode when the data is sent from the DAT to the

interface. In the transmit mode when the data is sent from the interfac: to the DAT the

data registers are written to. The data registers are 16 bits long. In the 16-bit mode the

registers contain only the 16 most significant bits of the digital audio sample. Table XII

describes the register content in the 16-bit mode.

Table XiH 16 BIT MODE DATA REGISTER
CONTENT

bit 15 bit 0L D23 - --

D23 is the most significant bit of the audio
sample

In the 32-bit mode the content of the registers depends on whether it is the first 16 bits

of the audio sample or the second 16 bits of the audio sample and whether the mode is

transmit or receive. The content of the registers is illustrated in Figure 39 and Figure 40;

the content of the flags is summarized in Table XIHI.

91

ChO and Chl Input Data Registers

(i) First 16 bits read Into Cho/1 Ilnpw Register
(SO oI AMELIA Siks Register a 0)

bit 31 bit 16

1023 061

use

(N) Second 16 bits read Into ChO/ Inpu Reogstw
(SIG of AMELIA Status Register a I)

bit 15 bi0

00 1 V IU ICI P IE IS A Z

LSS
0o 023 - Audio same wad
M Mos Signilcas Si of audio santo word
LSO - LUst SWI=n m Sit 01 aulio samule word

Cheimel Flog: V Vality bit
U User data bi
C Channel status bit
P Parity bit
E Erro bit
S Signal present bit
A Channel A bit
Z hacOK start b

Figue 39 Channel 0 and Channel 1 Input Data Registers. [Ref. 12]

92

CtiO and Chi Output Data Registers

(I) First 19 Wie writtn to CM0/I Inpull Aeglet.
(511 of AMELIA Solves Register . 0)

bit31 bill6

02X3 061

MASG

(11) Second 1 blls writen toCivi/ Ilnpt Reglate
(II1 atAMELIA Staltue Register. 1)

bN 15 ill
0 1Ov IU CO 1 oOOZ1

ISO

00 -023 - Audio sample word
lASB - Most Silcant Oi of audio sample word
LS. 8 Least Slgnilcawu ON of audio aimple ward

Channal Flap: V Validity bit
U User "aa hi
C Channel staus hi
Z Slack OWa bit

lFiut 40 Channel 0 and 1 Output Data Registers. [Ref. 12]

93

Table Xm CHANNEL REGISTER FLAGS

Channel Flag Channel 0,1 Input Channel 0,1 output
Registers Registers

V Validity 0 Valid digital audio sample
I Invalid digital audio sample

U User data Used to carry information determined by the user.

C Channel status The configuration of this flag as dictated by the
AES/EBU or SPDIF standards.

P parity I Even parity Not used
0 Odd parity

E Error I Error detected Not used
0 No error

S Signal present I Signal present Not used
0 Signal not present

A Channel A data I Channel A data received Not used
0 Channel B data received

Z Block start I Sample is the first in the Block
0 Sample is not the first in the Block.

94

APPENDIX C. SOFTWARE LISTINGS

This appendix includes the complete operating software all of which is written in

C. The main programs are "runsave.c" for recording and "runplay.c" for playback. The

TMS board programs are "sp2aesave.c" and "sp2aeplay.c"

A. MAIN PROGRAM 'hmusave.c"

/* run save.c */
/* program which sets up C30 and transfers *I
/* double buffered data to the host via DPRAM /
/* Author: Arie Gal Gartenlaub */
/* last update: March 3rd 1994 */
/* Version: 1.00 */

#include "sdsp30lib.h" /* the interface library header file */

#define READY Oxeeeeeeee
#define NOT READY Ox11111111
#define READY A OxeeeeOOOO
#define READY-B 0x11110000
#define HIGH RASK Oxffff0000
#define LOWRASK Ox00offff

]* now define DSP DPRAM addresses */
#define BUFFER A STATUS ADDRESS 0x0400000
#define BUFFER-B-STATUS-ADDRESS 0x0400001
#define BUFFER-A-BASE AD5DRESS 0x0400010
#define BUFFER--BASE-ADDRESS 0x0400408
#define FIND HEADER A5DRESS 0x040000c
#define MODE-OF OPERATION 0x040000d
#define PLL STATUS ADDRESS OxO40000e
#define DP RAMDATABUFFERLENGTH Ox3cO
#define times - 6000

#define SPDIF 16 0x0O500000 /* AMELIA Control DATA for SPDIF input 16 bit /
#define AES E9U 16 0x00700000 /* AMELIA Control DATA for AES/EBU input 16 bit I
#define SPDTF 37 0x00000000 /* AMELIA Control DATA for SPDIF input 32 bit */
#define AES-ESU.32 0x00200000 /* AMELIA Control DATA for AES/EBU input 32 bit */

#define MODE 16 1
#define MODE-32 2

FILE *fp;
typedef struct node(unsigned long audio array(2*DP RAMDATABUFFERLENGTH);

unsigned long data ready;
struct node *next;
)block;

block *newblock()

return((block *)malloc(sizeof(block)));

95

void main()

char error - 0
char file name) 100);
char ch;
block head ptr,*temp_ptr,*Iastptr;
int b uffA count (timesi;
int buffB count~timesl;
unsigned long temp,start save,zero detect,memory;
unsigned long rode,fiag,header~save ;
int choice,block count,get_out,qen counter-0;
int min wait4i,k,il,biocks~step,secondis,counter;
float sec;

/* First check if the DSP board is respon~ding

error - SelectBoard("/dev/LSIsdsp300");

if (!error)(

/* The board is selected *

/* Hold the processor
error - Holdo;

/* Now load the file into the '(MS ~
error - Load Object File("sp2ae_save.out");
if(error _SLTB ERR tCOADF)

(/* the file was not found so get out/
(void)printf("\n Can't find sp2ae save.out which is the TMS320 file");
exit (8)

/* Send mode of operation/
printf("\n Select input source and mode of operation
printf("\n 1 - AES/EBU 16 bit");
printf("\n 2 - AES/EBU 32 bit");
printf("\n 3 - SPDIF 16 bit");
printf("\n 4 - SPDIF 32 bit \n-->";
scanfU%d",&choice);
switch (choice)

case 1: printf("\n You chose AES/EBU 16 bit");
Put -32 Bit (MODEOFOPERATION,AESEBU_16);
modeMODE_16;
break;

case 2: printf("\n You chose AES/EBU 32 bit");
Put 32 Bit (MODEOFOPERATION,AESEBU_32);
mode-MbDE_32;
break;

case 3: printf(*\n You chose SPDIF 16 bit");
Put 32 Bit (MODEOFOPERATION,SPDIF_16);
mode -MODE_16;-
break;

case 4: printf("\n You chose SPDIF 32 bit");
Put 32 Bit (MODEOFOPERATION,SPDIF_32);
mode -MODE_32;-
break;

default : printf("\n The Default is chosen and it is AES/EBU 16 bit.\n");
Put 32 Bit (MODEOFOPERATION,AESEBU_16);
mode -MODE_16;-
break;

/* end of choice switch *

printf("\n Enter the desired recording time in seconds, (sample rate assumed 48kh)\n=>

scanf("%f",&sec);
blocks-(int) (24000*sec*mode/DPRAMDATABUFFER LENGTH);
printf("\n Initializing Data Base tEo get the d~gital audio from the DAT %d
blocks", (blocks+l));
head ptr-new -blocko(;
last ptr-new-block 0;
last-ptr->next-NULL;
head ptr->next-last_ptr; /* linking the memory modules
temp ptr-head ptr; /* a temporary pointer used to scan the array
temp ptr->data-ready - NOT READY;

96

memory-READY;
block count-0;
while- block-count++ < blocks && memory--READY I

last ptr->next-new blocko;
if (astptr->next--NULL)

printf("\n Out of memory after %d seconds.\n",block count/(50*mode));
memory-NOT READY;
printf("\n-Do you wish to continue recording ? I - yes 0 - no");
scanf("%d",&get out);
if (get out!-l) goto endofrecord;I

last_ptr->dataready-NOT READY;
last-ptr-last ptr->next -
lastptr->next-NULL;I

printf("\n Data Base is ready to get the digital audio 'd blocks
initialized.\n",block count);
printf("\n Does the audio segment have a start header? y/n \n -> ");
(void)rewind(stdin);
ch-getchar();
if(ch--ly'l ch-'Y')(Put 32 Bit(FINDHEADERADDRESS,NOTREADY);

header=READY;T
else (Put 32 Bit(FIND HEADERADDRESS,READY);

heaaer-- NOT READY;)
printf("\n Method of OperaTion is :");
printf("\n 1. Start tape about 2 seconds or more before the desired location.");
printf("\n Note: In case you use a header the tape should be started before the header.");
printf("\n 2. To start recording hit the Enter key. ");
(void)rewind(stdin);
while((ch-getchar() !-'\n') putchar(ch);
printf("\n Starting to record.");
/* Pulse the reset line to start the program running *1
error - Assert Reset(;
error - Releasi Reset[0;
/* Unliold the piocessor and the program will run */
error - Unhold(};
/* now loop round pulling buffers from DPRAM - 10 times only here */
block count-0;
min wait-2000;
whiTe (block count <- blocks S& block count<times

/* the main while waiting loop-*/
1-0; /* 1 is the accumulative pointer for the audio */
flag - 0;
counter - 0;

/* communicate with the c tst30 DSP program
while (flag !- READY)-/* wait for buffer A to be ready to read /

error - Get 32 Bit(BUFFERA_STATUS-ADDRESS, &flag);
counter++;

/* we have a ready flag for buffer A, so read the data*/
if (min wait > counter) min wait-counter;
buffAcoint(block-count]-counter;

error -
GetBlock 32 (BUFFER A BASE ADDRESS,&tempptr->audio array[l],DPRAMDATABUFFERLENGTH);

1+-DP RAM-DATA-BUFFERLENGTH;
/* now wait for bUffei B *7

flag - 0;
counter - 0;
while (flag !- READY) /* wait for buffer B to be ready to read */

error - Get_32_Bit(BUFFER BSTATUSADDRESS, &flag);
counter++;

/* we have a ready flag for buffer B, so read the data. */
buffB countiblock countJ-counter;
if (min wait > counter) minwait-counter;error 1

GetBlock_32(BUFFER B BASEADDRESS,&temp-ptr->audio array(l],DP-RAM-DATA-BUFFER-LENGTH);
1-0;

temp_ptr->data_ready-READY;
tem4pptr-temp ptr->next;
block_count-block count + 1;

97

end of main while loop

/* Deselect the board to tidy up
/* DeselectBoardo; */

error - Holdfl;
error = Assert Reset();
error - Deselect_Board(); /* use correct fn name

/* and finally echo the counter values /
/*for(i=O;i<block count;i+=20)

printf("LOOP %d: buffer A with %d reads of 'flag', buffer B with %d reaas of
'flag'\n",i, buffA countlil, buffB countli]); */
printf("\n the minimum number of wait read cycles is %d ",minwait);

:rintf("\n\n the audio array size - %d wish to save? enter 'y' for yes
",sizeof(head ptr->audio array)*block count/2);
(void) rewind(stdin);
ch=getchar();if(ch--'y ' I ch--'Y')

/* start of if save begin with an open file */
(void) rewind(stdin);
(void)printf("\n Enter name of file without extension.");
(void)printf(" \n The extension added is : '.dau' n ==
(void) fgets(file name,sizeof(file name),stdin);
file name(strlenTfile name)-l1='.T;
(void)strcat(file name,"dau");
fp - fopen(file name,"wr");
if(fp=-NULL)

(void)printf("\n can't open %s, file system nay be full \n",file name);
exit(8);

printf("\n Preparing data for storage.");
temp ptr=head ptr;
while (temp pti->data ready==READY)

(/* start of while not end of chain */
for (1=0;1<2*DP RAM DATA BUFFER LENGTH;I++)

/* start of-forlocaT block-*/
temp-temp ptr->audio arrayll];
(void) fwrte (&temp, l-sizeof(temp),fpj;

/* end of for local block */
temp ptr=temp ptr->next;
freehead ptrT;
head ptr-temp ptr;
I /*-end of cain while */

free(tempptr->next);
free(temp ptr);
switch(moae)

case MODE 32
printf("\n\n Data is stored in the file the format is:");

printf("\n 16 bit audio channel A\n 16 bit audio channel B");
printf("\n 16 bit information channel Akn 16 bit information channel

B");
break;
case MODE 16
printf("\in\n Data is stored in the file the format is:");

printf("\n 16 bit audio channel A\n 16 bit audio channel B");
break;I

/* end of save if */
(void)fclose(fp);
I /* end of the board was successfully selected /
else
(/* The Select Board routine has returned an error */
printf("Can't select the board\n");
printf("Have you installed the device driver?\n");

end ofrecord:error = Holdo;
error - Assert Reset(0;
error - Deselect Boardo); /* use correct fn name

/* end of main-*/

98

H. MAIN PROGRAM "run_play.c"

/* run play.c "/
/ * *. w ** */

/* program which sets up C30 and transfers */
/* double bufferred data to the host via DPRAM */
/* Author: Arie Gal-Gartenlaub -/
/* last update : March 3rd 1994 */
/* Version: 1.00 */

#include "sdsp30lib.h" /* the interface library header file /

#define READY Oxeeeeeeee
#define NOT READY Oxillllll
#define READY A OxeeeeOOOO
#define READY-B 0x11110000
#define HIGHRASK Oxffff0000
#define LOWMASK Ox00offff

/* now define DSP DPRAM addresses */
/* These are the addresses to interface the dsp board with data or flags /
#define BUFFER A STATUS ADDRESS 0x0400000
#define BUFFER-B-STATUS ADDRESS 0x0400001
#define BUFFER-A-BASE ADDRESS 0x0400010
#define BUFFER-B-BASE-ADDRESS 0x0400408
#define START AEORD FLAG ADDRESS 0x0400007
#define FRAME MODE ADDRESS 0x0400008
#define BIT M6DE ADDRESS 0x0400009
#define DETECTED-RATE ADDRESS 0x040000a
#define TRANSMIT-MODE-ADDRESS 0x040000b
#define FIND HEADER ADDRESS 0x040000c
#define MODE-OF OPERATION OxO40000d
#define PLL 3TATUS ADDRESS OxO40000e
#define DP _AM DATA BUFFERLENGTH Ox3cO
#define times - 6000

#define SPDIF 16 0x00500000 /* AMELIA Control DATA for SPDIF input 16 bit */
#define AES ERU 16 0xO0700000 /* AMELIA Control DATA for AES/EBU input 16 bit *
#define SPDIF 3- OxOOOOOOOO /* AMELIA Control DATA for SPDIF input 32 bit */
#define AESENU_32 0xO0200000 /* AMELIA Control DATA for AES/EBU input 32 bit /

#define XMT PLL 0x00000000 /* Transmit from PLL clock */
#define XKT-32 0x00010000 /* Transmit in 321K{z */
#define XMT-44 OxO0020000 /* Transmit in 44.1KHz */
#define)(MT_48 0x00030000 /* Transmit in 48KHz /

#define MODE 16 1
#define MODE-32 2

FILE *fp;
typedef struct node{unsigned long musicarray[2*DP RAMDATABUFFER LENGTH];

unsigned long data ready;
struct node *next;
1block;

block *new block()I
return((block *)malloc(sizeof(block)));I

void main()I
char error - 0
char filename[1001;
char ch;
block *headptr,*tempptr,*lastptr;
int buffA count(times];
int buffB-count(times);
unsigned tong header,start save,zero detect,memory,temp;
unsigned long save,mode, flag,stop flag, frameflag,bit mode;
int seconds,counter,choice,read size,xmt mode;
int i,k,l,blocks,step,blockcount,getout,min wait;

99

/* firstly check to see if the DSP board is responding ~
error - SelectBoard("/dev/LSIsdsp300");

if (!error)

/* The board is selected ~
/* Hold the processor
error - Holdo;

/* Load a program
error - Load Object File("sp2aeplay.out");
if(error--SLIB ERR _LOADF)

(/* the filei was not found so get out ~
(void)printf("\r Can't find sp2ae save.out which is the TMS320 file");
exit (9);

/* Start dialog with user/
(void)printf(*\n This is the Main Menu. Enter the Option No. accordingly.");
(void)printf("Nn--"31;
(void)printf("\n 1 - 16 BIT MODE file send to DAT.\n");
(void)printf("\n -- This option sets 48kHz sample rate-- n)
(void)printfU'\n 2 - 32 BIT MODE file send to DAT.\n");
(void)printf(U\n --- Chose this option if the data sample rate is other then 48 kHz \n");
(void)printf("\n 3 - DUBBING from one DAT to another (for hardware check)");
(void)printfV'\n -------this sets 32 bit mode automaticaily--\n -";

(void) scanf ("%d", &choice);
if (choice-3)

(/* this means a debug mode 32_bit mode ask now for input origin ~
/* Send mode of operation */
(void)printf("\n Select input source :)
(void)printf("\n I - SPDIF 32 bits");
(void)printf("\n 2 - AES/EBU 32 bits\n =->)
(void) scanf ("%d", &choice);
switch (choice)

case 1: printf("\n You chose SPDIF 32");
Put -32 -Bit(MODEOFOPERATION,S'PDIF_32);
break;c

case 2: printf("\n You chose AES EBU 32");
Put_32_Bit (MODEOFOPERATIOWR,AE"9_EBU_32);
break;_

/* end of choice switch/
Put 32 Bit (TRANSMIT MODE ADDIRESS,XMT PLL);
PuC32-Bit (BITMODE7ADDR!SS,MODE_32)7

/* Pulse the reset line to start the program running/
error - AssertReseto(;
error - Release Reset 0;

/* UnHold the pro~cessor and the program will run ~
error - Unholdo;
(void)printf("\n To stop the program enter 1.\n -->)

Stop flag - 0;
whili(stop flag !- 1)

(/* poll input again till stop '
(void)scanf("%d",&stop flag);
)/* end of polling *

error - Holdo;
error - Assert Reset 0:
error = Deselect Boardo;
I/* end of DATA:-transfer and end of program ~

else
(*************** The Main Modes of Operation ***~*****

(void) rewind (stdin);
/* (void) fopen(stdin) ,*/

(void)printf("\n Enter the file name without extension."3
(void)printf('\n The assumed extension is '.dau')\n -- >")
(void) fgets (file name,sizeof (file Tname) ,stdin);
file namelstrlenifile name) -11=' *T
(voila) strcat (file nam_, "dau");
fp ; fopen(file name, "r");
if(fp-NULL)

(void)printf("\n Can't find/open Is please check path,name,etc... \n",file name);
exit (18);

switch (choice)

100

f/* switch to determine whether mode is 32 bit or 16_bit
case 1: /* 16 bit mode 1/

(void)printT("\n You chose 16 bit mode the rate is automatically set to 48 kHz");
xmt mode - XMT 48;
Put 32 -Bit (TRANSMIT MODE ADDRESS,XMT_48);
Put_32 Bit (BIT MODEADDR-ESS,MODE 16);-
mode - MODE_167-
breaK;

case 2:
(void)printf("\n You have chosen 32_bit mode this optionl uses AES/EBU framing)

Put 32 Bit (MODE OF OPERATION,MODE_32);
Put 32 Bit (BIT MODETDDRESS,MODE 32);
mode-- MODE -32;

(void)printf(wa\n Please Enter the Sampling Rate.");
(void)printf("\n 1 - 32khz \n 2 - 44.1khz \n 3 - 48khz \n =")
(void) scanf ("%d", &xmnt-mode);
switch(xmt-mode)

case 1: Put 32 Bit (TRANSMITMODE ADDRESS,XKT_32);
(void)priiitfT"\n XMT_32 was sent ;
breaks

case 2: Put_32 Bit(TRANSMITMODEADDRESS,XMT_44);
(void) printfT"\n)O4T_44 was sent)
break;

case 3: Put 32 Bit(TRANSMITMODEADDRESS,)M4T48);
(void)prin6tf("\n XMT_48 was sent)
break;

(void)printf("\n Does your data file contain AES/EBU tramning ? 2 n)
(void)printf("\n In the absence of framing chose NO. Default framing is created");
(void)printf("\n If sure that your file contains framing chose YES \n -")

(void) rewind (stdin);
ch - getcharo,

1* (void)scanf("%d",&choice); ~
if(ch--'y') Put 32 Bit(FRAME MODE ADDRESS.READY);
if(ch-- n') Put-32-Bit (FRAMEMODE-ADDRESS,NOTREADY);-
break;

/************end of switch between 16 or 32 bit mode ********/

I* Send mode of operation *i
printf("\n Do you want to add a Header to the audio segment? yin");
printf("\n It is recommended for later retrieving the file");
printf("\n - ");
(void) rewind(stdin);
ch -getcharo;

I. scanf("%d",&header); ~
switch (ch)

case 'y': printf("\n You chose to incorporate a header");
Put 32 Bit (FINDHEADERADDRESS,READY);
breaik; - _

case In': printf("\n You chose not to use a header");
Put_32_Bit(FINDHEADERADDRESS,NOTREADY);
break;-

default : printf("\n The default not to incorporate a header was chosen.");
Put 32 Bit (FINDHEADERADDRESS,NOTREADY);
break; -

/* end of header switch/
printf("\n Initializing Data Base to get the audio from I%s'",file name);
head -ptr-new -blocko;
last-ptr-new-blocko;
last ptr->next-NULL;
head ptr->next-last_ptr; /* linking the memory modules *
temp-ptr-head Iptr; /* a temporary pointer used to scan the array *
temp ptr->data-ready - NOTREADY;
memory-READY;
block-countO0;
1-0;
whileC (read-size-freadC&temp,,sizeof(temp),fp))--sizeof(temp))

temp ptr->music arrayfl++) - temp;
if(l =- 2*DPRARDATABUFFERLENGTH)

temp ptr->data ready - READY;
last ,ptr->next~new-block0;l
if (last-ptr->next-NULL)

101

printf("\n Out of memory after %d seconds.\n",block count/(50*mode));
memory-NOTREADY;
printf("\n Do you wish to continue recording ? 1 - yes 0 - no");
scanf("%d",&get out);
if (get out!-1) goto end ofrecord;

last ptr->data ready-NOTREADY;
temp ptr-last_ptr;
last_ptr-last ptr->next;
last ptr->nexf-NULL;
1-0-
block count+-l;
I /* ind of if and create a new block */
/* end of while and the data was read from the file to the array /

(void) fclose(fp);
(void)printf("\n Data Base is ready %d blocks were initialized.\n",blockcount);
(void)printf("\n Method of Operation is :");
(void)printf("\n 1. Make sure the appropriate input is chosen to the DAT");
(void)printf("\n 2. Start tape about 1 second or more before the desired location.");
(void)printf("\n 3. Press REC button the DAT will go to REC and PAUSE mode.");
(void)printf("\n 4. Press the PLAY button.");
(void)printf("\n 5. When the tape starts rolling hit ENTER to start playback.\n --> ");

temp ptr - headptr;
1-0;
flag - NOT READY;
error - Puf 32 Bit(BUFFER A STATUS ADDRESS, &flag);
error - Put-32-Bit(BUFFERBSsTATUS[ADDRESS, &flag);
error -

Put Block 32 (BUFFER A BASE ADDRESS,&temp ptr->music array(l],DPRAMDATABUFFERLENGTH);
1I-DP RAM_DATABUTFER_LEnGTH;
error -

Put Block 32 (BUFFER B_BASE ADDRESS, &temp ptr->music arrayl),DPRAMDATABUFFERLENGTH);
temp ptr - temp ptr->next;
/* Pulse the reset line to start the program running */
error - Assert Reset[0;
error - Release Reseto;
/* UnHold the processor and the program will run */
error - Unholdo);
/* now loop round pulling buffers from DPRAM - 10 times only here */
(void)rewind(stdin);
while((ch-getcharo) !- '\n') putchar(ch);

/* Operation starts */
printf("\n Starting playback.");
error - Put 32 Bit(START RECORD_FLAGADDRESS,READY);
block count-- 6;
min wiit - 2000;
white (temp ptr !- NULL

/" the main while waiting loop "/
1-0; /* 1 is the accumulative pointer for the music */
flag - NOT READY;
counter - "6
/* communicate with the c tst30 DSP program
while (flag !- READY) /* gait for buffer A to be ready to read */

error - Get_32 Bit(BUFFERASTATUSADDRESS, &flag);
counter++;

/* we have a ready flag for buffer A, so read the data*/
if (min wait > counter) min wait - counter;
buffA_count[block-count]-counter;
error -

Put Block 32 (BUFFER A BASE ADDRESS,&tempptr->musicarrayfl],DPRAMDATABUFFERLENGTH);
-+-DP RAM DATA IUMFER EENGTH;
/* now wait foTr buffer B */
flag - NOT READY;
counter - U;
while (flag !- READY) /* wait for buffer B to be ready to read */I

error - Get_32_Bit(BUFFERB_STATUSADDRESS, &flag);
counter++;
I

/* we have a ready flag for buffer B, so read the data. */
if (temp > counter) temp - counter;
buffBcount(block count]-counter;

102

error
Put Block 32(BUFFER B BASE ADDRESS,&temp ptr->music acray(lIDPRAMDATABUFFERLENGTH);

temp ptr-temp ptr=>next;
blocs count-block count + 1;

end of main while loop */
/* Deselect the board to tidy up /
error - Hold);
error - Assert Reset();
error - Deseleit Board); /* use correct fn name
S/* end of the board was successfully selected /

else
(/* The Select Board routine has returned an error
printf(*Can't select the board\n");
printf("Have you installed the device driver?\n");

/* for(i-O;i<block count;i+-20)
printf("LOOP %a: buffer A with %d reads of 'flag', buffer B with %d reads of

'flag'\n",i, buffA counttil, buffB count(ij); */
printf("\n The minimum 'wait for ready' read cycles was Sd ",min wait);
end of record:error - Hold));
error - Assert Reset);
error - Deselect Board); /* use correct fn name ! */

/* end of main-*/

103

C. SUBPROGRAM '%p2jesave.c"

/* START OF PROGRAM sp2ae save.c /

/* sp2ae save.c Portion of TMS320c3O C code /
/* The program will be run by "run save.c" */
/* This is a program that uses polling and not interrupt
/* Author: Arie Gal Gartenlaub /
/* Date : 9th March 1994 /
/* version 1.00 */

/* Sbus global addresses definitions /

#define DP RAM BUFFER A BASE ADDRESS 0x0400010
#define DP-RAM-BUFFER-B-BASE-ADDRESS 0x0400408
#define BUFFER-A STATUS-ADDRESS 0x0400000
#define BUFFER-B-STATUS-ADDRESS Ox0400001
#define START RECORD FLAG ADDRESS 0x0400007
#define FRAME-MODE ADDRES9 0x0400008
#define BIT MDE ADDRESS 0x0400009
#define DETECTED-RATE ADDRESS OxO40000a
#define TRANSMIT MODE-ADDRESS OxO40000b
#define FIND HEADER ADDRESS OxO40000c
#define MODE70F OPERATION OxO40000d
#define PLL 9TATUS ADDRESS OxO40000e
#define DP RAM BUFFER LENGTH Ox3cO
#define AEBLCKSIZE 192

/* global control variables /

#define BUFFA 0
#define BUFFS -1

#define READY Oxeeeeeeee
#define NOT READY Ox11111111
#define READY A OxeeeeOOOO
#define READY-B Ox11110000

#define MAX Oxffffffff

#define ZERO Ox00000000

/* Sbus hardware definitions */

#define BUSADDR 0x00808064
#define BUSDATA 0x00000900 /* originally 9 */
#define BUSADDR1 0x00808060
#define BUSDATA1 0x00000068

/* AMELIA hardware addresses for signal flow control /

#define CHO-ADDRESS 0x00804002 /* AMELIA Channel A address /
#define CHI ADDRESS 0x00804006 /* AMELIA Channel B address *1
#define UCTRADDRESS 0x00904008 /* AMELIA User control register Write address */
#define ACTR-ADDRESS 0x0080400a /* AMELIA Control register Write address

#define ASTSADDRESS 0x0080400a /* AMELIA Status register Read address */
#define INTM-ADDRESS OxOO0400b /* AMELIA Interrupt Mask register Write address
#define INTS-ADDRESS 0x0080400b /* AMELIA Interrupt status register Read address */
#define CNFG7ADDRESS 0x0080400f /* AMELIA Configuration register Write address

/* AMELIA data words for the proper signal flow control */

#define UCTRDATA OxaOOOOOOO /* User Control register DATA to write

#define MODE 16 1
#define MODE-32 2

#define FIRST SAMPLE OxlOOOOOOO/* its the first sample to synchronize */
#define FIRST 16 BIT OxOOOOOOOO/* its the case where the first word is send*/
#define SECOND_11_BIT OxOOO1OOOO/* its the case where the second word is send*/

#define SPDIF16 0x00500000 /* AMELIA Control DATA for SPDIF input 16 bit

104

#define AES EBU 16 0xO0700000 /* AMELIA Control DATA for AES/EBU input 16 bit
#define SPDIF 31 OxOOOOOOOO /* AMELIA Control DATA for SPDIF input 32 bit -/
#define AESESU_32 0xO0200000 /" AMELIA Control DATA for AES/EBU input 32 bit */

/* 5 - SPDIF 7 - AES/EBU 0 - for 32 bit accuracy*/

#define NMT PLL OxOOOOOOOO /* Transmit from PLL clock /
#define XT-32 OxOOO10000 /* Transmit in 32KHz */
#define XMT-44 0x00020000 /* Transmit in 44.1KHz f
#define XMT 48 0x00030000 /* Transmit in 48KHz */

#define CNFG DATA Ox8ff80000 /* The AMELIA key for initializing the process /
/* Amelia Interrupt register */
#define INTM PLL 0x00040000 /* Mask to determine loss lock of PLL
#define INTM_)MT OxO0020000 / Mask for determining if the output buffer is empty
*I

#define INTM DATA OxOO010000 /* Mask register for input buffers full */
/* Amelia stitus register */
#define PLL MASK 0x00080000 /* Mask for testing PLL lock on the signal
#define VALYD SIG MASK OxOOO40000 /* Mask to test signal validity at status reg.*/
#define BLOCK-MASR SEND 0x00020000 /* What block to be send in 32 bit at sts. reg.I*/
#define BLOCKMASKREAD OxOOO10000 /* What bloc is read in 32 bit mode at sts. reg.*/

#define HIGH MASK Oxffff00 /* mask living only high bits /
#define LOW RASK OxOOOOffff /" mask living only low bits /
#define TEST MASK 0x00210021 /* mask the not necessary bits from the frame ward*/
#define BLOCRSTARTMASK OxOO010001 /* the mask to test block start

/I global variables and pointers */

/* pointers to DP_RAM data */

long *buffA ptr = (long *)DP RAM BUFFER A BASE ADDRESS;
long *buffBDptr - (long *)DP-RAK-BUFFER-B-BAE-ADDRESS;
long *buffA status ptr - (long *TBUFFER-A-STATUS ADDRESS;
long *buffBstatus-ptr - (long *)BUFFER_-B--STATUS-ADDRESS;

long *bus ptr - (long *)BUSADDR;
long *buslptr - (long *)BUSADDRl;
long *ch A ptr - (long *)CHO ADDRESS ;
long *ch-B-_tr - (long *)CHl-ADDRESS :
long *usr cntl ptr - (long *TUCTR ADDRESS;
long *ameTia cntl ptr - (long *)ACTR ADDRESS;
long *amelia-sts ptr - (long *)ASTS ADDRESS;
long *amelia-intm ptr - (long *)INTR ADDREFS;
long lamelia-ints-ptr - (long *)INTS-ADDRESS;
long *amelia-conflg_ptr (long *)aCNG ADDRESS;
long operation modeptr -(long *)MODE-OF OPERATION;
long *pll sts pfr - (long *)PLL STATUS-ADDRESS;
long *heaaer ptr - (long -)FIND-HEADER-ADDRESS;
long *transmit mode ptr - (long-*)TRAN MIT MODE ADDRESS;
long *detected-rate-ptr - (long *)DETECTED-RATE-ADDRESS;
long -frame flagptr - (long *)FRAME MODE ADDRESS;
long *start-record_ptr m (long *)START_RECORDFLAGADDRESS;

/* initialize default value for fill ptr */

long *current fillyptr - (long *)DP RAM BUFFER A BASE ADDRESS;
long *current_status-ptr - (long *)NUFFER_B_STATUSADDRESS;

/* variables used by in line assembler instructions */

int samp count,counter,delay, l;
int current buffer - BUFFA;

unsigned long pll,int read,count max,mode,bit mode,header-READY,xmt mode,flag;
unsigned long frame fTag,start record - NOT READY,pll sts - NOTREADY, zerodetect;
unsigned long temp,templ,block-start-NOTREXDY;

main() /* start of the main program /

105

*bus ptr - BUSDATA;
*bu3T ptr - BUSDATAl;
counter - 0;
samp count - 0;
count max - 0;
p11. 0;
flag -NOT-READY;

/* set up status flags for host program ~
current status_ptr - buffB status ptr;
*current status ptr - NOT READY;
current status ptr - buffA-status ptr;
current status ptr - NOT READY;
*usr_cntIT_ptr -ThCTRDATA7

I. *amelia cntl ptr - ACTRDATA;

/* read the desired modes of operation set up by the host user

mode - *operation-modeptr; /* this is the right line *'/

/* mode - SPDIF_32; */ / the mode is set manually for test -

header - *header_ptr;

if (header!-READY) && (header!=NOTREADY)) header-READY;

switch (mode) I

case SPDIF_16: mode =MODE 16
*amelia cntljtr -SPDIF_16;

break;

case SPDIF_32: mode =MODE 32
*amelia cntl_'6tr -SPDIF 32;
break;

* case AESEBU_16: mode - MODE_16
*amelia cntl ptEr =AESEBU_16;

break;

case AESEBU_32: mode - MODE_32
*amelia cntl ptr -AESEBU_32;

break;

default : mode = MODE_32
*amelia cntl ptr - AESEBU_32;

break;-
/* end of switch *

delay - mode 48000

switch (mode)

(/ main switch mode between 16 and 32 bit mode ~

case MODE_16:

*amelia intm ptr - INTM DATA;
*amelia-configyptr - CNTGDATA;
*pll sti ptr - NOTREADY;-
p11 its=NOT READY;-
while((llllsts -- NOTREADY) && (delay >- 0))

while((int read - *ameiia_intm_ptr & INTMDATA) !-INTMDATA);
delay--I;
if ((p11 - *amelia sts ptr & PLLMASK) !=0

(p11 -sts REDY
*pllstsptr - READY;

) / end of if/
/*end of while */

int read - *amelia intm ptr;
ame~lia intm ptr -70;
*ameliaintmp tr - INTMDATA;

106

/* start header detect block if wanted ~
if(header--NO'_READY)

while (header -= NOTREADY)

while((int read - *ameiia intm ptr & INTMDATA) !- INTM_-DATA);
1* loop polling interriupts -

if ((*chA-ptr--READYA[6&(*ch_B_ptr--READYB))(header=READY;)

zero detect - NO0T READY;
wnilizero detect--- NOTREADY)

whileC(int read - *ameiia intnlptr & INTM DATA) !=INTMDATA);
if ((*chAptr--0) && (ch-gptr-0)) (zero-aetect-READY;fl

for Cl-0;i<AES_BLOCK_SIZE-l;l++)

while((int read - *arnelia intm_ptr & INTMDATA) !- INTM DATA);
/* loop poTling interrupti/

/* end of header detect block *

/LOOP FOREVER POLLING INTERRUPTS -

while (1 !- 0)

whilel lint read - *amelia_intmptr & INTMDATA) !=INTM DATA);

B*/ ~*current_fill ~ptr - *chA-ptr I((chB-ptr >> 16)&LOW_MASK);/*store in A and

*ch A ptr - *current fill pt r;/* copy channel A to out *
*ch:Bptr - (*cur renf-filT_ptr++)«<16;/* copy channel B to out -

sarnp count +- 1;
7* constantly check to see if current buffer is full *

if Isamp-count - DPRAMBUFFERLENGTH)

switch (current buffer)
(/* toggl'i between buffers *

case BUFFA:
current fill ptr - (long *)DP RAMBUFFERBBASEADDRESS;
samp count - 0O;
*current status-ptr - READY;
current 'status_ptr - buffB status_ptr;
*current status ptr -NOTREADY;
currentSuffer - BUFFB;
break;
case BUFFS:
current fill ptr - (long *)DP RAMBUFFERABASE-ADDRESS;
samp count --0;
*current status ptr - READY;
current 'status ptr - buffA status ptr;
*current status ptr - NOTREADY,
currentSuffer - BUFFA;
break;
)/* end of switch *

I/' end samp count if ~
/* end while ~

break;
/*********************the 32 bit mode *******

case MODE-32:

*arnelia intm ptr - INM DATA;
*anliaconfigptr - CN7G_-DATA;
*pll sts ptr - NOTREADY;
flag-- N5TREADY;
zero detect - NOTREADY;
p11 its-NOT READY;
whiie(pll-stfs -- NOTREADY && delay>-0)

if(int read =*amelia intm per & INTMDATA) INTM DATA)

delay--I,
p11 - arnelia sts-ptr & PLLMASK;
if (p11 !- 0-)

p11_sts = READY;
*pll-sts-ptr - READY;

107

/* end of if
I/* end of if*/

1* end of while/

int read - *ameliaintrnPtr;
*amelia_Intm_ptr -0;
*areliaintm-Ptr -INTMDATA;

/* synchronization on start of desired sequence and on header *
/ ~ ~ ~ ~********* * ** ***** * *

/* first find header if it was desired/

if (header--NOT READY)

while (header -- NOTREADY)

while((int read -*amelia-intm-ptr &INTMDATA) !=IN77MDATA);
/* loop polling interrupts */

if ((*chA-ptr-=READYA)&&(*ch_B_ptr=-READYB))(header-READY;)

zero detect - NOTREADY;
while(zero detect =-NOTREADY)

while((int-read = amelia intm ptr & INTM DATA) != INTMDATA);
if ((*chP-ptrO-) &(*ch-gptr=O)) (zero-aetect-READY;)-

for(l=O;i<2*AESBLOCKSIZE-l;l++)

while((int Iread - *~amelia-intm-ptr & INTMDATA) !=INTMDATA);
/* loop polling interrupts *

/* end of header detect block *
else

I/* else start and synchronize on the beginning of a block *

while (block-start -- NOTREADY)

whileC(int read - *amelia intm ptr & INTM DATA) !-INTM DATA);
if ((int-reaa - *amelia-sts-ptr T BLOCK MASRREAD)-SEC&ND_16_BIT)

temp-(*chA ptr I ((*ch_B ptr >> 16)&LOWMASK))
if C(tomp&BLOC'KSTARTMASK) -BLOCKSTARTMK)

block start - READY;
*currint -fill -ptr++ - tempi;
*current fill ptr++ - temp;
sampcount+-2;

ch A ptr - temp; / copy channel A to out
ch kt - temp«<16;/ copy channel B to out *

else

tempi - *ch A ptr I ((*ch B ptr >> M6&LOWMASK);
/*store iFi A and B*/ - -
ch -A ptr - tempi;/ copy channel A to out *
chfl-ptr - (templ)«<16;/ copy channel B to out ~

/* end of while start block -- NOTREADY ~
/* end of else header !I-READY *

/* now ready to start fill up the memory
/* LOOP FOREVER POLLING INTERRUPTS

while (1 !- 0)

while((int read - *amelia intm ptr & INTM DATA) INTMDATA);
if ((int-reaa - *amelia sts ptr & BLOCKMASRREAD)-SECOND_16_BIT)

*current fill_ptr - (*ch A ptr I ((*chB_ptr >> 16) &LOW MASK)) &TESTMASK;
*chA_ tr - *current flEIT ptr;/* copy channel A to ouf */
*chB~ptr - (*currentf_fill~ptr++)«1l6;I* copy channel B to out ~
sawIp count +- 1;

else

108

*current fill ptr - *ch A_ptr I ((*chB_ptr >> 16)&LOWMASK);
/store in A and B*/
*ch A ptr *current fill ptr;/* copy channel A to our
ch-B~ptr (-curren; filI_ptr+)<<16;/ copy channel B to out *I
samp count *= i;

/* constantly check to see if current buffer is full

if(samp count -= DPRAMBUFFER_LENGTH)

switch(current buffer)
(/* toggle between buffers /
case BUFFA:
current fill ptr - (long *)DP RAMBUFFERBBASEADDRESS;
samp count =- 0;
*current status_ptr - READY;
current_status ptr = buffB status ptr;
*current status_ptr - NOT READY;
currentSuffer = BUFFB;
break;
case BUFFB:
currentfill_ptr - (long *)DPRAMBUFFER_A_BASEADDRESS;
sampcount = 0;
*current statusptr - READY;
current status_ptr - buffA status ptr;
*current status ptr - NOT READY;
current_buffer - BUFFA;
break;
) /* end of switch /

/* end sampcount if V
} / end while */

break;
/* end of mode switch whether 16 or 32 bits /

/***** *** end of main ***** .

109

D. SUBPROGRAM '%p2ae_play.c"

/* START OF PROGRAM sp2ae play.c /

/* so2ae play.c Portion of TMS320c3O C code-/
/* The program is run by main program "run save.c". /
/* This is a program that uses polling ano nor interrupt
/, Author: Arie Gal Gartenlaub*/
/* Date : 8th March 1994 */
/* Version 1.00 *,

/* Sbus global addresses definitions for interfacing with the host

#define DP RAM BUFFER A BASE ADDRESS 0x0400010
#define DP RAM BUFFER-B-BASE-ADDRESS 0x0400408
#define BUFFER A STATUS-ADDRESS 0x0400000
#define BUFFER7B STATUS-ADDRESS 0x0400001
#define START RECOcD FLAG ADDRESS 0x0400007
#define FRAME MODE ADDRESS 0x0400008
#define BIT MODE AD5DRESS 0x0400009
#define DETECTED-RATE ADDRESS OxO40000a
#define TRANSMIT MODE ADDRESS 0x040000b
#define FIND HEADER ADDRESS OxO40000c
#define MODE OF OPERATION OxO40000d
#define PLL 9TATUS ADDRESS OxO40000e
#define DP AM BUFFER LENGTH Ox3co
#define AESBLOCKSIZE 192

/* global control variables */

#define BUFFA 0
#define BUFFB -1

#define READY Oxeeeeeeee
#define NOT READY Oxllllllll
#define REA5Y A OxeeeeOOOO
#define READY-B Oxlll0000

#define MAX Oxffffffff
#define ZERO Ox00000000

/* Sbus hardware definitions ./

#define BUSADDR 0x00808064
#define BUSDATA 0x00000900 /* originally 9 */
#define BUSADD&I 0x00808060
#define BUSDATA1 OxOO000068

/* AMELIA hardware addresses for signal flow control */

#define CHO-ADDRESS 0x 804002 /* AMELIA Channel A address*
#define CHO ADDRESS 0x00804006 /* AMELIA Channel B address */
#define UCT ADDRESS 0x00804008 /* AMELIA User control reister Write address I/
#define ACTR-ADDRESS 0x0080400a /* AMELIA Control register Write address s /

#define ASTS ADDRESS OxOO80400a /* AMELIA Status register Read address I/
#detine INTh-ADDRESS 0xO080400b /* AMELIA Interrupt Mask register Write address -/
#define INTS-ADDRESS 0xO080400b /* AMELIA Interrupt status register Read address
#define CNFG-ADDRESS 0x0080400f /* AMELIA Configuration register Write address /

/* AMELIA data words for the proper signal flow control */

#define UCTRDATA OxaOOOOOOO /* User Control register DATA to write

#define MODE 16 1
#define MODE-32 2

#define FIRST SAMPLE OxlOOOOOOO/* its the first sample to synchronize
#define FIRST 16 BIT OxOOOOOOOO/* its the case where the first word is send*/
#define SECOND-_-6BIT 0x00010000/* its the case where the second word is send*/

#define SPDIF_16 0xO0500000 /* AMELIA Control DATA for SPDIF input 16 bit */

110

#define AES EBU 16 0x00700000 / AMELIA Control DATA for AES/EBU input 16 bit */
#define SPDTF 31 OxOOOOOOOO /* AMELIA Control DATA for SPDIF input 32 bit */
#define AESESU_32 0x00200000 /* AMELIA Control DATA for AES/EBU input 32 bit */

/* 5 - SPDIF 7 - AES/EBU 0 - for 32 bit accuracy-/

#define XMT PLL OxOOOOOOOO /* Transmit from PLL clock -/
#define XMT-32 OxOO010000 /* Transmit in 32KHz */
#define XMT-44 0x00020000 /* Transmit in 44.1KHz /
#define XMT_48 0x00030000 /* Transmit in 48KHz */

#define CNFG DATA 0x8ff8OO0O /* The AMELIA key for initilizing the process
/* Amelia Interrupt register */
#define INTM PLL 0x00040000 /* Mask to determine loss lock of PLL I/
#define INTMNXMT 0x00020000 /* Mask for determining if the output buffer is empty
*/

#define INTM DATA OxOO010000 /* Mask register for input buffers full */
/* Amelia status register */
#define PLL MASK 0x00080000 /* Mask for testing PLL lock on the signal
#define VALTD SIG MASK 0x00040000 /* Mask to test signal validity at status reg.I*/
#define BLOCK-MASK SEND 0x00020000 /* What block to be send in 32 bit at sts. reg.I*/
#define BLOCKMASKREAD OxOOO10000 /* What bloc is read in 32 bit mode at sts. reg.I*/

#define HIGH MASK Oxffff000 /* mask living only high bits */
#define LOW !RASK OxOOOOffff /* mask living only low bits */
#define TESTMASK 0x00210000 /* mask the not necessary bits from the block 1 /

/* AES EBU Definitions */
#define Z FLAG OxOO010000 /* the flag of biock start -/
#define CFLAG 0x00200020 /* the flag for C bit /

/* global variables and pointers */

/* pointers to DP RAM data 4/

long *buffAptr --(long *)DP RAM BUFFER A BASE ADDRESS;
long *buffBptr - (long *)DP-RAM-BUFFERB BASE-ADDRESS;
long *buffA status ptr = (long *)BUFFER--A-STATUS ADDRESS;
long *buffB status ptr - (long *)BUFFER7BSTATUSADDRESS;

long *bus-ptr (long *)BUSADDR;
long *busl ptr - (long *)BUSADDR1;
long *chA~ptr - (long *)CHOADDRESS ;
long *ch B ptr - (long *)CHI ADDRESS ;
long *usY cntl ptr = (long YTUCTR ADDRESS;
long *amelia cntl ptr - (long *)ACTR ADDRESS;
long *amelia-stsptr - (long *)ASTSADDRESS;
long *amelia intm ptr = (long *)INTMADDRESS;
long *amelia ints-ptr - (long *)INTS ADDRESS;
long *amelia config_ptr - (long *)CNFG ADDRESS;
long *operatlonmode ptr =(long *)MODE-OF OPERATION;
long *pll sts ptr = (long *)PLL STATUS ADDRESS;
long *bit mode ptr - (long *)BIT MODE ADDRESS;
long *header ptr - (long *)FIND HEADER ADDRESS;
long -transmIt_modeptr = (long-*)TRANgMIT MODE ADDRESS;
long *detected rateptr - (long *)DETECTED-RATE-ADDRESS;
long *frame flag ptr = (long *)FRAME MODE ADDRESS;
long *startrecord_ptr = (long *)START_RECORDFLAGADDRESS;

/* initialize default value for fill ptr */

long *currentreadptr - (long *)DPRAMBUFFERABASE ADDRESS;
long *current statusptr ((long *)BUFFER_BSTATUSADDRESS;

/* variables used by in line assembler instructions 4/

int samp_countcounter,k,l;
int currentbuffer = BUFFA;

unsigned long sync array[AES BLOCK SIZE];
unsigned long pll,Tnt read,count max,mode,bit mode,header,xmt mode, flag,delay;
unsigned long frame fTag,start record - NOTREADY,pllsts = NOTREADY;

]]i

main() /* start of the main program */

*bus ptr - BUSDATA;
*busl ptr = BUSDATA;
counter = 0;
samp count - 0;
count max = 0;
p1l 0;
flag = NOTREADY;

/* set up status flags for host program +/

currentstatus ptr = buffB status_ptr;
*current status ptr = NOT READY;
current-statusptr = buffSstatus_ptr;
*currentstatus_ptr = NOTREADY;

*usr-cntl-ptr = UCTRDATA;

/* read the desired modes of operation set up by the host user -/

bitmode = *bit_mode_ptr; /* for debug */ /* 16 or 32 bit mode

/*bitmode - MODE_32; for debug /

mode = *operation mode ptr;

/* read the desired rate of operation set up by the host user

xmtmode = *transmit modeptr;

pll-sts-ptr - xmt mode; / for debug */

header - *headerjptr;

/* the default is not using a header /

if((header!-READY) &I (header!=NOTREADY)) header=NOTREADY;

switch(bit mode)
/* This-is the main switch /
case MODE 16 :

/* Only 48khz is allowed in this mode of operation /

*amelia cntljptr - SPDIF 16 I XMT 48
*amelia-intm ptr - INTM 35T;
*amelia-conflgptr - CNrG_DATA;

/* The delay block for synchronization */

delay - 125*AES BLOCK SIZE
int read - *ameliaintmptr; /* Dummy read to clear int
*ch:A ptr - 0;
*chB_ptr - 0;

*start recordptr - NOT READY;
start-record - NOTREADY;

while (startrecord != READY

1=0;
start record - *startrecordptr;
while(l<delay)

while((int read = *ameliaintm_ptr & INTMXMT) !- INTM_XT);
*ch A ptr - U;
*ch B-ptr - 0;

if (header-READY)

112

/this is the loop to put header on the beginning of the DAT
1=0;
while(l<AESBLOCKSIZE)

whie(Unt-read - *amelia_±ntm-ptr &INTM XMT) 5=INTMXNT);
*ch A -ptr -READY -A;
*ch Bptr - READY-B;
1+-=T; -
)/* end of BLOCK-SIZE while/

1-0;
while(l<AESBLOCKSIZE)

while((int-read - amelia-intrn-ptr &INTM)U4T) INTMXM4T);
*ch -A -ptr -0;
*ch Bptr - 0;-
1+-T; -
I/* end of BLOCKSIZE while *

/* End of header if */
/* Now after the sync start to put staff on the DAT *

while (1 =0)

while((lnt read - *amelia intm ptr a INTM XMT) INTMXM)
(/* do not~iing and wait for the "interrupf" */);
*ch Aptr - *Current read ptr; /* copy channel A to out ~
*chBptr - (*current -read ptr++)«1l6; /* copy channel B to out ~
samp count +- 1;

if'Tsampcount -- DPRAMBUFFERLENGTH)

switch (current buffer)
I/* toggle bet ween buffers ~
case BUFFA:
current --read ptr - (long *)DPRAMBUFFERBBASE ADDRESS;
samp count -n-0;
*current-status-ptr - READY;
current status ptr - buffB status ptr;
*current status ptr - NOT FXADY;-
currentBuffer 'ZBUFFS;-
break;
case BUFFB:
current read ptr - (long *)DPRAMBUFFERABASE -ADDRESS;
samp_count -a-0;
*Current_status_ptr - READY;
current status ptr - buffA status ptr;
*current status ptr = NOTREEADY;-
currentSuffer Z BUFFA;
break;
/* end of switch *

1/* end sarnp count if ~
/* end of whiil-!-0 *

break;

/ ~ ~ ~ the 32 bit mode ****

case MODE-32:

if (xmt mode==-U4TPLL)
/*- if the mode is PLL this is data transfer '
*ameiia cntl ptr - mode;
*amelia-intm7 ptr - INTM DATA;
*amelia-config ptr - CNrFG DATA;
while (p11 sts Z== NOTREADY)

p11 - *amelia sts-ptr & PLLMASK;
if Cp11 !- 0-)

IP11 sts =READY;
*pll-sts ptr - READY;

/* end of if *
/* end of while *

mnt read -*ameiia intmptr;
*amelia intmptr --0;
*amelia-intm-ptr - INTM DATA;

while(l!=0) /* loop forever transferring data *

while((int read - *ameiia intm ptr &INTM DATA) I-INTM DATA);
if (lint read = *imelia-sts_ptr i BLoCKMASKREJAZ)-= SECOND_1-6_BIT)

113

*chAptr - *chI AIptr & TEST-MASK;

*ch_Bptr - *ch_B_ptr & TESTMASK;

else

*chAptr = *oh A-ptr;
ch_B_ptr = *ch_B_ptr;

/* end of forever loop /
/* end of XMTPLL if */

.********************** end of data transfer in 32 bit mode /
else

{ /****.. start the data transfer to DAT routine /

* what frame to use local or user prerecorded frames ? */
frame flag - *frame flag ptr;

/* check for deault the default is use a local framing **** /
ift(frameflag !- READY)&&(frame flag!- NOT_READY))frame_flag READY;

for(l=0;l<AES BLOCK SIZE;1++)
/* this ?or loop is to zero the synchronization matrices -/
sync array l]-0;
/* end of for */

sync array[O]- C FLAG I ZFLAG;
switch(xmt mode)-

(/ this switch is for setting the amelia register and sync arrays*/
case XMT 32:

delay - 167*AES BLOCK SIZE;
/* now make synZ matrix for 32khz sample rate */
syncarrayf2)- C FLAG;
syncarray[6- C-FLAG;
sync-array(71- C FLAG;
sync _;ray(184 - C FLAG;
sync array! 186)- C-FLAG;
syncarray[187]- C FLAG;
sync-arrayl[188]- C FLAG;
sync-array[191|- C FLAG;
*ameiacntlptr -- AESEBU_32 I XMT_32 ;
break;

case XHT 44:
delay - 229*AES BLOCK SIZE;
/* now make sync matrix for 44khz sample rate */
sync array[21- C FLAG;
sync -array! 61- C -FLAG;
sync array[1861- C FLAG;
sync-array[1881- C FLAG;
sync array[1891- C FLAG;
*amelia_cntl ptr =-AESEBU_32 I XMT_44
break;

case XMT 48:
delay = 250*AES BLOCK SIZE
/* now make sync matrix for 48khz sample rate */
sync array[2]= C FLAG;
syncarray[7]= CFLAG;
sync-array{ 184] C FLAG;
syncarray(188]- C-FLAG;
syncarray[189]- C FLAG;
syncarray[1901= C -FLAG;

*amelia-cntl-ptr - AESEBU_32 I XMT_48break;
I/V end of switch */

/* The delay block for synchronization /

flag = NOT READY;
*amelia in ptr - INTM XMT;
*amelia-conflg_ptr - CNFGDATA;

int read - *amelia_intm_ptr; /P Dummy read to clear int *
*ch Aptr = 0;

114

*ch_BA_ptr - 0;

/*****************~******then synchronies on the second frame
while (flag !-READY)

while((int read -*amelia intm ptr & INTM4 XMT) !INTM XMT);
ifC(int read&- *amelia sts tr 6 -BLOCKMASKSEND) -=BLOCK-MASK SEND)

(flag -READY; T-
*ch A ptr - 0;
*ch Bptr - 0;

start record - NOT READY;
*start-record_ptr Z NOT-READY;

while (start record !- READY
I* waiting for the operator to start the program *

start record - *start record ptr;
k-0; -
for (1-05 l<2*delay; 14+)

while((int read - *amelia intm ptr & 114TM 1GT) !- INTM XM<T);
if((int reid -*amelia-sti-ptr 6. BLOCKMASKSEND) !-BtOCKMASKSEND)

*ch A ptr -01
*chCBDhtr -0;

else

*ch A ptr - sync array! I);
*ch-pptr - (sync arrayjk++I)<1l6;

if(k-AESBLOCKSIZE) kc-0;

/* end of waiting for the operator ~
~~~ ~~create header if desired **~***

if (header-READY)
/* this is the loop to put header on the beginning of the DAT ~
1-01
while(l<AESBLOCKSIZE)

whileC(int read - *amelia intm ptr & INTM )04T) != INTM )O(T);
if((int read -*imelia stsptr C BLOCKHMASK-SEND) !-BLOCKMRSKSEND)

*ch -A ptr -READYA;
"ch B~htr -READYB;

else
*ch~ptr =sync_arraytl];
*chBjptr -(sync array~l++])«<16;

1 1 end of BLOCK SIZE while *
1-0;
while(I-AESBLOCKSIZE)

while((int read - *amelia intm ptr & INTM )OMT) !=INTM )O4Th
if Unt-reid - amelia stiptr & BLOCKMANKSEND) !- BLOCKMASKSEND)

*chAptr -0;

*chEptr =0;

else

*ch A ?ptr - sync arrayil);
*chBptr - (syncq_array[l++1)«1l6;

/* end of BLOCK SIZE while
/***********~**~******************.End of header if

/* now ready to start fill up the memory *
switch (frame flag)

case NOT READY: /* the frames are locally made
/* L;0OP FOREVER POLLING INTERRUPTS *
1=0;
while (1 !- 0)



while ((int -read -*amelja intm ptr r. 14TM X) !- INMX04T);
BLOC-MAK-SND) if(lint-read = amelia_s-fs ptri & BLOCKMASKSEND)

*chA-ptr **current read ptr; /* copy ch~annel A to out
*chB-Ptr U*currentreaa-Ptr++)<l16;/*copy cnannel B to out '
samp-count +- 1;

else

*ch -A -pir - sync arraylli;
'*chB ptr - (sync arrayl +1) 16;
if( I-AES BLOCKSIZE) 1-0;

/* ... constantly check to see if current buffer is full
if Isanip count -- DPRAMBUFFER LENGTH)

switch (current buffer)
(/* to~gle between buffers/

case BUFFA:
current-read -ptr - (long *)DPRAMBUFFERBBASEADDRESS;
samp count - 0;
*current -status ptr = READY;
current - tatus ptr - bUffB status-Ptr;
*current status ptr - NOTREADY;
currentSuffer - BUFFB;
break;
case BUFFB:
current-read-ptr - (long *)DPRAM_ BUFFERA_-BASEADDRESS;
samp-count - 0;
*current status ptr - READY;
current itatus~ptr = buffA status ptr;
*currentf status ptr - NOTREADY;-
currentS~uffer Z BUFFA;
break;s
)I' end of switch '

/* a'nd samp count if ~
/******* end while V!-O 0 *****

break;

case READY

flag - NOT READY;
*amelia intmiptr - 114TM XMT;
*amelia-intmptr - 0;
*amelialintm ptr - 114TH )M4T;
*amelia-configptr - CN1FGDATA, '

I' mt-read - 'amelia intmptr;*/ 1' Dummy read to clear int/
*ch Aptr - 0;
*ctCptr - 0;

/**********.****.*..*.**then synchronies on the second frame '
while (flag !- READY)

while((int read - *amelia intm ptr & 114TH XMT) != 114TM )0T);
if((int rea1 = *ameia-stsptr & BLOCK MASIZSEND) -BLOCK-MASKSEND)
(flag Z READY;

*ch-Aptr - 0;
*ch B-ptr - 0;
1 7

/* LOOP FOREVER POLLING INTERRUPTS '
while (1 !- 0)

while((int read = *amelia intm ptr & 114THXMT) !- 114TH Y2-f);
*ch A ptr * current read ptr; I' copy channel A to ot'. *f
*chCBptr -(*currenEf reaa ptr++)<l16; /* copy c!"rnael B to out/
sanp count +- 2; /'avancxng samp count ahead to gain time '
whili((int read - amelia intm-ptr & INTH X(T) != 114TH OT);
*ch-A pt -'cretraptr /* copy channel A to ouE *

chBptr -('current read_ptr++)«1j6; I' copy channel B to out '

116



*** *** ** constantly check to see if current buffer is full f
if(samp count -- DP RAM BUFFERLENGTH)

switch(current buffer)
I /* togile between buffers
case BUFFA:
currentread-ptr - (long *)DPRAMBUFFER_B_BASEADDRESS;
samp count - 0;
*currentstatus_ptr - READY;
current statusptr - buffB status ptr;
*current status ptr - NOT READY;
current Buffer - BUFFB;
break; -
case BUFFB:
currentread ptr - (long *)DPRAMBUFFERABASEADDRESS;
samp_count --0;
*current statusptr - READY;
current statusJptr - buffA statusptr;
*curreny status ptr - NOTREADY;
currentBuffer - BUFFA;
break;
) /* end of switch */

/* end samp count if */
I /* end of while-l!-0 '/

break;
/* end of frame flag switch -/

/* end of else to-data transfer '/
break;

I /* end of mode switch whether 16 or 32 bits '/
/***......*** end of main *

117



UIST OF REFERENCES

[1] Ken C. Pohlmann, Principles of Digital A udio, second edition, SAMS Publishing,
Carmel, Indiana, 1992.

[2] Robert Finger and T. Nakanishi, "Developments In R-DAT Data Recorders," IEEE
Mass Data Storage Conference Proceedings pp. 35-37. Monterey, California, 1990.

[3] Albert S. Hoagland, Digital Magnetic Recording, John Wiley & Sons Inc., 1963.

[4] The A cadem ic A meican Encyclopedia (Electronic Version), Grolier, Inc., Danbury,
CT, 1992.

[5] Steve Oualline, Practical C Progrnming, O'Reilly & Associates, Inc., Sebastopol,
California, 1993.

[6] TMS320 Floating Point DSP Optimizing C Compiler, User's Guide, Texas
Instruments Inc., 1991.

[7] Ken C. Pholmann, "DAT in Depth," Electronics Australia, pp. 14-18, April 1988.

[8] W.S. Hodgkiss and . C. Nickles, "Real Time Data Management in a UNIX
Network Environment," IEEE Oceans and Seas Conference Proceedings pp. 294-
297, 1990.

[9] John W. Einberger, "CD as a Mass Storage Device," IEEE Mass Data Storage
Conference Proceedings, pp. 125-129, Monterey, California, 1988.

[10] SDSP/C30D SBUS BOARD, Technical Reference Manual, SPECTRUM Signal
Processing Inc., Version 1.01, September 1992.

[11] SDSP/C30D SBUS BOARD, User Guide, SPECTRUM Signal Processing Inc.,
Version 1.01, September 1992.

[12] DM/D24AES DIGITAL A UDlO MODULE, User's Manual, SPECTRUM Signal
Processing Inc., Version 1.00, March 1993.

[13] TMS320 Floating Point DSP Assembly Language Tools, User's Guide, Texas
Instruments Inc., 1991.

118



BMUOGRAPHY

Brycer, Bernard B., Digital Magnetic Tqpe Recording Pinciples and Computer
Application, Hayden Book Company Inc., New York, 1965.

Hipson, Peter, Advanced C, SAMS publishing, 1992.

Jacson Bruce, A Useres Guide to Digital Audio Interconnects, Mix, October 1992.

Kelly-Bootle, Stan, Understanding UNIX, SYBEX Inc., 1992.

Kernighan, Brian W. and Ritchie, Dennis M., The C Pmgmrnming Language.
second edition, Prentice Hall, 1988.

119



INTAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria VA 22304-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code EC I
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

4. Charles W. Therrien, Code EC/Ti 6
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

5. Murali Tummala, Code EC/Tu 1
Electrical and computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

6. Monique P. Fargues, Code EC/Fa I
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

7. Israeli Defense Navy Attache 4
Embassy of Israel
3514 International Drive N.W.
Washington, D.C. 20008

8. Arie Gal-Gartentlaub 2
24a Haagana St.
Kiryat Motzkin, 26372
Israel.

120


