NAVAL POSTGRADUATE SCHOOL
Monterey, Califomia

2 550
\‘Illl‘lllll\\ll\\l\\l|\||\|l||\|\\llll\\l||l

DTIC

ELECTE
S JuL 2 71994

94-23828
EEEAA S~

HI FI AUDIO TAPE TO SUN WORKSTATION
TRANSFER SYSTEM FOR DIGITAL AUDIO
DATA
by
Arie Gal Gartenlaub

March, 1994

Thesis Advisor: Charles W. Therrien

« Approved for public release; distribution is unlimited.

Dre QUALTTY {NGPECTED 8
T1@ QU

94 7 2C 109

===, |

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, scarching
existing data sources, gathcring and maintaining the data needed, and complcting and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for Information Operations and Reports, 1218 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1994 Master's Thesis
4. TITLE AND SUBTITLE HI FI DIGITAL AUDIO TAPE TO SUN 5. FUNDING NUMBERS
WORKSTATION TRANSFER SYSTEM FOR DIGITAL AUDIO
DATA
AUTHOR(S) Arie Gal Gartenlaub
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
“ 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13. ABSTRACT (maximum 200 words)

This thesis describes a subsystem developed to provide for the transfer of digital audio signals from a
SUN SPARCstation 10 workstation to a digital audio tape (DAT) and vice versa. The new system
expands the audio recording/reproduction options available in the laboratory by integrating an analog
tape deck and a digital tape deck with the SUN workstation. The desired connection enabies working
with a larger audio bandwidth to achieve better audio performance and resolution in comparison to the
present workstation audio capabilities. Performance measurements of the audio signal-to-noise ratio have
shown an improvement of about 45 dB in the audio reproduction capability and about 35 dB in the
audio recording capability. Total harmonic distortion for the new system is below the limit of the
measuring instrumentation (less than 0.1%).

. SUBJECT TERMS DAT, DIGITAL AUDIO TAPE, DIGITAL RECORDING, 15. NUMBER OF

SUN WORKSTATION, AES/EBU, SPDIF, REAL-TIME UNIX PAGES 133
APPLICATION. 16. PRICE CODE
17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

-

Approved for public release; distribution is unlimited.

HI FI DIGITAL AUDIO TAPE TO SUN WORKSTATION
TRANSFER SYSTEM FOR DIGITAL AUDIO DATA

by

Arie Gal Gartenlaub
Lieutenant Commander, Israeli Navy
B.S., Technion Haifa, Israel, 1987

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author: /4/”6 Cd (Qﬂ/eo' /wbé

Arie Gal Gartenlaub

Approved by: w¢ L

Charles W. Therrien, Thesis advisor

Murali Tummala, Second reader

dem

Michael A. Morgan, Cléfrman
Department of Electrical and Computer Engineering

i

ABSTRACT

This thesis describes a subsystem developed to provide for the transfer of
digital audio signals from a SUN SPARCstation 10 workstation to a digital audio
tape (DAT) and vice versa. The new system expands the audio
recording/reproduction options available in the laboratory by integrating an analog
tape deck and a digital tape deck with the SUN workstation. The desired
connection enables working with a larger audio bandwidth to achieve better audio
performance and resolution in comparison to the present workstation audio
capabilities. Performance measurements of the audio signal-to-noise ratio have
shown an improvement of about 45 dB in the audio reproduction capability and
about 35 dB in the audio recording capability. Total harmonic distortion for the

new system is below the limit of the measuring instrumentation (less than 0.1%).

Accesion For \

e o —————

NTIS CRrA&I
D TAB C
Usanaoe e]
Justitication

S
Distribution/

Availability Codes

— | Avail and/or
Dist Special

A-]

1ii

TABLE OF CONTENTS
L. INTRODUCTION i
A. SOUND PROCESSING/RECORDING AND THESIS GOAL
B. HUMAN PERCEPTION, HEARING AND SPEECH
1. Human hearing characteristics
2. Humanspeech
C. HIFI AUDIO SOURCES ANDAUDIOUSE
D. MAGNETIC RECORDING HISTORY REVIEW AND PRINCIPLES .
1. Magnetic recording historical review
2. Modemtapeformats
E. DIGITALAUDIO0 .0t
1. Quantization and signal quality
2. Harmonic distortion due to quantization
II. BACKGROUND ON DAT AND STANDARDS OF DIGITAL AUDIO
A, S-DATANDR-DAT i
L S-DAT ..
2. R-DAT ..
B. DIGITAL AUDIO TRANSMISSION FORMATS

iv

F———__;

C. AES/EBU AND SPDIF FORMATS 23
1. Subframestructure 24

2. The AES/EBU professional standard 25

3. The SPDIF consumer format 27

M. SYSTEM DESCRIPTION s 29
A. GENERAL SYSTEM CONFIGURATION 29
1. System recording/reproduction options 31

B. THE INTERFACEHARDWARE 33
1. Interfaceboard 33

2. AES/EBU Daughter Module 37

C. THESYSTEMSOFTWARE 39
1. Main program "run_save" 43

2. Main program "run play" 45

3. Data structure and double buffering method 47

4 Audiofilestructure 49

5. Subprogram "sp2ae save" 50

6. Subprogram "sp2ae_play" and header inclusion 52

D. RETRIEVING AUDIO FILES INTOMATLAB 55
IV. PERFORMANCETESTS i 57
A. AUDIO REPRODUCTION PURITY PERFORMANCE 57

v

B. AUDIO RECORDING PERFORMANCE 63
C. SOFTWARE PERFORMANCETESTS 72
V. CONCLUSION, 74
APPENDIX A. OPERATING INSTRUCTIONS AND USER GUIDE 76
A. CAPTURE and DIGITIZATION OF AUDIO DATA 76
1. Hardwaresetting 76
a. Capturing fromthe DAT 76
b. Capturing sound from the analog cassette player 77
c. Speech capture using a microphone 77
2. Softwareoperation, 78
B. PLAYBACK OF AN AUDIO FILE AND RECORDING ON TAPE 79
1. Harwaresetting 79
a. Playback for monitoring setup 80
b. Playback and recording an audio segment on DAT 80
¢. Recordingon analogtape 81
d DATdubbingmode 81
2. Softwareoperationc.. 00000 82
C. DUBBING FROM ONE TAPE TO THE OTHER AND RECORDING

EXTERNAL ANALOGSOURCES 83

APPENDIX B. THE DAUGHTER MODULE REGISTERS 85
A. THE CONTROL AND CONFIGURATION REGISTERS 85

1. Usercontrol register 85

2. Configuration register 85

3. AMELIA control register 86

4. Interruptregister 87

B. STATUS REGISTERS 88

1. Statusregister I 88

2. Statusregister II 90

C. DATAREGISTERS 91
APPENDIX C. SOFTWARELISTINGS cccuiiuininnn. 95
A. MAIN PROGRAM "run_save.c" 95

B. MAIN PROGRAM "run_play.c" 99

C. SUBPROGRAM "sp2ae_save.C"couuuuun... 104

D. SUBPROGRAM "sp2ae play.c" 110
LIST OF REFERENCES i 118
BIBLIOGRAPHY 119
INITIAL DISTRIBUTION LIST 120

vil

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Figure 19

LIST OF FIGURES
A simplified look at the human ear. [Ref. 1]
Quantization steps and PDF of the quantzation error. [Ref. 1]
S-DAT mechanism. [Ref. 1}
R-DAT; the cassette and the head. [Ref. 2]
Close look at the tracks and scan format of the R-DAT head. [Ref. 1] .
Specifications for various recording/playback modes of DAT. [Ref. 1] .
AES/EBU and SPDIF block format. [Ref. 12
AES/EBU senal interface subframe format.[Ref. 12]
SPDIF C flag block format[Ref. 1]
General block diagram of the system configuration.
Analog connections of the audio matrix.
The LSI interface board block diagram. [Ref. 10]
The Interface Memory Map (for 64K X 32 SRAM). [Ref. 10]
Main board data bus connection to the DMbus.
AES/EBU Daughter Module block diagram. [Ref. 12]
The software main block diagram.
Data flow stages between the DAT I/O port and the system disk.
Flow chart for the program "run_save."

Flow chart for the program "run_play."

viii

2]

37

41

42

Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Figure 27

Figure 28

Figure 29

Data base connected list and the unit structure.
Double buffering method block diagram.
Flow chart for program "sp2ae save".
Flow chart for program "sp2ae play."
The header signal as recorded on the start of an audio segment.
An audio segment captured using the 32-bitmode.
Output signal from the SUN speakerbox; the marker is on the signal. .
Output signal from the SUN speakerbox; the marker is set on a noise
Spectrum of the 1 kHz sinusoidal output signal from the DAT.

Noise only output from the DAT with zero output signal.

Figure 30 Output signal from the SUN speakerbox; the marker is on the first order

difference intermodulation product.

Figure 31

Spectrum of the output signal from the DAT. (The intermodulation

products are under the measurement floor of the spectrum analyzer.)

Figure 32 FFT of the 1 kHz input signal through the SUN workstation microphone.

Figure 33

...

FFT of the 1 kHz signal recorded through the DAT input.

Figure 34 Photograph of the spectrum of the 1 kHz input signal to the DAT

Figure 35 FFT of the two-frequency signal recorded through the SUN microphone

Figure 36

..

FFT of the two-frequency signal recorded through the DAT input. . . .

iX

47

49

51

54

56

59

61

62

63

66

67

Figure 37 Spectrum of the two-frequency input signal measured by the spectrum

Figure 38 FFT of the two-frequency input signal recorded through the SUN

microphone input. 71
Figure 39 Channel 0 and Channel 1 Input Data Registers. [Ref. 12] 92
Figure 40 Channel 0 and 1 Output Data Registers. [Ref. 12] 93

X

LIST OF TABLES

Table] TOTAL HARMONIC DISTORTION FOR VARIOUS VOLUME LEVELS

AND QUANTIZATION WORD LENGTH. 15
Table II BYTE 0 OF THE AES/EBU STANDARD. {[Ref. 1] 26
Table Il AMELIA REGISTER MAP. 36
Table IV THE AUDIO FILE STRUCTURE. 50
Table V. HEADER MESSEGE FORMAT. 53
Table VI AUDIO REPRODY'CTION PERFORMANCE MEASUREMENTS ... 58
Table VI AUDIO RECORDING PERFORMANCE MEASUREMENTS. 64
Table VI AMELIA CONTROL REGISTER CONFIGURATION. 86
Table IX INTERRUPT REGISTER CONFIGURATION. 87
Table X STATUS REGISTER I/ CONFIGURATION. 89
Table XI STATUS REGISTER Il CONFIGURATION. 90
Table XII 16 BIT MODE DATA REGISTER CONTENT 91
Table XIIT CHANNEL REGISTER FLAGS 94

xi

L INTRODUCTION

This chapter presents information on human hearing and speech, high fidelity audio,
a historical review of magnetic recording, and digital audio techniques. Motivation for this

thesis is provided by discussing the benefits of enhanced audio accuracy.

A. SOUND PROCESSING/RECORDING AND THESIS GOAL

The digital signal processing laboratory (DSP lab) at the Naval Postgraduate School,
Department of Electrical and Computer Engineering uses the SUN family of
workstations based on the UNIX operating system. Many of the signals processed and
analyzed are in the audio frequency range. The present system provides telephone line
quality signal recording, storage and playback. That is, the audio signal processed using
the above equipment is bandlimited to 4 kHz and quantized to 8 bits, thus limiting the
processing accuracy. Some of the processing algorithms developed in the DSP lab require
analysis by listening, and some of the audio signals processed have bandwidth wider then
4 kHz. The system developed in this thesis provides a way to record and process 16 bit
digital audio with sampling rates up to 48 kHz so that the entire audible spectrum is
covered. Using Digital Audio Tape (DAT) standards in conjunction with a professional
quality DAT machine provides the highest possible audio quality. The sounds recorded
on the DAT can be used also for demonstration and comparison when access to a

workstation is not possible.

B. HUMAN PERCEPTION, HEARING AND SPEECH

When evaluating an audio system one should keep in mind that the system's main
intent is to interface with the human ear and mind. Most of the desired parameters of any
audio system wiil be derived from this fact.

Hearing is the second most important source of information (after vision) to the
human brain. The bandwidth of audio perception is narrower then that of vision but is still
wide enough to deliver large quantities of information. Hearing enables us to
communicate, without even seeing one another. It enables recognition of persons we are
talking to and grasping more information than is in the spoken words. We can often teil
a person's intention by the intonation of his or her speech; the sound contains more
information then if we had written down the words.

The hearing process takes advantage of mechanical media movements. Those
movements, when they correspond to an intelligible message, convey audio information.

The hearing process can be divided into several stages or levels. The first level is the

SEMI-CIACULAR CANALS
,,, , COCHLEAR FLUID

‘, /,,,,,/ 5 / BASKAR
D vevenane

) ”' z : ; il li/—//—""//////ﬂl"am"’
il Wiﬁw TR s

y‘) '1)/ ' 'l\\~
;j 6% EARDAUM ' snmuv : R COCHI.EA (UNCOED
,»" ' H FOR ILLUSTRATIOM)
[}
JOUTEREAR | MIDOLE EAR | INNER EAR
]
' !

Figure 1 A simplified look at the human ear. [Ref. 1]

human ear which transduces the audio waves into electrical signals that are later sent to
the brain via the nerve system. Figure 1 illustrates the construction of the human ear. The
audio waves arriving at the ear are condensed through the ear canal to the eardrum. The
waves are mechanically transferred to the middle ear and from there to the inner ear. The
inner ear then translates the acoustic wave into electrical pulses that are sent to the brain.
The cochlea located in the inner ear contains tiny hair-like receptors that resonate at

different frequencies which overall comprise the entire audible spectrum.

1. Human hearing characteristics

The two most important parameters extracted from the audio information are
the frequency and the amplitude of the sound, or the sound level. This is the information
most needed to understand a vocal message. Although the human audible frequency
spectrum is between 20 Hz and 20 kHz, sounds are not received uniformly in this range.
The best human reception is in the 3 kHz to 4 kHz region.

Human amplitude reception capability spans a wider range than human
frequency reception capability. In the frequency domain we are dealing with a ratio of
10° or 30 dB between the highest and lowest audible frequencies. In the amplitude domain
the dynamic range (ratio between the hearing threshold and very high amplitudes that are
still not harmful) is about 10'* or 120 dB. The least audible sound pressure level is about
0.0002 dyne/cm?; this is considered to be the zero reference level or 0 dB Sound Pressure
Level (SPL). With this reference a quiet home has 35 dB SPL, the Niagara falls have

about 96 dB SPL, and the threshold of feeling pain is considered to be 140 dB SPL. The

ﬁf

pressure level is relative to the source power, and the power is relative to the square of
voltages or currents. [Ref. 1]

Although frequency and amplitude as mentioned are the primary recognition
parameters, if we want to add localization to the hearing process we need both of our

ears. The human brain uses the time or phase difference between sounds to estimate the

location of the sound source. Again, this recognition is not uniform across the entire

audio spectrum, but is better at the higher frequencies.

2. Human speech

Whenever human hearing is discussed the production of human voices are
mentioned as well. The voice production capabilities (dynamic range and frequency
bandwidth) of human beings are generally reduced as compared with human hearing. The
spectrum of regular speech does not usually extend above 4 kHz while singing might
reach 10 kHz (including harmonics). Speech information is conveyed with very good
comprehension through 4 kHz bandwidth channels, such as telephone lines.

Speech signals are comprised of voiced sounds (vowels) and unvoiced sounds
(consonants). Voiced sounds are characterized by the pitch period ; voiced sounds are
produced by motion of air through the vocal cords, which can be simulated by a pulse
generator. The pulses are shaped and given their specific spectral content by the mouth-
throat cavity. The unvoiced sounds are created by pressing air through the teeth, tongue
and lips. Voice production levels (amplitudes) are also much more condensed in dynamic

range than those of hearing.

ﬁ*

C. HI FI1 AUDIO SOURCES AND AUDIO USE

Audio plays a great part in daily life. Audio and video systems are widespread these

days and the two senses of hearing and vision are often connected. Audio use can be
divided into some gross categories, namely

1. Individual communication,

2. Entertainment,

3. Professional civil use,

4. Military uses.
The first two categories are self explanatory; the other two categories include listening to
medical equipment that uses audio, and military systems that have audio output, for
example ECM, EW, and Sonar systems.

Many standards are associated with audio and audio transmission. As mentioned
earlier telephone lines have a 4 kHz bandwidth. Radio broadcasts in the AM band have
5 kHz bandwidth, and FM radio broadcasts have 15 kHz bandwidth. The term Hi Fi itself
is not a standard. Using the term "Hi Fi" or High Fidelity for describing a feature of an
audio system indicates that the system reproduces the audible spectrum very accurately
and with very low distortions. The multimedia encyclopedia [Ref. 4] defines high fidelity
as follows:

The term high fidelity (frequently shortened to hi-fi) has been in common usage
since the 1950s and refers to the electronic reproduction of sound that corresponds
closely to an original source or recording The ideal is to minimize unintentional
inaccuracy or distortion by using a long series of recording and reproducing
processes. The equipment used must have a wide frequency response: that is, the
range of frequencies over which the signal is reproduced with minimal distortion

must cover at least the range audible to the human ear, 50 to 15,000 hertz. The
equipment is constantly improving: from the monophonic LPs of mid-century, to

STEREOPHONIC RECORDING, to the highly sophisticated digital processes
available in HiFi VCRs, compact disc players, and DAT (digital audio tape) cassette
decks.

In the above definition of High Fidelity the 50 Hz to 15 kHz bandwidth is stated,
but good audio system specifications usually meet the complete 20 Hz to 20 Khz
bandwidth. The larger the bandwidth of a signal (within the audio spectrum) the better
it can be distinguished from a similar signal. For example, while communicating through
a telephone at the 4 kHz bandwidth is sufficient for most purposes, when one wants to
be certain about a certain word said the other person may be asked to spell the word.
When one wants to classify sounds other than the human voice, for example musical
instruments or sounds produced by underwater sonar monitoring equipment, it is even
more important to have large audio bandwidth with low noise and distortions.

In consumer oriented audio systems the sound sources until recently have typically
been analog devices such as (audio) cassette recorders, video cassette recorders (for video
and audio signals), and LP records. For professional applications reel-to-reel magnetic
tape has long been a standard because of its wide bandwidth, long play time, and multi
channel capability. With the success of the Compact Disk (CD) and its sub-technologies
(e.g., the Laser Video Disk) both consumer and professional segments are moving towards
all-digital recording and reproduction methodology. This has led to the invention and

subsequent success in the consumer market of the Digital Audio Tape (DAT).

Wﬁ

D. MAGNETIC RECORDING HISTORY REVIEW AND PRINCIPLES
The magnetic recorder was the second tool developed to store and reproduce audio
signals. The first was the gramophone which developed into the modem phonograph

record player. This latter technology is slowly vanishing with the introduction and

development of the CD. However magnetic recording is simply moving from analog to
digital.
1. Magnetic recording historical review

Magnetic recording techniques became very popular in recent decades, mainly
because of the ease of recording and reproduction of magnetic signals. This is true for
audio signals as well as for digital data.

The principles of the magnetic field and the theory behind it were originated
in Maxwell's laws and Faraday's reasearch. The first use of magnetic fields for signal
recordings was described by Oberlin Smith in 1888. This was followed by the first
practical patent issued to a Danish inventor named Valdemar Poulsen in 1898. Poulsen’s
device, called the Telegraphone, used a steel wire for recording. [Ref. 3][Ref. 4]

The sound quality of the first wire recorders was inferior to cylinder and disk
records. A few experimental recorders started to use 1/2 inch wide steel tape instead of
the wire during the 1920s and 1930s but not with a lot of success due to the fact that the
tape was very heavy and costly. In 1928 a German patent was issued for a light weight
paper tape coated with iron powder. This tape provided superior qualities over the all-steel
tape. AEG Telefunken developed the Magnetophone (an early version of the audio tape)

while another German company, BASF, worked on the tape. The paper tape was replaced

by a cellulose film and the iron powder was replaced by iron oxide. The Magnetophone
sound quality was not very high; it was most adequate for speech but not for music.
The next improvment was the introduction of the "AC bias". This was first
disovered in the US in 1927 but was not incorporated in the Magnetophone untill 1939.
This AC bias was the key to high fidelity magnetic recording. The ultrasonic bias
overcomes the nonlinearity in recording and reproduction of signals due to the hysteresis
characteristics of the magnetic substance. In the US, Ampex Corporation was one of the
leading companies in the magnetic recordering field. The Ampex machines started with
a tape speed of 30 inches per second. This speed repeatedly halved with equalization
circuit improvement to 15, 7-1/2, 3-3/4 and finally 1-7/8 inches per second. The last tape
speed is a valid standard today for cassette tape recorders while professional studio units
continue to use reel-to-reel systems at 7-1/2 or 15 inches per second. Additionally
development of smaller magnetic heads enabled an increase in the number of tracks
recorded on the tape. Cassette tapes contain two tracks in each direction, while wide reel-

to-reel studio tapes can contain as many as 48 tracks. [Ref. 4]

2. Modem tape formats
In reel-to-reel tape technology the tape is spooled off a supply reel and
rewound on a takeup reel after passing the record/playback heads. During the 50's and
60's many attempts were made to enclose the supply and takeup reel into a single
enclosure. Philips introduced the compact cassette in 1964, which since became an
international standard and a very successfull one. The cassette invention led to the

development of car audio tape players, "walkman" and portable "boom-boxes" all through

the 1970's and 80's. By 1983 the compact cassette was the most successfull and popular
medium for recording music. The compact cassette concept was then carried over to the

micro-cassette, the VCR cassette, and finally to the DAT cassette.[Ref. 4]

E. DIGITAL AUDIO

When digital techniques were developed they were adopted for audio signals as well
as for other fields. This led to a whole line of digital audio formats that differ in
bandwidth (sample rates) and quantization. The telephone line standard remains at 4 kHz
as it was developed before the digital audio era, and the quantization was set to 8 bit
PCM. This standard is known to provide sufficiently good human voice quality and at
the same time is economical. High Fidelity digital audio standards are much more
elaborate than the telephone digital audio standard. The bandwidth is set at 20 Hz to 20
kHz, which requires at least a 40 kHz sample rate (according to the Nyquist theorem); it
provides for two channels (stereo); and in order to get good signal to noise ratio and
dynamic range it has 16-bit quantization. The CD sampling frequency is set to 44.1 kHz
while the standard sampling frequencies for DAT are 48 kHz in the normal mode and 32
kHz in the long play mode. A rate of 44.1 kHz is also provided for direct digital

compatability with CD.

1. Quantization and signal quality
To record and store an analog signal digitally an Analog to Digital Converter

(ADC) is used. In the reverse process a Digital to Analog Converter (DAC) is used to

regenerate the analog signal. The ADC converts the analog signal into discrete levels that
are represented by a binary word.
The number of bits in the digital word dictates the number of discrete levels

the continuous signal is divided into. The number of levels L is given by

L =2 1)
where n is the number of bits in the sampled word. The value Q of a quantization step
is given by

Q = YouVon @

where V,_, and V,, here are assumed the largest and the smallest voltage level,
respectively, to be converted. The least significant bit determines the accuracy of the
quantization and its value is equal to the quantization step Q. The quantization error is
the difference between the actual value of the signal and the value that is represented by
the binary word. For linear quantization, used in most 16-bit audio devices the

quantization error is uniform through all the dynamic range and is given by

1
Eq = EQ . (3)

10

|

The best signal to quantization error performance of an n-bit system would the.: be

Verr
E,

= 2n0l

C))

518

2"
1
2
where V., is the peak-to-peak value denoted earlier by: V.- V,,, . For a 16-bit system

this becomes 2'’or about 98 dB. The distribution of error assuming that the signal is

totally uncorrelated with the sampling process can be thought to be uniform having the

PDF shown in Figure 2.

Quantization steps and quantization error PDF.

e -

Q - quantization step ; n - number of bits

P(E)

1
7Q

> E
+ 2
2

NIO

Figure 2 Quantization steps and PDF of the quantzation error. [Ref. 1]

11

The estimated error energy is therefore

— N0

— QZ
E? = E’P(E)dE = X
1 12
-9
2
The mean error voltage would then be
Vq = <Eq > = __Q__
Vi2

Using a sine wave signal as reference we get

v - w - 2'0 _ zn-lo
AR R A

and finally the signal to quantization error ratio would be

zn—l_Q_
V_‘!“ = 2 2"/15 = 6.02n+1.76 [dB]
2 Q

V2

($)

(6)

Q)

@

For example, use of 16 bits yields about 98 dB SNR, 12 bits yields 74 dB and 8 bits

yields only 49.9 dB. Another important fact that should be noticed is that the result is

12

computed for full scale signals. For a signal smaller in amplitude than V,,,; the SNR
achieved would be worse.

When a small number of bits is used in the ADC, audio systems frequently
use a nonlinear encoding scheme to improve the signal to quantization error performance.
For example human speech is usually low in amplitude for the unvoiced sounds and much
louder for the voiced ones. Common quantization schemes such as A-law or p-law
attempt to exploit these characteristics to improve the system signal-to-noise ratio
performance. In these methods the quantization is finer near the zero amplitude level and
larger for large amplitudes. A disadvantage that occurs is the fact that this is not a linear
process. Thus if it is not perfectly compensated for in the DAC, it leads to undesired

distortion that was not present in the original signal.

2. Harmonic distortion due to quantization
The Total Harmonic Distortion (THD) is a figure of merit that measures the
energy of the harmonics created by nonlinearities in the system relative to the original
signal energy. For a full scale signal the equations and results achieved in section E.I
above are valid, but for smaller signals the calculation and the results are different.
The full scale signal will be considered as the 0 dB reference level (having

peak to peak unit amplitude). The peak to peak amplitude of the signal in dB is

Vig = 20108,4(Ven))

13

or
Ya (10)

Where Q is the quantization step and / is number of steps. The power of the signal

assuming a stnusoid is

2
p. = Yawa _ I'Q (1)
signal 8 8
The noise power as before is
2
p. -9 (12)

THD (as a percentage) is then given by

QZ
P =
THD% = — ™ ,100 = ——21—2-2-x100 - —2-2-x100 . (13)
Pt ’Q 3l
8

Finally THD as a function of the input peak-to-peak voltage in dB is

THD% = —-—2—-—le . (14)

Van

3(2"10 @)

14

Some numerical values for a linear quantization scheme are given in Table I below. The
THD values for 8-bit A-law or p-law are different due to the nonlinear quan*ization
scheme, The THD is higher in the high amplitude levels and lower in the low amplitude

levels (this is later supported by the measurements described in chapter IV).

Table I TOTAL HARMONIC DISTORTION FOR VARIOUS VOLUME LEVELS
AND QUANTIZATION WORD LENGTH.

15

I. BACKGROUND ON DAT AND STANDARDS OF DIGITAL AUDIO

The DAT or digital audio tape is the result of a mixture of several technologies. The
evolution of digital audio, the development of better media for storage of digital data,
development of better and more capable audio processing chips that can operate in real
time at data rates desired for High Fidelity audio use, and finaily the VCR technology
were all very important to DAT development. The techniques of storing large quantities
of digital audio that were first developed for the world wide consumer audio market were
quickly adopted by the computer world because of their inherent inexpensive large scale
storage capacity. For example a small DAT cassette is capable of storing about 1.38

Gigabytes and a CD can store about 0.5 Gigabyte of digital data. [Ref. 2] [Ref. 9]

A. S-DAT AND R-DAT
In order to store two channels of High Fidelity digital audio with 16 bit accuracy
using a2 maximum sampling frequency of 48 kHz, the net rate of the recording is required

to be

Bit,, = 48x10°x2x16 = 1.536x10° bits/s (16)

The demand for large recording bandwidth is obvious when one considers the net
bitstream. Even with the use of efficient modulation schemes having bit rates less then

1 i—Iz/Bit/sec, the required bandwidth is on the order of 1 MHz. The large bandwidth

16

required can be met by one of two techniques. The first, which is borrowed from the
VCR technology is to increase the head-to-tape relative velocity in order to gain the
desired bandwidth; the second is to divide the high rate data stream into streams of
slower rates each of which feeds to an individual track of a multitrack recording head.
The first technique is called R-DAT or Rotary scan head DAT; the second is called S-
DAT or Stationary scan head DAT. Both techniques have been standardized and are
available on the High Fidelity audio consumer market. There are advantages and

disadvantages to each technology. These technologies are described briefly below.

1. S-DAT

The Stationary head DAT is based on principles similar to those of Frequency
Division Muitiplexing (FDM), where many narrowband channels are delivered through
a wideband channel by modulating them on subcarrier frequencies. In the S-DAT the
wideband data rate is divided into discrete channels each having a proportional bandwidth.
For example if we have a channel with a data rate of 1.536 x 10° bits/s (as computed
above) and we have a 20 track S-DAT, each individual channel will support 1.536x10%20
= 76.8 Kbits/s. This rate is manageable by a stationary head, and this rate is about the
same as the bigs frequency that is used in analog tape. Linearity is not kept because the
data is binary and only saturation conditions are used. Figure 3 illustrates the S_DAT
mechanism. An advantage of the S-DAT is the ability to record and play on a regular
cassette tape; this was the motivation for developing the S-DAT technology. Another

advantage has to do with the fact that since the head is not moving the mechanism and

17

control are slightly easier to manufacture. Among the disadvantages is the fact that S-

DAT is more vulnerable to crosstalk and noise.

View of 5-DAT
cassette and
stationary head
svstem

‘Figun 3 S-DAT mechanism. [Ref. 1]
2, R-DAT

The R-DAT uses VCR scanning head technology. The R-DAT is the more
common type in the professional and high end consumer markets and is the technology
used for this thesis. We will hereafter use the term DAT to refer to the R-DAT. The
advantage of using the rotary head technology was not in its simplicity but rather in the
fact that it was well understood and in wide use for VCR's. Thus there had !)een a lot of
savings in mechanical development. The DAT head has a diameter of 30 mm, and
revolves at 2000 RPM. There are 2 or 4 heads in a DAT recorder. The 2-head DAT was
the first to be used; the 4 head was developed later and permits better reading and error

proofing of the digital data.

ROTATIONAL IPEED HEAD 8
2.000 RPM

Figure 4 R-DAT; the cassette and the head. [Ref. 2]

Figure 4 shows the rotating head of the DAT, and the tape wrapped around
it. The DAT's cassette is sealed and is 73 mm x 54 mm x 10.5 mm in size. Thus it is
smaller then an 8 mm videc camcorder cassette.

Figure S shows the track pattern of the DAT, head and the tilt angle of the
head in relation to the track. On each track, which is 13.591 pm wide, there are some
special areas. The subcode is on a part of the track which the DAT uses to record its own
auxiliary data such as music ID, fast search codes, and various other information. The

ATF or Automatic Track Finding area is used to synchronize the Phase Lock Loop (PLL)

19

i l i | (< 4}\\ Trace quare
' N

Tooe refevence oige " Optionet weer B

Figure 5 Close look at the tracks and scan format of the R-DAT head. [Ref. 1]

control of the head servo in order to lock very precisely on the track. The main area of
the tape is used for sound recording. Due to the fact that recording is not continuous in
time, storage and buffering for data compression and expansion is used.

Figure 6 gives some typical DAT specifications like sampling rates, data
transfer rate, modulation scheme, error correction type, and record time. The modulation
scheme used is called "8 to 10" since each byte is represented by 10 bits on the tape. This
spreading reduces the DC recorded on the tape. For example if there is a long series of
I's in the audio sample this modulation scheme will break it into interlaced 1's and 0's
and thus reduces the DC recorded on the tape. This technique does not have to be used
in analog recording because the average of an analog signal recorded with the bigh

frequency bias is zero.

20

MOOE DAT MEC P8 MOOE) PRERECORDED TARE B OMLY:

e STANDARD | OPTION ' | OPTIONZ | OPTIONS | NORMAL TRACK . WiDE TRACK
CHANMEL NUMBER |CH)| 2 2 | H 1 « 2] 2
SAMPLING SREQUENCY jag ") 2 v 2 % . 1
QUANTIZATION BIT NUMBER (811 V6 ANEAR, | V6 (LINEAN: 112 INONLINEAR) 112 INONLINEART] 16 ILINEAR) | 16 (LINEAR.

EAR AECORDING DENSITY PV ©"o 6.0 "o N 61

SURFACE AECORDING DENSITY 14 114 14 | 7%
TRANGMISSION RATE IMBPS| 24 28 - "D | 2& 248
SUBCO0E CITY 1KBPS) 73+ m 1 136.8 | 2731 27131
MODURATION SYSTEM 810 CONVERSION
CORRECTION SYSTEM DOUSLE REED-SOLOMON COOE
TRACKING SVSTEM AREA SHARING ATF
CASSETTE NZE [rwm; TIv e 108
| AECORDING TBAR (M) 120 ' 120 200 120 1 120 : [
TAPE WIOT™ [mmi L I
1ang Tvog METAL POWDER | OXIDE TAPE
TAPE TWACKNESS [um) W=t
TAPE SPRED (mws] o e aom] ew | (30 T uz

RACK PITCH jums 12 500 1 13 501 ! 20 &1
TRACK ANGLE [& -4 X3 c23B T
STANDARD DAUM SPECIFICATIONS 630 90 WAAP
OAUM ROTATIONS fom) 2000 T 000 T 2000 T 2000
RELATIVE SPEED Im s 310 T 188 | 31®m i D X
WEAD AZBUTH ANOLE ; — = 20

Figure 6 Specifications for various recording/playback modes of DAT. [Ref. 1]

Correction codes are use to ensure high quality and reliability of the signal
reproduction. As stated earlier the data is recorded very densely on the tape, and the crude
Bit Error Rate (BER) is rather high. This is overcome by using error correction coding

however.

B. DIGITAL AUDIO TRANSMISSION FORMATS

The development of the digital recorder introduced the need to develop data transfer
protocols that would maintain the digital advantage of immunity to noise. These protocols
for example enable one to record directly from the optical output port of a CD player with
the appropriate interface. To accomplish this and to enable a variety of additional data to
be transferred, the protocols developed contain auxiliary information, such as sample rate,

whether preemphasis is used on the audio signal and the preemphasis characteristics,

21

copy prohibition codes, indexing of music for fast search, and even space for user defined
data.

With the possibility of duplicating music with the highest possible quality the issue
of copyright infringement arose. Actually, the issue arises also for analog recordings but
there is little that can be done to prevent copying of music recorded in analog form.
However the manufacturers realized that with the all-digital recording scheme, they could
actually inhibit copying of music digitally. Thus a copy inhibition feature was written into
the (consumer) standard.

Although several standards have been developed only two will be discussed in detail
here. These are the SPDIF (Sony Philips Digital Interface Format) used for the domestic
consumer machines and the AES/EBU format used in professional applications. AES
stands for Audio Engineering Society, and EBU stands for European Broadcasting Union,
the two organizations that created the professional DAT standard for audio studio and
broadcasting station machines. Other audio protocols that will not be further discussed
here include the SDIF-2 also developed by Sony, PD by Mitubishi, MADI (an extension
of AES/EBU) for multiple channels of audio, DBS for Direct Satellite Broadcast and
CADA, a standard for Cable Digital Audio. In all of these systems the digital audio is
sent serially over a net or from one machine to another. It should be noticed that the
structure of the data sent that way is different from the structure of the data actually
recorded on the tape. Every machine or interface that conforms to one of the standards
mentioned above can manipulate the data in any desired fashion internally but has to

adjust to the correct configuration on transmission or reception. All the error codes and

22

control mentioned above (such as the Reed-Solomon codes, data interleaving, ATF and
Sub codes) are internal and in most cases this information is not available outride the
DAT. Internal standards were set to make the recorded cassettes transportable between

different manufacturers.

C. AES/EBU AND SPDIF FORMATS

In both the AES/EBU and SPDIF formats the audio samples are organized into
blocks. Each audio sample consists of 32 bits taken together, called a subframe. Two
audio samples, corresponding to left and right channels in the stereo case, comprises a
Jrame. Then 192 frames are gathered into a block. The beginning of each block is
marked by a unique preamble, and each channel has a separate preamble. The channels
are denoted by A and B (rather then left and right): the block start preamble is denoted
as Z; the preamble for channel A is denoted by X; and the preamble for channel B is
denoted by Y. The first channel A subframe of a block starts with Z; the rest of the
preambles are Y and X consecutively, until the 192™ frame; and then it repeats. Figure
7 shows the structure of the block and preambles. The overall bit rate of transmission is
between 2.048 Mbit/sec for the 32 kHz sample rate and 3.072 Mbit/sec for 48 kHz. The
detailed structure of the preamble differs for the AES/EBU and SPDIF formats. The two

standards also differ in their hardware physical interface and connector type.

23

The AES/EBU Block format

frame 2

eo){ChAYCth(ChA ¥{ChBZChA iChBFCChA Y|Ch B){CbA \'Chﬂ e
.

fi 190 |
rame e frame 191 N

X - Channel A preamble Block Start
Y - Channel B preamble N
Z - Block start preamble

Figure 7 AES/EBU and SPDIF block format. [Ref. 12}

1. Subframe structure

Each audio sample has 32 bits. The subframe structure is shown in Figure 8.
The first 4 bits, which comprise the preamble, are used for synchronization. (Since the
"data is sent on a single line the communication is asynchronous.) The next 4 bits carries

auxiliary audio and other data; a specific interpretation is not provided by the standard.

The AES/EBU subframe
32 bits
= —
4 bits 4 bits 20 bits 1 bit
- Prd — ¢+—
M
Auitiary |L
syne [l oY s AUDIO DIGITALSAMPLE S |V |U | | P

SYNC : The preamble for the V : Audio sample validity bit.

subframe. U : User data bit.
Auzxiliary data contain information about C : Channel status bit.
the chanael number. P : Subframe parity bit

Figure 8 AES/EBU serial interface subframe format.[Ref. 12]
24

The audio sample itself can be a maximum of 20 bits long although there are applications
that use 24 bits for the audio sample. In this case the auxiliary bits are used as part of
the audio word. As mentioned earlier CD and DAT use 16-bit audio samples, so the
standards support these formats easily.

The flags of the audio samples also convey important information. The most
important is the C flag which delivers the channel information and is transmitted with
every sample or subframe. The C flag is identical for the two subframes within the same
frame. All the flags taken together in a block create the whole message which is 192 bits
long and will be called the C-flag block. The 192 bits of the C-flag block conform to the

standard in which they are delivered whether it is AES/EBU or SPDIF.

2, The AES/EBU professional standard

The AES/EBU codified as the ANSI S4.40-1985 is the professional standard
for data exchange between professional audio devices. The AES/EBU provides for
conveying two channels of periodically sampled and uniformly quantized audio signals
on a single twisted wire pair. The format was designed to support data transmission up
to 100 meters in distance.

The signal is a biphase self-clocking Manchester code, which saves the need
for a separate line for clocking. The twisted-pair cable is designed to improve the noise
immunity of the data. The hardware characteristics conform to the IEEE RS-422A
standaid. The AES dictates use of transformers for better isolation with a required

impedance of 90 to 120 ohms and a voltage level of 3 to 10 volts peak-to-peak. The line

25

is actually a shielded twisted-pair cable with XLR type connector as used with other
professional audio equipment; pin 1 is ground and pins 2 and 3 carry the signal.

The C flag block described earlier is organized into 24 8-bit bytes (192 bits
total). The C flag block contains the information pertaining to the channei. The C flag
block rate is about 250Hz. The most important bytes in the block are byte 0 and bytes 22

and 23. Byte O contains the information shown in Table II below.

Table I BYTE 0 OF THE AES/EBU STANDARD. [Ref. 1]

bit 0: 0 - the data is in the consumer (SPDIF) format
1 - professional format of block

bit 1: 0 - Normal audio mode
1 - Non audio mode (example: master synchronization device)

bits 2,3,4: 0 0 0 - No emphasis indicated receiver default is enabled
1 0 0 - No emphasis used receiver default disabled
110-50/15 us emphasis (CD format)
111-CCITT J17 emphasis (6.5 dB at 800 Hz)

bit 5: 0 - Source frequency un locked
1 - Default and source frequency locked.

bits 6,7: 0 0 - Sampling frequency not indicated 48 kHz is the defaulit.
0 1 - 48 kHz sampling frequency.
1 0 - 441 kHz sampling frequency.
1 1 - 32 kHz sampling frequency.

Byte 0 was very important for the development of the software in this thesis. Byte 22
contains information on unreliable samples in the audio block while byte 23 contains the

channel status data cyclic redundancy check character (CRCC) of the bytes 0 through 22.

26

The associated generating polynomial for the CRCCis G(X) = X!+ X'+ X’ +X* + 1,
where X is a dummy variable in the Galua field; hence the binary divisor word 1s
100011101. [Ref 1]. The other bytes convey information such as channel mode and audio
sample length (bytes 1,2), addressing information (bytes 6 to 13), sampie index (bytes 6

to 13), and the time of the day (bytes 18 to 21). Bytes 3 to 5 are reserved for future use.

3. The SPDIF consumer format

The SPDIF consumer format is very similar to the AES/EBU professional
format. The 192 frames per block and two subframes in every frame is maintained as is
the overall subframe structure. The difference arises in the C block information and its
structure. The C flag block is arranged in twelve 16-bit words (again a total of 192 bits)
with interpretation as shown in Figure 9. The copy prohibition bit mentioned earlier is
the second bit of the control field. Another field that is not specified for the AES/EBU
professional standard is the clock accuracy field. The professional standard assumes the
clock used is of high accuracy and its tolerance is small. Detailed discussion of the
formats can be found in Reference 1.

The hardware connection is also different. This format, being consumer
oriented uses a less expensive interface. The line is a coaxial cable with an RCA type
connector and is designed for short length. A high impedance is allowed on the order of

50 kQ.

27

n 1 2 1 . 3 4 b 4 9 L ‘2 '3 AL
n Y T T T v Y T R S § T T
[CONTROL] 0 N CATEGORY CODE
16§ SOURCE NUMBER] CHANNEL NUMBER Fa]:ccumcu:vl
»
e
T Coneuner we 8 | CATEGORY COOE
L 1: Prolesmonsi use | 000N0000: 2-chennet qeneral formen
03000: No emonges 10000000: 2-chennet Comoact Dwe plaver
L1} C 10x100: 5015 u sec emonass 01000000: 2 PCM
O [w010 Meservay (2 cn emg.) 11000000: 2-charnet OAT
2.1 N 0n110 Reservag 12 on emo) B 1S 0 = CONUMSrIONSSION MOdS
i Cuxnt: Aussrveg (4 v : 1 = orogram weneler moas
3 1 R | 19000: Ouptas ags '$ oG « 0
[0 | 1n1ux: Resorvaa 1uxtn: Reserved
| 4] L f1mx1: Ressrvag 18 | SOURCE NUMBER
20mm: Qigeal Copy oraremes - | 0000: Cont care
[l X1 OKN ooV DermTied 1000: ¢
™ |00 Moge 0 ovon: 2
4] O |x: Reserved 1100: 3
™1 0 |xt: Reswrves :
r{e 1efrern 1
20 | CHANMNEL NUMBER
0000: Oont care
1000: A (LoR cnennet ky 2-chennet
forman
0100: B 1M chennet e 2-channelt
- ‘orman
Lg_ 1190: C — 4111° 0
24 | Sampung equencY
10000 48 ez OOy Meservea
0100 48 kMz 0tmy: Reserven
1100: 32 ity Yiny: Reserved
27 | t0xx: Aeserves
CLOCK ACCURACY
38 1 00: normat 11 Agssrved
01: vaneole
10: fagh
V bit optional
Channel status left = channel status right. pending status number
Control bit 2 = copy permit
Control bit 3 = pre-emphasis
Sampling rate bits in channe! status
Data bits 4-27 to rate
Clock accuracy in channel status
Bits 28-29 to source accuracy

Figure 9 SPDIF C flag block format.[Ref. 1]

28

IIL SYSTEM DESCRIPTION

This chapter describes the 16-bit digital recording/reproduction system. The
description highlights the general system configuration, the hardware of the interface and
the operating software. The major difficulty in developing the High Fidelity signal
recording and reproduction system was the fact that high data rates are involved with the
process -nd the fact that the »rocess runs in the UNIX operating system environment
w . s vt real time vi--ated. The desired High Fidelity recording/reproduction
capability had to be incorporated with no change in the kernel of the operating system or
to the general network architecture. This requirement along with the high rates of the
digital audio data stream (3 Mbits/sec) required use of a dedicated microprocessor board
designated to handle the data transfer in real time. The special microprocessor board also
acts as an interface between the different data protocols, namely, the one used by the

DAT and the one used by the SUN workstation and UNIX environment.

A. GENERAL SYSTEM CONFIGURATION

The recording/reproduction system is comprised of a SUN SPARC 10 workstation,
an interface board based on the Texas Instruments (TI) TMS320-C30 microprocessor, a
Sony DAT model PCM-2700A which conforms to the AES/EBU professional standard,
on analog cassette tape recorder, a patch-cord board, a mixer/preamplifier, a power

amplifier and a set of studio monitor type speakers. IN the main mode of operation digital

29

/,<O microphone digital audio P

Digital Audio Interface D

Tape (DAT b
2pe() digital audio

ISpeaker
B'(,)x SUN
microphone
analog audio analog audio \\’D
Yy v Vv ¥
Mixer/ I‘_ Left Right
i Speaker Speaker
Pre-aTmpilﬁer Channel A) (Channel B)

Power
Amplifier

]

Figure 10 General block diagram of the system configuration.

audio data transfer takes place between the DAT and the SUN workstation. The other
parts of the system provide a high quality listening environment for critical evaluation of
the sound. The analog tape recorder provides a capability to both record and capture
sound on standard audio cassette for compatibility with external systems that do not have
DAT capability. Figure 10 shows the system configuration and connections between the
individual blocks comprising the system. The audio output from the SUN workstation
speakerbox is also connected. This provides for playing the normal 8-bit sound files using
MATLAB or the SUN audio tools through the sound system. Reproduction of this audio

output is enhanced via the preamplifier/mixer, power amplifier and speakers, however.

30

1. System recording/reproduction options
With this new system the options for receiving and storing sound signals have
been considerably widened. In addition to the normal SUN workstation audio mode (8
kHz sample rate with 8-bit quantization) the new system provides 32 kHz, 44.1 kHz, and
48 kHz sample rates for two channels of audio, with 16-bit quantization at the 44.1 and
48 kHz sample rates and 12-bit (non-linear quantization) at the 32 kHz sample rate. The
options for capturing data and storing in digital form are as follows:
. Digital audio data prerecorded on the DAT can be read into the SUN
workstation and stored in a data file.
. Analog audio prerecorded on the analog tape can be digitized by the DAT
and then transferred and stored as mentioned above.
. A microphone can be connected to the analog tape, amplified digitized by the
DAT and stored at the SUN workstation.
. The SUN microphone using the normal audio mode of the station can also be
used as before.
The options for High Fidelity reproduction and recording of digital data are:
. 16- or 32-bit digital audio files sent to the DAT can be converted to analog
signals for monitoring and critical listening.
. Digital audio files from the workstation can be recorded directly on the DAT
(no D/A conversion needed).
. Digital audio files can be converted to analog audio signals by the DAT and

then recorded on the analog audio tape cassette.

31

The analog connections of the system are illustrated in Figure 11. There are
two analog outputs from each of the tape recorders. Each of the output ports of each of
the tape recorders feeds an input channel of the analog audio mixer/preamplifier and an
analog input of the other tape recorder. This connection allows recording from one tape
recorder to the other tape recorder without having the signal pass through the mixer. This
direct recording capability saves additional distortion to the recorded signal that might be

introduced in the analog mixer/preamplifier.

digitat /0 analog

toSUN——p pAT inputs Anslog Tape

SN | Recorder Recorder
analog analog outputs
ontpul

'—T—/ W : Audio patch panel

connection
chamnel § lcllannel i channel 3lcbannel 41

Audio Mixer / Pre-Amplifier

oulput 1 output 2 f outputs to power amplifier

Figure 11 Analog connections of the audio matrix.

32

B. THE INTERFACE HARDWARE

The interface board is based on the TI TMS320-C30 micro-processor and a daughter
module which serves as the AES/EBU and SPDIF transceiver. The TMS320-C30 board
conforms to the S-Bus architecture of the SUN workstation. Figure 12 shows a block

diagram of the interface board. The interface board and the daughter module are described

separately below.

- —[DSP-UNK™ OR SCS1 |
oual Port
SAAM
ZK x 32 SRAM
_ 512K x 32
3 Maximum
g
]
- Serial
3 Interface
@
7]
W - i oy
Slave K
interface Processor } Daughter :
33 MHz (Module ;
el J

Figure 12 The LSI interface board block diagram. [Ref. 10]

1. Interface board

The main component on the board is the TI TMS320-C30 microprocessor. The
board has 32-bit data bus intemally. The daughter module (DM), which interfaces the

board to the AES/EBU or SPDIF data stream, is shown enclosed in a dashed line in

33

Figure 12. The main data and address buses on the board are buffered from it:e host bus
thus enabling different processes on the host and on the board to occur simultaneously.
Transferring data in real time between the host and the board is done through the Dual
Port Random Access Memory (DPRAM) . All the other devices, memory, and the TMS
registers are accessible by the host, but the TMS320-C30 must be halted to avoid bus
conflicts. The ID PROM on the board contains the access codes. These codes are read by
the host at system boot up, and the board is assigned a device number and a virtual
address. Access to a peripheral device is done using the Memory Mapping method, i.e.,
each device has an address in the memory space of the TMS320-C30. Selecting a device
is done by placing its address on the address bus. This address is then decoded and an
ENABLE signal is sent to the device along with a read or a write signal. The memory
map of the board with 64k SRAM is shown in Figure 13. The DPRAM is mapped
between 400000 Hexadecimal (H) and 4007FF H in the address space. The DPRAM
address is calculated absolutely in the programs for the TMS and calculated relatively

in the programs for the host process.

34

Memory Type Size (words) r Wait States Address (hex)

Bank 0 (U1) 64K 0 000000
10 OOFFFF

Bank 1 (U2) 64K 0 010000
10 OtFFFF

Bank 0 and Bank 1 3968K 0 020000
Reflections to 3FFFFF
Dual-Port RAM 2K 1 400000
to 4007FF

Dual-Port RAM 62K 1 400800
Retlections 10 40FFFF
Not Used 4032K 410000

to TFFFFF

DSPLINK 8K 2 800000

to BO1FFF

Reserved 8K - 802000

to BO3FFF

AMELIA 8K 2 804000

to 80SFFF
Reserved 8K . 8060001

to B07FFF

On-Chip Peri- 6K internal 808000
pherals to BO97FF
RAM Block 0 1K Internat 809800
to B09BFF

RAM Block 1 1K internal 809C00
to BOOFFF

Bank 0 and Bank 1 4056K 0 80A000
Reflections to BFFFFF
Dual-Port RAM 4096K 1 C00000
Reflections to FFFFFF

Figure 13 The Interface Memory Map (for 64K X 32 SRAM). [Ref. 10]

35

The Application ModulE Link Interface Adaptor (AMELIA) is the daughter
module (DM) concept used by Loughborough Sound Images Ltd. (LSI). It is an irner bus
that connects the main board to different plug-in modules and is mapped into the memory
space of the main board. The DM used in the system is a module whose /O conforms
to the AES/EBU and SPDIF DAT standards. The address space of the AMELIA 1is
between 804000 H and 80SFFF H although the system in its present configuration uses
only a small portion of this. The detailed address map of the AMELIA as reflected in the
board Memory Map is given in Table III. The rest of the AMELIA address space is also

not in use. Table III is specific for the AES/EBU DM and could be slightly different for

Table I AMELIA REGISTER MAP.

Location (hex) Read access Write access
804002 channel A input data channel A output data I
804005 *NU Timer 1
804006 channel B input data channel B output data
804008 NU User Control
80400A AMELIA status AMELIA control
80400B Interrupt status Interrupt Mask
I 80400F NU Configuration J

*NU denotes Not Used.

other types of daughter modules. The data bus hardware configuration of the board is such

that all AMELIA registers are connected to the higher 16 bits (out of 32 bits) of the bus;

36

the lower 16 bits can be ignored. This fact needs to be considered in the programs written
for the board, and the data in and out from the AMELIA should be shifted 16 bits left
when writing and 16 bits right when reading. Figure 14 presents the data bus connection

between the main interface board and the DM.

Main board and daughter module data bus connection

bit 31 MSB MSB bit 1§

daughter module

Main board ' 16-bit data bus
32-bit data bus and registers

bitie | | LSBbito

the lower 16 bits are set to '0’

bito LSB [| 7

Figure 14 Main board data bus connection to the DM bus.
2. AES/EBU Daughter Module
The AES/EBU D24AES daughter module provides a digital audio interface
to any equipment that conforms to the AES3 professional balanced data format and to
the consumer CEI IEC 958 standard unbalanced data format, also known as SPDIF. A
functional block diagram of the module is illustrated in Figure 15; both receive and
transmit modes of operation are depicted. The main component of the DM is a digital

audio transceiver. This transceiver conforms to the digital audio standard and is the device

37

audio transceiver. This transceiver conforms to the digital audio standard and is the device
that is connected to the digital line in and digital line out of the DAT. The data that
arrives from the DAT is locked on to and decoded by the transceiver. The output of the
transceiver is a parallel 16 bit word originating from the incoming serial digital audio
transmission. The reverse procedure takes place when a digital audio sample is
transmitted; the sample is sent as a parallel word to the transceiver which is then
translated and sent out serially.

The D24 AES DM has two main modes of operation, the 16-bit mode and the

32-bit mode. These modes of operation are programmed via the Control Register. In the

OM/D24AES
For oulest sample e of
L ROM3 |
449 Wz
D w1
ooy
Trangmitier
Word Clock
- L W
T, OuY

- | _]chennet 0 oUT
Ch0 & 1 Oviow - ' out

Regsters] me
AMELIA Channet 0 ¥ Conractor
CHo & t nput] T
Ragsian | o] Chonnet Recoversd

| AESEBU N
s |

Figure 1§ AES/EBU Daughter Module block diagram. [Ref. 12]

38

16-bit receive mode each audio sample is filtered by the transceiver, all framing s
stripped off, and only the 16 most significant bits are transferred to the user. In 16-bit
transmit mode, 1.e., when the data flow is from the board to the DAT, only the 16-bit
audio sample should be sent to the transceiver; all necessary framing is added by the
transceiver in this mode of transmission. The 16-bit mode is the simpler of the two
modes of operation. The advantage of the 16-bit mode is its simplicity and that it requires
only 16 bits of storage per data sample. The disadvantage of this mode is that the
transceiver adds default framing to the audio sample. This defauit framing allows data
transfer to the DAT used in the system only at the 48 kHz sample rate, which may or
may not be desired. The more general mode is the 32-bit mode. In this mode the program
receives complete information for the audio sample including the flags and up to 24 bits
of audio sample data. Due to the hardware configuration and the different data bus width
of the board and the DM (Figure 15), two read cycles need to be executed in order to
fetch the entire digital data word, and when transmitting data two write cycles are
required to write the entire digital word into the transceiver. The program on-board the
TMS320 has to properly set the C flag. (The C flag is the most important flag for proper
system operation and is described in Chapter II). Appendix B provides additional

information about the register structure and bit content of the AES/EBU daughter module.

C. THE SYSTEM SOFTWARE
The operating system (host) software and the software for the digital interface were

written in the C language as part of this thesis. The host software is divided into two

39

main programs, one for storing a digital audio segment prerecorded on DAT to the
system's disk, called "run_save," and another for playback/record (to DAT) an audio file
stored on the system's disk called "run_play." These programs will be referred to as
"main programs" or "main processes.” Each of the main programs has a subprogram
associated with it, which are designed to run on the interface board. The subprogram of
"run_save" is called "“sp2ae_save" while the sub-program of "run_play" is called
“sp2ae_play." In the SUN UNIX file system the source codes for the above programs
have the ".c" suffix, the main executable programs file have no suffix, and the
subprogram object files have the ".out” suffix. Figure 16 illustrates the general software
block diagram, relationship between the main program and the subprogram, and the data
flow. Note that the main programs control the subprograms. The control of the
subprograms is done by first downloading the subprograms to the interface board at a
certain point in the execution of the main programs and then controlling the start and the

end of the execution of the subprograms.

40

main C program subprogram

digital audio serial digital

file ‘-— run_save ki sp2ae_save
saved - - audio input

on the disk

UNIX user I

interface control from main program

main C program subprogram

playback serial digital
of run_play ———ﬂ splae_play —>
pre-recorded audio output
disk file

T

control from main program

UNIX user
interface

Figure 16 The software main block diagram.

41

The aim of the subprograms is to control the data transfer between the Input/Output
(1/0) port of the DAT and the SUN workstation in realtime. The data transfer between
the serial DAT I/O port and the SUN workstation is done in a few stages using the
"Double Buffering" technique described in detail later in this chapter Figure 17 illustrates
the data transfer process between the system disk and the digital audio I/O port. A
gradual data transfer is needed to synchronize the real time fixed rate data stream of the
DAT to the non-real time UNIX operating system. The main program builds an array for
the entire audio segment in the RAM of the SUN workstation When storing an audio
segment from the DAT, the entire array is filled and then sent to the disk. In outputing

to the DAT the array is read from a file completely and then sent to the interface and

entire audio segment

array

..................... double buffer

----------------- data blocks transfer arrays serial
sy“em's eremrmeneannents d Ig“.l
disk audio

PN <« > <> P

system's work-station ‘ TMS 320 board i daughter module
disk : ;

Figure 17 Data flow stages between the DAT I/0 port and the system disk.

42

from there to the DAT. The data is transferred between the interface and the array in
blocks of 960 32-bit words. The audio array although dynamically allocated is designed
to contain an integer number of such blocks; thus the recording/playback time resolution
1s 20 msec at the 16-bit mode and 10 msec at the 32-bit mode assuming a 48 kHz sample
rate.

The main C programs use some library functions from a library provided with the
interface hardware. These C library and header files are called "sdsp30lib_st.c" and
"sdsp30lib.h" respectively. The functions used in developing the main programs assist
with data transfer and control of the board. The subprograms "sp2ae_save" and
"sp2ae_play" were also written in C and debugged using the TMS320 assembler language.
The TI TMS 320 software development kit was used to compile and link the written C
source code of the subprograms. A debug software monitor "smon30" from LSI was used
to examine the real time processes.

1. Main program 'fun_save"

The program "run_save" retrieves an audio segment from the DAT and stores
it on the system's disk. Figure 18 illustrates the flow of the program. The first hardware
check is meant to insure that no other process is using the interface, in which case an
error might occur. The data structure for storing the entire audio segment is allocated
dynamically. The data structure is explained later in the chapter in detail. Dynamic
allocation is used to respond to the need for varying record time specified by the user at
run time. The whole audio segment is recorded in the audio array and is then sent to the

disk. Disk access is very slow compared to the other processes, thus it is done after

43

storing the entire audio segment in the data array. When the available memory is not

sufficient to contain the desired data segment the user is informed about the n-aximum

check hardware prompt user and exit
for interface availability when hardware
failure occurs
user dialog:
1. set input and bit mode
2. set recording time
3. set header option
create data base for prompt user when
enlire audio segment memory is not sufficient
download modes and prompt user and exit
subprogram to TMS if subprogram is not
board and start running found
subprogram
read data from TMS
DPRAM buffers
in real time
terminate recording o Prompt user for the audio
process, create file and segment length and
store the audio array in permission to store the
the file data on disk

Figure 18 Flow chart for the program "run_save."

44

length segment that can be stored in the accessible memory. The user provides the name
of the file in which the audio segment is stored, which should have suffix ".dau." If no

suffix is specified ".dau" is appended automatically.

2, Main program "run_play"

The program "run_play" is the main C program for playing and/or recording
(on DAT) an audio file which was previously stored on the disk. The functional flow of
the program is illustrated in Figure 19. The structure of the program is very similar to
“run_save" with some changes. The length of the audio array in this case is determined
by the length of the audio file. The data from the file is read entirely into the data array;
then the data from the array is sent in blocks to the real time process which is running
on the interface board. The "run_play" program contains another related feature which is
not shown in Figure 19. This feature is meant to check the hardware of the interface. A
second DAT, using the SPDIF port, can be connected to the interface, and digital audio
can be transferred from one DAT to the other through the interface. This is mainly a
debug feature; when working properly there is no distortion of the sound recorded on

the main DAT. This feature is run using the 32-bit mode.

45

check hardware
for interface availability

prompt user and exit
when hardware
failure occurs

¢

user dinlog: get input file
{. set output and bit mode
2. set sample rate

3. set header option
4. set framing option

prompt user and exit
il input file was not

found

v

create data base and read

in the andio file

prompt user when
memory is not sufficient

y

dJownload modes and

subprogram to TMS
board and start running
subprogram

prompt user and exit
if subprogram is not
found

!

send duta to TMS DPRM

buflers in real time

{

terminate playback
process, create file and
store the audio array in
the file

Figure 19 Flow chart for the program "run_play."

46

ﬁ—

3. Data sttucture and double buffering method
The data structure dynamically created during run time is comprised of a
connected list. Each element of the list is a C structure consisting of an array which

contains 1920 32-bit words (10 AES/EBU blocks or two real time buffers sent or

received from the sub-program), a flag word that denotes if the local array was filled, and
a pointer to the next structure. Figure 20 illustrates the structure and the list connection.

The pointer of the last structures points to 'NULL'. [Ref. 5]

The connected list data base structure

array Head of list
1920 structure.

32-bit
words

full flag
pointer =P

The pointer points o the
next structure.

The full flag denotes that - -p "Tail" of list
the array is full. structure.

Each array contains 2 buflers sent from the TMS double buflering
process.

—%"NULL"

Figure 20 Data base connected list and the unit structure.

47

A double buffering technique is used to fill this structure because there is a
need to coordinate the two processes with two different rates of data transfer. Ona is the
rate between the interface and the DAT tape which is fixed and known; the other is the
rate at which the data is finally stored on the system's disk, which is unknown and
random due to the scheduling provided by the UNIX operating system and other processes
that can occur simultaneously. The real time data transfer rate can be thought of as the
customer, and the UNIX data transfer rate can be thought of as the server. The basic
assumption that enables the whole process of data transfer to succeed is that the mean rate
of servicing is faster than the rate of data entering the system. To fill gap times in
service availability, buffers are used to store the data until the server is available. Then
the server can process and fetch the whole buffer very rapidly. Double buffering is used
when simultaneous access to a single buffer can lead to conflict errors. With the use of
two buffers, when one buffer is filled by the fixed time process the other buffer can be
read by the random time process. After the completion of servicing the buffers are
switched, and the second buffer is filled by the fixed rate process, and the first is serviced
by the server. This avoids any conflict. Figure 21 illustrates the double buffering data
transfer and control used in the program. The flags and the buffer switching is done by
the fixed time processes. The status is constantly read by the host, and when a buffer is
ready its contents are transferred via the UNIX system to the storing program, or

rewritten in the case of playback program.

48

Double buffering data transfer

ready A
buffer
. A data The TMS process

man / array '\A sets the READY flag
host when a buffer is filled
process or totally read out,
reads the) ¢ readyB | ¢¥— the other buffer's flag
ready is set to NOT READY.
Nags \ buffer /

B data

array

. Figure 21 Double buffering method block diagram.

4. Audio file structure

The structure of the disk file in which the audio data is stored is related to the
bit mode of operation (16-bit mode or 32-bit mode). In the 16-bit mode each audio
sample is represented by 16 bits, and only the audio sample itself is stored as a 2's
complement (signed) integer. The data samples are interleaved, i.e., the first sample is
from channel A, and the second sample is from channel B. This repeats until the end of
the file. In the 32-bit mode the audio and framing data are both stored. The first 16 bits
is audio from channel A. This is followed by the audio from channel B, then 16 bits of

framing for channel A, followed by 16 bits of framing for channel B. This repeats until

49

the end of the file. The data file format is summarized in the Table IV below. At the
sampling rates used by the DAT, the audio files can be quite long. For example, a 10
second audio segment recorded at the 48 kHz sample rate would produce 480000 32-bit
words in the 16-bit mode and 960000 32 bit words in the 32-bit mode. Even the 16-bit

mode data file leads to a size on the order of a megabyte of data.

Table IV THE AUDIO FILE STRUCTURE.

The audio file structure in the 16-and 32-bit modes

16 - Bit mode 32 - Bit mode
audio sample channel A 16 bits audio sample channel A 16 bits
audio sample channel B 16 bits audio sample channel B 16 bits

iraming data channel A 16 bits
framing data channel B 16 bits

audio sample channel B 16 bits framing data channel B 16 bits

S. Subprogram 'Sp2ae_save"

The real time sub-progra n "sp2ae_save" transfers data from the DAT to the
host process "run_save" via the double buffering scheme. The program flow chart is
shown in Figure 22. The modes of operation are set prior to program execution by the
host process in specific designated addresses. The sub-program reads those preset modes
and sets the hardware configuration accordingly. A delay loop of about 1/2 second was

added to ensure stabilization of the Phase Lock Loop (PLL) in the receive mode. This

50

ﬁ

time was established after a few preliminary trials. The data transfer can start immediately
after this loop. The process is signaled to start the recording by a flag sent from the host
when the user hits the ENTER key. A header feature was added to synchronize the start
of a desired data segment within 1 sample. The need for header and its implementation

are described in the next subsection. The data to the host is sent through the DPRAM

using the double buffering method described earlier.

read modes of operation
set registers and hardware
accordingly

!

start the danghter module
operation

I

wait for PLL lock and delny

loop finish to ensure
stabilization

audio segment siart (if desired)

search for header or block start to synchro-i11

DAT to host process
untill terminated by host

Figure 22 Flow chart for program "sp2ae_save".

execule duta transfer l'ron1

51

6. Subprogram 'sp2ae_play" and header inclusion
The "sp2ae_play” process is the subprogram for "run_play". This piogram
transfers data from the host process to the DAT output port for playback or recording on
a tape. The flow diagram is shown in Figure 23. This program creates the header that is

meant to be the synchronization signal when retrieving the file again. The program also

read modes of operation
set registers and hardware
accordingly

!

start the danghter module
operation

1

create and send idle data to
ensure DAT synchronization
and stabilization

create header and auxiliary framing for rates
other than 48 kilz (if desired)

start data transfer from
the host process to DAT
wntil terminated by host

Figure 23 Flow chart for program "sp2ae_play."

creates default framing which is necessary to enable playback, using the 32-bit mode, of

a file stored previously in 16-bit mode in sampling rates other than the 48 kHz sample

52

W

rate which is the default rate for the specific DAT used in the system. A senal message
of zeros is sent to the DAT prior to the actual data transfer to let the DAT synchronize
on the proper mode of operation and to allow the intemal PLL circuity to become stable.

The header feature was added to help the user precisely locate the start of

recording of an audio segment. It is very difficult to start the tape playback precisely

using the controls on the DAT. The precision might be on the order of half a second
which will introduce about 24000 additional samples. Thus without some kind of
additional help it is practically impossible to locate the exact beginning of the desired
audio segment. The header is a unique pattern recorded on each of the two channels; each
channel has a different unique word, and both words need to appear simultaneously to
declare the start of a header block. The header structure is illustrated in Table V and
consists of a block of unique words (192 words) recorded on each channel followed by

a block of zero words. The probability of a false header start declaration is 2. (In trials

Table V HEADER MESSEGE FORMAT.

‘, : e —m——
| 192 header unique word

192 zero word

Following audio segment

using the header with different types of audio segments a false header was never

declared.) The unique header word for channel A is eeeeH and for channel B 1111H. The

53

absolute values are the same, but the sign is opposite. Figure 24 illustrates the header
recorded on each of the channels when the audio data is later retrieved into MATLAB
and plotted. Note that the header option operation is suitable for retrieving data from a

DAT but not from the analog tape recorder.

Channel A the audio and header signal

2000 Y T T T — T T Y
I |
-2000} - -
4000} - - -
-00000 4500

TN

500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 24 The header signal as recorded on the start of an audio segment.

54

.

D. RETRIEVING AUDIO FILES INTO MATLAB
The audio files used by the "run_play” and "run_save" programs can easily be read

into MATLAB. Two MATLAB functions were written, "retrieve_dat.m" which reads a

"s dau" file in the MATLAB workspace, and "store_dat.m" which stores a vector of
sound data into a "*.dau" file that can later be sent to the DAT for playback. When a file
is brought into MATLAB it is in matrix form. If the file was recorded in the 16-bit mode
then the matrix has two rows (one for each channel) and a number of columns equal to
the time in seconds multiplied by the sample rate. If the file was recorded in the 32-bit
mode the matrix has four rows. The first and second rows are the audio data fur channels
A and B respectively while the third and the fourth rows are the corresponding framing

data. Figure 25 illustrates the matrix rows as plotted in MATLAB.

55

) x 10* Channel A audio

200 300 400 S00 600 700 800 1000

Channel B framing

Figure 25 An audio segment captured using the 32-bit mode.

56

IV. PERFORMANCE TESTS

This chapter describes the measurements made to test the performance of the digital
audio system. The measurements focused on two major subjects: purity of audio
reproduction and purity of audio recording. The header sync.hronization capability of the
system was also tested for proper operation. The measurements were made in the audio
band between 20 Hz and 4 kHz. This bandwidth was chosen in order to compare the
results to the present audio capability of the SUN workstation, which provides 8-bit

digital audio only in this band, and which serves as the reference.

A. AUDIO REPRODUCTION PURITY PERFORMANCE
The audio reproduction performances were tested to measure the following

parameters:

+ Signal to noise ratio.
» Total Harmonic Distortion.

* Reproduction linearity (Intermodulation products).

The equipment used to measure these parameters included an HP 3582A audio frequency
spectrum analyzer and an HP 334A audio frequency distortion analyzer. The measurement
procedure was as follows. Discrete frequency sinusoidal signals were synthesized in

MATLAB. The signals were then sent for audio reproduction to the preamplifier. The

57

input signal to the preamplifier was the signal measured in order to avoid any distortion
or interference that night be added by the preamplifier. The signals to the preamplifier
were sent through the interface output to the DAT, which provided A/D conversion, and
from the analog balanced output of the DAT to the preamplifier (Chapter III, Figure 10).
The reference measurement was made by sending the same signals from the SUN
workstation through the speakerbox to the preamplifier input where the reproduced analog
signals were again measured. The frequencies of the sinusoidal signals synthesized were
1 kHz and 1.5 kHz while the sampling rates were 8 kHz for the SUN workstation and
speakerbox, and 48 kHz using the DAT. To provide some of the results shown here the

monitor of the spectrum analyzer was photographed. Table VI summarizes the results.

Table VI AUDIO REPRODUCTION PERFORMANCE MEASUREMENTS

m
Audio reproduction Audio reproduction
using the SUN using the DAT output.
speakerbox output. 16-bit linear,
8-bit p-law, 48 kHz sample rate

8 kHz sample rate

Signal to noise ratio 50.6 dB 949 dB

THD (%] 1.2 % less then 0.1 %

(the limit of the meter)
Signal to 42 dB for the highest more then 66.8 dB.
Intermodulation product | intermodulation product | (Measurement was
ratio. signal. limited by the dynamic
range of the spectrum
analyzer.)

58

The following figures provide photographs of the spectrum analyzer monitor for the
various measurements. Figure 26 shows the spectrum of the 1 kHz sinusoidal signal seen
with the noise as measured at the output of the speakerbox. The marker is on the signal.
Figure 27 is the same as Figure 26 with the marker located on a high peak of the noise.
The difference between the marker values in Figure 26 and Figure 27 (-15.8 dB - (-66.4
dB)) is the signal-to-noise ratio i.e., signal peak power to noise peak power (50.6 dB).
Note the center frequency of the signal reproduced by the speakerbox is 980 Hz and not
1 kHz because the sample frequency used in MATLAB to synthesize the signal was 8192
Hz and the speakerbox sample frequency is 8 kHz exactly. This is of no consequence in

the measurements however.

Figure 26 Output signal from the SUN speakerbox; the marker is on
the signal.

59

Figure 27 Output signal from the SUN speakerbox; the marker is set on
a noise peak.

Figure 28 Spectrum of the 1 kHz sinusoidal output signal from the
DAT.

60

Figure 28 shows the spectrum of the 1 kHz sinusoidal signal as reproduced by the DAT.
The noise is not seen in Figure 28 due to the high signal-to-noise ratio and the dynamic
range of the spectrum analyzer which is 80 dB. Figure 29 shows the noise only. In order
to measure the noise a zero level signal was sent to the output of the DAT. This enabied
us to reduce the measurement level of the spectrum analyzer, so the noise could then be

measured.

Figure 29 Noise only output from the DAT with zero output signal.

61

Figures 30 and 31 show the intermodulation products created when two sinusoidal
signal were synthesized and sent to the audio ports. The frequencies used were
approximately 1 kHz and 1.5 kHz. The first order difference signal is approximately 500
Hz. Several significant intermodulation product terms can be noticed in the measurement
of the SUN workstation audio reproduction (Figure 30). For the DAT the level of any
intermodulation product terms were beyond the minimum display limit of the spectrum
analyzer. The measurement level could not be reduced due to the requirement that both

of the signals should be present to make the measurement.

Figure 30 Output signal from the SUN speakerbox; the m. s on the
first order difference intermodulation product.

62

Figure 31 Spectrum of the output signal from the DAT. (The
intermodulation products are under the measurement floor of the spectrum
analyzer.)

B. AUDIO RECORDING PERFORMANCE
The second important quality required - - e system is the accuracy of recording

an external signal. The parameters measured are:

» Signal .c noise ratio.

¢ Recording linearity.

The measurement procedure was as follows. A signal generator was connected to
the input as a source providing a 1kHz sinusoidal signal. The signal was recorded into

a file on the workstation disk. The spectrum of the signal was measured by the HP

63

spectrum analyzer to serve as a reference, and the monitor of the spectrum analyzer was
photographed. The signal was then retrieved from the file into MATLAB. In MATLAB
an FFT was performed, and the result of the FFT was compared to the input signal
spectrum. The recording linearity of the system was measured by a similar procedure,
but this time a combination of two signal generators having two discrete frequencies were
used as the source.

The SUN workstation audio input is a microphone level input, so the source signals
were injected to the preamplifier directly from the signal generators, the signal was
amplified and send to the speakers, the microphone was put near one speaker, and the

signal was recorded. The measurements are summarized in Table VII.

Table VII AUDIO RECORDING PERFORMANCE MEASUREMENTS.

SUN audio tool DAT input recording
recording 16-bit linear

8-bit pu-law 48 kHz sample rate
8 kHz sample rate

50 dB direct input greater than 85 dB
20 dB using microphone | using direct input
recording,

| Highest intermodulation -30 dB - 79 dB
product.

64

Figure 32 shows the FFT of the input signal recorded through the SUN microphone.
The audio signal driving the microphone was from the speakers when a | kHz signal was
input to the preamplifier. There are a lot of undesired spectral lines probably originating
from the equipment noise in the room (neon noise, computer cooling fan noise, and other
ambient noise). We expect the signal would be considerably cleaner if it could be injected
electrically. Unfortunately the "line in" of the speakerbox is not supported by the SUN
software, and injecting the signal from the signal generator directly into the microphone
input can produce many undesired harmonics due to the large impedance mismatch which

drives the input of the speakerbox to nonlinear operation.

The mput sound through Sun microphone

&

Relativa amplitudes [dB)
g

120, 7000 2000 3000 4000 5000 6000 7000 8000 9000
frequency [Hz)

Figure 32 FFT of the | kHz input signal through the SUN workstation

microphone.

65

Figure 33 illustrates the magnitude of the FFT of the 1 kHz signal recorded through
the DAT input as computed in MATLAB. Although there are some harmonics that
accompany the signal, these harmonics originated in the signal generator. Figure 34 shows
a photograph of the signal generator input as measured by the audio spectrum analyzer.
The FFT of the signal in MATLAB follows the input signal very accurately. The values
of the FFT were normalized to the peak power value. Both measurements used a

rectangular window.

FFT of 1KHz input sound through DAT
c — T T — T T R ¥
-20r - .
g
%
o
g q
] \
« -80r . .
.100[. .
.1200 500 1000 1500 2000 2500 3000 3500 4000 4500 S000
frequency [Hz]

Figure 33 FFT of the 1 kHz signal recorded through the DAT input.

66

Figure 34 Photograph of the spectrum of the 1 kHz input signal to the
DAT

67

-,

Figure 35 illustrates the FFT of the signal comprised of two discrete frequencies that
was recorded through the SUN microphone. The spectral line noise is again high. The
first intermodulation difference product is marked with a point and an arrow. There are
also spectral lines in the 60 Hz vicinity that are very high (20 dB below the signal) which

are generated by the equipment in the recording room.

The input sound through Sun microphone

O¢ T T T

input: 1KHz and 1.5KHz

Relativa ampiitudes [dB)

- ‘ 2G A h i L L 1 i L 1
0 1000 2000 3000 4000 S000 6000 7000 8000 9000
frequency {Hz)

Figure 35 FFT of the two-frequency signal recorded through the SUN microphone
input.

68

Figure 36 illustrates the FFT of the signal that was recorded through the DAT input.
The signal is comprised of two frequencies, | kHz and 1.5 kHz. The signal was injected
into the DAT analog input and then sent to the SUN workstation through the interface.
The sample rate used is 48 kHz. The harmonics that appear in the FFT of the signal again
originate in the signal generators. The signal intermodulation product that can be related
to the DAT is the signal at the frequency 3.5 kHz, which is 78 dB blow the 0 dB
reference level. Figure 37 shows the spectrum of the input signal as measured by the
HP spectrum analyzer. The FFT of the signal in MATLAB and the spectrum analyzer

both used a rectangular window. As mentioned earlier, direct connection of the signal

FFT of 1KHz and 1.5KHz input signals through DAT

T T

Relativa amplitudes [dB)

ooF o A }"J
-1000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
frequency [Hz)

Figure 36 FFT of the two-frequency signal recorded through the DAT input.

69

generator output to the microphone input leads to production of multiple harmonics and

is thus unsatisfactory.

Figure 37 Spectrum of the two-frequency input signal measured by the
spectrum analyzer.

70

Figure 38 illustrates the FFT of the two-frequency signal when it was injected
directly into the microphone input. The original signal consists of 1 kHz and 1.5 kHz
sinus waves. The many intermodulation products are due to the nonlinear operation when

the signal generator is directly piugged into the SUN station microphone input.

FFT of 1KHz and 1.5KHz recorded through the SUN microphone input

c s L
-10} -
_ -eor 7
«
-
i)
£ 4
g
E
% - -
E
e
: N
=
g -
>
@
©
1

6000 7000 8000 900

Figure 38 FFT of the two-frequency input signal recorded through the SUN
microphone input.

71

C. SOFTWARE PERFORMANCE TESTS

The system operating software was tested for proper operation. The test procedure
for the software is mainly operational. The system audio recording and reproduction
performances were tested for proper undistorted operation.

Software counters were introduced in the main programs (during the development
and debug stages) to indicate whether the application is fast enough in order not to lose
any data sent in realtime. The counters indicated the number of times that the main C
program tries to reach a buffer of data until the buffer is ready to be transferred by the
realtime process that runs on the TMS board. The counter values varied with the change
in the sample rate and the bit mode as expected. (The 32-bit mode is twice as fast as the
16-bit mode, and the data buffers are filled in half the time.)

The programs were allowed to record for various time durations, and the audio
result of the recording was monitored for proper reproduction. The general results are that
the system operates without any loss of data for about 30 seconds for the highest sample
rate (48 kHz and 32-bit mode). The length of proper operation of data transfer is related
to the application load on the system. When the workstation was loaded by many
processes the proper operation time was reduced; when there were only a few tasks and
none of these are time demanding the proper operation time was extended. The Windows
background program was found to place a medium load on the system even if some of
the applications were in the icon format. Better performance and longer uninterrupted

recording time weree achieved when the program was run outside of the windows environment.

72

The header synchronization was tested for accurate synchronization of a segment.
When the header was used the accuracy of the segment start was found to be precise to
within one sample.

The last test was the extraction of the AES/EBU or SPDIF framing data from some
audio samples recorded with the AES/EBU format or with the SPDIF format and
comparing this data to the standard tables of the format described in Chapter II. The

results of the framing data extraction showed perfect match to the standards.

73

V. CONCLUSION

The system developed and investigated in the course of this thesis considerably
enhances the audio recording and reproduction capability of the SUN workstation used
in the DSP lab for sound processing. The use of a smaller quantization step and extended
sample word as well as the higher sample rate was proven to provide better signal-to-
noise ratio and larger bandwidth for the analog audio signals. The audio reproduction
performance was enhanced by more than 40 dB, and the recording performance was
enhanced by more than 30 dB. In addition, using 16-bit linear quantzation improves the
system linearity, which is of great importance to the audio evaluation of signal processing
algorithms. The performance achieved assists in capturing audio input data much more
precisely and cleanly for later processing as well as provides exceptionally clean output
for monitoring and direct digital recording. The number of options for recording and
reproducing audio data were increased, and the audio tools were integrated into a
complete hardware/software system.

The real time operating regime, which the TMS interface board uses, demands
programming considerations that are much different from a non-realtime C program. Two
methods of handling data transfer service requirements, namely, the interrupt method and

the polling method, were tested in the course of the software development. The polling

74

method proved to be more efficient for this application and provided higher undisturbed
throughput to the non-realtime UNIX application running on the host workstation.

The UNIX environment in which the new audio application tools perform is not the
ideal operating system. Although the throughput of the workstation S-bus is sufficient to
support the high data rate required for High Fidelity audio transfer associated with the
DAT format, the non-realtime UNIX operating system does not support this application
in an optimal way. The host program running under UNIX and providing the data transfer
has no control over the scheduling of time slices and is subject to interruption and
subsequent loss of data. The maximum uninterrupted audio data transfer time is thus
limited and depends on the applications load on the system. For direct digital recording
of data segments lasting more then a half minute, therefore, it is advisable to ask remote
users to log off of the workstation and to operate from the command line (i.e., not under
the windows environment) to minimize interruptions.

To avoid some of these disadvantages, two approaches could be considered:

+ Using some other (real time) operating system or modifying the kernel of the UNIX
system in such a manner that will give higher priority to the host program
controlling the realtime application.

» Enlarging the DPRAM buffer space on the interface board to the order of 100k
words to compensate for the time loss introduced during application switching by
the operating system.

The system as tested performed very accurately for short duration audio signals, such as

transient signals or short speech segments however.

75

APPENDIX A. OPERATING INSTRUCTIONS AND USER GUIDE

Appendix A describes the operation of the system and can be used as a guide for
the beginning user. The user is advised to read the DAT PCM 2700A operation manual

and the analog tape user manual for proper operation of these devices.

A. CAPTURE and DIGITIZATION OF AUDIO DATA
This section describes the hardware setting and the software operation in order to
save an audio segment onto the system disk for later use.

1. Hardware setting

The system can record the following audio sources:

e Audio segments prerecorded on a DAT cassette in digital format.
* Audio segments prerecorded on analog cassette.

» Speech using a microphone connected to the analog tape deck, which is amplified
and then sent to the DAT for digitization.

In all of the operation modes the audio is sent digitally from the DAT to the workstation.

a Capturing from the DAT

Capturing a digital audio segment prerecorded on a DAT cassette is the

simplest mode of operation. The software procedure to save the data in digital form is

76

started (see subsection 2. below) and the DAT is operated in playback mode at the

appropriate time.

b. Capturing sound from the analog cassette player
To capture an analog audio segment from the analog tape the hardware
setting is as follows:
1) The DAT input selector is set to analog input. Then the INPUT MONITOR
switch on the front panel is set to INPUT.
2) The analog cassette player is then operated in the playback mode. The audio levels

should be adjusted not to reach the overioad level of the analog tape and the DAT
input.

The tape is then played back to the software that saves the data in digital form.
c. Speech capture using a microphone
The following setting should be made to capture speech or sound

through the microphone:

1) A microphone is connected to the microphone input of the analog tape deck.
2) The analog tape deck is set to RECORD mode with the PAUSE button pressed.
3) The input level is adjusted not to exceed the overload input limit.

4) Steps 1,2 of subsection b above are then reapeted.

The sound is then recorded thrcugh the microphone to the software that saves the data in
digital form. Note if the microphone output level is low a line amplifier is required to be

connected in series between the microphone output and the tape deck input.

77

2. Software operation

The software is operated after the proper hardware audio settings have been
made (see above). The recording program called "run_save" should be accessible from
every directory for any user in the DSP SUN network. (If this is not the case notify to
the system administrator.) The software is invoked by entering the program name
(run_save) at the command prompt. The software is controlled from menus. (When the
program is invoked it automatically checks to see if the interface board is responding and
if no other application is using the interface; if the board is not ready the program is
terminated with an error messege to the user). The first menu screen is:
Select mode of operation:
1 - AES/EBU 16 bit
2 - AES/EBU 32 bit

3 - SPDIF 16 bit -
4 - SPDIF 32 bit ~.

-~ .
-

The default is the AES/EBU 16-bit mode, which is most used. AES/EBU 32-bit mode
is used only if the user wishes to store the framing information along with the audio data.
Using modes 3 or 4 (SPDIF) requires other DAT settings on the rear panel (see DAT
instructions manual). The second menu question is the length of the sound segment to
be captured in seconds. A number is expected here (not necessarily an integer). The time
is rounded to the nearest 10 or 20 millisecond segment depending on the bit mode. The
user is not asked about the sample rate, this parameter is adjusted automatically by the
hardware of the interface. For prerecorded digital data this parameter is the same as the
data recorded; for data recorded from the analog tape deck or microphone the sampling

rate is set manually on the DAT deck. The third menu question asks whether a header is

78

prerecorded with the audio segment. The header choice should be selected only if a
header already exists. If the user choses the header option when a header was not
prerecorded the recording is not executed and the program hangs. (Use ~C to terminated
the program.) On completion of recording the user is informed of the length of the
captured audio segment in words and asked if the captured data should be saved. If the
answer i1s NO the program is terminated. If the answer is YES (the default) the user is
asked for a file name. Thr. user should enter the name of the file without extension. The
extension ".dau" is added automatically. The data is stored in the user's current directory

and the user is prompted about the form in which the data is to be stored in the file.

B. PLAYBACK OF AN AUDIO FILE AND RECORDING ON TAPE
The playback procedure is similar to the sound capturing procedure but the steps

are reversed in order. The playback modes are:

Playback of an audio file for listening or monitoring.
» Playback of an audio file and recording it on the DAT.
« Playback of the audio file and recording it on the analog tape.

 Direct digital dubbing mode. This mode requires a second DAT and is for hardware
check.

1. Harware setting
The hardware setup in the playback mode depends on the mode of operation.
The digital audio data transfer is from the SUN workstation to the DAT via the digital

inputs of the DAT. The PCM 2700A professional DAT deck has two digital audio inputs.

79

The input selection function is split between the rear panel switch (which determines
whether an AES/EBU or an SPDIF format DAT will be the input) and a switch on the
left side of the front panel (which determines whether an analog signal or a digital signal
is the input, and the sample rate in the case of analog input signals). Tue selector
positions should be set on AES/EBU for the rear switch and DIGITAL INPUT for the
front switch.

a Playback for monitoring setup

The setup for this mode is done by the following steps:

1) Set the INPUT selector on the rear panel to AES/EBU.
2) Set the INPUT MONITOR switch to INPUT.
3) Set The INPUT selector on the front panel to DIGITAL.

4) Adjust inputs | and 2 of the preamplifier/mixer and the master volume control to
the desired sound level.

5) Start up the software to play the desired sound (see subsection B.2.).

b. Playback and recording an audio segment on DAT
To playback and record an audio segment on DAT, first follow steps 1

to 3 in subsection a Then proceed as follows:

1) Press the RECORD button on the front panel. This will set the DAT to the
PAUSE mode.

2) Start up the software (see subsection B.2. below) and proceed through the menu.

3) When prompted to start the DAT press the PLAY button.

80

4) At the end of recording press the STOP button.

[Recording on analog tape
To record on analog tape first follow steps 1 to 3 of subsection a. Then

proceed as follows:

1) Set the input of the analog tape deck to rear balanced input.

2) Press the RECORD and PAUSE buttons simultaneously. The tape deck should
enter the record mode but the tape should not be moving

3) Start up the software (see section B.2.) and proceed through the menu.
4) Press the play button when prompted by the software.
5) At the end of the recording press the STOP button.
Notes:
» The header option is not usable when recording a signal on the analog tape.
* The input recording level should be set in advance by operating the software when

the deck is in the record pause mode before recording in order not to exceed the
overload level. The user is advised to make some trials to set the optimum level.

d. DAT dubbing mode
The last operating mode is DAT dubbing for hardware check. In this
mode two DAT recorders are required, one as a source for digital audio data and the other
as a receiver. Normally for this mode the source DAT is operated with SPDIF output
(most commercial DAT recorders are adequate for this purpose) and the SPDIF input

cable from the interface are connected to the digital output of this DAT. The receiver

81

DAT is the PCM 2700A which is normally operated in AES/EBU mode. It is possible
that another professional deck could be used as the source that provides AES/EBU
(balanced output). In this case the AES/EBU input cable from the interface would be
disconnected from the PCM 2700A and run to the source DAT and the SPDIF or
AES/EBU output cable would be left on the PCM 2700A which would then be operated
either in SPDIF or in AES/EBU input modes. The source DAT is set to play and the

receiver DAT is set to record. Digital data is then transmitted through the interface.

2. Software operation

The software for playback and record procedure is called “run_play" (see
details in Chapter III section C). This program like the "run_save" program should be
available from any user directory and is also menu driven. In the first menu screen the
user is asked for the desired mode of operation.

This is the Main Menu. Please enter the desired option number:

1 - 16 Bit Mode file sent to the DAT.
-------- This will set the sample rate to 48 kHz ------
2 - 32 Bit Mode file send to the DAT.
------ chose this option if the data sample rate is other then 48 kHz ---
3 - DUBBING from one DAT to another {for hardware check)
----- this sets the 32-bit mode automatically -----
The subsequent events are based on the option selected.
Option 1 - 16-bit mode
After chosing this option the user is asked for the file name. The file name should be

entered without the extension which defaults to ".dau". The user is then asked whether

to add the special header patterm to the recorded segment (yes/no answer is expected). The

82

user is then prompted to answer that the DAT is ready. Hitting the ENTER key causes

the playback to begin.

Option 2 - 32-bit mode

When this option is chosen the user is asked for the file name and then asked to select
a sample rate (multiple choice). Then the user is asked whether to include a header (see
the 16-bit mode above) and finally if the data file contains framing information to be sent
to the DAT. If the file does not contain framing information default framing is created
by the program. This option enables the user to play back data recorded in the 16-bit
mode at sample rates other than the 48 kHz standard. The user is then prompted to answer
that the DAT is ready. Hitting the ENTER key causes the playback to begin.

Option 3 - DUBBING from one DAT to another

This is the hardware check option and is not normally selected. When it is chosen the
user is then asked about the source DAT, whether the source DAT is connected to the
AES/EBU port or the SPDIF port, and should respond accordingly. (See section 1.d.

above.)

C. DUBBING FROM ONE TAPE TO THE OTHER AND RECORDING EXTERNAL
ANALOG SOURCES
Since the output of each tape in the system is connected to the input of the other
tape deck (see Figure 11), dubbing from one tape deck to the other is done by playback

of the source tape and operating the other tape in the record mode. When dubbing to the

83

e

DAT, analog balanced input should be selected on the DAT. When the audio signal
source i1s from an external device the input channels of the destination tape should be
disconnected from the matrix and connected to the external audio signal source. (Refer

to the tape deck operation manuals for regular recording procedures.)

84

APPENDIX B. THE DAUGHTER MODULE REGISTERS

This appendix summaries the configuration of the control registers of the daughter
module and the information that can be obtained from the status registers. The control and
status registers are mapped in the AMELIA address space and the programming of the
registers is crucial for proper execution of the TMS programs. The addresses referred to
later are relative addresses in the interface board address space. The data that is referred

to in the various registers is in the upper 16 bits.

A. THE CONTROL AND CONFIGURATION REGISTERS

The Control and Configuration registers are the registers that the program writes to.
For proper operation of the daughter module the sequence of programming is;
programming the User Control Register then programming the AMELIA Control Register,

and finally programming the Configuration Register.

1. User control register
The User Control Register address is 804008 Hexadecimal (H) and the content

that should be written to the register is A000 H.

2. Configuration register
The Configuration Register address is 80400F H and the content that should
be written to the register is 8FF8 H. This register should be programmed after the

AMELIA Control Register.

85

3. AMELIA control register
This register sets all the operating modes for the data transfer. The register

address is 80400A H;, Table VIII summaries the configuration of the register.

Table VI AMELIA CONTROL REGISTER CONFIGURATION.

bit 7 bit 0
CM7 |CM6 CM S CM 4 0 CM 2 CM 1 CMO
CM1 CMo Transmit Frequency
0 0 PLL Clock
0 1 32 kHz
1 0 44.1 kHz
1 1 48 kHz
CcM2 PLL Input
0 Receiver word clock
1 External word clock
CM4 & CM6 Mode of Openmtion
0 32 Bit Mode
1 16 Bit Mode
CMS Receiver Input
0 SPDIF
1 AES/EBU
CcMm7 AMELIA Status Register to be read
0 Status Register |
1 Status Register II

86

Bits CMO and CM1 determine the sample rate sent out to the DAT. In the dubbing and
receive modes the rate is determined by the PLL. Bit CM2 sets the PLL input to lock on
the DAT data or other external word clock. In the "sp2ae_save" program it is set to be
locked on the received data. Bits CM4 and CM6 determine the mode of operation; the
user indirectly sets these bits according the desired 16- or 32-bit mode selection. Bit CM5
is the input source to the interface corresponding to whether one uses a SPDIF or an
AES/EBU DAT. Bit CM7 indicates what information is presented when reading the Status

Register address. (It is detailed in the Status Register section below.)

4. Interrupt register
This register address is 80400B H for writing and reading. The configuration

of this register is summarized in Table IX.

Table IX INTERRUPT REGISTER CONFIGURATION.

bit 2 bit 1 bit 0
UNLOCK TDE RDF
RDF Input Data Registers full.

Channels 0 and 1 are ready to be read
RDF bit is used when the interface is in receive mode.

TDE Output Data Registers empty.
Channel 0 and 1 are ready to be written again.
TDE bit is used when the interface is in transmit mode.

UNLOCK The PLL loses lock on input signal.
This bit is used for monitoring the PLL.

87

The Interrupt register is used both for writing and reading. Writing '1' to a particular bit
enables an interrupt to be issued from this source; hence it is used as Mask register.
Reading the Interrupt Register gives the status of the register and clear its content. The
Interrupt Register can be used when programming in the interrupt methodology or the

polling methodology.

B. STATUS REGISTERS

The Status Register address is 80400A H (same as for the AMELIA Control
Register). There are two registers: Status Register I (SI_) and Status Register IT (SII).
Access to the content of the registers I or II is determined by CM7 of the AMELIA

Control Register (Section A.3).

1. Status register I
Status register I can be read when bit CM7 of the AMELIA Control Register
is set to '0". The content of the register is specified in Table X. SI0O and SI1 are important
when working in the 32 bit mode to determine what part of the whole 32 ‘bit word is

being transferred. The word is manipulated according to this information.

88

Table X STATUS REGISTER / CONFIGURATION.

SI0 & SI1 are used only in the 32-bit mode.

Data Registers Ch0 and Chl receive mode

First 16 bits of serial data have been received indata input registers.
Second 16 bits of serial data have been received

in the registers.

Data Registers Ch0 and Chl transmit mode

First 16 bits should be loaded in the ChO and Chl output registers.
Second 16 bits should be loaded in the ChO and

Chl output registers.

Digital Audio Input Present

Valid signal is not present at the receiver.

Valid signal is present at the receiver.

PLL locked
PLL is not locked on the input signal
PLL is locked on the input signal.

89

2. Status register I
Status register II can be read when bit CM7 of the AMELIA Control Register
ts set to '1". The content of the register is specified in Table XI. Bits SII0 and SII1 refer
to the 32 bit mode and to the C flag. These bits are CRC check of the enure C flag block.

SII2 and SII3 contain the information about the sample rate of the received signal.

Table XI STATUS REGISTER /7 CONFIGURATION.

bit 1
S SII0

bit 2
SII3 Si12

SII0 & SIII are used only in the 32-bit mode.

SID CRCCfor Channel Status Block 0

0 Invalid CRCC for last block of Channel 0 data to receiver

1 Valid CRCC for last block of Channel 0 data to receiver
sm CRCC for Channel Status Block 1

0 Invalid CRCC for last block of Channel 1 data to receiver

1 Valid CRCC for last block of Channel | data to receiver
SIR2 SIB Input Signal Sampling Rate

0 0 No signal detected by the receiver.

0 1 32 kHz

1 0 44.1 kHz

i 1 48 kHz

90

C. DATA REGISTERS

The data registers are located in addresses 804002 H and 804006 H for channels 0
and 1 respectively. The data registers contain the actual digital audio sample word. These
registers are read in the receive mode when the data is sent from the DAT to the
interface. In the transmit mode when the data is sent from the interfac: to the DAT the
data registers are written to. The data registers are 16 bits long. In the 16-bit mode the
registers contain only the 16 most significant bits of the digital audio sample. Table XII

describes the register content in the 16-bit mode.

Table XH 16 BIT MODE DATA REGISTER
CONTENT

bit 15 bit 0

D8 |

D23 is the most significant bit of the audio
sample

In the 32-bit mode the content of the registers depends on whether it is the first 16 bits
of the audio sample or the second 16 bits of the audio sample and whether the mode is
transmit or receive. The content of the registers is illustrated in Figure 39 and Figure 40,

the content of the flags is summarized in Table XIII.

91

Cho and Ch1 Input Data Registers

0] First 18 bits read into Cho/1 input Register
(S10 of AMELIA Status Register = 0)

bit 1 ot 16
= o]
MSB

W) Second 18 bits read into Cho/1 Input Register
(S10 of AMELIA Status Register = 1)

bito
o7 oojviujclefefsaz]
Lss

D0 - 023 = Audio sampie word
MS8 = Most Significant 81 of audio sample word
LSB = Least Significart Bit of audio sample word

Channet Flags: V Validity bit
U Usar data bit
C Channel status bit
P Parity bit
E Error bRt
S Signat present bit
A Channel A bit
Z Black starnt bit

Figure 39 Channel 0 and Channel 1 Input Data Registers. [Ref. 12]

92

Cho and Ch1 Output Data Registers

(L] Flrst 18 bits written to Ch0/1 input Register
(SI1 of AMELIA Status Register = 0)

bkt 31 bk 16
jozs os}
Ms8

() Second 16 bits written to Cho/t input Register
(S11 of AMELIA Status Register = 1)

bk 15

bit 0
o7 ojvjujcjojofojojz]
Ls8

00 - 023 = Audio sample word
MSB = Most Significart 8it of audio sampie word
LS8 = Least Signilicant 8 of audio sampie word

Chennel Flags: V Validity bit
U User data bit
C Channel status bt
2 Block start bit

Figure 40 Channel 0 and 1 Output Data Registers. [Ref. 12]

93

Table XII CHANNEL REGISTER FLAGS

Channel 0,1 Input Channel 0,1 output
Registers Registers

0 Valid digital audio sample
1 Invalid digital audio sample

| U User data

Used to carry information determined by the user.

C Channel status

The configuration of this flag as dictated by the
AES/EBU or SPDIF standards.

P party 1 Even parity Not used
0 Odd parity

E Emor 1 Error detected Not used
0 No error
1 Signal present Not used

0 Signal not present

A Channel A data

I S Signal present

1 Channel A data received | Not used
0 Channel B data received

Z Block start

|
|

1 Sample is the first in the Block
0 Sample is not the first in the Block.

94

APPENDIX C. SOFTWARE LISTINGS

This appendix includes the complete operating software all of which is written in
C. The main programs are "run_save.c" for recording and "run_play.c" for playback. The

TMS board programs are "sp2ae_save.c" and "sp2ae_play.c"

A. MAIN PROGRAM 'frun_save.c”

/* run_save.c */

/* program which sets up C30 and transfers */

/* double buffered data to the host via DPRAM */
/* Author: Arie Gal _Gartenlaub */

/* last update: March 3rd 1994 */

/* Version: 1.00 */

#include "sdsp30lib.h™ /* the interface library header file */

#define READY Oxeeeeeeee

#define NOT READY 0x11111111

#define READY A Oxeeee0000

#define READY B 0x11110000

#define HIGH_MASK Oxf£££0000

#define LOW_MASK 0x0000£££f

/* now define DSP DPRAM addresses */

#define BUFFER_A_STATUS_ADDRESS 0x0400000

#define BUFFER_B_STATUS ADDRESS 0x0400001

sdefine BUFFER_A_PASE_ADDRESS 0x0400010

#define BUFFER B BASE ADDRESS 0x0400408

#define FIND HEABDER ADDRESS 0x040000c

#define MODE OF OPERATION 0x040000d

#define PLL_STATUS_ADDRESS 0x040000e

#define DP_RAM DATA BUFFER_LENGTH 0x3c0

#define times 6000

#define SPDIF 16 0x00500000 /* AMELIA Control DATA for SPDIF input 16 bit */
#define AES EBU 16 0x00700000 /* AMELIA Control DATA for AES/EBY input 16 bit */
#define SPDIF 37 0x000000600 /* AMELIA Control DATA for SPDIF input 32 bit */
#define AES EBU 32 0x00200000 /* AMELIA Control DATA for AES/EBU input 32 bit */
#define MODE_16 1

#define MODE_32 2

FILE *fp:

typedef struct node{unsigned long audio_array(2*DP_RAM_DATA BUFFER_LENGTH];
unsigned long data_ready;
struct node *next;
}block;

block *new_block()

return{{block *)malloc(sizeof(block))});
}

95

void main{()

char error = 0 ;

char file_name[l100);

char ch;

block *nhead_ptr,*temp_ptr,*last_ptr;

int buffA count[tlmesi,

int buffB count[timesj;

unsigned long temp,start_save,zero_detect,memory;
unsigned long mode, flag,header,save;

int chojce,block_count,get_out,gen_counter=9;
int min_waivt,i, k,1l,blocks,step,seconds,counter;
float sec;

/* First check if the DSP board is responding */
error = Select_Board("/dev/LSIsdsp300*);
if (lerror) |

/* The board is selected */

/* Hold the processor */
error = Hold();

/* Now load the file into the TMS */
error = Load Object File("sp2ae_save.out");
if(error==SLIB_ERR_LOADF)
{ /* the file was not found so get out */
(void)printf(”\n Can't find sp2ae_save.out which is the TMS320 file");
exit(8);
}

/* Send mode of operatinn */
printf("\n Select input source and mode of operation : ");
printf("\n 1 - AES/EBU 16 bit");
printf("\n 2 - AES/EBU 32 bit");
printf("\n 3 - SPDIF 16 bit");
printf("\n 4 - SPDIF 32 bit \n==> ");
scanf ("%d", &choice}:
switch(choice)
{
case 1: printf("\n You chose AES/EBU 16 bit");
Put_32 Bit(MODE_OF_OPERATION,AES EBU 16);
mode=MODE_16;
break;
case 2: printf("\n You chose AES/EBU 32 bit");
Put_32 Bit (MODE_OF_OPERATION,AES EBU_32):;
mode=MODE_32;
hreak:
case 3: printf(”"\n You chose SPDIF 16 bit");
Put_32_Bit (MODE_OF_OPERATION,SPDIF_16);
mode = MODE 16:
break;
case 4: printf("\n You chose SPDIF 32 bit");
Put_32_Bit (MODE_OF_OPERATION, SPDIF_32);
mode = MODE_32;
break;
default : printf("\n The Default is chosen and it is AES/EBU 16 bit.\n");
Put_32_Bit (MODE_OF_OPERATION,AES _EBU_16);
mode = MODE_16;
break;
} /* end of choice switch */

printf("\n Enter the desired recording time in seconds. (sample rate assumed 48kh)\n ==>
"}

scanf ("%f",&sec);

blocks=(int) (24000*sec*mode/DP_RAM_DATA_BUFFER _LENGTH) ;

printf("\n Initializing Data Base to get the digital audio from the DAT %d
blocks", (blocks+1});

head ptr=new block{():

last_ptr=new_block();

last_ptr->next=NULL;

head ptr->next-last _ptr; /* linking the memory modules */

temp ptr=head_ptr; /* a temporary pointer used to scan the array */
temp_ptr->data_ready = NOT_READY;

96

memory=READY;

block_count=0;

whileT block_count++ < blocks && memory==READY)
{

last_ptr->next=new block(); .
if (Tast_ptr->next==NULL)
{

printf(”\n Qut of memory after 8d seconds.\n",block_count/(50*mode});
memory=NOT_ READY;
printf("\n Do you wish to continue recording ? 1 - yes 0 - no");
scanf ("8d”, sget_out);
if (get_out!=1l) goto end_ of record;
}
last_ptr->data_ready=NOT_READY;
last_ptr=last_ptr->next;
last ptr—)next-NULL.
]
prlntf("\n Data Base is ready to get the digital audio “d blocks
initialized.\n",block_count);
printf("\n Does the audio segment have a start header? y/n \n ==> ");
{void) rewind(stdin);
ch-getchar(),
if(ch=='y’'{ ch=='Y*){Put_32 Bit (FIND_HEADER ADDRESS,NOT_READY);
header=READY; T
else {Put_32 Bit (FIND HEADER ADDRESS,READY);
header = NOT_READY; }
printf("\n Method of Operation is :");
printf("\n l. Start tape about 2 seconds or more before the desired location.");
printf("\n Note: In case you use a header the tape should be started before the header.");
printf("\n 2. To start recording hit the Enter key. "):
(void) rewind(stdin);
while((ch=getchar(}))!='\n’') putchar(ch};
printf("\n Starting to record."™);
/* Pulse the reset line to start the program running */
error = Asgsert_Reset();
error = Release _Reset();
/* UnHold the processor and the program will run */
error = Unhold():;
/* now loop round pulling buffers from DPRAM - 10 times only here */
block_count=0;
min wait=2000;
while (block_count <= blocks && block_count<times)
{ /* the main while waiting loop */
1=0; /* 1 is the accumulative pointer for the audio */
flag = 0;
counter = 0;
/* communicate with the c_tst30 DSP program*/
while((flag != READY) /* wait for buffer A to be ready to read */

error = Get_32 Bit(BUFFER_A_STATUS_ADDRESS, &flag):
counter++;
}
/* we have a ready flag for buffer A, so read the data*/
if (min_wait > counter) min_wait=counter;
buffh count[block count]=counter;
error =
Get_Block_ 32 (BUFFER A BASE_ADDRESS, &temp_ptr->audio array(l),DP_RAM DATA BUFFER_LENGTH);
1+=DP_RAM DATA_BUFFER _LENGTH;
/* now wait for buffer B *7
flag = 0;
counter = 0;
vhil7 (flag != READY) /* wait for buffer B to be ready to read */

error = Get_32 Bit(BUFFER_B_STATUS_ADDRESS, &flag);
counter++;
}
/* we have a ready flag for buffer B, so read the data. */
buffB_count[block_count]=counter;
if { min_wait > counter) min_wait=counter;
error =
Get_Block_32{BgFFER;B_BAsE_ADDRESS,&temp_ptr->audio_array[11,DP_RAH_DATA_BUFFER_LENGTH);
=0;
temp_ptr->data_ready=READY;
temp ptr=temp ptr->next;
block_count=block_count + 1;

97

} Jrewwrruvwvewereevs ond of main while loop */

/* Deselect the board to tidy up v/
/v Deselect_Board(): */

error = Hold();

error = Assert_Reset();

error =~ Deselect_Board(); /* use correct fn name ! */

/* and finally echo the counter values */
/*for (i=0;i<block_count;i+=20)
prlntf("LOOP 8d: buffer A with 8d reads of 'flag', buffer B with 3%d reaas of
*flag'\n",i, buffA _count{i], buffB_count(i]); */
printf ("\n the minimum number of wait read cycles is %d ", min_wait);

orintf ("\n\n the audio array size - %d wish to save? enter 'y' for ves
,sxzeof(head ptr->audlo array)*block_count/2);
(void) rewind(stdin);
ch=getchar ();
if(ch=='y' | ch=='Y"')
{ /* start of if save begin with an open file */
(void) rewind(stdin);
(voidiprintf("\n Enter name of file without extension.");
(void)printf (" \n The extension added is : '.dau' \n ==> ");
(void) fgets(file_name,sizeof(file_name},stdin);
file_name(strlen{file name)-1]='.7;
(void)strcat (file name,“dau"),
fp = fopen(file name, "wr");
if (fp==NULL)
{
(void)printf("\n can’t open %s, file system nay be full \n",file name);
exit (8);

}
printf("\n Preparing data for storage."};
temp_ptr=head ptr;
whxle(temp ptT->data _ready==READY)
{ /* start of whil@ not end of chain +*/
for (1=0;1<2*DP_RAM_DATA_BUFFER_LENGTH;1++)
{ /* start of for local block */
temp=temp ptr->audio_array{ll;
(void) fwrite (stemp, 1, sizeof (temp}, fp};
} /* end of for local block */
temp_ptr=temp_ptr->next;
free{head ptry;
head_ptr=temp ptr;
} /* end of chain while */
free (temp_ptr->next);
free(temp ptr):;
switch (mode)
{
case MODE_32 :
printf ("\n\n Data is stored in the file the format is:"):
printf("\n 16 bit audio channel A\n 16 bit audio channel B");
printf ("\n 16 bit information channel A\n 16 bit information channel
B");
break;
case MODE 16 :
printf ("\n\n Data is stored in the file the format is:"):
printf("\n 16 bit audio channel A\n 16 bit audio channel B"):
break;

}

} /* end of save if */
(void) fclose (fp);
} /* end of the board was successfully selected */
else
{ /* The Select_Board routine has returned an error */
printf("Can't select the board\n"};
printf("Have you installed the device driver?\n");
}
end_of_record:error = Hold();
error = Assert_Reset();
error = Deselect_Board(); /* use correct fn name ! */
) /* end of main */

98

B. MAIN PROGRAM 'tun_play.c”

/* run_play.c ¥/

/*i‘t**t&**f*t'/

/* program which sets up C30 and transfers */

/* double bufferred data to the host via DPRAM */
/* Author: Arie Gal~Gartenlaub */

/* last update : March 3cd 1994 */

/* Version: 1,00 */

#include "sdsp30lib.h"™ /* the interface library header file */

#define READY Oxeeeceeeece
#define NOT READY 0x11111111
#define READY A Oxeeee0000
#define READY B 0x11110000
#define HIGH_MASK Oxf£££0000
#define LOW_MASK 0x0000ffff

/* now define DSP DPRAM addresses */

/* These are the addresses to interface the dsp board with data or flags */
#define BUFFER_A_STATUS_ADDRESS 0x0400000

#define BUFFER B _STATUS ADDRESS 0x0400001

#define BUFFER_A_BASE_ADDRESS 0x0400010

#define BUFFER B BASE ADDRESS 0x0400408

#define START_EEEORD_FLAG_ADDRESS 0x0400007

#define FRAME MODE ADDRESS 0x0400008

#define BIT MODE_ADDRESS 0x0400009

#define DETECTED_RATE_ADDRESS 0x040000a

#define TRANSMIT MODE_ADDRESS 0x040000b

#define FIND HEADER ADDRESS 0x040000c

#define MODE_OF OPERATION 0x040000d

#define PLL STATUS_ADDRESS 0x040000e

#define DP_RAM DATA BUFFER_LENGTH 0x3c0

#define times 6000

#define SPDIF 16 0x00500000 /* AMELIA Control DATA for SPDIF input 16 bit */
#define AES EBU 16 0x00700000 /* AMELIA Control DATA for AES/EBU input 16 bit */
#$define SPDIF 32 0x00000000 /* AMELIA Control DATA for SPDIF input 32 bit ¥/
#define AES_EBU_32 0x00200000 /* AMELIA Control DATA for AES/EBU input 32 bit */
#define XMT_PLL 0x00000000 /* Transmit from PLL clock */

#define XMT_32 0x00010000 /* Transmit in 32KHz */

#define XMT_44 0x00020000 /* Transmit in 44.1KHz */

#define XMT_48 0x00030000 /* Transmit in 48KHz */

#define MODE_16 1

#define MODE_32 2

FILE “fp;

typedef struct node{unsigned long music_array[2*DP_RAM DATA BUFFER_LENGTH]:
unsigned long data_ready:
struct node *next;
tblock;

block *new_block()
{

return{(block *)malloc(sizeof (block)));
}

void main{()

char error = 0 ;

char file name(100};

char chs

block *head ptr,*temp ptr,*last_ptr;

int buffA_count(timesT;

int buffB count(times];

unsigned Iong header,start save,zero _detect,memory, temp;
unsigned long save, mode flag,s:op flag,frame flag,bit_mode;
int seconds, counter, choice, read_size,xmt mode,

int i, k.1, blocxs,step,block count, get_out,min _wait;

99

/* firstly check to see if the DSP board is responding */
error = Select_Board("/dev/LSIsdsp300");
if (lerror)

{
/* The board is selected +/

/* Hold the processor */
error = Hold{();
/* Load a program */

error = Load Object File("sp2ae_play.out");

if (error==SLIB_ERR_LOADF)
{ /* the file was not found so get out */
(void)printf("\n Can't find sp2ae_save.out which is the TMS320 file");
exit(8);

}
/* Start dialog with user */
(void)printf(®"\n This is the Main Menu. Enter the Option No. accordingly.");
{void)printf("\n ");
(void)printf("\n 1 - 16 BIT MODE file send to DAT.\n"):
(void)printf("\n --- This option sets 48kHz sample rate ----\n"}:;
(void}printf("\n 2 ~ 32 BIT MODE file send to DAT.\n"):
{void)printf("\n --- Chose this option if the data sample rate is other then 48
(void)printf("\n 3 -~ DUBBING from one DAT to another (for hardware check)");
(void)printf ("\n ------ this sets 32 bit mode automatically ~=-=-\n ==> "};
(void) scanf (*%d”, échoice);
1f(choice==3)
{ /* this means a debug mode 32 _bit mode ask now for input origin */
/* Send mode of operation */
(void)printf(”\n Select input source :");
(void)printf("\n 1 - SPDIF 32 bits");
(void)printf("\n 2 - AES/EBU 32 bits\n ==> ");
(void) scanf ("%d", &choice);
switch (choice)
{
case 1: printf("\n You chose SPDIF 32");
Put_32_Bit (MODE_OF_OPERATION,SPDIF_32):
break:
case 2: prlntf(”\n You chose AES EBU 32");
Put_32 Blt(MODE OF_(OPERATION, AEg EBU_32);
break;™
} /* end of choice switch */
Put_32 Bit (TRANSMIT MODE ADDRESS,XMT_PLL);
Put_327Bit (BIT_MODE_ADDRESS,MODE_32)7

/* Pulse the reset line to start the program running */
error = Assert_Reset({);
error = Release _Reset ();
/* UnHold the processor and the program will run */
error = Unhold():
(void)printf ("\n To stop the program enter l.\n ==> "};
stop_flag = 0;
while(stop flag != 1)
{ /* poll input again till stop */
(void)scanf('%d“,&stop flag);
} /* end of polling */
error = Hold():;
error = Assert Reset(});
error = Deselect Board():
} /* end of DATA transfer and end of program */
else

kHz \n");

(/t'lQi***'ﬁi**'t*ﬁﬁ.&**f****'**t The Main Modes of OPeration 00*'******\.**'*"0/

{void) rewind(stdin);
/*({void) fopen (stdin);*/
(void)printf("\n Enter the file name without extension. ");
(void)printf("\n The assumed extension is '.dau')\n ==> ");
(void) fgets(file name,sizeof(file name),stdin);
file name[strleanlle name)~1]='.T;
(void) strecat (file_name, "dau");
fp = fopen(file_ name, "r") ;
1f(f?-NULL)

(void)printf("\n Can't find/open %s please check path,name,etc... \n",file name);

exit(8);

}
switch{choice)

100

{ /* switch to determine whether mode is 32_bit or 16_bit */
case 1l: /* 16 bit mode */
(void)print¥("\n You chose 16 _bit mode the rate is automatically set to 48 kHz™):
xmt_mode = AMT 48;
Put 32 Blt(TRANSMIT MODE_ADDRESS, XMT 48);
Put” 32 Bit (BIT _MODE ADDRESS MODE ;6),
mode = " MODE _ 167
break;
case 2:
(void)printf ("\n You have chosen 32 bit mode this option uses AES/EBU framing ");
Put 32 Blt(MODE OF OPERATION,MODE 32);
put_32 BIt(BIT MODE_ADDRESS,MODE_327;
mode = MODE 32;
(void)printf("\n Please Enter the Sampling Rate.");
(void)printf("\n 1 - 32khz \n 2 - 44.1khz \n 3 ~ 48khz \n ==> ");
(void) scanf ("8d", &xmt_mode) ;
switch (xmt_mode)
{
case 1: Put_32_ Bit (TRANSMIT_MODE _ADDRESS, XMT_32) ;
(void)printf{"\n XMT_32 was sent ");
break:
case 2: Put_32 Bit (TRANSMIT_MODE_ADDRESS,XMT_44);
{void) printf{"\n XMT_44 was sent ");
break:
case 3: Put_32_Bit (TRANSMIT _MODE_ADDRESS, XMT_48);
(void)printf("\n XMT_48 was sent "};
break:

}
(void)printf("\n Does your data file contain AES/EBU framing ? y/n"};
{void)printf("\n In the absence of framing chose NO. Default framing is created"):;
(void)printf("\n If sure that your file contains framing chose YES \n ==> ");
(void) rewind{stdin);
ch = getchar();
’* {(void) scanf ("8d", &choice); */
if(ch=='y') Put_32 Bit(FRAME_MODE_ADDRESS,READY);
if(che=='n'} Put_32_Bit (FRAME_MODE_ADDRESS, NOT _READY] ;
break;
) /'l".'f"ﬁi"Oend of switch between 16 or 32 bit mode tt*i****'**&i**ﬁ*&/

/* Send mode of operation */
printf({"\n Do you want to add a Header to the audio segment? y/n");
printf("\n It is recommended for later retrieving the file"):
printf("\n ==> ");
(void) rewind(stdin);
ch = getchar():
/* scanf("%d",&header); */
switch(ch)
{
case 'y': printf("\n You chose to incorporate a header");
Put_32 Bit (FIND_HEADER_ADDRESS,READY) ;
break;™
case 'n': printf(”"\n You chose not to use a header"):;
Put_32 Bit (FIND_HEADER_ADDRESS,NOT_READY) ;
break;
default : printf("\n The default not to incorporate a header was chosen.");
Put_32_Bit (FIND_HEADER_ADDRESS, NOT_READY) ;
break;
} /* end of header switch */
printf("\n Initializing Data Base to get the audio from '$s'",file_name);
head_ptr=new_block();
last™ _ptr=new_| “block():
last ptr-)next-NULL:
head_ptr->next=last _ptr; /* linking the memory modules */

temp_ ptr-head ptr; /* a temporary pointer used to scan the array */
temp ptr->data ready = NOT_READY;

memory=READY;

block_count=0;

1=0;

while((read_size=fread(&temp,l,sizeof (temp), fp))==sizeof (temp))
{
temp ptr->music_array{l++] = temp;
if(17== 2*DP_RAM_DATA_BUFFER_LENGTH)
{
temp_ptr->data_ready = READY;
lastrp r->next=new_block();
if (Tast_ptr->next==NULL)

101

{

printf("\n Out of memory after 8d seconds.\n",block_count/ (50*mode));
memory=NOT READY;

printf("\n Do you wish to continue recording 2 1 - yes 0 ~ no");

scanf ("%d", &get_out);

if (get_out!=1) goto end_of_record;

}
last_ptr->data_ready=NOT_READY;
temp ptr=last_ ptr;
last ptr-last _btr->next;
last ptr->next-NULL,

l‘o.
block

count+=1;

} /* end of if and create a new block */
} /* end of while and the data was read from the file to the array */
(void) fclose (fp);

(void)printf ("\n

(void)printf(”\n Method of Operation is :");
(void)printf ("\n 1. Make sure the appropriate input is chosen to the DAT");

(void)printf("\n

{(void)printf (”"\n 3. Press REC button the DAT will go to REC and PAUSE mode.");
(voidlprintf{"\n 4. Press the PLAY button.");

(void)printf{"\n

temp_ptr = head ptr;

1=0;

flag = NOT_READY;
error = Put_32 Bit(BUFFER_A_STATUS_ADDRESS, &flag);
error = Put 32 Blt(BUFFER B_. _STATUS ADDRESS, &flaq);

error =

Data Base is ready %d blocks were initialized.\n",block_count);
2. Start tape about 1 second or more before the desired location.

5. When the tape starts rolling hit ENTER to start playback.\n ==>

“}:

")

Put_Block 32 (BUFFER A BASE ADDRESS,&temp ptr->music_array{l),DP_RAM_DATA BUFFER_LENGTH);

1+=DP_RAM |

error =

DATA_BUFFER_LENGTH;

Put_Block 32 (BUFFER _B_BASE_ADDRESS, &temp_ptr->music_arrayf{l},DP_RAM DATA_BUFFER LENGTH);
temp ptT = temp_| ptr->next;
/* Pulse the reSet line to start the program running */
error = Assert Reset();
error = Release_Reset();

/* UnHold

the processor and the program will run */

error = Unhold();
/* now loop round pulling buffers from DPRAM - 10 times only here */
(void) rewind (stdin};
while{ (ch=getchar()) != '\n') putchar{ch);
/* Operation starts */
printf("\n Starting playback.”):
error = Put_32 Bit (START RECORD_FLAG_ADDRESS,READY) ;
block_count™ = 0;
min wait = 2000;
while (temp_ptr != NULL)
{ /* the | main while waiting loop */

1=0;

/* 1 is the accumulative pointer for the music */

flag = NOT READY;

counter

-U;

/* communicate with the c_tst30 DSP program*/
while (flag != READY) /* wait for buffer A to be ready to read */
{

error = Get_32_Bit(BUFFER_A_STATUS_ADDRESS, &flag);
counter++;

/* we have a ready flag for buffer A, so read the data*/

if (min_3

wait > counter) m1n wait = counter;

buffA count[block count)=counter;

error =

Put_Block_32 (BUFFER A BASE ADDRESS, &temp_ptr->music_array({l],DP_RAM_DATA_BUFFER_LENGTH);
“1+=DP_RAM _DATA_BUFFER_LENGTH;
/* now walt for buffer B */
flag = NOT_ READY;

counter

-6;

while (flag != READY) /* wait for buffer B to be ready to read */

{

error = Get_32 Bit(BUFFER_B_STATUS_ADDRESS, &flag);:
counter++;

}
/* we have a ready flag for buffer B, so read the data. */
if (temp > counter) temp = counter;
buffB_count (block_count)=counter;

102

N
L

error =
Put_Block_32 (BUFFER_B_BASE_ADDRESS, stemp_ptr=->music array(l],DP_RAM _DATA_BUFFER_LENGTH);
temp _ptr=temp ptr->next; -
block_count=block count + 1;
[TervreverreeTurwew end of main while loop v/
/* Deselect the board to tidy up */
error = Hold{);
error = Assert_Reset();
arror = Deselect Board(); /* use correct fn name ! */
} /* end of the board was successfully selected */
}
else
{ /* The Select_Board routine has returned an error */
printf("Can't select the board\n");
printf("Have you installed the device driver?\n™);

}
/* for(i=0;i<block_count;i+=20)
printf ("LOOP 8d: buffer A with 8d ceads of 'flag', buffer B with %d reads of
‘flag'\n",i, buffA count(il, buffB count(i]}; */
printf("\n The minimum 'wait for ready' read cycles was %d *,min_wait);
end_of_record:error = Holid{();
error = Assert_Reset();
error = Deselect_Board(); /* use correct fn name ! */
} /* end of main */

103

C. SUBPROGRAM 'sp2ae_save.c"

/* START OF PROGRAM spzae save.c */
/Qt'ﬁt"i.fﬁ.'*iifi*iﬁ'ti:ﬁ.fti.tt/

/* sp2ae_save.c Portion of TMS320c30 C code */

/* The program wilil be run by "run save.c™ */

/* This is a program that uses polling and not interrupt */
/* Author: Arie Gal Gartenlaub */

/* Date : 8th March 1994 */

/* Version 1,00 */

/* Sbus global addresses definitions */
/'f*t"'i."'fifi'**'it't"ﬁ'**t"ﬁti./

#define DP_RAM BUFFER_A_BASE_ADDRESS 0x0400010
#define DP RAM_BUFFER B BASE ADDRESS 0x0400408

#define BUFFER_A_STATUS_ADDRESS 0x0400000
#define BUFFER_ B_STATUS_ADDRESS 0x0400001
#define START_RECORD FLAG_ADDRESS 0x0400007
#define FRAME MODE_ADDRESS 0x0400008
#define BIT MODE_ADDRESS 0x0400009
$define DETECTED RATE_ADDRESS 0x040000a
#define TRANSMIT MODE ADDRESS 0x040000b
#define FIND_HEADER ADDRESS 0x040000c
#define MODE_OF OPERATION 0x040000d
#define PLL_3TATUS ADDRESS 0x040000e
#define DP_RAM_BUFFER LENGTH 0x3c0
#define AES_BLOCK SIZE 192

/* global control variables */

#define BUFFA 0

#define BUFFB -1

#define READY Oxeececeee
$define NOT READY 0x11111111
#define READY A 0xeeea0000
#define READY B 0x11110000
#define MAX 11343432334
#define ZERO 0x00000000

/* Sbus hardware definitions */

#define BUSADDR 0x00808064
#define BUSDATA 0x00000900 /* originally 9 */
#define BUSADDR1 0x00808060
#define BUSDATAl 0x00000068

/* AMELIA hardware addresses for signal flow control */

/ Qi'ﬁ"'.t‘i*.*.ii"i'*’.ﬁtQ‘-**fttf"fﬁ*'fi‘"'ﬁﬁ*ﬁ*""*"ﬁ/

#define CHO_ADDRESS 0x00804002 /* AMELIA Channel A address */

#define CH1 ADDRESS 0x00804006 /* AMELIA Channel B address */

#define UCTR_ADDRESS 0x00804003 /* AMELIA User control register Write address */
#define ACTR_ADDRESS 0x0080400a /* AMELIA Control register Write address */

#define ASTS_ADDRESS 0x0080400a /* AMELIA Status register Read address */

#define INTM ADDRESS 0x0080400b /* AMELIA Interrupt Mask register Write address */
#define INTS ADDRESS 0x0080400b /* AMELIA Interrupt status register Read address */
#define CNFG_ADDRESS 0x0080400f /* AMELIA Configuration register Write address */

/* AMELIA data words for the proper signal flow control */
/600"#'*"10'itit't*f*'ii'ttfi*t*tttvtii'ttﬁtt*t*t*t**ﬁt/

d#define UCTR_DATA 0xa0000000 /* User Control register DATA to write */

#define MODE_16 1
#define MODE_32 2

#define FIRST_SAMPLE 0x10000000/* its the first sample to synchronize */
#define FIRST 16 BIT 0x00000000/* its the case where the first word is send*/
#define SECOND_1%_BIT 0x00010000/* its the case where the second word is send*/

#define SPDIF_16 0x00500000 /* AMELIA Control DATA for SPDIF input 16 bit */

104

44—---IlIIIlllllIllIlIlllIIIlIIIIIllIIlIllllIIIlIIllIIIHIIIIIIIIIIIIIIIIIIIJ

#define AES EBU 16 0x00700000 /* AMELIA Control DATA for AES/EBU input 16 bit ~/
#define SPDIF 32 0x00000000 /* AMELIA Control DATA for SPDIF input 32 bit =/
tdefine AES_EBU 32 0x00200000 /* AMELIA Control DATA for AES/EBU input 32 bit */

/* S - SPDIF 7 - AES/EBU 0 - for 32 bit accuracy*/

#define XMT_PLL 0x00000000 /* Transmit from PLL clock */

#define XMT”32 0x00010000 /* Transmit in 32KH2 */

#define XMT_44 0x00020000 /* Transmit in 44.1KHz */

#define XMT_48 0x00030000 /* Transmit in 48KHz */

#define CNFG_DATA Ox8££80000 /* The AMELIA key for initializing the process */
/* Ameiia Interrupt register */

#define INTM_PLL 0x00040000 /* Mask to determine loss lock of PLL */

#define INTM XMT 0x00020000 /* Mask for determining if the output buffer is empty
-

#define INTM_DATA 0x00010000 /* Mask register for input buffers full */

/* Amelia status register */

#define PLL MASK 0x00080000 /* Mask for testing PLL lock on the signal */

#define VALID_SIG MASK 0x00040000 /* Mask to test signal validity at status reg.I*/
#define BLOCK MASK_SEND 0x00020000 /* What block to be send in 32 bit at sts. reg.I*/
#define BLOCK_MASK_READ 0x00010000 /* What bloc is read in 32 bit mode at sts. reg.I*/

#define HIGH MASK Oxf£f££0000 /* mask living only high bits */
#define LOW MASK 0x0000ffff /* mask living only low bits */
#define TEST MASK 0x00210021 /* mask the not necessary bits from the frame ward*/

#define BLOCK_START_MASK 0x00010001 /* the mask to test block start */

/* global variables and pointers */

/"Q.ﬁ.".'."Q*fﬁﬁit‘ﬁ‘tif"'ff‘**"/

/* pointers to DP_RAM data */

long *buffA ptr = (long *)DP_RAM BUFFER A BASE_ADDRESS:
long *buffB ptr = (long *)DP_RAM BUFFER B_BASE ADDRESS:
long *buffA_status_ptr = (long *TBUFFER_A_STATUS_ADDRESS:
long *buffB_status_ptr = (long *)BUFFER_B_STATUS_ADDRESS:;

long *bus_ptr = (long *)BUSADDR;

long *busi_ptr = (long *)BUSADDR1;

long *ch A ptr = (long *)CHO ADDRESS ;

long *ch_B ptr = (long *)CH1 ADDRESS ;

long *usr_cntl_ptr = (long *JUCTR_ADDRESS;

long *amefia_cntl_ptr = (long *)ACTR_ADDRESS;

long *amelia_sts_ptr = (long *)ASTS ADDRESS;

long *amelia_intm ptr = (long *)INTM_ADDRESS;

long *amelia_ints ptr = (long *)INTS_ADDRESS;

long *amelia_config ptr = (long *)CNFG_ADDRESS:

long *operation_mode ptr ={long *}MODE_OF OPERATION;
long *pll_sts_ptr = (long *)PLL_STATUS_ ADDRESS:

long +header ptr = (long *)FIND_HEADER_ADDRESS;

long *transmit_mode_ptr = (long *)TRANSMIT MODE_ADDRESS;
long *detected_rate ptr = (long *)DETECTED RATE_ADDRESS;
long *frame_flag_ptr = (long *)FRAME MODE ADDRESS;

long *start_record ptr = (long *)START_RECORD_FLAG_ADDRESS;

/* initialize default value for fill ptr */

long *current_fill ptr = (long *)DP_RAM BUFFER A BASE ADDRESS:
long *current_status_ptr = (long *)BUFFER_B_STATUS_ADDRESS;

/* variables used by in line assembler instructions */

int samp_count, counter,delay,l;
int current_buffer = BUFFA;

unsigned long pll, int_read, count_max,mode,bit_mode,header=READY,xmt mode, flag;
unsigned long frame_flag,start_record = NOT READY,pll_sts = NOT_READY, zero_detect;
unsigned long temp,templ,block_start=NOT_READY;
main () /* start of the main program */
{

105

*bus_ptr = BUSDATA;
*bus]_ptr = BUSDATAL:
counter = 0;
samp_count = 0;
count_max = 0;

pll = 0;

tlag = NOT_READY;

/* set up status flags for host program */
current_status_ptr = buffB_status_ptr;
*current_status_ptr = NOT_READY;
current_ status ptr = buffA status _pt=;
*current status _ptr = NOT_ READY;
*usr_cntl_ptr =" UCTR_DATA?
/* *amelia_cntl_ptr = ACTR_DATA; */
/* read the desired modes of operation set up by the host user */
mode = *operation_mode_ptr; /* this is the right line */
/* mode = SPDIF_32; */ /* the mode is set manually for test */
header = *header_ptr;
if ({(header!=READY) && (header !=NOT_READY)) header=READY;
switch (mode) {
case SPDIF_16: mode = MODE_16

*amelia_cntl_ptr = SPDIF_16;
break;

case SPDIF_32: mode = MODE 32
*amelia_cntl_ptr
break;

SPDIF_32;

case AES_EBU_16: mode = MODE_l6 ;
*amelia_cntl ptr = AES _EBU_16;
break:

case AES_EBU 32: mode = MODE_32 ;
*amelia_cntl ptr = AES EBU 32;
break;

e cecmmay 0 o s RO

, default : mode = MODE_32 ;
*amelia_cntl ptr = AES_EBU_32;
break;
} /* end of switch */

delay = mode * 48000 ;

switch (mode)

{ /* main switch mode between 16 and 32 bit mode */
case MODE_16:

*amelia_intm _ptr = INTM DATA:
*amelia_config_ptr = CNFG_DATA:

*pll sts ptr = NOT_READY;

pll_sts=NOT_READY:

whiTe((pll_sts == NOT_READY) && (delay >= 0))

{
whlle((x?t read = *amelia_intm ptr & INTM_DATA) != INTM_DATA);
delay-=1;
if ({pll = *amelia_sts ptr & PLL_MASK) != 0)
{ pll_sts = READY:
*pll_sts_ptr = READY:
}"/* end of if */
}/* end of while */

int_read = *amelia_intm _ptr;

*amelia_intm_ptr = 0;
*amelia_. intm_ptr = INTM_DATA;

106

/* start header detect block if wanted */
i f (header==NOT_READY)
{
while (header == NOT_READY)

{
while((int_read = *amelia_intm ptr & INTM_DATA)} != INTM_DATA):
/* loop polling interrupts */
if ((*ch_A_ptr==READY A)é&&(*ch_B ptr==READY B)){header=READY;}
}
zero_detect = NOT_READY;
wnile{zero_detect == NOT_READY)
{

while((int_read = *amelia intm ptr & INTM DATA) != INTM DATA);
if ((*ch_A ptr==0)&&(*ch_B_ptr==0))(zero_detect=READY; |

)
for(1=0; L<AES_BLOCK_SIZE~1;1++)
{

while({int_read = *amelia_intm_ptr & INTM DATA) != INTM_DATA);
/* loop polling interrupts */

)} /* end of header detect block */

/* LOOP FOREVER POLLING INTERRUPTS */
while (1 != 0)
{
while((int_read = *amelia_intm_ptr & INTM_DATA) != INTM_DATA);
*current_f1lll ptr = *ch_A_ptr | ((*ch_B_ptr >> 16) &LOW_MASK);/*store in A and
B*/
*ch_A ptr = *current_fill ptr:/* copy channel A to out */
*ch_B ptr = (*current_fill ptr++)<<16;/* copy channel B to out */
samp_count += 1;
7+ constantly check to see if current buffer is full */
if(samp_count == DP_RAM BUFFER_LENGTH)
(

switch(current_buffer)
{ /* toggle between buffers */
case BUFFA:
current_fill ptr = (long *)DP_RAM BUFFER B BASE_ADDRESS;
samp_count = 0;
*current_status_ptr = READY;
current_status_ptr = buffB status_ptr:
*current_status_ptr = NOT_READY;
current_buffer = BUFFB;
break;
case BUFFB:
current_fill ptr = (long *)DP_RAM BUFFER_A BASE_ADDRESS;
samp_count = 0;
*current_status _ptr = READY;
current_status_ptr = buffA status_ptr;
*current_statuS_ptr = NOT_READY:
current_buffer = BUFFA;
break;
} /* end of switch */
} /* end samp_count if */
} /* end while */
break;
/*iitt'Oii*’it*iﬁt*ii*'ﬁitﬁi* the 32 bit mode t*****tﬁ**i*i/

case MODE_32:

*amelia_intm ptr = INTM DATA;
*amelia_config_ptr = CNFG_DATA;
*pll_sts ptr = NOT_READY;

flag = NOT_READY;

Zero_detect = NOT_ READY;
pll_sts=NOT_READY;

while(pll sts == NOT_READY && delay>=0)

{
if((int_read = *amelia_intm ptr & INTM_DATA) == INTM_DATA)
{

delay-=1;
pll = *amelia_sts_ptr & PLL_MASK;
if (pll !=0)
{ pll_sts = READY;
*pll_sts ptr = READY;

107

} /* end of if */
} /* end of if*/
} /* end of while */

int_read = *amelia_intm_ptr;
*amelia_intm _ptr = "0,
*amelia_intm_ptr = INTM_DATA:

/* synchronization on start of desired sequence and on header */

VAdAAALAAAAAAL A AL LAARALAA LAl ARl llilis sttt

/* first find header if it was desired */
if (header==NOT_READY)
{
while(header == NOT_READY)

{
while((int_read = *amelia_intm ptr & INTM_DATA} != INTM_DATA):
/* loop polling interrupts */
if ((*ch_A_ptr==READY A)&&(*ch_B_ptr==READY_B)) (header=READY; }
}
zero_detect = NOT_READY;
while(zero_detect == NOT_READY)
{

while((int_read = *amelia_intm_ptr & INTM_DATA) != INTM_DATA);
if ({*ch_A_ptr==0)&&(*ch_B_ptr==0)){zero_ Jdetect=READY;)

}
for (1=0; 1<2*AES_BLOCK_SIZE~-1;1++)
{

while((int_read = *amelia_intm ptr & INTM_DATA) != INTM_DATA);
/* loop polling interrupts */

}
} /* end of header detect block */
else
{ /* else start and synchronize on the beginning of a block */

while(block_start == NOT_READY)
{

while((int_read = *amelia_intm ptr & INTM DATA) != INTM_DATA):
if ((int_read = *amelia_sts_ptr & BLOCK_MASK_READ)== SECOND_16_BIT)
{

temp=(*ch A ptr | ((*ch B _ptr >> 16)&LOW MASK));
Lf((tempGBLOCK START MASK;-'BLOCK START MASK)
{

block_start = READY:
*current_fill ptr++ = templ;
*current_fill ptr++ = temp;
samp_count+=2;
}
ch A ptr = temp; / copy channel A to out */
ch B _ptr = temp<<16;/ copy channel B to out */

else
{
templ = *ch A ptr | ({*ch_B ptr >> 16)&LOW_MASK);
/*store in A and B*/
ch_A ptr = templ;/ copy channel A to out */
ch_B_ptr = (templ)<<16;/ copy channel B to out */

}
} /* end of while start_block == NOT_READY */
} /* end of else header != READY */

/* now ready to start fiil up the memory */
/* LOOP FOREVER POLLING INTERRUPTS */

while (1 != 0)

{
while((int_read = *amelia_intm ptr & INTM DATA) != INTM DATA):
if (lint_read = *amelia_sts ptr & BLOCK MASK READ)== SECOND_16_ BIT)
{

*current_fill ptr = (*ch A ptr { ((*ch_B_ptr >> 16)&LOW_MASK))&TEST_MASK;
*ch A ptr = *current fill ptr;/* copy channel A to out */
*ch_B ptr = (*current_fill ptr++)<<16;/* copy channel B to out */
samp count += 1;

else
{

108

*current_fill ptr = *ch A ptr | ((*ch B_ptr >> 16)&LOW MASK);
/*store in A and B*/
*ch_A_ptr = *current_fill ptr:;/* copy channel A to out =*/
ch_B_ _ptr = ('cutrenc £filT ptr++)<<16:/ copy cnannel B to out */
samp_count += 1;

/* constantly check to see if current buffer is full */
if(sampTcount == DP_RAM_BUFFER_LENGTH)

switch{current_buffer)
{ /* toggle between buffers */
case BUFFA:
current_fill ptr = (long *)DP_RAM BUFFER_B_BASE_ADDRESS:
samp_ count =" 0;
*current_status_ptr = READY;
current_status_ptr = buffB_status_ptr:
*current_status_ptr = NOT _READY;
current_buffer = BUFFB;
break;
case BUFFB:
current_fill ptr = (long *)DP_RAM_BUFFER_A BASE_ADDRESS:
samp_count = 0;
*current _status_ptr = READY;
current_status _ptr = buffA status_ptr;
*current_status_ptr = NOT_READY;
current_buffer = BUFFA;
break;
} /* end of switch */
} /* end samp count if */
} /* end while */
break;

} /* end of mode switch whether 16 or 32 bits */
} /‘i hvwww kW wd end of main i Wb ﬁ/

109

D. SUBPROGRAM "sp2ae_play.c”

/* START OF PROGRAM

/t'vvhttv:'oiitﬁt'ttttv'tt"'vv:tv*tt"v/

/* snlae_play.c

sp2ae play.c ¥/ .

Portion of TMS320c30 C code*/

/* The program 1s run by main procgram "run save.c". v/
/* This is a program that uses polling and ncr interrupt “/
/> Author: Arie Gal Gart

/* Date

8th March 199

/* Version 1.00 */

enlaub*/
4 */

/* Sbus global addresses definitions for interfacing with the host */
/ﬁ""ﬁ&i'tf.tﬁﬁ*.ﬁﬁiﬁ'1t*'*tﬁfi*ﬁﬁ't"i*ﬁ*itﬁ**""*t't"t’*t*"t'ﬁ/
DP_RAM_BUFFER_A BASE_ADDRESS
DP RAM_BUFFER B BASE ADDRESS

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

BUFFER B _STATUS

BUTFER_A STATUS ADDRESS

ADDRESS

START_RECOKD_FLAG_ADDRESS

FRAME_MODE_ADDRE
BIT_MODE_ADDRESS

ss

DETECTED_RATE_ADDRESS
TRANSMIT MODE_ADDRESS
FIND_HEADER ADDRESS
MODE_OF OPERATION

PLL_STATUS ADDRE
DP_RAM_BUFFER_LE
AES_BLOCK_SIZE

SS
NGTH

/* global control variables */

#define
#define

#define
#define
#define
#define

#define
#define

/* Sbus

#define
#define
#define
#define

BUFFA ¢}
BUFFB -1

READY
NOT_READY
READY A
READY B

MAX
ZERO

hardware definit

BUSADDR
BUSDATA
BUSADDR1
BUSDATAl

Oxeeceeeceee
0x11111111
Oxeeee0000
0x11110000

OxLELLffff
0x00000000

ions */

0x00808064
0x00000900
0x00808060
000000068

/f

0x0400010
0x0400408
0x0400000
0x0400001
0x0400007
0x0400008
0x0400009
0x040000a
0x040000b
0x040000c
0x040000d
0x040000e
0x3c0

192

originally 9 */

/* AMELIA hardware addresses for signal flow control */

/ﬁ*'ﬁ*'&****ii-.'ttf'ﬁ*ff*'t*ﬁiﬁf**i***"'***ﬁ***"&ﬁi***&/

#define
#define
#define
#define
#define
#detine
#define
#define

CHO_ADDRESS
CH1_ADDRESS

UCTR_ADDRESS
ACTR_ADDRESS
ASTS”ADDRESS
INTM_ADDRESS
INTS_ADDRESS
CNFG_ADDRESS

0x00804002
000804006
0x00804008
0x0080400a
0x0080400a
0x0080400b
0x0080400b
0x0080400f

/%
/*
/*
/*
/*
/-i
/*
/*

AMELIA Channel A address */

AMELIA Channel B address */

AMELIA User control register Write address */
AMELIA Control register Write address */

AMELIA Status register Read address */

AMELIA Interrupt Mask register Write address */
AMELIA Interrupt status register Read address */
AMELIA Configuration register Write address >~/

/* AMELIA data words for the proper signal flow control */

/'**iit*t.**i*t**t*********'**tQ***ﬁ*ii*****t't**t*ift*i./

0xa0000000 /* User Control register DATA to write ¥/

#define

#define
#define

#define
#define
#define

#define

UCTR_DATA

MODE_16 1
MODE_32 2

FIRST_SAMPLE
FIRST 16_BIT
SECOND_1%_BIT

SPDIF_16

0x10000000/* its the first sample to synchronize */
0x00000000/* its the case where the first word is send*/
0x00010000/* its the case where the second word is send*/

0x005000006 /* AMELIA Control DATA for SPDIF input 16 bit +/

110

#define AES_EBU 16 0x00700000 /* AMELIA Control DATA for AES/EBU input 16 bit */
#define SPDIF 37 0x00000000 /* AMELIA Control DATA for SPDIF input 32 bit */
#define AES_EBU 32 0x00200000 /* AMELIA Control DATA for AES/EBU input 32 bit */

/* 5 - SPDIF 7 - AES/EBU 0 - for 32 bit accuracy*/

#define XMT_PLL 0x00000000 /* Transmit from PLL clock */

#define XMT 32 0x00010000 /* Transmit in 32KHz */

#define XMT_44 0x00020000 /* Transmit in 44.1KHz */

#define XMT_48 0x00030000 /* Transmit in 48KHz */

#define CNFG_DATA 0x8££80000 /* The AMELIA key for initilizing the process </
/* Amelia Interrupt register */

#define INTM_PLL 0x00040000 /* Mask to determine loss lock of PLL */

#define INTM_XMT 0x00020000 /* Mask for determining if the output buffer is empty
-

/

#define INTM_DATA 0x00010000 /* Mask register for input buffers full */

/* Amelia status register */

#define PLL MASK 0x00080000 /* Mask for testing PLL lock on the signal */

#define VALID SIG MASK 0x00040000 /* Mask to test signal validity at status reg.I*/
#define BLOCK MASK SEND 0x00020000 /* What block to be send in 32 bit at sts. reg.I*/
#define BLOCK_MASK_READ 0x00010000 /* What bloc is read in 32 bit mode at sts. reqg.I*/

#define HIGH MASK Oxf£££0000 /* mask living only high bits */

sdefine LOW MASK 0x0000ffff /* mask living only low bits */

#define TEST_MASK 0x00210000 /* mask the not necessary bits from the block 1 */
/* AES_EBU Definitions */

#define Z_FLAG 0x00010000 /* the flag of biock start */

#define C_FLAG 0x00200020 /* the flag for C bit */

/* global variables and pointers */
/*t'*f'**'Q*ﬁﬁ'*f*.i***t*ﬁﬁ**iii&t/

/* pointers to DP_RAM data */

long *buffA ptr = (long *)DP_RAM BUFFER A RASE_ADDRESS;
long *buffB ptr = (long *)DP_RAM | BUFFER B_BASE_ADDRESS;
long *buffA _status _ptr = {long *)BUFFER A_STATUS _ADDRESS;
long *buffB_status_ptr = (long *)BUFFER_B_STATUS_ADDRESS;

long *bus ptr = (long *)BUSADDR;
long *busl ptr = (long *)BUSADDR1;
long *ch A ,_ ptr = (long *)CHO_ADDRESS
long *ch” B _ptr = (long *)CH1_, “ADDRESS
long *usT cntl _ptr = (long *JUCTR ADDRESS;

long *amelia_chtl_ptr = (long *)ACTR_ADDRESS;

long *amelia_sts ptr = (long *)ASTS_RDDRESS;

long *amelia_intm _ptr = (long *)INTM_ADDRESS;

long *amelia_ints ptr = (long *)INTS_ADDRESS;

long *amelia conflg _ptr = {(long *)CNFG _ADDRESS;

long 'operatxon mode _ptr =(long *)MODE “OF "_OPERATION;

long *pll_sts _ptr = {long *)PLL STATUS —ADDRESS;

long *bit_mode ptr = (long *)BIT MODE_ADDRESS:

long *header ptr = (long *)FIND_HEADER ADDRESS;

long *transmit_mode_ptr = (long *)TRANSMIT_MODE_ADDRESS;
long *detected_rate ptr = (long *)DETECTED RATE ADDRESS;
long *frame_flag_ptT = (long *)FRAME_MODE ADDRESS;

long *start_record_ptr = (long *)START_RECORD_FLAG_ADDRESS;

. v

/* initialize default value for fill ptr */

long *current_read_ptr = (long *)DP_RAM_BUFFER_A BASE_ADDRESS;
long *current status _ptr = {long *)BUFFER B_ STATUS ADDRESS,

/* variables used by in line assembler instructions */

int samp_count, counter,k,l;
int current butter = BUFFA;

unsigned long sync_array[AES_BLOCK_SIZE];
unsigned long pll,Int read.count max,mode,bit mode, header,xmt mode, flag,delay;
unsigned long frame_fTag,start_ racord = NOT _READY, pll sts = NOT_READY;

111

———

main{) /* start of the main program */
{

*bus_ptr = BUSDATA;
*busl_ptr = BUSDATAl;
counter = 0;
samp_count = 0;

count _max = 0;

pll = Or

flag = NOT_READY:

/* set up status flags for host program */
current_status_ptr = buffB status _ptr;
*current_status_ptr = NOT READY;
current_status_ptr = buffA_status ptr;
*current status _ptr = NOT_ READY;

*usr_cntl_ptr = UCTR_DATA;

/* read the desired modes of operation set up by the host user */
bit_mode = *bit_mode_ptr; /* for debug */ /* 16 or 32 bit mode */
/*bit_mode = MODE_32; for debug */
mode = *operation_mode_ptr;
/* read the desired rate of operation set up by the host user */
xmt_mode = *transmit_mode ptr:
pll_sts_ptr = xmt_mode; / for debug +/
header = *header_ptr;
/* the default is not using a header */
if ((header!=READY) && (header!=NOT_READY)) header=NOT_READY;
switch(bit_mode)
{ /* This is the main switch */
case MODE_16 :
/* Only 48khz is allowed in this mode of operation */
*amelia_cntl_ptr = SPDIF_16 | XMT_48 ;
*amelia_intm ptr = INTM XMT;
*amelia_config_ptr = CNFG_DATA;
/* The delay block for synchronization */

/'*f*****t’iﬁi'ﬁ*ﬁﬁ**'***ﬁﬁ*iﬁi*\.********/

delay = 125*AES_BLOCK SIZE ;

int_read = *amelia_intm _ptr; /* Dummy read to clear int */
*ch_A_ptr = 03

*ch_B ptr = 0;

*start_record _ptr = NOT READY;
start_record = NOT_READY;

while (start_record != READY)
{
1=0;
start_record = *start_record ptr;
while{ l<delay)
while((int_read = *amelia_intm_ptr & INTM_XMT) != INTM XMT);
*ch_A ptr = 0;
*ch B _ptr = 0;
1+=1;7
}

if (header==READY)

112

{ /* this is the loop to put header on the beginning of the DAT */
1‘01
while (1<AES_BLOCK_SIZE)

{
while({int_read = *amelia_intm ptr & INTM _XMT) !
*ch A ptr = READY _A:
*ch B _ptr = READY | _B;
L f‘-Tr
} /* end of BLOCK_SIZE while */
l=OI
while (1<AES_BLOCK_SIZE)}

{
while((int_read = *amelia_intm_ptr & INTM_XMT) != INTM_XMT);

*ch_A _ptr = 0;
*ch B ptr = 0;
l*‘Tr
} /* end of BLOCK SIZE while */

} /* End of header if */

/* Now after the sync start to put staff on the DAT */
while(1l!=0}
{

INTM_XMT) ;

while((int_read = *amelia intm _ptr & INTM_XMT) != INTM_XMT)
{/* do nothing and wait for the "interrupt™ */};
*ch A ptr = *current_read ptr; /* copy channel A to out */
*ch’ "B ptr = (*current_read_ptr++)<<16; /* copy channel B to out */
samp_count += 1;
if{samp_count == DP_RAM_BUFFER LENGTH)
{

switch(current_buffer)

{ /* toggle between buffers */
case BUFFA:
current_read ptr ~ (long *)DP_RAM BUFFER B_BASE _ADDRESS;
samp_ count = 0;
*current_status_ptr = READY;
current_ status ptr = buffB status_ptr;
*current_status_ptr = NOT_READY:
current_buffer = BUFFB;
break;
case BUFFB:
current_read_ptr =~ (long *)DP_RAM BUFFER_A BASE _ADDRESS;
samp_ count =" 0;
'current status_ptr = READY:
current_Status_ptr = buffA status_ptr;
*current_status_ptr = NOT_READY:
current_buffer = BUFFA;
break;

} /* end of switch */

} /* end samp_count if */
} /* end of while 1!=0 */
break;

/'**i*i'ﬁ'."bf*ﬁﬁi**t‘ﬁt*f.ﬁ*i the 32 bit mode ﬁiﬁ***ii**i**/

case MODE_32 :

if (xmt_mode==XMT PLL)
{ /* if the mode is PLL this is data transfer =~/
*amelia_cntl_ptr = mode;
*amelia intm_ _ptr = INTM_DATA;
*amelia conflg ptr = CNFG DATA;

while (pIl_sts == NOT_READY)
{

pll = *amelia_sts_ptr & PLL_MASK;
if (pll !'= 0")
{ pll_sts = READY;
*pll_sts_ptr = READY;
} /* end of if */
} /* end of while */

1nt read = *amelia_intm ptr;

*amelia intm ptr = 0;

*amelia_intm_ptr = INTM [DATA;

while(1!=0) /* loop forever transferring data */
{

while((int_read = *amelia_intm ptr & INTM DATA) != INTM DATA);
if ((int_read = *amelia_sts_ptr & BLOCK MASK READ)== SECOND_18_BIT)

113

*ch_A _ptr = *ch_A ptr & TEST_MASK;
*ch B _ptr = *ch B _ptr & TEST MASK.
}
else
{
*ch_A ptr = *ch _A_ptr;
“*ch_B ptt = *ch B ptr;

}
} /* end of forever loop */
} /* end of XMT_PLL if */

/tf*.'*'i\-*tiii"t'i'iﬁ*it***it end Of data t[ansfer in 32 blt mOde t/

else
{ /*evwewsewrveres srart the data transfer to DAT routine */

/* what frame to use local or user prerecorded frames ? *¥¥*¥¥¥vveww/
frame flag = *frame flag ptr;

/* check for default the default is use a local framing *v***evvevev/
if(({frame_flag != READY)&&(frame_flag!= NOT READY))frame_flag = READY;

for(1=0;1<AES_BLOCK_SIZE;1l++)
{ /* this Tor loop is to zero the synchronization matrices */
sync_array[l]}=0;?
} /* end of for */
sync_array(0)= C_FLAG | Z_FLAG;
switch (xmt mode)
{ /* this switch is for setting the amelia register and sync arrays*/
case XMT_32:
delay = 167*AES_BLOCK_SIZE;
/* now make synC matrix for 32khz sample rate */
sync_array(2}= C_FLAG:
sync_ —array{6]= C FLAG;
sync_ “array(7]= c FLAG;
sync_:-ray(184]= ~C_FLAG:
sync__ atray(lssl- C_FLAG;
sync_array(187]= C_FLAG:
sync_array[188]= C_FLAG;
sync_array(191]= C_FLAG;
*amelia_cntl_ptr = AES_EBU_32 | XMT_32 ;

break;

case XMT 44
deIay = 229*AES BLOCK_SIZE;
/* now make sync matrix for 44khz sample rate */
sync_array([2]= C_FLAG:
sync_array(6]= c __FLAG:
Sync_ “array[186}="C_FLAG;
sync_ “array[188]= C FLAG;
sync_array{189])= C_ _FLAG;
+amelia_cntl_ptr = AES_EBU_32 | XMT_44 ;
break;

|

case XMT 48:
delay = 250*AES_BLOCK SIZE ;
/* now make sync matrix for 48khz sample rate */
sync_array[2]= C_FLAG;
sync_array(7]= c_ _FLAG;
sync_array{184]= "C_FLAG;
sync_ “array(188}= C_FLAG;
sync_. “array[189)= C_FLAG;
sync_array{190]= C_FLAG;
*amelia_cntl_ptr = AES EBU_32 | XMT 48 ;
break;
} /* end of switch */

/* The delay block for synchronization */
/'fitt*'tt#t’t****‘*i'***ﬁ*i*t'*i*&*"tﬁt/
flag = NOT_READY;
“amelia intm _ptr = INTM XMT;
*amelia_confIg_ptr = CNFG_DATA;

int_read = *amelia_intm_ptr; /* Dummy read to clear int */
*ch_| A ptr = 0;

114

*ch_B_ptr = 0;

FAAAAAALALALS AL AL AL LA AL AL AL LAl dd then synchronies on the second frame */
while (flag != READY)
{

while{{int_read = *amelia_intm _ptr & INTM_XMT) !'= INTM XMT);
if((int_ read = *amelia sts _ptr & BLOCK_MASK_ _SEND) == BLOCK_MASK_SEND)
{Tflag = READY; T
*ch A ptr = 0;
;ch_B_ptr - 0;

start_record = NOT_READY;
*start_record ptr = NOT_READY;

while (start_record != READY)

{ /* waiting for the operator to start the program */
start_record = *start_record_ptr;
k=0;
f05(1-0;1<2*de1ay:l++)

while((int_read = *amelia_intm_ptr & INTM XMT) != INTM_XMT);
if((int_read = *amelia_st5_ptr & BLOCK MASK SEND) != BLOCK_MASK_SEND)
{

*ch_A ptr = 0;
*ch_ B _ptr = 0;
}
else
{
*ch_A_ptr = sync_array(k};
*ch B _ptr = (sync_array[k++])<<16;

)
Lf (k==AES_BLOCK_SIZE) k=0;
}

} /* end of waiting for the operator */
/i.t'.i**"iti'it*f’iiﬁ'i"i create header if desired tifﬁ't'tii**if'i/
if (header==READY)
{ {'othis is the loop to put header on the beginning of the DAT */
=03
while (1<AES_BLOCK_SIZE)
{

while((int_read = *amelia_intm ptr & INTM XMT) != INTM XMT);
Lf((tnt read = vamelia_sts_ptr € BLOCK_MASK_SEND} != BLOCK_MASK_SEND)

*ch A ptr = READY A;
*ch B | _ptr = READY B;
}
else |
*ch_A ptr = sync_arrayl(l};
*ch_B_ptr = (Sync_array(l++])<<16;

}
L } /* end of BLOCK_SIZE while */
’0,
whtle(l<AES_BLOCK SIZE)

while((int_read = *amelia xntm_ptr & INTM XMT) != INTM XMT):
if({int_read = *amelia_stS_ptr & BLOCK MASK SEND) != BLOCK_MASK_SEND)
{

*ch_A ptr = 0;
*ch_ B _ptr = 03
}
else
{
*ch_A_ptr = sync_arrayl[l};
*ch_B_ptr = (sync_array[l++])<<16;

}
} /* end of BLOCK SIZE while */

) /i'*i'tfQ'.i'ttﬁ*i*'t*if"*Q*iii*'ﬁ*******i**ﬁﬁt End of header lf t/

/* now ready to start fill up the memory */
switch(frame_flag)
{

case NOT _READY: /* the frames are locally made */
/* LOOP FOREVER POLLING INTERRUPTS */
1=0;
while (1 != Q)

115

{
while((int_read ~ *amelia_intm ptr & INTM XMT) '= INTM | XMT) ;
if{lint_read = *amelia_sts_ptr & BLOCK MASK SEND) '=

{
*ch_A_ptr = *current_read ptr; /* copy channel A to out */
*ch B _ptr = (*current read | ptr++}<<16;/*copy channel B to out */
samp COUnt += 1;

BLOCK_MASK_SEND)

else
{
*ch_A ptr = sync_array(l]);
*ch B~ _ptr = (sync_array(l++])<<16;
if (I==AES_BLOCK _SIZE) 1=0;
}

JrEEvEeebbates . creawevwewr constantly check to see if current buffer is full */
if (samp_count == DP_RAM_BUFFER_LENGTH)
{

switch(current buffer)
{ /* toggle between buffers */
case BUFFA:
current_read ptr = (long *)DP_RAM BUFFER_B_BASE_ADDRESS:;
samp_count = 0;
*current _Status_ptr = READY:
current status ptr = buffB_ status _ptr;
*current_status_ptr = NOT_READY;
current_buffer = BUFFB;
break;
case BUFFB:
current_read_ptr = (long *)DP_RAM_BUFFER_A_BASE_ADDRESS;
Ssamp_count =" 0;
*current _sStatus_ptr = READY;
current status ptr = buffA status_ptr;
*current_status_ptr = NOT_READY;
current_buffer = BUFFA;
break;
} /* end of switch +/
} /* end samp count if ¢/
) /it*it.t end whlle 1'-0 *i'tt'tittt'./
break:

case READY :

/* flag = NOT_READY;
*ameijia_intm ptr = INTM_XMT:
*amelia_intm_ptr = 0;
*amelia intm ptr = INTM XMT;
*amelia_config_ptr = CNFG_DATA; v/

/* int_read = *amelia_intm _ptr:*/ /v Dummy read to clear int */
/* *ch", _A _ptr = 0;
*ch_B ptr = 0; */

/ttt"itt*‘*‘*t'tﬁ'it*ti'0'0"" then swehronles on the Second frame */
/* while (flag != READY)
{

while((int_read = *amelia_intm ptr & INTM _XMT) != INTM XMT);
if((int_read = *ameiia_sts_ptr & BLOCK MASR_SEND) == BLOCK _MASK_SEND)
{ flag = READY; }
*ch A ptr = 0;
*ch B ptr = 03
b *7
/* LOOP FOREVER POLLING INTERRUPTS */
while (1 !'= 0)
{

while((int_read = *amelia_intm_ptr & INTM_XMT) != INTM X24T);
*ch_A_ptr = *current_read ptr; /* copy channel A to ouc +/

*ch_B ptr = (*current_read | ptr++)<<16; /* copy channel B to out */
samp_cCount += 2; /¥ aHvancxng samp_count ahead to gain time */
whlle((1nt read = *amelia_intm _ptr & INTM_XMT) != INTM | XMT) ;

*ch_A _ptr = *current rea aptr; ~/* copy channel A to out */

ch B) ptr = ('curzent read ptr++)<<16; / copy channel B to out */

116

rIIlIlllllIllllIllIllIlIIllIlIlllllllllllllIllllllIIIlllIIIIIIIIIIIIIIIIII--t"

[EwrErRTLsLULwe LT Cwb b e vws constantly check to see if current buffer is full +/

if(samp_count == DP_RAM_BUFFER_LENGTH)
{

switch(current _buffer)

{ /* toggle between buffers */
case BUFFA:
current_read ptr = (long *)DP_RAM_BUFFER B_BASE_ADDRESS;
samp_count = 0;
*current _Status_ptr = READY;
current status _ptr = buffB status ptr;
*current_status_ptr = NOT_READY;
current_buffer = BUFFB;
break:
case BUFFB:
current_read_ptr = (long *)}DP_RAM_BUFFER_A_BASE_ADDRESS;
samp_count = 0;
*current _Status_ptr = READY;
current status_ptr = buffA status_ptr;
*current status_ptr = NOT_READY;
current_Buffer = BUFFA;
break;
} /* end of switch ¥/

} /* end samp count if */

} /' end of while 1!=0 */

break;

) /* end of frame_flag switch ¥/
} /* end of else to data transfer */

break:

} /* end of mode switch whether 16 or 32 bits */
}/ﬁ""""'*tf and of main ti'oﬁt'i/

117

(1]

(2]

31
(4]

(5]

[6]

(7

(8]

19

[10]

(11]

(12]

(13]

LIST OF REFERENCES

Ken C. Pohlmann, Principles of Digital Audio, second edition, SAMS Publishing,
Carmel, Indiana, 1992.

Robert Finger and T. Nakanishi, "Developments In R-DAT Data Recorders," IEEE
Mass Data Storage Conference Proceedings pp. 35-37. Monterey, California, 1990.

Albert S. Hoagland, Digital Magnetic Recording, John Wiley & Sons Inc., 1963.

The A cademic American Encyclopedia (Electronic Version), Grolier, Inc., Danbury,
CT, 1992.

Steve Oualline, Practical C Programming, O'Reilly & Associates, Inc., Sebastopol,
California, 1993.

TMS320 Floating Point DSP Optimizing C Compiler, User's Guide, Texas
Instruments Inc., 1991.

Ken C. Phoimann, "DAT in Depth," Electronics Australia, pp. 14-18, April 1988.
W.S. Hodgkiss and J. C. Nickles, "Real Time Data Management in a UNIX
Network Environment," IEEE Oceans and Seas Conference Proceedings pp. 294-
297, 1990.

John W. Einberger, "CD as a Mass Storage Device,” IEEE Mass Data Storage
Conference Proceedings, pp. 125-129, Monterey, California, 1988.

SDSP/C30D SBUS BOARD, Technical Reference Manual, SPECTRUM Signal
Processing Inc., Version 1.01, September 1992.

SDSP/C30D SBUS BOARD, User Guide, SPECTRUM Signal Processing Inc.,
Version 1.01, September 1992.

DM/D24AES DIGITAL AUDIO MODULE, User's Manual, SPECTRUM Signal
Processing Inc., Version 1.00, March 1993.

TMS320 Floating Point DSP Assembly Language Tools, User's Guide, Texas
Instruments Inc., 1991.

118

BIBLIOGRAPHY

Brycer, Bemard B., Digital Magnetic Tape Recording Principles and Computer
Application, Hayden Book Company Inc., New York, 1965.

Hipson, Peter, Advanced C, SAMS publishing, 1992.
Jacson Bruce, A User's Guide to Digital Audio Interconnects, Mix, October 1992.
Kelly-Bootle, Stan, Understanding UNLX, SYBEX Inc., 1992.

Kemighan, Brian W. and Ritchie, Dennis M., The C Programming Language.
second edition, Prentice Hall, 1988.

119

——;

INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria VA 22304-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code EC 1
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

4. Charles W. Therrien, Code EC/Ti 6
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

5. Murali Tummala, Code EC/Tu 1
Electrical and computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

6. Monique P. Fargues, Code EC/Fa 1
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5121

7. Israeli Defense Navy Attache 4
Embassy of Israel
3514 International Drive N.W.
Washington, D.C. 20008

8. Arie Gal-Gartentlaub ' 2
24a Haagana St.
Kiryat Motzkin, 26372
Israel.

120

