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ABSTRACT

A Galerkin method for systems of PDE's in circular geometries is presented with motivating
problems being drawn from structural, acoustic and structural acoustic applications. Depend-
ing upon the application under consideration, piecewise ,plines or Legendre polynomials are
used when approximating the system dynamics with modifications included to incorporate
the analytic solution decay near the coordinate singularity. This provides an efficient method
which retains its accuracy throughout the circular domain without degradation at the singu-
larity. Because the problems under consideration are linear or weakly nonlinear with constant
or piecewise constant coefficients, transform methods for the problems are not investigated.
While the specific method is developed for the 2-D wave equation on a circular domain and the
equation of transverse motion for a thin circular plate, examples demonstrating the extension of
the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility
of the method when approximating the dynamics of more complex systems.
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NASA Contract Number NASI-19480 while the author was a visiting scientist at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1 Introduction

A common step in uuianY structural, aLcoustic' and~ fluid appllications involves the( sol titioii of par-

tial diifferetil equations ( P1) 's) modelinig tile physics of a system hlaving at ci rciular geomietry.
Exam pies of appIlications tit wichW thIiis is Iill jortan Iti ile the (determ in ationi anud cottrol of
circular p~late and1 cylihndrical shelf d liimnics, thle modeling and attenuation of noise wi thi ii a
cyflndrical cavitV, the sliiiliat ion of f lidl flow and boundary laver growth it) a pipe. as well
as innumerable other applications Involving (circuular domains. DIue to tite complexity of tile
p)roblemns, however, analytic' soltit ions luslall ' cannot be obtained and one muiist. iinerically
approximate the( (lynaics uC nder ('onsi( erationl

From separation of variab~les and t, 1.uncatloll of tihe resuiltinig iliiiiite series. approximlationls
inl thle form of, miodal expansionls inv'ol ving Bessel components can occasionally h e llsedi to
app~roxi mate PD[E dynam ics. HIowever, modal expanlsions c-anl le determi ined for only a limitedi
number of aplhications and hence onle mu11st oftcn emp~loy more general techniques such as finite
(difference, finlite element, spline. oi- spectral expanlsionls inl order to app1roximate the( dlynamics
of tile system lind(Ir conlsidierationl.

Inl the category of spectral methods for circular geometries, Galerkin. collocation andl tai
methods have been studied with tile choice of method (depending u11on1 tile- prob~lemi being cOil-
sidlered. To (late, muich of this research has centeredl around~ the( simulation of fluid flow andl
boundary layer growth and tin these cases, emp~hasis has usually b~een placedl onl collocation due
its success in) handling complex b)oundary conditions, variable coefficienits, anid strong iioi1iln-
earlties f11(, 17]. Calerkin methods for flows onl spheres are discussed in [15]. but this is done

primarily in the context of Fourier exp~ansions involving the strong form of tile modeling flow
eqluations with only a brief discussion concerning Legendre bases being included. As noted inl
this latter reference, care must be exercisedl when ap~plying any of the previously mentioned
techniques (Galerkin, collocation or tali) to p)roblems with coordlinate singulari ties since tile
incorrect application of pole conditions c-an significantly degrade the accuracy of tile miethod
as well as introduce strong numerical instabilities. This reference also includes a general comn-
parison between the results obtained with surface harmonics (eigenfunctions of thle Laplacian),
modifiedl Robert functions and Fourier series using collocation and Calerkin miethods inl thle
p~resenlce of the coordinate singularity. The use of the modhified Rob~ert functions and~ tech-
niques for improving their condhitioning and employing fast transforms is further addressed inl
[101. Finally, general overviews concerning tile apliication of spectral methods to p~roblem~s
with coordinate singularities canl be found inl [11 , 12]. We point out that the emphlasis inl these
references centers primarily aroundl~ tile development of numerical methods for flows of various
types and hience the techniques are often geared toward the approximation of strongly nonlinear
operators which requires transform methods to facilitate efficient i mplementat ion. While these
techniques will clearly work for linear problems involvinlg circular domains, they oftenl are niot
optimal nor tile lbest choice for thle app~lications uinder considlerationl.

]in this paper, we present a Calerkin methlod for linear or weakly nonlinear problems having
circular or cylindrical (domains usig Ipiecewise spline and~ spectral bases. Two areas froml which
we will draw examples are structural dynamics anld acoustics (a search of the literature reveals
few numerical techniques for these types of' problems onl circular domains). Linearization inl
the first case is often justified when (lealing with small amplitude vibrations while linearized



acoustic equations are often eml)loyed when considering acoustic fields having sounidl pressure
levels less than 150 dB (which is the case in a large nulber of acouslic and struictmra acousiIc
applications). While weak nonlinearities of the type considered in [7] can also ik elticivii 11
implemented, the discussion here will concentrate on the linear case. Moreover. . he coefticiilts
in the problems of interest will be taken to be constant or piecewise constant in Inat'ire (this is
certainly a reasonable assumption for many acoustic problems and a valid cojiditioni in a large
class of structural applications). Hence we will not address the use of transform nietliods for
evaluating variable coefficients and nonlinear components.

Throughout the discussion, the modeling equations will be approximated in the weak or
variational form in accordance with energy formulations of the problems. In the structural
application, this is done to reduce smoothness re(qiiirements oil approximating elements and
to accommodate structural and material discontinuities as well as unbounded (discontilmuols)
input operators. The consideration of tite acoustic 1)roblem in weak form proves to be IiseIul
when considering coupled structural acoustic systems. Moreover, in weak forrm. some physical
boundary conditions (e.g., the hard wall conditions whicl we consider here) are natural which
implies that no basis alterations are necessary when implementing the method. We point oit.,
however, that if the application warrants, al)proximation of the acoustic dynamics iusing the
strong form of the system equations can just as efficiently be accomplished using the techniques
of the paper. Moreover, these techniques can be easily modified to accommodate a tan method
if dealing with more complex csscntial boundary conditions (boundary conditions which must
be explicitly satisfied in a variational formulation of the problem).

In the second section of this paper, a 2-D acoustic problem on a circular domain is con-
sidered with a Fourier-Legendre basis being used in the ensuing approximations. In additioni
to its accuracy, the use of this basis proves to be advantageous in control applications since it
facilitates the maintenance of uniform stability margins under approximation [4]. Moreover.

the the use of the spectral basis facilitates approximation in a quotient space which is often the
natural state space in acoustic problems.

The techniques are then applied to a structural application in Section 3 with the Iproblenl
of approximating circular plate dynamics being used to motivate the analysis. In this case,
cubic splines modified to satisfy boundary conditions are used in conjunction with a Fourier
basis to obtain a suitable finite-dimensional approximation to the problem. The use of splines
rather than a spectral basis is motivated by smoothness requirements as well as the ease with
which they can be adapted to satisfy essential boundary conditions, and can easily be changed
if warranted by the form of the modeling equations and boundary conditions. We emphasize
that when developing a general technique that could be applied in both cases, ('are was taken to
treat the coordinate singularity in a manner that prevented degradation of accuracy using either
basis (spectral or piecewise splines) as well as avoided the introduction of spurious numerical
instabilities.

The techniques from Sections 2 and 3 are then combined in Section 4 where the problem of
approximating the dynamics of a fully coupled structural acoustic system is considered. This
demonstrates the flexibility of the method when studying a more complex coupled physical
system and illustrates the manner through which the basic techniques can I)e extended to more
general problems. The convergence properties of the method and its use in determining physical

properties of the system are illustrated through a set of examples. Finally, advantages of the
method in control applications are discussed in the concluding remarks.
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2 The Wave Equation

In this section we consider the 2-) wave equation on a circular domain Q of radius a with tie
boundary denoted by F. For Neumann boundary constraints and initial conditions Oo and Qi,

the equations of motion are

Ot=c 2A+g(t1,r,0) , (1,0) E Q t,>0,

V64=0 0)(r,) E Ft >0,
(2.1)

0(0,,., 0) = 0(1, 0) , (., 0) E Q
S (0, 9,0) = 6,(7, 0) , (0,9) E Q

where 0, in acoustics applications [141, denotes the velocity potential and c is the speed of
sound. We note that the Neumann boundary conditions are chosen so as to be consistent with
the hard wall conditions in the physical application described in Section 4 and can be altered
to fit the individual problems under investigation.

To gain insight into the behavior of the solution and to motivate the form of the approx-
imation, we first solve the equations analytically through a standard separation of variables.
For the homogeneous problem (g = 0), we take O(t,r,O) = T(t)4(r, 0) to arrive at the two
dimensional Helnholz equation

A t+ , (r,2 0) E , (2.2)

v4 . = 0 , 0(r,) E F

and the relation T" + w2T = 0 , t > 0 . The separation constant here is -y 2 = -() where O
is the circular frequency with units of radians/sec. To find (, we separate variables once more.
Letting 4(r, 0) = R(r)O(9), the expansion of Helnholz's equation yields the expression

I d (jd) Id + =0
7Rfdr ,d l + .20 dO2

which implies that R and 0 must satisfy the differential equations

1' + (2n_2

.~r7 2O (2.3)

R'(a) = 0 ,

and
0" + m2 0 = 0

0(0) = 0(27r) 
(2.4)

The general solution to (2.4) is periodic and is given by 0(0) = Ae" , m = 0, ±1, +2,.-.
Moreover, the general solution of the Bessel equation (2.3) is R(r) = A2.fl.(-yr) + A:3Y,,(r)
where .,, and Y.. are the in" Bessel functions of the first and second kind, respectively. As
noted in [1], these functions display the asymptotic behavior

(z) 2'"(m -. . ) (2.5)
ill,"(Z) ~ 2,7n! I Y"(Z)~- _ ,(2.5)



for fixed in and z --- 0. Becaiise Vi',, gi-OWS uIIhIOUIHuld at I Ie 0oriE~iii. We 1 akC 0l W)inoder

to guarantee that the soluttion reilnai us lbolliledl at r = 0. Thle decay ,rpr ye ()I J"., \vil h
incorporated wheni developing anl approximationi IliellIod for thle prloblemIi.

The eigenvaluies Im of (2.2) are t heni delecriiiied bY appivi im I lle l)0llindlY ((Iidlit iot antd
Solving for tile zeros of tile fnotlifiear eqatioln

dr 0 ( 2.6)

The corresponding eigetive('tors or mnodes are t1i1,( , ) II;L "1 f~ , ,r) 'lt it =I. ± I ± 2.
it = 1, 2, 3. which imp~lies that standing waves have thle fortin

~fl~a(i~. ) an sinl ... c7li ) + 171 cos Jwn(] '/IJ ( Ill 11r

A variation of p~aramieters approach c'alltili b ene lsedl to ex tend I i is to t lhe tiotalauji logtte e t s

case. With Sulitalble smloothnless assumptions oil the Initial colilhitiolis and( I hr el-I er it calli

be shown that the solution to (2.1 ) has the form

'11=-' 7=

where thle coefficienits dU0, (I dlependI oil 0. 01 and the tim1e-(lejenidenit, Fhlrier coefficieiuis of
g (we refer the reader to any standard P[ )E text for details conc'ernilng the Juistificationi of the
formal calculations out ined here).

Having outlined the arguments leading to the analytic form of thle solution, we now want, to
use those results to motivate anl approp~riate Galerkin techi ile for approxi mat ing t.he Soluti ionl.
To facilitate the use of this scheme inl coupled structural acoustic systems (see, for. exampijle.
the system discussed inl Section 4), the weak form of thle system equations will be conlsidIeredI.
Moreover, to illustrate the use of the method when ap~proximating the acoustic potential (which
is determined to within only a constant [14]), a basis suitab~le for a. quotient, space will be c1lioset,.

To pose the system (2.1) inl weak form, we take the state to he 0 inl the space II=L'Q
where L2(Q) is the quotient space of L' over the constant fuinctions. The space of test funictions
is taken to be the quotient space V =hI (Q). The inner jprodaicts for- thie two spaces are ta-ken
to be

(the overbars hiere denote complex conjugation as comp~ared with those ulsedl above t~o delitteatc
the quotient spaces). Energy considlerations or- Integration I)y parts then yield1s the variational
form

for all inl '.
To discretize, we begin with a Fourier expansion inl 9 Which Yield1s th le applroximate solilioti

( m (,r, 0 1-W



We point out that the use of the complex Fourier expansion simplifies the following discussion
both in describing the form of the approximate solution and the construction of the system
matrices. However, when combining these wave results with those of the circular plate to
yield an approximation scheme for the coupled system (see Section 4), it is easier to use a
real Fourier expansion when performing the actual computations (this is due to the presence
of the piezoceramic patches on the plate). The interchange between the two expansions is
straightforward, and hence details concerning the implementation of the real Fourier scheme
are left to the reader.

Several possibilities exist for spline, Legendre or Chebyshev expansions of q,,.(t,r) both in
a collocation and Galerkin setting. These include direct expansions which maintain the parity
of the solution, refinements to incorporate the decay of the solution at the origin, and mapped
expansions which use all the polynomials and yield better center resohution. These expansions
must satisfy the condition

Nim 0

at the origin which guarantees the uniqueness of the solution. This yields the requirement

...(t,,z-) = 0 at i'= 0, in 0. (2.10)

To guarantee differentiability at the origin, it is appropriate to require that the remaining

component satisfies
do 0 at r= 0. (2.11)

As detailed in (61, one expansion of ,,(t, ) which satisfies these properties is

N m

= t,'(t)Ij~hl Pin: (I.)
n=0

where

7;1= { m -= '5 (2.12)
5 , ml=6,'-,M

and {PI(r) - 1/3 ,in = 0, i = 1
P, (r) = P,(r) otherwise.

Here P,,(r) is the n"h Legendre polynomial which has been mapped to the interval (0, a). The

term P (7-) - 1/3 when in = 0, 7t = 1 results from the orthogonality properties of the Legendre
polynomials and arises when enforcing the condition fa- Om(t, r, 9, z)dw = 0 so as to guarantee

that the functions are suitable as a basis for the quotient space. The inclusion of the weight
r incorporates the decay of the analytic solution near the origin (see (2.5)) while ensuring

its uniqueness at that point. Finally, we note that if N Legendre functions are used, the liniit
N" is given by N"' = N + 1 when Iml $ 0 and N' = N when 7n = 0, which implies that

A = (2M + 1)(N"' + 1) - 1 basis functions are used in the wave expansion.
Summarizing, the approximate solution to (2.8) can be expressed as

M Nt m  M

t,) = . ,,,,,~(t)7.l ,p,7 = yj ¢k(t)B-A4 (,', 9) (2.13)
m=-M ii1 k=1
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where B'(, 0) - 7- )e . In comparing the form of this approximate solution with tile
analytic wave solution defined in (2.7), it can be seen that we have essentially replaced the Bessel
components by weighted Legendre functions. This provides an approximate solition which i.,
more flexible and is quicker to converge in a variety of applications than that obtained witl a
purely eigenfunction expansion (indeed, for more complex systems involving wave components,
the eigenfunctions are unavailable and would have to be approximated before they could he
used as a basis).

To provide an approximating finite-dinensional space for the pr"oblelm1, we define the sub-
space H' = span{BM} and take the product space for the first-order problem to be jHM
HM x HM. The restriction of the infinite-dimensional system (2.8) to the space 7R'M x 'HM
then yields

nj2 " 1 id+VOM.W dw gdw

for in HM. The corresponding matrix system is

0W M ; O-() = -K (t) +  €

(2.14)

0 ] [ 1
where t9M(t) = [01 (t), 02(t), .-. , Om(t)]' denotes the M x I vector containing the approximate
state coefficients. The component matrices and vectors are given by

[K O]fk VBjX. VB~dw,

[M4,11k jC Mj~pdW,

[M M _ 2 _ Bd (2.15)

[9M] =O j 4?0 VBC~dw =(, BM)

[g] j 1
1Bdw = (01 Bm),H

where the index ranges are k, f = 1,-.- ,M. We note that the presence of the matrix K'M in
the M component of (2.14) and mass matrix is due to the form of the V-inner product.

We point out that the Fourier-Galerkin technique leading to the matrix system (2.14) is quite
general in nature and can be used to approximate wave solutions in cases where the analytic
solutions described at the beginning of this section are unavailable or impractical to use. The
general techniques described here are also easily adapted to different boundary conditions and
more complex systems involving acoustic components. Test cases illustrating the basic method
are given in the following examples and the extension of these techniques to a more complex
coupled structural acoustic system is presented in Section 4.
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2.1 Example 1

As a first test of this approximation method, we considered the forced wave equation

Oft = C'2AO +g(t, r,0) , r,) E Q t >O.

V.f = 0,(r, 0) E F.t >0,

(0, r, 0) = Ot(0,r,)= 0 (r,9) EQ

on tle circular domain Q of radius a = 1. The true solution 0(t, 7', 0) = t'[cos(2rz)- l]12 sin(30)+
cos(0)] was used to generate the forcing function g, and the problem was then discretized to yield
the matrix system (2.14). The absolute and relative errors obtained by integrating this system
to time T = 1 and comparing with the known true solution on a uniform mesh are recorded
in Table 1. The true solution at that time is depicted in Figure I while line plots comparing
the approximate and true solutions along the central line = {(x, y) -I < .r < 1, y = 0} are
given in Figure 2.

The solution for this problem was chosen in a manner that allowed us to fix the Fourier
limit and examine the convergence as the Galerkin limit was increased. The rapid convergence
exhibited by the results in Table 1 is consistent with that expected from the radial Legendre
basis. A slight decrease in the convergence rate is noted when N = 15, and we believe that this
is due to error in time discretization rather than spatial approximation (a standard fourth/fifth
order Runge-Kutta routine was used to integrate the system). In this and other examples
that we have examined, it can be noted that as long as the solution being approximated is
sufficiently smooth at the origin, the approximation method performs well and accurate results
can be obtained with a relatively small number of basis functions. For example, the plots in
Figure 2 demonstrate that while small oscillations near the origin are present in the approximate
solutions obtained with N = 3 and N = 6, they are gone with larger discretization limits and
if fact, the approximate solution obtained with N = 9 is graphically indistinguishable from
the true solution. For less smooth functions (e.g., functions that are only continuous and
differentiable at the origin), some loss of accuracy does occur, although, in applications this
has not been a factor since these types of discontinuities generally do not occur in the physical
systems whose dynamics we are simulating.

M N 2M II'ktrue - 0,appii ll 0i.ruel

3 3 54 1.0067-0 .1357-0
3 6 96 .1453-0 .1959- 1
3 9 138 .1269-2 .1710 -3
3 12 180 .8567-4 .1155-4
3 15 222 .1912-4 .2578-5

Table 1. Absolute and relative errors when approximating the wave solution
0(t, r, 0) = P[cos(2irr) - 1]2[sin(30) + cos(O)].

7



True Solution

50.

0'0

-0.5 -0.5

y-axis -1 -1 xai

Figure 1. True solution 0(t, 7r, 8) t2 [COs(2irr) - 1]'[sin(30) + cos(9)] at timle T =I.

True and Approximate Wave Solutions

3-/

2-/

01

-2-

-2-

-1 -0.8 -0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x-axis, y=O

Figure 2. True and approximate solutions, -- (N = 3), - - (N =6), --- (True).
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2.2 Example 2

A second means of testing the accuracy of the mass and stiffness matrices in the system (2.141)
and hence checking the accuracy and convergence properties of the approximation method is
by discretizing the eigenvalue problem

A4 + 1) = 0 (r, 0)EQ,

V4-f-O , (r, 0) EF

(see (2.2)) which arises when separating variables in the homogeneous wave equation. As
discussed previously, the eigenvalues "r,,, are determined by solving for the zeros of the nonlinear
system U = 0 where J.. is the in" Bessel function of the first kind. Several values obtained
with a = I are summarized in Table 2 (see page :343 of [91 for details).

To compare these results with those obtained via the Fourier-Galerkin expansion, it is noted
that tinder approximation in weak form, the eigenvalue problem (2.2) yields the generalized
matrix eigenvalue problem

=o =,2 jMIM (2.16)

with c2 = a = I in the mass and stiffness matrices MM and K', respectively (see (2.15) for the
definition of these matrices). The approximate eigenvalues obtained by solving (2.16) are sum-
marized in Tables :3 and 4 for the limit choices M = 6, N = 6 and M = 6, N = 12, respectively.
With the first choice of limits, it becomes difficult to distinguish the higher order eigenvalues
and these are omitted from the table. We first note that with M = 6, N = 12, very accurate ap-
proximations are obtained with the largest relative error (4.4 x 10 - 4) occurring when m = n = 6.
Moreover, we see that while the definition of the modified Fourier component 7h (see (2.12)),
which incorporates the analytic decay of the Laplacian near the origin, changes at m = 5, this
has not reduced the accuracy of the method. Hence this example further illustrates the efficiency
and accuracy of this approximation method for the wave equation on a circular domain.

n m = 0 m = 1 m = 2 m = 3 in = 4 tit = 5 m = 6
0 1.8412 3.0542 4.2012 5.3176 6.4156 7.5013
1 3.8317 5.3314 6.7061 8.0152 9.2824 10.5199 11.7349
2 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682
3 10.1735 11.7060 13.1704 14.5858 15.9641 17.3128 18.6374
4 13.3237 14.8636 16.3475 17.7887 19.1960 .20.5755 21.9317
5 16.4706 18.0155 19.5129 20.9725 22.4010 23.8036 25.1839
6 19.6159 21.1644 22.6716 24.1449 25.5898 27.0103 28.4098

Table 2. Values of y,,, obtained from the Bessel condition d - 0.dr -

n ?i=0 m=1 m=2 m=3 m=4 ?n=5 m=6
0 1.8412 3.0542 4.2012 5.3176 6.4156 7.5013
1 3.8317 5.3314 6.7061 8.0152 9.2824 10.5199 11.7349
2 7.0159 8.5378 9.9714 11.3472 12.6823 13.9871 15.2709
3 10.2668 11.7350 13.1858 14.6280 16.0386 17.4007 18.7540
4 13.7669 15.2709 17.2673 18.3866

Table 3. Values of , obtained with M = 6, N = 6 Fourier-Galerkin basis functions.

9



n tn=0 1 =1 n= 2 i = 3 m = 4 1 = 5 n = 6
0 1.8412 3.0542 4.2012 5.3176 6.4156 7.5013
1 3.8317 5.3314 6.7061 8.0152 9.2824 10.3199 11.7349
2 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682
3 10.1735 11.7060 13.1704 14.5858 15.9641 17.3128 18.6374
4 13.32:37 14.8636 16.3475 17.7888 19.1960 20.5755 21.9317
5 16.4717 18.0159 19.5131 20.9730 22.4018 23.8043 25.1860
6 19.6250 21.1860 22.6929 24.1559 25.5937 27.0152 28.4223

Table 4. Values of -y,,... obtained with / = 6, N = 12 Fourier-Galerkin basis functions.

3 The Plate Equation

A second area in which one must commonly approximate the dynamics of PDE-iiased models
posed on circula- domains occurs when numericall' simulating structural dyinics. While the
assumption of small amplitude vibrations often leads to linear models, these models are often
sufficiently complex so as to warrant special numerical techniques to capture the physics of the
system. As a motivdLing example, we consider a thin circular plate having piezocerainic patcles
bonded in pairs to its surface (see Figure 3). When a voltage is applied to the patches, stresses
are generated which can be used to invoke in-plane forces and/or bending moments in the
underlying structure [8]. In this manner, the patches can be used to control plate vibrations [21
or acoustic sound pressure levels when the plate is an active component in a structural acoustic
system [3, 4, 5]. For the analysis which follows, we assume that the edge of the plate is clamped
since this quite closely approximates the condition found in several applications of interest.
We point out, however, that the techniques which follow are easily adapted to other essential
boundary conditions if warranted by the physical model.

Piezoceramnic Patches

... ...... ..... iii .i i i ..... i

0a

Figure 3. A thin circular plate with piezoeceramic patches bonded in pairs to its surface.
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For a thin circular plate of radius a having clamped edges, the strong form of the equations
modeling the transverse motion is

a 2M, 26MT O1, MO 2 ( 2M/ o 2 OMAo I a 2 o
pphw + + + + + f(t r,0)72  r " Or I. a?. 7.2 o 7.2 d02

w(t,a,0) = -9W (t, a,=0) = 1

w(O,1,0) = wo(1., 0 ) , wt(o,,.,0) = U1 (1.,0)

where pp and h denote the density and thickness of the plate and w is the transverse displace-
ment. The general moments are given by

Mo = Mo - (MO)p,

MAo = Mo

where

, = +-9-i" 0i + CD. 7( + v + 7A
MZ D 2 + 72,.2 ± , r2Ot ," OrOt "2 002-t)

I OW 12 + 2w' ( 2w 1 aw aw
±D = ) T -- +C (3.2)

r r 62 6.2r t 7. 602at +I" 6

M7.2 D(1 -v) ( !. 2 - +6w (1 , ,.1,oo2 ,. 2

7. 660d 12 do ) (CI'i \Ja6-606t - r2 ja

are the internal plate moments (including discontinuous changes in D,v and CD due to the
bonding of the patches to the plate - see [8]), and

S

(M), = (MO)P, = EkiUi(t)Xi(',O)
i=1

are the applied moments generated by s pairs of patches. With E denoting the Young's modulus,

the parameters vJ, D = 2 -h3V2 ) and CD represent the Poisson ratio, flexural rigidity, and damping

coefficient for the plate/patch structure. Here X¥i(r, 9) denotes the characteristic function which
has a value of I in the region covered by the ith patch and is 0 elsewhere. Moreover, ui(t) is the
voltage into the i t patch and K:j is a parameter which depends on the geometry, piezoceramic

material properties and piezoelectric strain constants (see [8] for details). We point out that the
piezoceramic material parameters KA, i = 1,. • , s as well as the plate parameters pP, D, CD and

v should be considered as unknown and in applications must be estimated using data fitting
techniques analogous to those discussed in [7]. The piecewise nature of the material parameters
and input moments is one motivation for approximating the problem in a weak or variational
form.

To motivate the development of a Fourier-Galerkin scheme for this )roblem, we proceed in

a manner analogous to that used in the last section and consider first a simplified version of

the problem where separation of variables can be employed. To this end, we analyze first the
equation

2W
Pvh 6t- + DV 4 w = 0 . (3.3)
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which models the transverse motion of an un(lamped thin circular plate (levoi(l of patches and

having constant stiffness and density. Because the manner of solution is similar to that discussed
in the last section, we highlight only those details which are necessary for motivating the formn
of the approximate solution for this problem.

As before, we separate the temporal and spatial variables, in this case taking w(t.r, 0) =

T(t)W(r,0), to obtain
V 4 W = _y4W

aw (3.4)

w(,,) = --. (,,) 0

and T" + w2T = 0,1 > 0. The separation constant is -y4 = W where w again denotes the
circular frequency. A second separation of variables then yields solutions of the form

W(r) = A,,.J,,y(-r) + BrI,1 (^y?) + C,,,Y;,(-y,') + D, K, ) (3.5)

where J.. and Y.. are Bessel functions of the first and second kind and I,(z) = i'-"J,,.(iz) and
K{,,, = hIm,._,,,[l-p(z) - Ip(z)]/ sin(pir) are modified Bessel functions of the first and second
kinds, respectively. We note that for fixed m and z -+ 0, these functions have the limiting
for m s

d z ,, ,f ,,(z ., 2'"m

-17 ) -(3.6)
Y .( ) 2 "( , .. l) (m -1) .)z 2.. ?

7rz'? 2zm

(see [1]) which immediately shows that the Bessel function and modified Bessel function of the
second kind grow unboundedly at the origin. Hence C,,, and D.. are taken to be zero in order to
avoid infinite deflections and stresses at r 0. Furthermore, the condition W(a, 0) = 0 yields
the condition

A... -B ,() (3.7)
il,~ (A)

where -ya. Finally, the boundary condition. w (a, 0) 0 requires that A solve

I\V(A) _ J,) ,(,, (A) = 0 (3.8)

d& dir

in order that (3.5) yields a nontrivial solution to (3.4). By solving (3.8), one obtains the eigen-
values A,,,, and by combining (3.5) and (3.7) with the Fourier coefficients, the eigenfunctions
or modes are found to be

TM 9.1 ) j. [ ( A, J_ .. (Am ,, I..~ll? e~ (:3.9)j7L\a j hn (A7,1) "( a JJ
With suitable smoothness assumptions on the the initial conditions, it then can be shown that
the solution to (3.3) has the form

00 00 (A ~nnw(t,1,O) E w,,,(t) . ,,aI,(A, (3.10)
?n=-oo Yz=lI

where the coefficients w,,,(t) depend on the initial conditions. Again, we note that the motiva-
tion given here is formal and we refer the reader to any standard PDE tex for details concerning
this derivation.

12



Having motivated the general form of the analytic solution for a specific case of the plate
equation, we can now present a Fourier-(alerkin method for approximating plate dynamics in
the more general cases. As noted at the beginning of the section, the weak form of the system
equation (3.1) will be used to accommodate potentially discontinuous material parameters.
Moreover, the use of the weak form accommodates unbounded input operators (as is the case
when piezoceramic patches are used as control elements) as well as reduces the smoothness

requirements on the basis functions.
The state for the problem is taken to be w and the Hilbert space H = L'(F0 ) with the

energy inner product

(1, 1)H = fr PvhwTjdy

is used as the state space. We also define the Hilbert space of test functions V = H'(Fo) -
{ e H2 (F0 ) : V(a, 0) = /'(a, 0) = 0} with the inner product

( )-M &" /!M 0  +i 21J +!M o, /1')- G
Uw,,V-=o, 1+\r2 \r drdO / 2 0

where cD) = 0 in the moments appearing in this definition and (FG) = fro FGdy with
d- = rdrdO. As detailed in [6], a weak or variational form of the equation describing the motion
of a damped thin circular plate having s piezoceramic patch pairs is

!M ~1~± 027, 2 07

p~hu'Jt-jd-y + M, M -I + J 9r-jr Or Ir r o + 2r 0 0 0- -2 ~ dy1

I Zjuj(t)xj(r, 19)V7-dy + fd-y(3.11)0 i=1 Ir0

for all 'q E V. Again, the internal moments are given in (3.2).
To obtain an appropriate form for the approximate solution, we begin with the Fourier

expansion in 0
M

W (t,,. 0) = ... .(t, ?)e111=-M

As was the case when describing the wave approximation, we will use the complex Fourier
expansion while describing the method since it simplifies the notation. Due to the potential
presence of patches or other actuators on the plate, however, the method is more easily imple-
mented using the real (trigonometric) expansion (with patches present, the complex expansion
leads to a complex system matrix which proves troublesome when solving the Riccati equation
in the control problem). We have omitted details concerning the real expansions used in the
implementation since it is straightforward to interchange between the two expansions.

To determine an appropriate expression for v,,(t, r), we first note that it must satisfy the
conditions tb0

Ib,(tr)=0, Im 0 ,- = 0

at r = 0 in order to guarantee uniqueness and differentiability (see the discussion about the
analogous requirement for the wave solution). In light of these requirements, an appropriate
expansion for tb,,.(t, r) is

Nm

uf,,l(t, r) = y E ,1,t(t) rB(r)

13



where B,,(r) is the it" modified cubic spline satisfying B,:'(, -) 0 with he cojidil i0=B'O 0 being enforced when i = 0 (thlis latter condition guarantees dlifnt 'ialilitv' at
dr

the origin and implies that N" = N + I when in j 0 and N" = N when ni = 0. wher, N
denotes the number of modified cubic splines). The total numinber of plate basis fiuinctionis is
Kf = (2M + 1)(N + 1) - 1. The inclusion of the weighting termn rI' 1 with

{ 0 , m=O

I , in0

is motivated by the asymptotic behavior of the Bessel functions (see (3.6)) as r- -- 0. It also
serves to ensure the uniqueness of the solution at the origin. The Fourier coefHicient iii the weight
is truncated to control the conditioning of the mass and stiffness matrices (see examples in [6]).

To simplify notation, the approximate solution is written as

M N m  
A"

wf(t,7,)= 1 w ,,jt),I?,,B71 (, .) 0  w(t)BA'(, 0) (3.12)
m=-M n=l k=1

where B~(r,, 0) = r I'dIBl, ( ) 1O. A comparison with (3.10) indicates that, as was the case with
the wave approximation, the Bessel components of the analytic solution are essentially replaced
by approximating elements suitable for the problem under consideration. In the wave problem,
the approximate solution was expressed in terms of weighted Legendre polynomials whereas here
the radial basis is comprised of weighted cubic splines. In both cases, the weights were used to
incorporate the analytic solution behavior at the origin into the approximate solution, thus guar-
anteeing that it had the correct continuity and differentiability characteristics at that point.

To obtain a corresponding matrix system, the K dimensional approximating subspace is
taken to be H K = span{B r} and the product space for the first-order system is 'HA' x -HA.

The restriction of the infinite-dimensional system (3.11) to the space "Ar x -Wr then yields the
matrix equation

[ 0 0 0 i
0 MA] );A'(t) = -K -K J + [ u) L FA(t) J

0 M ' O][WA'(O) g

0 ~ MA'iWA'o) J [r
where WA'(t) = [wI (), w2(t),., wg(t)]" denotes the K x 1 vector containing the approximate
state coefficients. The component matrices and vectors are given by

KD = KDI + KD2 + KD3 + KD4 + KD-5
K = KDI + K&D2 + K +D K + 4 + KCD.5

M rph r-, , -I 1,k fJro p kBf (3.13)

,F() =J 0 fB 2 y thpaitch Ki P~~~

[9' ] (uo, B') [,rl, = (u 1, B'),

14



where

[KDl,k = Jr D LoB + V2 ] -r d-y

fro [ r 2 Or +r3 002+ Or2 Or

F0 r _____ ___r

[KD3]1,k = 1 D D OB* 1+~ I 8Br 2 Bk I 'o ; 3 Or +r4 O02 +r 2 _r 2 0 2

1 0 2B ( 1 0B --
[KI D4 ]t,k =2 DI-v ! -

IIA'fro, = r2 OrOG 3 0 OrO0

fF1 0 2 Bk~ I OBkj O:B![K5k=21 D(1 - v) -- + L d7y[Kos, f.k = Jr0 P1r3 arO0 + r 800 ] 0

with the index ranges are k, I = 1,.. ,NX. The matrices K,. 1 - KCDs are defined similarly with
the inclusion of the parameter CD in the various integrals. Finally, we remind the reader that
p, D, v and CD are piecewise constant in these definitions due to the presence of the patches.

For application purpose, it useful to note that the matrix system for the plate can be written
as the C auchy system A ry(t) + B ru(t) + G r(t) (

Ar(0) = yo (3r4

where yAr(t) - [W)r(t), ,VV(t)] = [wl(t),. ,wN(t), bl(t),.., bN(t)] denotes the 2Afx I vector
containing the generalized Fourier coefficients for the approximate displacement and velocity.
In this form, finite-dimensional parameter estimation and control problems can be readily dis-
cussed.

3.1 Example 3

As an initial test of the Fourier-Galerkin approximation scheme, we considered the undamped
steady state problem

0 2M, 2 OM, 1 OM. 2 02M,,o 2 0M, e 1 02 Mo_ ,2 + - =_5~~ r2-5-+_2'0 f (r,O0)r Or C97 ?I~.~ * r r O03 7.2 0q 0  r 2 092

with the moments given by (3.2). In these expressions, the Poisson ratio, flexural rigidity and
damping coefficient were taken to be v = !, D = 1 and CD = 0, respectively. The plate radius
was taken to be a = .6 and the true solution w(r,0) = (cos(27rr/a) - 1)sin(0) was used to
generate the forcing function

f (r, 0) = 1 [3 + (-6r-/.a 167l.'/a 3) sin(2i '/a)

+ (-3 + 127r2r./a 2 + 161r,.4/a4) cos(2,rra)] sin(O)
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The absolute and relative errors for this example are summarized in Table 5. By choosing a true
solution with a known Fourier coefficient, the Fourier limit could be fixed at M = 1 and the con-
vergence rate could be observed as the Galerkin limit N was increased. For sufficiently smooth
forcing functions, we would expect the method to exhibit 0(h 4 ) convergence as a result of tile
cubic spline basis [18, 19]. To check this, asymptotic errors were calculated by dividing the pre-
vious relative errors by 16. Since the number of radial basis functions is doubled each time, this
provides a means of checking whether or not the expected convergence rate is being maintained.
By comparing the results in the 51h and 6th columns of the table, see that 0(h 4 ) convergence
is being exhibited by the method thus providing an initial test in the efficacy of the method.

M N size(AK) IIWt - pll 1Ifru- pl Asym. Error

1 5 15 x 15 .4362-2 .2181-2
1 10 30 x 30 .1454-2 .7269-3 .1363-3
1 20 60 x 60 .6146-4 .3073-4 .4543-4
1 40 120 x 120 .6717-6 .3358-6 .1921-5

Table 5. Absolute and relative errors for approximate solutions for Example 1.

3.2 Example 4

A second means of testing the accuracy and efficiency of the approximation method is by dis-
cretizing the eigenvalue problem (3.4) and comparing the approximate eigenvalues and eigen-
functions with analytic values that have been calculated for a simplified structure. This also
provides a means of determining analytic values of the natural frequencies of a uniform plate
which can then be compared with values obtained numerically and experimentally for structures
involving plates to which patches have been bonded [21 and plates that have been incorporated
in structural acoustic systems (as described in Section 4).

For a uniform undamped plate to which no patches are bonded, approximation of the
eigenvalue problem (3.4) via the Fourier-Galerkin method described in this section yields the
generalized matrix eigenvalue problem

XD ¢ = ItM (3.15)

with the mass and stiffness matrices Mr and KDr defined in (3.13). The plate dimensions
a = .2286m (9in), pp = 2700kg/rn3 , h = .00127m (.05in), and parameter choices E =
7.1 x 10"n N/rn2 and v = .33 were used which then yields the flexural rigidity D = 13.6007 N • 7.
We point out that these choices are consistent with the dimensions and parameters of an
experimental plate currently being used in the Acoustics Division, NASA Langley Research
Center so that the frequencies determined here could be compared with those obtained obtained
experimentally (again, see the application in the following section).

By noting the relationship f = *w where f is the frequency expressed in hertz and W is
the circular frequency, the natural frequencies of the fixed circular plate can be written as

16.) p h
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For the given dimensions and parameter values, several frequencies deriving from the Bessel
solutions A to the nonlinear equation (3.8), as reported on page 8 of [13], are given in Table 6.
Approximate frequencies obtained by solving the generalized matrix eigenvalue problem (3.15)
with the basis limits M = 6 and N = 24 are tabulated in Table 7. We point out that in these
tables, the Fourier number m can be interpreted as the number of nodal diameters while it is
the number of nodal circles, not including the boundary. In comparing the Bessel and Galerkin
results in the two tables, it can be seen that the Fourier-Galerkin provides accurate mass and
stiffness matrices which translates to accurate approximations to the natural frequencies for
the plate. With the basis limits used here, the largest relative error for the frequencies shown
here is 8.1 x 10- 4 when m = 3, n = 6. Moreover, we see that while the definition of th in the
weighting term rl"I& changes at m = 1, the method loses no accuracy at that point.

To qualitatively test the ability of the Fourier-Galerkin method to accurately approximate
the decay of the solution in neighborhoods of the origin for increasing ti, we compared the
analytic eigenfunctions given by (3.9) with those obtained via the Fourier-Galerkin method
with M = 5 and N = 16. Representative results using the two techniques are plotted in
Figures 4 and 5 with additional examples demonstrating the 3-D behavior, corresponding 2-D
slices and error results given in [6]. Qualitatively, the shape of the eigenfunctions in the two
sets can be seen to be graphically identical and, by comparing the results for the (m = 5, TI = 0)
mode, it can be seen that the approximation scheme is accurately capturing the behavior of the
solution near the origin. In combination with the eigenvalues results listed in the tables, this
demonstrates that the approximation method accurately captures the physics of the problem
throughout the circular domain with no loss of accuracy resulting at the origin, in spite of
the coordinate singularity. Moreover, as demonstrated by the results in the last example, the
expected convergence rates are also maintained through the use of the weight lI' dl.

n m=0 n= 1 rn=2 m=3 m=4 m=5 m=6
0 61.96 128.95 211.56 309.58 422.56 550.38 692.75
1 241.23 368.90 513.02 673.33 849.82 1042.07 1249.92
2 540.46 728.34 932.93 1154.26 1392.14 1646.34 1916.70
3 959.46 1207.39 1472.15 1753.95 2052.63 2367.90
4 1498.20 1806.12 2131.29 2473.02
5 2156.69 2524.45 2909.31 3311.57
6 2934.91 3362.52 3807.60 4269.79

Table 6. Natural frequencies deriving from the Bessel expansions (in hertz).

n m=0 m=1 m=2 tn=3 rn=4 vn=5 m=6
0 61.96 128.95 211.55 309.52 422.56 550.38 692.75
1 241.23 368.96 513.04 673.40 849.83 1042.08 1249.93
2 540.46 728.35 932.98 1154.31 1392.18 1646.40 1916.79
3 959.50 1207.41 1472.31 1754.16 2052.83 2368.17
4 1498.37 1806.28 2131.37 2473.57
5 2157.22 2525.17 2910.49 3313.05
6 2936.35 3364.46 3810.17 4273.26

Table 7. Natural frequencies obtained via the Fourier-Galerkin scheme with M = 6, N = 24.
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(m=O~n= 1) (m= l,n=I1)

(m=2,n=2) (m=5.n=O)

Figure 4. The (0, 1), (1, 1), (2,2) and (5, 0) modes obtained with Bessel expansions.

(in= 0, n=l) (M =1, n= 1)

(m =2, n =2) (m=5,n=O)

Figure 5. The (0, 1), (1, 1), (2,2) and (5, 0) modes obtained via the Fourier-GCalerki n scheme
with M =5 and N = 16.
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4 Application - Structural Acoustic Noise Control

In the previous two sections, Fourier-(Calerkii methods for isolated acoustic and structiral
systems have been developed and illustrated through a s't of examples. In this sect iou, a
structural acoustic application will be used to demonstrate the maimuer though which these

techniques can be combined to yield all effective approximation scheme for simulating the

dynamics of more complex systems. When modeling the experimental setup which motivates
this application, care was taken to include the full coupling between the structural dynaii cs
and the enclosed acoustic field, internal damping in the structure, and the effects of actuators
such as piezoceramic patches which are bonded to the structure. The full inclusion of these
components leads to a model which accurately captures the physics of the system but is difficult

to approximate using standard modal techniques since modes for the coupled system (includi(g
coupling, damping and actuator effects) must themselves be approximated since they are not
known analytically. I sing a Fourier-Calerkin technique, however, the approximate system call
be directly constructed with several of the components actually consisting of matrices froui the
isolated acoustic and structural systems. In addition to illustrating the method for the specific
setup describedi here, this demonstrates the flexibility of the method for approximating the
dynamics for general structural acoustic systems having circular or cylindrical geometries.

4.1 The Structural Acoustic System

The structural acoustic system described here models an experimental setup currently being
used for validation experiments in the Acoustics Division, NASA Langley Research Center, and
the geometry and physical specifications were chosen so as to be consistent with that apparatus.
Specifically, the experimental apparatus is modeled by a cylindrical domain Q2 having length f
and radius a as pictured in Figure 6. At. one end of the cylinder is a clamped flexible plate of
thickness h which is assumed to have Kelvin-Voigt damping. Bonded to the plate are sectorial
piezoceramic patches which are placed in pairs and excited out-of-phase so that a bending
moment is produced when voltage is appled. The patches and glue layer are assumed to have
thicknesses T and Tbj, respectively.

Piezoceramic Patches

r

Sr0

(a) (b)

Figure 6. (a) The cylindrical acoustic cavity; (b) The circular plate with patches.
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As discussed in [3, 4], an appropriate linearized variatioual (enerv) forin of the col)led
system equations modeling this setup is

jLfetjdw +Jpf VO .V&1w± + gd, (4. 1(a)

p~zw~ttFd-y + IV, t d-j +o MO 1+ mf0 (I. (llb)

+2 M,,- ) 2 di t (,-,Ib)
'r 0 r dr°O-'or7 - 2 0

+ I Pf (Ot-T - wt) dy (c1.1()

I C'u Y !u(t),Xi (r, 0)V ijd-y + frj -ild (4. 1(1)
0 i=1

for all appropriate test functions and yj (this will be clarified below). The differentials here
are dw = r dr dO dz and d-y = r dr dO with the overbars again denoting complex conjugation.
We now consider the components of the equations and compare with those found previously.
Throughout this section, the subscripts p and c will be used to denote plate and wave (cavity)
components, respectively.

Acoustic: With 0 E L2(E) again denoting the acoustic velocity potential, the wave dynamics
are contained in (4.1a) where the test functions are elements in 4' (fQ) (see Section 2
for details concerning the Hilbert spaces for this problem). When approximating the
dynamics of the system, the 2-D basis described in Section 2 is tensored with an axial
Legendre basis to yield the approximate solution

P, M, NcPcm

OM(, 0, 2) =pm ~ j (t)tfeInP~~)pz
p=O =-M, n=O

where again,

= m , ]mJ= 0,.--,5
5 { , Inl = 6,'" ,

and

pv~~){P,(r)-l1/3 p pm =0, n= I NN,= N+ I p + [i, 0
Pjr) otherwise 'N N, p = 711 = 0

Here Pn(r) and Pp(z) are the nth and pth Legendre polynomials which have been mapped to
the intervals (0, a) and (0, f), respectively. We remind the reader that the term P (r) - 1/3
when p = m = 0, n = 1 results from enforcing the condition fo OM(t, r, 0, z)dw = 0 so as
to guarantee that the functions are suitable as a basis for the quotient space while r"',
incorporates the analytic decay at the origin with i truncated to control conditioning.
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Structural: Equation (4. lb) contains the internal plate dynamics while the external colitribi-
tions due to the perturl)ilng noise source f and the excitation of the patches are conitai ned
in (4.1(1) (compare wit hi (3.11) in t lie last section). As was the case wieii the isolated

plate was considered, w E L2 ( F0() denotes the transverse displacement and the test fic-
tions q are taken in HI(Fo). When discretizing the system, the plate displacelient is

approximated by w(t, r, 0) as defined in (3. 12) with V/,, and N 1 , used here to denot e Ithe
Fourier and spline limits, respectively.

Coupling: The coupling between the plate dynamics and interior acoustic field is incorporated
by including the backpressure pfOt(t,71,O) from the interior fielt as a force on the plate

and assuming the continuity of velocity con(dition

-t. ., 0, 0)- -w(,.. 0)

at the surface of the plate (this latter condition is often designated the iomientumi col-

dition in the literature). In the weak form of the system equations, these conditions are
manifested as the first and second terms, respectively, in (4.1c).

With the components thus described, we are now in a position to form the matrix system
which results when the system dynamics are approximated. The K( = (2Mp + 1 )( NI + I)- 1 and

M = (2M, + l)(N, + 1)(P, + 1) - i dimensional approximating plate and cavity subspaces are

taken to be HA = span{ B-,r 1 and He-M = span{ BMIM , respectively, where B~r and BM are
the ith plate and cavity bases described above. Defining P = K + M, the approximating state
space is H' Hj x Hr and the product space for the first order system is H-P = H x HP .

The restriction of the infinite-dimensional system (4.1) to 7-H' x 'H' then yields the matrix

system
M *P '(t) - A *Py (t) + i3B u(t) + F (t) (4.2)

M 'yP P(O) - .

Here y'(0 = [OP(, WP(t) 0(t) -) T , with the components IP (t) = [(t),. . . (t)]

and V (t) = [w '(t),...,wr(t)] , denotes the approximate state vector coefficients while

u(t) = [u (t),., u8 (t)]T contains the s patch input variables. The system matrices and vectors
are

KA r IK r

rI -K Kg~ j-A -

and

_ 0 0 O T ](t)=[O 0 ('2 (t) F A()]T

We now separate the matrices into those containing acoustic, structural and coupling compo-
nents to better illustrate the connections with those developed for the isolated acoustic and
structural problems in the previous sections.
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Structural: The IV x N component matrices M"', A') and A"' are the inass. stilf,,es. and
damping matrices which arise when solving the danped plate equiation wit h fixed I otint
ary conditions while the N x I vectors BPx and /0'jr(t) are the corresptnding ,,nt r,, and
forcing terms (see (3.13) for the various definitions).

Acoustic: The M x M matrices A;m and Km are the mass and stiffness matrice. which
arise when solving the uncoupled wave equation with Neumann boundarv conditions On
a cylindrical domain. As a results of the tensor properties of the 3-1) basis. thley can he
succinctly defined as the tensor products

MMo = MM '11,
KM M, M + KM rV M

where MM and KM are given in (2.15) and the (P, + 1) x (P,. + 1) matrices Al and K_
are defined by

[MPJi = P (z)Pj(z)dz, [Kj=j P'(z)P(z)dz

The construction of MMo and K. is completed by updating the row and column affected
by the alterations used to guarantee that the functions are a basis for the quotient space.
Finally, GM(t) is a forcing term which incorporates any acoustic sources (see (2.15)).

Coupling: The contributions from the coupling terms are contained in the matrices

[A 1, :-pf I B _B- [A'P],k = p I frO k Bp-d

where Bi' and BM" are plate and acoustic basis functions, respectively, and the index
ranges are k, = 1,...,M and i,p= I,..... V.

Initial Conditions: The vector 0 = [gM,gM,g ,gV]T (see (2.15) and (3.13)) contains the
projections of the initial values into the approximating finite dimensional subspaces.

We point out that several of the component matrices are identical to those defined when
considering the isolated acoustic and structural systems while others can be efficiently con-
structed from those components through basic operations such as tensor products. In fact,
only the coupling matrices Ac and Ac containing quadrature values for the plate and acoustic
bases must be constructed solely for this problem. This potential for decomposition into exist-
ing structural, acoustic and coupling matrices also exists for more complex structural acoustic
systems when a Fourier-Galerkin approximation scheme is used and is a further advantage of
the method in coupled problems involving linear or weakly nonlinear components.

4.2 Example 5

As a first test demonstrating the convergence of the method for the fully coupled system, we
considered the problem (4.1) with the dimensions a = .6, h = .00127,f = 1.1 and parameter
choices pf = 1.21,c = 343, pp = 2700, v = .33, D =-- 13.6007 and CD= .00011222 (the

12(1 -v2)
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effects of the patches are neglected in this example but will be incorporated inI Fxampe 6).

The true solutions

w( r, 0) = 0(cos(27rr/a ) - I) sin 0
6,(t, 1,,,Z) = - _1 t)2 sIl

~(t, ,9, f2 2 (cos(27i/a) - I )z(( - z)' sini

were used to generate forcing functions f and q on the plate and in the cavity, respectively (sev
the convergence tests in Sections 2 and 3). The resulting matrix system (4.2) was then integrated
to time ' = .1 and the absolute and relative errors in the plate displacement, potential and
pressure at that time were calculated. The results for four sets of Galerkin limits are reported
in Tables 8, 9 and 10. lin these tables, the subscripts p and c in the tables again refer to the
plate and wave (cavity) indices, respectively, and the measurements were made on a :10 x :30

grid on the plate and a 10 x 10 x 10 grid in the cavity. As dIemonstrated by these results, tile
method for the fully coupled system is exhibiting a convergence rate similar to that noted when
the individual components were tested. Moreover, sufficient accuracy is obtained with tractable
matrix sizes so that physical details are captured when the approximation method is used to
simulate system dynamics and develop feedback control techniques. Finally, we point out that
in spite of the fact that we are approximating nonaxisymmetric solutions, the computations for
this example could be p)erformed on a Sparcl0-class workstation.

MP NP M, N, P, sizc(AP ) llwt',,u - wappl

1 5 1 2 2 86 x 86 .4366-5 .2207-2
1 5 1 4 4 182 x 182 .4294-5 .2171 -2
1 10 1 6 6 356x356 .2674-6 .1352-3
1 20 1 8 8 608 x 608 .1588-7 .8030-5

Table 8. Absolute and Relative Errors in Plate Displacement at T = .1.

M p N p M , N , P , size(A 7) 11tru -1 r ue- ll

1 5 1 2 2 86 x 86 .3132-2 .3569-0
1 5 1 4 4 182 x 182 .1545-3 .1760- 1
1 10 1 6 6 356 x 356 .9554-5. .1089-2
1 20 1 8 8 608x608 .2251-6 .2565-4

Table 9. Absolute and Relative Errors in Potential at T = .1.

M, Np M, N, P, size(Ar) IlPtrue - Papp m  rll Pappl

1 5 1 2 2 86 x 86 .7573- 1 .3566-0
1 5 1 4 4 182 x 182 .3739-2 .1761- 1
1 10 1 6 6 356x356 .2312-3 .1089-2
1 20 1 8 x 608x608 .5453-5 .2568-4

Table 10. Absolute and Relative Errors in Pressure at T = .1.
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4.3 Example 6
In tis final example, the numerical techniques js deci)te(l aleue inua i vie
dyniamics of the experimental structure (descri bed at t he b eginin ug of t ilis stct ionl A couti mon0

technique for dIetermnfing the (dynamics andl niatutral trequeicie, of coiupled st runt iral acolistic
systems is to subject the structure to anl impulse (through anl iminpact haini ir lilit or at volt age
spike to the patch) and measure the resulting time and frequeimc v resl)owses. 1B , y exit ing I lie
system In tis manner, a widle sp)ect rum of frequencies call lbe excited andI varilous svst-enil
properties dletermined. Because there Is no acoustic source inisidIe the cavityv, q(I in Ia)

The hammner Impact c-an be numerically simulated by at triangular force I* to a poli i onl thle
plate while the voltage spike c-an be approximatedl by a short duration t rianigumlar volt age a: In
both cases, tae approximate system response is calculatedl via (4.2).

In order to remain consistent with the exp~erimental setupj being modeled, the lengthI and
radius of the cavity were taken to be 1 .06i68 in, (42") and a(= .2286 in (0"). resjpectivel wit h a
plate having thickness h =.00127m, (.05") mounted at one endl. A pair of circular piczocramic
patches having thickness T = .0001778in (.007") and radius rad =.019051in '.75") were located
at the center of the plate (see Figure 7). The physical parameters that were chosen for thli
structure and acoustic cavity are summarizedl in Table 11. The flexural rigidlity 1) for the plate
was obtained using the "handbook" value E = 7.1 x 1010 N/1112 for thIe Younlg's nijoui1:mS of

aluminum. The remaining choices are comparable to values found when estimating p)aramtetrs
for the isolated plate with a similar patch configuration [2]. We re-emiphasize that in general,
these parameters mnust be determined through parameter estimation techniques in order for
the PDE model to fit the a;ctual physical system under consideration. As demionstrated in [2],
the Fourier-G alerkin schemne presented here perf'frmed well when incorporated in a fit-to-(lata
routine for determining physical plate parameters thus yielding a miodel which couldl be us-ed
for inip!ementing model-based feedback control techniques.

f 1.0668

>:~:K~<:~. ~a =.2286

Figure 7. The acoustic cavity with a pair of centered circular patches, the Impact point
Il = (.13, fl and the observation points p1 =(125, 4) and cl (125, ±,,.05).
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Structure Acoustic Cavity

Parameter Plate Plate + Pzt Parameter (avity

pp* Thickncss (kg/m 2 ) 3.429 3.489 pf (kg/ 3 ) 1.21

D (N 7m) 13.601 13.901

Cp (N in src) 1.150-4 2.250-4

V .33 .32
KB (N/V) .0267

c (m/sec) 343

Table 11. Physical Parameters for the structure and acoustic cavity.

Voltage Spike to a Centered Patch Pair - Axisymmetric Response

As a first example demonstrating the response of the system model to a simulated impact,
we applied a triangular voltage spike u(t) as input to the patches and integrated the matrix

system to obtain a time history of the response. Because the patches are centered on the

plate, the response was uniform in 0 which implied that the Fourier limits could be taken to

be Mp = M, = 0. The remaining limits were taken to be Np = 12, N, = 9 and P, = 9

(these values resolve the range of frequencies being examined). A time history of the system

response throughout the interval [0,.5] was calculated at the plate and cavity points pl =
(.125, 1) and cl = (.125, 1, .05) (see Figure 7), and the resulting trajectories and frequencies

are plotted in Figure 8. This temporal interval was chosen since it was sufficiently long so as

to demonstrate the system dynamics but short enough so that the higher frequency responses
were not completely lost. The off-center observation points were chosen to demonstrate the

generality of the method and provide a basis for comparison with 'he nonaxisymmetric res~ts

in the next example. Finally, the system frequencies are summarized in Table 12 with the

notation p and c being used to designate those frequencies which are observed at the plate
point p1 and cavity point cl, respectively.

To determine the effects of coupling, internal plate damping, and the presence of the patches

on the system, it is illustrative to compare the system results listed in Table 12 with those of

the isolated components. In Section 3, the natural frequencies for an isolated and undamped

plate were obtained. The natural frequencies for the isolated wave equation in a cylindrical

cavity can be determined by separating variables in the 3-D wave equation having Neumann

boundary conditions. This leads to a 3-D Hehnholz equation which, after an analysis similar

to that presented in Section 2, yields the natural frequencies

= (L_ (4.3)

where p = 1,2,.. , i = 0, 1,2,... , n = 0, 1,2,... and A,, , - 1,,a are zeros of (2.6) (see

[3, 6, 91 for details). For the previously mentioned dimensions, the frequencies of axisymmetric
modes (m = 0) are listed along with those for the isolated and undamped plate in Table 13

(see Tables 2 and 6 for a compilation of the zeros 7-,, and natural frequencies for the isolated

plate, respectively).
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By comparing the values for the individual plate and cavity in Table 1:3, with tl syst t i
harmonics in Table 12, it can be seen that although the frequencies agree (luite closely. there
are slight differences due to the fact that the system (4.1) involves not only coupling between
the plate and cavity but also includes damping ill the plate. Specilically, the system freqiue-
cies associated with strong plate responses tend to be slightly less thanl those of the ntiicoilpled
and undamped plate while those system frequencies associated with strong acoustic responses
are slightly higher than the natural acoustic frequencies of an isolated hardwalled cavity hav-
ing these dimensions. Hence, through the Fourier-Galerkin method, physical characteristics
about the system are determined and differences between the coupled systeni response which
includes damping and the isolated, undamped components are illustrated. This latter obser-
vation also indicates the difficulties which would be encountered if one were to attempt to
simulated the coupled system dynamics using modes for the isolated systems.

Natural System Frequencies
p,c 59 p,c 164 c 915
p 240 1),c 324 c 929

1),c 537 pc 483 c 971
c 645
c 8107

Table 12. System frequencies obtained with Mp = 0, Np = 12, M, = 0, N, = 9 and t' = 9
basis functions; p - frequencies observed at the plate point p1 = (.125,47r/3),

c - frequencies observed at the cavity point cl = (.125,47/3, .05). System freq-
uencies can be compared with the ordered frequencies of the isolated and undamped
plate and cavity given in Table 13.

Plate (fi..) Wave (f,,ltp)

(0,0) 62 (0,0,1) 161 (0,1,0) 915
(0,1) 241 (0,0,2) :322 (0,1,1) 929
(0,2) 540 (0,0,3) 482 (0,1,2) 970
(0,3) 959 (0,0,4) 643

(0,0,5) 804
(0,0,6) 965

Table 13. Axisymmetric natural frequencies for the isolated and undamped plate and cavity
(in hertz).
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Figure 8. The plate and pressure responses to a voltage spike.

Noncentered Hammer Impact - Non-axisymmetric Response

As indicated previously, a second means of exciting the system is through a hammer impact
which can be modeled by a short triangular input force. To demonstrate the approxima-
tion of general nonaxisymmetric system dynamics, this force impulse was applied at the point
I1 = (.130, j!), and a time history of the system response for the time interval [0, .5] was cal-
culated at the plate and cavity points pl = (.125, 4L) and ci 125, ,.05), respectively (see3 3
Figure 7). The resulting acoustic pressure and plate acceleration are plotted along with the cor-
responding frequency responses in Figure 9 (the plate acceleration models data that would be
experimentally obtained with an accelerometer, [2], and more clearly demonstrates the higher
frequencies than does the plate displacement). To resolve the frequencies below 1000 hertz,
the basis limits were taken to be Mp = 4, Np = 12, M, = 2, N, = 9 and P, = 9 which yielded
1230 coefficients in the system (4.2). As demonstrated by this choice of limits, the number of
Fourier coefficients in the plate and wave expansions can be chosen to differ in order to reduce
system sizes although care must be taken when doing so since the system response contains
contributions from both the plate and wave components.

The system frequencies are summarized in Table 14 where again, the notation p and c are
used to designate those frequencies which are observed at the plate and cavity point pl and Hi,
respectively. For comparison, corresponding natural frequencies for an isolated and undamped
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plate (see Table 6) and an isolated acoustic cavity (see (4.3)) are compiled iii Table 15. ly
comparing the results in these table, it can be noted that six system Inodes corresponding to
those of the isolated plate are excited with four of these responses being observed at both the
plate and cavity points (we emphasize that because these are truly system modes, the remaining
frequencies of 240 hertz and 422 hertz can also be measured in the cavity at various points: the
response is simply weak at the point cl). Similarly, nineteen system modes corresponding to
those of the isolated acoustic cavity are excited by the nonsymmetric impact with the strongest
response in the asymmetric system mode having a frequency of 460 hertz (this corresponds to
the (1,0, 0) mode for the isolated cavity). As was noted in the previous example demonstrating
the symmetric excitation, the system frequencies associated with strong plate responses tend
to be slightly less than those of the uncoupled and undamped plate while those system fre-
quencies associated with strong acoustic responses are slightly higher than tile natural acoustic
frequencies of an isolated hardwalled cavity having commensurate dimensions. We reiterate
that these differences are due to the coupling between the plate and cavity as well as damping
in the plate. This again provides motivation for considering a general Fourier-Galerkin method
of the type described here when approximating the dynamics of a complex coupled system.
The effect of coupling and damping are implicitly included in this approach while they must be
explicitly (and occasionally artificially) enforced when employing modal approaches using the
eigenfunctions of the isolated components.

Natural Frequencies of the Coupled Structural Acoustic System
p,c 59 p,c 209 c 164 c 929 c 915
p 240 p,c 324 c 971 c 730

p,c 483 p,c 440 c 748
c 645 p,c 470 c 798

p,c 127 c 807 p,c 546 p,c 875
p,c 365 p 422 p,c 653 c 971

: c 915 c 781 L

Table 14. System frequencies obtained with Mp = 4, Np = 12, M = 2, N, = 9 and P, = 9
basis functions; p - frequencies observed at the plate point p1 = (.125,4ir/3),
c - frequencies observed at the cavity point cl = (.125,47r/3, .05). System fre-
quencies can be compared with the ordered frequencies of the isolated and in-
damped plate and cavity given in Table 15.

Plate (f,,) Wave (fm,)
(0,0) 62 (2,0) 212 (0,0,1) 161 (0,1,1) 929 (1,0,5) 916
(0,1) 241 (2,1) 513 (0,0,2) 322 (0,1,2) 970 (2,0,0) 729
(0,2) 540 (2,1) 933 (0,0,3) 482 (1,0,0) 439 (2,0,1) 750
(0,3) 959 (3,0) 310 (0,0,4) 643 (1,0,1) 468 (2,0,2) 797
(1,0) 129 (3,1) 673 (0,0,5) 804 (1,0,2) 545 (2,0,3) 874
(1,1) 369 (4,0) 423 (0,0,6) 965 (1,0,3) 653 (2,0,4) 972
(1,2) 728 (4,1) 850 (0,1.0) 915 (1,0,4) 779

Table 15. Nonaxisymmetric natural frequencies for the isolated and undamped plate and
cavity (in hertz).
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systems. By varying the choice of radial basis functions, the ilethoI call e t ai lored h a
variety of applications and boundary conditions while the inl chior of the dceca' ( oii ciill V1..:

guarantees that accuracy is maintained throughout the entire circirlar (lhilaii for .ltificietilv
smooth system inputs. Hence the Legend re polvuoriials and modilied cidhic splinres. (IseI ill
this presentation to approximate acoustic and st ructural dyiainics, can e asilY be replacedc IbI
other spectral functions, splines or finite elements as warranted by t he sit'ation.

A final advantage of the method arises when the Fourier-(alerki techlliquesv are uised to
compute feedback gains in optimal control problems. As disciissed in [5], where the iet hod was
incorporated in a control scheme for reducing noise in a cylindrical conpled strictiural acouslic
system, the opt imal control problem for reducing a periodically driven state z in the state space
H can be posed under approximation as that of determining a suitable u in a control space I
which minimizes

J"(u) = I j {(oQ Pz(t),(t))., + (R. u(t, U(t)I (i (5.1)

subject to z ' satisfying the matrix system of dimension P which results when the e(Iuiatiolfs
modeling the system dynamics are discretized. Here -r is the period and Qr and R are matrices
which can be used to weight various components of the approximate state and control. As noted
in [5], a suitable choice for QP, when an energy inner product is associated with the state space
H-, is a diagonal multiple of the mass matrix M ' which results when a Galerkin method is used
to discretize the weak form of the system equations. Since the mass matrix constructed in this
manner is the identity with respect to the energy inner product, the choice QP = DM , D a
diagonal weighting matrix, in (5.1) minimizes a weighted measure of the state energy. Hence a
Fourier-Galerkin method of the type described here can also be advantageous when calculating
feedback gains for experimental and numerical implementation of optimal control techniques
to problems posed on circular geometries.
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