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SECTION 1

Introduction

Radar imaging is used to identify scattering centers in a target region. In most

current implementations of radar imaging, the images are generated using narrow

bandwidth data for far-field targets which are hundreds of wavelength in size. In

addition, the target response is usually limited to a narrow angular region because

a limited aperture is used. Thus, these images are generated using approximations

that are valid for far-field narrowband data with very large targets. In contrast, the

characterization of the scattering centers in this study is done over a large band-

width and wide aperture, for relatively small target sizes ranging from 1/60 to 20

wavelengths. Under these conditions, the approximations used in far-field narrow-

band limited aperture imaging are not necessarily valid. Furthermore, dispersion

in frequency and angle might invalidate imaging as a useful scattering diagnostic

technique.

A computer program was developed for generating monostatic coherent radar

images using large bandwidth and wide aperture data. The program uses Fourier

based methods for producing the image. Fourier based imaging has advantages for

several reasons. First, it is widely used and serves as a basis of comparison to other

imaging techniques. More importantly, the frequency and angle characteristics of

the scattering centers are preserved in the image, so that the radar cross section,

1



of a specific scattering center, can be generated from the image by windowing and

transforming back into the data domain.

In developing the computer program, different Fourier based algorithms are

needed because the different scanning geometries are used to measure the radar

cross section. Chapter 2 describes the different measurement systems that the pro-

gram was written for. Chapter 3 contains an overview of the imaging algorithm and

details of its implementation. Since the images are Fourier based, Gibb's phenomena

will be present in each image. Consequently, a brief discussion of two-dimensional

filtering techniques to remove the Gibb's phenomena are presented in Chapter 4.

In Chapter 5, imaging results are shown for an F-4 Phantom model, an M35 truck

model, and foliage. Overall conclusions are given in Chapter 6.
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SECTION 2

Measurement of Radar Cross
Section

2.1 OSU Compact Range

Many of the radar cross section measurements were done in the Ohio State Univer-

sity's compact range. The compact range is shown in Figure 1. The range may be

set up in several configurations.

The typical configuration is shown in Figure 1. In this configuration, the range

uses a parabolic reflector to illuminate targets with a plane wave. As seen in Fig-

ure 2, the antenna feed is placed at the focal point of the parabolic reflector. The

transmitted spherical wave is converted to a plane wave by the reflector. As a result,

the targets can be studied in the far field.

The targets are placed on a metal ogival pylon located in the center of an anechoic

chamber. By placing targets on the pylon, the target may be rotated by computer

control by machinery inside the pylon. This allows the user to conveniently measure

the radar cross section, RCS, vs look angle of a target in a polar coordinate system.

Each look angle of the target is characterized by its orientation in elevation angle,

0, and in azimuth, 4'. The target has an associated RCS, a(w), that is frequency

dependent. By associating target orientation and RCS frequency dependency, one

can define a data space, o(w, 8, 4). By placing the target at various elevation angles,

3



Figure 1: OSU Compact Range

PARABOLIC
REFLECTOR

TARGET

PLANEJWAVE
FEED

Figure 2: Operation of the Compact Range
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this configuration measures the points in the data space located in a plane containing

the origin of the data space.

This data space is measured by a continuous wave stepped frequency radar sys-

tem. Figure 3 shows a block diagram of the system. Further information on the

OSU radar may be found in Reference [1].

By placing a metal ground plane on the ogive, the range can measure conical

cuts of the data space. The ground plane fixture may be tilted up to 60 degrees. In

this configuration, the ground plane can be rotated under computer control. This

rotation causes the data to be measured at a constant elevation angle with respect to

the ground plane (0 is a constant). The mounted ground plane is shown in Figure 4.

By using an automated system, one can easily obtain large amounts of data.

For the system used here, the data are directly sent from radar computer to either

an XD88 Tektronix workstation or a VAX 8550. By sending data directly to these

computer systems, the data may be immediately processed to provide the RCS in

dBsm.

2.2 "Big Ear" Compact Range

The OSU compact range can measure targets up to 10 feet in length. For larger

targets, RCS measurements can be measured at The Ohio State University's Radio

Observatory designed by Professor John Kraus and known as "Big Ear." A pho-

tograph of the observatory is shown in Figure 5. The Big Ear can be used as a

compact range because it is designed to reflect an incoming signal from the sky by

using a flat reflector. The reflected wave is focussed by a parabolic reflector into an

antenna feed. This process is illustrated in Figure 6.

The "Big Ear" can be used in a similar manner as the OSU compact range. This

similarity can be achieved by correctly positioning the antennas at the focal distance

of the parabolic reflector, but offset from the symmetry axis. The transmitted

spherical wave strikes the parabolic reflector, which converts it to a plane wave.

5
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Figure 4: Ground Plane Mount

•~~ ~ ~ ~ ..- ...:: :":  :. .. ...

Figure 5: Big Ear Radio Observatory.
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Figure 6: Operation of the "Big Ear" as a Radio Telescope
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The plane wave strikes the target and reflects energy back to the parabolic reflector.

This reflection focuses the energy back to the feed antenna. This proess is ilustrated

in Figure 7. The Big Ear works well in vertical polarization, VP. Measurements for

horizontal polarization, HP, may be made in a similar manner with some difficulties.

These difficulties arise because of the antenna. In order to radiate an HP wave,

the antenna cannot be placed on the conducting ground plane. As a result, the HP

antenna must be suspended in the air which causes a ground bounce. The ground

bounce must be eliminated in order to obtain the true RCS of the target.

Measurements made at the Big Ear are done using a novel radar system. The

radar is a stepped-frequency system that operates from 47.3 MHz to 2.0473 GHz.

Measurements made at the Big Ear are much more difficult because of several factors

such as weather and radio frequency interference. The use of the Big Ear system as

a compact range is also discussed in References [2] and [3).

2.3 Synthetic Aperture Radar at the "Big Ear"

While the parabolic reflector is used to simulate the far-field, the parabolic reflector

is not used in synthetic aperture radar (SAR) measurements. The flat reflector is

used in the SAR measurements only to provide a stable rail system in which a linear

aperture is synthesized.

Figure 8 shows a rail located at the top of the flat reflector. This rail is used to

support a cart containing the antennas and radar system. As seen in Figure 9,

two rhombic antennas are mounted on the cart. The rhombic antenna pattern

information may be found in [4]. Both time domain and frequency domain radar

systems can be mounted on the cart. The basic block diagram for the frequency

domain radar system is shown in Figure 10.

Figure 11 shows the basic configuration of the system. As seen in the figure, a

pair of antennas are free to move along a track. One can make RCS measurements

anywhere along the track. Under the assumption that the target region is stable,

9
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Figure 8: Big Ear Rail Used as a Support Structure for an SAR Radar
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Figure 9: Rhombic Antennas Used for SAR Measurements at the "Big Ear"
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the system can behave as an SAR system, if multiple measurements are done along

the track -and the data are processed.

2.4 Calibration

The raw data contain the radar system response which can normally be removed by a

calibration procedure. If r(t) is the range and phase normalized complex scattering

amplitude, h(t), the lumped system transfer function, then the resulting measured

data, m(t), has a response of r(t) * h(t), where • denotes a convolution. As a

result, the system response must be deconvolved. The deconvolution may be done

as a simple division in the frequency domain[7 which results in
M(w)

H(w)

One method of determining the system response is by measuring a target with a

theoretically known normalized response, re(t). The system response may be simply

determined by deconvolution of the measured data, M.(i) with the known theoretical

response. In the frequency domain, deconvolution is done by
M,(w) re(w). H~w)

- - = H(w) (2)
r.(w) r.(w)

Theoretically, the deconvolution can easily be done. In practice, the deconvolu-

tion by re(w) is difficult when there are nulls in r.(w). Therefore, the selection of a

calibration target is extremely important. The calibration target should not contain

any nulls. Figures 12 and 13 show the frequency response of a 2-foot trihedral corner

reflector which was used in the calibration of the Big Ear SAR measurements.

The lumped system response contains many hidden dependencies. For example,

the response of H(w) contains the free space propagation loss at the range distance

of the calibration target. This propagation loss factor is usually not a problem in

compact range measurements because the illuminating wave is a plane wave and the

target is at the same range as the calibration target. For large downrange profiles,

the propagation loss may be compensated by range processing after calibration [5].

14
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Deconvolution usually requires a large signal to noise ratio. However, most mea-

surements are usually clutter limited. One technique for reducing clutter is back-

ground subtraction. In using background subtraction, several assumptions need to

be made. The assumptions are [6] :

1. Interactions between the target and background

are negligible.

2. Th- background remains unchanged during the measurements.

3. A stable radar system is used.

If these assumptions are valid, then the target background measurement, Tb(w),

and the reference target background measurement, Cb(w) respectively, may be sub-

tracted from the target measurement, T t (w), and calibration measurement, Ce(w),

to give effective target, M'(w), and effective calibration measurements, Me(w), given

in the following equations:

M'(w) = T'(w) - Tb(w) (3)

Me(w) = Ce(w) - cb(w) (4)

For the reference target measurements, if the subtraction does not work well

outside the target zone, then errors in determining the system transfer function

occur. In order to minimize the error, one may observe the target response in

the time domain if the subtraction is working well in the target region. Since the

data returned by the continuous wave radar are in the frequency domain, a Fourier

transform. FT, must be used to observe the time response. The FT may be defined

in many different conventions, the author will be using

F(w) = f (t)ei dt (5)

for the forward transform, and

f(t) = 1-F(w) e-j" d (6)

17



for the inverse transform. Note that for any practical implementation, a discrete

Fourier transform would be used and the data should be sampled adequately, as

stated in [6] and [7]. The FT cannot be directly applied to the data. One must note

that a time domain response of a radar is a real signal, r(t). Because the response

is real, its Fourier transform has the property

r(-w) = r'(W), (7)

where * represents the complex conjugate. Also, the data are a bandpassed signal;

so, one should essentially zero pad the frequencies that are not measured. By zero-

padding the data, Gibb's phenomena will be present in the time domain. Harris, in

[13], recommends a Kaiser-Bessel filter with an a value of 2.0 to provide the best

suppression. In summary, the time domain response may be found by
1 +0 1 +0

r(t) = y- J r(w)e-W"dw + T- r(w)eJdw. (8)

If the background subtraction does not work well outside the calibration target

range, for the calibration measurements, then a time gate, G(t), may be performed

on Ce(w) - C6 (w). G(t) should be chosen to contain all of the calibration target

energy. This time gate can be performed, if the radar system decays rapidly enough

so that none of the calibration target energy is smeared outside of the time gate.

Under these conditions, Equation (4) becomes

M'(w) = G(w) • ( C(w) - Cb(w) ) (9)

The RCS, Ir(w), may be then found by deconvolving the system response as

mentioned earlier. By combining (1), (2), (4), and (3) then

Tt (w) - Tb(w)
r(w) = Ce(w) - C(W) ) (10)

If a time gate of the calibration target is used, Equations (1), (2), (4) and (9) result

in
Tt (w) - Tb(w)r(w) = G(w) • ( Ce(w) - CI(,) ))

18



Equation (10) may be used when the background subtraction works well by

itself, whereas Equation (11) is used with the time gating. The main advantage of

Equation (10) over (11) is that it has more useful bandwidth. The time gating done

in Equation (11) reduces the useful bandwidth because of the convolution done by

the time gate.

Now that the groundwork has been laid on the techniques for acquiring measured

data, a discussion of the imaging techniques is given in the next chapter.
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SECTION 3

Imaging Techniques

Identification of scattering mechanisms from the RCS measurements can sometimes

be difficult, especially for complex targets. By imaging the data, one may gain some

insight. In addition, imaging reduces the necessity of taking an in depth look at

all of the data, individually. The image provides a means of examining trends in

the entire data set at the same time. This chapter will describe several methods of

presenting the data. Waterfall plots will be discussed in Section 3.1. In order to pro-

duce images, several assumptions need to be made. These assumptions are discussed

in Section 3.2. Imaging algorithms are dependent upon the different measurement

geometries. These algorithms are presented in Sections 3.3-3.5 for different polar

geometries and Section 3.6 for linear SAR geometry. In addition to the algorithms

presented for the particular geometries, these sections also describe measurement

requirements such as sampling and crossrange resolution. Then, the computer pro-

gram implementation of some of these algorithms are discussed in Section 3.7.

3.1 Waterfall Plots

One of the simplest imaging techniques is to produce a waterfall plot of the data.

The waterfall plots provide information on target behavior over given experimental

changes. One, commonly used waterfall plot, is target behavior over measurement
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Figure 14: Geometry of an Inverse Scattering Problem

samples. This allows a person to make an easier comparison of target behavior, see

Chapter 5.

3.2 Imaging Assumptions

Although the waterfall plots are informative, the plots do not have any processing

gain. Other imaging techniques provide processing gain. However, several assump-

tions are needed before any imaging techniques are used.

Imaging may be thought of as a special case of the inverse scattering problem.

The inverse scattering problem may be stated as follows. The geometric structure

or contour of an unknown object, as seen in Figure 14, is desired. Let the object be
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located in a volume of space, V. The material parameters, such as conductivity, of the

objects inside V are assumed to be different so that the object may be identified from

its surroundings. A known excitation source, located at I on surface S1, produces a

known incident field, fi. The surface S, may be an open or closed surface. *j strikes

an object in V which causes a scattered field, #,. f. is known from measurements

on a surface S2 , which may be an open or closed surface, at a point R. The inverse

scattering problem is not unique and usually cannot be solved exactly. Most of the

current inverse scattering problems are solved after making several assumptions.

In generating the solution of the inverse scattering problem, several assumptions

must be made. The first assumption is that the direct scattering is the only scattering

mechanism. The second is that the propagation velocity remains constant. Another

assumption is that the scattering centers cannot be shadowed, so that the scattering

centers behave like isotropic point scatters. In addition, the scattering must come

only from the the target region. Also, the scattered field is assumed to be colinear

with the incident field. Under these conditions, Langenberg has shown in [8], that

the inverse problem can be solved.

These assumptions allow the scattered field at a field point, F, from a source

point, P, to be written for the volume V in free space as [8]

= I liv g(P)C(P)G. di' (12)

where G. is the free space Green's function and where g( represents the two dimen-

sional scattering center distribution in two dimensions. Mensa, in [9], has termed this

the reflectivity density fun ction. From this equation, the calibrated radar response,

r, may be found in the time domain by the following equation:

r~i) = J g(,)6(2 4- -t)di' (13)

where Z represents the wavenumber. Since monostatic radar measurements are used

throughout the rest of this report, an effective wavenumber, k, will be defined as

k= 2k,.
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3.3 Two-Dimensional Fourier Method

Methods for determining the two dimensional scattering center distribution is depen-

dent upon the measurement geometry. In the particular case of polarimetric ISAR

(Inverse Synthetic Aperture Radar) imaging, the measurement geometry is shown

in Figure 15, where the center of rotation of the target is located at the origin. The

coordinate system shown is the target coordinate system. In the target coordinate

system, the target remains stationary, so that when the support column rotates, the

antenna moves while the target remains still. The target is illuminated by a plane

wave, P at an incident angle 0. Note that the plane wave travels in the positive

t-axis direction in the t-v coordinate system. The assumptions made in Section 3.2

23



allow one to write the radar impulse rmponse a follown []:

rQ9) # .Q(t,)dv (14)

where g,(t,v) is g(z,V) in the t-v coordinate system.

One interpretation of (14) is as follows. As the plane wave travels, a portion of

the wave is reflected at each point. The reflected contributions, from each point,

form a wave which is reflected back to the antenna. The antenna mums up all the

energy from the incoming wave.

The Fourier transform, of Equation (14), results in

r(w, 9) = '" J g(t, v)eSwdv dt. (5

Writing 9t(t, v) in terms of the x-y coordinate system uses a coordinate transfor-

mation of

x = co(9) - v s.(#) (16)

y = s sin($) + v co,(O). (17)

Equation (15) becomes

r(w,o) = ' g(t cos 9 -v sin 9,t sin G + v cos 9)e"'dv dt. (18)

A change of the integration variables in (18) to the z - y coordinate system is

done by a simple coordinate rotation given

t = x CO() + y sin(O), (19)

v = -x sin(O) + y cos(9). (20)

The change of variables results in

F(w, e) +00 g(z, y)e" *' )dx dy. (21)
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Now consider the two-dimensional Fourier transform in the z -g coordinate

system of the reflectivity density function given by

G(k,, k,) = L r z, I)CM80+0"z dv. (22)

Comparing (21) and (22), one can see that the two equations ae equal, where

k, w coo s (23)

kf w sin e. (24)

Equations (21) and (22) allow one to easily determine G(k, k.) from

G(k., ,k) = G(w cos 0,w sin o) = r(ws). (25)

This result is known as the Fourier Slice theorem. Equation (25) allows one to

determine g(z, y).

The equation allows one to determine spectrum G(k., k.) from the measured

data. G(k,, k,) may be determined easily by interpolating the values of r(w, ).

Once G(k., k,) has been determined, 9(z,y) may be easily determined by a two-

dimensional inverse fourier transform such as (26)

9 ) = 2 G(k,, I.)e3(k-z+kP)dk, de,. (26)

In practice, one cannot obtain all the data required to implement (25). Instead,

one must sample enough data to accurately approximate g(z, y). If equally spaced

samples are used to implement (25) or (35), (39) must satisfy the Nyquist criterion.

If the object is space limited, has a maximum distance, L, from the axis of rotation,

and the data ate bandlimited with a maximum frequencyf,.., then the sampling

required for (39) is

A f '-C . (27)
2L*

Now consider when the object rotates at an angle, AO, the point at L moves a

distance in the direction of the propagating wave, A d m L sin AG. The two way
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Figure 16: Crossrange Resolution Calculation Geometry

path length in time forA d is At = 2 A-. To satisfy the Nyquist criterion, f.,.M <

or fW, < 2 . Rearranging, it becomes
C

sinA < 2Lfc (28)

Usually, the approximation of A 9 % sin AO is used in (28) to give

A6 < 2 (29)

2Lfmez

An image will sometimes be generated with a limited number of angular samples.

If this limited sampling is done, the image will have a limited crossrange resolution.

One can calculate the crossrange resolution by considering the resolution from scans

separated by an angle of eA. In Figure 16, angular measurements are represented for

plane waves traveling along the tj and t2 axes of coordinate frames t1 - vi and t2 -V,

respectively. If the point M located on the v, axis is the minimum crosarange distance

26



that needs to be resolved with the origin, the point M will be seen in measurement

t2 at time t,. An object at S also contributes to the response of t.. The object at

S on the t, axis produces a response at time t. in measurement ti. Since S cannot

be resolved in measurement t1, then a < A or equivalently, a < - ."From the

geometry, a = m tan 0,, so
M, = (30)

2 f., tneA (3

Usually, crossrange resolution is measured from the center of the look angles. If 4.

is the measured angle range, the crossrange resolution, C, becomes

2f, 2 tan #-(1
2

because of symmetry. Equation (31) is essentially valid for 0 < 90. For 4 > 900,
C, =  C

3.4 Two-Dimensional Convolution Backprojec-
tion Method

As seen in the last section, the Fourier Slice theorem may be used to generate an

image. Implementation of Fourier imaging may be done in another manner which

will be described in this section. Equation (26) may be rewritten in polar coordinates

as

g(Y) = l j w G(w cos O,w sin e)e- j w(x coo. in ) do. (32)

Note that G(k., k,) has the following property:

G(w cos (0 + 7r),w sin (0 + ir))) = G(-w cos 0, -w sin 0). (33)

Making use of the trigonometric identities cos(O + v) = - cos 9 and sin(O + wr) =

- sin 0, Equation (32) may be manipulated with (33) to yield
, I V _ 0 w x co #+ i ) & o

g(x, y) = 42J wI G(w cos 0, w sin O)e- ( CO. + dw dO. (34)
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Note in (34) that only 180 degrees of data are needed to characteris g(xy). This

fact is true because of the assumption that scattering centers cannot be shadowed.

Substituting (25) and (19) into (34) results in

94 ) -I " 0 Iw I r(w, *)e-*, a v 4, (35)

where

t = zcos + ysin#. (36)

Equation (35) is known as the convolution backprojection theorem. The inner

integral may be rewritten as a convolution.

9(z,Y) = 0 r(t,e) * fl(t) dO (37)

where
0 2t J-= I W I e- jw t dw (38)

and
r(t,oe) = f0- [+r(w, o)e-j- d . 39

27r J-(39

3.5 Three-Dimensional Imaging on a Plane

Implementation of the three-dimensional Fourier imaging techniques is not practical

on present computer systems because of computer storage space. A low-resolution

128x128x128 pixel image uses approximately 8 megabytes of storage. Although there

are many computer systems that have large amounts of memory and can generate

the high-resolution 3-D images, one must consider whether generating the whole 3-D

image is worth the effort. Instead, one may construct several 2-D images that are

cuts of the three-dimensional image. First, a three-dimensional imaging algorithm is

derived. The algorithm is then written in a convolution backprojection form. From

the convolution backprojection equation, the 3-D imaging may be done easily.
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3.5.1 Three-Dimensional Fourier Imaging

The derivation of the three dimensional imaging technique parallels the two-dimensional

case. The geometry of the problem is shown in Figure 17. In this three dimen-

sional problem, a vector notation is used for convenience. The author will be using
r 1 T T

F- x y z and= t u v where the T represents the transpose.

Once again, the assumptions made in Section 3.2 allow a function 9(x, y, z) to

be defined representing the three-dimensional scattering center distribution. In the
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t.u-v coordinate system, the calibrated radar rmos way be writtu as

r(t,G*) = g,(,,,u) du d,, (40)

where gg(t, u, v) is g(z, y, :) in the t-u-v coordinate system.

From Figure 17, one can find the coordinate transformations to change between

coordinate systems. The coordinate transform from F to ' is related by a rotation

in the x - y plane followed by rotation in the z - z plane. The result given as

t ~cos 0 sin90 sin4,sin90 coseG

U -sin c 0 (41)

v -cos Ccos 9 -sin 0 cos 0 sin 0 z

In vector notation, (41) is written as IF= Tr, where T is the transformation matrix.

The inverse transform of (41) may be found by premultiplying both sides of (41)

by the inverse of T. The matrix multiplication results in F= T-If or equivalently

Equation (42).

r cos~sin0 -sino -cosocos0 t ]
I = sin4,sin0 cos 0 -sin,cos0 ul (42)

z Cos 0 0 sin 0 LvJ

The function, gt(t, u, v), may now be written in z - y - z coordinate system.

Substituting (41) into (40) results in

r(t, e, . +0 g(T'p) du dv. (43)

The Fourier transform of (43) results in

I'(w, 9,4o) = J' J' J g(TI'p)wt du dv di (44)
-00 00 -00

A change, of integration variables in (44) using (42), yields

+ / +L J g(T-' Tr)ej " (cO,.''+a,.m.+c,*) d.z dy dz. (45)
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Making note of the fact that T- ' T = 1, where I is the identity matrix, and writing

(45) in scalar notation, results in

t+00 +00 t+00r(w,9 , - -00 vo zfr"' (e, o- +f -,-Y+ .) dx dy dz. (46)

The three-dimensional Fourier transform of g(z, y, z) is given by

G(k,, k, k.) = 0 f +0 + 00g(., y, z)e ' (k"+k+&a) dz dy dz. (47)
L . -0 .,/100

One notes that (46) and (47) are equal when

k. = w cos Osin 9 (48)

kl = w sin Osin O (49)

k, = w cos9. (50)

Equations (46), (47), (48), (49), and (50) allows one to easily determine G(k., c,, ek.)

from

G(k:,k, k.) =G(w cos 0 sin 0, w sin4.sin0, w cosa) = r(w,o,e) (51)

Equation (51) is the Fourier Slice theorem in three dimensions and can be used

to reconstruct G(k,, k., k,). From G(k., kv, k,), one may determine g(z, y, z) by the

inverse three dimensional Fourier transform given by

I (+00 +
g(X, y, Z) G(k.x+kp+k.z) dz dy dz. (52)

3.5.2 Three-Dimensinnal Convolution Backprojection

The 3-D Fourier Slice theorem may now be written in a convolution backprojection

form. The right hand side of (52) may be written in polar coordinates as

I w 2w = o +jj w2 G(wcosq0sin0, w sin 0 sin0, wcos9)9(X, Y',Z) = j,, 1 o 10 o1
e- w(zcos~sin+ysin6sin#+zcoG) sin 0 dw dO dO. (53)

31



By using the property,

G(w cos 0sin 0, wsin #sin 0, wcoo) =

G(-w cos(O + r) sin 0, -w sin(O + v) sin 0, -w co 0), (54)

and the trigonometric identities,cos(o + r) = -cosO and sin(O + r) = -sin O,

Equation (53) may be transformed to

g(z,Y,z) = W- jj L+ W' G(w cosnsinwsin j6sin,,wcoo9)

e - j  D + sin d+zcm) sin 0 dw do dO. (55)

Using the Fourier Slice theorem and (55), one is able to derive the convolution

backprojection technique

I(Ty,z) f W + w (w, 0, )e-j tsin 0 &do dO d (56)

where

t = z cos 0sin 0 + ysin 0sin0 +zcosO (57)

Equation (56) may be written in terms of a time domain convolution as

g(X,y,z) = fr(t,o,O) * fl3(t) sinG dO dO (58)

r(t, o,e) = r( o,e -j - t dw (59)

03(t) = I j e-j w ' d (60)

3.5.3 Imaging on a Plane

Equation (56) may be rewritten for a constant z and 41 as

L Yj w) 1 I +_ W2 r(w,,)e-wt'sin-iwz=#sinOd, do/ dO (61)

where

= cos 4 + y sin 41 (62)
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Recognizing that the e-wsc °' is a time delay in time domain and sin 0 in the expo-

nential term is a time scaling factor, (61) written as a convolution is

g(, Y, z) = jI' n(') nlt') * r,(t'/ sin e -zx on e, #, e) d* de (63)

where

rt(t, o,e) = o rl),e)ei - t (64)
fl(t) = [+00w e-j dw(5

21r L.0,o "dw(5

For a constant z, (63) is easily implemented. The equation may be interpreted

as a process to determine g(x, y, z) for a single z-plane for conical cuts in the data

space. (63) looks similar to (37). The similarity allows one to easily implement (63)

in an existing two-dimensional convolution-backprojection technique. The integral is

a two-dimensional image generated with an additional convolution term, frequency

scaling, and a phase shift.

In implementing (63), one must sample the data needed for the image. If one

uses equally spaced angular increments, the results from Section 3.3 may be used in

both angular directions, 0 and 4).

A < (66)2Lf ..ax

A < 2 (67)
2Lfvgx

Crossrange resolution may also be computed using the results from the two-dimensional

case.

3.6 Near-Field Linear SAR

Although there are many different methods of deriving an algorithm for linear syn-

thetic aperture radar imaging [81, [101, [111, the imaging techniques described in

Section 3.4 may be adapted for the linear SAR geometry [Ill. Due to the nature of

near-field linear SAR, a generated image will inherently have nonuniform resolution
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due to a finite aperture. Derivations of near-field linear SAR imaging techniques use

different approximations, which are not always completely valid. Each imaging tech-

nique has its advantags and disadvantages. One Qf the major advantages for using

the adapted convolution-backprojection algorithm, is that the algorithm is easily

incorporated into an existing convolution-backprojection program. The derivation

is accomplished in two steps. First, the two-dimensional convolution-backprojection

will be modified to compensate for wavefront curvature. Then, the algorithm will be

adapted for a linear SAR geometry. Sampling and crossrange resolution for linear

SAR is then presented.

3.6.1 Near-Field Imaging

For imaging in the near-field, the geometry of the coordinate system is shown in

Figure 18. As seen in the figure, the radar is located at a point 14(p,O). Since

the radar is in the near field, the radar emits spherical waves. The radar return at

time (or distance), p, in essence, measures the reflecfivity in a spherical shell. Since

the image is done on the slant plane, the radar echo returns the ground reflectivity

in a circular projection. This circular projection is illustrated as an arc labeled A

in Figure 18. In a typical application, the arc is limited by the beamwidth of the

antenna.

The radar echo is no longer a straight line projection. Instead, the projection

now lies in an arc of radius, p. The calibrated radar signal can now be represented

as [III

r(p,R,) = LgRcos G - p cos 0, R sin E - p sin O)de, (68)

where Rp is the radar location and g is the radar reflectivity function in the z - y

coordinate system.

The circular arcs of Equation (68) may be converted as an equivalent straight

line projection [11]. This conversion may be done by first rotating the z - y plane at

an angle 0. The transformation to the t - v coordinate system can be accomplished
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by using

t = z.c-s(0) + I. in(O) (69)

v = -z. in(e) + vea(9) (70)

The circular arcs may then be "straightened' by transforming to the t-v coordinate

system given by

t'= R-p (71)

V1= p, (72)

where

p = (R- t)2 + V2  (73)

arcsin - (74)
P

The straightened projection may then be used to reconstruct g(z, y) by using the

standard convolution backprojection algorithm,

I ) ojr(t', e) * fl(t) de (75)9(x, Y) =T"0

where F(t', 0) and fl(t') are given by (37). Equation (75) is naturally applied in a

polar geometry.

3.6.2 Linear SAR

Near-field imaging can be be modified for linear SAR geometry. In the linear SA r1

geometry shown in Figure 19, measurements are made at points zi along the x-axis.

At each point P(x, y), the radar echo angle of arrival, 0, is given by

0 = arctan (76)

X - Xi

The radar echo that measures the reflectivity at P(z,y) travels a total time (or

distance), t' , given by,

t'= V/(z - .) 2 + y2  (77)
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By a change of variables using (76), the modified backprojection becomes

9(Z,y) = + (r(t', x,) * fl(t')) Y d , (78)
-00 Z2 + Y2

3.6.3 Measurement Requirements

One must consider the sampling requirements of (78). For a SAR system with an

antenna beamwidth of 4 as shown in Figure 20, Equation (28) may still be used to

calculate the sampling requirements of (78). L still represents the largest resolvable

object and is found from the antenna beamwidth by

L=2Rf sin (79)
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The angular sampling, AS, is related to the sample spadng, As by,

As = R. sin(A) (80)

Combining Equations (28), (79), and (80), the sampling requirement, Az is found

by
C (61

Equation (31) may still be used to calculate the crosrange resolution for a finite

aperture. As seen in Equations (31) and (78), if the scanning aperture is finite, then

the resulting image will have nonuniform resolution. For a point on the perpendicular

bisector of an aperture with length L at distance R (from the aperture), the point

has an angular aperture of approximately 2 tan' -. This equation along with

Equation (31) gives the crosarange resolution of the aperture, C,, as

¢' = cR (82)

for R> 

3.7 Computer Program Implementation

Several of the algorithms in this chapter were implemented in a computer program.

Chapter 5 shows that the images generated by the program are sensitive to the

method used to implement the algorithm. This section describes the implementation

* of the algorithms in the computer program. The program can generate images based

on Fourier Slice, convolution backprojection, three-dimensional imaging on a plane,

and linear SAR.

In the implementation of the Fourier Slice method, one needs to interpolate polar

samples to a rectangular raster. By recognizing that interpolation may be realized

as a convolution of an interpolating function with a weighted delta functions located

at the sample points, the interpolation may be easily done. For example, a one-

dimensional function y(z) is sampled at evenly spaced intervals, Ax. The resulting

39



sapled function, 1(s), is fon to be

P.() W uMR(z, AX)(:), (82)

where ami is a comb function iven by

+-0S
cwn ,l ,) = ( ] (- nAX). (84)

From sampling theory, if 1(s) is a bandlimited signal and finite duration, v(z) may

be reconstructed from its samples by applying an ideal lowpass filter as given by

VWz = E Y,(kAa:)srnc A)(85)

Interpolation done in this manner with the sinc function is commonly teered to

as bandlimited interpolation. The implementation of (85) is not practical, since

the sum is extremely time consuming. Instead one usually substitutes a nonperfect

interpolator, such as a zero-order hold, a first order hold (i.e. linear interpolation),

or Lagrange interpolation, in place of the ideal low-paw filter. One should also note

that Lagrange interpolation for an infinite order interpolation converges to the sinc

function interpolation [12]. In summary, the interpolation may be done as follows:

NM
G(k,k,) = F, r(2wAf, nA9)I.(k.,k,n , AO)11(k,4,2srmAf, Af),

%1=0 t,-M

(86)
where Is is an interpolating function for angle, and I is an interpolating function

for frequency. The computer program allows linear and n-th order sinc interpolation

to be used for 1 and If.

The resulting data plane for a single measured point, r(w, 9), is given by

Gm(kz, ,) = r(2Af, nA),(k, ,, 9, AG)I(k., 4, w, A f). (87)

As seen in Equation (87), the entire k, - , plane needs to be interpolated for each

point. Fortunately, the interpolating functions, I# and If, decay rapidly away from

the sample point. As a result, the interpolation needs to be done only at points
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near each sample point. The number of interpolated points (interpolation size) for

each sample is implemented as a user defined variable in the computer program. A

5-point interpolation size centered at the measured sample point gives good results.

The image is generated by first adding up all the G., from all the sample points,

to get G(k,, k,). Once this is done, a simple two-dimensional fast Fourier Transform

is performed on G(k., k,) to get g(z, 1), the resulting image. A lot of finesse is needed

to implement the Fourier Slice theorem to provide the good results in Chapter 5.

Implementation of the other imaging techniques discussed are much simpler.

Convolution backprojection is done as a brute force method of implementing Equa-

tion (35). If equally spaced angular samples are used, one may easily convert Equa-

tion (35) into a discrete sum. Using the same coordinate system as Equation (35) ,

this conversion may be done by writing it as a Riemann sum approximation

N M

g(x,y) = E [I m I (Af)2 r(2mrAf, nAG) el j ' ' I] G (88)
%=I m=-M

where

t = z cos(nAG) + y sin(nAG), (89)

N is the number of frequency samples, Af is the frequency sampling interval, M

is the number of angular samples, and AO is the angular sampling interval. If t

is now sampled at an interval of At, then the bracketed quantity in Equation (88)

is a inverse discrete fast Fourier Transform of a filtered function, IDFFT. As a

result, convolution backprojection is done in four steps. First, the measured data,

r(2mrAf, nAO), for each look angle is scaled and filtered by I m I (Af)2 . Next, the

IDFFT is appled to the filtered function to give

M

fm(ti) = F I M I(Af)2r(2mrAf, nAO) e21l i llAIA1 (90)

The image for each look angle is found by backprojecting the data, look angle is

gm(X,y) = f.M(t)AO (91)
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In backprojecting the data, interpolation is required to interpolate f.(t). To find

the complete image, all the g.(z, V) are added together.

In the developed computer program, interpolation is done twice in the convolu-

tion backprojection. The first is done by the IDFFT. This interpolation is caused by

zero padding the measured frequencies. By zero padding the data and performing

an IDFFT, Fourier interpolation is done. Usually, zero padding by a factor of 4 is

used. The other step in which interpolation is done is in backprojection. A cubic

spline is used for the backprojection interpolation. The convolution backprojection

is simpler to implement than Fourier Slice.

The three-dimensional imaging is even easier to implement. The imaging on

a plane can be accomplished by preprocessing the measured data and using the

standard convolution backprojection method. This preprocessing can be done first

by a Shepp-Logan filter (multiply the frequency response by W), then phase shifting

the data by z cos 0 sin 0, followed a frequency scaling by sin. The data are then

processed using convolution backprojection.

Although the linear SAR algorithm is based on a modified convolution backpro-

jection technique, the linear SAR algorithm cannot be done by preprocessing the

data. As a result, near field linear SAR imaging is also done as a brute force method

of Equation (78). Using the same coordinate system as Equation (78), the approxi-

mations, df - Af and dxi , Axi, are used to write the equation as a Riemann sum

approximation,

+00 M

g(x,y) = Z F [I n, (Af)2F(2mrAf,i)e 'mA yt ] ( + 2 Axi (92)
it-oo m--M

where t' is given by
t'= /(X - X,)2 + y2  (93)

With the exception of one step, the linear SAR algorithm is the same as convolution

backprojection algorithm, if t is replaced with t'. The only step of the algorithm
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that is changed is the backprojection step. The backprojection is done by

9M(,V ,(z z Y2+ Azi (94).(s~) =/ (X( - X,)l + 1

Implementation of the algorithms into the computer program are easily done.

Because the images generated from the computer program are Fourier based, the

images have Gibb's phenomena. Because people often find it difficult to view wave-

forms with Gibb's phenomena, filtering, which is subject of the next chapter, is often

used to suppress this phenomenon.
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SECTION 4

Filtering

Data are normally filtered mainly because of two reasons. The first reason is to

suppress noise, and the second is to allow a human to interpret the data more easily.

Several useful filters will be discussed in this chapter.

4.1 Visual Filters

In the past, microwave imaging has viewed I 9(x, y) I. This quantity is related to the

scattered power from each point. Figure 21 shows an image of a 1/72 scale model

of an F-4 fighter aircraft. More details of the image will be discussed in Chapter 5.

In this chapter, this image will be used to illustrate the effects of filtering. There is

information contained in the polarity of g(z, y), so that the information should be

preserved.

One important use of polarity pertains to how the human eye perceives color and

shading. The eye performs an averaging over a spatial area, so gradual variations of

shade usually cannot be easily discriminated. Sharp contrasting objects are promi-

nent. Therefore, if one maps the polarity of g(x,y) to different colors, details that

are not very noticeable in I g(z, y) I will appear. Unfortunately, the use of color in

this paper is not possible. Instead several clipping filters will be used to illustrate

this point. These filters are listed in Table I. These filters have been applied to

the F-4 image. The resulting images are shown in Figures 22 to 24. Note that the
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Figure 2 1: F-4 Phantom Model. This plot show5 9 (z, y) I
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Table 1: Filters for g(x, 1)

Name function

Offset g(xy) + constant

Positive Clip g(x,y) if g(r, Y) > 0

0 if 9gx,y) < 0

Negative Clip 0 if g(x,y) > 0

-g(x,y) if g(z, y) < 0

Threshold g(x,y) if Ig(z. y) i> c

0 otherwise,

where c is a constant

Gibb's phenomena become more noticeable in these figures because of the contrast.

More importantly in Figure 21. the tail of the F-4 is composed of two stripes. In Fig-

ures 22 to 24. the same part is composed of negative and positive stripes. One other

important visual filter is the threshold filter. The filter suppresses low level signals.

In particular for images with a good signal to noise or clutter level, the threshold

filter filter will enhance the visual perception of Liie image. 1his is illustrated in

Figure 25. From this image, the outline of the aircraft is more defined. The in-

creased visual perception of the image also allows Gibb's phenomena to be seen.

Since Gibb's phenomena can be seen in the image, suppression of the phenomena

can be accomplished by filtering the image.

4.2 Downrange Filtei"

All of the images shown before this section did not have any filtering functions ap-

plied to the data. As a result, Gibb's phenomena are present and is visible in the

images. One method of reducing the Gibb's phenomena is to filter the data before

generating the image. Often, one desires to have both a full resolution image with
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Figure 25: Example of Threshold Filter. F-4 phantom model. This plot shows
9 (x, y) .This figure not to scale.
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Gibb's phenomena and a filtered image because the full resolution image usually

shows more detail. However, this method would require generating two images. In-

stead, one may note, from Equations (25) and (51), that an equivalent filter be done

by filtering the image frequency domain. If W(w) is the one-dimensional waveform

filter, the equivalent two-dimensional filter is W2(w, 0) = W(w).

Figures 26, 27, and 28 show the F-4 Phantom images after a low-pass, band-pas,

and high-pass filtering, respectively. Note that the figures have lost a substantial

amount of resolution due to the filters. This effect is known as vignetting. Instead,

one may wish to apply the filter over a portion of the frequency spectrum. The results

of the frequency domain taper are shown in Figures 29 to 31. In these figures, the

tapered images show a shaper peaks when compared with the traditional filtering.

4.3 Angular Filter

Some scattering centers are visible for narrow angular regions. These scattering

centers appear weak compared to point scatters because the narrow scatters are

averaged over all the measured data even when their response is shadowed. In order

to observe these scattering centers, one may generate a limited aperture image. By

limiting the angular aperture, the point scatters are "weaker" since fewer look angles

are summed. By generating a limited angular aperture, image artifacts appear in

the image. These artifacts may be readily seen in Figure 32 which shows an image

generated for 90* of data. As one may observe in the images, large stripes are going

across the images. These strines rp-,lf frnm the discontinuity in the data space in

the angular direction.
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Figure 26: F-4 Phantom Model with a Low-Pass Kaiser-Bessel Filter of Alpha 2.
This plot shows I g(x,y) I.
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Figure 27: F-4 Phantom Model with a Band-Pass Kaiser-Bessel Filter of Alpha 2.
This plot shows Ig(x, y)
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Figure 28: F-4 Phantom Model with a High-Pass Kaiser-Bessel, Filter of Alpha 2.
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Figure 29- F-4 Phantom Model with a Tapered Low-Pass Kaiser-Bessel Filter of
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Figure 31: F-4 Phantom Model with a Tapered High-Pass Kaiser-Bessel Filter of
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Figure 32: F4 Phantom Model Reconstructed by Interpolation using 90 Deg of Data.
The data were taken at 1* increments from 2 GHz to 18 GHz.
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SECTION 5

Imaging Results

Imaging results produced by the computer program are shown in this chapter. Im-

ages of a scale model F-4 fighter aircraft, a scale model M35 truck, and foliage are

shown. All of these images, except the SAR images, were generated using a 512x512

matrix. The SAR images were generated using a 1650x1650 matrix in order to satisfy

the Nyquist sampling.

5.1 F-4 Phantom

Data from a 1/72 scale F-4 Phantom model airplane were taken in the OSU compact

range to generate an image. The data have a frequency range 2-18 GHz sampled at

20 MHz increments. Angular samples were made at 1° increments. The total model

length was 9 inches long. The F-4 data are used for comparing the Fourier Slice

and convolution backprojection algorithms. Only horizontal polarization is shown

for all the Phantom imagel. TTnle-q otherwise stated, the author has normalized all

F-4 images in the same mauner. - I Dar,'on between the Phantom figures is

meaningful.

Figures 33 and 34 show a Fourier Slice image produced using a 5-point sinc inter-

polation while Figures 35 and 36 shows a convolution backprojection image. Note

that Figures 33 and 35 show I g(x, y) I while Figures 34 and 36 show I G(k.,/V) 1.

As one would expect, visually the two different methods are comparable since the
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Figure 33: F-4 Phantom Model Recorstructed Using the Fourier Technique Using a
5-Point Sinc Interpolation. This plot shows I g(x, y) I
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Figure 35: F-4 Phantom Model Reconstructed Using the Convolution Backprojec-
tion Method. The data were taken at 1° increments from 2 GHz to 18 GHz. This
plot shows Ig(x,y) y.
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Figure 36: F-4 Phantom Model Reconstructed Using the Convolution Backprojec-
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two methods are mathematically equivalent. Figure 37 shows the same model re-

constructed by the Fourier Slice method using linear interpolation (same technique,

but different interpolation type). The results of the Fourier method using the higher

order interpolation is comparable to the convolution backprojection method. Im-

ages not explicitly labeled as the Fourier method have been generated using the

convolution backprojection technique.

As one may see in the F-4 images, the entire outline of an airplane is not visible

for 180 degrees of data. The reason, for only part of the outline being visible, is due

to the imaging assumption that the scattering centers behave like isotropic point

scatterers. In the real world, some of the "rear" scattering centers are shadowed,

and one cannot completely characterize an object with only 180 degrees of data.

This may be readily seen as a discontinuity in I G(kz,/k) I. In Figures 34 and 36,

the discontinuity is seen on the x-axis.

Occasionally, one may find it useful to completely characterize an object in an

image. One common method, to accomplish this task, is to arbitrarily extend the

angular range to 360 degrees instead of the 180 degrees in the imaging algorithm.

To illustrate this, Figure 38 shows an image generated using 360 degrees of data by

assuming that the target is symmetric. (This assumption was made because only 180

degrees of data were available.) Notice in the frequency domain image, Figure 39,

the discontinuity has disappeared. However, the spectrum is different.

Image artifacts also arise in the convolution backprojection imaging technique

in images that do not satisfy the angular Nyquist sampling rate. In particular, one

needs to understand the effects in the images caused by angular sampling. In the

convolution backprojection method, artifacts become prominent near the angular

Nyquist rate. For example, Figure 40 shows a convolution-backprojection image of

the F-4 Phantom model sampled at 2-degree increments with a maximum frequency

of 14 GHz. At the outer edges of the image, one can see some radial lines (and looks

like a Moir6 pattern). This pattern results from undersampling Equation (28) at
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Figure 38% F-4 Phantom Model Reconstructed Using 360* of Data. The data were
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that radial distance. The two-dimensional Fourier transform of the image shown in

Figure 40 is shown in Figure 41. At the outer edges of the annulus in the frequency

domain image, the frequency spectrum is no longer continuous, and a set of radial

lines can be seen. At these frequencies, the angular sampling does not meet the

Nyquist criteria. The radial lines are the result of each measured look ag that

was used in performing the backprojection when generating the image. Further

effects of angular Nyquist sampling are shown with the M35 truck.

5.2 M35 Truck

This section shows two-dimensional images generated from data taken at the OSU

compact range. The target selected was a 1/16 scale M35 truck model, shown in

Figure 42. Data are available for two elevation angles, 0" and 45*. The data were

sampled from 2-18 GHz at 20 MHz increments with the center of the truck as the

axis of rotation. The azimuth sampling rates are 1 for 0.9" for 00 and 45* elevation,

respectively. Only vertical polarization is shown for the truck images. First a water-

fall plot will be shown for 0* elevation. Fourier Slice and convolution backprojection

images will also be shown for 00 elevation. A projected three-dimensional image will

be shown for the 45* elevation.

Figure 43 shows a waterfall plot of the truck at 0° elevation. Since the target is

rotated about an axis, the scattering centers track in sinusoidal fashion, when seen

as a function of look angle. The white horizontal stripe seen in the waterfall plot is

a missing data file. Many interactions can be seen in the waterfall plot. As seen in

the figure, the plot is difficult to interpret when there are many scattering centers.

Imaging is used to help the user interpret the data. Figures 44 through 47 show

images of the truck at 00 elevation. Figure 44 was made by convolution backprojec-

tion. Figure 45 was made by Fourier Slice. Both convolution backprojection image

and Fourier Slice images were generated using the same data. One drawback to

the Fourier Slice image is that it is aliased. The aliasing is caused becaused the
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Figure 40: F-4 Phantom Model Reconstructed from Data Taken at?2 Increments
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1 ..

Figure 42: Model M35 Truck. 1/16 Scale.

measured data are sampled for a larger time window. The aliasing occurs in Fourier

Slice because the image is generated directly in the frequency domain. In convolu-

tion backprojection, the data are transformed into a filtered time domain response

and resampled. In order to generate a correct Fourier Slice image, the data need

to be time gated before the Fourier Slice algorithm is applied. Figure 46 shows the

resulting image. Note that the aliasing near T. = 2 and T. = 3 nS in Figure 45 has

been removed.

The two images are equivalent in the region where Nyquist sampling is satisfied.

The Moir6 pattern is visible in convolution backprojection while there is no Moir6

pattern in the Fourier slice image. This lack of pattern in the Fourier Slice image

is caused because the implementation of Fourier Slice interpolates angular .samples.

As a result, an equivalent convolution backprojection image, shown in Figure 47,

can be generated by interpolating angular samples. The presence of image artifacts

causes difficulty in identifying scattering centers.

Some very noticeable scattering centers in the truck images are the reverberations

caused by the truck bed in vertical polarization. Because the reverberation is not a
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Figure 43: Model M35 Truck, Time Domain Response, 0* Elevation, 9 (x, y) ~
900(10)2700 VP.
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Figure 45: Model M35 Truck, Alia-sed Frequency Domain Interpolated Image, 00
Elevation, g(x, y) 1, 90*(1*)270* VP.
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Figure 46: Model M35 Truck, Frequency Domain Interpolated Image, 0* Elevation,
I 9(x, y) 1, 900(1*)2700 VP.
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Figure 47: Model M35 Truck, Convolution Backprojection Image with Linear Inter-
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first order scattering mechanism, the scattering does not appear in the images as a

dot. Instead, it appears as an arc in the image. In the images, the reverberations

are seen as periodic arcs occurring outside of the truck. These reverberations are

not part of the physical optics assumption in the imaging algorithm. As a result,

the reverberations do not appear in the image at the location causing the scattering.

Scattering centers that do not image to a point occur frequently. They are even

more apparent in three dimensional imaging when there is insufficient sampling to

completely characterize the target.

A cut of a three-dimensional image w I; ,uue using the 45° elevation data. Fig-

ure 48 shows the truck imaged on the proI,., i ~ane. Since the image was generated

using only one elevation angle, there are n,:i1 --fake" scattering centers at this ele-

vation. These fake scattering centers ,ctia I> occur at a different altitude. If more

elevation angles are used, these fake s(, .-. !will disappear. Figure 49 shows the

truck focused at 3 inches above tie u .1i, puue. Looking at these images, one can

see that several of the fake scattering centers (of the 0 inch altitude images) become

focused and are actually from a different elevation. Figure 50 shows an image at

an altitude of 1.2 inches. The truck bed is locat-d at this altitude and forms a

dihedral scattering mechanism. The mechanism response is located at the vertex of

the dihedral. When the image is focused at 1.2 inches, the image shows the proper

location of the scattering center. At other elevations, this scattering center appears

as a "fake."

As mentioned earlier, most fake scattering centers are seen because of insufficient

data to completely characterize a target. '_,ften in linear SAR, limited data are

available to completely characterize a three-dimensional target.

5.3 SAR Imaging

A foliage penetration study was done at the Big Ear. A small forested area located

behind the flat reflector was used. An extensive survey was made of the forest to
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Figure 48: Model M35 Truck, Image on Ground Plane, 450 Elevation, g.(z, y) 1,
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Figure 51: Map of SAR Target Area at the "Big Ear"

produce the map shown in Figure 51. Several small corner reflectors were placed

in the woods such as an 8-foot triangular plate trihedral and 4-foot square plate

trihedrals. Other reflectors were placed tn the forest, and their descriptions are

* shown in Table 2. A 2-foot dihedral was suspended in the air. The 2-foot dihedral

was used to calibrate the data. In addition, it was also left in the measurements to

provide a known reference location.

.Many measurements were made at the Big Ear. A maximum aperture size of

230 feet was measured. Both 4-inch and 6-inch sampling were measured using the
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Table 2: Calibration Target Locations for 1304 and 1305 Data

Quantity Corner Reflector Type

1 8-foot Triangular Plate Trihedral

3 4-foot Square Plate Trihedral

1 2-m x 1-m Dihedral

2 0.67 x 1-m Dihedral

system. Both time and frequency domain measurements, with a bandwidth of 200

MHz to 1600 MHz, were made of the target region at different times in the year.

Measurements were made using a Horizontal E-field (HP) and Vertical E-field (VP).

A list of the measured data is shown in Table 3. The data are represented by over

500 megabytes. Only one set of image data will be shown here. This particular data

set has an aperture of 200 ft.

From Equation (77), one can conclude that a point scatter in the target region

will track as a hyperbola when plotted as a function of the measurement position.

Figures 52 through 55 show the time domain response of the foliage as a function of

measurement position. These plots show calibrated data without range compensa-

tion and show 400nS of downrange distance. Figures 52 and 54 show the first 200nS

of downrange distance while Figures 53 and 55 show the the remaining 200nS. Fig-

ures 52 and 53 show HP while Figures 54 and 55 show VP. As seen in the figures, the

corner reflector response is significantly stronger than the trees. The bent vertical

line in Figures 52 and 54 is a metal fence surrounding the forest. A lot of scattering

centers are visible in the HP waterfall plot in Figures 52 and 53. However, there are

significantly fewer scattering centers in VP, as seen in Figures 54 and 55.

Due to the large distances covered, the calibrated data need to be range com-

pensated because of free space dispersion. The resulting data were then focused as
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Table 3: Measured Foliage Data Sets

Data Set Aperture Size Sample Radar Time of

in feet Spacing (in.) Type Year

1302 120 4 Frequency Autumn

1303 120 6 Frequency Autumn

1304 and 200 6 Frequency Autumn

1305 6

1309 120 6 Frequency Autumn

1310 120 4 Frequency Autumn

1311 120 4 Frequency Autumn

2161 200 6 Time Spring

2163 200 6 Time Spring

2168 and 200 6 Frequency Spring

2169
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Figure 53: SAR Image of Foliage, 6-inch Sampling, HP
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Figure 54: SAR Image of Foliage, 6-inch Sampling, VP
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a near-field SAR to produce images in the slant plane as shown in Figures 56 and

57. These images were made using Equation (78) with a finite aperture. The images

show the scattering centers in the HP waterfall plot image as dots in the SAR image.

Most of these dots correspond to the base of the tree trunk in the slant plane. The

trunk scattering appears to dominate the response from the forest in HP but not in

VP. In HP, the scattering mechanism that causes the trunk scattering is caused by a

dihedral-like mechanism. The ground to tree trunk bounce is similar to a dihedral.

A Brewster angle effect occurs in VP because of the angle of incidence with respect

to the ground. Consequently, the ground reflection is too weak to cause the dihedral

effect, [16].
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SECTION 6

Conclusions

Fourier based imaging techniques were presented for certain radar geometries such as

polarimetric ISAR and linear SAR. In these geometries, the reflectivity characterized

by a target is preserved in the generated image. As a result, the image may be used

to synthesize the measured data. These geometries described are often used in

radar measurement facilities. The facilities at OSU, provide ultrawideband radar

measurement systems. Measurement systems for scanning geometries described in

this report are available at OSU. The facilities include an indoor compact range, an

outdoor compact range (Big Ear), and an outdoor linear SAR system.

Images generated from measurement systems often contain noise. A practical

implementation of the imaging algorithms also introduces some numerical noise. In

addition, the algorithms also introduce image artifacts caused by Gibb's phenomena

and sampling. Examples of these artifacts are shown in Chapters 4 and 5. Gibb's

phenomena are suppressed by filtering the image. Traditional full bandwidth fil-

ters reduce the image clarity significantly. 1-. ztead, a tapered filter should be used.

Figures 26 through 31 show these efferts.

Filtering is used to improve the reader's perception of the image. Other methods

of improving image perception are available. One main problem occurs because the

human eye does not distinguish individual shades well. The eye enhances areas of

high contrast. Images are usually presented in terms of the absolute value of the
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reflectivity function. By including polarity information, perception of scattering

centers may be increased. This is shown in Figures 22 through 24. Color images are

usually made. However, color images could not be included in this report.

In Chapter 5, images are presented from measured data of the different scan-

ning geometries. These images included a model F-4 fighter aircraft, a model M35

truck, and a forest. These images showed that a proper implementation of the

two-dimensional Fourier Slice algorithm provided results as good as convolution

backprojection as seen in Figures 33 and 35. Angular Nyquist artifacts can be seen

readily in convolution backprojection in its image, Figure 40, and in its frequency

domain representation, Figure 41. In addition, implemented Fourier Slice algorithm

provided better suppression of sampling image artifacts, when the data were sam-

pled near the angular Nyquist rate as seen in Figures 44 and 46. An equivalent

convolution backprojection image can be made by interpolating the polar samples

as seen in Figure 47. Although both Fourier Slice and convolution backprojection

are mathematically equivalent and produce comparable results, the computer time

used to generate the images are significantly different. As implenented in the com-

puter program, convolution backprojection is 20 times slower than the Fourier Slice

algorithm.

For data taken in a conical geometry, images were focused on different elevation

planes. These images shown in Figures 48 and 50 demonstrate that the individual

scattering centers are focused at the correct elevation.

SAR imaging was done in the slant plane for the measured data of foliage. In

these SAR images, Figures 56 and 57. call - '- enters, such as tree trunks, can

be easily identified in the images. B:. usi,. 2 ,ation information, a scattering

mechanism, caused by a tree trunk ground interaction, was verified.

Other modifications to the basic imaging algorithm can be done. One such change

is to focus the SAR image onto a patch of ground or at an arbitrary plane. Future

work will include these changes. These changes should provide insight into foliage
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scattering. In addition, nearly real-time image generation is currently being worked

on for the Big Ear compact range.
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