

Quarterly Report

Analysis of Cost:

 Combustion Flame CVD Diamond DepositionContract Number: N00014-93-C2044

IBIS Associates, Inc.
55 William Street, Suite 220
Wellesley, MA 02181-4003 USA

$$
94 \quad 7 \quad 25 \quad 004
$$

Quarterly Report

Analysis of Cost: Combustion Flame CVD Diamond Deposition

Contract Number: N00014-93-C2044

Distribution Statement A:
Approved for Public Release:
Distribution is Unlimited.

䇤

Second Quarter 1994

IBIS Associates, Inc.
55 William Street, Suite 220
Wellesley, MA 02181
Tel: 617-239-0666
Fax: 617-239-0852

Executive Summary

IBIS Associates has improved its predictive spreadsheet model of combustion flame chemical vapor deposition (CVD) diamond film fabrication. This report explains the improvements on the combustion flame deposition theory, and shows preliminary results of the economics of this CVD diamond process.

The changes to the model include the incorporation of thermal conductivity as an input to the model, allowing the user to specify the thermal properties of the diamond being formed. Also, the deposition theory in the model has been streamlined with the assistance of diamond deposition experts. Numerous inputs have been eliminated in this process, making the model easier to use.

For this report and the results contained herein, it is assumed that the transport theory model which predicts growth rates in the CVD diamond technical cost model closely predicts actual growth rates for the combustion flame technology and that the input values for variables such as the gas flow rate and substrate diameter are physically achievable.

To be investigated are alternative combustion flame deposition geometries and chemistries. Expert review has revealed that the deposition geometry assumptions (i.e. nozzle:substrate diameter ratio) in the IBIS model may not be optimal for combustion flame deposition. Suggested changes in deposition geometries involve the size, shape, and distance to substrate of the combustion nozzle, as well as higher flow rates at smaller nozzle sizes. Suggested changes in deposition chemistry include using ethylene as the carbon fuel instead of acetylene. Lastly, expert approval of the models is continually in progress.

Combustion Flame TCM Expert Review

The combustion flame CVD diamond Technical Cost Model (in the Appendix) has been reviewed by deposition experts representing Sandia National Laboratories in both Albuquerque, NM and Livermore, CA; Stanford University; Caltech; and Lockheed. Copies of the model were transfered to these theorists along with a non-transferable site license, and all were tutored on the Technical Cost Modeling methodology. A thorough expert review of the combustion flame model was undertaken during this tutorial. In response to the model criticism that surfaced, a plan for the revision of the cost model was drafted.

The expert review of the combustion flame CVD diamond cost model produced no significant criticisms. There was a concensus among the theorists that two of the three quality measures, as reported in the first quarter report for 1994, are unnecessary. The model has been streamlined to use only one of the quality measures $(\mathrm{H} / \mathrm{CH} 3)$, which is believed to correlate the closest to thermal conductivity.

A defect-based model of CVD diamond material properties has been developed by Michael Coltrin at Sandia National Laboratories and David Dandy at Colorado State University. Inputs to this model include the hydrogen (H) and methyl radical (CH3) mole fractions at the growth surface, as well as numerous rate constants for the reactions considered at the growth surface. Outputs of this model include the growth rate and defect density, which are used to determine thermal conductivity. IBIS generated data from this model and performed regression analysis in order to find the $\mathrm{H} / \mathrm{CH} 3$ ratio as a function of thermal conductivity. As shown later in this report, the relationship assumed to exist between $\mathrm{H} / \mathrm{CH} 3$ and the thermal conductivity of the CVD diamond allows thermal conductivity to exist as an input to the cost model.

The model's shortcomings were identified by the experts as its inability to predict the effects of changing in reactor pressure, fuel chemistry, or nozzle count. The concensus was reached that a new version of the model should be developed with the ability to predict changes in these three conditions. Due to the large amount of data required to derive predictive relationships for all these processing parameters and the nonexistance of this data in the public domain, a plan for data collection from numerical models was established. As agreed, all organizations involved in the expert review with the exception of Lockheed will cooperate in the data generation.

Sensitivity Analysis

Technical Cost Modeling permits the flexibility of performing sensitivity analyses. Using sensitivity analyses, it is possible to explore the cost implications of changing key input variables such as gas composition, production volume, material prices, product dimensions, etc. As an R\&D management tool, these analyses help set development goals for cost effective manufacturing. Further, they help in long term planning, by indicating the cost savings that may be realized through scale-up. For the purpose of these sensitivity analyses it is assumed that the transport theory model which is used to estimate the diamond growth rate closely predicts actual growth rates and that the input values for variables such as gas flow rate and substrate temperature are physically achievable. Presented in the following sections are the following analyses, all based on the assumption of thermal management quality diamond:

- Cost vs Substrate Diameter and Gas Consumption
- Cost vs Thermal Conductivity and Gas Ratio
- Cost vs Thermal Conductivity and Substrate Diameter

For all of these analyses, the ratio of substrate to duct area is held constant. This constraint is due to the geometry assumed for the combustion flame technology as modeled (i.e., a single nozzle torch). The area of the gas duct is the cross-sectional area of the flame before it is affected by the flow pattern around the substrate. For a combustion flame with a corresponding duct area impinging on an infinite plane, there will be a circular region of desirable diamond and a surrounding region of unacceptable diamond. Consider the similar case of a flame impinging on a substrate of the same area. As a substrate diameter increases while the duct diameter remains constant, there is a point at which the substrate extends into this zone of unacceptable diamond. Therefore, there is a maximum substrate:duct area ratio that should not be exceeded. Experts in CVD diamond deposition suggest that this ratio is roughly $3: 1$ for single nozzle torches. When the substrate diameter is varied in the following analyses, the duct diameter is adjusted so that the ratio of substrate to duct area is constant.

Cost vs Substrate Diameter and Gas Consumption

Figure 1 shows the combustion flame deposition cost per square centimeter of one millimeter thick polycrystalline diamond varying with the diameter of the deposited wafer. In addition, because the duct area and gas flow rate increase with substrate area, Figure 1 shows the total gas flow rate changing with the substrate diameter. The volumetric gas flow rate must change with the duct diameter, if constant quality is to be maintained, due to the assumptions in deposition theory that are mentioned in the first quarter report of 1994. At about nine centimeters in diameter, the cost per square centimeter of combustion flame CVD diamond reaches a minimum of roughly $\$ 60$. The incorporation of the gas flow rate plot illustrates why there exists an optimum substrate diameter: as the duct area increases to

Figure 1
maintain the substrate to duct area ratio, the volumetric gas flow rate must also increase to sustain the same strain rate parameter (same quality diamond). Therefore, the economy of scaling the substrate diameter peaks at about nine centimeters, above which the required gas flow increases the cost.

Cost vs Thermal Conductivity and Gas Ratio

The effect of quality, in terms of thermal conductivity, on CVD diamond deposition cost at different gas ratios can be seen in Figure 2. The reason for the rise in cost with thermal conductivity relates to the correlation between purity and thermal conductivity. For this simulation, the purity of diamond is assumed to depend on the ratio of atomic hydrogen to methyl radicals at the growth surface; this model predicts that thermal conductivity will increase with this ratio. Increasing the ratio of atomic hydrogen to methyl radicals, while keeping the proportion of acetylene to oxygen flow constant, requires an increase in the flow rate of the inlet gases. As shown in Figure 1, increasing flow rates leads to rising costs. From Figure 2, higher thermal conductivity diamond (1,000 to $1,500 \mathrm{~W} / \mathrm{mK}$) should be grown at lower ratios of acetylene to oxygen, dropping the cost by a factor of four when lowering this ratio from 1.10 to 1.02 at $1,500 \mathrm{~W} / \mathrm{mK}$. Also shown in Figure 2 is the cost of thermal conductivity. CVD diamond grown to achieve $1,000 \mathrm{~W} / \mathrm{mK}$ thermal conductivity costs about an order of magnitude less than diamond with $1,500 \mathrm{~W} / \mathrm{mK}$ thermal

Deposition Cost Vs. Thermal Conductivity and Subatrate Diamoter

NOTE: This graph is the result of current diamond deposition
theory, which relies on numerous simplifying assumptions.

Figure 3

Conclusions

IBIS Associates has improved its predictive spreadsheet model of combustion flame chemical vapor deposition (CVD) diamond film fabrication. This report explains the improvements on the combustion flame deposition theory, and shows preliminary results of the economics of this CVD diamond process.

The changes to the model include the incorporation of thermal conductivity as an input to the model, allowing the user to specify the thermal properties of the diamond being formed. Also, the deposition theory in the model has been streamlined with the assistance of diamond deposition experts. Numerous inputs have been eliminated in this process, making the model easier to use.

For this report and the results contained herein, it is assumed that the transport theory model which predicts growth rates in the CVD diamond technical cost model closely predicts actual growth rates for the combustion flame technology and that the input values for variables such as the gas flow rate and substrate diameter are physically achievable.

To be investigated are alternative combustion flame deposition geometries and chemistries. Expert review has revealed that the deposition geometry assumptions (i.e. nozzle:substrate diameter ratio) in the IBIS model may not be optimal for combustion flame deposition. Suggested changes in deposition geometries involve the size, shape, and distance to substrate of the combustion nozzle, as well as higher flow rates at smaller nozzle sizes. Suggested changes in deposition chemistry include using ethylene as the carbon fuel instead of acetylene. Lastly, expert approval of the models is continually in progress.

Appendix

PRODUCT SPECIFICATIONS Revision Date: 6/30/94				gas database				Price \$/SCM	No. of sunt/Mo Carbons SCM		Mo.Tank Rental	Price Update
Part Name 6 in	h. substr		Name	0	None			\$0.00	0.00	OE+00		
Wafer Diameter	15.24	cm	DIAM	1	.19 Hydrogen	Alrco	99.9981	\$0.34	0.00	3E+04	\$2,070	1/93
Finished Wafer Thickness	1,000	um	THIK	2	.19 Hydrogen	Airco	99.998\%	\$0.32	0.00	4E+04	\$2,970	1/93
Thermal Conductivity	1,000	W/mK	THERMCON	3	.1q Hydrogen	Airco	99.9984	\$0.30	0.00	1E+05	\$4,500	1/93
				4	Liq Argon	Airco	99.998\%	\$1.41	0.00	8E+03	\$590	1/93
Annual Production Volume	1.0	(000/yr)	NUM	5	Liq Argon	Airco	99.998\%	\$1.32	0.00	2E+04	\$820	1/93
Length of Production Run	5	yrs	PLIfe	6	Liq Argon	Airco	99.9984	\$1.29	0.00	3E+04	\$1,300	1/93
				7	Hydrogen	MG Ind.	99.99994	\$29.86	0.00	OE+00		1/93
process related factors - surface preparation				8	Ilydrogon	MG Ind.	99.99964	\$10.61	0.00	OEtOO		$1 / 93$
Process in Use?	1	[1-Y 0-N]	USE1	9	Hydrogen	MG Ind.	99.999%	\$10.28	0.00	OE+00		1/93
Dedicated Investment	0	[1-Y 0-N]	DED1	10	Hydrogen	Air Prod.	99.954	\$1.59	0.00	OE +00		1/93
Process Yield	95.0\%		YLD1	11	Argon	MG Ind.	99.99994	\$33.09	0.00	OE +00		1/93
Average Equipment Downtime	20.0\%		DOWN1	12	Argon	Air Prod.	99.99974	\$37.33	0.00	OE+00		1/93
Direct Laborers Per Station	0.50		NLAB1	13	Argon	Air Prod.	99.9998	\$11.74	0.00	OE+00		1/93
				14	Argon	Alr Prod.	99.9974	\$2.03	0.00	OE+00		1/93
Substrate Material	11	[menu]	MATLI	15	Methane	Alr Prod.	99.994	\$21.99	1.00	OE+00		1/93
Pleces Per Batch Process Time	20	pcs/batch	PCS 1	16	Methone	Alr Prod.	99*	\$13.76	1.00	OE+00		1/93
	60.00	$\mathrm{min} / \mathrm{batch}$	PTIME1	17	Methane	Air Prod.	934	\$4.93	1.00	OE+00		1/93
Building Space Requirement	250	sqft/sta	FLR1	18	Acetylene	Air Prod.	99.64	\$9.70	2.00	OE+00		1/93
				19	Acetylene	Alr Prod.	98.54	\$5.30	2.00	0E+00		1/93
process related factors - deposition				20	Acetylene	Pipeline	98.54	\$2.00	2.00	OE+00		1/93
Process In Use?	1	[1-Y 0-N]	USE2	21	Hellum	Alr Prod.	99.99954	\$15.90	0.00	OE+00		1/93
Dedicated Investment	0	[1-Y 0-N]	DED2	22	Hellum	Air Prod.	99.995\%	\$4.77	0.00	OE +00		1/93
Process Yield	87.58		YLD2	23	Nitrogen	Air Prod.	99.99964	\$45.50	0.00	OE+00		1/93
Average Equipment DowntimeDlrect Laborers	15.08		DOWN2	24	Nitrogen	MG Ind.	99.9998	\$9.23	0.00	OE+00		1/93
	0.40	/sta	NLAB2	25	Nitrogen	Alr Prod.	99.9984	\$1.24	0.00	OE+00		1/93
				26	Liq oxygen	Alr Prod.	99.54	\$0.21	0.00	1E+00	\$350	1/93
Machine Power	2	kW	POW2	27	oxygen	Air Prod.	99.54	\$0.58	0.00	0E+00		1/93
Machine Load/Unload Time	120	min/batch	PTIME2									
Available Deposition Time	8,640	hrs/yr	DAYHR2									
Heat Removal via Substrate Coolant Temp. Rise	50.04	of total	hTRMV2									
	50	C	TEMP 2									
Heat Capacity of Coolant	1.0	cal/g/c	CP2									
Building Space Requirement	1,500	sqft/sta	FLR2									
Acetylene:Oxygen Ratio (R) $\begin{array}{r}\text { Oxygen } \\ \text { Acetylene }\end{array}$	1.05	[1.02<x<1.1]	GRATIO2		TRATE DATABA Substrate	Source	$\begin{gathered} \text { Price } \\ \text { s/ea } \end{gathered}$	Thick um	Diam cm	$\begin{array}{r} \text { Etch } \\ \text { um/min } \end{array}$	Life uset	$\begin{aligned} & \text { Price } \\ & \text { Update } \end{aligned}$
	26	[menu \%]	gasaz									
	20	[menu \$]	GASB2	0	None		\$0.00	1	1.00	1.00	1.00	
				1	silicon	S1-Toch	\$2.65	1270.00	5.08	20.00	1	1/93
Oxygen Recycle Rate	0.04		RECYC2A	2	Silicon	Si-Tech	\$3.50	1270.00	7.62	20.00	1	1/93
Gas Recycle Equipment Cost	0.04		RECYC2B	3	sillcon	S1-Tech	\$6.25	1270.00	10.16	20.00	1	1/93
	\#N/A	total	MCH2A	4	S1licon	Si-Tech	\$9.70	1270.00	12.70	20.00	1	1/93
				5	silicon	Si-Tech	\$18.60	1270.00	15.24	20.00	1	1/93
Growth Correction Factor (f)	0.50		GCF2	6	Silicon	Si-Tech	\$57.95	1270.00	20.32	20.00	1	1/93
Substrate:Duct Area Ratio	3.00	$[1<x<-4]$	SUBDUC2	7	Silicon	Si-Tech	\$4.35	3810.00	5.08	20.00	1	1/93
Substrate Distance:Duct Diam	1.00	[0<x<-10]	L:D2	8	Silicon	Sl-Tech	\$8.15	3810.00	7.62	20.00	1	1/93
				9	silicon	51-Tech	\$14.50	3810.00	10.16	20.00	1	1/93
process related factors - etching				10	silicon	Si-Tech	\$22.65	3810.00	12.70	20.00	1	1/93

兽高㪣
 ${ }_{3}^{n}$畄总合気気高受高 $\frac{1}{2}$登

通逓

坔号 $\underset{4}{\square}$
登

$$
\begin{gathered}
3 \\
x
\end{gathered}
$$

 $\begin{array}{lll}0 & 0 & 0 \\ 8 & 8 & 8 \\ 0 & \text { in } \\ 0 & \end{array}$ YэJe日 Ied sevefd 7505 วUPपכ75

$$
\begin{aligned}
& \text { Lapped Material Removal } \\
& \text { No of Lapping Steps }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nloda and Cigan WaI } \\
& \text { Avorand tant na }
\end{aligned}
$$ 30.00

\qquad

Load／Unload and Clean Wafer zueuzsenur pezesppea
iesn uI ssesoxd
 Machine Cost
Trimming Rate Machine Power
Building Space Requirement

SNIddYT－SYOLDHA GTNHTGY SSTDOYd Process In Use？
Dedicated Investment
Process Yiold Process Yicld
Average Equipment Downtime
Direct Laborers Per Station
 Etchant Disposal Cost
Machine Etchant Capacity Load／Unload and Rinse Time
Pleces Per Batch Load／Unload and Rinse Time
Pleces Per Batch Etchant Cost
Etchant Disposal Cost

apped Material Removal Lapping Slurry Co
Lapping slurry Usage Ra Lapping plate Life
Process In Use？
Dedicated Investment
 Direct Laborers Per Statio Process In Use？
Dedicated Investment
Process yicld lrect Laborer
－

$$
\begin{array}{r}
\text { Lapping Slurry Cost } \\
\text { Lapping Slurry Usage Rate } \\
\text { Lapotna plate Life }
\end{array}
$$

$$
\begin{aligned}
& \text { Available Lapping Time } \\
& \text { Building Space Requirement }
\end{aligned}
$$

$$
\begin{array}{r}
\text { MMING } \\
1 \\
0 \\
99.0 \% \\
10.0 t \\
1.00
\end{array}
$$

$$
\begin{array}{ll}
100 & \text { sqfi/sta } \\
100
\end{array}
$$

$$
\begin{aligned}
& 15.0 \% \\
& 1.00
\end{aligned}
$$

$$
\begin{aligned}
& 90.0 \% \\
& 15.0 \%
\end{aligned}
$$

$$
\begin{array}{ll}
{[1=Y} & 0=N] \\
{[1=Y} & 0=N]
\end{array}
$$

$$
\begin{array}{rr}
\$ 6,000 & / \mathrm{sta} \\
1.00 & \mathrm{~cm} / \mathrm{s}
\end{array}
$$

$$
\left[\begin{array}{ll}
{[1=Y} & 0-N] \\
{[1=Y} & 0=N]
\end{array}\right.
$$

$$
\begin{gathered}
10.0 \% \text { by wgt } \\
2 \\
5
\end{gathered}
$$

$$
\begin{aligned}
40.00 & \text { tain/batch } \\
1.0 & \text { um/hr } \\
\$ 53 & \text { /liter } \\
0.50 & \text { liter/hr } \\
320 & \text { hrs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lited } \\
& \text { hrs }
\end{aligned}
$$

$$
\begin{array}{rl}
\mathrm{B}, 640 & \mathrm{hrs} / \mathrm{yr} \\
400 & \mathrm{sqft} / \mathrm{sta}
\end{array}
$$

eqey bufddel ebexeny

$$
\begin{array}{rc}
\text { PROCESS RELATED FACTORS - INSPECTION - MICROSCOPY } \\
\text { Procoss In Use? } & 1 \\
\text { Dedicated Investment } & 0 \\
\text { Process Yield } & {[1=Y \text { O-N] }} \\
\text { Average Equipment Downtime } & 95.0 \% \\
\text { Direct Laborers Per Station } & 5.04 \\
\text { (1.00 }
\end{array}
$$

- exc. dep. 1 lap
 estimate
$\$ 65,774$
19.2
60.80
2,743
1.14
$\$ 71$
0.18
$\$ 5.00$
0.01

Lapping Lapping Time
Lapping Plate Cost
Lapping Machine Cost
Lapping Machine Power

EXOGENOUS COST FACTORS
रIptes zoextpuy
sobem
syoujova
Indirect: Direct Labor Ratio
Working Days per Year
Wor Wage and Salary
Working Hours per Day ($*$)
Working Hours per Day (*)
Capital Recovery Rate
Capital Recovery Period
Building Recovery Life
potied teztdes butxiom
eftt Krenoser surptrna
쏜 쏜

butddeI
GENOUS cost

Indirect:Dir
Benefits on
Working
Working Ho
Capita
Capital
Building
Working

OPTIONAL INPUTS

Machine Cost
Machine Power
Deposition Duct Area
 7 soD 7 uoudfnba uof7tsoded
efey uor 7 sodad Process Cycle Time
Chemical Requirement
Laser Trimming
Process Cycle Time
Machine Power OptIONAL inputs

Deposition
Etching

Average Inspection Time Percent Inspection Machine Cost	$\begin{gathered} 15.00 \\ 100 \\ \$ 50,000 \end{gathered}$	min/batch /sta	$\begin{aligned} & \text { PTIME6 } \\ & \text { INSP6 } \end{aligned}$ MCH6
Machine Power	0.10	kw	Pow6
Building Space Requirement	50	sqft/sta	FLR6
process related factors - inspection - thermal conductivity			
Process In Use?	1	[1-Y 0-N]	USE7
Dedicated Investment	0	(1-Y $0-N$)	DED7
Process yield	95.04		YLD7
Average Equipment Downtime	5.04		DOWN7
Direct Laborers Per Station	1.00		nlab7
Average Inspection Time	15.00	min/batch	PTIME7
Percent Inspection	1004		INSP
Machine Cost	\$50,000	/sta	мсн7
Machine Power	0.10	kW	POW7
Building Space Requirement	50	sqft/sta	FLR7
OPTIONAL INPUTS			
	override	est1mate	
Surface Preparation			
Machine Cost	so	\$65,774	/sta
Machine Power	0.0	19.2	kw
Deposition			
Duct Area	0.00	60.80	sqcm
Total Gas flow Rate	0	2,743	s 1 m
Deposition Rate	0.00	1.14	g / hr
Deposition Equipment cost	so	\$71	ks/sta
Etching			
Process Cycle Time	0.00	0.18	hrs
Chemical Requirement	\$0	\$5.00	/pe
Laser Trimming			
Process Cycle			
Lapping			
Lapping Time	0.00	111.11	hrs
Lapping Plate Cost	so	\$869	/ea
Lapping Machine Cost	so	\$11,939	/sta
Lapping Machine Power	0.00	4.2	kW
exogenous cost factors			
Direct Wages	\$13.33	/hr	wac
Indirect Salary	\$50,000	/yr	salary
Indirect:Direct Labor Ratio	1.00		ilab
Benefits on Wage and Salary	35.08		BENI
Working Days per Year	360.00		DAYS
Working Hours per Day (*)	8.00	/hr	HRS
Capital Recovery Rate	104		CRR
Capital Recovery Period	5.00	yrs	ELIFE
Building Recovery life	20.00	yrs	BLIFE
Working Capltal Period	3.00	months	WCP

