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0 PREFACE

This report explores issues in forecasting and modeling the demand
for aircraft recoverable spare parts to improve the Air Force's estima-
tion of spares and repair requirements over quarterly, annual, and
longer planning horizons. Specifically, it demonstrates the utility of
approaches that account explicitly for nonstationarity and their supe-
riority over current methods used by the Air Force Materiel
Command for these purposes. It is part of a larger body of research,
carried out in the Logistics Requirements Project, and is intended to
enhance our understanding of the implications for requirements es-
timation of demand uncertainty and logistics management adapta-
tions to cope with it. The several reports that describe this work are
listed here:

- John B. Abel] et al., Estimating Requirements for Aircraft
Recoverable Spares and Depot Repair, RAND, R-4210-AF, 1993.

* John B. Abel] and Frederick W. Finnegan, Data and Data
Processing Issues in the Estimation of Requirements for Aircraft
Recoverable Spares and Depot Repair, RAND, MR-264-AF
(forthcoming).

* Donald P. Gaver, Karen E. Isaacson, and John B. Abell, Estimating
Aircraft Recoverable Spares Requirements with Cannibalization of
Desgnated Items, RAND, R-4213-AF, 1993.

Karen E. Isaacson and Patricia Boren, Dyna-METRIC Version 6:
An Advanced Capability Assessment Model, RAND, R-4214-AF,
1993.

* John B. Abell, Estimating Requirements for Aircraft Recoverable
Spares and Depot Repair: Executive Summary, RAND, R-4215-AF,
1993.

The first of these reports describes the main body of work. The sec-
ond discusses data and data-processing issues related to estimating
aircraft recoverable spares and repair requirements. The third pre-
sents a computational algorithm for estimating requirements for air-
craft recoverable spares based on the assumption that items can be
designated as cannibalizable or not. The fourth describes the capabil-
ity assessment model used to evaluate the stockage postures that
were anticipated to eventuate from purchases of particular mixes of
recoverable spares. The fifth report summarizes the entire body of
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work and discusses the moor findings and recommendations that
have emerged from this research.

This work had the joint sponsorship of Headquarters, United States
Air Force (AF/LEX); Headquarters, Air Force Logistics Command,
now the Air Force Materiel Command (AFMC/XP and AFMC/XRI);

* and the Director of Maintenance Policy, Office of the Assistant
Secretary of Defense for Procurement and Logistics. It was carried
out in the Resource Management and System Acquisition Program of
Project AIR FORCE, RAIs federally funded research and develop-
ment center (FD) supported by the U.S. Air Force, and in the
Acquisition and Support Policy Program of the National Defense
Research Institute, RAND's FFRDC supported by the Office of the
Secretary of Defense. It should be of particular interest to those con-
cerned with spares and repair requirements estimation, logistics sys-
tem design and modeling, and logistics policy analysis. It should also
interest other persons concerned with modeling certain stochastic
processes.
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; SUMMAARY

This report addresses the problem of estimating Air Force needs for
aircraft recoverable spare parts and their depot-level repair. Since
the forecasting techniques imbedded in the Air Force Materiel
Command's current requirements estimation process were imple-
mented, a great deal has been learned about modeling parts demand
processes i more effectively. The report explores several issues in-
volved in modeling and forecasting demands for aircraft spare parts
along with alternative forecasting methods that can subshamtially re-
duce expected predictive error. The research described here is part of
a arger body of work intended to help us understand better the ef-
fects of uncertainty and management adaptations in shaping the per-
formance of the logistics system in a variety of peacetime and
wartime scenarios, and to account explicitly for those effects in spares
and repair requirements estimation.

*In the last decade, logistics research at RAND has focused on combat
logistics support. This interest began with particular attention to the
period of transition from peacetime to wartime when activity levels
were anticipated to increase sharply, thus dramatically perturbing
resource demand processes. That nonstationarity in demand
prompted the exploration and development of substantial improve-
ments in logistics research tools and approaches, especially in the
Dyna-MWTRC series of capability assessment models [50-W3, 70].
Continued interest in the problems of wartime logistics support led
the late Dr. Gordon B. Crawford to undertake a project to understand
better the factors that caused particular recoverable aircraft spare
parts to become 'problem items." It was known popularly as the
&Drivers Project" because of its particular concern with factors that
tended to 'drive' the performance of the logistics system.

One outgrowth of the Drivers Project was Crawford's observation that
items identified as problem items tended to exhibit high variability in
their demands. That observation led him to further explore and
quantify the magnitude and pervasiveness of variability in the de-
mands for aircraft spare parts. Crawford's findings were published in

lln the Air Force's Recoverable Consumpntm Item Requiremnents System, the sys-
tem used to compute spares and repair requirements, domada are defined as removals
of components from their next higher assamlies, excluding components that ae de-
dared to be srvicable after subsequent bech check. Tey also exclude part removals
to fcilitate other maintenance, etc.

V
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January 1988 [2], but the substance of the work was finished in 1985
and helped motivate the Uncertainty Project, a major research effort
at RAND that explored the effectiveness of management adaptations
in coping with Uncertainty, especially in wartime.2 The adaptations
included canibalization; lateral supply, lateral repair, priority re-
pair; assured, responsive intertheater and intratheater transporta-
tion; and responsive depot repair. The importance of such adapta-
tions was illuminated by Cohen, Abell, and Lippiatt [20] in their
summary of the major evaluations and underlying logic of the
Uncertainty Project.

The thrust of the forecasting work described here is a different ap-
proach, in a sense, than our recent past work, although it extends a
larger body of demand modeling work done at RAND in the 1950s and
19609, and reopened by Muckstadt, Crawford, and Carrillo [2, 49, 551
in the last decade or so. The methodology that emerged from this
particular part of the current project is a potentially useful and im-
portant improvement to the current system's approach to demand
modeling and forecasting.

This work does not resolve the important problem of estimating
wartime demand rates. Although the mix of demand rates resulting
fiom the underlying failure process may not necessarily change dra-
matically in wartime, many of the events that can occur in wartime
are essentially unknowable in advance. Better demand forecasting
that incorporates Bayesian updating may be helpful in adjusting to
changes in wartime more quickly than the current system would but,
dearly, improving our demand forecasting ability cannot by itself
help us know the unknowable.

The current system uses an eight-quarter moving average of past de-
mands by line item to estimate item demand rates. This approach
assigns as much importance to events in the more distant past as to
recent events. Moreover, in forecasting future demands, we currently
assign no more uncertainty to events far in the future than we do to
events in the short term. Our models assume that parts demand pro-
cesses have certain characteristi which empirical observations te
us they do not have. For example, in general, demand processes are
nonstationary; we assume stationarity. They are not, in general,

2n g U ne iity Pw w wn padt of RA W O Rs wm M a am nnt Pr g m It
wu fan andmed'Rumnda the Inte~aw ad Repnaee of the Lagw
Supp t to Unt leaeed= and Warme Unw me and was sponswed by



Vii

compound Poisson processes.8  The large variability we observe in
theme processes is typically not due to batching, or cmpounding, as is
so often assumed in the literature and in our models of dmnd.
Certainly, nonstationarity plays an important role in shaping the
variability.

Important charactristics of the statistic used by AFMC to estimate
the variance-to-mean ratio (VTMR) of parts demand processes are
also discussed here. The variance of the VTMR estimator increases
as a fimction of the coarseness of the partitioning of the observed
data, even when the demand process is stationary. If the process is
nonstationary, the expected value of the estimator and its variance
increase with the coarseness of the partitioning and with the demand
rate, behavior that is consistent with the association of high values of
the VTMR with high values of demand rate. These findings suggest
that there are estimation problems associated with AFMC's use of the
VTMR estimator. In this report, we present an improved approach to
specifying the variance that has more satisfying properties than the
current model.

An approach to demand forecasting that seems especially appealing
on an intuitive level, and that performs well in empirical evaluations,
is weighted regression, a special case of the Kalman filter. It is a log-
ical extension to Bayesian statistics that explicitly accounts for non-
stationarity in stochastic processes, assigning greater weight to more
recent past demands than earlier ones. Coupled with the improved
approach to variance estimation which assigns greater uncertainty to
longer planning horizons than to shorter ones, it holds the promise of
reducing the cost of spares investments while achieving adequate lev-
els of system performance. For planning horizons 10 to 13 quarters
long, the improved techniques reduced forecasting errors on high-
demand items by roughly 40 to 50 percent, as shown in Table S.1.
(Also see Figures 5.3 and 5.4.)

Table S.1
Peretage Improvemet in Root Mean Squared

Error and Man Absolute Deviation of Improved
Techniques over Current System

Meomut 10-Quarter Horizon 13-Quarter Horizon
RMSE 48 38
MAD 51 45

3A definition of a compound Poieuon process may be found in the Gloeury.
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Moreover, in the cam of the requiremonts cmputation done with the
March 1986 1)041 database, about $76 million in procurement of
Primary operating stock could have been saved with the improved
demand and variance forecasting techniques in place with a modest
improvement in system performance, as shown in Table S.2.

The improved techniques also enabled an investment reduction of al-
most a quarter of a billion dollars ($239 million) with roughly the
same performance.

These results are shown in Table S.3. (The details of these evalua-
tions are explained in Section 7.)

In the applications reported here, the improved demand forecasting
method incorporates a normal distribution to approximate quarterly
demand. Compared to the current system, it performs especially well
on items with a mean of 15 or more demands per quarter (high-
demand items), yielding the roughly 40 to 50 percent reduction in
RMSE and MAD already mentioned. We do not recommend its use on
low-demand items. Its performance on low-demand items was not
impressive, perhaps due to failure of its underlying assumptions.

Table 82

Cost and Perfrmnce with Traditional Availability Goals

Percentage of Aircraft Unavailable,
Peacetime

Current System, Improved Methods,iManmenmt Adaptations $3,709 Million $3,6W3 Million

No canniblization 74.9 71.7
Full cannibalization 33.0 32.3
Cannibaizion, lateral supply 17.3 16.4
Cannibadizato~n, quick, lateral supply 3.2 3.1

Table 8.3

Cost and Pezformance with Reduced Budgets

Percentage of Aircraft Unavailable,
Peacetime

Current System, Improved Methods,
Management Adaptations $3,474 Million $3,470 Million

No cannibalization 81.5 76.3
Full cannibalization 34.5 33.1
Cannibalization, lateral supply 19.0 17.2
Cnnializan, quick, lateral supply 3.5 3.6L
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As the literature suggests, estimating demand rates on low-demand
items has always been a troublesome topic, and this work does not re-
solve the problem. The idea of pooling data across many low-demand
items to gain strength from additional observations in estimating
demand rates for individual items was suggested years ago in earlier
RAND work. The idea seems worth pursuing in future research.

For high-demand items, we recommend using a weighted regression
technique for demand forecasting and, for all items, an improved
method for specifying the VTMR of the probability distribution used
to describe the numbers of assets of each type in resupply (i.e., in the
pipeline). The weighted regression technique is a more easily imple-
mented version of the general Kalman filter model, especially for sys-
tems as large as the Air Force's recoverable item inventory system.
Implementing these techniques should reduce the investment re-
quired to achieve a specified level of aircraft availability in peacetime
by a substantial amount.

& p
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A priori. Without prior information.

AFAO. Authorized force acquisition objective. The total number of
assets that the spares requirements computation specifies for the en-
tire inventory system.
AFLC. Air Force Logistics Command, now the Air Force Materiel

Command.

AFMC. Air Force Materiel Command, formerly the Air Force Logs-
tics Command.

Aircraft Availability Model (AAM). The system of software
imbedded in D041 that is used to compute requirements for safety
stock of selected recoverable items.

AOCP. Aircraft out of commission for parts. In earlier years in the
Air Force, aircraft were AOCP when they couldn't safely be flown be-
cause of lack of parts.

Bayesian. A term deriving from the work of Rev. Thomas Bayes
(1701-1761) describing an approach to optimal learning combining
new data with prior judgments or old data using the laws of condi-
tional probability.

Beddown. A term denoting the allocation of weapons by type to lo-
cations.
Bias. The property of a statistical estimator such that its mathemat-
ical expectation differs from the numerical value of the parameter it

is used to estimate.

BP15. Budget Program 15, a category of appropriated funds allo-
cated to recoverable aircraft replenishment spares.

Compound Poisson process. A stochastic process in which the
numbers of arrivals that occur in disjoint time intervals of equal
length are described by the Poisson probability distribution, and the
number of events that occur with each arrival is described by a sepa-
rate, usually different, probability distribution. The number of events
that occur with each arrival is called the compounding random van-
able.

Consumable. The property of a part or material such that it is dis-
carded after failure or is consumed in use.

XiX
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CONUS. The continental United States.

C!M The Central Secondary Item Stratification, AFMC's system
that is incorporated in D041, along with the Aircraft Availability
Model, for computing requirements for recoverable spares.

D02L AFMCs Central Stock Leveling System that allocates stock
levels for recoverable items to the bases and the depot.

D041. AFMC's system for computing requirements for aircraft v-
erable spares, formally entitled the Recoverable Consumption item
Requirements Sydem.

Degemerat probabmity distributon. A probability distribution of
a random variable with only one possible value.

Demand. In the Air Force's Recoverable Consumption Item Require-
ments System, the system used to compute spares and repair
requirements, demands are defined as removals of components from
their next higher assemblies excluding components that are declared
to be serviceable after subsequent bench check. They also exclude
part removals to facilitate other maintenance, etc.

'I. Empirical Bayes procedures. Bayesian procedures in which ob-
served data are used to estimate the prior distribution in lieu of sub-
jective judgment.

EOQ. Economic order quantity, the requisition quantity that is de-
termined to be the most cost-effective, usually a function of demand
rate, reorder cost, holding cost, interest rate, and unit price.
Formulations based on shortage cost are also common.

Exponential smoothing. A procedure for discounting observations
more heavily the further they occurred in the past by multiplying
each precessive observation by an increasing integral power of a
number between zero and one.

Gamma probability distribution A probability distribution of the
continuous type whose density function is given by

1
r(a)p

Homog eous prcese. A stochastic process whose probability dis-
tribution is invariant.
Jas nz estmaft. A class of empirical Bayes estimators
formed by modifying estimates of parameters underlying observations
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of realizations of a stochastic process by pooling them with observa-
tions from other, similar populations.

LRU. Line-replaceable unit, a part or assembly that is typically re-
moved directy from an rcraft when g maintenance other

~than adjustment, calibration, or servicing.

SMAD. Mean absolute deviation. The avrage unged difference be-

tween a set of estimators and the true values of the parameters beingestimated.

Master stock number. The stock number assigned to the preferred
item in a set of two or more inm items.

METRIC. Multi-Echelon Technique for Recoverable Item Control, a
method for estimating requirements for aircraft recoverable spare
parts developed by C. C. Sherbrooke of RAND.

MICAP. A term denoting mission capability effect of a part shortage.

Moving average. The statistic formed by the mean of a fixed num-
ber, n, of observations of a stochastic process where the most recent n

a observations are summed and divided by n. As observations accumu-
late over time, the latest observation is added to the sequence and the
n + 1st observation, counting backward, is discarded.

Negative binomial probability distribution. A probability distri-
bution of the discrete type that may apply to situations in which
events occur at random but the variance of the numbers of events in
nonoverlapping time intervals of equal length is higher than allowed
by the Poisson distribution. Its density function is given by

(r+x- 1)(1 - P)xprX = 0,1,2,...

NRTM Not repairable this station. The designation is given to a re-
pairable part whose repair is beyond the capability of maintenance at
a particular location.

Partitioning. The subdivision of a set into subsets that are mutu-
ally exclusive and collectively exhaustive.

Poisson process. The most widely known and often used form of
stochastic model with important mathematical properties that make
it especially tractable and useful. It is described by the Poisson prob-
ability distribution whose density function is given by

II
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*1 x! ,x 0, ,2,...

FOAL Program Objectives Memorandum, the prormming docu-

ment used by the military departments to state their budgetary re-
quirements in future fiscal years.
POS. Primary operating stock, formerly known as peacetime operat-
ing stock.
Power ftuneton. A mathematical function of the form y = axb.
QPA. Quantity per application, the number of parts of a particular
type installed on the parts next higher assembly.
Random walk. A stochastic process whose location parameter
varies from one realization to the next in a manner determined by
chance.

i REAL. The ReadessEm ecution Availability Logistics Module, the
software module of WSMIS that computes requirements for war
readiness spares.

RenWerah 1e parts A claw of parts that are repaired when they
fail, rather than being discarded or consumed in use.

Resupply. The state of parts that are in base repair, depot repair,
shipment from one location to another, or have been condemned and
whose replacement is pending.

RMS. Root mean squared error, computed as the square root of the
average squared difference between a set of estimators and the true
values of the parameters being estimated, a popular measure of pre-
dictive accuracy. Also referred to as RMSD, root mean squared devia-
tion.

Safety stoI. Spares authorized to -- modate the variability in
the numbers ofitm in resuply.
the nImEss. The mhara of a probability distribution such that

it is nmmetri about the mean.

eral analys. A method for finding and quantifying periodicity
in dat.
OW13. Shop-replaceable unit, a sulmmembly of an LRU that is typi-
cally replaced during repair of the LRU.
Stationary proes. A stochastic process whose parameters are in-
variant.
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Stock level Servceables on hand plus due-mes minus due-outs.

VSL Variable safety level, a spares reurmn.estimation method
* derived directly from METRIC, a method developed by C. C.

Sherbrooke of RAND.
VTMR. Variance-to-mean ratio, defined as the unbiased estimator of
the variance of a process divided by its mean.

WRIK. War readiness spares kit, an airlift-deployable set of spares
to support squadrons deployed in cnignis
WSMS AFMC's Weapon System Management Information System.

4l
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DEDICATION
- I

We respect ly dedicate this work to the memory of our RAND col-
league, Dr. Gordon B. Crawford, who perished in an aircraft accident
in December 1989. Gordon first suggested this research to one of the

sauthor and proposed the m a oranization o this ro He also
carried out the initial for lation and evaluation e of Jaes-enof tin
athe oamon it on spares demands. His early wi worwith a few

• high-demand items was compelling in its implications for furtheir

m n nhexploration of the Kalman filaer nhe work described in this report

Gordon had long been ineese in ng better the mecha-

nim underlyin thede mands for aircH spare parts He had ao
conducted sorae reearch in the past on the use of Jamewte ead-

mators for adjusting base-specific demand rates with worldwide
~means and had explored the use of alternative models of the relation-

ship between demands and flying hours. His interests also extmmded
' to the problem of estimating wartime demand rates, which, although

not specifically addressed in this research, remains an important un-
resolved issue.
His intellectual mark is clearly imprinted on this work.



t ,' 1. INTRODUCTION

This report addresses the difficult problem of forecasting Air Force
requirements for aircraft spare parts and their depot-level repair.
These forecasts are made over different time horizons according to theI specific purpose of the forecast. For example, the Air Force is re-
quired to forecast its budgetary requirements for these resources
across the multi-year horizons involved in the POl. AFMC also fore-

casts annual spares requirements and annual and quarterly repair
requirements. The diflty of making such forecasts has two fun-
damental roots: (a) substantial variability in spares demands, even
in peacetime (statistical uncertainty), and (b) instability in force
stucture, force beddown, flying hour progams, ftnding profiles, item
reliabilities, and other item characteristics (state-of-the-world uncer-
tainty).
The levels of variability in peacetime demands will probably be com-
pounded in wartime by system disruptions, resource losses, and the
inevitable surprises of combat, exacerbating the demand forecasting
problem. (The estimation of wartime demand rates is not addressed
in this work.) The robustness of the spares postures delivered by al-
ternative approaches to spares and repair requirements estimation, a
central issue of the larger body of research of which this is one part, is
reported elsewhere, as mentioned in the Preface. RAND has devoted
considerable attention in recent years to the role of management
adaptations, e.g., cannibalization, lateral supply, and priority repair,
in overcoming uncertainties in resource demands in peacetime and
wartime. That research and its relationship to this work are dis-
cussed briefly in Section 2.

It is difficult to make accurate forecasts of spares and repair require-
ments. On more than one occasion, the Air Force has had to adjust
its budgetary requirements for these resources as the execution year
approached, inducing considerable turmoil in the resource allocation
process. Llppiatt noted that current requirements and capability as-sessment systems do not explicitly consider parameter vaibltes

and forecasting uncertainties [1, p. vii. The forecasting algorithm of
AFMC's spares and repair requirements estimation system can be
improved. The current system uses eight-quarter moving averages to
estimate item demand parameters, a technique that gives no more
weight to relatively recent observations than to older, often less rele-
vant observations. The estimates that emerge from this approach do
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not reflect the nonstationarity commonly observed in these demand
processes. Moreover, the current system assumes a strictly linear re-
lationship between demands and flying hours. Thus, if the planned
fying hour program increases by 10 percent, the system's estimates
of expected demands also ine 10 percent. Unpublished analysis
suggests that the linearity assumption is not only incorrect, under
some conditions it is grossly incorrect in attributing too large an effect

to flying hour changes.

Crawford characterized the magnitude and pervasiveness of variabil-
ity in peacetime demand [2]. He noted that, in estimating war readi-
ness spares requirements and in capability assessment modeling,
levels of variability in demand were typically understated. In unpub-
lished research, he also noted that observed demands were not lin-
early related to flying hours; he estimated a much smaller effect of
flying hours on demands.' Thus the assumptions of the current sys-
tem are in serious doubt. Crawford hypothesized that the use of the
Kalman filter, coupled with an improved model of the relationship be-
tween demands and flying hours, might be a more appropriate ap-
proach to modeling demands for aircraft spare parts. The research
reported here examines and confirms Crawford's hypothesis about the
Kalman filter and recommends the use of a special case of the
Kalman filter, weighted regression forecasting, for estimating spares
demands. The techniques developed here can be expected to achieve
specified levels of system performance at less cost through more reli-
able demand forecasting.

In Section 2 we discuss, by way of background, the larger context of
this research, its relationship to past RAND research, and AFMC's
current approach to modeling demands in its estimation of spares and
repair requirements. We describe some base-level demand experience
in Section 3 and discuss its implications for demand modeling, spares
and repair requirements estimation, and inventory management. In
Section 4 we provide an elementary description of the Kalman filter
and its historical derivation and describe our formulation and evalua-
tion of alternative approaches to demand forecasting. We describe
our evaluations of some alternative demand forecasting techniques in
Section 5, including weighte regression forecasters, which are a
special, limiting case of Kalman filter regression forecasters. We dis-
cuss an alternative model of variance specification in Section 6 and

In a onversation with ne of the authors shortly before his death, Cmwford re-
ported apleing a postulated model of the form In D = a + b In H, whom D is demands
and H flying hour His estimate of the value of the coefmient b was 0.2. To the best
of our knowledge, the estimate wa made with F-16 date.



present our evaluations of an improved demand fcfecasting method:i, and an alternative specification of variance in Section 7 using a capa-

bility assessment model and replicas of the Air Force's spares re-
quirements computation and asset allocation systems. We offer some
brief concluding remarks and recommendations in Section 8.

j .



2. BACKGROUND

For several years beginning in the mid-1950s, RAND researchers
pursued the problem of forecasting demands for aircraft spare parts.
That interest was sustained through 1969 when George Fishman
published a Research Memorandum (RM) on improved forecasting
methods and thus ended for more than a decade the publication of
any research on demand forecasting. The next publication in the
RAND literature on the topic appeared in 1980. It addressed the is-
sue of nonstationarity in spare parts demand processes, a topic that
absorbed considerable attention among RAND's logistics researchers
throughout the 1980s. Two recent publications have, in an important
sense, synthesized the principal thrusts of the thinking of RAND re-
searchers over these four decades. We will summarize them in due
course. It is interesting to note that this current work has roots in
the earlier RAND research of the 1950s and 1960s as well as that of
the 1980s. In the pages that follow, we summarize the work at RAND
with special emphasis on those issues that relate most directly to our
current thinking about this important topic.

THE EARLY YEARS: 1954-1969

RAND's earliest work in demand forecasting was published in July
1954. It was made possible by a special data-collection effort that
provided RAND researchers with about 1,300 aircraft months of data
describing demands for spare parts at three B-47 bases. That particu-
lar database absorbed the attention of several researchers for several
months. It contained spares demands generated by about 230 aircraft
and 33,000 flying hours. Before the special data-collection project
that generated these data, data describing demands by "aircraft
model" (weapon system) had been unavailable. Only data describing
issues of spares had previously been available but not by weapon sys-
tem, only by "property class' (federal stock class) that overlapped
weapon system. Issues, of course, did not reflect backorders; thus, in
these early years, analysts were somewhat constrained in their
ability to identify and characterize the nature of true demands.
Geisler, Brown, and ffixon [31 summarized the earliest analytic
findings based on the B-47 data as follows:

It is shown that there was a surprisingly low amount of demand both as
to kinds and quantity of aircraft spare items, at either MacDill, March
or Fairford (England) Air Bases, compared with the number of kinds of

4
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such items in the United States Air Force (USAF) Supply Catalogue,
and the quantities of such items stocked Furthermore, we could find
no significant correlation between the kinds or quantity of items de-
manded and the flying activity of the aircraft, measured in either flying
hours, landings or aircraft months. We also found that a comparatively
small per cent of the reparable turn-ins of airframe and engine spare
items were repaired at the one base studied (MacDill Air Force Base)
with most of the items either condemned at the base or sent to the de-
pot for repair.

These conclusions are hardly surprising in retrospect because the
B-47 database included both consumables and recoverables. It is im-
portant to note, however, the lack of -significant correlation- between
demands and activity levels. Shortly after this first publication,
Brown and Geisler [4] reported their analysis of demand data for B-47
airframe parts:

Both the daily demand for individual kinds of items and the daily com-
bined demand over all items show more variation than expected from
the Poisson distribution, which was used as the theoretical model of
demand.... These results indicate that if the Poisson distribution is
used to represent the demand pattern for spare items because of its
irathematical convenience, the actual distribution for either individual
items or combined may be more extreme, in that the variance of the dis-
tribution will be greater than the mean value of demand.

Thus, it was recognized from the start that demands for aircraft
spares exhibited unexpectedly high variation. Again, the authors
failed to differentiate between consumables and recoverables; how-
ever, they did observe differences in demand patterns between high-
and low-cost items.

Geisler and Youngs [5] explored one implication of the B-47 demand
data analyses for base supply stockage policy. They suggested that
expensive items with low demand rates should not be stocked at the
base. Thus the use of cost as well as demand as a criterion for stock-
age also emerged right from the start. Geisler and Youngs made
other fundamentally important observations in this early paper.
They discuss at some length the problem that past demand may not
shed much light on an item's "true' demand rate. They say, "In point
of fact, one of the most troublesome problems is that of obtaining
some grip on the true demand rate. This is particularly true of the
host of items (10,000 strong) in the O1A-FE category which have
never been demanded" [emphasis added]. The idea that items have
nonstationary demand rates does not emerge until considerably later.
After exploring the implications of the decision to stock an item with
low or no observed demand in some past period, the authors point out

. .. . .I
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that "as a matter of general policy it may be argued that the decision
on whether these expensive items are to be stocked should not be un-
dertaken at base level where the data are not extensive (and there-
fore subject to more variations) in comparison with the data at depot
level. This question is much affected by the stockage policy assumed
by the depot when it determines the worldwide requirements and es-
tablishes procurement needs." This observation seems consistent
with the Air Force's later implementation of central stock leveling.
Ironically, however, the central stock leveling system uses base-spe-
cific data reflecting past demands over a specified period of observa-
tion.

A short time later, Brown and Geisler [61 examined data describing
spares demands on B-50D aircraft from a wing deployed to RAF
Station Upper Heyford, England, during a 90-day period, and con-
trasted them with demands on B-47 aircraft deployed to Fairford,
England, for a similar period. Little of importance was noted beyond
the larger numbers of demands per flying hour experienced by the
B-50s, especially for small hardware items, not surprising in view of
the difference in technologies represented by the two types of aircraft.
Karr (7] related the B-47 database describing spares demands with
data describing AOCP (aircraft out of commission for parts) occur-
rences. He analyzed eight weeks of AOCP reports from two B-1.
bases (March and MacDill). AOCPs are roughly equivalent to MICAP
occurrences in the modern Air Force. His observations seem
consistent with the distributions of parts shortages among aircraft to
this day, and serve to point out the important role of consolidating
shortages (cannibalizing) among aircraft as well as the inhibiting ef-
fect of shortages of parts that cannot readily be cannibalized. His
conclusions included the following observations:

1. Most of the shortages were corrected within a few days (91 per cent
appeared in only one weekly report).

2. Most of the out of commission aircraft lacked only a single part dur-
ing the eight week period studied (60 per cent lacked one part, 23 per
cent lacked two parts).

$ 3. There were several aircraft in a hangar queen condition (11 lacked 5
or more parts).
4. A large proportion of the aircraft were out of commission because of
lack of parts during the eight week period studied (71 per cent of all air-
craft on the two bases studied were out of commission at one time or
another).
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5.The demand rates for the l-akig Pa; were O~picsliy very low (52
per cant had expern ed e ro demand durin a 100 airaft-month
sample).

6. Mugt of the lakin parts wme my inexpensive (87 per cent cost ls
than $10).

Our guess is that, with an adjustment for inflation, Kerr's serva-
tims would apply quite well to the current worI&

With the realization that demands for aircraft spares were not ade-
quately described by the Poisson distribution, Youngs, Geisler, and
Mirkovich [8] published an RM describing confidence intervals for
Poisson parameters in logistics research. On the face of it, this would
seem to ignore the obvious, but it was simply a first step in a move
away from the Poissn to the negative binomial probability distribu-
tio. It was, in fact, an explicit recognition of the fact that past de-
mands may not accurately represent an item's demand rate.

The first explicit reference in the early RAND literature to the use of
negative binomial probability distributions to describe spares de-
mands occurred in an RM by Youngs, Geisler, and Brown 19]. In this
case, the negative binomial distribution was used to describe the con-

3i ditional probability of observing y demands in some specified future
time period having observed x demands in some past period. The ex-
perience base was chosen to be aircraft-months of experience. The
negative binomial model was based on the assumption of a Poisson
demand process with a gamma-distributed location parameter, a re-
sult published in 1920 by Greenwood and Yule [10]. In their opening
discussion, Youngs, Geisler, and Brown conclude that:

The method of conditional probabilities is much more precise than the
straight-forward Poison approach for the low probabilities and fre-
quenes of demand, which is very important in the cas of aircraft
spares. For the higher demand rates, (demand rates greater than 0.5
per 100 aircraft months) the two approaches give very similar results.
Also, the results of the two methods converge as the experience period
gets loner.

The conclusion about convergence was based on the assumption of a
steady-state process involving an unknown constant location parame-
ter. It was not based on the data. Given what we have subsequently
observed about spares demand processes using large datasets, it is in-
correct.

In February 1955, Geisler [11] documented a briefing he gave to the
Long Range Logistics Research Conference in Santa Monica. He
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summarized some of the analyses of demand data RAND had done up
until that time and suggested the desirability of incmaing the stock
levels of low-cost items at base level. Shortly after Geisler's briefing,
he and Mirkovich (121 published analyses of spare parts demands on
F-86D aircraft and noted many similarities with those on B-47 air-
craft. The same authors [13] reported analyses of worldwide spares
demand data that reinforced the observations made by Geisler in his
briefing. A short time later, Hamburger [141 suggested the evalua-
tion of simplified distribution functions to describe item demand. His
work apparently received little attention; however, in comparing the
simpler functions that he suggested with the Poisson distribution, he
wrote:

Demand predictions are affected by three major sources of error:

1) The random occurrence of demands: Actual demands fluctuate
about the true demand rate in a fashion described by the Poisson distri-
bution. These fluctuations are particularly noticeable when periods of
time which are short, relative to the demand rate, are considered (e.g.,
the number of automobile accidents occurring over a weekend can be
predicted more precisely than the number occurring in the course of an
hour).

2) Insufficient information for determining true demand rates: It may
be that the true demand rate of parts with an experienced demand of 5
is actually 10, on the average. But some of these parts will have higher
than average true demand rates, while others have lower ones.

3) Biased estimates of true demand rates: The estimated average
true demand rate of a group of parts may be incorrect.

It was not the first allusion to the idea of a tre demand rate," nor
would it be the last.

An RM by Karr, Geisler, and Brown [15] was the first of several that
explored the design of flyaway kits (war reserve spares kits in the
modern Air Force). Hamburger [16] also explored an alternative ap-
proach to computing flyaway kits. Clark [17] offered an approach to
the central allocation of stock levels among bases and the depot in the
anticipated future Air Force environment in which computers would
be available to carry out the tedious computations involved. It is in-
teresting to note that Clark's approach drew on the use of worldwide
data to support such allocations consistent with the earlier obeerva-
tion by Geisler and Youngs that base-specific demands were toosparse for such purposes.
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Berman (181 postulated a linear programming approach to modeling
the prMrment-repair deision for an item that tried to account foar
its life-cycle cofts.

The nequen thato desmid thus f r ed it h pubvad ti
early literature. Tis and again sparse demands ware blamed fi the
inability to forecast future demands and estimate the demand disr-
bution adequately. In later years, advances in probaEclip theory,
spenfiadly Baysan formulatio , brou t to researchers a more
constructive view of td problem.

The sequence of RMs descried thus far cuminatd in the publication
of a formal RAND report by Bernice Brown in July 19 6 [19 .
Entitled Charademsdirs of Demand for Aircraft Spare Parts, it am-

marca pthe work that had been done untb that time. The Summary
of Brown's report is of special interest here. Excerptas follow.

Knowed of demand for i a parts is em dd for effective and eco-
nomial procurement, distribution, and stockre decisions. The follow, ing paragraphs smmamriz the results of RAND research on demand
and point to certain conusiono that can be drawn for the logistics sys-

idf

loisismrblm

Low average demand rates are chasctristic of a large proportion of all
for parts iurino a year's perid at the baf stud ed (and perhaps

eat all bases), as many a g one-this of the available spare parts had no
demand, and three-fourth had so few demands that they offer an unre-
liable bass for predicting future demaobt Mat over, man of the parts
had low unit costs. Forty-two per cent of all line items in the USAF
Wordwke Stock Bance and Consumption Report for 192-193 had
fewer than ases d t ehe yep u and cost less than $10 each. Theslow-moving, low-cost parts account for a small fraction of the total
dollar value of issues, but because of thir large number and, often,
their eentiality to the fmactioning of the -they cntitut asignficat logistics problem.

Demand for mot spare parts also tends to be erratic. Even if the de-land rate for a part is known for some past period, the future demand
during a silar period cannot be predicted with accuracy. To reducethe occurrence of parts shortages to a reasonably low level, it is not
enough to predict (and use) aere demand rats, but, rather, it is nc-

dar to piict the probiu that various demands will or.
Ton Whenasuhties can thn be used in calculations desie to faii-

In mny ases, the prnune random elmet causing uncrtinty in
demand can be exrse by a mathematical formula Man of the air-
fraime parts,-with su dntly frequent de~mds to permit statistical

~dmand patterns that can be approximatd by stan-
durd prbailty distribuons, such as the Poisson probability distrln-
tion. When such approximation is possible, logistics decisions can be
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computed that take into account the costs of incurrng shortages as well
as the com ofavdingthm This can result in stockage, proctument,
and other logistic. decisions that produce greater combat capability for
the resources available.

There e many causes of the u of demand for spare
Porto...

The fact remains that demand fr most spare parts cannot now be pre-
dicted with confidence, and perhaps never can. This makes it necessary
to consider sme imp ts in logistics operations to make it eader
to live with demand uncertainty. Among such improvements would be
a shortening of the resupply time, af the procurement lead time, and of
the repair cyle for spare parts. Each of these improvements would
help to reduce the time ova which predictions must be made and would
lmn requirements for procurement, thus reducing the risk attending

1. Shortening resupply time would generally reduce the amount of
buffer stocks that must be kept at air bases. These buffer stocks are
now large and costly because it is so difficult'to predict demand at base
level. Even though it might cost the system more to reduce resupply
time, the savings in required buffer stocks, as well as the reduction in
lost performance time for aircraft suffering the shortage, might out-
weigh this increase in cost.

2. Reducing the procurement lead time would promise considerable
economies in the procurement of spare parts. In the early stages of
production, when there is little demand experience and much statistical
unertainty, short procurement lead times, with the option of frequent
reorder, would help much to economize on procurement. It is also obvi-
ous that demand prediction at all stages is hampered by many dynamic
elements, such as unexpected changes in aircraft configuration, in en-
gineering design, and in aircraft procurement schedules. A shortening
of procurement lead time would reduce the impact of these elements.
Such shortening might be hard to achieve because it would probably re-
quire changes in cotratual and procurement techniques used by the
U.S. Air Force. RAND is doing research along these lines. Very likely,
reductions in procurement lead times would be accompanied by in-
casies in unit cost, but these increases should be more than counter-
balanced by reductions in the volume of parts procured.

3. A shortening of repaeir-cycle time, finally, could probably be accom-
plished only by meo" revisions in the present system of scheduling and
doing repair. This shortening would have the same benefits as the
shortening of procurement lead time. In the early stages of production,
fast repair would permit the system to operate with a smaller inventory
of parts; and at all stages, it would cushion the uncertainties of de-
mand The ability to repair quickly would require much more rapid
transmision of data between bases and depots and more immediate re-
actnbto sh Such thvisions in the repa sysemwol nobef euti higer unit repai osts, but here agi the
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Au oeim se woualdprobably beanet redctionin ttal out to the y-
.1 ten throug les procrent and few sbottages

Tse impe ro .wsm in logistical manaummest, if mads, would probably
have valuable efcts in various direction that In outside the scope of
this atu. In relation to the frecefizw of demand they would tend to
ovecome some of the costly of& very limited predictability of
demand fr aircraft spare parts.

These remarks have a remarkabl resonance for those of us involved
in military logistics research at RAND today, 36 yars later. We have
essentially come fl circle, having recently rediscovered, in a sense,
the core issues involved in effective logistics support of military op-
erations. In recent years, our motivation has been to identify and
evaluate alternative approaches to improving the logistics system's
ability to cope with uncertainty. In some ways, our current view of
the problem is unchanged from that which emerged from the work of
Brown, Geisler, and others in the mid-1960s; however, the source of

n uncertainty is different, at least in part It derives not only from the
diffculty in predicting peacetime demands, but also from the unmcer-
tainties of wartime. As was pointed out by Cohen, Abell, and Uppiatt
[201, the unpredictability of resource demands in peacetime is likely
to be compounded in wartime by system disruptions, resource losses,
and the inevitable surprises of the combat scenario. The solution di-
rections, however, are essentially the same as those suggested by
Brown: flexibility and r in the logistics system to help
mitigate our inability to forecast resource demands. This is the prn-
cipal thrust of our work in spares and repair requirements estima-
tion. Nevertheless, we have explored, and continue to explore, our
ability to improve the modeling of peacetime demands for aircraft: spare parts, a problem to which we are bringing a collection of mneth-

ods and ideas that were not well known at the time of the earlier
RAND research. Thus, as remarkably insightful as the Brown
Summary is, much has been learned in the logistics research com-
munity in the intervening years that now enables us to add to the
body of knowledge that emerged from this early work, although the
principal thrusts of the conclusions in the Brown Summary seem to
be as appropriate today as they were then.

Remarks found throughout the early publications reflect implicit as-
sumptions about the uncertainty in demands for aircraft spare parts
that, although important to any effort to understand them, ae not
made explicitly dear. Those assumptions are



Items have true demand rates which are unknown constants. Ifwe!had enough data, we could esimt them better.
Sound desisons about stockage of items with no or low observed

demand ae intractable because we ae unable to estimate probe-
*bility distributions to describe their future demands; therefore, we

are likely to make relatively larger errors in predicting demands
for these items.

aItems with auge numbers of demands in past time periods are
more tracttle because we are le to estimate the probabity dis-
tributione of their future demalnds, but we still have to contend
with the prolem that we do t really know their true demand
rates.

As we will show in the sections that follow, each f these severnl tha-
damentautes a mptions is ingrror Then is a simple observation to
make about the latter two of these assumpon It has to do with
relative evror as opposed to absolute error. If I predict one event and
two occur, I will be wroeg by i00 percenror I predict I00 events and! 150 occur, I will be wrong by only 50 percent. The outcome in the

fognd hase hardly makes me a better forecaster. If every event that
f ran e dr to my for cin error costs me $1,000, would hate to

: , be fasced with the lafter outcome. Similarly, if we have larger relative

erro in for tivng demand for low-demand items, it wond neces-
marily have serious advers e st b perfrmance of the inventoryI system. In fact, firly modest relative errors in forecasting demands
for high-demand, high-cost items can be far more costly either in per-
f ormanc degrdation orunwise investmns..

: ! An important motivating factor for the interest in low-demand items

~may have derived from the study by Karr (7] in which he analyzed

aircraft AOCP data from March and Macill AFBs from 9 April to 4
June 1954. The B-47 demand data described above were also used in
this analysis. That database covered a different time period at each
of three bases; each time period ended in 1953. He found that 50 per-
cent of the AOCP occurrences in the eight-week period he examined
were for parts that had no observed demand in the 1,300 aircraft-
month database. An additional 11 percent had only one demand in
the esier data. Karr concluded that, "The reason why these parts
predominate in spite of their low demand rates is that there are so
many of them.' Indeed, the distribution of worldwide demands over
stock numbers today exhibits similar c at least for re-
coverable items.
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Another observation made in the early days deserves explicit mentio
here: *We could find no significant correlation between the kinds or
quantity of items dmanded and the flying activity of the aircraft,
measured either in flying hours, landings or aircraft months.' [3, p. ui]
In fact, the work done before Brown's report used aircraft months as
the denominator of the demand rate.

There are several important observations to be made about this early
workc

All of the analyses published, with the single exception of that of
issue data from the USAF Worldwide Stock Balance and
Consumption Report by Geisler and Mirkovich [13], focused on
base-level demand.data rather than systemwide data.

* All of the published work, without exception, pooled data on con-
sumables and recoverables and did not explicitly comment on dif-
ferences between them.

* No explicit consideration was given to intrchangeability and sub-
stitutability relationships among line items in the inventory sys-
tem.

Later work by Goldman [211 pointed out several errors in the ap-
proaches taken until that time. His three principal conclusions, al-
though obvious to any researcher in the field now, illuminated the
problem considerably at the time:

1. The family of parts rather than the individual part number should
be the basic unit in demand analysis and forecasting.

Use of the family of parts, consisting of the master part number and all
subsidiary part numbers, as the basic unit of analysis makes it possible
to take substitution relationships among line items into account in in-
terpreting consumption data....

2. When the data are analyzed in accordance with the foregoing consid-
erations, Mure demands for spare parts can be predicted froni pro-
gpam-element data

Goldman [221 subsequently conducted an experiment involving the
traditional initial provisioning problem of predicting demand rates for
parts without previous consumption experience. He later extended
his work [23] to a priori demand prediction for F-100 airframe parts
during the acquisition phase of that program.

The problem of initial provisioning and support of weapon systems in
the early stages of their life cycles was a topic that absorbed consider-
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*able aftentlo from RAND researchers in the early yeam Some of
the infironcs about pat t demand in the early work found their way
into the Miae moel described by MWlohn at aL [24], and used in
laboratory ft I (LP I). LP I was a simulation study of alterna-
tive logisc suppoet policies and strategies whom simulated perfor-
mance was to bI compared with the support polides and strategies
traditionally employed in the acquisition phase of a weapon system's
life. Logistics support in the weapon system acquisition phase pro-
vided much of the context for this early work; thus the concern of
these researchers was not simply with the statistical uncertainty as-
sociated with the world of epls ent spares estimation but with a
world in which data are sparse and the difficulty of the estimation
problem thereby compounded.

The initial problem provided the context for an RM by
McGlothlin and Radnr (251 which susted the use of Bayesian
techniques for pooling early observations of demand with initial esti-
mates of demand rates in a systematic way to give the proper weight
to observed data in revising the initial estimates in the early life of a
weapon system. In a subsequent RM, McGlothlin and Bean [26] sug-
gested procedures for implementing the Bayesian approach.

An RM by Astrachan, Brown, and Houghten [27] reported mixed re-
sults from the application of seven different predictive techniques to
Falcon missile and B-52 parts. No particular technique emerged as
clearly superior to the others.

On 25 and 26 January 1962, RAND sponsored a Demand Prediction
Conference which was held at Stanford University. It was attended
by several dWinguished academicians and researchers who were or
had been involved with problems in demand prediction. Kenneth J.
Arrow contributed a paper after the conference which was published
in an RM edited by Astrachan and Cahn [28]. Arrow's paper sum-
marized the discussions that took place during the conference and in-
chided some observations of his own. His observations seem to be es-
pecially pertinent and incisive in the context of the present work.
Arrow commented:

It is not easy to form an a prori opinion about the fritfidness of statis-
tied forecasting technies. This needs to be done empirically. In one

Saeto beofthe dsoutdleatsurstype.

v
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as my other e? It is not cler why am am d weight tdim in any
way.

The interpretation made by Winters was that we can thin of the pa-
rameters as shftin& but sbhifng in a random-walk manner, which
adds we more unknown. loking ahe a ge ane getting - and
moe uncertain, and discounting cmpsmt for this gwing unrelia-
bility. By the same taken, if we start from the present the past data are
more uncertain. Thus, if we arrived where we am now by a random-walk proess, we can. also gpo bakad by thu, sam proema. This may,
be the rationaization for this kind of Ieast-squares method. We have a
past marked by change we think change will persist as we go fiutherinto the future. The disconted leas-equres methods censaute for
this proem in some way.

Brown's arguments have shown the of this model. One cn
build a great deal into it, apparently, much more than by straight expo-
nential smoothing. Furthermore, it is possible to bring in any explana-
tory variables we like, such as program elements and age of parts. A
combination of smoothing techniques may produce better results with
difierent program elements.

Another point raised concerned the program elements themselves.
Assuming that usage does have established relationships to some pro-
gram elements, then in order to forecast usage we also have to forecast
the p elements. Doing so introduces additional "noise.* Brown's
argument is that it is better to use, as explanatory variables, mathe-

$matical functions of time about whose extrapolation there is no ques-

There is a counter t which depends on the use you can make of
the forecast. A conditional forecast gives some information that an un-
conditional forecast does not. It tells us what will happen if we change
our minds, so that we might say, after looking at it, 'It's really too ex-
pensive to fly those things around. rd better not do it.' This would
make our forecasting wore, but it would also answer a question that
could not be answered with an unconditional forecast....

Arrow's comments, like Goldman's earlier observations, seem obvious,
but only in retrospect. What we know the most about is what is hap-
pening now. Data from the distant past may be less pertinent than
data we have from the recent past; similarly, the longer our planning
horizon, the less reliable our sense of the future, and the broader our
confidence intervals need to be. Moreover, we may discover an un-
conditional forecasting method (i.e., one that is not related to program
values such as flying hours) whose performance dominates all others
by some error measure, but if the world is changing, we are more
likely to make sensible forecasts with a conditional method even at
the expense of larger expected erro.



Campbell [29] examined demand data from the Air Force's mainte-
nance data-collection system for a squadron of B-52 aircraft over a
four-month period using multiple correlation and regression analysis
to explore relationships betweon demands and seven operational
variables: sorties flown, flying hours, flying hours at low altitude,
bombing-navigation training units, fire control system usage, ECM
system usage, and periodic inspections. He concluded that demands
seemed to be related to flying hours and sorties, with flying hours
having the stronger relationship. Campbell's sample included recov-
erable items only, not , apparently the first such distinc-
tion made in the earlier RAND research. He made an important ob-
servation in his closing remarks:

The sharply declining predictability of component demands at lower
levels of aggregation suggests a concluding thought. Some information
is contained in the prediction by major system aggregate or shop aggre-
gate that is lost when only separate predictions are made. Aggregate
predictions can never replace line-item predictions for all support func-
tions, but we must find wider applications for them.

Feeney, Petersen, and Sherbrooke [301 described the evaluation, us-
ing actual base demand data for recoverable items observed at
Andrews AFB, of a base stockage policy that incorporated demand
rates estimated with Bayesian procedures that seemed to respond di-
rectly to Campbell's ideas for aggregating data across items. Stock
levels were computed using six months of past demands and were
then evaluated using demands observed during the subsequent six
months. The aggregate fill rate of the computed stock levels was
higher than that of both authorized and on-hand stock levels, and dif-
fered from predicted performance by less than 5 percent, a difference
that declined with postulated investment level. It was a landmark
study in the sense that it combined the results of demand prediction
work done up to that time with a Bayesian approach to the determi-
nation of stock levels that pooled information across line items, a pro-
cedure that had previously been done using a line-item-by-line-item
approach. They also pointed out the sensitivity of system perfor-
mance to variability in item demand. The authors made an important
observation about demand variability in their closing remarks:

Because any stockage policy must operate implicitly or explicitly with
some aasumptiu of demand variability, it is important to note how sen-
sitive stock requirements are in this area. Unfortunately, there is a
lack of data with which to estimate base demand variability, and more
important, we have little rhapsaarg of what causes such extreme
fluctuations in demand. Perhaps a large part of variability is simply er-
roneos reporting. If so, improved reporting quality could produce large
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reductios in stock investment. Clearly, we need to know more about
the nature and causes of fluctuations in demand. Without such infor-
mation we are not in a position to decide what portion of demand vari-
ablity should legitimately be covered by bae stocksge policy. It is
hardy necessary to point out that this is a basic question, which from a
management point of view is as important as choosing a specific target
base fi rate.

As noted in previous studies, more responsive resupply does reduce the
amount of stock required to achieve a given fill rate. From this it fol-
lows that in instances where there is a signcant difference between
base repair cycle length and depot resupply time, it would be beneficial
to establish stock levels for an item as a function of percentage issues
base repaired.
No stockage policy can eliminate stockouts; expedited deliveries will

still be required from time to time due to the vagaries of demand. But
the achievement of a Specified target bae fill rate with minimum stock
investment will cause the costs of expediting to be incurred in resupply-
ing the high-unit-Cost items, which represent a more efficient use of
support resources.

As we will see, this RM was a harbinger of the important body of
work that would ultimately emerge from the collaboration of Feeney
and Sherbrooke.

*, McGlothlin [31] refined and simplified his earlier Bayesian approach
to weighting initial estimates of demand with observed demand early
in the operational life of a weapon system.

Fishman [32] described the application of spectral analysis to base-
level demand data and its usefulness in separating trends and cyclical
effects from random events but the method never found its way into
Air Force use. Astrachan and Sherbrooke [33] evaluated the use of
exponential smoothing in forecasting demand and concluded that it
.... does not appear to be a significantly better predictor than the

cumulative issue rate techniques currently being used." Their as-
sessment was based on datasets with particular characteristics that
may have contributed to this outcome. As we will show in this report,
the simplest version of the Kalman filter is essentially exponential
smoothin& and we have found it very effective in reducing the mean
absolute deviation in demand forecasting. The conclusion reached by
Astrachan and Sherbrooke may also have been due in part to the
lengths of the time periods involved and the choices of weighting fac-

tors.

Feeney and Sherbrooke [34] described the application of Bayesian in-
' ference to the analysis of spare parts demand using a different ap-

proach from that of McGlothlin. Where McGlothlin was inferring an



estimate of the demand rate assigning appropriate weights to initial
e simates and observed data for a single item, Feeney and Sherbrooke
suggSted an approac that estimated an item's demand rate by ob-
seving the distributions of demand rates of all items. 1hey argued
that substantial im ovements could be made by using system-
oriented approaches to supply management and demand modeling
over traditional item-oriented approaches and demonstrated
elementary examples of this thinking. The approach they described
has fundame important implications for the demand modeling
problem. They make the following observations in their summary:

The traditional approach to demand analysis calculates an item's isue
rate (demand observed over some past period divided by the length of
the period) and rsms that future demand will be some random vari-
ation around tf,'s level. Such an approach is adequate if the item has
relatively high demand, if a relatively long history is available, and if
the history is relevant. But many of the mast important items, particu-
larly high-cost, low-demand spare parts, fail to -meet one or more of
these three essential requirements.

A new approach to demand analysis, based on a mathematical tech-
nique called &aesim infenm, is described in this Memorandum. This
approach exploits the surprising fact that we can increase our knowl-
edge of an item by analyzing the behavior of the other items in the sys-
tem. Instead of trying to estimate the item's true average demand, this
approach estimates the probability that the item's average demand is at
one of several levels. We think this is a much more realistic way of
charaterizig what we can learn from an item's demand history.
These probabilities can now be used to appraise the true risks and po-
tential payoff for various stock levels. Data-processing procedures can
be designed to use information of this kind with little or no increase in
processing complexity.

Bayesian demand analysis has two immediate implications for im-
proved supply management. First, because it wrings maximum rele-
vant information from available demand data, this approach promises
substantial improvement in the efficiency of stockage decisions.
Specifically, by using this kind of analysis we should be less liable to
overestimate demand and buy too much because of a random surge in
demand, and less liable to underestimate demand and buy too little be-
cause of a random decline in demand. Second, because the approach
can be applied to any time period, it is extremely flexible. It should be
possible to eliminate many of the policy problems now created by itemsthat do not most the requiremnts of daily-issue-rate computation:items with low demand, and items with erratic demand patterns In
the fdaoework of Bayeset demntn analysis, Policies can be developed

that prescribe action unambiguously.

Feeney and Sherbrooke (35] extended the well known queuing result
of Palm [36] to the problem of determining stock levels for recoverable
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spares under the assumption of compound Poisson demand, a much
richer case than was previusly tradable, altugh not one on esp-
cially solid logical ground, as we shall see later.I Feeney and
Sherbrooke [37] further dismissed the application of Bayesian infer-
ene to the demand estimation problem and sumggted a method for
coupling it with exponential smoothing where the demand rate is
nonatationary. They subsequently discussed an approach [381 to set-
ting base stock levels for recoverable spamr that integrated the work
previously descrbed in Refd 35 and 37.

Press (391 developed empirical Bayes estimators for the univariate
and multivariate exponential family of distributions, for distributions
with nuisance parameters, and for the distribution of a family of ran-
dom variables (Poisson process), extending the work of Robbins [40],
and discussed their application to demand modeling. Campbell, Lu,
and Michels [41] extended the approach of Feeney and Sherbrooke to
the computation of war reserve spares requirements in the context of
the aircraft dispersal policy then in effect in the Air Defense
Command. Houghten [42] explored alternative procedures for ensur-

* ing that AFLC's estimations of requirements for recoverable spares
were consistent with base stockage policies.

The early body of work at RAND exploring the demand modeling
problem culminated in the work of Feeney and Sherbrooke. They
dealt effectively with virtually every demand modeling problem
raised by those whose work preceded theirs. Moreover, their interests
extended beyond the demand modeling problem; they also made im-
portant contributions to supply stockage policy, at least for peacetime
operating stocks. Feeney left RAND in 1966, but Sherbrooke contin-
ued to pursue important issues in stockage policy. In a 1966 RM [43],
he discussed compound Poisson processes and their application to the
demand modeling problem in anticipation of the need for a more
tractable form of probability distribution for use in a multi-echelon
ir-,,entory model called METRIC (Multi-Echelon Technique for
Recoverable Item Control), which would have an important effect on
inventory management policies and practices throughout the world,
especially in the large inventory systems of military organizations.

1AcompoWid Pomeas procm is a stochastic process in which the number of arrivals
that occur in a specified time period is described by the Poisson distribution, but with
each arrival more than one event may occur. The number of events that occur with
each arrival is described by a compounding distribution. In the present contet, an
arrival would be represented by the receipt of a requisition for spare parts; the quantuy
of parts requested an eac requition would be the compounding random variable.
Thus the distrition of the number of parts requested in the thne period would have ahiUer variance than the simple Poison arrval proess.



20

METRIC (44] extended the earlier work by Feeney and Sherbrooke to
the multi-echelon base-depot inventory system. It assumed no lateral
resupply and did not provide for condemnations. Its key to solution of
the multi-echelon system was the application of Little's theorem [45]
to the problem of estimating depot delay time, i.e., the time from re-
ceipt of a requisition by the depot to the shipment of the item, which
of course is a function of the depot stock level. METRIC was de-
scribed in laymen's terms in a subsequent publication [46]. The views
of Feeney and Sherbrooke also shaped the aggregate stockage policy
for EOQ items at base level suggested by Lu and Brooks [47] and pub-
lished in June 1968. The publication of the METRIC development
was also followed in June 1969 by an RM by Fishman, who suggested
alternative methods of forecasting requirements for depot mainte-
nance [48], in which, incidentally, he suggested the use of exponential
smoothing in forecasting NRTS actions and clearly demonstrated its
superiority to an eight-quarter moving average.

METRIC was eventually implemented by AFLC as the variable safety
level (VSL) algorithm in 1975. It survived as the principal ingredient
of safety stock computations until very recently when it was replaced
by the Aircraft Availability Model (AAM), a METRIC-based computa-
tion that took explicit account of weapon system complexity in terms
of the number of LRUs whose availability affected the availability of
aircraft. Unfortunately, neither of these implementations took ad-
vantage of much of the knowledge that emerged from RAND's work in
demand modeling. The mean demand rate was estimated with an
eight-quarter moving average of worldwide demand counts. More will
be said about the logical flaws of these procedures below. In short,
METRIC found its way into the Air Force requirements system, but
improved techniques for forecasting demand did not. Despite the
problems associated with METRIC's implementation, it was the sem-
inal work in multi-echelon inventory theory, and it has had a pro-
found influence on the course of inventory theoretic developments
ever since.

THE LATER YEARS: 1969-1990

The work of Feeney and Sherbrooke was sufficiently satisfying, given
RAND's views and interests at the time, that the topic of demand
modeling was not reopened for more than a decade. The occasion for
the renewed interest in demand modeling in the early 1980s was a
shift in focus from the modeling of peacetime demands for aircraft
spare parts to logistics support in wartime.
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Among the issues that quickly emerged in the decade of the 1960s
was that of the perturbation in demand processes induced by the
transition from peacetime to wartime. Demands for resources were
assumedto be directly proportional to fing hours (as they still are
by the current system), and flying hours were anticipated to increase
dramatically in wartime, especially in the early days of a war. This
topic of nonstationarity in demand received considerable attention
from RAND researchers, and led to several significant developments
in capability assessment methodology and some advances in demand
modeling. In the first formal RAND publication dealing with nonsta-
tionarity in demand in 1980, Muckstadt [491 developed an approxi-
mation to the probability distribution of the number of items in re-
supply based on the assumption that the demand process was
described by a nonstationary Poisson distribution and compared it to
an exact derivation. The approximation was shown to be excellent.
He also demonstrated that, in the face of nonstationarity in demand,
it is important to model the nonstationarity explicitly, since
assumptions of stationarity can lead to serious errors m the allocation
of assets. He also discussed how the development could be applied to
the initial provisioning problem.

Nonstationarity in demand was an important feature incorporated
into a series of capability assessment models generically referred to
as Dyna-METRIC. In its original development by Hillestad [501,
Dyna-METRIC was a noteworthy departure from the traditional
steady-state models of the time. Although the initial focus of RAND's
research in wartime logistics support in the 1980s was on the transi-
tion from peacetime to wartime, the important advantage provided by
models that explicitly accounted for nonstationarity was quickly put
to good use in logistics policy analysis concerned with the more gen-
eral problem of combat logistic support. A later version of Dyna-
METRIC [51] was adopted by AFLC as its standard capability as-
sessment model and incorporated in its Weapon System Management
Information System (WSMIS). Pyles [52] suggested approaches to its
use in practical logistics management applications.

These early versions of Dyna-METRIC were analytic models that
were relatively efficient in running time but lacked some of the rich-
ness needed for evolving logistics policy studies at RAND. A later
version called Dyna-METRIC Version 5 [53] was a hybrid analytic-
simulation model in which constrained repair capacity and manage-
ment adaptations such as cannibalization, lateral repair, and lateral
supply could be explicitly represented. Unfortunately, Version 5 was
not able to deal with the indenture relationships among LRUs
and SRUs. A new version, Version 6, currently being used, corrects
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that deficiency. All of these devin capability assessment

w metd o w und to pursue policy issues in logistics re
such at RAND. Version 4 was sufficiently tractable and useful that
it fand its way into AFLCs standard systems. LatIe versions may
also be implemented in the future.

Some explorations of the mathematics associated with nonstationary
! demand processes were done more or less in parallel with the devel-

opment of these several version of Dyna-MTRC. Crawford [541
and Carrillo [55] published results that extended Palm's theorem [36]
to nonstationaryPoisson processes and to nonstationary compound
Poisson processes, respectively. Crawford asserted that his result ex-
tended to the compound Poisson case but did not treat this more gen-
eral problem explicitly. In an explanation for his approach, he made
an observation that is especially pertinent in the context of the cur-
rent work:

The practice of assuming an arrival process is compound Poisson when
the data exhibit a variance-to-mean ratio greater than 1, as is often ad-
vocated in the literature, has little legitimate justification. If the vari-
ance-to-mean ratio is s'4%icanty larger than 1 (whatever that means),
the arrival process is more often nonhomogneous than [it] is compound
Poisson. ... In inventory applications, treating the arrival process as a
compound Poisson when it is in fact nonhomogeneous Poisson can be
shown to have a significant effect on the optimal stocking plan.... 2

Crawford attributes the latter observation to J. Y. Lu, a former RAND 
researcher. It was never published. As we will show in discussion

below, compound Poisson distributions are applicable to only a small
proportion of the items in the recoverable inventory management sys-
tem (the vast majority of requisitions being for quantities of one
each), whereas a form of nonhomogeneous model seems almost uni-
versally applicable and, indeed, provides significant improvements in
demand forecasting accuracy.

Crawford [2] provided a comprehensive description of the variability
in demand for large sets of recoverable aircraft spare parts and
pointed out the implications of that variability for readiness and sus-
tainability and for spares requirements estimations and capability
assessment modeling. He also showed that the numbers of items in
resupply, especially in the depot repair pipeline, were not only higly

2A nonstaxntowy stochastic process is simply one in which the arrival intwensity
vaies over tus.Ibolbu this report., we use the term noeahomqoenesou an-
stationaay, althouh in general usage nonstatioary procmes ar a

Iubet of pm I
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variable but on average were higher than assumed in requirementsesiimatan wWcpblt assessment modeling. lie lorrmectly

pointed out that it is really the contents of the resupply pipeline and
its variability, rather than variability in demand, to which system
perermac yi moat vulnerable.
This research by Crawford [2] and the research he had done imme-
diately before it reopened many of the fundamental questions initially
raised in the early years by Brown and others. Crawford pointed out,
for example, that the demand models incorporated in current logistics
management decision processes, most notably spares requirements
estimation and capability assessment modeling, are inconsistent with
observed data; moreover, the inconsistencies suggest that we really
dont understand the demand process as well as we seem to imply in
our aracterizations of the nature of the process, its variability, its
stationarity, or its relationship to activity level (e.g., flying hours). It
is important to note for our later discussions that Crawford's work in
this case examined worldwide aggregations of demands partitioned
quarterly. This fact shaped his results in important ways, as we shall
see below.

it Crawford's work, which was directed toward better understanding of
the behavior of demand processes for aircraft spare parts in peace-
time, coupled with RANI's interest in logistic support in wartime,provided much of the motivation for an important body of work done .

at RAND in the 1980s, most of it in a major undertaking of Project
AIR FORCE, which became popularly known as the Uncertainty
Project.3 The very title of this work reflected the thrust of Crawford's
analyses and the thinking of others at RAND that the variability in
peacetime demands for aircraft spare parts would be compounded in
wartime by system disruptions, resource losses, and the inevitable
surpses of the combat scenario. In the course of the Uncertainty
Project, a set of management initiatives emerged that was intended to
mitigate the effects of uncertainties in resource demands. Those
initiatives were given the name CLOUT (Coupling Logistics to
Operations to meet Uncertainties and the Threat). The CLOUT
initiatives are described by Cohen, Abeil, and Lippiatt (20]. The
following discussion draws heavily from the Summary of their report.

3nhe Uncertainty Project was part of RAND's Resource Management Progrm. It
was formally entitled aEnhancing the Integration and Resposiveness Of the Loit c

Headquartem USAFLX, and Headquarters, AFLXP.Su p r yt mt etP aei ea d W rtm n etite. tw ss o srdb
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The CLOUT initiatives are examples from a taxonomy of more
generic strategies for coping with uncertainty described by Hodges
[56, pp. 20-241 The uncertainty is of esentially two kinds: (a) star/s-
ties uncertainty, defined as variability observed in repeatable phe-
nomena, and (b) state-of-the-world uncertainty, defined as uncertainty
that arises in phenomena that are not repeatable, not observed or ob-
servable, or both [56, pp. 8-14]. Planning for wartime is fraught with
unerait of the latter kind; in fact, stt-f-the-world uncrtant

can fairly be said to dominate the wartime scenario as well as mili-
tary planning for it.

Essentially, the CLOUT initiatives generally place less reliance on a
richness of spares and take greater advantage of more flexible re-
sources such as maintenance and distribution. That strategy derives
logically from the difficulty and cost of a 'buyout strategy that would
attempt to provide ample quantities of spares, for example, to allow
the system to cope with the levels of uncertainty in demand that it
might face, especially in wartime. At the theater level, there are sig-
nificant payoffs to be gained from alternative operating policies for
theater distribution systems that take fuller advantage of responsive
lateral resupply and lateral repair options. They also suggest that
closer coupling of the depot repair system to the combat forces has
significant payoff in aircraft availability. The thrust of the thinlring
underlying CLOUT is to rely less on an ampleness of goods and more
on management adaptations. (Hodges describes these as examples of
passive and active strategies, respectively.) That thinkin has impor-
tant implications for system design as well as management. Many
characteristics of the current system need to be changed to achieve
the kind of relevant, timely, and robust performance needed to cope
with unanticipated, urgent demands for resources.

The magnitude and pervasiveness of wartime and peacetime uncer-
tainties also suggest the need in both capability assessment models
and spares requirements estimation to take explicit account of realis-
tic levels of peacetime and wartime uncertainty and the ability of the
support system to cope with them through the kinds of adaptive be-
havior exemplified by the CLOUT initiatives. In the face of such un-
certainties, the robustness of system performance in a variety of ce-
narios is at least as important as the level of system performance in a
single, specified planning scenario.

The implications of this approach for logistics management, logistics
policy analysis, and the design of logistics management systems are
fundamentally important. In problems involving state-of-the-world
uncertainty, analysts have traditionally retreated to analytic methods
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intmaded to deal with statistical uncertainty, methods with which
they are familiar and camfortable. Thinking dearly about the impli-
cations of state-o-the-world uncertainty fo partilar applicatiois is
both d and unfmiliar for many persons involved in policy

analysis. Perhaps the most important central message of this work is
the need to take explicit account of uncertainty, particularly state-of-
the-world uncertainty, in formulating policies and designing systems,
and to take explicit steps to ensure that the prformance of those
policies and systems is robust in the face of those uncertainties.

The CLOUT initiatives have been incorporated into the Air Force's
new Logistics Concept of Operations. They daly have important
implications for spares and repair requirements estimation. Those
implications are the principal interest of the larger project of which
this demand forecasting and modeling work is one part. Our review
of past RAND research in demand forecasting has presumably made

* it clear that whatever improvements might be possible in demand
forecasting should be fully exploited, even in the face of extensive
employment of management adaptations in logistics operations.
Abell et aL [57] describe, for example, a depot-level repair prioritiza-

*tion and asset allocation mechanism which is intended to be much
more adaptive in the face of uncertain demands than are the current
depot repair management and stock control and distribution systems.

* JAs adaptive as it is, it still depends to some extent on demand fore-
casts. The need for improvement in our ability to forecast was re-
cently made emphatically clear by Lippiatt [1], who observed large er-
rors in forecasting NRTS actions using the traditional methods of
AFLC's standard system. He observed that the further into the fu-
ture the forecast was made, the greater the error, perhaps an unsur-
prising result in retrospect, but the error was consistently positively
biased, a phenomenon that may have been associated with the time
period examined.

In spares procurement, too, because of the long lead times frequently
encountered, accurate demand forecasts play an important role in
shaping the mix of spares procurement actions to achieve an effective
stockage posture. Thus our exploration of demand forecasting and
modeling is not only an important part of our requirements estima-
tion research; it is also important to a variety of logistics management
decisionmaking. We believe it can improve such decisionmaking, es-
pecially over the longer planning horizons typically associated with
recoverable spares procurements, and enhance the Air Force's ability
to achieve greater effectiveness from its available resources. We now
turn our attention to the Air Force's approach to demand modeling$! incorporated in the current system for estimating spares and repair

4



requirementsha Ieore describing in following sections more effective al-
twnstives to that approach. A more omplete description of the cuar-
reat rewoverl . e equemait. system can be found in Re 58.

DEMAND MODLING IN THR CUEN SYSM

A traditional approach is taken to modeling demand by AFMC's cur-
ret spare. and repair requirements estimation system. The world-
wide mean demand rate for each master stock number is estinated in
a straightforward way, item by item, using an eight-quarter moving
average.4 Because of data-collection, transmission, and processing
times, the demand counts available in the central system are at least
one quarter behind. Thus, if one were at a point in time in the middle
of quarter n, one would lack visibility of the demands to date in quar-
ter n and the demands that occurred in quarter n - 1. The demands
in quarter n - 1 typically become available in the central system late
in quartern.5

The eigt-quarte r moving average gives as much weight or impor-
tane to demands eight quarters in the past as to demands only one
quarter in the past. The moving average does have the advantage,
however, of smoothing the demands across quarters so that the sys-
tem's estimate of demand rate is not so volatile as it would be
less data. On the other hand, it is not as responsive to changes in
demand rates as some alternative approaches. The current system
assumes that demand rates per flying hour are constant; i.e., de-
mands are directly proportional to flying hours. Thus if flying hours
are p to i by x percent, expected demands will also in-
e~me by x percent. One thrust of this report is to present alterna-
tives to these demand estimating techniques that substantially re-
du expe f ting error.

The requirements for safety stock are computed by the current sys-
ten using an estimate of the probability distribution of the numbers
of items of each master stock number family in resupply based on
steady-stats assumptions, i.e., stationary demand rates, known activ-
ity levels, constant pipeline times, and constant NRTS rates. The
negative binomial probability distribution is used to describe this

4Tb. eight-quarter moving average haa the form ZDAR~j whenethe 1D1 are the
dmandds obsrv over eight quarters, the A)} am the item fYn hours derived rom
al of the aplistin of the item, and the smummations are take ovet the eight quar-
term of peel eperiences

5Aihoush the D08C euem has very current demand data available, the D041
9 the yiem that muipeVr requirements eiatema, does not.



ruim vAriba. The VTMR of te ditibto is bse onepiia
observations by Stevens and Hill [591 sugsting that the Observed
VTM of demands for rcovetbl spare parts was an icesn
fbnction of the mean demand rate, but increasing at a decreasing
rate. The observed VfldR is erroneously treated as though it were
the true VTMR. It has the form of the unbiased estimator of the
variance divided by the observed mean demand rate. Stevens and
Hill chose a power function on empirical grounds to describe the rela-
tionship of the form VTMR - sxb, where z represented the mean de-
mand rate. At the time of this writing, the variable x represents the
expected number of items of a given type in resupply, i.e., the item'
pipeline, and the values of a and b are 1.132477 and 0.3407513, re-
spectively. If the resulting VTMR is less than 1.01, it is set equal to
1.01; if it is greater than 5.0, it is set equal to 5.0.

A prior, there is no legitimate basis for the assumption that the
* VTMR should vary in any systematic way with mean demand. Yet,

the data, as aggregated by Stevens and Hill, do suggest such a rela-
tionship.

It is not clear that the power function used in the current system is
appropriate. The actual fit between calculated item pipelines and ob-
served values of the VTMRs assigned to the probability distributions

ilof those pipelines at the individual item level is remarkably poor.
Figures 2.1 and 2.2 illustrate this contention. The observations sim-
ply do not fit the data, probably because of nonstationarity in the un-
derlying demand process that, as we will show below, can induce a
profound overestimation of the VTMR. The use of the power function
is not on solid ground given what we have learned about the numeri-
cal values of the VTMR estiator in the presence of s stationarty
in demand; nevertheless, it is difficult to find a better alternative ap-
proach, although the numerical parameters of the function can be im-
proved by accouting explicitly for forecasting uncertainty, which the
current method ignores.

Our comments about the current system's approach should, perhaps,
be more forgiving because the problem of sensibly estimating the
variance-to-mean ratio of the distribution of the number of items of
each type in resupply is very difficult. Sherbrooke (44, p. 321 and,laterortes (56, al 32t suggested tatcnumerically estimated values

of the VTMR could be computed nang the method of maximum likei -
hood, however, this approach is traditionally applied on an item-by-
item basis. The numerical values that result from such an approach
re highly volatile and would probably result in highly volatile esti-

mates of the total number of spares of each type the ruirements
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system estimates should be in the invetry system. Such volatility
is one of the principal causes of items being in long supply. Thus an
approach to estimatinig the variance of the probability distribution of
the number of items in resupply that is based in some way on aggre-
gations of items or that employs some kind of smoothing, stabiliing,
or filtering technique seems to be indicated. Alternatives to the cur-
rent system's method of establishing the variance were evaluated in
this research, and we recommend one that represents a modest
improvement to the current approach, but one that is on much more
solid logical ground. The discussions in Section 6 shed additional
light on the problem of variance estimation.

Although the principal thrust of our research in the estimation of re-
quirements for aircraft recoverable spares and depot repair is to bring
explict recognition of flexibility and repo UNivee to the spares and
repair requirements estimation process, in this report we specifically
address issues of demand modeling and forecasting in the hope of en-
hancing the cost-effectiveness of the estimation process.

tI
!I



&. SOME EXLORATIONS OF BASE-LEVEL
DEMANDDATA

Prompted by our increasing interest in the implications of uncertainty
for effctive combat logistics support, and reinfor d by the findings of
Crawfi~d [2] that line item with high dmand variability tend to be

the troublesome ones in terms of inventory system performance, we
reopened some of the demand modeling issues originally raised by the
examination of base-level demand data by earlier RAND researchers.
The data explorations described in this section led to two principal
findings, each of which is important to the Air Force's ability to provi-
sion itself cost-effectively with aircraft recoverable spare parts: (a)
There is stmog evidence that parts demand processes are, in general,
nonstationary, and (b) certain characteristics of specific line items
which are, in many cases, known in advance tend to be associated
with high levels of demand variability. The implications of the first of
these observations are important for modeling the process correctly,
thus improving our ability to forecast demands and to understand the
demand process somewhat better than we now do. The second obser-
vation is important to our ability to manage logistics support better,
to know when exceptional management action is needed, and to im-
prove our formulation and implemention of sensible policies for
spares investments and inventory system management.

The Air Force's Logistics Management Center (LMC) at Gunter AFB,
Alabama, kindly provided RAND with data from several bases from
which we were able to infer actual demands on base supply by base
maintenance activities. One of the bases from which data were pro-
vided was Bitburg Air Base, FRG. The Air Force has, for some time,
maintained a wing of F-15C/D aircraft at Bitburg, and we acquired 48
weeks of transaction data from Bitburg from which we extracted
transactions, then demands, for F-15 recoverable LRUs and SRUs.
The observations that follow were made from those data.

ITEM CHARACTERISTICS THAT TEND TO PREDICT

HIGH V'TMR

In the Bitburg analysis, we were able to observe monthly demand
rates per flying hour as well as demands independent of flying hours.
The flying hour production during the 48-week period to which the
data applied was sufficiently regular that it did not make a substan-
tial difference to these findings; however, the data described only

30
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monthly flying ha activity, not daily flying hours. In comparing the
Adistribution oVTMRs amotg line items usng monthly demands and

monthly flying hours, it was clear that the us. of flying hours was not
especially important because they did not vary much. Since much of
what we learned derived from our ability to observe demands on ev-
ery line item every day, we chose to ignore demand rates per flying
hour in favor of analyzing simple counts of demands. It must suffice
here to say that we are confident that our observations would be as
valid had we accounted for flying hours at every step of the analysis
as they are without having done so.

Items with large QPAs (quantities per application) or action quanti-
ties greater than 1 tended to have high VTMRs. These two subsets of
fine items had a substantial intrsection. In the case of a demand
transaction, the action quantity is simply the number of units of issue
(eg., each, dozen, pair, box) reported in the transaction.

In the discussion that follows, we divide the demand data into 24 two-
week intervals and, for line item j, compute the observed mean de-
mand rate, mj, as the total number of demands in the 24 two-week
periods for line item j divided by 24. The VTMR estimator, r., is sim-
ply the unbiased estimator of the variance divided by mj.' There were
973 items in the sample, all F-15 recoverable LRUs and SRUs.
Demands that were satisfied by intermediate-level repair, that is, by
maintenance itself, were excluded from this sample. The remaining
demands are those satisfied by the inventory system, not by repair.
The distribution of {rj} reflected 75 percent above 0.96, 50 percent
above 1.03, 25 percent above 1.61, and 5.2 percent above 3.0. The dis-
tribution had a very long tail with some extwdinarily high VTMRs,
the highest being a startling 56.16. The unweighted mean of the
VTMRs was 1.79 with a remarkably high standard deviation of 3.52.
Eliminating all line items with action quantities greater than 1 or
QPAs greater than 4 reduced the sample size from 973 to 918 and
dramatically altered the distribution of (rj). Its unweighted mean was
reduced from 1.79 to 1.34 and its standard deviation from 3.52 to
1.38. The number of line items with VTMRs greater than 3.0 de-
creased from 51 to 16, and the number of line items with VTMRs
greater than 5.0 decreased from 30 to 5. Thus, of the 55 line items
eliminated because of large QPAs or action quantities greater than 1,
35 had VTMRs greater than 3.0 and 25 had VTMRs greater than 5.0.
In percentage terms, 5.2 percent of the original 973 line items had
VTMRs greater than 3.0, and 3.1 percent had VTMRs greater than

'The unbiased estimator of the varianoe is given by (n/(n - 1)1 = r m - (Ex/ln)21,
where xi is the number of demands in the ith two-week period and n= [4.



L. Tha prcentagss decmased to 1.7 and 0.5, respectively, of the
OS iae itum remiing after removing those with action quantities
pssgar than I or QPAs geter than 4.

Several observations emerge from these results. Most important,
perhaps, is the fact that the distribution of observed VTMRs (we are
talking about VTMR estimates of the form previously described as r
thzugout this discussion) at base level based on a two-week part-
tioning of the demand data is dramatically different from that at sys-
temnwide level as reflected in the spares requirements database (eight
quarterly observations of worldwide demands). As we will discuss
below, our partitioning of the data into two-week intervals in contrast
to the quarterly intervals used in the spares requirements system ac-
counts for some of this difference, but not all of it. The difference is
Probably amplified by the fact that the Bitburg data span 48 weeks
whereas the systunwide VTKRs are computed using eight quarters of
data. The implications of this observation for demand modeling are
important: (a) One should not observe numerical values of aye-
temwide VTMRs and apply them directly to base-level demand pro-
cesses as the current spares requirements system does, (b) one cannot
infer much about the volatility, uncertainty, or unpredictability of
base-level demands from systemwide data aggregated quarterly, es-
pecialy if the partitioning is different, and (C) there are serious mea-
surement problems associated with the VTMR estimator.

A second observation is that action quantity (in this case the number
of parts requested in a requisition) acts as a VTMR multiplier. If a
particular stochastic process is simple Poisson, then its VTMR is 1.
If, with each requisition arrival, n demands occur, then the VTMR of
the demand process is n, but the process is no longer simple Poisson;
it is compound Poisson (in this case with a degenerate compounding
distribution). Thus, comparing its VTMR to 1 may tend to lead one to
conclude that the process is somehow out of control, wild, or unpre-
dictable, based on the value of n, when in fact it is exactly as pre-
dictable as a simple Poisson process. Thus, the requisitioning of more
than one unit at a time of some line items causes the VTMRs of their
demands to be greater than the VTMRs of their requisition arrivals.
It is important to note that in the Bitburg data only 3.7 percent of the
original 973 line items (36 line items) reflected any action quantities
greater then ; thus Crawrds and Lu's observations about the

"mMY of compound Poisson probability distributions to de-
sark'be parts demand processes are strongly reinfrced by the Bitburg

date. Recall our earlier quote from Crawford [54, p 32]:



33

The practice of assuming an arrival proce is compound Poison when
$the drfa eziit a variane.-to-mean ratio greter than 1, as is often ad-

'I vocated in the literature, has little legitimate justification. If the vari-
anma-to-mean ratio is aicadicay larger than 1 (whatever that means),
the arrival pess is more o/ten nonous than (it] is compound
-o.... In inventory applications, treating the arrival process as a
compound Poisson when it is in fact nonomogneous Poisson can be
shown to have a significant effect on the optimal stocking plan....

Since our analysis of demand data from Bitburg was confined to de-
mands for recoverable items, it is not surprising that so few line items
experienced action quantities greater than 1; the Air Force's reorder
policy for recoverable items implemented in the standard base supply
system is (a, s - 1); i.e., when the number of assets on hand plus due-
in minus due-out falls below the stock level, s, an order is placed im-
mediately (usually daily, as a practical matter) for replenishment.
This is commonly described as a continuous review reorder policy
with an order quantity of 1. For items with action quantities greater
than 1, the compound Poisson model may be appropriate to accommo-
date the higher variance that tends to be associated with these items.
A large QPA does not necessarily imply a compound demand distribu-
tion. All we know from the Bitburg data is that large QPAs tend to be
associated with high demand variability. As we pointed out above,
the set of items with action quantities greater than 1 and the set with
large QPAs overlap significantly. Of the 36 line items reflecting ac-
tion quantities greater than I in the Bitburg data, only six, i.e., 16.7
percent, were known to have a QPA of 1.2 These observations about
action quantities simply suggest that large VTMRs do not necessarily
imply unpredictability.

After eliminating the items with action quantities greater than 1 and
QPAs greater than 4 from the distribution of observed VTMRs, trjj,
there were still five of the remaining 918 line items with VTMRs
greater than 5.0, the upper bound established for VTMRs used in the
spares requirements estimation process to describe the variability of
the number of asbets of a given line item in resupply. Their VTMRs
were 5.5, 6.5, 7.2, 18.7, and 34.6. Their QPAs were 1, 3, 3, 4, and 1,
respectively. The first three were SRUs, the latter two LRUs.

SThe QPA (quantity per application) of an item is the quantity of the item installed
in the hext highe assembly. We hasten to add for the sake of completenes that the
QPAs of two of the 36 items were shown in the D041 application file as 0. One of them
was an engine vane, very likely an item with a large QPA; the other was an expensive
switch in the 5841 property cls whose true QPA is stll unknown.
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The highest VTMR was associated with the nose landing gear strut, a
$26,800 component which, along with one of its principal SRUs, the
$15,600 nose landing gear piston, exhibited rather remarkable de-
mand behavior. The demands for the strut and piston observed in
each of the 24 two-week periods were:

Strut 1 2 2 2 0 4 2 0 1 00 1 1 0 1 0 0 1 2 1 51 00 1Piston 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 55 0 0 63

It is interesting to note that the demands for the large quantities of
both items, 51, 55, and 63, were all backordered with no correspond-
ing MICAP event, although over the entire period, there were 10
MICAPs reported on the strut but none on the piston. Our assump-
tion about this wildness is that it is the result of some kind of policy
intervention, perhaps a time change replacement, perhaps an inter-
vention of the IM or SPM, compliance with a technical directive, or a
safety-of-flight consideration.8

It is not surprising that three of these line items with high VTMRs
(6.5, 7.2, and 18.7) have QPAs greater than 1 (3, 3, and 4). The item
with the VTMR of 18.7, an $1,131 SRU in the 1440 federal stock
class, experienced 186 demands during the 48 weeks, not one of which
was satisfied through an issue by base supply. Of the 186 demands,
86 were satisfied by WRSK withdrawals and the remaining 100 were
backordered. No MICAP was ever reported as a result of shortages of
the item; it had no apparent impact on mission capability except that
it presumably depleted the WRSK

The remaining line item hardly deserves attention. It experienced
only nine demands in the 24 two-week periods. It has such a high ob-
served VTMR because seven of the demands occurred in one period.
All were satisfied by off-the-shelf issues.

THE VARIANCE OF TH ETIATIX rj

One question that is prompted by an investigation like this is the role
of chance in producing paricular values of observed VTMRs given
some numerical value of the VTMR underlying a stochastic process.
This question is especially relevant to the present discussion simply
because the variance of the VTMR estimator, rj, is quite large. A
VTMR of, say, 1.5, coupled with a mean demand rate of, say, 0.5 de-

3H this was the case, the peak in demands would have been a one-time occurrene
and shoud not have been reflected in estimation of the item's future demand rate.



mends per peod over eight perods, is likely to yield an observed
VMM greater than S.0 about 3 percent of the time.

It may provide some intuition about these processes to recall that, in
the Bitburg data, about 5.2 percent of the 973 original observed
VTMRs were greater than 3.0. After removing the 55 line items with
action quantities greater than I or QPAs greater than 4, only about
1.7 percent of the 918 remaining observed VTMRs were greater than
3.0. For these 918 items, the distribution of observed VTMRs is per-
fectly consistent with an assumption that all the parts have an
underlying VTMR of 1.5 or less.

It is clear from our observations of large numbers of random realiza-
tions of these demand processes as well as the theoretical work by
Hodges [60] that the error distribution of the VTMR estimator itself
bears much of the responsibility for the distributions of observed
VTMRs we see in parts demand processes. The estimator is also very
sensitive to nonstationarity which, as we discuss in Section 6, also
contributes significantly to shaping the observed VTMRs.

NONSTATIONARITY IN BASE-LEVEL DEMAND PROCESSES

In our analysis of the Bitburg data, we tried partitioning the 48
weeks of data in several ways: 24 two-week periods, 12 four-week, 8
six-week, 6 eight-week, and 4 12-week periods. We found a remark-
ably systematic relationship between the observed VTMRs and the
coarseness of the partitioning. Tables 3.1 and 3.2 show the results for
all parts and for the subset of 918 with QPAs less than 5 and action
quantities of 1.

If a process is stationary, the expectation of the observed VTMR is in-
dependent of the partitioning, although its variance increases with
the coarseness of the partitioning. In the stationary case, the VTMRs
in Tables 3.1 and 3.2 would be approximately equal within each table,
independent of the partitioning. In the actual case being examined
here, where we pool the results of alternative partitionings of over
900 random realizations of demand processes and observe such sys-
tematic variation, it seems very likely that nonstationarity is in-
valved, owing simply to the lack of any other explanation. While this
systematic variation does not prove nonstationarity, it strongly sug-
gests it.4

4Exeludig itam with action qunii greater than I or qpA& Vfator Uma 4

lowers the values shown in Table 3.1, bu the patten remain lly t a a
shown in Table 3.2.
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TablouL
Zfw fPard~stiu an Observe YulE.

(ORi on pats)

No. Of Weeks in Avg. Observed 95 Percent
Periods Perod VrMR Coniene Interval

24 2 1.79 (168, 1.90)
12 4 1.91 (168, 2.16)
8 6 1.92 (M68, 2.16)
6 8 2.11 (1.76, 2.46)
4 12 2.20 (1.85, 2.55)

Table 2

Effects of Partitioning a Observed VTMs
(918 parts with QPAs less than 5 and action

quantities of 1)

No. of Weeks in Avg. Observed 96 Percent
Periods Period VTMR Confidence Interval

24 2 1.35 (1.26, 1.44)
12 4 1.41 (1.32, 1.50)
8 6 1.45 (1.35, 1.55)
6 8 1.49 (1.39, 1.59)
4 12 1.60 (1.47, 1-73)

The demand modeling methods that we will discuss in the sections
that follow derive much of their power from the fact that they explic-
itly model the nonstationarity in the demand process and separate its
effects from those of the inherent variability of the process around its
nonstationary location parameter. Before introducing these alterna-
tive methods, let us first reflect briefly on the implications of these
discussions

MPUCATIONS OF THE BAE-LEVEL ANALYSES

One may wonder whether we can prudently infer as much as we have
inferred from data collected at a single base on a single weapon sys-
tem. Such a concern is well founded and suggests the need for exten-

sions to these analyses.

Our principal observations inferred from the Bitburg data are:

* The observed VTMRs associated with parts demands at base level
are very different from those of quarterly demands aggregated
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worldwide because demands per flying hour tend to be positively
correlated aoss bases.
Large QPAe and order quantities geater than 1 contribute sg
nifiantly to high observed VTMR&

* The variance of the VTMR estimator explains to a substantial ex-
tent the occurrence of large values of observed VTMt.

* Parts demand processes appear, in general, to be nonhomogneous
rather than compound processes.

It is important that we distinguish our inferences about demand un-
certainty on the basis of worldwide aggregations of quarterly de-
mands, for example, from those that we make from observing base-
level demand processes. We caution the reader that our comparison
of the distributions of VTMRs at the base and system levels here is
flawed by the fact that the base-level data span only 48 weeks,
whereas the worldwide data in the spares requirements database
span two years; the periods of aggregation are different as well, as we
have pointed out repeatedly. The levels of variability implicit in dis-
tributions of observed VTMRs are quite different for the two echelons.
It is also important to note that the item characteristics (QPA and or-
der quantity) that help explain high observed VTMRs at base level

d may also be helpful in explaining high VTMRs systemwide.
Quarterly partitioning of demands aggregated worldwide can produce
very different distributions of observed VTMRs from those observed
at base level because bases are not independent, their covariance
terms typically being positive. The demand processes of many parts
are nonstationary, so if the worldwide data are partitioned quarterly
and the base-level data are partitioned more finely, the worldwide
data will exhibit higher VTMPs.

We make the observation that these demand processes tend, in gen-
eral, to be nonhomogeneous rather than compound processes because
of the sensitivity of the distribution of observed VTMRs to the coarse-
ness of partitioning of the demand stream, and bec- a of the small
number of requisitions with order quantities gres - than 1. This
observation itself is important to our efforts to develop more rational

models of the demand process that will yield improved demand fore-
casts and more effective investments in the face of resource con-
straints. In the several sections that follow, the effectiveness of tak-
ing explicit account of nonstationarity is clearly demonstrated.



j IWAWIU UNCTAMW1
It is important to emphlasis again that the observations discussed
here ap*b to peacetime demand data, not necessaily to demand pro-

*cesses in wartime, not becaus the undering failure pMs
changes, necessarily, but becauise the mix of demands the systeW.
fiom units engaged in combat is likely to look quite diferent from
peacetime demands for many reasons. Our uncertainty about peace-
time demands is lky to be compounded in wartime in ways that we
cannot readily foresee. Many events that are essentially unknowable
in advance are more likely to occur in wartime and generate demands
to which the logistics system must be able to respond quickly.

The notion of .tate-theworld uncertainty and its distinction from
Statistical uncertainty is the kernel of the issue here. Most of the dis-
ciussio in this report pertains to uncertainty of the statistical variety.
While admittedly important to effective and eicient peacetime sup-
port, we do net fully undestand the implications of state-of-the-world
uncertainty for wartime support The problem of better understand-
ing those implications for combat logistics support is undoubtedly im-
portent and desem further research.

*11



4. ALTERNATIVE APPROACHES TO DEMAND

As we saw in our review of past RAND research on the topic of model-
ing the demands for aircraft spe parts, the early researchers tended
to think of these demand processes as stationary, ie., as being ran-
domor vaton about an unknown constant. Recall that there were
numerdo rences to the idea of *the true mmm" in that early liter-
atmre The ides we will introduce in rihe discussion that follows rep-

rita If way of thining about ths stochastic processes, as
thoo-varyin or nonstatinar. j i~'ty (or nonhomity)

cm Produce lage varianoS (th ere larg VTMU) even when the
pvvm at amy given time or at any given base might be simple
Poisson around a changing mea.

Any omission of an important explanatory variable in the demand
modeling procem results in variability in the mean being hmped with
the variability about the mean. As a practical matter, it might be too
cosly to collect data related to every possible explanatory variable;

fj thus one postulates a reasonable failure model and collects data re-
lated only to the variabile in that model. Many potential explanatory
variables are not explicitly considered. It is important to note, too,
that data coUection itself may contribute significantly to the variance
we observe in the process through errors in collection, transmi o,
or processing. As we saw in Section 3, the design of the data-collec-
tion and reporting system may itself induce higher observed variabil-ity in demand owing to the constraint it places on our ability to parti-
tion the observations more finely. Thus the variability we observe in
the demand proess may have several components that are not explic-
itly identifiable. While we may not be able to isolate the contribution
of every factor to the variance we observe in the demand process,
there are gains to be made from separating the variance inherent in
the demand process from that in its underlying location parameter.
The precise functional form of the relationship between demands and
flying hours as well as certain other explanatory variables is dis-
cussed in Appendix B.

The spare parts demand forecasting literature is replete with ideas
for using other measures of activity to predict demands. Changes in
the Air Force's data systems might also facilitate improved demand
forecasting. In addition, many authors have looked at parts failures
and found them to be readily explicable in retrospect (retrodiction
being an easier task than prediction). Th problem is that, even if we

S39
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understood the eftets if masy kinds of events (a the demand pro-
cass, such undrstndimla usefful unless we can predict the events

S themasves. It is iportant to account explicitl for unertty as
mucs possible. By this we do not mean to collect every possible
explanatory variable or put a ress device v
part. We mean to incorporate a realistic assessment of our uncer-
tainty. Mw alternative forecasting methods we disus in this section
fialitste exlcto of our unmcrtainty.
It may be heWlpl to try to characterize the nature and sources of un-

certainly in the demand process. So far we have loosely lumped
tgether nmtatso istic variatio and omitted explana-
tory variabes. In the diausn that lows, we identify types of
uncertainty that may affect the demand process: eca ity

dstructural uncertainty, data uncertainty, and
coefficient and stochastic variance.1

SUNCIWANITY

IThe eSchangeblity judgment is a critical factor in the application of
any forecasting method. To get some dear intuition about this judg-
ment, we must mentally separate out some of the other sources of un-
certainty. Consider a model that is perfect in the sense that we know
all the coefficients and relationship exactly, without the uncertainty
of statistical estimation. The key question is whether such a model
would be a good model of the demand process in the future. If we be-
lieve the future Air Force will be much like today's Air Force with
similar support structures, policies, and strategies, our judgment may
be that our current model of the demand process may be exchange-
able with a model of the demand process in the future. On the other
hand, the Air Force might adopt a support structure with only two
levels of maintenance or introduce technological change that could
substantially affect the repairable generation process. Responses to
exogenous shocks to the system such as might be felt in wartime
could also induce changes in operating policies or procedures that
could, in turn, affect the demand process. In such cases, our ex-
chngability uncertainty would be substantial and some explicit ad-
justment to our forecasting models might be needed.

Although reassuring ourselves about the ity is intrmnsi-
cally diffcult, there are some things we can do to try to enhance
ei. When we build models, we try to include variables

t mral athe i id mmts in this isim m== from our RAND c ,osm DavidIrp and Jamm S. Hedom
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that; ~ ~ i~sme batwm timeotn ifrwnls Ma peiods For

bene e uysned to Ioreast deaado in periods of inaessed,
act~iy.We de this beam. we "ee - omfortab about the

* appllcatiom of the moid to diffrmnt situatims if the model includes
vaiales that we think will expim the difference between the

* -een a"d the NbUrN
Whem e--cha-ngeability uncertainty islarge, end tothink ofit as
staN"M~te-word uncertainty (56]. When it is amall we hope to aco-
comn modate it, at leadt crudely or partially, with, the kinds of models
we discuss in this section.

MOEL ANDWUNMUA UNCEEFADIT

We will refer to the three kinds of model uncertainty as variable se-
lection, variable specification, and structural uncertainty.

Variable selection uncertainty is the uncertainty introduced by our
inability to know exacty and exhaustively wich variables should be
used to forec&a the demands for a particular part. This would in-

I' dude the uncertainty from our inability to use certain desirable van-
ables because of lack of data on those variables.

Variable specification uncertainty is our uncertainty about exactly
how each variable should be incorporated or specified in the model.
For example, should flying hours be transformed into quadratic or
logrth or m rincorporated linearfl

parts during periods of stress Rule-versus-model uncertainty, a spe-
cial case of structural uncertainty, addresses whether certain rules or

intrvntinstake place that are not captured by the model. For ex-
ample, if the Air Force changed its transoraIo policies in a way
that drmantically incedt itom pipelines, they would differ

Iaredy fromn what our models suggest.

DATA UNCETAEN7T
Data uncertainty is the uncertaint that results from errors in record-
ingm trm i~ns or processing data. It is the uncertainty that re-
mifte him lost napae topes: and corrupted data. It is the conse-
quence of reporting omnissions that may well be the result of necessary

cirumvntinsof standard procedure. As is the case with the omis-



d.m of impurtant explisty vaibls this is a udifficult kind of
asishiIhe to veprt mb* VIft chumpgs from period to IerioPr

mUWph a iF8MMaiC mdrpsuWs of dlying luur by 10 percent
dese not is - ec of a Puu h hr ulemand fareasting. Pr.-

mlythe sysos wil j"n sd up wAh a demand rate that is-ibe tha the 4ue" deand raIML This will result in nore or lsse
the apprawiaft dmmkuas The problen is when the data a ror vary
from period to period, inducing additional, inexplicable variabilit.

PAAIIUon OMIW VARIANCE

Another source of uncertainty is coefficient variance. This is the un-
certainty that results from estinmating coefficients in a model statisti-
cally as opposed to knowing them exactly. For example, in the tradi-
tional regression model, y = a + ba + e, coefficient variance would be
the consequence of our not knowing the numerical value of b a priori
in many applications, this in the only source of uncertainty that is ex-
plicitly considered and, ironically, it is often the least important

3UCHSIC VARIANCE
The final source of unceraity is the stochastic uncertainty resuldting
from a prediction. Even if the probability of a coin coming up heads is
known to be exactly 1/2, there is stochastic uncertainty about the out-
come of any individual toss. In the rersinmodeling context, this
cowrespo nds- to another draw from the error distribution (the epsilon1
in the expression y = a + hx + e) for a future observation. The om-
bination of parameter and stochastic variance is sometimes called- varianes. The curnt system ignores -aaee variance
and all other sources of variability, incorporating only an estimate Ofa stchatic arines its dersetton of uncertainty.

ACCOUNTING FOR UCTITE
The sum of all these sores of variability, except the traditional pa-
raweter and stochasti variance, makes up the nosaoaity that
we se in parts demand processes. The bulk of it results from re
causes that we do not understand a priori or do not measure.
Although we cannot include all of these sources of uncertainty explic-

will show, 0F mI Ig approaches that try to account hor as mny of
thesea 1,nofprnwm w*aspaae m w srefctov thantify
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Our abd]ty to acitt for them soures of v f deed upo
t9 sum. o d m u s to the vaiian. of t. process remain-
ing roughl constant over, tine. This bwa b Aity j Sme
in tl variance scl It is posible, for exam mean of a
process. is drid g oer time but the varince of that mooeient is
constant The models we consider in tho sectio incorporate this
lgic, slthouh it is no mem o well ouw Fo eampl thee is

every reason to believe that demand variablty will inreue radically
dumg wartime. Our principal argument is mply that any attempt
to iorporat n a arity proba be than assuming that
it does not exist however, tring to Jincorporate in the
variance adds a layer of eompleity that is piobaby unw

An added bonus _nwo prn o ionaity explicitly in our
models of the demand process is that we then have a handy knob to
turn when we face future uncertainty that is larger than usual. For
example, in the transition to wartime we could increase our estimate
of the sum of these variance components to make the system more re-
sponsive to the first incoming wartime data. We may not be able to

Sforecast the direction of change in mean demand rate in a particular
set of circumstance, but we may be able to increase our estimate of
the variance fairly easily to represent our increased uncertainty about
the future. We should do everything of this kind that we can before
we throw up our hands and claim that no forecasting of the future is
possible.

THE KALMAN FILTER
We begin our discussion of alternative approaches to demand fore-

casting with the Kalman filter, a model that explicitly incorporates
nonsationarity by treating the mean of the demand process as a ran-
doa variable. The mean need not be a simple random variable with
the Kalman filter, it might also be a sonewhat more complicated
model akin to a description of the mean as in a regression function.In this section we will explore the logic underlying the Kahaan filter.
Even the simplest Kalman filters have two important characteristics

that make them very powerful in representing the particular and spe-
cial features of parts demand processes: (a) They explicitly model the
location parameter, or mean, of the process as a random variable, and
(b) in exac* the manner suggesd by Kenneth Arrow [28], they not
only give geter weight to more recent observations than to older
ones, they also assign greater uncertaint to forecasts in the distat
future than to those in shorter planning horizons, an intuitively ap-
pestling notion,



Kalmian ftoer an especially rich dan of models originally intro-
duced. in the electrical miglasering literature by Kalman and Bucy
[61. t - f a a
to,.. Thy have oins grow in breadth of application to many fields,
e.g., control theory (,,glns stochastc parameter regression
models (ecmomics and finance), and Bayesian predltive methods
(stdatstics). The view of the Kalman flitar underlying its exposition
here derives from Bayesian statistics (621. In their application to
modeling demands for airraft spare parts, Kalman filters are a natu-
ral extension to Bayeden. statistics in the sense that the probability
dIition of the paranmers underlying the demand process are
updated with each new observation. As we will discuss at somewhat
greater length below, the Kalman filter also has the important char-
aeristic that its perormance is fairly robust with respect to its un-
derlying assumptions. In many applications, Kalman filters have
been observed to perform better than expected when their assump-
tions ae not met

In the remainder of this section we introduce a simple Kalman filter
model and examine its properties. Then we introduce a more general
model and discuss an example of its applicatio We will then discuss
a simplified version of this approach, weighted regression, that is eas-
ier to implement and show the results of our evaluations of a
weighted regression approach to demand forecasting in terms of tra-
ditional statistical measures of forecasting error. Finally, we demon-
strate its cost-effectiveness in estimating spares requirements in
terms of aircraft availability and spares investment costs.

INTRODUCTION TO THE SIMPLE KALMAN FILTER

A Kalman filter model consists of two parts: a state equation and a
measurement equation. The state equation describes the way the pa-
rameters vary over time. In the simple model that we are about to
examine, the mean is the only parameter underlying the process that
will be of interest The state equation of the simplest Kalman filter
model is given by

Pt =P Ot-i + wt

where Pt is the mean of the process at time t, P--1 is the value of the
mean at time t - 1, and wt is an error term that is N(O, Wt), i.e., nor-
mally distributed with mean zero and variance Wt. This variance
represents the sources of uncertainty that we have discussed in pre-
ceding paragraphs.
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zT-- en~ ~ quatin relates the meen to the observations of

twros he-rOI -b - equation of this procesis given by

Yt = At + Vt,

where vt is N(O, Vt). 0 has a normal prior distribution described by
its mean and variance. In this application, the prior distribution of
the mean will be derived from past observations of the process or of

other, similar processes using an empirical Bayes approach, rather
than by subjective judgment as is sometimes the case in Bayesian ap-
plications. In the following discussion the caret (A) is used to denote
estimators and oyt will denote the edvance of Pt at time t.
Using this notation, the prior for P0I is N{o,'o). The distribution of
the mean will be updated with each ob eeation of the process.

The idea is that we observe Yt, a realization of the process whose
mean is, momentarily, Pt. Pt is related to Pt-, but is not forced by as-
sumption to be the same. This modeling procedure yields a natural
approach to updating the distribution of Pt, a natural prediction
method for future values of the process, and prediction error esti-
mates that are more reasonable than those obtained from fixed pa-
rameter models. The error term, v. represents stochastic variance as
in most statistical models. It affects one observation only; it is 'noise"
in the traditional sense. The wt is an error term of a different sort. It
is the difference between the underlying, nonstationary mean at two
adjacent points in time. It is not transitory;, i.e., it has a lasting effect
on the process. It corresponds to a variation in the mean over time in
the fashion of a random walk.

The computations of estimates and predictions using this model are

fw The estimation and prediction formulas are recur-

sive; the estimate for Pt is computed from the estimate for Pt-, and
from the current observation.

The estimate for Pt given Y, = Y1, Y2 ,Yt is [631:

cT_ 1 + Wt
Vt + - 1 + Wt

This can be thought of as the result of miln two estimates of known
variances: Pt having variance oFt-1 + Wt, and Yt having variance Vt.
This is nearly the same as simple exponential smoothing with a
smoothing constant of a, except for the effect of the prior;, however,
the effect of the prior diminishes as additional observations of the

process are made. In the long run, the predictions of the two ap-



prechas becamidtsuihb. This is true only for curtai s-
cial case of the Kalma filter. More s-hsiae Kalman filters
cannot necessarily be equated to simple exponential smoothing.

The measur, of uncertainty (the posterior variance) associated with
the current state Ot is [63]:

Note that this is the harmoni c mean of the two variaces, t_ +
and Vt. In Bayesian statistics, this is the usual posterior variance
associated with a normal mean when the observation variance is
known.

Several numerical values are required to support this method

O, , v, and

Often, Vt and Wt are assumed to be unchanging over time. They de-
scribe, respectively, the likely magnitude of the measurement error
and the period-to-period variability in the underlying mean. For
some applications, it may be possible to estimate them quite accu-
rately through data analysis; in other applications, V and W will be
knobs that need to be tuned, with the results judged by methods that
we will discuss below. In specifying the numeric values of W and V,
we implicitly specify the ratio of stochastic variance to the sum of all
of the other sources of uncertainty.

Estimating and Predicting the Updating Equations for This
Special Case

We now examine the procedure for predicting k periods into the fu-
ture and for attaching a measure of uncertainty to the prediction. Of
course, k equal to 1 is the most common case.

Consider the problem of predicting for time t + k; note that

Pt+k --- Pt + Wt+l +"" + Wt+k and Yt+k = At+k + Vt+k,

so the prediction is
k

E(Yt+kIY,) = E(Pt + I Wt+j + vt+kY) = Pt
J-1



Note that there is no de inistic directio in the variation of the
underlying mea c nce the expected value of w, is zero; thin the ex-
pected value of the pane k periods in the ftime is the same an the

rent estimate of the mean, but the measure of uncntainty (pr-
dictive variance) grow with the length of the forecasting horizon as
shown by

var(Yt+kIY,) = Vt o + kWt

The three terms in var(Yt+kIY t) correspond, respectvely, to mea-
surement error in Yt+k (stochastic variance), uncertainty about the
current value of 0 (parameter variance), and the variablity in 0 over
the k time periods between t and t + k (variance from all other
sources). Intuitively, at least, this logic is superior to traditional
methods of prediction. We know that if we are predicting far into the
future we are les certain of our predictions. This logic reflects that
uncertainty.

The expressions for t and t reflect that Ot is really most affected
by the ratio of W to V, and that of is more affected by the magnitudes
of V and W. The same is true for the predictions and the predictive
variance: The prediction is mainly influenced by the ratio of W to V,
the predictive variance more by the magnitudes of the variances.

Building Intuition About the Simple Kalman Filter Model

The Kalman filters that seem most appropriate for spare parts de-
mand forecasting are somewhat more elaborate than this simple
model. Nevertheless, building some intuition about this simple model
may be useful in understanding the strengths and weaknesses of this
forecasting approach. We will examine four archetypal data series
and observe how the Kalman filter forecasts each one: step function,
outlier, ramp, and oscillation. For each of these data series we show
the Kalman filter's predictions one period ahead, in some cases with
several different ratios of state variance to measurement variance.
We will contrast these predictions to those from the traditional eight-
quarter moving average. For all of these illustrations, the priors for
the Kalman filters were set to a mean of 0 and a variance of 1. The
effect of changing this prior is discussed below. As mentioned above,
the predictions of a Kalman filter are primarily affected by the ratio
of the state variance to the measurement variance. This ratio is in-
cluded in the labels for the predictions used here; e.g., "Kalman 1:4"
implies that the measurement variance is four times as large as the
state variance.
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Figure 4.1 shows the response of several Kalman filters and an eight-
quarter moving average to a change in level (step function) in the
data. Note that the higher the ratio of state variance to measurement
variance, the more quickly the predictions adjust, because a high
value of this ratio more heavily favors the observed data. Part of the
art of Kalman filtering is adjusting this ratio to respond to real
changes in the mean without making it so sensitive that it leaps
around in response to noise in the data.

Figure 4.2 illustrates the response of a Kalman filter to a spike in the
data. The prediction responds to the large data value but then dies
down fairly quickly. The moving average does not react as much but
the reaction persists for a longer period.

Figure 4.3 shows the response of the Kalman filter to a ramp in the
process. Note that the Kalman filter's predictions are closer to the ac-
tual data than the predictions of the eight-quarter moving average in
all but one period. The Kalman filter tracks the ramp better than the
moving average and then responds quickly to the return to zero.

Figure 4.4 illustrates the response of the Kalman filter to an oscillat-
ing process. This is the kind of process that might result from annual
cycles in the data. This example illustrates when a simple Kalman
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Figure 4.1-A Step Function



F I I1.I: |ll l

;: 49

0.0
0.9 

0.6
0 6 - --0- Kalman 1:1

J. 10.5

0.4

0.3

0.2

0.1

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Quarters

Figur 4.2-An Outler

16

14 a- -G- A~cuai

-0- 8-quwto moving

12 -averag

-- Kalman 1:1

i i LIZ
4

2

0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Qumters

Fiure 4.3-A Ramp



60

.-- AftW - 6.s t fwAra -4- Mman 1:1
,!0

1.01.8

1.4

1.2

i1.0

0.8

0.6

0.4

0.2

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Quarters

Figure 4.4--An Oscflating Process

filter might be inappropriate. More elaborate Kalman filters have
been designed to deal with cycic behavior. If a particular Kalman
filter model forecasts poorly, there are many extensions and
enhancements available to treat most common forecasting problems.

Figure 4.5 addresses, the priorthas no effectohere Kalman filter's
predictions. This graph changes the prior mean to 5.0 and leaves all
other values unchanged. The effect of the prior has disappeared by

i the eighth period. Since we are comparing the forecasts to those from
i an eight-quarter moving average that doesn't start producing fore-
~casts until period nine, the prior has no effect her. In general, the

prior could have an effect after eight periods if the state variance and
the prior variance were very Small or if the prior mean were very
large. In later applications in this report we will use noninformative
priors and will be careful to avoid highly influential (informative) pri-

t Or.
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INTRODUCTION TO THE GENERAL KALMAN FILTER

MODEL

A general Kalman filter model allows us to handle more realistic
measurement equations and state equations. Explanatory variables
may be added to the measurement equation and trends or cycles may
be added to the state equation. The state equation can allow different
rates of change for different parameters of the model. These features
make the general model especially flexible and powerful in modeling
more complicated processes.

Development of the General Kalman Filter Model

The Kalman filter model can be generalized to vector-valued parame-
ters and multivariate observations. The formulas are quite similar,
except that vectors and matrices replace the scalar values. The state
equation of the general model is given by

P= At" Pt- 1 + wt '

and the measurement equation by

S-- m m m mmm i m m • I .. . a C M ~ N eMi S. " . *.-- .*-*~** -



Yt = Xt. Pt + vt,

where wt is distributed N(O, W t) and vt is distributed N(O, Vt), where
the N denotes the normal distribution. Po has a normal prior de-
scribed by its mean and variance. Pt is a column vector, At is a square
matrix, and X, is a matrx Note also that Xt need not be square and
Yt and Ot need not be of the same length. Indeed Yt is often a scalar.
W t and Vt are now covariance matrices rather than scalar variances.
We use this "normal-normal' model for computational convenience.
Below we discuss the use of transformations to fit the discrete nature
of the data better.

This more general model will be used in the demand forecasting ex-
ample given below and will be discussed as it applies to demand fore-
casting in following sections.

Building Intuition About the General Model

It may be helpful to examine an application of this general model to a
specific example. The following example uses data on a component of
the F-111 aircraft, an airspeed indicator.

In this application, the number of observed demands in a time period
(quarter) is modeled as

V t = Pot + Pjtft + vt,

given P06 and Pt, where 4 denotes hundreds of hours flown by aircraft
in which the airspeed indicator is installed; i.e.,= 20 means that the
airspeed indicator experienced 2,000 hours of use. This is the
measurement equation. The error term vt is normal with variance Vt
to be specified. The quarter-to-quarter evolution of Ot will be modeled
by the state equation

=t+l Pt + Wt

where wt is a bi-variate normal with zero covariance and variances
Wt and W2, to be specified. Otis the vector containing Pot and Pt.
Thus, in the notation of the previous example,

Ot = (Pot, Pjt) treated as a column vector,

Ft =[1,ft] treatedasa 1 x 2 matrix.



Some things need to be specified to tart up the KaIlman flter m-
chinery. In the current problem, theme eight numbers are

* The mean and covariance matrix for & two means, two variances,
4 and a covariance,

0 The two state variances Wit and W2, (the state covariance is sped-
fled to be zero here), and

* The measurement variance Vt.

This case differs from the simple example in that, in the former case,
the state and the measurement were on the same scale. In this case,
the state is described by a vector of regression coefficients, and the
measurement is an observed number of demands. They are connected
by Ft. One implication of this is that the state and measurement vari-
ances are on different scales, which makes them somewhat harder to
compare. The state propagates by an identity matrix; i.e., the only

jchange from one period to the next is stochastic.

In this discussion, we will use a somewhat ad hoc method of setting
the starting values for the filter. For the prior values we will just
regress the first eight quarters of demands on the flying hours and
use the parameter estimates from this regression for our prior values
for [0. We will use the estimated covariance matrix from this regres-
sion for 2o.0 Setting the state and measurement variances will be a
two-stage procedure. First, we will divide the variance of the first
eight quarters of demand and explore alternative allocations of that
variance between the state and measurement equations. Second, in
the state equation we will divide the variance between Pot and Olt
equally. Half of the state variance will be assigned to Pot; the other
half will be divided by the mean of the first eight quarters' flying
hours and assigned to Olt. This division will make the contribution
from the variance of Plt (after it has been multiplied by flying hours)
to the overall variance roughly equal to the contribution from Pot.

A full Bayesian treatment of this problem would require much more
careful thinking about the prior values for each part. Since it is ulti-
mately impractical for us to engage in a careful specification of the
prior for each of the parts in the Air Force inventory system, we must
use simpler rules. We can evaluate different rules for specifying
the priors by observing the quality of their predictions over a wide
range of parts. This is an example of a pragmatic application of the
Bayesian paradigm. In a discussion below, we will use a more easily
implemented approximation to th Iman filter, the weighted re-gression forecaster.



Figures d d 7 iumina the effec of the variances on the p-
dictaons of this type d model Figure 4.6 shows the results of making
the state and - t variances roughly equal. Note that the
P rdim generally increase with the observed data until the middle
of the sample pnod and then drop down. Generally, the patter is
that predictions lag the demands by one period; i.e., if there is a drop

in demands, the predictions typically drop in the following period.This is not necessarily the case, however; demands increased slightlyin period 26 but the predicton decreased in period 27 owing to a
change in flying hours.

Figure 4.7 illustrates what happens if the state variance is set to zero,
oresponding to fitting a regression to all the data up to time t and
then using the regression to predict for time t + 1. Notice that in the
middle of the sample period the predictions underpredict demand.
This happens because this model is still giving full weight in its pre-
dictions to the early periods, but the world has evolved away from the
demand rate that described this early period.

Values of state and meaurement variances that are between these
two cases would provide intermediate levels of smoothing. Note that
making the state variance large will not produce a flat horizontal line;
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i.e., it smooths the underlying regression parameters, not the de-
mands. The effects of the variation in flying hours will still be seen in
this graph.

Robustnes of Kaltan Filter.

Why is it advantageous to use time-varying coefficients instead of a
bigger variance on the error term vt? Suppose some function relates
expected demands to flying hours.

* If the function is linear and unchanging in time, then the Kalman
filter has to do worse than a model that assumes fixed coefficients,
because the Kalman filter makes less use of older observations
when they are just as good as recent ones. An example would be
using the sample mean as opposed to exponential smoothing to es-
timate a stationary population mean, a case in which exponential
smoothing is inefficient.

* If the function doesn't vary in time and is nonlinear, the Kalman
filter will be better than a fixed parameter model if the flying hours
are positively autocorrelated in time, because at any given time the
Kalman filter is linearly approximating the correct part of the



~i

con-ht us, the pert of tim curve asoiae with the curn fly-
; ing hzours-bemcaue of the presumed autocorreation of flying hours.

.;I Ion the other hand, the curve really is linear but the slope and
intercept vary over time (for whatever reason, such as omitted
variables), the Kaiman filter works better than the fixed parameter
model if the dlope and intercept are positively autocrrelaOtd in
time: Old data tell you less about where the line is than do current
data. Again, if the mean is a random walk, the exponential
smoother will beat the sample mean in estimating the current
value if the variance of the random walk (Wt) is large enough.

In general, we may observe both nonlinearity in the relationship be-
tween flying hours and expected demands and a changing relation-
ship over time. The Kalman filter, in effect, smooths in both time and
in the regressors, thus achieving greater adaptability in the face of
changing parameters and flying hour programs. If the required auto-
correlations are present, the Kalman filter should do better. This
may help explain the observed (but somewhat mysterious) robustness
of the Kalman filter.

Relationship to Other Prediction Methods

One useful charcterist c of Kalman filter models is the way they
generalize other well known time series and forecasting methods.
Unfortunately, this has caused some confusion in the literature. It is
not correct to claim that Kalman filtering is "just exponential
smoothing" as is sometimes heard. Exponential smoothing is a spe-
cial case of Kalman filtering but Kalman filtering incorporates a
much richer collection of models. In Appendix A, we discuss some
well known statistical models and how they can be written as Kalman
filter models.
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5 MORE FLXIBLE DEMAND AND NRTS
FOECAM~

In this section we will ap*ly two alternative forecasting m o& to
the demands for a sample of aircraft spare parts. Both of thee medh-
nonstationarity of the demand proem. The two basic types of Predic-

tio methods we consider here are (1) weighted calculation of demand
rates, and (2) weighted regression demand forecasters. We also
examined the performance of Kalman filter regression forecasters in
this research but concluded that the weighted regression methods
performed at least as well and were more easily implemented. The
weighted regression forecaster can be thought of as a special limiting
case of the Kalman filter regression forecaster that hnoporates a
noninformative prior; therefore, it has the special advantage in an
application as large as the Air Force's recoverable spares inventory
system of not requiring the specification of the priors needed for the
Kalman filter regression forecaster [63].

The quality of predictions is evaluated here in two different ways,
root mean squared error (RMSE) and mean absolute deviation
(MAD). In subsequent discussion, we evaluate the predictions in ac-
tual application to sparesquirement computations with a capabil-
ity assessment model, Dyna-METRIC Version 6. Root mean squared
error is defined as

'2R*= __back- tanw ormedpredicted value - D i
* ~RMvSE=

i= n

where Di is the demand in period i and the back-transfomed
predicted value is typically the prediction from the model. In a few of
the models considered here, the forecast variable is in the square root
scale, so back-transforming (in this case squaring) is required to put
the predictions in the appropriate scale.

Mean absolute deviation is defined as

MAD n ±back-trasfomed predicted vlue1 -

1=1 n

where the I I symbol stands for the absolute value. This summary of
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the quality of the prdction weights larger predictive emrors les
4 severely than RMSE does. Whether these or any other measures of

predictive quality are appropriate depends on the application, but
these measures will do for illustrative purposes.

Throughout this section we will use these measures of predictive
quality to compare alternative forecasting methods with the forecast-
ing method based on th eight-quarter moving average now used by
the Air Force.

Since our motivation for exploring alternative demand modeling and
forecastin techniques is to improve the estimation of requirements
for aircraft recoverable spares and depot-level repair, we are inter-
ested in the performance of alternative forecasting techniques over
the time horizons applicable to the requirements estimation problem.
For depot-level repair, as a practical matter, the forecasting horizon is
only two quarters. Although repair planning is also done over longer
planning horizons, the Air Logistics Center has considerable quarter-
to-quarter flexibility in adjusting repair quantities. For spares pro-
curement purposes, however, planning horizons are typically about
three years long because of the source selection and manufacturing
processesinvolved. Exploration of methods that might help alleviate
those constraints are beyond the scope of this work. Therefore, we
will deal with these longer horizons in the requirements forecasting
problem and will examine the performance of alternative forecasting
methods over planning horizons as long as 13 quarters.

THE PARTS SAMPLE

The sample of data used in these examples consists of BP15 recover-
able aircraft spares from D041 with one or more demands in the pre-
vious eight quarters and a program select code of one (i.e., the de-
mands for these parts are assumed to be driven by flying hours). The
time period of the data runs from March 1980 to March 1989 by quar-
ters. The sample was further restricted to parts that had incurred
more than four demands systemwide in at least one of the 40 quar-
ters. There is little reason to expect that the techniques we consider
here can improve demand predictions for parts that never generated
more than four demands in a quarter over 40 quarters. We also re-
stricted the sample to parts that had valid demands (zero is a valid
demand; missing is not) in at least 12 quarters. Although the predic-
tion techniques considered here need at most eight quarters of data to
get started, we need a few quarters of data with which to evaluate the
quality of their predictions.



Miusing values and zero demands are isues in thes data We use an
operational definition: If there are flying hours in the record for the
part and zero or missi demands, then we infer that the part had
zero demands. If the part has zero demands and the flying hours are
missing, then the demands are missng.
These restrictions left us with 14,007 parts in our universe. We
stratified these parts into three groups. Group 1 consisted of parts
with an average demand of more than 15 per quarter in the quarters

where the demands were not missing from the database (4,215 parts).
Groups 2 and 3 both had less than 15 demands per quarter on aver-
age. Group 2 consisted of parts that cost less than $2,500 (4,966
parts). Group 3 consisted of parts that cost more than $2,500 (4,826
parts). From each of these three groups we selected a random sample
of 200 parts for the evaluations.

METHODS AND RSULT

In the discussion that follows, we explore the performance of
weighted calculation of demand rates and weighted regression fore-

U casters.

Weighted Calculation of Demand Rates

A simple compromise between the more sophisticated forecasting
methods considered in this section and the Air Force's current eight-quarter moving average forecasts is weighted demand rates. The cur-
rent system calculates the demand rate as

t
XDi

Demand rater+k =

Xflij
i=t-7

where Di denotes the ith quarter's demands, fhi the flying hours in
the ith quarter, and k the number of quarters into the future.
Forecasts are then made by simply multiplying this rate times the fu-
ture program:

Predicted demandst+k = demand ratet+k fht+k.

A simple way to make this model more responsive is to weight recent
observations more heavily than older observations:
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DemandI ratet+k t with

int-7

A Kaiman filtering approach suggests weights of the form wi= ati.
We tried values of a of 0.25, 0.5, and 0.75; the results for a f 0.25
were aberrant and are not included here. We also tried a four-quarter
moving average without weights as another ad hoc way to gain some
responsiveness in the forecasts. Figures 5.1 and 5.2 reflect the root
mean squared error and mean absolute deviation, respectively, over
various time horizons up to 13 quarters in length, for the four ap-
proaches. These are calculated from the sums of the predictive qual-
ity measures over all the parts in Group 1. We tried these methods
for Groups 2 and 3 as well, but they did not perform better than the
current approach, possibly because of the failure of the normality as-
sumption or insufficient information content in low-demand data.
These results show that weigi.ted demand rate forecasters perform
better than does the current approach. The fact that the four-quarter
moving average also does better than the current approach suggests
that the current approach is not sufficiently responsive to non-
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Figure 5.1-Root Mean Squared Error of Weighted Demand Rate
Forecaster for High-Demand Parts
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Figure 5.9--Root Mean Squared Error of
Weighted Regression Forecasters

of a. However, there are additional gains to be made by adjusting the
value of a for both approaches.

THE COMPUTATIONAL ALGEBRA

The weighted regressio 'orecaster we recommend is specified in the
following algebra. Suppose we observe the most recent eight quarters
of demands and past item flying hours in the sequence d, d2,..., 4,
and fhl, fl 2,..., fh, respectively. We will use the weighting factors
wl, w2,..., and w. to assign greater weight to the more recent quar-
ters by setting the {wi }equal to 0.758-', 1 = 1, 2,..., 8. Thus the
weights will be

w, = 0.757 = 0. 1335, w 2 = 0.756 = 0. 1780, w3 = 0. 2373,

W4 = 0.3164, w5 = 0. 4219, w6 = 0.5625, w 7 = 0.751 0. 75, and

w8 = 0.750 -1.0. Thesumof{w i } = 3.5995.

I
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Let the notation Ii be defined to mean the sum taken over the eight
quarters. The weighted mean demand, D *,is given by

D* wii=

and the weighted mean flying hours (item program), fl 4 ,by

fh4' =Xwifi/X w1

We define

I* M= (Xw) (7ijjh) L ii (Xiwjfhj)

and

= ~wixii~fii2I(7,,wifh,)
2

jiji2 LI
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Then
I '

1 =/and I0= D* -01

If P1 is negative, revert to the eight-quarter moving average.

NRTS FORECASTING

NRTS forecasting is especially important in depot repair planning.
NRTS actions are one subset of base-level demands, the other two be-
ing repairs and condemnations. Over longer planning horizons, the
current methods are subject to large errors. We explored alternatives
to the current method and describe the results here.

An improved method of forecasting NRTS actions results from com-
biming the improved demand forecasting method with an improved
method of forecasting the NRTS rate. Again, the method is recom-
mended for high-demand items. The forecast of the NRTS rate is
done by weighting more recent observations of the NRTS rate more
heavily than older observations using a simple exponential smoothing
technique and a weighting factor of 0.75. In the notation just intro-
duced,

NRTS rate = iwiNRTSi/Xiwidi,

where NRTS i is the number of NRTS actions in quarter i.

This NRTS rate estimator, combined with the improved demand fore-
casting technique already discussed, delivers the performance re-
flected in Figures 5.5 and 5.6 for high-demand items. The alternative
method dominates the current method in root mean squared error
over all planning horizons examined. In mean absolute deviation,
though, the current method does slightly better for shorter planning
horizons. The alternative method is our choice for any planning hori-
zon.

CONCLUSIONS

The compelling message of Figures 5.3 and 5.4 is that any one of
these demand forecasting methods clearly dominates the eight-quar-
ter moving average and their superiority increases with the length of
the forecasting horizon. The question remains, then, of which method
to choose. For two reasons, our choice is the weighted regression
forecaster with an ot of 0.75: (a) It scored best in its average ranking
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among RMSE and MAD scores relative to the other methods, and (b)
ii it is more intuitively appealing than methods that effectively use any

less of the available data. For example, the four-quarter moving av-
erage did quite well in terms of mean absolute deviation but depends
on four quarterly observations to estimate two parameters, hardly an
appealing idea. It is also appealing that the weighted regression fore-
caster with an ot of 0.75 does not have such a steep slope in its
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weighting of the eight quarters of observations as do weighted
regression methods with smaller values of o.

!It is important to understand that the apparent superiority of the
weighted regression demand forecasters over the weighted demand
rate forecasters partially derives from the inclusion of a non-zero in-
tercept in the model of demands as a function of flying hours. This
feature is important; it departs from an assumption of strict propor-
tionality between demands and flying hours. The weighted regres-
son demand forecasting procedure explicitly estimates the intercept.

By both of our evaluative criteria, the a = 0.75 weighted regression
demand forecaster does fairly well for Group 1. Therefore, for items
in Group 1, we recommend it as the default demand forecaster for
spares requirements computations. In any event, the use of the eight-
quarter moving average should be discontinued for high-demand
items.

For NUTS forecasting, the improved NETS forecaster incorporates
the improved demand forecaster and adds an improved NRTS rate
forecaster that also uses a 0.75 weighting factor. It dominates the
current method in root mean squared error over all planning horizons

4 ! examined and dominates the current method in mean absolute devia-
tion over long planning horizons. We recommend its use as the de-
fault NRTS forecaster for items in Group 1. We propose no change for
Groups 2 or 3.



6. VARIANCE ZOTIMATION

Estimating the variance of demands fbr aircraft recoverable spare
parts is difficult for two reasons: (a) The statistical problem of vari-
ance estimation is, in itself, difficult because estimators of variances
typically have very high error variances themselves, and (b) because
our model of the demand process is so imperfect, the effects of many
factors on the observed variability in the process are lumped into our
estimate of the variance, as we discussed in Section 4. In this section,
we discuss some characteristics of the VTMR estimator introduced in
Section 3, suggest an improvement to variance estimation that cor-
rects a logical flaw in the current system's specification of variance
and, finally, mention a few approaches to variance estimation that did
not work well.

SOME OBSERVATIONS ABOUT THE VTMR ESTIMATOR

To understand better the role of nonstationarity and data partitioning
in estimating the underlying VTMR, we explored some of the charac-
teristics of the VTMR estimator in both stationary and nonstationary
processes: (a) The variance of the estimator increases with the
coarseness of the partitioning and the true VTMR even when the pro-
cess is stationary, and (b) very serious overestimation of the true
VTMR (i.e., the VTMR of demands around the mean, stationary or
nonstationary) occurs in the presence of nonstationarity, and the
overestimation is an increasing function of the demand rate. These
findings are fundamentally important to any use of the VTMR esti-
mator in spares and repair requirements computations. They are
consistent with (a) the association of larger values of observed VTMRs
with high-demand items, (b) the substantial differences between the
distributions of observed VTMRs discussed in the context of the
Bitburg data analysis and those discussed by Crawford [21, and (c) the
wildness of the distribution of observed VTMRs around the power
function used by AFMC to specify VTMRs to describe the probability
distribiron of the number of items of each type in resupply. Forecast
variance is discussed below.

Consider a simple Poisson demand process with a mean of 10 per
quarter. Given this stationary process and eight quarters of observa-
tions, the VTMR estimator has a standard deviation of 0.53. Even
with this very well behaved process, we can expect to observe a
VTMR of about 1.9 or more about five times out of 100. Thus, in ob-

67
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serving a substantial number of parts demand histories, one should
not be surprised to see some large VTMRs, even if the underlying pro-
cesses are simple Poisson. It may be incorrect to conclude that some
of the processes have large underlying VTMRs. The risk here is that
we may tend to confuse the large variability in the sampling distribu-
tion of the VTMR estimator with variability in the underlying process.

The same risk applies to inferences in the other direction. We may
observe a low VTMR for any individual part when, in fact, the VTMR
underlying its demand process is substantially greater than the value
of the estimator. One approach to reducing our vulnerability to error
in estimating the variability underlying a demand process for an in-
dividual part is to pool our estimates of variance across parts. In the
current system, this pooling is accomplished through the application
of the power function discussed previously. It may seem unsatisfying,
but it does eliminate much of the instability in variance estimation
across time that would occur if variances were estimated part by part.
Part-specific variance estimation would also induce much greater
volatility in numerical values of the AFAO over time, in turn inducing
procurement actions in response to momentary changes in the esti-
mated variances of specific parts.

Effects of Bias, Data Partitioning, and Nonstationarity
on the VTMR Estimator

We describe briefly in the paragraphs that follow the bias function of
the VTMR estimator and its mean and standard deviation as a func-
tion of data partitioning, mean demand rate, underlying VTMR, and
two specific examples of nonstationarity in demand. The results are
important in their implications for spares and repair requirements
estimation as well as in explaining some of the observations of earlier
researchers in this area. They also serve to underscore the difficulty
of the VTMR estimation problem.

In Figures 6.1 through 6.3, we hold the total time period constant and
subdivide it into periods of various lengths. The mean we refer to is
the mean number of demands per time period.

Figure 6.1 reflects the VTMR estimator's bias function with demand
processes with underlying VTMRs of 1.0, 2.0, and 3.0. With a sta-
tionary process, the expected value of the VTMR estimator is unaf-
fected by the partitioning of the data. The bias is very modest above
50 or so total demands in the time period. Since the high-demand
parts tend to drive the performance of the inventory system, the ef-
fects of the bias function are probably not important in shaping sys-
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i tern performance. At the systemwide level used by AFMC to compute
i spares requirement, the bias function does not play nearly as impor-

~tant a role in VTMR estimation as nonatationarity, as we will show.
i The effects of nonstationarity can entirely swamp the bias by in-
~ducing estimation error in the opposite direction, i.e., overestimation.

~Figure 6.2 illustrates the effect of data partitioning on the standard
! deviation of the VTMR estimator with a stationary Poisson process.

Each curve represents a different partitioning of the data as
explained in the legend. The coarser the partitioning, the higher the

~standard deviation of the estimator. Note that expected total
; demands has very little effect. The slightly smaller values associated

with expected total demands of five are probably due to the default
value of 1.0 being assigned to the estimator for the random

~realizations in which no demand occurred. In this particular expo-
~sition, partitioning alone almost triples the standard deviation of the
Sestmtor. The current system operates with quarterly data; there-
! fore, it is vulnerable to the phenomenon shown here. A finer par-ti-
i tioning of demand data could decrease the standard deviation of the
~VTMR estimator.

i
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10-i W lty*ARmpftoss
We next examine a nonstationary process whose mean changes lin-
early during a two-year period from 0.5 to 1.5 times the overall mean.

Wt W tito tining of the data into 2 4 equal periods (roughly corre-
sponding to months) and expected total demands of 50, for example,the meani demand rate per period is 50/24 - 2.08W3. In the cas of

this ramp process, the expected demands per period are 1.0417,
1.1322, 1.2228,..., 3.126. Figure 6.3 shows the effects of partition-
ing and expected total demands on the expected value of the VTMR
estimator in the case where variation around the changing mean fol-
lows a Poisson process. Both treatments have remarkable effects.

We direct the reader's attention to the middle curve in Figure 6.3, ie.,
the curve representing a partitioning of the data into eight periods, as
is the case in the current system. The length of the periods is roughly
a fiscal quarter. Note that the expected value of the VTMR estimator
increases from about 1 to 14 a a function of the total demands in the
two-year period. Although the increase in the mean from 0.5 to 1.5
times its average value is rather steep, it does serve to underscore the
dramatic effect that nonstationarity can have on the observed VTMR.

This is only one of the two important effects reflected in this illustra-
tion. Note that, for an item with 1,000 total demands in the two-year
period (an average of 125 per "quarter,* an unusually high-demand
item), partitioning of the data has a dramatic effect on the expected
value of the VTMR estimator. Moving from eight periods to 24 peri-
ods in the two years of demands reduces the expected value by about
two-thirds. Even as we move toward the left of Figure 6.3 to smaller
values of total demands, finer partitioning of the data still has major
effects for items whose demand rates are more typical of those in the
inventory system. Of course, if we knew that the underlying mean
was a ramp process, we wouldn't estimate the VTMR in the tradi-
tional way. The point is to illustrate that the direction of the error is
typically positive.

The combination of these two effects, coarseness of partitioning and
nonstationarity, can result in some very large values of the VTMR es-
timator when the demand process is really quite well behaved around
a nonstationary mean. There is little question that we are over-esti-
mating VTMRs in the current system when we view those VTMRs as
representing the stochastic variability in the demand process. The
problem is that in estimating spares requirements, stochastic vari-
ability is not the only uncertainty we face in the forecasting problem.
We also face all of the other sources of uncertainty associated with es-
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timating the mean demand and variability of the process in the fu-, ture, i.e., at the end of the procurement lead time.

Our principal observations about the VTMR estimator are:

* The variance of the VTMR estimator, r, increases with the coarse-
ness of the partitioning of the observed data even when the process
is stationary.

* Nonstationarity acts to induce overestimation of the VTMR as a
measure of variation about the changing mean.

* For processes of the type discussed here, the overestimation in-
creases with the demand rate and the coarseness of the partition-
ing.

* Finer partitioning can mitigate the effects of nonstationarity on
both the expected value and variance of the estimator.

9 The bias function probably has little or no effect on system perfor-
mance.

These findings, coupled with the inference from the Bitburg data dis-
cussed in Section 3 that there is some level of nonstationarity present
in these demand processes, are consistent with:

4 * The association of larger values of observed VTMRs with high-
demand items,

I e The substantial differences between the distributions of VTMRs
observed in the Bitburg data and those discussed by Crawford, and
The wildness of the distribution of observed VTMRs around the
power function used by AFMC to specify VTMRs to describe the
probability distribution of the number of items of each type in re-
supply.

One's intuition may be inappropriately shaped by the specific exam-
pie of the ramp process discussed here. Such a high level of nonsta-
tionarity may seldom be seen in real-world parts demand processes;
however, it clarifies the profound importance of explicit recognition of
the roles of nonstationarity, data partitioning, and demand rates on
the distributions of observed VTMRs. It seems fairly clear that, in
general, we tend to overestimate the stochastic variability of these
demand processes, especially those of high-demand items. In the dis-

4 cussion that follows, we point out the need to consider explicitly all
the other sources of uncertainty that affect the demand process in our
estimation of variance.
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IMPROVED VARIANCE EMATION

The variance of the demand process is one of the two most important
elements of the forecasting problem. Our estimation of the variance
may well have greater effects on the performance of the system than
our estimation of the mean. Variance estimation tends to be a bit ne-
glected relative to its importance, owing to the traditional logic of un-
derstanding the mean process before the variance of demands around
the mean is addressed. The discussion of variability in Section 4 fo-
cuses attention on several separate components of the variance of
interest in this discussion. The fundamental logical problem underly-
ing variance estimation is to clarify our assumptions about nonsta-
tionarity and to explicate the difference between stochastic variability
and forecast variance.

If we assume stationarity, then the current variance estimation pro-
cedure implicitly tries to estimate stochastic variability. It then uses
this estimate as an estimate of forecast variance. If these demand
processes really were stationary, then the current procedure would
actually underestimate the forecast variance somewhat because the
forecast variance should include both parameter variance and
stochastic variability. The problem is, if there is nonstationarity pre-
sent in these processes, then the current procedure overestimates
stochastic variability because it fails to account for the nonstationar-
ity. To make matters worse, the current procedure then uses this
poor estimate of stochastic variability as an estimate of forecast van-
ance. But with nonstationarity present, under an explicit assumption
of nonstationarity, the forecast variance should include not only
stochastic variability and parameter variance but should also account
for the effects of the nonstationarity. Because it overestimates
stochastic variability and fails to include other sources of variability,
the current procedure enjoys the effects of errors in the opposite di-
rection that don't necessarily cancel out; i.e., it isn't as bad an esti-
mate of forecast variance as it might be. Interestingly, this is so quite
by chance.

The appropriate variance to calculate is a function of the decision be-
irg made. Here we focus on the forecast variance associated with
three-year procurement lead times. Decisions whose effects are felt
over shorter planning horizons (e.g., annual repair planning) would
be less vulnerable to forecast uncertainty owing to the reduced effects
of nonstationarity across the shorter planning horizon. Once we have
explicated precisely what forecast variance we are calculating, we can
consider how to estimate the variance and how well it can be deter-
mined. Unfortunately, on the latter count we are in no better a posi-
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tion with forecast variances than we were with process variances;

* ! these are highly variable processes and their variances are difficult to
estimate.

We should also be dear about precisely what we mean by nonstation-
arity. In addition to nonstationarity in the mean, we could also have
nonstationarity in the stochastic variability. As a matter of fact,
there is every reason to believe that this is true. There is also every
reason to believe that we will be unable to do a good job of estimating
this nonstationarity. As we have shown in earlier sections, the vari-
ance of the VTMR estimator is large even for stationary processes.
We have an even more difficult problem in the face of nonstationarity
in the stochastic variability. The methods we propose here do not
explicitly incorporate this nonstationarity.

As in any problem where we have inadequate information to estimate
variances confidently, we must look for additional information to en-
hance the estimation process. The information might come from
other parts or other relationships. The current system's method of es-
timating variances is to look at the relationship between means and
VTMRs across many parts and then use the (presumably) better es-
timated means to specify the variances. There are other ways to im-
prove our estimates by pooling information. Parts could be grouped
together in various ways and their variances jointly estimated, as
with "shrinkage" estimators, for example. More data could be ob-
tamed through more detailed data collection either by partitioning
the data more finely in time or by using base-specific data. Finally,
other, better estimated quantities could be used to develop more
finely tuned estimators of variance along the lines of the present sys-
tem's VTMR estimator.

We were unable to explore some of these methods because we did not
have access to data partitioned more finely than by quarter, or to
base-specific data. The eflects of finer partitioning of the data are
suggested by results presented above. We think this is a potentially
fi-itful area for improvement. Base-specific data would not only be
useful for variance estimation but for stock level and asset allocation
decisionmaking as well.

It is important to mention ideas we explored that did not pan out.
One seductive possibility is to produce a model like the current sys-
tem's nonlinear function for VTMR estimation that incorporates addi-
tional explanatory variables. In particular, there seems to be a logical
disconnect in the current system. The current system would take two
parts with radically different historical variability and predict the
same variance if they had the same mean. An obvious fix for this dis-
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I connect is to develop a model for the variance that incorporates his-
torical variability as well as historical means. The problem here is
what to use as a measure of historical variability. We already know
that the variance is poorly estimated by the VTMR estimator.
Indeed, we can find a statistically significant relationship between
historical variability and future variability even after controlling for
the mean. But an estimator based on this relationship does not work
well. The variability in the variance estimates is just too large.

With the lack of more finely partitioned data and our inability to in-
corporate part-specific variance estimates into the forecast variance,
we are left with only one option. We must explore a mean-variance
relationship such as the one used in the current system and see if we
can improve it. There is reason to believe that we can improve on '-e
current system's nonlinear function. Our hopes rest on the conse-
quences of our explicit assumption of nonstationarity. If we consider
nonstationarity, the current system is estimating the wrong variance.
Hence if we apply the current system's general approach of using a
nonlinear regression function to the three-year forecasts, we might
improve the VTMR estimator.

To develop the improved variance-to-mean relationship we can take
the three-year forecast errors and try to characterize their magnitude

f as a function of their forecast means. The method here is to make
forecasts with whatever method one intends to use, calculate the
three-year forecast errors, then fit a nonlinear function in a manner
similar to that of the current system to forecast the variance (or
VTMR).

Our best mean forecaster is the weighted regression forecaster for
Group 1 and the current system's eight-quarter moving average for
Groups 2 and 3. We applied these methods to our sample of 600
parts. We made forecasts for 10, 11, 12, and 13 quarters in the future
and for each of those quarters computed the observed squared error of
the forecast. This corresponds roughly to a three-year procurement
lead time. We then performed a simple linear regression of the log of
the squared forecast errors on the log of the forecast. This gives us a
variance-to-mean relationship for our particular three-year forecast-
ing method. This could be readily applied to other forecasts needed
for planning and procurement. Indeed, this relationship should be
reestimated each year. This is especially important in times of signif-
icant changes in funding levels, system structure, activity levels, or
other factors that could affect future pipelines. It could also be tai-
lored to item-specific procurement lead times. Note that the variance
now includes some of the uncertainty stemming from nonstationarity.

1.~
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The magnitude of this variance could well be affected by system re-
strueturing.

Our regression yielded the relationship:

VTMR = 0.57 MEAN °-47,

constrained to be between 1.01 and 5.0.

Other explanatory variables might be useful in estimating VTMRs,
for example, the QPA (as we observed in the Bitburg data); however,
the QPA is specific to an item's application rather than to the item it-
self and is of limited utility at the aggregate, systemwide level where
these estimates are being made.

The ultimate measure of the efficacy of improved demand and vari-
ance forecasting is the magnitude of its improvement in system per-
formance. In the section that follows, we discuss our evaluations of
these improved techniques.

d



7. EVALUATIONS OF THE IMPROVED DEMAND
FORECASTING AND VARIANCE
SPECIFICATION TECMIQUES

As we pointed out above, 600 items were used to develop the im-

proved demand forecasting and variance specification techniques,
only 200 of which were high-demand (15 or more demands per quar-
ter) items. We then tested these methods on all high-demand parts in
the dataset, 4,215 items. The improvements in root mean squared er-
ror and mean absolute deviation achieved by using the improved
techniques in contrast to the current system are reflected in Table
7.1. The improvement is impressive. (Also see Figures 5.3 and 5.4.)

Beyond evaluating the improved demand and variance forecasting
techniques using ordinary statistical measures, it is important to un-
derstand how much they might improve the cost-effectiveness of the
spares procurement mix over a realistically long planning horizon.
We developed a system of software that replicates AFMC's spares re-
quirements computation and central stock leveling system and evalu-
ates the performance of the resulting spares stockage posture. We
used this software system to evaluate the imp, ,ved demand forecast-
ing and variance specification techniques. The system is described in
Figure 7.1 (except that the WRSK requirements portion of the soft-
ware was not used in these evaluations). To evaluate these tech-
niques, we used the March 1986 requirements database used by
AFMC to compute spares and repair requirements and replicated the
requirements computation, first with the current system's forecasting
techniques and then with the improved techniques. We input the re-
suits to a replica of AFMC's central stock leveling system (D028),
which allocates stock levels to bases and the depot, and added the war
readiness spares the units are authorized, thereby estimating the

Table 7.1
Percentage of pm t in RME and

MAD of Improved Techniques over Current
systel

Mearn 10-Quarter Horizon 13-Quarter Horizon

RMSE 48 38
MAD 51 45

77
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i, anticipatd stockage posture that would eventuate in the system
roughly three years (actually 13 quarters) after the requirements
computation. We then evaluated four stockage postures: (1) One
anticipated to result from the current system usn the same aircraft
availability goals as used in the current system, (2) one anticipated to
result from use of the improved techniques using the same specified
goels, (3) one anticipated to result from the first approach coupled
with roughly a $24 million budget reduction, and (4) one anticipated
to result from the improved tchniques coupled with a budget roughly
equal to that in case 3. In these evaluations, war readiness spares
were not indluded. Using the case of the F-16 aircraft, we evaluated
each of these stockage postures with an advanced capability assess-
ment model, Dyna-METRIC Version 6, under several sets of assump-
tions that we will descibe.

The evaluations of the four stockage postures were done with item
charactritcs drawn from the March 1990 database. The database
contains eight quarters of past history of demands, NRTS actions,
and so forth. Those data were used to evaluate the stockage postures
anticipated to result from the two alternative forecasting methods in
use with the March 1986 database. Thus the world eventuated dif-
ferently than anticipated at the time the requirements computation
was done, and the differences are explicitly accounted for in these

rogl he er ataly1 ures fe h
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evaluations. The demand rates and variances actually observed from
April 198 through March 1990 were used for the evaluations except
that variances were constrained to be less than or equal to 15. These
data overlap the point in time, June 1969, that was an average lead
time beyond the buy point for the FY87 budget. The results of the
evaluations, shown in Tables 7.2 and 7.3, are disappointing in the
sense that the effects of the improved techniques are largely masked
by the much more dramatic effects of the management adaptationsi assumed to be in place in three of the scenarios.

In Tables 7.2 and 7.3, the case labeled "No cannibalization" repre-
sents the situation in which there is no conolidation of parts short-
ages (cannibalization) among aircraft. The second case, labeled "Full
cannibalization' reflects the assumption in the evaluations of canni-
balization of aU parts shortages that increase aircraft availability.
The third case adds another management adaptation, that of lateral
supply. The fourth case adds a more responsive depot repair system,
one that expedites the transportation, handling, and processing of
components, reducing pipeline times from an average of 89 days to an
average of 56 days for overseas bases and 48 days for CONUS bases.

Three points are worthy of note in Tables 7.2 and 7.3. The first is
that the investment level and system performance that result from
specifying the aircraft availability goals in the traditional way (Table
7.2) are superior with the improved methods because they deliver
somewhat better performance with $76 million less budgetary re-
quirement. The second point is that for roughly equal budgets (Table
7.3), the improved techniques deliver generally better performance.
The final point is that the performance with the improved methods
and reduced budget is almost as good as that of the current system
with an unreduced budget; however, the evaluations are somewhat
difficult to interpret because all four of these cases are on such a flat
part of the availability/cost curve; i.e., substantial budgetary changes
produce relatively little effect on performance, sugestig that the
stockage and budgetary requirements being computed by the current
system are quite rich.

Given a different database (e.g., March 1987 or 1988), the outcome of
this experiment might have been somewhat different, of course
What we have shown is that, for any givn budget level, the improved
techniques are lily to deliver improved performanie simply because
they substantially reduce the expected forecastin error. Forecasting
error acts exactly like churn does in its effects on system perfor-
mance. It is another realization of a future that we did not expect
when we specified item parameters to the requirements computation.

..--..- .. --..--.



Tabe 7

Cost md N *wrmance with Traditional Avaibility ombs

Percentag ofAircraft
i Unavailable, lPmetme

Management Current System, Imprved Methods,
Adaptations $3,709 Million $3,633 Million

No csnnibalization 74.9 71.7
Full cannibelization 33.0 32.3
Canniblizatimn lateral supply 17.3 16.4
Cannializatin, quick, lateral supply 3.2 3.1

Table 73

Cot md PNdratance with Reduced Budget.

Percentage of Aircraft
Unavailable, Peacetime

Management Current System, Improved Methods,
Adaptations $3,474 Million $3,470 Million

No cannibalization 81.5 76.3
Full cannibalization 34.6 33.1
: Cannibaliatio, lateral supply 19.0 17.2

i Cannibalization, quick, lateral supply 3.5 3.6

In these evaluations, the improvements in variance specification and
forecasting translate to improved system performance as well.

Note that we did not explicitly evaluate the improved variance speci-
fication technique independently. One would expect very little effect
from moving to the use of the new variance specification simply be-
cause it is so much like the formula currently in use. The point
should be made again, however, that what is important about the new
technique is that it explicitly considers forecasting uncertainty and is
sensitive to the length of the planning horizon. Thus its underlying
logic is quite different from the logic of the current variance specifica-
tion method. It is this difference that is important rather than the
specific numerical values in the formulas.

It is also important to note that the budgetary values shown in these
evaluations apply only to the first year of implementation. It is not
clear what the savings in subsequent years would be relative to those
in the first year.
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& CONCLUDING REMARKS

We conclude from this research that:

* A weighted regression forecasting technique would perform better
than the eiht-q r moving average for high-demand items,
that is, for items with 15 or more demands per quarter.

* A modification to the power function currently used by AFMC to
specify the variance of the number of items in resupply would yield
an improved mix of spares.for a specified investment level.

e A NRTS forecaster that incorporates exponential weighting of past
NRTS rates, coupled with the improved demand forecaster, would
improve forecasts of NRTS actions that are important to depot re-
pair planning.

These three improvements could yield substantial savings in spares
costs for specified levels of system performance. In the spares re-
quirements computation done with the March 1986 database, these
changes, coupled with an investment level $239 mullion less than the
current system's, yielded roughly the same system performance.

We recommend implementation of the weighted regression forecaster
with an a of 0.75 and a VTMR specification of 0.57 MEAN0 -4 7, con-
strained to be in the range of 1.01 to 5.0. The 0.75 weighting factor is
also recommended for the improved NRTS rate frecaster.

In the D035C data system, supply transactions are reported daily;
therefore, there may be some way to move to the use of a finer parti-

tioning of demand data than is used in the current system. This
j would make the VTMR estimator considerably less vulnerable to non-

stionarity. For some purposes, quarterly historical demand data

may be sufficient, but for purposes of variance estimation, more finely
partitioned data would clearly be more helpful.

In retrospect, we view the recommendations above as only one impor-
tant outcome of this research. The explicit recognition and treatment
of nonstationarity in these parts demand processes are, perhaps,
more important ideas in the longer-term scheme of things. In future
research in this area, this consideration is especially important. Any
future improvements in spares demand modeling and forecasting will
probably depend on these ideas.
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This research leaves unresolved one of the most important problems
complicating spares and repair requirements estimation: the estima-
tion of wartime demand rates. We do not intend to imply by this that
we think we have resolved all other problems, but we do believe that
the results reported here represent a significant improvement to the
approach to demand forecasting taken by the current system.

We recommend the following topics for future research:

* Extensions of the analysis of base-level demand processes to addi-
tional bases and weapon systems,

e Exploration of the use of empirical Bayes estimators in the AFMC
Central Leveling System (D028), and

* Examination of alternative methods for modeling the demands for
low-demand items.

As pointed out in Section 3, our observations about base-level demand
processes were based on the Bitburg data. The analyses of these data
need to be extended to other bases and weapon systems. The motiva-
tion for these extensions is to ensure that we are modeling base-level
demand processes sensibly in decision support systems used centrally.

It has long been hypothesized by Crawford and others, including the
current authors, that neither base-specific nor worldwide demand
rates are the best estimators of base-specific future demands.
Preliminary evaluations of empirical Bayes estimators that adjust
base-specific demand rates by worldwide means tend to reinforce this
hypothesis; however, the sample size of these evaluations was too
small to be conclusive, although they served to strengthen our intu-
ition that the hypothesis is a sensible one. Unfortunately, the ability
to evaluate this proposed approach would depend on a data-collection
effort that could be quite extensive and time consuming. The problem
is that data describing base-specific demands over time are needed to
support the evaluations. This requirement could conceivably be sup-
ported by NRTS actions reported in the Maintenance Data Collection
System, although base supply transaction data would clearly be bet-
ter for the purpose. We have been led to believe that such data could
be collected through the D024 system, but the effort would require at
least four years of transaction data from several bases. Although
such a data-collection effort seems quite ambitious, the data could
serve several interests, including central stock leveling techniques.

One of the problems with the approach to the weighted regression
technique discussed here is that it assumes normal distributions ofL.
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demands. While this may be a reasonable approximation for high-
demand items, it is flawed as a model for lower-demand items, espe-
dally for items with very low demands. We regret not being able to
suggest additional avenues of exploration that hold promise of success
with low-demand items, but hypotheses should be encouraged and
evaluated even though low-demand items typically have less impact
on system performance.

Another important problem involved with modeling demands for low-
demand items is that past demand data provide too little information
about the demand processes of individual items. Thus a second idea
emerges: to borrow strength from the demand history of many low-
demand items to enhance our ability to model demands for individual
items. This idea seems as reasonable now as when it first emerged
from earlier RAND research. Unfortunately, it was never pursued
with sufficient thoroughness to lead to implementation. The idea of
pooling data across items has Bayesian roots, of course, as does the
Kalman filter. They are compatible in philosophy and could be com-
bined with empirical Bayes approaches to central leveling. This

* would constitute a unified Bayesian approach to demand modeling to
support the central allocation of stock levels as well as spares and re-
pair requirements estimation.



Appendix A
REIATIONSHIP OF THE KALMAN FILTER TO

OTHER FORECASTING METHODS

One useful characteristic of Kalman filter models is the way they
generalize other well known time series and forecasting methods.
Unfortunately, this has caused some confusion in the literature. It is
not correct to claim that Kalman filtering is "just exponential smooth-
ing,' as is sometimes heard. Exponential smoothing is a special case
of Kalman filtering but Kalman filtering incorporates a much richer
collection of models. In the discussion that follows, we demonstrate
how some well-known statistical models can be written as Kalman fil-
ter models. Refer to Ref. 63 for a more complete exposition.

1. A first order autoregressive process in the state equation.

The state equation is

Ot 0 [t =¢ (Pt-l - ) + w t ,  0<€<:51

The measurement equation is

Yt = Xt + Vt

Some useful facts:
1. corr (P t, Pt-j) =f j ,

2. If * = 0 this is a random effects model,

3. If * = 1 this is the "simple" Kalman filter model.

H. A first order vector autoregressive process in the state
equation.

Replace 0 and Ot with vectors and * with a square matrix in example I.

HIL A vector autoregressive moving average process in the
state equation. P and w are vectors and and 0 are square
matrices.
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The state equation is

Pt P IdPt-i P)" #P(Pt-P P)
. Wt - 0 1wt ... OqWt q

where p is the number of observations underlying the moving average
and q is the number of steps in the autoregression.

IV. Example I Is equivalent to certain linear models.

The state equation is

Pt - P = #4(Pt- - P) +wt

The measurement equation is

Yt = X t + vt

Now manipulate the measurement equation

!iyt = ( x P + ( x P - x P) + v
t

Let, (X Pt - X P) + vt = at. So Yt = X 0 + at, where at is hetero-
skedastic and autocorrelated. If the structure and values of the
elements of at's variance-covariance matrix are known, the param-
eters can be found using generalized least squares.

V. The simple Kalman filter model is similar to an exponential
smoother.

The state equation is

Ot  Ot_ 1 + Wt

The measurement equation is

Yt 
ffi t + Vt

This model corresponds to a class of ARIMA(O,1,1) models from Box
and Jenkins [64].



87

If we set Vt = 2 and Wt = 1 we can use the update equation

1y

P= OtI+ !(t- Pt-1)

to solve for Ot as a function of the observations and initial conditions

t 0  j+Yt-i + R

This reveals the filter to be a simple exponential smoother with a
starting value incorporated. Of course, the Kalman filter provides
standard errors, an intuitive reason for the smoothing parameter, and
obvious ways to extend the model if the fit is inadequate.

I _



Appendix B
THE FUNCTIONAL FORM OF THE MEAN

DEMAND PROCESS

Although the simple multiplicative function for the mean demand
rate that the current system uses is incorrect, finding the best alter-
native is a difficult problem. The process of selecting a model based
on the data is itself not a well understood problem even for station-
ary, normal models. The approach we take here is to conduct an au-
tomated model search on the sample of parts used in Section 4.

A DATA-ANALYTIC APPROACH TO DETUMIBNING THE
FUNCTIONAL FORM

We first examine a linear regression model for the mean demand as a
function of flying hours, flying hours in the previous period, and de-
mands in the previous period. Intuitively these quantities reflect
three sources of demand. Flying hours reflect current stress on the
aircraft. Flying hours from the previous period reflect the delayed ef-
fect of earlier stresses. Including demands from the previous period
is an effort to capture stresses unrelated to flying hours with a dura-
tion longer than one quarter. The idea of using lagged demand is that
there may be real, unmodeled stresses on the system reflected by pre-
vious demand. A fourth source of demand, a background level of de-
mand unrelated to use, is reflected by the inclusion of a constant in
the model. In this section we refer to these explanatory variables as
X, to have a generic label.

We consider three possible ways to modify this basic model: (1) se-
lecting a subset of these explanatory variables, (2) transforming the
explanatory variables, and (3) transforming the demands. Unfor-
tunately, the order in which we consider these possible modifications
may have an effect on our conclusions. For example, if we decide to
transform the demands by taking the logarithm, we may select differ-
ent explanatory variables than if we had not transformed. We will
use a model search strategy that should yield a model with good pre-
dictive quality [651. That strategy has four steps: (1) select the
explanatory variables, (2) examine the data for potential outliers, (3)
transform the demands if needed, and (4) transform the explanatory
variables if needed.

I
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In the discussion that follows, we explain the automated procedures
used for each of these stages, present the results of this strategy for
model selection, and consider the plausibility of these results and
other, related models.

DESCRIPnONS OF THE COMPONENT PROCEDURES

Mallow's CIp

Mallow's C, is a criterion-based variable selection method [66]. The
idea is to minimize the mean squared error of prediction, Jp, where Jp
is given by

n

JP ='2 mse

where n is the number of observations.

, Of course, there are some unknown quantities here. As an estimate
of Jp, Mallows [66] proposed

* RSS
Cp= 2  +2p-n

RSSp is the residual sum of squares from a model with p explanatory
variables, and 62 is the error estimate from the full model. The
"best" model is the one with the smallest Cp. This method of variable
selection is intended to produce models that predict well. The details
of the computation can be found in Ref. 67, pp. 215-217.

Outlier Rejection Using the Bonferroni Inequality

This outlier test is quite intuitive. The regression is refit with the
questionable point omitted. Under the usual regression assumptions
the difference between the omitted point and the refitted line can be
compared using the standard error for prediction based on the refitted
equation. The actual calculation is as follows:

First, the residuals are calculated for each case by fitting the model
with the case deleted, and the t ratio is formed to test the hypothesis
that the residual is zero. This calculation can be done by using the re-
lationship
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' ej

In this expression, ei represents the raw residual for the ith case and
hi is the diagonal of the "hat" matrix, X (X'X)- X'. The t are the
externally studentized residuals, although this terminology is not
universal. a i) is estimated from the regression with case i omitted.
All of these ti are t-distributed with n - p - 1 degrees of freedom.
The ti with the largest absolute value is then tested to see if it is too
large. Since we are picking the largest of n residuals, we need to get
a critical value for the largest absolute value of n draws from the
student's t distribution. Snedecor and Cochran [68] suggest testing
the largest residual at the level o/n against the t distribution with n -
p - 1 degrees of freedom. This Bonferroni procedure guarantees a
test of no more than size a.
It is not actually necessary to recompute the regression with each ob-
servation omitted. There are more convenient formulas. All of this
material is covered in Ref. 67, pp. 114-117.

Box-Cox Procedure

The Box-Cox procedure [69] selects a transformation of D automati-
cally from a collection of power transformations. The Box-Cox model
assumes there is a power transformation, indexed by the power X,
such that the usual linear model assumptions are satisfied, i.e.,

DI = X P + e, where e is N(O, 2 ).

In this implementation, the likelihood function is calculated for I in
the set (-2, -1, -0.5, 0, 0.5, 1, 21, where the power zero transformation
corresponds to taking the logarithm. The value that maximizes the
likelihood on this set is the selected transformation. Note that no test
is dome to see if a transformation is required.

This procedure requires D to be positive. If any value is zero, all D
values are shifted so that the smallest value is 1.0.

Box-TidweB Procedure

The Box-Tidwell procedure [62] provides an automated method of
tranforming the Xs. Consider the model for the transformation of
XI:
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Y =P. + Plxs+ pjxj +
J-2

Expanding xa in a Taylor's series around 1.0 and deleting higher or-

der terms yields

6 = x, +(a - 1 )x Jn(x1 ).

This is substituted into the equation

Y = 00 + jPjxi + rjx In(x)+ ,
j=1

where a test of the hypothesis q = P1(a- 1) = 0 tests the need to
transform. This test is performed to determine whether a trans-
formation is required. If i is significant, a transformation is per-
formed. The indicated transformation is q/P1 + 1. Since this might
not be a very tidy value, the closest value in the set (-2, -1, -0.5, 0,
0.5, 1, 2) was used. Each X variable is considered for transformation
with all of the other X variables in their original scale. This ensures
that the transformations for the Xs are not affected by the order in
which they are considered.

THE RESULTS OF THE MODEL SEARCH

In this discussion we describe these four model selection steps and
report on the results of applying them to the 600-part sample de-
scribed in Section 4.

The first procedure applied was Mallow's C variable selection
method. The various subsets and their prevalence in the three groups
are shown in Table B.1. In the table, a zero indicates the variable is
not in the model, and a one indicates that it is.

Overall, the most frequently selected model is one with only the pre-
vious period's demands included, although the flying hour and previ-
ous demand model is the most frequently selected for Group 1, the
highest demand group. The flying-hour-only model ties for most fre-
quent in group 2. It is always unsatisfy.ng to use a model that has
lagged demands as an explanatory variable. This is tantamount to an
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Table 3.1

Results of the Variable Selection Search

Explanatory Variables in
the Model

fh fh-I )-D1  Group I Group 2 Group 3

0 0 0 14 39 48
0 0 1 42 47 50
0 1 0 13 21 29
1 0 0 29 47 34
1 0 1 49 14 11
1 1 0 7 7 11
1 1 1 16 4 5

admission that we don't really understand the process. It is also diffi-
cult to use this type of model to estimate counter-factuals. Questions
of the form, 'What if we fly more?* often need to be addressed.
Despite these caveats, the results in the Table B.2 suggest a model
with both flying hours and lagged demands.

It is worth noting the frequency with which outliers were rejected by
this automated process. Table B.2 gives the counts.

These rejections could be the result of any number of problems with
the data or the modeling. It is useful to set observations aside in this
manner in an effort to capture the underlying structure of the data.
We do not advocate discarding outliers during our predictive evalua- $
tion of methods. It is of little solace to know that the 30 important
parts you needed but did not have were merely 'statistical outliers.'

After variable selection we used the Box-Cox procedure to explore the
need for a transformation of the demands. The results of this exami-
nation are summarized in Table B.3.

Table B.2
Fraction of Outlier Rjection

Group I Group 2 Group 3

37200 60 57/200
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Table 8.3

* Indicated Power Trafonmaian

Group -2 -1 -0.5 0 0.5 1 2

1 0 2 10 26 B6 66 8
2 13 10 is 68 so 11 0
3 13 14 22 58 72 21 0

The square root transformation is the most commonly indicated
transformation in each of the three groups. This unanimity of results
is encouraging.

The final model improvement that we will consider is transformation
of the explanatory variables. Table B.4 summarizes these results.

The -Omit- category indicates that the model selection did not include
that variable in the final model. These results indicate no need to
transform the explanatory variables.

CRITIQUE AND SUMMARY) The variable selection portion of this model selection exercise oc-
f curred before the transformation of the demands was explored. Since

the variable selection was performed on the untransformed values,
there is some uncertainty as to whether the results would hold up if
the variable selection had been done with the square root of demands.

Table B.4
Tranuformations of the Explanatory Variables

Indicated Transformation

Group Variable Omit -2 -1 -0.5 0 0.5 1 2

I fh 99 5 1 2 2 4 79 8
1 fhl1  134 8 0 0 3 1 52 2
I D 63 5 5 8 8 1 108 2
2 lh 128 2 1 0 2 1 62 4
2 lh.4 147 0 2 2 2 1 39 7
2 P_ 1  114 6 5 8 0 0 65 2
3 lh 139 2 0 3 5 4 45 2
3 flhl 143 0 1 4 1 1 41 9
3 D_ i1n 5 3 0 8 0 61 1
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Rerunning this analysis with the demands transformed before begin-
ning leaves the variable selection and explanatory variable transfor-

* mation results virtually unchanged.

The strong indication that the proper transformation of demands is
the square root is reassuring. This is a standard transformation for
discrete data of this type. The inclusion of demands from previous
periods in the model is discouraging and may be an indication that

the model omits important explanatory variables. However, these are
the explanatory variables that are available to us and we must live
with them. Lagged demands are unsatisfying predictors but may be
useful predictors.

The deletion of lagged flying hours from the models should be taken
with a grai of salt as well. Typically, flying hours do not change
much from quarter to quarter. This strong correlation between adja-
cent quarters could easily be responMle for the deletion of lagged
flying hours from the model. If scenarios with erratic flying hour pro-
grams are considered, more examination of the predictive usefulness
of this variable would be in order.

'1
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