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I. Introduction and Program Objective

Current methods of lifetime assessment leave much to be desired. Typically, the expected life of a full-
scale component exposed to a complex environment is based upon empirical interpretations of
measurements performed on microscopic samples in controlled laboratory conditions. Extrapolation
to the service component is accomplished by scaling laws which, if used at all, are empirical; little or
no attention is paid to synergistic interactions between the different components of the real
environment. With the increasingly hostile conditions which must be faced in modem aerospace
applications, improvement in lifetime estimation is mandated by both cost and safety considerations.

This program aims at improving current methods of lifetime assessment by building in the
characteristics of the micro-mechanisms known to be responsible for damage and failure. The broad
approach entails the integration and, where necessary, augmentation of the micro-scale research
results currently available in the literature into a macro-scale model with predictive capability.

In more detail, the program will develop a set of hierarchically structured models at different length
scales, fiom atomic to macroscopic, at each level taking as parametric input the results of the model
at the next smaller scale. In this way the known microscopic properties can be transported by
systematic procedures to the unknown macro-scale region. It may not be possible to eliminate
empiricism completely, because some of the quantities involved cannot yet be estimated to the
required degree of precision. In this case the aim will be at least to eliminate functional empiricism.
Restriction of empiricism to the choice of parameters to be input to known functional forms permits
some confidence in extrapolation procedures and has the advantage that the models can readily be
updated as better estimates of the parameters become available.

II. Program Organization

The program has been organized into specific tasks and subtasks as follows.

Task 100. Lifetimes of metallic dispersed-phase composites

Most service materials fall into the category of dispersion-hardened metallic composites. This task
will consider the problem of dispersion hardened materials in general, but with two specific materials,
M'AI and MoSiI/SiC in mind.

Task 110. Identification and modelling of micromechanisms

The purpose ofthis task is to determine what micromechanisms are operative in the high-temperature
deformation of dispersion-hardened materials. In the general case this will be done by a literature
search. For specific materials, the micromechanisms will be determined from the experimental
program at NRL. Once identified, each of these micromechanisms will be modelled, in order to
detemne what are the critical parameters which determine its effect on plastic flow and values for
these puareters. Also to be determined is whether the modelled critical values are dependent on
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quantities which must be obtained from a smaller scale model.

Task 111. Equiaxed dispersoids

This task will consider dispersions of the type encountered in NiAl-like materials. That is, the
dispersoids are considered to be small compared to the grain size. The term 'equiaxed' is used because
the particles are roughly of the same size in all three dimensions. However, this is not a requirement
for this task. Rather, it is necessary that the particles not be too large in the dimension normal to the
slip plane, so that they can be surmounted with relative ease by cross-slip and/or climb without the
generation of appreciable back-stress.

Task 112. Anisotropic dispersoids

This task covers the case of dispersoids which are elongated in the direction normal to the slip plane.
An example is SiC fibers in MoSi2. In this case, plastic flow around the dispersoids takes place by a
combination of glide and climb, but is a protracted process during which large stresses acting in
opposition to the applied load are developed.

Task 113. Grain boundary effects

This task will examine the role of grain boundary processes in high-temperature deformation.

Task 120. Macroscopic stochastic model for creep

In real materials it is likely that more than one mechanism will be operative, either in parallel or in
series. The information gained in task 110 is not sufficient to describe this situation. Once the critical
parameters for individual mechanisms have been determined, it is necessary to combine them in a
macroscale stochastic model. This will be done by determining critical stresses and activation
enthalpies as a function of local geometry and using these values in a finite-temperature simulation
of creep through a random array of dispersoids. Careful attention must be paid to possible interactions
between mechanisms.

Task 130. Extension to cyclic deformation

The final step in task 100 is to extend the results to the case of cyclic deformation. Irreversibility is
an intrinsic feature of the model in task 120. However, it is likely that other, as yet unrecognized,
characteristics of cycled deformation will have to be considered.
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Task 200. Lifetimes of piezoelectric ferroelectrics

Failure in cyclic loading of sensors and actuators formed from lead zirconate titanate (PZT) is a
continuing problem. PZT is a ceramic and therefore differs from the materials considered in task 100
in that plastic deformation is not involved. This task will examine, modelling as necessary, the
operation of PZT devices, in order to determine the factors governing lifetime limitation.

Task 300. Reporting

Running concurrently with tasks 100 and 200, this task will inform the Navy Program Manager and
Contracting Officer of the technical and fiscal status of the program through R&D status reports.
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III. Technical Progress

Task 200. Lifetimes of piezoelectric ferroelectrics

Most of the work done so far on PZT has '{110)
assumed that domain walls lie parallel to (100)
planes, so that an elastic misfit is implied for the
tetragonal structure, a misfit which can be c a a c

relieved by dislocations if it is larger than some
critical value. In fact it has been pointed out'
that a domain structure which is essentially free
of elastic strain can be obtained by taking the
domain walls to lie along the undistorted (110)
planes. The structure is shown schematically in
Figure 1. The tetragonal unit cells on either side
of the domain walls are shown, together with
the directions of the c and a axes and the
polarization vectors P. Evidently the domain Figure I Structure of a (110) domain wall
wall can be described equivalently as a rotation
twin boundary. From a continuum viewpoint, the domains fit together without deformation along the
(dashed line) domain wall, with an angle

a = s - 2rcan(ac) (1)

between the characteristic vectors of each domain. This means that the polarization vectors are not
orthogonal, so that there is a finite electrostatic energy. The force due to this electrostatic energy will
tend to force the domains back towards orthogonality, and the equilibrium state is expected to have
finite elastic and electrostatic energies, with a value of a lying between that given by (1) and 7/2. It
is perhaps more realistic to adopt a quasi-atomistic viewpoint and recognise that the cells intersected
by the domain wall are not in their ground state, rather having an energy which can be approximated
roughly as the elastic energy necessary to deform the tetragonal unit cell into this twinned state. It
is not clear whether this twin-type domain structure will have an energy lower than the ( 100) wall.
Attention will be paid to this topic in the next quarter; in the meantime, the current report will be
concerned with (100) walls only.

Grain Boundary Fracture in PZT

It has been found previously (see 11/93 quarterly report) that there are forces G for the growth of
pairs of miaoacks, each of length (a-c), which are formed in grain boundaries due to the presence
of misfit ii across domain walls. These are of amount:

XP 2 2j(a -c 2) 2  a2b 2 2T1(a 2-C 2)ab.(

4(1-v)c(a- 2) (1-v) 4 2(k) X(kXl- V)
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These microcracks will grow provided

G > 2yb, (3)

where Yb is the energy density necessary to form a crack along a grain boundary.

As noted before the form of this relation is such that G passes through a minimum at some value of
c lying between 0 and a. Fracture can be complete only if G at this minimum value exceeds the critical
value indicated above. The determination of position of this minimum involves the solution of a
quintic equation. Rather than solve this equation we have resorted to graphical methods. Thus, we
have plotted G as a function of the variable x = c/a when, as previously shown, b = 2q a. We have
assumed typical values; the tetragonality factor il = .04; K(k) In (a/b) 10 and we have taken
Poisson's ratio v as 0.3. The resulting expression is:

,(X) = a [.16(- ( + .0o08 .0049 (1-x 2)]. (4)
4(l-v)X(1 - 2)

The result is shown in Figure 2. It may be seen
therefrom that the minimum in G occurs when
c .8 a and is given by:

G, = 0.494 z ja (5),
4(1-v)

Since this is normally much larger than 2 Yb

fracture will generally follow the formation of G()
dislocation dipoles through the sliding of .. ,.
domain walls.

This leads to the view that a length of grain '

boundary which provides a termination for a •
sequence of parallel domain walls will be .//
fractured between alternate walls. Fatigue can
then be seen to result from the externally
induced motion of domain walls of a sense such '"-- x"
as to expand the fractured regions. Such motion .. . .0. 77 . , 0.9 .. ,-; .... ... 8,

can be produced by either electrical or

mechanical stressing. Figure 2 Solution of Equation (3)

Mobility of 900 Domain Walls

The mobility of 900 domain walls (assumed to lie on { 100} planes) in the limit of pinning by
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dislocations has been treated in a previous report. In this report the mobility of unpinned walls will
be discussed. A 900 domain wall is the interface between tetragonal crystal lattices oriented with c-
axes at right angles to each other. An electic field is directed parallel to the c-axis and thus the
direction but not the intensity of the electric field changes at a 900 domain wall. Movement of a wall
in a direction normal to itself then necessarily requires a change in both lateral dimensions and in the
direction of the local electric field in the volume swept as a consequence of the motion.

The domain wall configuration (and hence its
energy also) are invariant to translation through l
an integral number of lattice spacings. That is,
the energy is periodic with the period of the
lattice. In the absence of an atomistic
calculation it is not possible to estimate the
energy of a domain wall at a position lying
between its periodic minima, but the
experimental observation that the walls are
straight suggests that this energy is relatively
large. Therefore it seems likely that the situation - a---
is analogous to that of dislocation mobility in
most crystalline solids - that the mechanism of
mobility is the formation of a nucleus and its Figure 3 A "pillbox" excitation on a domain wall
subsequent growth. In the case of dislocations,
the nucleus is an advance of a small length of the line through a single atomic spacing, forming an
excitation known as a kink pair. By analogy, the nucleus for a domain wall is "pillbox"-like small area
of the wall advanced through a unit step into an adjacent domain. This is illustrated in Figure 3, in
which an area of dimensions I x h has been moved through a distance a from left to right from a
domain with polarization P vertical into one with polarization horizontal. A normal stress a is
supposed to act on the wall. Because the normal component of the electric displacement must be
continuous across the faces B, layers of depolarization charge density ±q (dashed lines in Figure 3)
of uncertain magnitude develop on these interfaces. The enthalpy of the "pillbox" can be written as

H = 2E.(h+1)+E.-oh1a (6)

where the first term is the energy of the sidewalls A and B (E, is the wall energy per unit area), E.
is the electrostatic energy and the third term is the work done by the wall stress in forming the pillbox.

The electrostatic energy consists of three terms. First, the energy of the repolarized material within
the pillbox, which is

El = i1h.Xo p_ 2(7)
2 X0

where P is the remanent polarization per unit volume, K is the dielectric constant and K. is the



7

permittivity of free space. Second, the self-energy of the depolarizing dipole layer,

E,= 1 fdI 1f 2 (8)

00 0

and finally, the interaction energy between the depolarizing dipole layer and the remanent
polarization.

E= qh.XPKKo (9)

The only one of these terms which requires any effort in evaluation is E. in (8), which can be
rewritten in parametric form

Ef, = q..2I

1. -fa (10)

I= hf d
0 -SVI7t

The double integral I in (10) has been evaluated numerically, by gaussian integration, as a function
of the aspect ratio of the pillbox, 1/h. The results
are shown in Figure 4. Cursory examination does

not suggest any approximate analytic form for I 0

and therefore it is likely that the equations (6-9)
will have to be solved numerically. This will be
done during the next period of performance. 20

10
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Figure 5 The depolarization energy integral
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