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Abstract

A short tutorial on Homogeneous Transforms is presented covering the triple
interpretation of a homogeneous transform as an operator, a coordinate frame,
and a coordinate transform. The operator / transform duality is derived and its
use in the Denavit Hartenberg convention is explained. Forward, inverse, and
differential kinematics are derived for a simple manipulator to illustrate con-
cepts.

A standard set of coordinate frames is proposed for wheeled mobile robots. It is
shown that the RPY transform serves the same purpose as the DH matrix in this
case. It serves to interface with vehicle position estimation systems of all kinds,
to control and model pan/tilt mechanisms and stabilized platforms, and to model
the rigid transforms from place to place on the vehicle. Forward and inverse
kinematics and the Euler angle rate to the angular velocity transform are derived
for the RPY transform.

Projective kinematics for ideal video cameras and laser rangefinders, and the
imaging Jacobian relating world space and image space is derived. Finally, the
kinematics of the Ackerman steer vehicle is presented for reference purposes.

This report is both a tutorial and a reference for the transforms used in the
RANGER vehicle controller. It is both because the models keep evolving and it
was necessary to provide the tools, mechanisms, and discipline required to con-
tinue the evolution.
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1. Introduction
Kinematic modelling is one of the most essential analytical tools of robotics. It is used for
modelling mechanisms, actuators, and sensors for on-line control, off-line programming, and
simulation purposes. This document presents a brief survival kit of concepts and techniques that
will equip the reader to master a large class of kinematic modelling problems.

Control of autonomous vehicles in 3D can require precise kinematic models of mechanisms, the
image formation process, terrain following, steering kinematics, and more. The document provides
the tools necessary to solve these problems in one place for reference purposes.

1.1 Acknowledgments
Learning how to do kinematics has been a long process that started with my bachelors thesis done
under Andrew Goldenberg at the University of Toronto in 1984. Sid Skull supervised my Al
project at York University which was a PROLOG based symbolic mathematics package and an
expert system for robot kinematic modelling. At CMU, Martial Hebert and Jay Gowdy started my
interest in the peculiarities of modelling the kinematics of rangefinders. Omead Amidi first showed
me the bicycle model for Ackerman vehicles. Anthony Stentz first referred me to the need for
projection lookup tables for fast perception for off road purposes.

1.2 Commntaa
Every year, I have to learn this stuff all over again, so I finally bit the bullet and tried to write down
the issues that seem important to me. Somehow, all these matrices with all those strings of trig
functions in them have always seemed awkward and hard to figure out. Somewhere in the past there
was an obscure book on computer graphics that presented this information from the operator/
transform duality point of view that seemed to me clear and concise. I've never been able to find it
again.

This report is both a tutorial and a reference for the transforms used in the RANGER vehicle
controller. It is both because the models keep evolving and it was necessary to provide the tools,
mechanisms, and discipline required to continue the evolution.

1.3 Notational Conventions
The 3 X 3 matrix R denotes a rotation matrix which transforms a displacement from its
exression in coordinate system 'a' to its expression in coordinate system 'b'. The 4 X 4 matrix

a denotes the homogeneous transform which transforms a vector from its expression in

coordinate system 'a' to its expression in coordinate system 'b'. If p a denotes a point expressed
in coordinate system 'a', then the notation for conversion of coordinates to coordinate system 'b'
is easy to remember by considering that the a's cancel:

P b -- a

The 4 X 4 matrix Pb denotes a nonlinear projection operator represented as a homogeneousa
transfort. In such notation, the vector normalization step is implicit in the transform. The 3 X 1
vector ra represents the rgnslation vector from system 'a' to system 'b' expressed in system 'a'
coordinates. The matrix Ja denotes the Jacobian of the transformation from system 'a' to system
b'.
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The specification of derivatives will be necessarily loose. If x and y are scalars,X and y are
vectors, and X and Y are matrices, then all of the following derivatives can be defined.

a partial derivative a a gradient vector

a vector partial derivative a Jacobian matrix

aY a matrix partial derivative a- a Jacobian tensor

The notation ca and sa is shorthand for cos(a) and sin(a) respectively. Sums of angles, for example,
will be indicated by cascaded subscripts as follows:

C12 3 = Cos(W1l+W2+ V3)

Bolded italic text is used for emphasis, whereas bolded nonitalic text highlights key words that
appear in the index.
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2. Homogeneous Coordinates and Transforms
Homogeneous coordinates are a method of representing 3D entities by the projections of 4D
entities onto a 3D subspace. This section investigates why such an artificial construct has become
the cornerstone of robot kinematic modelling.

2. Points
A point is a position in space. Points will be represented by column vectors such as:

P1 = [XlY1 Z1]T

where the superscript T denotes the matrix transpose and permits writing a column vector as a row

vector.

2.2 L21raZrs
An operator is any process which maps points onto other points. For the present purpose,
operators will be limited to those which can be represented as matrices. The above point p 1 can
be altered in many different ways by multiplying it by a general 3 X 3 matrix T:

X2  txx txytxz Xl txxXl+txyYl + txzZ

P2 =  Y2 = TPl =  tyx tyytyz Y = tyxxl +tyyYl +tyzZ 1

zx tzy tzz i Ltzxx1 + tzyyl + tzzZl

Some simple operators are scale, reflection, rotation, projection, and shear. All of these can be

generated from the above matrix by a suitable choice of the entries in the matrix.

2.3 Homoaneous Coordinates
Even though the above operator is very general, it is not general enough to be used conveniently
in many robotics applications because it cannot represent a translation. That is, there exists no 3 X
3 matrix which adds a constant vector, like P3 to p 1. Such a translation could be expressed as a
vector addition:

P 2 = P1 +P 3 
=  Y1 + Y3

This cannot be done by a matrix because P3 cannot be represented, in general, as a linear
combination of the elements of p 1 - it is supposed to be independent of p 1.

However, the situation can be fixed with a standard trick. In homogeneous coordinates, an extra
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element can be added to each point to represent a kind of scale factor:

Pl = [xlYIZlWIj T

and it is conventional to consider that this 4-vector is projected into 3D by dividing by the scale
factor:

P - Fx W il

Points are typically represented with a scale factor of 1. Thus:

Pl = [Xl Y1 Z 1 
T

is a point in homogeneous coordinates. It is also possible to represent a pure direction in terms of

a point at infinity by using a scale factor of 0. Thus:

Tq qI --: [XY lyZl° 0
is a direction in homogeneous coordinates.

2.4 Homoeneous Tranform
Using homogeneous coordinates, it is now possible to represent the addition of two vectors as a
matrix o )eration, thus:

1X 3 x; 100x 3 x 1

P2 = Pl+P3 =  YlI + Y3 = 01 OY 3 Yl = Trans(P 3)PlZl Z3  o001Z 3 Z1
1 1 000 11

where Trans (P 3 ) is the homogeneous transform which is equivalent to a translation operator
for the translation vector p 3 .
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Homogeneous Transforms as Olnerators

Suppose it is necessary to move a point in some manner and express the result in the same
coordinate system as the original point. This is the notion of an operator. The basic operators are
translation along and rotation about any of the three axes. The following table gives the four
elementary operators which are sufficient for the purposes of the report, and for almost any real
problems. Operators are identified by an upper case first letter.

z x

y Fl00u] .......... w. Z F1 0
X Trans (u, v, w) = 1 0 v y 0 c0 -sO 0

00 1 w Rotx(O) 0 o c 0

y LOLiO0 Jz LO 0 lj

x
L[cO0 SO0 y W c V 0 0

Roty (0) = 0 1 00 X Rotz (W) = VC

S0 0 00 1

It is important to remember the precise semantics of these operators. They take a point expressed
in some coordinate system, operate on it, and supply the result expressed in the same coordinate
system.

One of the most common operators used in robotics is a rotation followed by a translation. The
homogeneous transform can be used to represent this operator as a single matrix. In general, many
kinds of operators can be represented by homogeneous transforms. However, the operator
interpretation is but one of three possible interpretations of the homogeneous transform.
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2& Example - Operating on a Point

The homogeneous coordinates of the origin o are clearly:

As an example of applying operators to a point, the following figure indicates the result of
translating the origin along the y axis by 'v' units and then rotating the resulting point by 900
around the x axis.

Ti

P =[OOv 1]T  z

p = Rotx (ir/2) Trans (0, v, 0)o

y
0= OvO

x

10 00 010000 1 0

010 01 010

00 01000 000

Notice that the operators are written in right to left order because this is the order in which they are
applied to the original column vector representing the origin. The order is important because matrix
multiplication is not commutative. Also notice that the initial point, intermediate point, and final
result are all expressed in terms of the axes of the original coordinate system. Operators havefixed
axis semantics.

2.7 Homo nous Transforms as Coordinate Frames
Recall that homogeneous coordinates can be used to represent directions as well as points. This is
done by using a zero scale factor. The unit vectors of a cartesian coordinate system can be
considered to be directions. The x, y, and z unit vectors can be written as:

[1 o]T j [0 oo]T k = [0010T

Therefore, these three columns can be grouped together with the homogeneous coordinates of the
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origin to form an identity matrix:

10001

[ijko] = 0100
0010

Clearly, the columns of the identity matrix can be interpreted as the unit vectors and the origin of
a coordinate system. The result of applying an operator to these four vectors has a similar
interpretation that will be shown by example.

2. Example - Interpreting an Operator as a Frame
These four vectors can be transformed simultaneously by applying the same two operators to the
identity matrix:

[0 0]T Z [01]T

SI' = Rotm (7r/2) Trans (0, v, 0) 1

7 v 
y

x

10 0 01000 1000 100 0
I, = 00-10 0 10o V 0100 - 0o-10

01000010 0010
00 0 1 000 000 00 01

This result is just the product of the original two operators. Each column of this result is the
transformation of the corresponding column in the original identity matrix. Thus the transformed
vectors are:

Eoo61T Eoo11Ti'=[1 0o] T  '=[001O] T

k'= [0-1 0'=[00v0] T

It has been shown that the column vectors of any compound fundamental operator are just the
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homogeneous coordinates of the transformed unit vectors and the origin. This is because the
operators apply to any vectors - including the origin and the unit vectors. The result can be
visualized by drawing the new transformed axes at the new position.

2 The Coordinate Frame

So far in the discussion, there are two complementary interpretations of exactly the same 4 X 4
matrix. It can be an operator which moves points and vectors around, or it can be a representation
of a cartesian coordinate system positioned somewhere in space relative to another one. Cartesian
coordinate systems positioned in space are a central concept in 3D kinematics. They encode both
a position and an attitude. With an encoded position and attitude available, it becomes possible to
talk about the state of motion of the origin in terms of translation and orientation and all of their
associated time derivatives. Therefore, this entity embodies the properties of aframe of reference.

With a set of three orthogonal unit vectors, it is possible to represent an arbitrary vector quantity in
terms of its projections onto these axes. Therefore, this entity also embodies the properties of a
cartesian coordinate system. This moving set of unit vectors is often called a coordinate frame or
simply a frame. Often, imaginary frames are embedded in the links of a mechanism in order to
keep track of its configuration. These embedded frames are central to the study of manipulators,
legs and other mechanisms.

2.10 Homogeneous Transforms as Coordinate Transforms

There is a third interpretation of a homogeneous trans"orm. It was shown that they move points and
move and orient frames and that they directly represent frames. However, if they move frames, one
can think about the original frame and the transformed frame as two different frames and then ask
about the relationship between the coordinates of any point in each frame. Let the original frame
be called 'a' and the transformed one be called 'b'.

Let a general point p be expressed in the coordinates of frame 'b'. This will be represented by a
superscript b. Its coordinates in this frame are:

Pb= [X b bb]

Alternately, it can be written as a true physical vector thus:
bp = xb-:b + yb,:, +bb

p Xlb yJb+z kb]
This vector can be expressed in the coordinates of frame 'a' by expressing the unit vectors of frame
'b' in the coordinates of frame 'a' and adding the position of the origin, thus:

.a bbj zbk , o'

p =xic+p
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but this is just the same as if a matrix multiplication were used:

p a = 00-10 y
101 zb

[000 1J7

It has been shown that the same homogeneous transform that moves frame 'a' into coincidence
with frame 'b' also converts the coordinates of points in the opposite direction - from frame 'b'
to frame 'a'. The reason for the opposite sense in the interpretation is that moving a point "forward"
in a coordinate system is completely equivalent to moving the coordinate system "backward".

It is easy to show that the inverse of a rotation matrix is equal to its transpose. This is called the
property of orthogonality. This leads to a second set of 4 matrices, the fundamental transforms,
which are the inverses of the operators and which therefore convert coordinates from 'a' to 'b'.
These are given in the table below. In the report, the transforms will be denoted with lowercase
case first letters in their names.

Za Zb Xa,Xb

zbd Zb

ylb 1 0 0 - u . - Z a 1 0 0 0

Xa xbtrans (u, v, w) = 1y0 rotx (0) = CO sOOJ

yb
Ya,Yb 1 0 0 0 1

S Xb OYb
0 Xa

zb roty(o) 10 1 0 0 Xa rotz1(V) -sV CV00
SO 0 cO0 xb [0

L'00 K e aL 00 0 i

Essential Kinematics for Autonomous Vehicles pae 9.



L1 Example - Transforming the CoordiNates of a Point
Again, the homogeneous coordinates of the origin o are:

[ Iooo]fT

As an example of applying transforms to a point, the following figure indicates the result of
transforming the origin of frame 'b' into the coordinates of frame 'a' where the two frames are
related by the same sequence of operators used earlier. Frame 'b' is moved into coincidence with
frame 'a' by first rotating by -90* around the x axis of frame 'b', and then translating by -v along
the z axis of the intermediate frame.

za

yb a

zb , p = trans (0,0, -v) rotx (-ir/2) o

xb
v 

Ya

Xa 1000 10 0 1000
pa 0100 00-100 0100

01 V 1 000 001
001 0 0 001

Notice that the transforms are written in right to left order because this is the order in which they
are applied to the original column vector representing the origin. The order is important because
matrix multiplication is not commutative. Also notice that, for transforms, each new transform is
interpreted as if it were applied to the last frame in the sequence of frames that ultimately bring the
first into coincidence with the last. Transforms have moving axis semantics.

La Inverse of a Homogeneous Transform
The homogeneous transforms that will be used in this report will all be structured according to the
followin template:

Perspective Scal

The scale factor will almost always be 1 and the perspective part will be all zeros except when
modelling cameras. Under these conditions, it is easy to show by multiplying the inverse by the
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original matrix, that the inverse is:

R p RT -RTIP

0001 000 1

This is very useful for converting from a matrix that converts coordinates in one direction to one
that converts coordinates in the opposite direction. Throughout the report, remember that it is
trivial to reverse the sense of a coordinate transform.

2M A Duality Theorem
The careful reader has probably noticed that operators and transforms are inverses. Whether a
particular matrix is considered to be operator or transform is a matter of taste. This has an important
implication for kinematic modelling that will be demonstrated by example. Using the previous
example, the moving axis operations which bring frame 'a' into coincidence with frame 'b' are:

* translate v units along the z axis
" rotate 900 around the new x axis

The complete transform that converts coordinates from frame 'a' to frame 'b' can be written as:

Tb = rotx (t/2) trans (0, 0, v)
a

This can be rewritten in terms of operators as:

Tb = Rotx (-ic/2) Trans (0, 0, -v)
a

The inverse of this matrix will convert coordinates from frame 'b' to frame 'a', and as was shown
earlier, also represents the position and attitude of frame 'b' with respect to frame 'a'. Using the
well known method for inverting a matrix product, this inverse matrix can be expressed as follows:

T = Trans (0, 0, -v) -lRotx (-ir/2) -1

Tb = Trans (0, 0, v) Rotx (7c/2)

So that the transform from 'b' to 'a' can be written in terms of transforms from right to left or in
terms of operators in the reverse order. The latter view is traditional in robotics and it will be used
in the next section.1

1. One implication of this is that any set of rotations about fixed axes is equivalent to the same set executed
in the reverse order about moving axes.
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3. Forward Kinematics
Forward kinematics is the relatively straightforward process of chaining homogeneous transforms
together in order to represent the articulations of a mechanism or simply to represent the fixed
transformation between two frames. In this process, the joint variables are given, and the problem
is to find the transform.

11 Nonlinear Ma ing

It is clear that it is possible to ransform coordinates between coordinate systems which are fixed
in position and attitude with respect to each other. It is also possible to perform elementary
operations with homogeneous transforms. Ultimately, this is possible because such operations are
linear. That is, the result is always a weighted sum of the original point or vector.

Most mechanisms, however, are not linear. They are composed of one or more rotary degrees of
freedom. It turns out that the homogeneous transform can still be used to model such complex
devices if they are viewed in a different way. In the study of mechanisms, the paramet the
rotations and translations between the frames are considered to be variables. In this . the
problem is one of understanding the variation in a homogeneous transform when it is con.dered
to be a function of one or more variables.

In the study of mechanisms, the real world space in which a mechanism moves is often called task
space, and points and vectors are normally expressed in terms of cartesian coordinates. However,
the mechanism articulations are most easily expressed in terms of angles and displacements along
axes. This space is called configuration space. So far, we have studied linear transformations
within task space. This section and the following sections will consider the more difficult problem
of expressing the relationship between task space and configuration space. This problem is one of
multidimensional nonlinear mapping.

&2 Mechansm Models

It is natural to think about the operation of a mechanism in a moving axes sense - because most
mechanisms are built that way. That is, the position and orientation of any link in a kinematic chain
is dependent on all other joints that come before it in the sequence.

Conventionally, one thinks in terms of moving axis operations applied to frames embedded in the
mechanism which move the first frame sequentially into coincidence with all of the others in the
mechanism. Then, a sequence of operators is written to represent the mechanism kinematics. The
conventional rules for modelling a sequence of connected joints are as follows:

* assign embedded frames to the links in sequence such that the operations which move each
frame into coincidence with the next are a function of the appropriate joint variable

" write the operator matrices which correspond to these operations in lkft to right order
This process will generate the matrix that represents the position of the last embedded frame with
respect to the first, or equivalently, which converts the coordinates of a point from the last to the
first. This matrix will be called the mechanism model.
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3. Modelling a Mechanism
In 1955, J. Denavit and R. S. Hartenberg [3] first proposed the use of homogeneous transforms to
represent the articulations of a mechanism, and this form of model has been used almost
universally since. A mechanism is considered to be any collection of joints, either linear or rotary,
joined together by links. The total number of movable joints is called the number of degrees of
freedom.

Joints

3.4 Denavit Hartenberg Convention for Mechanisms
It is conventional in many aspects of robotics to use a special product of four fundamental operators
as a basic conceptual unit. The resulting single matrix can represent the most general spatial
relationship between two frames. This convention with a small number of associated rules for
assignment of embedded frames has come to be called the Denavit Hartenberg (DH) convention.
For two frames positioned in space, the directions of, say, the z axes of two frames define two lines
in 3D space. For nonparallel axes, there is a well defined measure of the distance between them
given by the length of their mutual perpendicular. Let the first frame be called frame i-l and the
second frame i. The first can be moved into coincidence with the second by a sequence of 4
operations:

* rotate around the xi_1 axis by an angle 0i
e translate along the xi_1 axis by a distance ui
e rotate around the new z axis by an angle Vji
* translate along the new z axis by a distance wi
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The following figure indicates this sequence graphically.

zi-i

wi xixi

Wii

The matrix, conventionally called A,, that converts coordinates from frame i to frame i-I can be
written using the rules for forward kinematic modelling given previously.

A = Ti  1 = Rotx (0i) Trans (u i, 0, 0) Rotz ('vi) Trans (0, 0, wi)
1

1 0 0 o lOOu i C4 i - sv i  -0 00 0-
i0 0ci-si0 0100 s i c i 00 0 1 0 0

i- i OsOi C0i 0001 0 0 0 io0 Oi
Loo o 1 0 0 0 0JLOOO 1

clvi -svi 0 ui

i- I 0cisi Cici -sOi -siw
soiSv i sOicWi c0 i COiWi

0 0 0 1

This matrix has the following interpretations:

" its columns represent the axes and origin of frame i expressed in frame i- 1 coordinates

" it converts coordinates from frame i to frame i- I

Essential KieM for Autmomnous Vehicles page 14.



M Example - 3 Link Planar Manipulator
Although the homogeneous transform matrices can represent any complex 3D mechanism, the
process of writing forward kinematic equations will be illustrated for a simple 2D manipulator
composed of three rotary joints, three links and an end effector. Coordinate frames are assigned to
the center of each rotary joint and the datum angle for each is set to zero as illustrated in the figure
below.

It is conventional to assign the z axis of a frame so that the associated degree of freedom, linear or
rotary, coincides with it. Also, the x axis is normally chosen so that it points along the mutual
perpendicular. In this case, this means that frame 1 is a rotated version of frame 0:

Y0,1 Y2 Y3 Y4

The joint parameters are indicated in the table below:

Table 1:3 Link Planar Manipulator

Link 0 u V w

0 0 0 V1 0

1 0 L1  V2 0

2 0 L2  V3 0

3 0 L3  0 0

This gives the following Denavit Hartenberg matrices. Their inverses are computed from the
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inverse formula because they will be useful later:

c1 sI  0 s1 00

A1 = I c1 00 A1 = -sICl 1 00

0 0 10 0 0 10

L0 0 O 0 001

F2 -s2 0 Li  - 2 2 0- 2L1

A2 =s 2 c2 0 0 A2 = -S2 c2 0 s2L
0 0 1 0 0 0 1 0

0 0011 0 0 1

C3 -S3 0L2  C3 s3 0-c 3L2

A s3 c3 0 0 A-1 -S3 C3 0 s3L2

0 0 10 1 0

0 001 0 00 1

I oo L3 I [0-L
A4= 010 0 A-1 010 00101001 00010 001 1

The position and orientation of the end effector with respect to the base is given by:
To =1T OTlT2T 3 = A A2A3A

4 1 2 3 4 -A 1A 2A 3A-4

[Cl-SlO0 c 2-s 2OL C3 -s 3OL 2 [10 0L 31
T0 _ s= SC 1 0 0 s2 c2 0 0 s3 C3 0 0 0100

0 0 10 0 0 1 0 0 0 1 0 001 0
-0 0 0 1] 0 0 0 1- 0 0 0 1- PO0I

C12 3 -S 12 3 0 (c 12 3 L 3 + c12L2 + clL1 )

To = s123 C12 3 0 (s 12 3 L3 + s 12 L 2 + SlL 1)

0 0 1 0
t0 pg
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4. Inverse Kinematics
Inverse kinematics is the problem of finding the joint parameters given only the numerical values
of the homogeneous transforms which model the mechanism. In practice, this is useful because it
solves the problem of where to drive the joints in order to get the hand of an arm or the foot of a
leg in the right place, at the right orientation.

Proficiency with inverse kinematics requires a degree of skill and practice and there are few general
guidelines that can be given. This section will discuss this difficult problem and continue with the
simple example.

41 Existence and Uniquenes

The inverse kinematic problem is considerably more difficult than the forward one because it
involves the solution of nonlinear equations. In general, there is no guarantee that nonlinear
equations have a solution, and if they do, it may not be unique. It has been shown theoretically by
Pieper [13], that a six degree of freedom manipulator for which the last three joints intersect at a
point is always solvable. Most manipulators are constructed in this way, so most are solvable.

Any real mechanism has a finite reach, so it can only achieve positions in a region of space known
as the workspace. Unless the initial transform to be solved is in the workspace, the inverse
kinematic problem will have no solution. This manifests itself, for example, as inverse sines and
cosines of arguments greater than one. Further, mechanisms with many rotary joints will often have
more than one solution, which will exhibit various forms of symmetry. The latter case is known as
redundancy.

4.2 Tehniue
This problem would be very difficult to solve without the discipline afforded by the use of
homogeneous transforms. Using the DH convention, a mechanism can be "solved" more or less
one joint at a time by a process of rewriting the forward kinematics equations in several different
ways.

Any DH matrix has only six degrees of freedom. The rotation matrix part is constrained to be
orthonormal. That is, the rows or columns must be of unit length and mutually perpendicular. The
bottom row is constrained to contain zeros and ones. The position vector contains three
independent values.

The inverse kinematic problem is solved by rewriting the forward transform in many different
ways in an attempt to isolate unknowns. Although there are only 6 independent relationships, they
can be rewritten in many different ways.

Using a 3 degree of freedom mechanism for example, the forward kinematics can be written in all
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of these ways by premultiplying or postmltiplying by the inverse of each link transform in turn:
0m

r 0 = AA 2 A3 A4  
0 = A

4AllT 0  4 T4 = A 2 A3 A4

A21AT 0 = A2 A3 A4  T4A41 A = AIA 2

A-1 A-1 --ToAA TOA-1A-1=A-- A2 1 4 3 4 4 4 13 12 A

A-1A1A T = A TOA 4 A 3 1A 1All = AA3  2 1 T4  A4  4 4 3 2-1

1 1 1 0 T~A 2 =_ A 1

A- A- A- A1 IO i 1  4 4 3 2 1 -

These are, of course, redundant specifications of the same set of equations, so they contain no new
information. However, they often generate equations which are easy to solve because the DH
convention tends to isolate each joint. It is conventional to use the left column of equations, but the
right column is easier to follow in our case, so it will be used.

4. Example - 3 Link Planar Manipulator
The process is started by assuming that the forward kinematic solution is known. Names are
assigned to each of its elements as follows:

rll r12 r13 Px

T 0 r2 1 r2 2 r2 3 PyTn =
r31 r 32 r33 Pz

0 0 0 1

For our example, we know that some of these are zeros and ones, so that the end effector frame is:

r, 1 r 12 0 Px
T 0 = r21 r22 0 Py 

0 010

0 001
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The first equation is already known:

TO = A1A2A3A4

rll r 12 0Px C123 -s 12 3 0 (c 12 3 L3 +c 12 L 2 + clL1 )

r2 1 r 2 2 0py = s 12 3 c 12 3 0 (s 12 3 L 3 +s 1 2 L 2 +s 1 L1 )

0 0 10 0 0 1 0

0001 000 1

From the (2,1) and (1,1) elements we have:

S'V 123 = atan2(r 2 1,r 11) J
The next equation is:

TOA4I = A 1A2 A3

r11 r 12 0- rilL3 + PX c123 -s23 0 C1 (c2 L2 + L1 ) -Sl (s 2 L2)

r21 r22 0 -r 21 L3 + P = S123 c 123 0 sl (c2L2 + L1) + cl (s 2 L2)

000 1 0 00 1 0

r11 r12 0- rilL 3 + Px [c12 3 -s123 0 c12 L2 + ClL 1

[r2lr 22
0  - r2lL 3 +PY = s 23 c123 0s l

2 L2 +SlLlI

From the (1,4) and (2,4) elements:

k1 = -rllL 3 +Px = c 12 L2 +cIL1

k2 = -r21L3 +Py = s 12 L 2 +SlL 1
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These can be squared and added to yield:

k 2 +k2 = L 2+ L 2+2LL 1 (CIc1 2 +SIS12 )

k 2+k 2=L 2 +L 2+2L L C2

And this gives the angle W,2 as:

(k I+k2)- (2 1-
2= acosL 2L 2 L1

The result implies that there are two solutions for this angle which are symmetric about zero. These
correspond to the elbow up and elbow down configurations. Now, before the expressions were
reduced to include a sum of angles, they were:

k 1 = -rliL 3 +Px = C1 (C2 L2 +L 1) -s 1 (s 2 L2 )

k2 = -r21L3+Py = s 1 (c 2 L2 +L 1 ) +c 1 (s 2 L 2 )

With I now known, these can be written as:

Slk 3 + 1 k4 = k2

This iq one of the standard forms that recur in inverse kinematics problems for which the solution
is:

AV1 = atan2 [ (k 2 k3 - klk4 ), (klk 3 + k2 k 4 )]

Finally, the last angle is:

[ K a =Ato1 2 3 -us 2 -i 1  J
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4A Standard Forms
There are a few forms of trigonometric equations that recur is most mechanisms. The following set
of solutions is sufficient for most applications. One of the most difficult forms, solved by square
and add, was presented in the example. In the following, the letters a, b, and c represent arbitrary
known expressions.

4.4.1 Explicit Tangent

This form generates a single solution because both the sine and cosine are fixed in value. It can
arise in the last two joints of a three axis wrist, for example. The equation:

a= cn

b= sn

has the trivial solution:

Wn = atan2 (b, a)

4.4.2 Point Symmetric Reduindancy

This form generates two solutions that are symmetric about the origin. It can arise in the shoulder
or hip joint, for example. The equation:F Sna-cnb = 0

can be solved by isolating the ratio of the two trig functions. There are two angles in one revolution
which have the same tangent so the two solutions are:

Wn = atan2 (b, a)

WVn = atan2 (-b, -a)
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4.4.3 Line Symmetric Redundancy

This form generates two solutions that are symmetric about an axis because the sine or cosine of
the deviation from the axis must be constant. The sine case will be illustrated. It can arise in the
shoulder or hip joint, or in an elbow or knee joint, for example. The equation:

I Sna-cnb = c J
can be solved by the trig substitution:

I a = rcos(0) b =rsin(0)

where:

r = +sqrt (a2 + b 2) 0 = atan2 (b, a)

This gis s:

SnC0 -CnS0 c/r

S(0- In) = c/r

So the cosine is:

C (0 - n) = +sqrt(1- (c/r) 2)

This gives the result:

E n = atan2 (b,a) -atan2o[c,u±sqrt (rV e 2
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5. Differential Kinematics
Differential kinematics is the study of the derivatives of kinematic models. These derivatives are
called Jacobians and they have many uses ranging from:

* resolved rate control
* sensitivity analysis
" uncertainty propagation
• static force transformation

51 Derivatives of Fundamental Operators
The derivatives of the fundamental operators with respect to their own parameters will be
important. They can be used to compute derivatives of very complex expressions by using the
chain rule of differentiation. For reference, they are quoted below:

T100 1s 0 -cO
rans (u, v, w) = 010 Rox(0 -s-O

[001] 0 001

vT 1000 0 1 0rans (u, v, w) 001 R ty 0 1 0 -s

goo 0 01[10001 -sof-C0 0

Trans (u, v, w) = 0101 0 100

000 0 0~-irns ~goow =J [001 0t v 01

Similar expressions can be generated for the fundamental transforms.

5. The Mechanim Jacobian
If a sequence of joints can be represented by the product of a series of homogeneous transforms, it
is natural to ask about the effect of a differential change in joint variables on the position and
orientation of the end of the mechanism. A frame matrix represents orientation indirectly in terms
of three unit vectors, so an extra set of equations is required to extract three angles from the rotation
matrix in order to represent orientation. In terms of position, however, the last column of the
mechanism model gives the position of the end effector with respect to the base.

In general, let a mechanism have variables represented by the vector q, and let the position and
orientation, or pose, of the end of the mechanism be given by the vector x. Then, the end effector
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position is given by:

where the nonlinear multidimensional function F comes from the mechanism model. The Jacobian
matrix is a multidimensional derivative defined as:

The differential mapping from small changes in q to the corresponding small changes in x is:

The Jacobian also g~ives velocity relationshilps via the chain rule of differentiation as follows:

d =(q ) ........

which maps joint rates onto end effector velocity. Note that the Jacobian is nonlinear in the joint
variables, but linear in the joint rates. This implies that reducing the joint rates by half reduces the
end velocity by exactly half and preserves the direction.

Redundancy takes the form of singularity of the Jacobian matrix in the differential kinematic
solution. A mechanism can lose one or more degrees of freedom:

* at points where two different inverse kinematic solutions converge
* when joint axes become aligned or parallel
T when the boundaries of the workspace are reached

Singularity implies that the Jacobian loses rank and is not invertible. At the same time, the inverse
kinematic solution tends to fail beecs aes bome aligned, and ininite rates can be generated
by rate control laws.
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54 Example - 3 Link Planar Manipulator
For the example manipulator, the last column of the manipulator model gives the following two
equations:

x = (c 123L3 + c12L2 + clL1 )

y = (s 123 L3 +Sl 2 L2 +s l L1 )

which can be differentiated with respect to 4fI , T2' and XjI 3 in order to determine the velocity of

the end effector as the joints move. The solution is:

7t _ (s123*123L3 + s12*12L2 + Sl*,l )

y, 123*123L3 +C1212L2 +cl*l )

which can be written as:

c123L3+c12L2+1L1) (c123L3 +c 12L2) c123L3 []

SJacobian Determinant
It is known from the implicit function theorem of calculus that the ratio of differential volumes
between the domain and range of a multidimensional mapping is given by the Jacobian
determinant. This quantity has applications to a technique of navigation and ranging called
triangulation.
Thus the product of the differentials forms a volume in both configuration space and in task space.
The relationship between them is:

(dXldX2 ... dXn) = IJI (dqldq2 ... dq m)
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SJacobian Tensor
At times it is convenient to compute the derivative of a transform matrix with respect to a vector
of variables. In this case, the result is the derivative of a matrix with respect to a vector. For
example:

S ii]

This is a three dimensional cube of numbers which can loosely be called a tensor. The mechanism
model itself is a matrix function of a vector.

For example, if:

IT( ) = A 1 (ql) A 2 (q 2 ) A 3 (q 3 )

Then there are three slices of the tensor, each a matrix, given by:

- A

A2 =  2 A3

T AA2A3

Eea3 a 

p2age-3
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6. Vehicle Kinematics
Some aspects of the kinematics of moving vehicles are simpler than that of mechanisms, others are
more difficult. This section presents an abbreviated discussion of the kinematic transforms
necessary for control of a vehicle in 3D.
Q. Axis Conventions

There are at least two prevailing conventions for the assignment of axes for the coordinate systems
of vehicles. In aerospace vehicles, it is conventional to point the z axis downward, and this makes
it natural to point the x axis forward and the y axis out the right side of the vehicle. The convention
used here is that the z axis points up, y forward, and x out the right side. This has the advantage
that the projection of 3D information onto the x-y plane is more natural.

It is important to note that the form of rotation matrices depends firstly on the order of their
component rotations, and secondly on the linear axis conventions. The convention used here
corresponds to a z-x-y Euler angle sequence. Therefore, it is not advisable to use the
homogeneous transforms developed here until they are verified to be correct for any sensors and
actuators that are used.

Al Frame Assignment
Several coordinate frames are important for moving vehicles. For legged vehicles, the frames
embedded in the legs are assigned according to the DH convention and the frames for the rest of
the system are analogous to those for wheeled vehicles. This section will present a set of frames
for wheeled vehicles that occur in most applications.

These frames are indicated in the figure below:

"Yn Yb Yh~s

Xn

Zh

ZD Z

t__,,n-
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6.2.1 The Navigation Frame

This is the coordinate system in which the vehicle position and attitude is ultimately required.
Usually, this frame is taken as locally level (i.e. the z axis is perfectly aligned with the local gravity
vector, not the local terrain tangent plane). The z, up, or azimuth axis is aligned with the gravity
vector, the y, or north axis is aligned with the geographic pole2 , and the x axis points east to
complete a right-handed system. In some applications, any frame that is fixed on the earth is
satisfactory whether or not it is aligned with the earth's fields. This frame is identified by the letter
n.

6.2.2 The Body Frame

The body frame is positioned at the point on the vehicle body which is most convenient and is
considered to be fixed in attitude with respect to the vehicle body. For Ackerman steer vehicles, the
center of rear axle is a natural place for this frame. In some applications, the best estimate of the
position of the center of gravity is more appropriate. The z axis points up, y forward, and x out the
right side. This frame is identified by the letter b.

6.2.3 The Positioner Frame

This frame is positioned at the point on or near any position estimation system which reports its
own position. If the system generates attitude and attitude rates only, this frame is not required
because the attitude of the device will also be that of the vehicle. For an INS, this is typically the
center of the IMU and for GPS it is the phase center of the antenna3. Axes directions are defined
similarly to the body frame directions. There is a different positioner frame for each positioning
device. This frame is identified by the letter p.

6.2.4 The Sensor Head Frame

Sometimes, environmental perception sensors are mounted on stabilized platforms or on pan/tilt
mechanisms. These provide isolation of the sensor attitude from that of the vehicle and/or the
ability of the system to literally point its "head". Axes directions are defined similarly to the body
frame directions. In cases where the rotary axes of the device all intersect at a point, this frame is
positioned at the common point of intersection of these axes. Axes directions are defined similarly
to the body frame directions.

In cases where the environmental perception sensor axes are not aligned with respect to those of
the vehicle (for example, when the sensor looks downward), or in cases where there is a
misalignment which must be accounted for, a rigid sensor head can be defined which tilts the body
axes into coincidence with those of the sensor. This frame is identified by the letter h.

6.2.5 The Sensor Frame

This frame is positioned at the center of the environmental perception sensor with axis definitions
similar to the body frame when the sensor points forward. For video cameras, it is positioned on
the optical axis at the image plane behind the lens. For stereo systems, it is positioned either
between both cameras or is associated with the image plane of one of them. For imaging laser

2. The geographic pole is determined by the earth's spin axis, not the magnetic field.
3. The antenna may be nowhere near the GPS receiver.
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rangefinders, it is positioned as the average point of convergence of the rays through each pixel.
Axes directions are defined similarly to the body frame directions. There is a different sensor frame
for each sensor.

6.2.6 The Wheel Frame

This frame is positioned at the center of the wheel, on the axle. At times it may be convenient to
define this frame at the wheel contact point and it may be useful to have it rotate with the wheeL
Each wheel has its own frame.

i. The RPY arm

For the purpose of kinematic modelling, any of the former frames can be considered to be
embedded in a rigid body. It turns out that the attitude of a rigid body can be expressed in many
different ways. It is usually most convenient to express vehicle attitude in terms of three special
angles called roll, pitch, and yaw. Luckily, most pan/tilt mechanisms are kinematically formed
from a yaw rotation followed by a pitch with no roll, so they are a degenerate form of a more
general transform.

These considerations imply that a general homogeneous transform, called the RPY transform, can
be formed which is similar in principle to the DH matrix, except that it has three rotations, and
which can serve to transform between the body frame and all others. There are six degrees of
freedom involved, three translations and three rotations, and each can be either a parameter or a
variable.

Let two general frames be defined called 'a' and 'b' and consider the moving axis operations which
transform frame 'a' into coincidence with frame 'b'. In order, these are:

* translate along the (x,yz) axes of frame 'a' by (u,vw) until its origin coincides with that of
frame 'b'

• rotate about the new z axis by an angle V called yaw
" rotate about the new x axis by an angle 0 called pitch
" rotate about the new y axis by an angle 4 called roll

Angles are measured counterclockwise positive according to the right hand rule. These operations
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are indicated below for the case of tnsforming the navigation frame into the body frame.

Ya V

abm

Wzi

Za#

The forward kinematic transform that represents this sequence of operations is, according to our
rules for forward kinematics:

Ta = Trans (u, v, w) Rotz (W) Rotx (I) Roty ( )OI u10 VSIIO"Oli [0 0 01[c, 0s* 0
1 0v f s v 0~ olcof 0 1 0 01 S

T VS V0 0100 JL -SJ
b 0 1 0 10 sO cOO -s*Oc O

o 0 o o o LO o 000

(cyc* - sysesO) -scO (cys + svsec ) u
T = (sc + cVses ) ci'cO (svs -cysec*) v

-cOs4 sO cOcO W

0 0 0 Ij

This matrix has the following two interpretations4:

* its columns represent the axes and origin of frame 'b' expressed in frame 'a' coordinates
" it converts coordinates from frame 'b' to frame 'a'

The matrix can be considered to be the conversion from a pose to a coordinate frame.

4. Ibis transform applies to the Itton INS on the HMMWV, the Stagget stable platform, and the ROS pan/
tilt head.
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.4 Frame Parameters for Wheeled Vehicles
Using the RPY transform, it is now possible to specify the parameters and variables which permit
coordinate transformation from anywhere on a vehicle to anywhere else. This is accomplished by
specifying the six degrees of freedom in a table. In the table, var indicates a variable and fixed
indicates a fixed parameter:

Table 2: Frame Parameters for Wheeled Vehicles

Transform u v w e
Tb  var var var var var var

TD fixed fixed fixed var var fixed

s  fixed fixed fixed fixed fixed fixed

fixed fixed fixed fixed fixed fixed

Tw fixed fixed fixed fixed var fixed

6.s Inverse Kinematics for the RPY Transform
The inverse kinematic solution to the RPY transform has at least two uses:

* it gives the angles to which to drive a sensor head, or a directional antenna given the direction
cosines of the goal frame

" it gives the attitude of the vehicle given the body frame axes, which often correspond to the
local tangent plane to the terrain over which it moves

This solution can be considered to be the procedure for extracting a pose from a coordinate frame.
There are many different ways to get the solution from different elements of the RPY transform.
The one used here is useful for modelling terrain following of a vehicle. Proceeding as for a
mechanism, the elements of the transform are assumed to be known:

rll r12 r13 Px

a= r21 r2 2 r23 PyTb =
r31 r32 r33 Pz

sn 0 0 1A
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The premultiplication set of equations will be used. The first equation is:

T = Trans (u, v, w) Rotz (W) Rotx (0) Roty (€)

r1l r 12 r 13 P. [Iclc -Svsss) -s~ic0 (c 'sO+sWsc0c) u

r21 r22 r 23 Py = iscC + cAVsOsO) cVc0 (sifso-cWsOcO) v

r 31 r32 r 33 Pz -cOsO sO cOcO W

0 0 0 1 0 0 0 1

The translational elements are trivial. From the (1,2) and (2,2) elements:

v = atan2 (r 22,-r 12 )

This implies that yaw can be determined from a vector which is known to be aligned with the body
y axis. The second equation is:

[Trans (u, v, w) ] Ta = Rotz (W) Rotx (0) Roty (0)

rll r 12 r 13 0 -(cNcO- SAVsOsO) -sAjcO (cVsO+ sWsOcO) 0

r21 r 22 r 23 0 = (sWcO + cVsOsO) cNc9 (s'so-cisOcO) 0

r31 r 32 r 33 0 -c0s0 sO cOc O  0

0 0 01 0 0 00

which generates nothing new. The next equation is:

[Rotz (,q)] [Trans (u, v, w) I T[ = Rotx (0) Roty (€)[(r, ,cxv + r2 , s1') (r12CV + r22si) (rl3c1V+ r23SV() 0 CO o SO 0
(-r 1 sW+r 21 cV) (-r 12sp+r2cv) (-r 13sV+r 23cV) 0 = sOsO CO -sOcO 0

r31  r32 r33  0 [-cOs s00 cOcOj

0 0 01 0 0 0 1

From the (3,3) and (3,2) elements:

10 = atan2(r 32'-rl 2 sf+r22cV)

Which implies that pitch can also be determined from a vector known to be aligned with the body
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y axis. A good solution for t is available from the (1,1) and (1,3) elements. However, for reasons
of convenience, the solution will be delayed until the next equation. The next equation is:

[Rotx (0) -1 [Rotz (w) ] 1 [Trans (u, v, w) ] -lT4 = Roty (*)

[ (r11IcW + r,1S'p) (r12CMI + r22sN) (r13cwg + r23SW) 0
ce [-r sw + r21 cM] + r31sO cO [-rl2sW + r2.cj] + r32sO cO [-r1 3s + r23cI + r33s6 0
sO [-r 1 sW +r21cW1 + r31c0 -sO [-r12sVi + r22cV] + r32c0 -sO [-rl3s +r23CW + r33c0 j

0 0 0

O0 0 0c1
001

From the (1,1) and (3,1) elements:

E = atan2(sO[-rllsAV+r 21 cAV] -r 31 cO, (rllc 1+r 2 1sVf))

This implies that roll can be derived from a vector known to be aligned with the body x axis.

6.6 Anlar Velocity
The roll, pitch, and yaw angles are, as we have defined them, measured about moving axes.
Therefore, they are a sequence of Euler angles, specifically, the z-x-y sequence 5. The Euler angle
definition of vehicle attitude has the disadvantage that the roll, pitch, and yaw angles are not the
quantities that are actually indicated by strapped down vehicle mounted sensors such as gyros.

The relationship between the rates of the Euler angles and the angular velocity vector is nonlinear.
The angles are measured neither about the body axes nor about the navigation frame axes. It is
important to know the exact relationship between the two because it provides the basis for
determining vehicle attitude from angular rate measurements.

In order to determine the angular velocity, consider that the total angular velocity is the sum of
three components, each measured about one of the intermediate axes in the chain of rotations which
bring the navigation frame into coincidence with the body frame. Using the fundamental
transforms, each of the three rotation rates are transformed into the body frame by the remaining

5. The sequence depends on the convention for assigning the directions of the linear axes.
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rotations in the sequence to give the result in the body frame.

cob = + rot (y, 0) + rot (y, )rot (x, 0)0

x CO- sOv1 FO 0 -sOcel 0Co y0 + o-s* 0 1 
L = 0 LsO +c cOwj LA OJfM

This result gives the vehicle angular velocity expressed in the body frame in terms of the Euler
angle rates. Notice that when the vehicle is level the x and y components are zero and the z
component is just the yaw rate as expected.

This relationship is also very useful in its inverted form. One can verify by substitution that:

0~~~~ (0Xc J OC 0 SO 1 0)

0 = ID)y -to [0) zCO - ( x SO]I toso 1 -toco~

J, c ZyL~~~ JCz* ~/c oc

because (OzCO - ~0xSO = cO*
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7. Sensor Kinematics
Many sensors used on robot vehicles are of the imaging variety. For this class of sensors, the
process of image formation must be modelled. Image coordinates are identified by the letter i.
Typically, these transformations are not linear, and hence cannot be modelled by homogeneous
transforms. This section provides the transforms necessary for modelling such sensors. These
transforms include projection, reflection, and polar coordinates.

7.1 Perspective Projection

In the case of passive imaging systems, a system of lenses forms an image on an array of sensitive
elements called a CCD. These systems include traditional video cameras and infra red cameras.
The transformation from the sensor frame to the image plane row and column coordinates is the
standard perspective projection. This type of transform is unique in two ways:

* it reduces the dimension of the input vector by one and hence it discards information
* it requires a post normalization step where the output is divided by the scale factor in order to

re-establish a unity scale factor

This transformation can be derived by similar triangles.

Zs

Xsf xs

yI+ = +ys/f Ys

Zsf zs  (xs, Ys, ZS)zi

Yi 0

x s

xi- 100 Xo oo100
Yi = 0000 Yi = i 0000

= 0010 Y s Ps 0010
zi 1 01Zs 1 1

Note in particular that all projections are not invertible. Here, the second row is all zeros, so the
matrix is singular. This, of course, is the ultimate source of the difficulty of measuring scene
geometry with a single camera. Therefore, the transform is identified by the special capital letter P.
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72 Matrix Reflection Onerator
We know from Snell's law for reflection of a ray that:

* the incident ray, the normal to the surface, and the reflected ray, all lie in the same plane.
• the angle of incidence equals the angle of reflection

From these two rules, we can formulate a very useful matrix operator to reflect a vector off of any
surface, given the unit normal to the surface.

S -(Vi fi) fi

Vr =Vi -2(1. fi)fi
Vr..."

Vi W Vr = vi- 2 (fi® fi) vi

This can be reformulated as a matrix by using the outer product ( @ ) of the normal with itself:

vr = Ref(fi) Vi Ref(fi) = I- 2 (fi fi)

I- nxnx  nxny nxnz
Ref(fi) = nxn y 1-nyny ny nz j

nxn z  nyn z  - nzn z

The result is expressed in the same coordinates in which both the normal and the incident ray were
expressed. This operator can be used to model the "optical" kinematics of laser rangefinders.
Notice that a reflection is equivalent to a rotation of twice the angle of incidence about an axis
which is normal to the plane formed by the incident ray and the surface normal. A similar matrix
refraction operator can be defined.
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7. Polar Coordinates
For 2D scanning laser rangefinders, the transform from sensor coordinates to image coordinates is
the spherical polar transform, and it is not a projection because such a sensor generates a
measurement of range as well. This transform is a nonlinear function that cannot be modelled as a
matrix.

There are two fundamental possibilities for the kinematics of such sensors because there are two
rotations involved which may occur in either order. These are derived in detail in [12]. These
transforms are most easily derived in reverse. That is, from image to sensor coordinates. For a
sensor where the azimuth rotation comes first, the image to sensor transform is6:zx=R

Y RcOcV
z s  -RsOci

This is easily inverted.

2 +y2 +z2

[ = atan (xs/ y2 +z2) =h (x s , Ys' Zs )

atan (-zs/Y s )

6. This transform combined with the last two provide the basics of a computer graphics system both in gen-
eral, and for its particular use in mobile robot simulation.
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7.4 Imacin oJacWan
The imaging Jacobian provides the relationship between the differential quantities in the sensor
frame and the associated position change in the image. It is important for landmark recognition
applications.

7.4.1 Perspective Jacobian

The Jacobian is:

_ xsf Zs f
X- =Ys+f i Ys+f

ax.f -Xsf

_ s )Ys azs Ysf (y 5 f)2 0
avi aYi 4}i 4}i Ys + f (s + ) 2 0

s- T= 0 0 0
as s s s  -Zsf fa z i  a z i  Dz i  0 -2 y -TF- L (ys + f)2 Ys+f

7.4.2 Azimuth Polar Jacobian

When the azimuth rotation comes first, the Jacobian is:

T

S + Ys + Z 2 atn atan

ai~ ~ s SX~Z xs+ sz 5  ~z 5  ~

Zs

-KR A RR" Xs Ys Zs
G Xs aYs azs R" RR

i~~~ _i ) g Ys -Zs
2 2 2 2Js~~~Z +~ BjsBsTZ z2 ~2 ~+ s+sX+

ax i 0 i0Zs-Y
-2 aoO ysys 0 zs  z
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7.5 Proiection Tables
The directions of the rays through each pixel of an imaging sensor are fixed with respect to the
sensor frame. The trigonometric overhead of computing this information can be severe in some
applications, so it is possible and worthwhile to compute it and store it in tables. These tables can
be useful both in real time perception applications and in off-line ray tracing simulation. This
section provides the equations necessary to map (rowcolumn) coordinates onto the direction
cosines of the ray through those coordinates.

7.5.1 Perspective

Let the width of the image plane be W and thc height be H as shown in the figure. Let the
horizontal and vertical field of view be HFOV and VFOV.

zs W

Zi \

Ys
Xi H

f

The pers ective transformation is:

xi Xs Yi Ys zi Zs
f sfYs f Ys

A vector from the sensor frame origin to the image plane at the pixel is:

U= [xi f zT1
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A unit vector in this direction is:

U = fl + (xi/f) 2 + (Z 2/f)2[f 1 j

The tangents scale linearly with distance along the image plane. Therefore, these are functions of

the pixel coordinates as follows:

xi (col - cols/2) W

f cols f

zi (row - row s/2) H
f rows f

When the field of view is small enough to satisfy a small angle assumption, then the focus distance
and image plane size can be ignored and their ratios can be approximated as follows:

w- e HFOV H =VFOV
I f

and this permits using a camera model that is independent of the focal length.

7.5.2 Azimuth Polar

When the azimuth rotation of a scanning mechanism comes first, we have the kinematic
relationships:

xs = Rsq

Ys = Rcecv

zs = -RsOcV

and therefore the unit vector is simply:j o Fsv cocv -sec0

In this case, the pixel coordinates are angles, ar-d not tangents so that:

(col - cols/2)
= cols HFOV

0 - (row-rows/2) VFOV
rows
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8. Actuator Kinematics
For wheeled vehicles, the transformation from the angles of the steerable wheels and their
velocities onto path curvatures, or equivalently angular velocities, can be very complicated. One
reason for this is that there can be more degrees of freedom of steer than are necessary. In this case,
the equations which relate curvature to steer angle are overdetenined. In one particular case,
however, the steering mechanism is designed such that this will not be the case. This mechanism
is used on most conventional automobiles and is called Ackerman steering.

L The Bicycle Model
It is useful to approximate the kinematics of the Ackerman steering mechanism by assuming that
the two front wheels turn slightly differentially so that the instantaneous center of rotation of the
vehicle can be determined purely by kinematic means. This amounts to assuming that the steering
mechanism is the same as that of a bicycle. Let the angular velocity vector directed along the body
z axis be called P .
Using the bicycle model approximation, the path curvature K, radius of curvature R, and steer
angle a are related by the wheelbase L.

1 _ ta _ d3
LC s I.

a

Where tM denotes the tangent of aX. Rotation rate is obtained from the speed V as:
dPds . N =Vta

Thus, the steer angle a is an indirect measurement of the ratio of 0 to velocity through the
function:

aX = atan(V ) = atan (KcL)

Although it is common to think of these equations in kinematic terms, this is only possible when
the dependence on time is avoided. In fact, this steering mechanism is modelled by a very
complicated nonlinear differential equation thus:

d13(t) 1 ds dsdt = Itan[a(t)]- = K1t)d

dt c p
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