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This paper generalizes Malvar-Coifman-Meyer (MCM) wavelets by extending the choice of
bell functions. We dispense with the orthonormaity of MCM wavelets to produce a family
of smooth local trigonometric bases that efficiently compress trigonometric functions. Any
such basis is, in general, not orthogonal, but any element of the dual basis differs from the
corresponding element of the original basis only by the shape of the bell. Furthermore, in
our scheme the bell functions are bounded by 1 and the dual bell functions are bounded
by (211 + 1)/2 s 1.2. These bounds ensure the numerical stability of the forward and
the inverse transformations in these bases. Numerical examples demonstrate that in many
cases the proposed bases provide substantially better (up to a factor of two) compression
than the standard MCM wavelets.
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1. Introduction

The problem of compression of digital data by means of transform coding has been attracting

an increasing amount of interest during the last decade both in signal processing (see, for

example, [12], (17]) and numerical analysis (see, for example, [2], (4]). This type of data

compression usually involves approximating (with a specified error) a function defined in its

domain at n points by a linear combination of m < n elements of an appropriately chosen

basis. In particular, efficient compression of trigonometric functions of the form

1(Z) = cos(WX + a) (1)

where w and a are arbitrary constants, is a problem of significant importance. The interest in

this problem is stimulated by the fact that in many areas of signal processing and numerical

analysis one often encounters functions c E L2(IR) whose domain can be divided into a relatively

small number of segments Ii in such a way that

c~z)-"Ax cos ,z+ c) + e(z) for all zE , (2)
n0O

where A-, w, and a are real and independent of z, Mi - 1, and max Je(z)/ max AjI 1

A powerful tool for the compression of functions (1) are orthonormal local trigonometric

bases discovered by Malvar [14] and Coifman and Meyer [8]. These bases are a generalization

of the well known trigonometric bases on [0,1] (see, for example, Chap. 2 of Tolstoy [19]), in

the sense that any element of these bases is a product of a function b, that has a compact

support, and an appropriate trigonometric function (see Subsection 2.1 for more details). We

will refer to such bases as Malvar-Coifman-Meyer (MCM) bases or MCM wavelets.

The principal goal of this paper is to introduce a family of non-orthonormal bases that

provide an efficient compression of functions (1), and bases dual to them. These objects are

closely related to MCM wavelets: any element of a basis is a product of a compactly supported

function b and a trigonometric function, while the corresponding element of the dual basis is a

product of a compactly supported function b (uniquely determined by the function b) and the
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same trigonometric function. Moreover, the functions b and b can be chosen in such a manner

that for all X E R,

0 < b(x) < 1, (3)

0 _< !(x) _< (21/2 + 1)/2 z 1.2, (4)

which ensures the numerical stability of the transformations to and from the resulting bases.

Note that any such basis is uniquely determined by the function b.

The plan of the paper is as follows. In the remainder of this section we review some

of the existing techniques for the compression of functions. In Section 2 we construct bi-

orthonormal bases that are a generalization of MCM wavelets. In Section 3 we formulate

the variational problem of the computation of functions b leading to efficient compression of

trigonometric functions (1) while maintaining the bounds (3) and (4). This problem is solved

exactly in Section 4. In Section 5 we compare the performance of our scheme with that of other

algorithms. Finally, in Appendix we discuss an alternative construction leading to a somewhat

different type of bases.

1.1. MCM Bases

The point of departure for the construction of MCM wavelets is the following well known

theorem, that in a slightly different form can be found, for example, in Chap. 2 of Tolstoy [19].

Theorem 1.1. The sequence of functions

{21/2 sin(n + l/2)7rx}, (5)

where n = 0,1,2,..., is an orthonormal basis on [0,1]. e

The simplest version of MCM wavelets based on the system (5) is given by the theorem

below (see, for example, Chap. 6 of Meyer [16])

Theorem 1.2. Let b: R --+ R be an arbitrary function such that

b2(z) + b2(-x) = 1 for all -1/2 _ z _ 1/2, (6)

b(z) = b(1 - z) for all 1/2 < z < 3/2, (7)

b(z) = 0 otherwise. (8)
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Then the sequence of functions

U (X) = u°(x - k), (9)

where n = 0, 1,2,..., k = 0,±1, ±2,..., and

nU-(-) 2'1/2 b(x)sin(n + 1/2)wz, (10)

is an orthonormal basis on the real line. e

The function b in (10) is usually referred to as the bell function or the bell. Interesting and

useful extensions of Theorem 1.2 can be found, for example, in [3] and [16].

Remark 1.1. Let the sequence of coefficients {f ,} be defined via the formula

= -nf(z)ukz)dz. (11)
00

Then Theorem 1.2 implies that

*f(X)= E E ZfnkU"(X) (12)
k=-oo n--O

almost everywhere on the real line. e

Recent applications of MCM bases to compression of functions can be found in [1], (5], and

[6].

1.8. Bi-Orthonormal Bases

An elegant and important generalization of the concept of orthonormal wavelet bases are

the so called bi-orthonormal or Riesz bases (see, for example, Chap. 8 of Daubechies [9]). The

principal analytical tool in this case is the following well known theorem, that in a slightly

different form can be found, for example, in Chap. 4 of Meyer (16].

Theorem 1.3. Let {,} and {,} be two bases in L2(R) such that

L )4,(Z)d2 -- 6nr, (13)

where 4,,, is Kronecker's delta. Then for any f E L2(R),

00

co
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an = f(z)O.(X)dz. (15)

Similarly,
fAX)-- a,() (16)

n=-oo

where

Usually the system { } is referred to as the basis dual to {4,,}.
The following theorem and its corollary are immediate consequences of Theorem 1.3.

Theorem 1.4. Let {f} and {,€} be bi-orthonormal bases in L2(R). Then for any f E L2(R)

and g E L2(R),

f(x)g(z)dx= Nf,= fg. (18)
01O ,1=-00

where
f.= f(z).().2, (19)

= g(z)(z)d, (20)

and

n = jC f(z)4 (x)d?, (21)

"= L g()$(z)d.. (22)

Corollary 1.1. For any f E L2(R),

f2(zT)dT- E An, (23)

where the coefficients fn and fn are defined in (19) and (21)..

A recent example of data compression in bi-orthonormal bases can be found in [131.
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2. Construction of Local Trigonometric Bases

In this section we construct local trigonometric bases (and their dual bases) with bell

functions that do not necessarily satisfy the condition (6). These bi-orthonormal bases are a

generalization of MCM wavelets.

2.1. Notation and Definitions

This subsection contains basic notation and definitions to be used in the remainder of the

paper.

Let a continuous function w : [-1/2,1/2] -+ R satisfy the condition

w2(z) + wt2(-) 4 0. (24)

The function fv :1-1/2,1/2] --, R is defined by the formula
t(i)((2s)

+vx)V u'N) (25)
W2(Z) + W2(_X)"

The bell function (or the bel) b : It --+ R will be defined by the formula

W(X) for all -1/2< 3 /2, (26

b(z) dd w() - x) for all 1/2 < 3/2, (26)
0 otherwise,

where u; is an arbitrary function satisfying (24). The function : - R defined by the

formula
fm il(x) for all -1/2 < < 1/2,

b(z)= (I --:) for all 1/2 < :5 _3/2, (27)
0 otherwise,

with iv defined in (25) will be called the dual bell function (or the dual belt) to b.

Let 9 : It -- R be defined by the formula

O(Z) - b2(X - k) (28)

The following properties of 0 are immediate consequences of (26) and (28):

O(:-m)= O(z) for all m= 0,11,2,..., (29)
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92(-z) 02(= (z) + b2(-z) - 2(z) + w2 (-z) for all -1/2 < z < 1/2, (30)

0(1 -z) = 0(z) for all 1/2 < x < 3/2. (31)

The combination of (25) - (27), (30), and (31) yields

I(X)= #2(Z). b(Z). (32)

Next, for k = 0, ±l, ±2... and n = 0,1,2,... we define (locally supported) functions u

IR -+ R and fn -k R R by the formulae

u -(z) uO(x - k), (33)

is (T) fi.(z - k), (34)

where

uO(z) def 21/ 2 b(z) sin(n + 1/2).z, (35)

o(z)f2/2( )sin(n + 1/2)irz. (36)

The functions b and b in (35) and (36) are defined by (26) and (27), respectively. Since

functions u4 and f are locally supported, they will be referred to as functions belonging to a

k-th interval. In Theorem 2.1 below we show that the collections of functions {uk} and {fik}

are bi-orthonormal bases.

Let a be a real number and suppose that f E L 2([a- 1/2, a+ 1/2]) and w E L2([-1/2,1/2]).

Suppose further that u; satisfies the condition (24). Then the folding operator F.' : L2(IR)--.

L2(1R) and the unfolding operator U.0 : LI(R) -, L2(RI.) are defined by the formulae
f(x) -w(x - a) - f(2a - x) -w(a - x) for all a < x < a + 1/2,

F. (f (x)- f(z).w(a-z)+f(2a-z).w(z-a) forall a-1/2<z< o, (37)

0 otherwise,

and

f(z). w(z - a) + f(2a - z) w(a - z) for all a < z < a + 1/2,
f(z).w(a-z)-f(2a-z).w(z-a) forall o-1/2<<a, (38)

0 otherwise.

6
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The combination of (25), (29) - (31), and (37) yields

FO(f)(z) = 0(z)- F.(f)(z). (39)

Next, for k = 0, ±-1, ±2... and n = 0, 1, 2, ... we define auxiliary (locally supported) functions

vk : R --+ R via the formula

V(X) 4- U(z) . O(z), (40)

where the functions un are defined by (33) and (35). Note that due to (32) the relation (40)

can be rewritten in an equivalent form

t4(X) = i(z)/#(z), (41)

where the functions fii are defined by (34) and (36).

Finally, for any basis {uk} we define its condition number rojd by the formula

=d max b(z). (42)
ZE[-1/2,3/21

Remark 2.1. It is easy to see that as long as (3) holds, & > 0, and rcW is reasonably small

(rc,,d ; 1), both functions uk and fi are bounded by a number of order 1, and therefore

forward and inverse transforms in bases { u} are numerically stable. In this respect the defi-

nition (42) serves the same purpose as the definitions of the condition number for other linear

transformations (see, for example, the corresponding definition for matrices in Chap. 4 of Stoer

and Bulirsch [181)..

2.2. Bases {Ukn} and f{ik,}

In this subsection we establish analogues of Theorems 1.3 and 1.4 for the collections of

functions {ukn} and {ki) defined in (33) - (36). We start with the following lemma, which will

be used to reduce the proofs of bi-orthonormality and completeness of {uk} and {iiI to simple

manipulations with MCM bases.

Lemma 2.1. Suppose that an arbitrary function Wv E L2(-1/2,1/2]) satisfies (24) and the

bell function b is defined in (26). Then any set of functions {vk} defined in (40) is an MCM

basis.
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Proof. For any k = 0,4-1,±2, ... and n = 0, 1,2,... the combination of (29), (33), (35), and

(40) yields

v-kCT) = Vn°Cx - k), (43)

with

vn0(x) = 21/2 . b(x) . O(z) sin(n + 1/2)irx, (44)

while from (26), (30), and (31) we have

b2 (z) • 02(x) + b2(-z) • 02(-X) = 1 for all -1/2 < x < 1/2, (45)

and

b(z). O(z) = b(1 - z). 0(1 - x) for all 1/2 < x < 3/2. (46)

Next, due to (26),

b(z) O(z) = 0 for all Iz - 1/21 > 1. (47)

Now we see from (43) - (47) that the collection of functions {vn} satisfies all the conditions of

Theorem 1.2 (with the product 0 -b playing the role of the bell function b), and therefore it is

an MCM basis. .

The following theorem proves the bi-orthonormality and completeness of the collections of

functions {u} and {ik}.

Theorem 2.1. Suppose that the collections of functions {uk I and {f k I are defined in (33) -

(36) with the bell functions b (26) defined in Lemma 2. 1. Let n, m, k, and I be integers such

that n > 0, m > O. Then
0 k(z)i4(._)dz = bklbnm. (48)

Moreover, let for an arbitrary function f E L2(It) the coefficients fn be defined via the formula

= f( )u(z)dx. (49)

Then
00 00

k-oo m=O
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almost everywhere on the real line.

Similarly, if

n] f(z)_0 (z)dx, (51)

then
00 00

f(X)= j jkU(), (52)
k-oo n=O

almost everywhere on the real line.

Proof. The formula (48) is an immediate consequence of the orthonormality of the system

{vk} and the relation
=k (.T). _ = =. k(__)_ .I(X),V (53)

which in turn immediately follows from (40) and (41).

The equality (50) can be easily proven by expanding an auxiliary function p E L2 (R),

defined by the formula

p() = f(z)/O(z), (54)

in the basis {v}. In fact, it follows from (11) and (12) that if

A 00- p(z)v ()dx, (55)

then

P(T kXPvn (56)
k-o,n=O

almost everywhere on the real line. Now (50) is a consequence of (54) - (56), (40), and (41).

The proof of (52) can be obtained by expanding an auxiliary function q E L2(R) defined

by the formula

q(z) = f(z). (x) (57)

in the basis {vn}, and repeating the proof of (50) almost verbatim..

Remark 2.2. Since the functions un and fik (k = 0, ±1, ±2, ..., n = 0, 1,2,...,) are periodic with

period 1 (see the formulae (33) and (34)) while the functions u° and iio are locally supported

on [-1/2,3/2], the definitions (49) and (51) can be rewritten in the form

f=k -/2 f(x)u!(x)dx, (58)

9
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and
k -/ 2 f(X)ii(X)dx. (59)

Finally, Theorem 2.2 and Corollary 2.1 below are particular cases of Theorem 1.4 and

Corollary 1.1, and they immediately follow from Theorem 2.1.

Theorem 2.2. For any f E L2(R) and g E L2(R),

f()g()dX= 
( 0 )kk 

= E
_o k=-oo n=O k=-oo n(

where fn, gk and fk, k are the expansion coefficients of the functions f and g in the bases u }

and {Iik}, respectively. .

Corollary 2.1. For any f E L2(R),

00 00

00 =) = T lIlflk), (61)
k-oo

where 1/2

IlflllkA) I__f f:L f in (62)

In Remark 2.3 below we show that 1fIkk) (62) satisfies all the conditions of a norm and we

will call this parameter the norm of f on the k-th interval.

2.3. Folding of a Function.

The implementation of forward and backward transforms in bases {uk} as well as certain

proofs can be simplified by means of foldings [3], (1]. We begin with a theorem, that establishes

a connection between folding F (37) and unfolding U (38) operators; its proof is an immediate

consequence of the definitions (25), (37), and (38)

Theorem 2.3. Let w : [-1/2, 1/2] R- R satisfy the condition (24) and i: [-1/2,1/2 -R t be

defined via (25). Then
US. F 11 = 1, (63)

and

U. 1 = 1, (64)
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where the operators F and U are defined by the formulae (37) and (38), respectively. .

Theorem 2.4 below expresses coefficients fnk and 1k of an arbitrary function f E L2(R) as

standard Fourier coefficients of certain auxiliary functions.

Theorem 2.4. Suppose that the function lk : [k, k + 1] -* R is defined via the formula

ik(z)Lf F(f)(z ) + F +1 (f)(_), (65)

where f E L2(JR) is an arbitrary function and the operator F is defined by (37). Then

fk -2/2j kz sin(n + 1/2)ir(x - k)dx, (621k lk fk(x).m + (66)

and
00

-k(z) = 2'12 E fk sin(n + 1/2)r(x - k) (67)

almost everywhere on [k, k + 1].

Similarly,

i- 21/ ]+i 02(z) " k(x) - sin(n + 1/2)ir(x - k)dx, (68)

and
0o

02 (T) • fjk(z) = 21/2 F In sin(n± 1/2)ir(z - k), (69)
n=0

almost everywhere on [k,k + 1].

Proof. Observing that sin(n + 1/2)r(x - k) is an odd function of z - k and an even

function of z - k - 1, and combining (58) and (37) we immediately obtain (66). Analogously,

(68) immediately follows from (59), (39) and (65). The formulae (67) and (69) are immediate

consequences of (66) and (68), respectively, and Theorem 1.1..

Now the expansion coefficients fnk can be obtained by first folding the function f at every

integer point a =k by means of (37) (which produces fk on every segment z E [k, k + 1]), and

after that evaluate standard sine coefficients (66) on all the segments. Conversely, to apply the

inversion formula (50) one can first compute the functions (65) for every integer k by summing

the sine series (67), and then unfold the obtained function for every k via (38) and (63).

:, 11



Remark 2.3 It is easy to show that the parameter Ilffl~k) defined in (62) is a norm. Indeed,

combining (67) and (69) we have
,k+1 01k 0(x = -~i,: Ilil k), (70)

Jk - k(~x=n=OM'(0

i.e. 1f 1(k) is the L' norm of Jk with the weight 02 .

Remark 2.4 It immediately follows from (67) that

(: f k 2) 1/2

IlI12 = (Y .n (71)

3. Optimization of Bell Functions: Statement of the Problem

In this section we formulate a problem of the construction of bases {u,} that efficiently

compress trigonometric functions (1) and whose condition number rwd - 1. Since any basis

{U} is uniquely determined by the bell function b this problem can be formulated as the

problem of an appropriate selection of b. The principal result of this section consists in reducing

the problem of an appropriate selection of the bell b to a minimization problem for a quadratic

functional (see the formula (125) below).

.1. Compression in Bases {u }

Since bases {ukt} are, in general, not orthogonal the computation of relative errors of com-

pression of functions in these bases can become very difficult. Consequently, any optimization

of these bases (i.e. selection of such bases that with a given error approximate functions of

a specified class with the least number of coefficients) becomes a complicated problem. In

this subsection we observe, however, that the optimization of a wide class of bases {u k} is

almost equivalent to a simpler problem. We begin with a lemma that expresses (62) in a form

containing only coefficients fk,; its proof is an immediate consequence of (67) and (70).

Lemma 3.1. For any integer k,

Ilfli fk+1 2

2 8J (-)- f. k sin(n + 1/2)r(x - k) dx, (72)
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where IIfll(k) i8 defined by (62). .

The formulae (73) and (74) below introduce two parameters that play an important role in

the formulation of the optimization problem.

For a function f E L2 let {f } denote its set of coefficients with respect to a basis {uk).

For every k, we denote by S(f, b) any subset of {fk} that consists of the least number of

coefficients for which the following inequality is satisfied:

II!1 k) - 2 e2(x). sin(n + 1/2)T(x - k) dx
b( S"(f , b~m 1 2ddJ .',(,)

lill1k)

k+I # 2(X). fksin(n+ 1/2)T(x- ) dx 1/2

Jk , gS (fb) <

j +I #2(.). f f sin(n + 1/2)r(x - k)) dx )
(73)

The number of coefficients belonging to S(f, 6) will be denoted by NI(f, b)). In (73), f E (0,1)

is a specified (small) number and b is the bell of the basis {uk}. The parameter 6(Sk(f, b)) is

the relative error in the norm (62) of compressing f on a k-th interval, i.e. setting to zero all

the coefficients fk that do not belong to the subset S(f, b). Note that S(f, b) depends on f,

b, and e.

Similarly to (73), for every k we choose a finite subset S,(f, b) consisting of the least number

of coefficients Rk(f, b) for which the following inequality holds:

2 1/2

1k+1 jk+1 + 1/2)r(x - k) ( (fk)21/

fkxd E(fk) 2

n--O /

. (74)
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In (74) the equality of the first and second fractions is a consequence of the orthogonality of

functions sin(n + 1/2)r(x - k) (n = 0,1,...) on Ik,k + 11 and the formula (67). Analogously

to (73) the parameter S(S (f, b)) is the relative L2 error of compressing the function fk, which

immediately follows from (71).

Theorem 3.1 below establishes a connection between relative errors 6 (73) and 6 (74).

Theorem 3.1. For any continuous 0 defined in (28) and f& defined in (67) there exists r E IR+

such that

6(Sk(f, b)) < , (75)

and
S(sk (f, b)) _ .. (76)

Furthermore, r satisfies the inequality

1/(o < <e, (77)

where e is defined by the formula

max O(z)e dW XE[,1/21
azE(O, )"2 (78)

x4E[o,1/2]

Proof. We start with the proof of (75). This inequality can be written as
2 1/2

lkI k+ 2X fksin(n +l/2)r(x - 2 1/2
SI ) <)) 0, (79)

#2X ksin(n + 1/2)ir(x - k)) dx

which is an immediate consequence of (73).

Combining the mean value theorem with (29) and (31) we obtain

#2:"k+  (X) •fk, sin(n + 1/2)7r(x - k) dz=

Ik .n$,(o,b)
(80)

( 2

e2(f)j k~E(fb fk, sin(n +1/2)r(x -k)) dx,

14



and )an j+ 2()( sin(n+ 1/2)(x- k) dx=

k.

[_+ (ffsin(n + l/2)r(x -k) dx,#2 2 k xnffi

where 0 _5 flf2 5 1/2. Now the inequality (75) is a consequence of (78), (80), and (81). The

proof of (76) is analogous to that of (75) and we omit it. 0

Remark 3.1. Obviously, the natural norm of computing errors of functions' compression

is the norm (62) that is closely related to the L2 norm. Then the optimization of bases for a

particular function f and fixed E consists in finding such bell function b for which the subset

So(f, b) consists of the least number of coefficients Nk(f, b). However optimization in the norm

(62) is a complicated problem because this norm involves both coefficients fk and In. In

addition, subsets Sk(f, b) do not necessarily contain Nk(f, b) largest coefficients f k . In this

remark we observe that for a wide selection of functions f the optimization of bells b in the

norm (62) is almost equivalent to their optimization in the norm (71). Note that the norm (71)

involves only coefficients fn, while all the subsets . (f, b) consist of N,(f, b) largest coefficients

f, .
In fact, the formulae (73), (74), and (75) show that if (for any given b and f, and fixed e)

we set to zero all the coefficients fk, that do not belong to a subset S then the upper bound of

the relative error of such an approximation in the norm (62) does not exceed r. . Therefore

for ic s 1 (i.e. when 0 s 1) and sufficiently smooth b and f we expect that the subsets Sk and

*S, almost coincide..

Now we turn to discussing the compression of the functions (1) in bases {uk}. Due to

periodicity of both cosine and functions uk without loss of generality we will consider expansions

of these functions only on the interval [-1/2,3/2) (i.e. for k = 0). We will write the coefficients

of functions (1) on this interval as f,, (instead of f ). Finally, for these functions numbers

0(f, b) (see their definition in Subsection 3.1) will be denoted by *,(a,W, b).

Lemma 3.2. For any w, a, and n > 0 the coefficients fn of the function f defined in (1) are

given by the formula

f= 2-/2 (sin(a + A /2). B(A") + sin(-a + A' /2) . B(A _)), (82)

15



B(q) =LO b(z + 1/2). exp(iqz)dz, (83)

and

A n= w + (n + 1/2)r, All = -w + (n + 1/2)ir. (84)

Proof. First we observe that b(z + 1/2) is an even function of z, which immediately follows

from the definition (26), and thus its Fourier transform B (83) is a real even function. Therefore

combining (1), (35), and (49), we have

fn - 21/2 J b(z) cos(wz + a)- sin(n + 1/2)irz)dz =

2- 1 2 1a (exp(ia) f b(z) exp(i. A". z)dz) +

2-12 !a (exp(-io) L-. b(z) exp(i -An . z)da) =(85)

2-1/2, (expi(a+A"/2). b(z.+-/2)exp(iA' )dz) +

2-1/2q) (xi(-a + At/2). f b(z + 1/2) exp(iA--)dz)

and now the formula (82) follows from (83) and (85). .

R Rmark 3.2. In this remark we observe that for w > 1, a 0 r1/2 ( = +I, ±3,5...,) and

sufficiently smooth bells b,

R1 W,,9 b) z 2A,(0, 0, b). (86)

Indeed, since the function b in (26) is integrable, we have (see, for example, Chap. 7 of

Tolstoy [19])

,r B(q) = 0, (87)

and therefore for any n e0 and w 1,

f, s 2-1/2 sin(a + At/2). B(A ) 2"1/2 sin(a + A'/2). B(-w + (n + 1/2)ir), (88)
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which is a consequence of (82), (84), and (87). On the other hand, for w - 0 the combination

of (82) and (84) yields

f - 2112 cos(a)- sin(wn/2 + ir/4) - B((n + 1/2)r). (89)

Combining (88) and (89) we see that if B decays sufficiently fast (i.e. when b is sufficiently

smooth), a 4 r1/2 (1 = ±1, ±3,±5...), and w > 1,

F9(a,w, b) ft 29,(a, 0, b). (90)

Next, for arbitrary b, e, and a 0 rr/2 (1 = ±1, ±3, ±5...) the numbers -No(a, 0, b) do not depend

on a and, due to (74), coincide with numbers RO(f, b) for the function

f(z) = 1. (91)

Now combining this observation with (90) we immediately obtain (86). .

3.,. Optimized Bases for 7Tigonometric Functions

In this subsection we give an informal description of the construction of the bases {uk},

hereafter referred to as optimized bases, that efficiently compress trigonometric functions (1).

This scheme involves two observations that significantly simplify this problem.

1) The selection of bases {uk} with 0 s 1 and rn z I ensures the numerical stability of

forward and inverse transforms in these bases (see Remark 2.1), and reduces their optimization

in the norm (62) to an almost equivalent but a much simpler problem of optimizing them in

the norm (71) (see Remark 3.1).

4 2) Purthermore, for sufficiently smooth bells the bases optimized for the function (91) in

the norm (71) are almost optimal (in the same norm) for the functions (1) (see the relation

(86) in Remark 3.2).

S.,. Construction of Optimized Bells as a Variational Problem

In this subsection we formalize constructing of optimized bases discussed in Subsection 3.2.

We start with the explicit formula for the expansion coefficients of the function (91).

17



Combining (26), (35), and (58) with (91) we have

/23/2 1I/2
f_ 21/1'/2 b(z) sin(n + 1/2)7rdz= 2 1 1/2 w(z),On(z)dz, (92)

where
0.(x)= 2-1/2 (sin(n + 1/2)irz + (-1)f cos(n + 1/2)iz) =

(93)
(-1)m sin(n + 1/2)r(z + 1/2).

In (93) m = [(n + 1)/2] with the symbol (z] denoting the integer part of :.

It is natural to suppose that for sufficiently smooth bells b the first several coefficients fn

(92) decrease as a function of n. Therefore the bell optimal for the function (91) in the norm

(71) can be obtained from the condition

00

min 2 (94)
nuN

We expect, that as N (the number of the optimized coefficients) in (94) increases, the value of

this sum decreases thus providing a smaller value of the relative error 6 (74).

Remark 3.3. It is tempting to solve (94) under the MCM condition (6) thus obtaining an

optimized orthonormal basis with r..,W = 0 = 1. However, the solution of the vaxiational

problem (94) for MCM bells (6) does not yield a bell suitable for the compression of functions

().

In fact, the function

{ o(z) sin(r(x + 1/2)/2) for all -1/2:5z < 3/2,
(95)

0 otherwise

satisfi the conditions (6) - (8) (i.e. the basis {u!) with this bell is an MCM basis) as well as

the condition (3). Now the combination of (92) and (95) yields

r3/2

fn = 21/I sin(ir(z + 1/2)/2)sin(n + l/2)wzdz
1-/2

(96)

l)m2 3 / 2  1/2 sin(r(x + 1/2)/2) -sin(n + 1/2)w(z + 1/2)dT - 2126on,
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where m = [(n + 1)/2], and thus the function (95) provides the solution for (94). However, the

Fourier transform of b (95) decays very slowly and therefore the basis with such a bell cannot

efficiently compress functions (1) with w 9 0. 0

Rewark 3.4. The Gaussian bell function

exp (-a(x - 1/2)2) for all -1/2 < z < 3/2, (

0 otherwise,

where a = I/In(I/i) provides a value of the sum in (94) that is close to its absolute minimum.

This property of the Gaussian (97) (with an appropriately chosen e = E(N)) is a consequence

of Heisenberg's inequality (see, for example, Chap. 2 of Dym and McKean [10]). However, it

is easy to see that for bases with the bell (97) we have

ro -1/4 /2, (98)

and

0 f E-1/4/2 1/2 , (99)

and thus for small e the inverse transformation (50) in such bases becomes numerically unstable.

An example of this instability is discussed in Subsection 5.5 below..

In Lemma 3.3. below we establish class of bells for which rw. ft 1 and 0 1.

Leimma S.3. Let a rel-v- uedjfknction w E Cl [-1/2, 1,12] *tify (24) and suppose that

W() + W(-X)= 1, (100)

and
d(x)> 0 for all 0 z < 1/2. (101)

Furthermore, suppose that for some zo E [0, 1/2),

w(zo) = 2-'1 .  (102)

Then on (-1/2,1/2) the function tb defined in (25) has the unique mazimum at: = Zo and

iv (z0) (21/2 + 1)/2, (103)
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while on the same interval the function 0 defined in (47) has the unique maximum at z = 0,

0(0) = 2'/2 (104)

Proof. We start with the analysis of the function iv at the point z = zo. We first observe that

dw(x> 0 for all -1/2 < x < 1/2, (105)
dz

which is an immediate consequence of (100) and (101). Substituting (100) into (25) we have

W(x) (106)
i(x) = 2w 2(X) - 2w(z) + 1'

and thus
d () = dw(x). 1- 2W2(X) (107)

dx dx (2w2(z) - 2o(x) + 1)2'

which in combination with (102) yields
d,.b (xo)-0
d . (108)

Next, combining (102), (105), and (107) we have

> 0 for all -1/2 < x < 3o, (109)
dx

and
dfv~zf

<0 forallxo<x<1/2. (110)

It immediately follows from (108) - (110) that x = zo is the unique maximum of the function

i on (-1/2,1/2). Finally, the relation (103) is a consequence of (102) and (106).

We now turn to the proof of (104). First we observe that

w(0) =1/2, (111)

which immediately follows from (100). Substituting (100) into (30) we have

O)W (112)
(2w 2 (Z) - 2ui(z) + 1)1/2'
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and therefore
d9(z) dw(x) 1 - 2w(z)

dz-- d (2w 2(z) - 2w(x) + 1)3/2' (113)

which in combination with (111) yields

d' = 0. (114)
dz

Combining (105), (111), and (113) we have

-- >0 forall-1/2<x<0, (115)dr,

and

dx

Formulae (114) - (116) show that z = 0 is the unique maximum of 9 on (-1/2,1/2). Finally

(104) is obtained by substituting (111) into (112).

Remark 3.5. In this remark we compute the condition number rd (42) and the parameter

e (78) for bells that satisfy the conditions (3) and (100) - (102). Note that (3) is equivalent to

•0: _< (X) <_ 1,(17

which follows from (26).

Combining (103) and (42) we obtain

rm~d =(21/ "t"1)/2. (118)

Next, combining (112) and (117) we have

min d(x) 1, (119)
-=EEo,1/21

which in combination with (104) yields

1 < e < 21/2.. (120)

Remark 3.6. In this remark we establish an interesting relation between an arbitrary bell b

(26) and the corresponding dual bell b(27) when (3), (100), (101) and (117) hold.
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Combining (106) and (117) we have

w(z)5 _< (x) _< 2w(x), (121)

which is equivalent to

b(z) _< (x) < 2b(z). (122)

Obviously, the equality b(z) = &(z) can hold only for z such that b(z) = 1, whereas the equality

b(z) = 2b(z) is satisfied only for z such that b(z) = 1/2, i.e. only at the points z = 0 or z = 1.

Finally we observe that the last two relations in combination with (111) imply 6(0) = b(1) = 1.

We solve the minimization problem (94) (for arbitrary N) under the constraint (100) only.

It turns out, however (see Subsection 4.3), that for any N the resulting bells also satisfy (3),

(101), and (102), and therefore for the basis {uk} with such a bell r,,u. and 0 are given by

(118) and (120), respectively (see Remark 3.5). In Appendix we discuss the solution of (94)

without any constraints.

Since w satisfies (100), there exists an odd function g such that

w(z) = (1 + g(x))/2. (123)

Combining (92), (93), and (123) we have

2 ((22,2)sin ((n/2 + 1/4)ir) + sin(n + 1/2) r . 9(:)dz). (124)

The relations (94) and (124) define the variational problem for the computation of the opti-

mized bell: substituting (124) into (94) we see that formally it consists in finding the absolute

minimum (with respect to g) of the functional

191W}-- 0 f2 = 4 sin(n/2 + I/4)r. j/g(z) sin(n + 1/2)r'dz+
uN __O

(125)
00 11/2 p1/2

2 Jo o g()g(y), sin(n + 1/2)1? . sin(n + 1/2)wydrdy + C,
E 0

where C is a functional independent of g.
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4. The Solution of the Variational Problem

In this section we find the absolute minimum of the functional I defined in (125).

.4.1. Mathematical Background

Heie we present a number of relevant mathematical facts to be used in the next subsection.

The main result of this subsection, an establishment of a different representation of the func-

tional (125), is Lemma 4.3 below. We start with the well known trigonometric expansion that

(in a slightly different form) can be found, for example, in Chap. 5 of Tolstoy [19].

Lemma 4.1. For any IzI < ir,

E(_ lCOS(2n + I)2= -(20(z - 7r/2) - 1), (126)

where 0 is the Heaviside unit step function..

The following lemma is an immediate consequence of the formula (126).

Lemma 4.2. For any 1z: < 1/2,

E(-1)" cos(n + 1/2)z(z + 1/2) cos(n + 1/2)w(x - 1/2) 0 . (127)
- n + 1/2 n + 1/2 /

Lemma 4.3. For any g E L2([0, 1/2]) and 0 < N < oo,

I~)= 1o/2,(zd 4- I (-I)n 1/2

Ig}(- n+ 1/d2 sin(n/2 + 1/4)ir - g(m)sin(n+ l/2)Twdz.-

N-iI/212 1

2 jg(o)g(y) sin(n + 1/2)iz .sin(n + 1/2)rydzdy + C,

(128)

where the functional I is defined by (125) and C is a functional independent of g.

Proot Throughout the proof of the lemma any functional independent of g will be denoted

by C. We begin with rewriting (125) in the form

I{g} =AI{g}- 12{9}, (129)
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where
00

Ii{g} = f.2' (130)

and

12{g} N f- 4 I (-1) sin(n/2 + 1/4)7r.1 g(x) sin(n + 1/2)-xdx+, =o 7 n=o n + 1/2 0

(131)

2 N j j g(z)g(y). sin(n + 1/2)wz• sin(n + 1/2)rydxdy + C.= O

Substituting (124) into (130) we obtain

nOh,{g} =

(-_) [2 g(z)(cos(n + 1/2)Ir(z - 1/2) - cos(n + 1/2)ir(x + l/2))dx + C,
r _ n + 1/2 o

(132)

where

7= 21/s jlg(z) sin(n + 1/2)7rzdz. (133)

Combining (133) with Parseval's theorem we have

E n= o/22()dZ. (134)
ni=O

Next, changing the order of integration and summation in the second sum in (132) and using

the formula (127) we see that this sum vanishes, which in combination with (134) yields

Ii{g} = 2f g2(z)dx + C. (135)

Now (128) immediately follows from (129), (131), and (135).

4.2. The Absolute Minimum of the Functional I

In this subsection we show that the function G :R -R I defined by the formula
N-i

! Gz) g, sin (n + 1/2)wrz, (136)

n_0 2
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is the unique minimum of the functional I. In (136) the coefficients g" are the solution of the

N x N linear system
NV-I

gdm=bm, m= 0,1,...,N- 1, (137)

where

• (n/2 + 1/4) sin(n/2 + 1/4)ir, (138)

and ad1 (-1) n

1 2 O(2n+1) for all m n,

dnm = - (139)
sin(n - m)/2 - sin(n + m + 1)r/2 for all m n.
I r(n -m) 7r(n+ m +1)

This result is based on the standard analysis of the first and second variations of the functional

I (see, for example, Chaps. 1 and 2 of Fox (11]).

Theorem 4.1. The function G defined by the formulae (136) - (139) is an extremal of the

functional 1, i. e. 61{G} = 0

Proof. We assume that the functions g in (128) (and their variations 6g) belong to L2([0,1/21).

Obviously, the first variation of the functional (128) has the form

btf) = 2 12 (- 1)/ sin(n/2 + 1/4)r -sin(n + 1/2)rx -

(140)~N-1 1o/2)2 E sin(n + 1/2)7rx g(y) . sin(n + 1/2)rydy dz.
n--0OJ

The combination of (140) with the condition 61{G} = 0 yields

- 1 _i) sin(n/2 + 1/4)7r sin(n + 1/2)rz-
( n + 1/2

(141)17. fi/2 N-1

2j/2 G() (E sin(n+ 1/2),y-sin(n+ 1/2)rx dy = 0,

i.e. any extremal of I satisfies Fredholm's integral equation of the second kind with the so

called Pincherle-Goursat kernel (see, for example, Chap. 2 of Tricomi [20]). Note, that now

the representation (136) is an immediate consequence of (141).
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The standard method for the solution of the integral equations with Pincherle-Goursat
kernels consists in replacing them with suitable linear systems (see, for example, Chap. 2 of
Tricomi [20]). Substituting (136) into (141) we obtain

N-I2N-

g, si(n + 1/2)rz - E -1 sin(n/2 + 1/4)w -sin(n + 1/2)rx-, =o 7 n- n + 1/2

N- 12(142)

2 , g, sin(n + 1/2)wrz Ej sin(n + 1/2)wry. sin(m + 1/2)wrydy = 0.
n--O M--O0

Now using linear independence of the functions sin(n + 1/2)rz on [0, 1/2] and evaluating the
integrals in (142) we immediately obtain (137) - (139). .
Theorem 4.2. The function G defined by (136) - (139) is the unique minimum of the func-

tional I.

Proof. Obviously, in order to prove this theorem it is sufficient to show that for any nontrivial
function 6g (i.e such that 6g I 0 on [0, 1/2]) the second variation of I i strictly positive.

From (125) we immediately obtain

621{g} = 2 (j 6g(x) sin(n + 1/2)rzdz), (143)
n=N

and thus

6521g} > 0. (144)

Now we will prove that for any nontrivial 6g the relation (144) can hold only as a strict
inequality. Suppose that there exists a nontrivial 6g such that

621{g) = 0. (145)

Then combining (143) and (145) we have

j go(z)sin(n + 1/2)rzd? = 0 for all n = N,N + 1,..., (146)

where the function Wg : [0,1] --+ IR is defined by the formula

W RX {g(z) for all 0 < x < 1/2,
i' (147)

0 otherwise.
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Since the system {sin(n + 1/2)irz} is complete and orthogonal on (0, 1], the conditions (146)

imply that
N-IZg(x) en ¢ sin(n + 1/2)7r, (148)
n--

where the coefficients c, are independent of z. However, for any finite N (147) and (148)

cannot simultaneously hold unless 'g-(z) = bg(x) - 0 for all x E [0, 1/2]. Therefore, for any

nontrivial 6g,
621{g} > 0, (149)

which concludes the proof of the theorem. *

Remark 4.1. It immediately follows from (136) - (139), (123), and (26) that the functions w

and b are uniquely determined by the number of optimized coefficients N. In order to emphasize

this fact we will write IDN and bN instead of to and b.

4.3. Certain Properties of the Optimized Bells

The explicit formulae for the bells found in the preceding subsection are obtained by first

substituting (136) into (123), which produces

N-1
StN(z) = 1+ - g,,sin(n + 1/2)ir) (150)

followed by combining (26) and (150), which yields

( N-i /))1I + 1_ gnsin(n + I/2)wr for all -1/2 x < 12,

n_0

bN(:) 1 + - (-1)?ngcs(n+ 1/2)rz for all 1/2< x< 3/2,

0 otherwise.

In (150) and (151) the coefficients gn are the solution of the linear system (137) - (139). The

numerical. values of these coefficients for N < 20 are listed in Table 1.

'It turns out, that the condition number of the matrix (139) increases rapidly with N, and in order to avoid
the lost of accuracy this sequence of linear systems was (numerically) solved in extended precision arithmetics.
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Numerical computations of functions bN for N < 20 via (150) with ga's from Table 1 show

that for these functions the conditions (3), (101), and (102) are satisfied. Therefore for bases

{u!} with such bells the condition number r , (42) and the parameter 0 (78) are given by

(118) and (120), respectively (see Remark 3.5). Note that independently of N, r?,,.4 and 8

are sufficiently close to 1 to ensure numerical stability of the transformations in bases with the

optimized bells.

Examples of optimized bells (151) and corresponding dual bells are shown in Fig. 1.

5. Numerical Results.

In this section we compare compression provided by the optimized bases with that obtained

by two of nonoptimized ones whose bells are described in Subsection 5.2 below. We also present

the corresponding results for the bases with the Gaussian bells (97).

5.1. Implementation of the Algorithm

The implementation of the algorithm is based on the results of Subsection 2.3. We assume

that the expanded function f is defined at the nodes of the equally spaced mesh

z=i-h, i=0,-1,-2,..., h=1/(-1), l= 2p+l, (152)

where p > 0 is an integer.

Remark 5.1. In most applications one usually uses bells b such that

b(-1/2) = b(3/2) = ", (153)

where 0:< r < 1. In this paper we will assume that r in (153) is sufficiently small so that one

can neglect the contribution of the points z = k - 1/2 and z = k + 3/2 while (numerically)

computing the integral in (58) on the mesh (152).

We start with the explicit formulae for the implementation of the folding (37) and unfolding

(38) operators. Under the conditions described in Remark 5.1 the folding operator on the
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interval z E (k - 1/2, k + 1/2] has the following discrete form:

FI(f)(k + h(i - 1)) - k(k + h(i - 1)) =

f(k + h(i - 1)).- w(h(i - 1)) - f(k - h(i - 1)) -w(-h(i - 1)) for all I < i <_ p, (154)

F -f)k -h(i - 1))- Ik-(k - h(i - 1))-

f(k + h(i - 1))- w(-h(i - 1)) + f(k - h(i - 1)). w(h(i - 1)) for all 1:< i < p, (155)

F.k(f)(k + hp) - ik(k + hp) = f(k + hp)- w(hp) for i = p+ 1. (156)

The discretized version of the unfolding operator (38) enables us to obtain the function f for

z E (k - 1/2, k + 1/2] at the points of the mesh (152) as linear combinations of functions k

and fjk.i In fact, combining (63) with (154) - (156) we have

f(k + h(i- 1))=

fkCk + h(i- 1)). (h(i- 1))+ Jk-(k- h(i- 1)). i(-h(i- 1)) for al 1 < i < p,(157)

f(k- h(i- 1))=

fjk-(k - 1-))-iiv(h(i- 1))- fk(k + h(i- 1)).i(-h(i- 1)) for all 1 <i < p, (158)

f(k + hp) =k(k + hp) -C(hp) for i =p + 1. (159)

Next, one can easily see from (154) - (156) that on the interval [k,k + 1] the values of the

function fk at the nodes of the mesh (152) are given by

f(k + h(i- 1)). w(h(i- 1))-
f(k - h(i - 1)) -w(-h(i - 1)) for all 1 < i <p,

fk(k+h(i-1))= f(k+1+h(i-p- 1)).-w(h(p+ 1-i))+ (160)

* f(k + h(i - 1))- w(h(l - i)) forall p+2 < z <1

f(k + ph). w,(hp) for i =p + 1.
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Observing that for any k

fk(k) 0, (161)

we obtain the trapezoidal approximation for the formula (58) in the form

f k=2'12.h. fk(k-}h(i-l)).sin(Ir(n+I/2).h.(i-l)), n =0,1,...,1- 2, (162)

i=2

where the numbers fk(k + h(i - 1)) are computed in (160).

Conversely, in order to compute a function f on a] the intervals x E (k - 1/2, k + 1/2]

(k = 0,+1,+2...,) at the nodes of the mesh (152) from its coefficients fnk-j and fk one first

computes the numbers f&_(k-h(i- 1)) with 1 _ i < p and fk(k+h(i- 1)) with 1 _ i < p+ 1

via the discretization of (67) which has the form

I&(k + h(i -1))-= 21/2 2 f, sin( (n+ 1/2). h. (i - 1)),

1-1

fkz(k - h(i - 1)) = 21/2 F - sin(r(n + 1/2) . h(i - 1)), (163)

and after that uses the formulae (157) - (159).

The cost of the algorithm's implementation for sufficiently large I is dominated by the Fast

Fourier Tradorm (FFT) in (162) for forward transform and the FFT in (163) for inverse

transform, and therefore has the complexity estimate 0(1 log 1).

Now we will discuss the compression procedure used in this paper. In most applications

the compression of a function f in a certain basis is usually achieved by neglecting all the

coefficients whose absolute values are smaller than a given number. In this paper on every k-th

interval we set to zero all the coefficients that do not satisfy the inequality

I2 (164)
\m---O

where c is a given number. The subset of coefficients fk that satisfy (164) will be denoted by

Dk. Now instead of the exact relations (163) we have the approximate formulae

fk(k + h(i - 1)) 21/2 fk sin(ir(n + 1/2) . h. (i - 1)),

k. (k - h(i - 1)) s 21/2 f-sin(ir(n + 1/2) . h . (i - 1)), (165)
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which in combination with (157) - (159) produce approximate (i.e. based on compressed

expansions (165)) values of f at the nodes of the mesh (152). The arguments, presented in

Subsection 3.1 (especially in Theorem 3.1 and Remark 3.1) show, that E in (164) is close to the

relative error of this compression in the norm (62) provided that rc, . e r 1

Finally, we compute the relative error of the approximation (165) in the norm (62). Namely,

replacing the subset S by the subset Dk in (73) and observing that the total number of

coefficients fk on the k-th interval is equal to I - 1 (see (162)), we have this error 6 in the form

(k+1 0 2(X) ksin(i + /2)x(x - k))2 1/2

6(D k) -(166)
2+9(z) kfsin(n+ 1/2)r(z - k) dz

5.,. Two Nonoptimized Bell Functions

In this subsection we discuss certain basic properties of collections of bells proposed in [1]

and [7]. These bells are computed via the formula (26) in which w is replaced by the functions

wN defined in (167) and (169) below.

The following bells were described by Coifman (7] and are based on the sequence of functions

ON(() = sin T L (1/4- t2)Ndz) (167)

where /y1/2t N= (1/4 _ t 2 )Nd (2N)!!

-1/2 22N(2N + 1)! (168)
Clearly, the functions (167) satisfy the MCM condition (6) for any N. The parameter N

controls the smoothness of the bell. In fact, combining (26) and (167) it is easy to see that

for N > 0 the obtained bell is analytic on the real line except at the points z = -1/2 and

z = 3/2, where it has N continuous derivatives, and at the point z = 1/2, where it has 2N + 1

continuous derivatives. For N = 0 the Coifman bell coincides with the function 4o(z) from

(92).
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The bells proposed by Aharoni et. al. [1] (the AACI bells) are based on functions WN(X)

that are recursively defined as

wN(x) = (1 + yN)/ 2 ; yo = sin wz, y+., = sin(wry,/2), n = 0,1,..., N - 1, (169)

and therefore for any N they satisfy the condition (100). Similarly to (167), the parameter N

controls the bells' smoothness: one can verify that the combination of (26) and (169) produces

a function that is analytic on the real line except at the points z = -1/2 and z = 3/2, where

it has 2 N - 1 continuous derivatives.

5.3. Compression of Trigonometric Functions

In this subsection we introduce a number of parameters estimating the compression of

trigonometric functions (1) in bases {un}.

First, we consider a sequence of functions

fj(x) = cos(Wjz + aj), (170)

where j = 1,2,...,M, wi and ai are random variables uniformly distributed on [WI, W2] and

[0,2r], respectively (see the particular choice of M, wi and w2 in (175) below). We begin

with evaluating the expansion coefficients f,,(j) of these functions via (162) (we again drop

the superscript for brevity) on the interval [-1/2,3/2] (i.e. for k = 0). Next, we compute

the integers mi, equal to the number of coefficients that satisfy the inequality (164) for each

of the functions fi(z). In addition, for every function fi(z) we evaluate the relative error

of compression (hereafter denoted by 6,) via (166). Finally, in accordance with the common

practice (see, for example, Chap. 3 of Mandel (15]), we compute the sample estimates of the

means #a and , and their standard deviations a and or$ via

M
fn= Em M, (171)~j=1

M
(172)

j=1
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and1/
a,= (nmi 1,)2/(M- 1)) (173)

,s = - )2/(M _1)) . (174)

We will also denote by th the number of coefficients satisfying the inequality (166) for the

function (91) (formally this number can be obtained from (171) if wi = 0 for all j). Naturally,

for this function 6 = = 6 = 0.

Below we give the numerical values of the parameters M, ow, and w2 that were used in our

experiments:

M = 100, w 1 50, v =1000. (175)

Our experiments show that the parameters (171) - (174) only weakly depend on M, w, and

w2 provided that M > 30, wl Z 50, and w2 > i.

5.4. The Choice of the Optimal N

The bells, defined by functions (167) and (169), as well as the optimized bells (151), depend

on a parameter N. In this subsection we discuss the procedure for choosing such N that for

the given type of the bell and specified e provides the best compression for functions (1) (i.e.

the smallest value of fn- (171)).

In Table 2 we show the parameters fn (171) and 6 (172) obtained for bases with AACI

bells for certain values of N. For comparison this table also contains the corresponding results

for the function (91) in the same bases. As we see from Table 2, for any e there exists the

optimal choice of N which provides the best compression for both functions (170) and (91).

Our numerical -aperiments show, that for all other types of bells considered in this paper

there also exists the optimal bell (i.e the optimal choice of N that depends on C) with the best

compression properties; these values are presented in Table 3.
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5.5. Comparison of Compression in Optimized and Nonoptimized Bases

The main part of this subsection is devoted to the results of compression on the interval

[-1/2,3/2] of functions (1) and (91) in bases {uk) with the Coifnan (167), AACI (169),

Gaussian (97), and optimized (151) bell functions for certain values of t. The parameters w3 ,

%j, mi, v, v&, 6, a, and a6 are defined in Subsection 5.3. All the computations are performed

with the optimal (for the given E and type of the bell function) values of N (see Table 3). In

addition, we investigate certain properties of expansions of functions other than (1) and (91)

in bases f Uk}.

Table 4 shows that for all the considered examples the approximate relation (86) is satisfied.

Note, that we always have a/f < 0.1 which indicates that the numbers mj only weakly depend

on ai and wi (for sufficiently large wi). Next, the compression of the test functions in bases

with the Gaussian and optimized bells is essentially the same, and it is substantially better

(especially for higher accuracies) than that in bases with the AACI and Coifman bells.

The data in Table 5 are closely related to that in Table 4 and contain values of parameters

1 (172) and a6 (174). These data show that for all the bells excluding the Gaussian one,

6/f - 1 (176)

independently of e, i.e. in such cases the parameter e in (164) is dose to the relative error

(in the norm (62)) of the approximation (165). However, in the case of the Gaussian bell the

ratio I/e increases as e decreases, which is a consequence of the growing r ,d and e (see the

formulae (98) and (99)).

Fig. 2 shows the expansion coefficients f,, of the function (91) in the four bases, with the

parameters N chosen to be optimal for f 10- 7 (see Table 3). Naturally, these dependencies

make sense only for the integer values of the argument, but for clarity they are drawn as

continuous functions. As we see from Fig. 2 the large coefficients in the four bases are close to

each other, and the advantage of the bases with the Gaussian and the optimized bells consists

in generating fewer small coefficients. Similar behavior of the expansion coefficients of the

function (91) is observed for other values of c.
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We now turn to the investigation of the expansions of functions that are almost singular at

one point. Note that one cannot improve the compression of a function on a certain interval

by the optimization of the bell if the function has an integrable discontinuity on this interval.

Table 6 contains the numbers of expansion coefficients f,, that satisfy the inequality (166)

for functions

fL(x) = AL(Z) cos(200z), (177)

where
E (si= E 2n + Ix

AL(x) = in +1) (178)

Note, that for L -o the amplitude AL coincides with the discontinuous function

00 sin(2n + 1)z i(
Aoo(x) =F 2n+ 1 4(2'()- 1), (179)

n-O

which immediately follows from (1z6) after the change of variable x -* x + r/2. The graphs of

AL(x) for several values of L are presented in Fig. 3.

The following two observations can be made from Table 6, that are typical for the compres-

sion of functions which are more complex than trigonometric ones.

1. The compression in bases with the optimized bells is essentially the same as in bases

with the Gaussian bells.

2. For higher accuracies the bases with the optimized bells usually provide a much better

compression than the bases with nonoptimized bells. The advantage of the optimized bases

becomes more prominent for smaller L, i.e. when the amplitudes AL (178) are less steep in the

vicinity of the point x = 0.

Finally, we discuss the numerical stability of the algorithm. Although Tables 4 and 6

show that the bases with the Gaussian and optimized bells provide similar compression, the

formulae (98) and (118) indicate, that for sufficiently small e the optimized bases have much

smaller condition number. Therefore, in such cases the CO error of the approximation (165)

will be larger for bases with the Gaussian bell than for optimized bases.

To illustrate this phenomenon, we approximate the function

x(z) 1 + exp (1oz2) cos(100z) (180)
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on [-1/2, 1/2] via the combination of (165), where we keep only coefficients satisfying (164),

with (157) - (159). Fig. 4 shows the difference A between f (180) and its approximation for

= 10- 7 in the bases with the Gaussian bell and the optimized bell with N = 9. One can see

from that figure that while for the optimized basis the maximum of IA(z)l is close tot for all

z E [-1/2, 1/2], in case of the basis with the Gaussian bell we have IA(z)I > E for certain z

from the vicinity of the folding point x = 0, i.e. where the dual bell is sharply peaked.

6. Conclusions and Generalizations

In this paper we present a family of non-orthogonal bases that efficiently compress trigono-

metric functions, as well as some non-trigonometric ones. The dual bases of these optimized

bases are easy to construct: any element of a dual basis differs from the corresponding element

of the original basis only by the shape of the bell. Moreover, the value of the condition number

of these bases r, = (21/2 + 1)/2 s 1.2 ensures numerical stability of forward and inverse

transformations in these bases. The CPU time required for forward and backward transforms

in the optimized bases is the same as in the standard MCM scheme, i.e. it is dominated by

that of the FFT. The methods of this paper can be easily applied to the construction of bases

optimized for other classes of functions. This work is now in progress and its results will be

reported elsewhere.
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Appendix: The Unconditional Solution of (94)

Here we obtain the solution of the minimization problem (94) without the constraint (100).

Our starting point is the formula (92).

Let the functions 0, be given by (93) and suppose that the function WK [-1/2, 1/2] -- R

is defined via the formula
K-1

WK(z) = E c" X), (181)
n=0

where c,, (n = 0, 1, ..., K-1) are arbitrary constants. Observing that the collection of functions

4, (n = 0, 1,2,...) is an orthogonal basis on [-1/2,1/2], and substituting (181) into (92) we

have
: tl1/2 en for all n <K -1,

rAI -=2 l/ wK(X)4I,()dX= (182)
J -1/2 0 otherwise.

Combining (94) and (182) we see that

00

f 2= for all K < N, (183)t n=N

i.e. any linear combination (181) with K < N provides the absolute minimum for the functional

(94).

In an attempt to construct a bell function from (26) and (181) that satisfies (3) and on

the real line has as many continuous derivatives as possible, we require that the K arbitrary

parameters c, satisfy the conditions

W/c(-)1==/2 = ,(184)

dX 2+l1K(z) =0 fora]l=0,1,..., K-2. (185)
L=-1/2

Note, that for any nonnegative integer K and n,

"d2 =o/_ d2 tWK( ) =0 for all 1 0, 1,- (186)
dX = -1/2 2 s-/

It immediately follows from (185) and (186) that the bell function, defined via (26), (181),

(184), and (185), has at least 2K - 2 continuous derivatives on the real line. Furthermore, it
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follows from (182) that in the basis with this bell a constant is reproduced from its first K

coefficients per interval ezactly.

Remark A. It is worth noting that the conditions (181), (184) and (185) in combination with

(26) do produce bell-shaped functions at least for (numerically tested values) K < 10. Graphs

of these bells for certain values of K can be found in Fig. 5. *

For example, the explicit formula for the bell with K = 2 is

1 (3sin(r(z+ 1/2)/2)-sin(37r(x+ 1/2)/2)) for all -1/2 < x < 3/2,
b2(X) = (187)

0 otherwise.

The bell (187) has two continuous derivatives on the real line, the basis with such a bell

reproduces a constant from its first two coefficients per interval exactly, and its condition

number r,..d ;. 1.67 is relatively small. These properties suggest that the basis with the bell

(187) can be useful in signal processing where the required accuracy usually is not very high

(normally in (164) t > 10-), and where the low frequency components of the signals often

play an important role.

However, due to the rapid growth of r,,j with K the application of the unconditionally

optimized bells in case of K > 2 is limited.
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Table 1: Coefficients g for the computation of the optimized bells (151).

n N= N = 2 N = 3
1 1.1002143947640111085 dO 1.1723768006269012949 dO 1.2031447668472587192 dO
2 0.1855148479250006034 dO 0.2487749850071917170 dO
3 0.0475141123801596348 dO

n N=4 N = 5 N = 6
1 1.2196727213232474166 dO 1.2299263341780548351 dO 1.2368960390161255733 dO
2 0.2853161868567129887 dO 0.3091936162560012950 dO 0.3260454684070418003 dO
3 0.0789155484618257136 dO 0.1022547499107077172 dO 0.1202144284772571658 dO
4 0.0135550276613148530 dO 0.0270080848154667718 dO 0.0392824672307590613 dO
5 0.0040643028367457815 dO 0.0094646390135188831 dO
6 0.0012540398189263445 dO

n N=7 N=8 N=9
1 1.2419380540495429195 dO 1.2457536263723204704 dO 1.2487411472878298253 dO
2 0.3385842628287665721 dO 0.3482817014907560773 dO 0.3560069611425606312 dO
3 0.1344330305316184567 dO 0.1459560151659402844 dO 0.1554771240803420597 dO
4 0.0501467090476806012 dO 0.0596831230559218041 dO 0.0680536775001451859 dO
5 0.0153116614831942916 dO 0.0211609941444967639 dO 0.0267991398186155608 dO
6 0.0033448841387432324 dO 0.0059658781972807312 dO 0.0088894805175620360 dO
7 0.0003942039965801714 dO 0.0011854380315612793 dO 0.0023126782210685839 dO
8 0.0001255469017738763 dO 0.0004203150366958263 dO
9 0.0000403732905776057 dO

n N=10 N = 11 N = 12
1 1.2511435101979626018 dO 1.2531171572760240244 dO 1.2547673684254528441 dO
2 0.3623069592485838316 dO 0.3675432476836647534 dO 0.3719644997534442686 dO
3 0.1634729471600794903 dO 0.1702809341651916143 dO 0.1761463604899294465 dO
4 0.0754255125823668245 dO 0.0819484046917260704 dO 0.0877499693755897336 dO
5 0.0321305559573675648 dO 0.0371207535134114532 dO 0.0417667654440872536 dO
6 0.0119592651970663211 dO 0.0150712511279723392 dO 0.0181579310814718085 dO
7 0.0036995960643158676 dO 0.0052752483692935777 dO 0.0069802273692443469 dO
8 0.0008907386396059369 dO 0.0015235383929696997 dO 0.0022969056584170223 dO
9 0.0001489420206098608 dO 0.0003408100998412218 dO 0.0006209177060710873 dO
10 0.0000130803773243655 dO 0.0000527237866578197 dO 0.0001295783756168840 dO
11 0.426301975610614 d-5 0.0000186407482263636 dO
12 1 1 0.139606350016921 d-5
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N=13 N= 14 N= 15
1 1.2561675816035252352 dO 1.2573705781037171767 dO 1.2584152648035577478 dO
2 0.3757474138575439717 dO 0.3790210170105753012 dO 0.3818817363437593838 dO
3 0.1812516131847340424 dO 0.1857350426141542667 dO 0.1897034477160271649 dO
4 0.0929368147130266026 dO 0.0975974055372798749 dO 0.1018051162625708735 dO
5 0.0460814756936615327 dO 0.0500851855065012145 dO 0.0538010556771918339 dO
6 0.0211765890308308775 dO 0.0241011932143827745 dO 0.0269168795850161325 dO
7 0.0087672206344614442 dO 0.0105996145856369849 dO 0.0124496130486740615 dO
8 0.0031866825949287158 dO 0.0041695173336949991 dO 0.0052243034619146703 dO
9 0.0009873442127753202 dO 0.0014340335627767149 dO 0.0019527481969350935 dO
10 0.0002505909631277034 dO 0.0004193026849064740 dO 0.0006365376324034804 dO
11 0.0000489789669579668 dO 0.0001002259697370695 dO 0.0001760791467702309 dO
12 0.658213072318501 d-5 0.0000184143983824276 dO 0.0000397571893420880 dO
13 0.459014688967825 d-6 0.232126216952405 d-5 0.688941970620248 d-5
14 0.151428882710068 d-6 0.817633371026949 d-6
15 0.501000810832705 d-7

n N=16 N = 17 N = 18
1 1.2593309500457438031 dO 1.2601401306174552497 dO 1.2608603612954268205 dO
2 0.3844030891706786254 dO 0.3866421087683765354 dO 0.3886437212387816550 dO
3 0.1932405574881542732 dO 0.1964129247635806935 dO 0.1992741058079349344 dO
4 0.1056209666415645249 dO 0.1090959178203754145 dO 0.1122727446284484620 dO
5 0.0572526660933526002 dO 0.0604627480475656409 dO 0.0634525707675491656 dO
6 0.0296162216589041811 dO 0.0321967100439478970 dO 0.0346590468664805595 dO
7 0.0142964336695234923 dO 0.0161247652829157535 dO 0.0179235156823607947 dO
8 0.0063326892901278450 dO 0.0074791070877270307 dO 0.0086505731134735900 dO
9 0.0025343672760701497 dO 0.0031697006503196943 dO 0.0038499687030354075 dO
10 0.0009011351818553216 dO 0.0012105885859207094 dO 0.0015615520391816049 dO
11 0.0002789521059156221 dO 0.0004101047807666002 dO 0.0005698390644760264 dO
12 0.0000731823780789826 dO 0.0001208077758892354 dO 0.0001842373381822920 dO
13 0.0000156526972929684 dO 0.0000301301370711848 dO 0.0000517518322815702 dO
14 0.256611058982070 d-5 0.612055142365566 d-5 0.0000122981314895988 dO
15 0.287672400786250 d-6 0.951935962296931 d-6 0.237837400561446 d-5
16 0.166167484200405 d-7 0.101105205879303 d-6 0.351830571000310 d-6
17 0.552324489986036 d-8 0.354989120817137 d-7

t 18 0.183937626456071 d-8
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.n N=19 N =20
1 1.2615055408626026438 dO 1.2620868165186817100 dO
2 0.3904437975327983132 dO 0.3920713262058702161 dO
3 0.2018676789041392205 dO 0.2042294606490294914 dO
4 0.1151875431220117202 dO 0.1178709389362636122 dO
5 0.0662416923898752204 dO 0.0688479112856821096 dO
6 0.0370059895821450853 dO 0.0392415664712484188 dO
7 0.0196848223338375282 dO 0.0214032823468272275 dO
8 0.0098363945921014495 dO 0.0110278550409693667 dO
9 0.0045670612090700171 dO 0.0053136548560657154 dO
10 0.0019502209236860229 dO 0.0023726050667205839 dO
11 0.0007577056719391676 dO 0.0009726951425515420 dO
12 0.0002645671093113601 dO 0.0003624288874381589 dO
13 0.0000817808996953258 dO 0.0001212704239660943 dO
14 0.0000219482849485672 dO 0.0000359012169826721 dO
15 0.498006589408313 d-5 0.922285969549705 d-5
16 0.918946754735698 d-6 0.200203409841185 d-5
17 0.129595480966266 d-6 0.353205918170597 d-6
18 0.124523708171851 d-7 0.475881033651720 d-7
19 0.613594334772978 d-9 0.436427442377405 d-8
20 1 0.204997258761082 d-9

Table 2: Compression of functions (91) (I) and (1) (U) in bases {un} with AACI bells for

certain values of N.

N fn'__ I U

1 7 10.2 2.2
10- 3  2 5 9.7 1.0

3 9 15.4 1.5
2 30 48.6 7.2

10- 7 3 17 33.3 1.2
4 28 53.3 2.2
3 63 108.2 12.5

10-13 4 48 92.2 6.1

5 77 144.3 14.4
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Table 3: The optimal parameters N for certain values of i

Type
of AACI Coifman Optimized
bell
= 10- 3  2 2 4
= 10- 7  3 7 9

j = 10-13 4 13 16

Table 4: Comparison of compression of functions (91) (1) and (1) (II). For each value of e

the choice of N is the same as in Table 3.

Type

of AACI Coifman Gaussian Optimized
bell

10-3 5 9.7 1.0 6 9.7 1.0 4 8.3 0.7 4 7.6 0.7
10 - 7  17 33.3 1.2 16 33.8 1.2 10 19.7 1.2 9 19.1 1.3
10- 13  489. 6 1 4.7 19 36.7 3.0 16 37.8 3.2

Table 5: The sample mean error (172) and standard deviation as (174) (see text for

details). For each value of E the choice of N is the same as in Table 3.

Type
of AACI Coifman Gaussian Optimized

bell

S/e o'j/E ft j/ 6f 06 /f ieqf
10 0.5 0.3 1.1 0.4 0.8 0.5 0.5 0.3

10- 7  0.9 0.3 1.1 0.3 3.5 2.0 0.8 0.3
Y10-1 1.3 0.3 1.0 0.4 60 41 1.2 0.3
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Table 6: Compression the function fL (177) for L = 2 (1), L = 4 (I), L = 8 (HI), and

L = 16 (IV). For each value of e the choice of N is the same as in Table 3.

Type
of AACI Coifman Gaussian Optimized

bell

I 1I M IV I ]a M w I II M IV I IH 1 1 1V

10-3  9 11 13 23 12 12 16 25 10 12 15 25 8 10 13 23
10-7 33 30 36 45 35 36 41 49 22 22 27 37 20 22 27 38
10- 13 95 93 95 102 85 84 88 96 38 41 45 55 39 40 44 54
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