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Abstract Gaussian pyramid, Laplacian pyramid, and subband
An object recognition approach based on concurrent pyramid [2].

coarse-and-fine matching using a multi-layer Hopfield The most immediate utility of a multi-resolution
neural network is presented. The proposed network pyramid representation is that it can reduce the corn-
consists of several cascaded single layer Hopfield net- putational cost of various image search operations. A
works, each encoding object features at a distinct res- major problem associated with this hierarchical strat-
olution, with bidirectional interconnections linking ad- egy is that if a mistake occurs at an early stage, the
jacent layers. The interconnection weights between low resolution error will propagate into each subse-
nodes associating adjacent layers are structured to fa- quent higher resolution level and finally a mismatch
vor node pairs for which model trapslation and ro- would occur. This mismatch could not be corrected
tation. when viewed at the two corresponding resolu- by using the information at any level because the in-
tions, are consistent. This inter-layer feedback feature formation flows top-down in a feed-forward manner
of the algorithm reinforces the usual intra-layer match- and there is no feedback from higher resolution levels.
ing process in conventional single layer Hopfield nets To address this problem, a technique called "coarse-
in order to compute the model-object match which is and-fine" matching is proposed in this paper, where
most consistent across several resolution levels. The top-down and bottom-up matching are concurrently
performance of the algorithm is demonstrated in cases performed for each pair of levels of the image pyramid
of images containing single and multiple occluded ob- in order to find the best matched features at each level
jects. These r suits are compared with recognition re- pair simultaneously.
suits obtainea using a single layer Hopfield network. The proposed coarse-and-fine strategy is imple-

mented by utilizing a multi-layer Hopfield neural net-
1 Introduction work. The single layer Hopfield neural network fromwhich it derives has been used in a wide range of ap-

Object recognition has emerged as a subject of wide plications, such as vision tasks. Vision tasks can be
research interest during the last decade'. Two com- formulated as an optimization problem where an en-

0 mon themes characterizing much of the recent work ergy function is minimized. The search for its global
, if have been the use of a priori information in the form minimum can be implemented through a Hopfield neu-

of models and constraints, and the incorporation of the ral network with interconnection weights generating
A-d most current image processing tools to enhance recog- an equivalent energy function. Unfortunately, there
1 nition performance. In this spirit, the objective of the typically exist multiple local mininma in such energy
3. present. study is to explore the use of nu lti-resolution functions due to its non-convexity and its argument
0 (pyramidal) image representation in the context of re- high dimensionality, and a gradient descent procedure

cently reported neural network implementation tech- is vulnerable to early termination. The ilopfield net-
4 !I nology, with the goal of faster and more robust, auto- work can get trapped in any of these local minima
S- mated object recognitio, performance. depending on the initial states of the network and the

It is natural to seek object recognition cues con- way it selects the sequence- by which the states of the
A : currently at several resolution levels. Multi-resolution neurons are updated.
• el image representation and processing is a well known In this paper, a concurrent (coarse-and-fine) multi-

image analysis methodology. A multi-resolution im- resolution model-based object recognition technique is
age representation can be viewed as an image pyra- proposed using a multi-layer Hopfield neural network
mid. Important classes of image pyramids include the to alleviate some of these problems which arise when a

single layer Hopfield network is utilized. The network
'This work was partially supported by Amherst Systems, is structured as a cascade of several single layer Hop-

inc., 30 Wilson Road, Buffah, NY 14221-7082, under Office of field networks with interconnections between adjacent
Naval riesearch contract miuher N00014-nl1-C-02.7. layers. It uses matching results in each layer to rein-
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force the matching process for adjacent layers through is shown in Fig. 1. Inputs to each layer are the fea-
inter-layer interconnection weights. The values of the tures extracted from the corresponding level of the
weights between nodes on distinct layers depend on model and scene pyramids. The nodes within each
the intrinsic characteristics of the multi--esolution rep- layer are fully connected. The adjacent layers of the
resentation, that is, the relationship among the multi- multi-layered network are connected by a set of in-
resolution features belonging to adjacen, levels of the terconnection weights. For the remainder of this pa-
image pyramid. Each layer of the network implements per, we will restrict ourselves to a two-layered Hopfield
a matching process between the scene and the model neural network where the fine features are matched in
features which are extracted at the corresponding reso- the first layer Ll and the coarse features are matched
lution level of the image pyramid. However, each layer in the second layer L 2 , with appropriate interconnec-
of the proposed network communicates with adjacent tion weights.
layers permitting inter-layer feedback during match-
ing. Thus good matches at multiple levels reinforce 3.2 Energy Function
one another, and matches at one level which are not To consider the behaviour of a two-layered Hopfield
corroborated at adjacent resolution levels do not prop- network, let the state of the network in layer L1 be rep-
agate as strongly. Moreover, the equivalent energy resented by a binary state vector A , , the state of the
function for the multi-layer Hopfield network is shown second layer L 2 be the state vector A, and the state
to be smoothed relative to the single layer case, mit- vector for the entire two-layered network be denoted
igating the local minima problem, and the examples by
are shown to converge to local minima reasonably close A = [i, A2 ] (1)
to the global minimum.

This paper is organized as follows. In Section 2, where the entire state vector is the concatenation of
scene and model pyramids are discussed. In Section 3, the state vectors of the two layers.
the multi-layer Hopfield neural network is introduced. The overall energy function representing the col-
In Section 4, the performance of this network is com- lective behaviour of the two-layered network can be
pared with that of a single layer llopfield neural net- characterized by the following energy function
work for recognizing image scenes containing single
objects and multiple occluded objects. Conclusions is E(A) = Ei(Ai)+aIE12 (A)+E2 (A 2)+a 2 E 2 1(A) (2)
given in Section 5.

where E(A) is the energy due to the current state of
2 Scene and Model Pyramid tlV layer L 1 , E2 (A 2 ) is the energy due to the current

In order to implement the matching based on a state of the layer L, El (A) and E21 (A) are the inter-
multi-layered Hopfield network at multiple resolution energy between the state of the layer L1 and the state
levels of images, first an image pyramid is constructed of the layer L2 and vice versa, Oj is a parameter that
for each model. A QMF filter [2] is employed in this weights the inter-energy E12(A) relative to the energy
paper to build the subband pyramids for each model El(A1 ), and C12 is a parameter that weights the inter-
and the input scene. The feature primitives that are energy E21(A) relative to the energy E2 (A2 ). a, and
utilized in this paper are the high curvature points al can also be considered as Lagrange multipliers.
(corners). Therefore, a polygon approximation algo- The behaviour of the network at layer Ll can be
rithin [3] is used on the boundaries of objects to obtain represented by an energy function given by
the corners (vertices) at each level. The numerical fea-
tures quantifying a vertex are the angle between the 0k1(A) = El(Al) + aiEl2 (A) (3)
two polylines that form the vertex and the location of
the vertex. A set of graphs are generated for each 2-D Similarly, the energy function for layer L2 can be writ-
prototype object, where each graph consists of a set ten as
of corners with their corresponding angle features and 02(A) =6E-U(A2) + o,2E21(A) (4)
distance features at a particular level of the pyramid,
we call this representation the model graph pyramid. Our multi-resolution matching process is defined as
All the model graph pyramids are then integrated into minimizing the overall energy function E(A) over the
a single model-database, which is called a global model entire domain of state vector A in order to obtain the
graph pyramid. Similarly, a graph pyramid can he gen- best matches for each layer. To minimize the overall
erated for an input scene which is called a scene graph energy function E(A), a node in layer Ll is randomly
pyramid. During recognition, the scene graph pyramid picked and its state is updated, then a node in layer L2
is matched against the global model graph pyramid by is randomly chosen and its state is updated. This pro-
a molti-layer llopfield neural network to identify and cess is repeated recursively by choosing a node from
locate the instances of the models in the test scene for layer Ll followed by a node from layer L 2. 0
each level of the pyramid. 3.3 Connection Weights in Each Layer
3 Multi-layer Hopfield Network The matching process in each layer can be formu-

lated as minimizing an energy function [1]. For exam-
3.1 Construction pIe, considering the matching process at layer L1 , and

A multi-layer flopfield ietwork consisting of sev- assuming no interaction with layer L.,, anl energy func-
eral single layer llopfield networks cascaded together tion that includes all the constraint.s of the matching

Spca

f1



.4

process can be written as: on the relationship between the mapping parameters
of the models obtained at each layer. The relation-

1 2  , , N, ship can be summarized as follows: consistent trans-
El = - E j C,,',i,, V, , Vilit lation parameters of a model at layer L, are twice the

i=i k,=i j,=t i,=1 translation parameters of the same model at layer L.,
and consistent rotation parameters at layer L, and L.

Ml / N, 4) , must be the same. Therefore, the relationship between
+ - E k , E - /1=1 the mappings is

kJ=l k=(5) rL, = 2 x _L
where V,,t, represents the degree of match between = 2 x tyL2 (10)
two features it and k. It takes a value of I when 9 _ L _. 2

the i 1th feature point in the input image matches the
kith feature point in the model, otherwise, it takes a where (tLl,_1L,) and (tLZ2 ,YL ) are the translation
value of 0. N is the total number of features in the parameters of models at layer L, and L 2 , respectively,
model graph which is the sum of all the features in and _L, and O., are the rotation parameters of models
the models. M, is the corresponding number of fea- d lL, and L2 reste rotation of
ture points for the input image in layer L1 . The first at layer L1 and L2, respectively. The calculation of
term in the energy function represents the compatibil- W, '-tL and 0/ are obtained as the average of the
ity constraint. The second and the third terms rep- translation and rotation of each matched pair nodes
resent the uniqueness constraint, i.e., for each feature in (5].
point there can only be one match. The compatibility U sing this consistency constraint between the two
measure Cih, 11 can be expressed as follows: layers, we can define the interconnection weights be-

tween the two layers of the network. The interconnec-
W 1F(fi, ,fk, )+ tion weight Bk 1 i k2 , which is the connection between
W2 F(f31 , f1 )+ a node (il,k 1 ) in layer L, and a node (i2 ,k2 ) in layer

-= VF(di,j,,dkI,), for k, and i E q L 2 , is defined as
-,for k and 11 V q

(6) ( k~2 E model q
where Wi are the weighting factors and sum up to i, if ki,, -T 2 1

I i., W = I). q is qth model. The function B+,kti 2k 2F 1 1 =L, 2tyL] 11 !l
F(z, y) is a discrete non-linear compatibility function IG.I - _ 6 L 2 1 C!
which was defined in (11, such that if z and y are com- -1, otherwise
patible then F(z, y) has a value 1; otherwise -1. (11)

It has been shown in [1] that the energy function Ei where c, and C2 are pre-specified thresholds. The in-
in (5) above is equivalent to the Hopfield-style energy terconnection weights between layer L, and L2 are
function [4] given by symmetrical. Fig. 2 shows the interconnection weights

between the two layers for two nodes belong to the
l N, AI , same model or to different models.

i= - T ,j,, Vk, V1 1,, The inter-energy E12 and E2 1 are equal. They can
i =1k,=ij,=t ,= be noted as Ee which stands for the coupling energy

between the two layers.M, N,

_E E lliVli(7) AI l NJ M 2 N2  (2
i,=I kEo1 E E E Biiki 2k 2ViktVi 2k. 1

where S- k1 1l &k21

Til&;jjl Cilj 1, - 26,,, - 26k,1, (8) Since the inter-energy E12 and E21 are equal, we will
use a for both &I and U2 in the remainder of this

]ilk, = 4, (9) paper. Hence, the overall energy for the network is

and hi,,i, = 1 if i1 = j, and 0 otherwise, and similarly E = E, + E 2 + 2&Ec. (13)
6 11 = 1 if k1 = 11 and 0 otherwise. TiL-,j,, repre-
sents the connection weight between a node at (i1 , k1) It should be pointed out that the values for the inter-
and a node at (jl, 1t) within layer L 1 . connection weights are changing as the network is up-
3.4 Interconnection Weights between the dated, because as the states of the nodes are changed

Layers and as more correct matches are obtained the calcu-lated values for the translation and rotation will also
At each layer, the matched features for each model be changed.

can be used to find the mapping (translation and ro-
tation parameters) between the model and the corre- 3.5 Rate of Change in Energy
sponding object in the input scene. The interconnec- Consider changing the state Vi,,, of a neuron
tions between adjacent layers of the network are based (i,ki) in layer L1 , i.e., Vi", is changed to ti'+t the
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change in the total energy is 3.6 Summary of the Updating Algorithm

= A~E, + A2 + 2 . (14) The updating algorithm is summarized in the fol-
lowing steps.

lfere, AE 2 = 0, since the states of the neurons in layer Step 1) Set the initial state of neurons for layers
L 2 are not changed. The change of the energy E1 is L, and L2 :
g i v e n b y [ 1) = ]1 f I f . - f A - < );

AE= - (U,k, - 2AVi,k,)AVi,k, (15) *- = _0, otherwise (25)

where where 0 is a threshold to determine if feature fi. and
M, N1 fk_ are compatible, m = 1,2.

=ik X: 1(Cl,jlll-2s , j-26&113 Vj, 13 ~kl Step 2) Randomly select (i1, k1) in layer L1.
j,=1 i1=1 Step 3) Update the state V~iki.(16)

and (1) Vn+ 1  1, if Uikt -0 oWi2 k2  + Zik 1 k2  > 2;

V= +  Vin,, - (17) i,k- 0, if Ui,k, - OWik - aZi k ik 2 < -2.

The change in coupling energy E, can be written as Step 4) Randomly select (i, k 2) in layer L2 .(26)

1E i, AVi, ,  (18) Step 5) Update the state Vi,21 .E = -- Zi~ 1 , + (18
2 2 + 1 if UiS2 - aWick: + aZi,k 2~, > 2;

where 1KO 0, if Uik 2 - aWi , - 0Z12 ikk,1  < -2.
M. . (27)

Step 6) Check for the termination condition. If
ZilkA2= L L Vk it is satisfied, go to step 7) otherwise go to step 2).

i2=k2 ,,k2erodel q andStep 7) Output the final states of neurons Vitis=] modl qand Vik, which will be the final matches between the

M, N L. model features and the input features in level L1 and
xV' (B~ V+ 1 

-B Bi 3 3Vn level L2, respectively.
Xi1k2 Vi, Sjk-'-i ; ikl) It is well known that the optimal solution is not al-

t,=1 ki kik 2Emodel q ways attained for non-convex gradient searches. Two
(19) termination strategies are used in this algorithm. One

M2 N2-N,"L terminates at a local minimum, i.e., whenever the out-

Vi2 p2, (20) puts of all the neurons in the network are convergedVi2k2 = E E V , (0) to a local minimum in the sense of unity Hamming
'2 k2  ka,k 2imodel q distance. This guarantees that (within Hamming dis-

Q Q tance unity of the output) there is no other state of

N, = E NI' , NJ2 = E N , (21) lower energy. The other is that when the outputs of
neurons are unchanged after a fixed number of itera-

q= *tions, the algorithm is terminated.
Q is the total number of models, and 4 Results

k , k2 E the same model In this section, the merits of the proposed algorithm
1 [ILt'L, - 2-- L2I are examined using several test objects which are im-

Bm  = I if I+tYL - 2tgIIv_ <e ages of different door keys. Each image is processedB!%82k2 = , r - Lby a QMF filter [2] with 24-tabs in order to generate-L,- t., wi s the multi-resolution images for the test object. In the-1, otherwise next preprocessing step, high curvature points (cor-
(22) ners) of the test object are extracted at each level ofazk Bani represent the interconnections the image pyramid separately.

when state of the neuron (i, k+) is V" or We investigated two sets of test objects to explore
resctve. Theefore, heu han g of 1)k , the performance of our proposed multi layer network.respectively. Therefore, the change of total energy is The first set is composed of image scenes with single

AE = - (Ur ,L - aW'21 2)AVi1 k - 0ZLfir 2 + 2. object (one key). In the other set, we processed image
(23) scenes that contained multiple occluded objects (over-

Similarly if the state Vik2 of a neuron (i02 , k2) in lapping keys). The scene graph pyramid containing
layer L2 is changed, the change in the total energy is two feature graphs at two resolution levels for multi-

ple occluded objects is shown in Fig. 3.
E =-Ul-- (24) 4.1 Single and Occluded Object Results

where [-ik, is similar as in Eq. (16), Zi21i k and In this investigation, we formed our test objects by
Wi,,, are similar as in Eq. (19)-(20) except that the translating and rotating the key models. The model-
suiscript I is changed to the subscript 2. database contained three keys. The single layer and



the two-layered llopfield networks were both simu- minimum which is close to the global minimum. Our
lated and their recognition performance for a single results show that 0.3 < a < 0.5 is a good compromise
and occluded object in the input scene were studied. for both single and two layer nets.

The state trajectory and final state at termination
depend on the initial state vector and the particular 5 Conclusions
realization of the random updating sequence by which In this paper we have presented a multi-layered
the candidate state for updating is selected. Each net- Hlopfield neural network for object recognition. A sin-
work was tested with 17 different random updatingse- gle layer Hopfield neural network has significant lim-
quence realization. Three test objects are used in our itations. For example, it could get trapped in one of
experiment, thus a total of 51 runs were performed for many local minimaof the energy function. Although it
both single and occluded object. In the case of single is difficult to fully analyze the dynamics of the energy
object, for the single layer tlopfield net, the recog- function for a multi-layered Hopfield neural network
nition success was 41%; for the two-layered llopfield due to high dimensionality of the energy function, ex-
net, the rate of recognition was increased to 82%. In perimental results indicate that the energy function of
the case of input scenes with occluded objects, for the a multi-layered llopfield neural network converges to
single layer Hopfield net, the rate of recognition was a local minimum which is often equal to or very close
only 6%; for the two-layered Hopfield net, a recogni- to the global minimum.
tion rate was 31%. The recognition of occluded object The matching process proposed in this paper is a
is more difficult than that ot single object since extra concurrent coarse-and-fine strategy. This choice ef-
matching ambiguities are introduced. ficiently utilizes the multi-layered Hopfield network

Our experiment also showed that the computing by reinforcing the adjacent layers of the multi-layered
time for the two-layered Hopfield net takes I to 3 network. The interconnections between the adjacent
times or 1 to 1.5 times more than that of the one layers of multi-layered Hopfield neural network are de-
layer Hopfield net. in the single and occluded object, fined on the basis of the compatibility characteristics
respectively. This is because the number of nodes in of the multi-resolution image pyramid. This is one ap-
the two-layered llopfield network is larger than that proach to define interconnections between the layers
of the single layer llopfield network. These findings of the multi-layered Hopfield neural network to make
show that the two-layered Hopfield network is inore the adjacent layers reinforce each other. Other kind of
powerful than the single layer llopfield network. interconnection compatibility conditions are curreittly
4.2 Energy Function Behaviour under investigation.

To analyze the dilferences between the one layer References
llopfield net and the two-layered Hopfield net, we iii- [1] N. M. Nasrabadi and W. Li, -Object recognition
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both networks. Because the energy function is high tern, Man and Cybernetics, vol. 21, no. 6, pp. 1523
dimensional and non linear, it is difficult to plot the - 1535, 1991.
shape of the energy function over the states of the
network. Consider the energy function vs. the it- [2] J.D. Johnston, "A Filter Family Designed for Use
oration numbers as the network seeks a stable state, in Quadrature Mirror Filter Banks," Proceedings
This presents gromds for comparison between the be- of ICASSP, pp. 291 - 294, April 1980.
haviour of the energy functions of two networks. Fig.
4 shows plota of the energy functions vs. the number [3] U. Ramer, "An iterative procedure for the polygo-
of iterations for the single layer flopfield net as well nal approximation of plane curves," CGIP, vol. 1,
as the two-layered Hopfield net when the input is a pp. 244-256, 1972
single object. [4] J. J. Hopfield and D. W. Tank, "Neural computa-
4.3 Effect of interconnection Parameter o tion of decisions in optimization problems," Biol.

The interconnection parameter a scales the inter- Cybern., vol. 52, pp. 141 - 152, 1985.
layer energy function E, relative to the intra-layer en-
ergy functions E, and E2 , respectively. It is useful [5] S. Young, "Multiresolution image analysis and
to consider the effect of this parameter a on the be- pattern recognition," Ph. D. dissertation, 1994.
haviour of the two-layered Hopfield network. We ex-
amined the effect of this interconnection parameter on
the network performance for a in the range of 0- 1. In
Fig. 5 plots (b) and (c) show the energy functions, for
a close to zero, trapped in local minima which are all
far from the global minimuni. For a close to zero, the
two-layered network behaves as two independent sin-
gle layer networks without. interconnection. For v > 1,
the inter-energy function dominates the energy func-
tion for layers L, or L2 , the energy functions E, or E2
never converge to a stable state as shown in plot (a)
for El. When a is bel.ween 0 and I. the energy func-
tion El can converge to the global niinim or a local
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Figure 1-Architecture of multi-layered Flopfield net-
work. Figure 4. Energy behaviour. (a) Ethe energy

funtio fo te lyerLwhen using single layer net-
wokwhchsaledatalocal miiu;(b) El, the

energy function for the layer L, when using two-
layered network, which converged to the global min-
imum; (c) 0b1, the total energy at layer Li, 01 =
El + a x E, (a = 0.5); (d) E,, the inter-energy. (e)

Emo E2, the energy function for the layer L 2 when using
l slo somesingle layer network; (f) E2 , the energy function for
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Uswo owa" Figure 5. Energy function of the layer L I using two-
layered net for different values of the interconnection
parameter or. (a) a = 1; (b) a = 0; (c) a = 0.1; (d)
a =O0.3; (e) a =0.4; (f) a =0.5; (g) a =0.75.

Figure 2. Inter-connections of neurons for two-
layered fopfield rnetwork.


