|

sale; its

d

been approved
for public telzase an

This document has
distribution 13 unlimited

-A282 417
A‘\)mﬁmmm\m\w

DTIC

ELECTE
JUL 271994

OBJECT RECOENITION USING
MULTI-LAYER HOPFIELD NEURAL NETWORK

Susan S. Young, Peter D). Scott and Nasser M. Nasrabadi
Department of Electrical & Computer Engineering
State University of New York at Buffalo
Ambherst, New York 14260

To appear, Proc. Int. Conf. on Comp. Vision and Pat. Rec. (CVPR ’94)

Abstract

An object recognition approach based on concurrent
coarse-and-fine maiching using a mulli-layer Hopfield
neural network is presented. The proposed nelwork
conststs of several cascaded single layer Hopfield nel-
works, each encoding object fealures al a dislincl res-
olution, with bidirectional interconnections linking ad-
jacent layers. The inlerconnection weights belween
nodes associating adjaceni layers are struclured 1o fa-
vor node pairs for which model trapslation and ro-
tation. when viewed al the two corresponding resolu-
lions, are consislenl. This inter-layer feedback feature
of the algorithm reinforces the usual intra-layer match-
ing process in convenlional single layer Hopfield nets
in order to compute the model-object match which is
most consislent across several resolution levels. The
performance of the algorithm is demonsiraled in cases
of images containing single and multiple occluded ob-
jects. These r sulls are compared with recognition re-
sulls oblainea using a single layer Hopfield network.

1 Introduction

Object recognition has emerged as a subject of wide
research interest during the last decade!. Two com-
mon themes characterizing much of the recent work
have been the use of a priori information in the form
of models and constraints, and the incorporation of the
most current image processing tools to enhance recog-
nition performance. In this spirit, the objective of the
present study is to explore the use of multi-resolution
(pyramidal) image representation in the context of re-
cently reported neural network implementation tech-
nology, with the goal of faster and more robust auto-
mated object recognition performance.

It is natural to seek object recognition cues con-
currently at several resolution levels. Multi-resolution
image representation and processing is a well known
image analysis methodology. A multi-tesolution im-
age representation can be viewed as an image pyra-
mid. Important classes of image pyramids include the
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Gaussian pyramid, Laplacian pyramid, and subband
pyramid [2].

The most immediate utility of a multi-resolution
pyramid representation is that it can reduce the com-
putational cost of various image search operations. A
major problem associated with this hicrarchical strat-
egy is that if a mistake occurs at an early stage, the
low resolution error will propagate into each subse-
quent higher resolution level and finally a mismatch
would occur. This mismatch could not be corrected
by using the information at any level because the in-
formation flows top-down in a feed-forward manner
and there is no feedback from higher resolution levels.
To address this problem, a technique called “coarse-
and-fine” matching is proposed in this paper, where
top-down and bottom-up matching are concurrently
performed for each pair of levels of the image pyramid
in order to find the best matched features at each level
pair simultaneously.

The proposed coarse-and-fine strategy is imple-
mented by utilizing a multi-layer Hopfield neural net-
work. The single layer Hopfield neural network from
which it derives has been used in a wide range of ap-
plications, such as vision tasks. Vision tasks can be
formulated as an optimization problem where an en-
ergy function is minimized. The search for its global
minimum can be implemented through a Hopfield neu-
ral network with interconnection weights generating
an equivalent energy function. Unfortunately, there
typically exist multiple local minima in such energy
functions due to its non-convexity and its argument
high dimensionality, and a gradient descent. procedure
is vulnerable to early ternination. The Hopfield net-
work can get trapped in any of these local minima
depending on the initial states of the network and the
way it selects the sequence by which the states of the
neurons are updated.

In this paper, a concurrent (coarse-and-fine) multi-
resolution model-based object recognition technique is
proposed using a multi-layer Hopfield neural network
to alleviate some of these problems which arise when a
single layer Hopfield network is utilized. The network
is structured as a cascade of several single layer Hop-
field networks with interconnections between adjacent
layers. It uses matching results in each layer to rein-
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force the matching process for adjacent fayers through
inter-layer interconnection weights. The values of the
weights between nodes on distinct layers depend on
the intrinsic characteristics of the multi-~esolution rep-
resentation, that is, the relationship among the multi-
resolution features belonging to adjacen* levels of the
image pyramid. Each layer of the network implements
a matching process between the scene and the model
features which are extracted at the corresponding reso-
lution level of the image pyramid. However, each layer
of the proposed network communicates with adjacent
layers permitting inter-layer feedback during match-
ing. Thus good matches at multiple levels reinforce
one another, and matches at one level which are not
corroborated at adjacent resolution levels do not prop-
agate as strongly. Moreover, the equivalent energy
function for the multi-layer Hopfield network is shown
to be smoothed relative to the single layer case, mit-
igating the local minima problem, and the examples
are shown to converge to local minimareasonably close
to the global minimum.

This paper is organized as follows. In Section 2,
" scene and model pyramids are discussed. In Section 3,
the multi-layer Hopfield neural network is introduced.
In Section 4, the performance of this network is com-
pared with that of a single layer Hopfield neural net-
work for recognizing image scenes containing single
objects and multiple occluded objects. Conclusions is
given in Section 5.

2 Scene and Model Pyramid

In order to implement the matching based on a
multi-layered Hopfield network at multiple resolution
levels of images, first an image pyramid is constructed
for each model. A QMF filter [2] is employed in this
paper to build the subband pyramids for each model
and the input scene. The feature primitives that are
utilized in this paper are the high curvature points
(corners). Therefore, a polygon approximation algo-
rithm [3] is used on the boundaries of objects to obtain
the corners (vertices) at each level. The numerical fea-
tures quantifying a vertex are the angle between the
two polylines that form the vertex and the location of
the vertex. A set of graphs are generated for each 2-D
prototype obiect, where each graph consists of a set
of corners with their corresponding angle features and
distance features at a particular level of the pyramid,
we call this representation the model graph pyramid.
All the model graph pyramids are then integrated into
a single model-database, which is called a glodal model
graph pyramid. Similarly, a graph pyramid can be gen-
erated for an input scene which is called a scene graph
pyramid. During recognition, the scene graph pyramid
is matched against Lhe global model graph pyramid by
a multi-layer Hopfield neural network to identify and
locate the instances of the models in the test scene for
each level of the pyramid.

3 Multi-layer Hopfield Network
3.1 Construction

A multi-layer Hopfield network consisting of sev-
eral single layer Hopficld networks cascaded together

is shown in Fig. 1. Inputs to each layer are the fea-
tures extracted from the corresponding level of the
model and scene pyramids. The nodes within each
layer are fully connected. The adjacent layers of the
multi-layered network are connected by a set of in-
terconnection weights. For the remainder of this pa-
per, we will restrict ourselves to a two-layered Hopfield
neural network where the fine features are matched in
the first layer L, and the coarse features are matched
in the second layer L., with appropriate interconnec-
tion weights.

3.2 Energy Function

To consider the behaviour of a two-layered Hopfield
network, let the state of the network in layer L, be rep-
resented by a binary state vector A,, the state of the
second layer Lo be the state vector A, and the state
vector for the entire two-layered network be denoted

by
.’izlélrﬁﬂ (l)

where the entire state vector is the concatenation of
the state vectors of the two layers.

The overall energy function representing the col-
lective behaviour of the two-layered network can be
characterized by the following energy function

E(4) = E\(A))+a1E12(A)+ E2(42)+a2E21(4) (2)

where Ej(A,) is the energy due to the current state of
the layer Ly, E2(A,) is the energy due to the current
state of the layer Ly, Ej2(A) and E»;(A) ate the inter-
energy between the state of the layer Ly and the state
of the layer L, and vice versa, ay is a parameter that
weights the inter-energy £)2(A) relative to the energy
E\(A,), and a3 is a parameter that weights the inter-
energy E31(A) relative to the energy E>(A,). a; and
a4 can also be considered as Lagrange multipliers.
The behaviour of the network at layer L, can be
represented by an energy function given by

¥i1(4) = Ei(4,) + o1 E1a(A) (3)

Similarly, the energy function for layer L2 can be writ-

ten as
¥2(4) = E2(Ay) + a2E2,(A4) (4)

Our multi-resolution matching process is defined as
minimizing the overall energy function E(A) over the
entire domain of state vector A in order to obtain the
best matches for each layer. To minimize the overall
energy function E(A), a node in layer L, is randomly

icked and its state is updated, then a node in layer L.
is randomly chosen and its state is updated. This pro-
cess is repeated recursively by choosing a node from
layer L, followed by a node from layer La.

3.3 Connection Weights in Each Layer
The matching process in each layer can be formm-
lated as minimizing an energy function [1]. For exam-
ple, considering the mat.ching process at layer L, and
assuming no teraction with layer L, an energy func-
tion that includes all the constraints of the matching
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process can be written as:
A’; N| All N,

Fy, = -—% Z Z Z Z Ci,k,j,l, Viik, Vj.l.

(1=l k=1 jy=1 =)

=1 ky=1 k=1 =1
(5)

where V;, i, represents the degree of match between
two features iy and k;. It takes a value of 1 when
the i,th feature point in the input image matches the
kyth feature point in the model, otherwise, it takes a
value of 0. Nj is the total number of features in the
model graph which is the sum of all the features in
the models. A, is the corresponding number of fea-
ture points for the input image in layer L;. The first
term in the energy function represents the compatibil-
ity constraint. The second and the third terms rep-
resent the uniqueness constraint, i.e., for each feature
point there can only be one match. The compatibility
measnre Cj3,;j,1, can be expressed as follows:

WIF(fl'l 1.fl', )+
WaF(fi, i)+

Cikjany = WaF(d;i,j, dr,,), forkyand ) € q
-1, for ky and I} € q
(6)

where W; are the weighting factors and sum up to
1 (i.e.30 Wi = 1). ¢ is gth model. The function
F(z,y) is a discrete non-linear compatibility function
which was defined in {1], such that if z and y are com-
patible then F(z,y) has a value 1; otherwise —1.

It has been shown in (1] that the energy function E,
in (5) above is equivalent to the Hopfield-style energy
function [4] given by

My Ny M, N,

E, = -% Z Z Z ZTl'lli'nh Vilh leh

1=l k=1 Hi=l =1
My, N
- Z Z I‘lkl Vl'lh : (7)
l'|=] k|=1
where
Tl'»hjlh = Cl'x"u'lh - 26i|i1 - 26&1'1' (8)

Iiik, =4, (9
and &;;, = 1 il 4, = j; and 0 otherwise, and similarly
6k, = 1if ky = 1 and O otherwise. Tj,g,j,1, repre-
sents the connection weight between a node at (i;, k)
and a node at (j;, /1) witkin layer L,.

3.4 Interconnection Weights between the
Layers

At each layer, the matched features for each model

can be used to find the mapping (translation and ro-

tation parameters) hetween the model and the corre-

sponding object in the input scene, The interconnec-

tions between adjacent layers of the network are hased

on the relationship between the mapping parameters
of the models obtained at each layer. The relation-
ship can be summarized as follows: consistent trans-
lation parameters of a model at layer L, are twice the
translation parameters of the same model at layer L.,
and consistent rotation parameters at layer L, and L.
must be the same. Therefore, the relationship between
the mappings is

Iz, =2x tzy,
W, =2xty, (10)
0, =90y,

where (g;,,l,gh) and U—”L:'!EL,) are the translation
parameters of models at layer L, and L,, respectively,
and 8, and @, are the rotation parameters of models
at layer Ly and L,, respectively. The calculation of
tzy,, f_ng and g, are obtained as the average of the
!.rargilation and rotation of each matched pair nodes
in (5].

sing this consistency constraint between the two
layers, we can define the interconnection weights be-
tween the two layers of the network. The interconnec-
tion weight B;, &,i.k,, Which is the connection between
a node (&il,kl) in layer L, and a node (i3, £3) in layer
La, is defined as

ky, k2 € model q
(itz,, — 2tz ,)
+|£2L| - 29—’-[.:“ <
0, = 8r,l < €2

-1, otherwise

B"lh"akz =

(an
where €; and €2 are pre-specified thresholds. The in-
terconnection weights between layer L, and L, are
symmetrical. Fig. 2 shows the interconnection weights
between the two layers for two nodes belong to the
same model or to different models.

The inter-energy E)2 and E3; are equal. They can
be noted as E. which stands for the coupling energy
between the two layers.

M, N, M, N,

Ee= 13 3 Y 3 BusiaraVar Voaks. (12)

i1=l k|=l iz:l kg:l

Since the inter-energy E); and E2; are equal, we will
use a for both o; and o, in the remainder of this
paper. Hence, the overall energy for the network is

E = Ey + Ey + 2aE.. (13)

It should be pointed out that the values for the inter-
connection weights are changing as the network is up-
dated, because as the states of the nodes are changed
and as more correct matches are obtained the calcu-
lated values for the translation and rotation will also
be changed.

3.5 Rate of Change in Energy
Consider changing the state V; ; of a neuron

(i1,k1) in layer Ly, ie., V", is changed to V;"}!, the




change in the total energy is
AE = OF, + AFy + 20AE.. (14)

Here, AE,; = 0, since the states of the neurons in layer
La are not changed. The change of the energy E, is
given by [1]

AE. - - (Uilk. - 2A‘/.'lk| )A‘/ﬁk. (15)

where
M, N,
Uie, = E Z(Chhjl‘l_26"151—26*1'!)‘/1'1‘1+It'1h'
j|=l ')"—'l
(16)
and .
AVi, = VI -V, (17)

The change in coupling energy E. can be written as
1 1
AE. = "5 iykyigk, + 5”":":Avixh (18)

where

M3 N3

Ziskyisks = Z Z Viae,

12=1 ka2 ¢, r.emodel q

Ly
M, Ny
n41 n+1 n n
xz E (Bi,kligk;p‘,i,k, _Bi|k|i3kg‘,i|k|)
121 ks gy kemodel g
(19)
Ma NQ-N:"

“’i;k, = Z Z Vl‘zﬁz’ (20)

s k2 &, k¢model g
Q Q
M=) N{' L N2 =) N, (21)
¢=1 g=1

Q@ is the total number of models, and
ky, ko € the same model
. lltzy, — 2tz |
! +|t_yL| - QQL,I:“V.TA:, <&
60, —81,lvm, <€
-1, otherwise

m _J1
Bl’|k|l’gk: - !

(22)

By 4 ik, and B:..t:iqk: represent the interconnections
when state of the neuron (iy,k1) is V7, or V2}1,
respectively. Therefore, the change of total energy is
AE = — (Uiyx, — aWi ) AVi ik, ~ 0Zi,kyink, +§f5)
Similarly if the state V},;, of a neuron (iz, k2) in
layer L. is changed, the change in the total energy is

AE = —(Uiyk, —oW; 6, )AVika — 0 Zi ki k, +2 (24)

where Uy, is similar as in Eq. (16), Zik,i .k, and
Wi,e, are similar as in Eq. (19)-(20) except that the
subscript 1 is changed to the subseript Z.

3.6 Summary of the Updating Algorithm
The updating algorithm is summarized in the fol-
lowing steps.
Step 1) Set the initial state of neurons for layers
L1 and [41:

. [ iflfi, = fin] <9
Viekn = {0, otherwise (25)

where ¥ is a threshold to determine if feature f;_ and
fi,. are compatible, m = 1,2.
Step 2g Randomly select (i;,k;) in layer L,.
Step 3) Update the state V; 4, .

ntt [, Uik, —aWie, + 0Zikyie, > 2
Y {0, if Ul'lh - aW,~,g, - aZ."h.',g, < =2.
(26)
Step 4) Randomly select (i, k2) in layer Lj.
Step 5) Update the state V;,;,.

ntl __, [l i Uik, —aWi, + aZijpie, > %
A {0, if Uigk, — cWik, — @Zipk,ik, < (—22;
Step 6) Check for the termination condition. l%'
it is satisfied, go to step 7) otherwise go to step 2).
Step 7) Output the final states of neurons V; ;,
and Vj,x, which will be the final matches between the
model features and the input features in level L; and
level L,, respectively.

It is well known that the optimal solution is not al-
ways attained for non-convex gradient searches. Two
termination strategies are used in this algorithm. One
terminates at a Jocal minimum, i.e., whenever the out-
puts of all the neurons in the network are converged
to a local minimum in the sense of unity Hamming
distance. This guarantees that (within Hamming dis-
tance unity of the output) there is no other state of
lower energy. The other is that when the outputs of
neurons are unchanged after a fixed number of itera-
tions, the algorithm is terminated.

4 Results

In this section, the merits of the proposed algorithm
are examined using several test objects which are im-
ages of different door keys. Each image is processed
by a QMF filter [2] with 24-tabs in order to generate
the multi-resolution images for the test object. In the
next preprocessing step, high curvature points (cor-
ners) of the test object are extracted at each level of
the image pyramid separately.

We investigated two sets of test objects to explore
the performance of our proposed multi layer network.
The first set is composed of image scenes with single
object (one key). In the other set, we processed image
scenes that contained multiple occluded objects (over-
lapping keys). The scene graph pyramid containing
two feature graphs at two resolution levels for multi-
ple occluded objects is shown in Fig. 3.

4.1 Single and Occluded Object Results
In this investigation, we formed our test objects by

translating and rotating the key models. The model-

database contained three keys. The single layer and




the two-layered Hopfield networks were bhoth simu-
lated and their recognition performance for a single
and occluded object in the input scene were studied.

The state trajectory and final state at termination
depend on the initial state vector and the particular
realization of the random updating sequence by which
the candidate state for updating is selected. Each net-
work was tested with 17 different random updating se-
quence realization. Three test objects are used in our
experiment, thus a total of 51 runs were performed for
bath single and occluded object. In the case of single
object, for the single layer Hopfield net, the recog-
nition success was 41%; for the two-layered Hopfield
net, the rate of recognition was increased to 82%. In
the case of input scenes with occluded objects, for the
single layer Hopfield net, the rate of recognition was
only 6%; for the two-layered Hopfield net, a recogni-
tion rate was 31%. The recognition of occluded object
is more difficult than that of single object since extra
matching ambiguities are introduced.

Our experiment also showed that the computing
time for the two-layered Hopfield net takes 1 to 3
times or 1 to 1.5 times more than that of the one
layer Hopfield net in the single and occluded object,
respectively. This is because the number of nodes in
the two-layered Hopfield network is larger than that
of the single layer Hopfield network. These findings
show that the two-layered Hopfield network is more
powerful than the single layer Hopfield network.

4.2 Energy Function Behaviour

To analyze the differences between the one layer
Hopfield net and the two-layered Hopfield net, we in-
vestigated the behaviour of the energy functions for
both networks. Because the energy function is high
dimensional and non linear, it is difficult to plot the
shape of the energy function over the states of the
network. Consider the energy function vs. the it-
eration numbhers as the network secks a stable state.
This presents grownds for comparison hetween the be-
haviour of the energy functions of two networks. Fig.
4 shows plots of the energy functions vs. the number
of iterations for the single layer Hopfield net as well
as the two-layered Hopfield net when the input is a
single object.

4.3 Effect of interconnection Parameter «

The interconnection parameter o scales the inter-
layer energy function E. relative to the intra-layer en-
ergy functions Ey and Ea, respectively. It is useful
to consider the eflect of this parameter o on the be-
haviour of the two-layered Hopfield network. We ex-
amined the effect. of this interconnection parameter on
the network performance for e in the rauge of 0—1. In
Fig. 5 plots (b) and (c) show the energy functions, for
o close to zero, trapped in local minima which are all
far from the global minimum. For o close to zero, the
two-layered network behaves as two independent sin-
gle layer networks withont. interconnection. Foro > 1,
the inter-energy function dominates the energy func-
tion for layers L, or Lo, the energy functions £, or E,
never converge to a stable state as shown in plot (a)
for F1. When a is between 0 and 1, the energy func-
tion Ky can converge 1o the global minimumor a local

minimum which is close to the global minimum. Our
results show that 0.3 < a < 0.5 1s a good compromise
for both single and two layer nets.

5 Conclusions

In this paper we have presented a multi-layered

Hopfield neural network for object recognition. A sin-

Je Jayer Hopfield neural network has significant lim-
itations. For example, it could get trapped in one of
many local minima of the energy function. Although it
is difficult to fully analyze the dynamics of the energy
function for a multi-layered Hopfield neural network
due to high dimensionality of the energy function, ex-
perimental results indicate that the energy function of
a multi-layered Hopfield neural network converges to
a local minimum which is often equal to or very close
to the global minimum,

The matching process proposed in this paper is a
concurrent coarse-and-fine strategy. This choice ef-
ficiently utilizes the multi-layered Hopfield network
by reinforcing the adjacent layers of the multi-layered
network. The interconnections between the adjacent
layers of multi-layered Hopfield neural network are de-
fined on the basis of the compatibility characteristics
of the multi-resolution image pyramid. This is one ap-
proach to define interconnections between the layers
of the multi-layered Hopfield neural network to make
the adjacent Jayers reinforce each other. Other kind of
interconnection compatibility conditions are currently
under investigation.
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Layer L,

Layer Ly

F‘zgnre 1.Architecture of multi-layered Hopfield net-
WOrK.

Fignure 2. Inter-connections of neurons for two-
layered Hopfield network.
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Figure 3. A scene graph pyramid containing two
feature graphs at two resolution levels for multiple oc-
cluded objects.
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Figure 4. Energy behaviour. (a) E;, the energy
function for the layer L, when using single layer net-
work, which stalled at a local minimum; (b) E,, the
energy function for the layer L; when using two-
layered network, which converged to the global min-
imum; (¢) ¢;, the total energy at layer L, ¢, =
Ey + a x E. (a = 0.5); (d) E., the inter-energy. (e)
E;, the energy function for the layer Lo when using
single Jayer network; (f) E;, the energy function for
the layer L when using two-layered network.
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Figure 5. Energy function of the layer L, using two-
layered net for different values of the interconnection
parameter a. (a) a = 1; (b) a = 0; (¢c) a = 0.1; (d)

a=0.3;(e) a=04;(f) a =0.5; (g) o =0.75.




